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Abstract of the Dissertation
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On the geodesic flow of Zoll manifolds
by
Carlos Eduardo Durdn Fernandez
Doctor of Philosophy
m
Mathematics
State University of New York at Stony Brook

1994

We examine in detail the geodesic flow of Zoll manifolds, that
is, Riemannian or Finsler manifolds such that all of its geodesics
are closed with the same period.

Our main results are:

1) We give several geometric conditions which indicate ‘close-
ness’ of Riemannian manifolds under which two Zoll metrics geo-

metrically close to each other have symplectically conjugate geodesic

fows.

2) The set of Finsler Zoll metrics is locally path connected: if

go and ¢ are two Finsler Zoll metrics on a manifold M which are
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close to each other, then there is a one parameter family of I'insler
Zoll metrics, all with mutually conjugate geodesic flows, joining g
and ¢y.

3) The geodesic flow of a Zoll manifold is completely integrable
in the Liouville sense. Applications to the canonical examples are

given,
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Hay dos modos de conciencia:
una es luz, y ofra, paciencia.
Una estriba en alumbrar

un poquito en el hondo mar;
otra, en hacer penitencia

con cafia o red, y esperar

el pez, como pescador.

Dime ti: jCual es mejor?

i Conciencia de visionario
que mira en el hondo acuario .
peces Vivos,

fugitivos,

que no se pueden pescar,

o esa maldita faena

de ir arrojando a la arena,
muertos, los peces del mar?

Antonto Machado
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Chapter 1

Introduction

A Zoll manifold (M, g) is, roughly speaking, a Riemannian manifold ‘all
of whose geodesics are closed’. This concept can be made precise in numerous

(a priori non-equivalent) ways:

1. The less restrictive definition requires that, for all geodesics v emanating
from a point p € M, v eventually returns to p, and this happens for all
peEM.

2. The most restrictive definition requires that the geodesic flow is periodic,
with the same minimal period L for all geodesics, and all geodesics are

required to be simple.

For definitions in between and pointwise conditions, see [Bes78, chapter
7). Although a priori the second definition is more restrictive, all known
examples of smooth metrics satisfying (1) also satisfy (2), but it is a mostly

open problem to determine if that happens in general. Tt is know that any

metric on S? satisfying (1) also satisfies (2) ([GG81]).




We will work with the following definition:

Definition. A Riemannian manifold (M, ¢) is a Zoll manifold if the cogeodesic
flow of g on the unit cotangent bundle U*M is periodic, with all orbits of the

same minimal period 2.

Remark. The definition makes perfect sense also for a Finsler manifold. Most
of our constructions, and theorems A, D and E, will work in this more general

category.

Remark. We assume that the manifold M is simply connected.

A natural problem is then to characterize Zoll manifolds. In 1903, O. Zoll
([Zol03]) constructed examples of non-standard Zoll metrics on the sphere S2.
After a long period of dormancy, the subject was revitalized in the seventies by
works of Guillemin ([Gui76]), Weinstein ([Wei77]) and, specially, the beautiful
book of Besse ([BesT78]).

The compact rank one symmetric spaces (from here on referred to as
CROSSes) with their canonical metrics are Zoll manifolds. The natural ques-
tion to be asked is: is the Zoll condition geometrically rigid? Are there any
other Zoll manifolds not isometric to CROSSes? It is a very interesting prob-
lem to topologically or differentiably characterize which manifolds admit a Zoll

metric, although all known examples are metrics on manifolds diffeomorphic

to CROSSes. Also, topologically, Zoll manifolds are very similar to CROSSes,




by the work of Bott and Samelson (see chapter 5 for the statement of the

Bott-Samelson theorem; see also [BesT8, chapter 7]), [Bot54], [Sam63})

Therefore most of the research on Zoll manifolds concentrates on the
following question: given a metric ¢ on a manifold M diffeomorphic to a i
CROSS, must (M, g) be isometric to (M, can)? The state of the question is ‘

as follows:

o There are non-trivial Zoll deformations of the canonical metric on the }

sphere S™ for any n. ([Zol03], [BesT8, chapter 4])

e The real projective spaces are rigid, i.e. any Zoll metric on RP" is

isometric to the canonical metric on RP™ ([BesT8, Appendix D])

e The projective spaces CP", HP" and CaP? are infinitesimally rigid, i.e.
for any l-parameter family of Zoll metrics ¢; with go = the canonical
metric, the derivative at zero h = %ch:o is tangent to the action of the

diffeomorphism group. ([Tsu81])

e The projective spaces CP", HP™ and CaP? are locally rigid, i.e. any
7Zoll metric g which is sufficiently close (in a C'* norm, with k& depending

on the dimension} to the canonical metric is isometric to the canonical

metric. ([Kiy87])

The techniques used in dealing with Zoll manifolds seem to indicate that,

intuitively, the Zoll property is a dynamical property of the geodesic flow of

the manifold, rather than a geometrical property on M. That is, the natural

place to study Zoll manifolds is not M, but the tangent bundle TM or the




unit tangent bundle UM (or their duals). Therefore a basic problem is to
understand dynamically the geodesic flow of Zoll manifolds, in the sense of
problem 10 in the list of problems in the introduction of [Bes78]. We will see
(proposition 1.1.1) that such an understanding can lead to a solution of the
isometry problem.

In what follows we describe our results concerning the dynamics of Zoll

ﬁlanifolds :

1.1 Symplectic Conjugacy of Geodesic Flows

of Zoll manifolds

One necessary condition for geometric rigidity is symplectic rigidity, which
we define below:

Let (M, g0), (M, g1) be two Riemannian metrics on the same manifold M,
Hy, Hy the associated energy functions on T*M, H;(€) = ¢;(€",£") where b is

the musical isomorphism between T*M and TM.

Deﬁnition. The metrics go and ¢y are said to be symplectically equivalent

(or dynamically equivalent) if there exists an exact symplectomorphism ¢ :

T*M\0 — T*M\0 such that Hy = Hyo ¢.

Observe that if two metrics are symplectically equivalent, their cogeodesic

flows (the geodesic flow translated to the cotangent bundle via the canonical

‘musical’ isomorphism between T'M and T™M) are conjugated by ¢; thus the




name dynamically equivalent. Also we need to remove the zero section from
the domain of ¢ to avoid trivialities, in view of the following result (see [AMT8,

page 186, 3.2F]):

Proposition 1.1.1 Let (M, go) and (M, 1) be two symplectically equivalent
metrics. Then the symplectomorphism ¢ can be extended smoothly to the zero

section if and only if (M, g0) and (M, q) are isometric.

This proves that ‘symplectic rigidity’ is a necessary condition for ‘geomet-
ric rigidity’. Therefore a possible program to attack the isometry problem for
Zoll manifolds is: first, show that given two Zoll metrics (M, go), (M, 1) are
symplectically conjugate. Next, show that this conjugacy extends smoothly
to the zero section, thus solving the isometry problem in view of proposition
1.1.1. We have given partial solutions to the first part of this program, for gen-
eral Zoll metrics (Theorem I} or versions adapted to the case in which (M, go)
is a CROSS (Theorems II and III).

All known examples of Zoll metrics are symplectically equivalent to the
canonical metric on their model manifolds (including the non-isometric exam-
ples on S™); thus a natural problem is to determine if this always happens.

The following results are known:

e It is true for Zoll metrics on §% ([Gui76, appendix B].

e It iz true for conformal Zoll deformations of an arbitrary Zoll manifold

([BesT8, chapter 4]).

e It is true for any smooth one parameter family of Zoll metrics ([Wei76]).




We prove the following discrete versions of symplectic equivalence:

Theorem I  Let (M, ¢0), (M,g1) be two Zoll metrics which are C? close.

Then go and ¢ are symplectically equivalent.

Remark. This theorem remains true also for Zoll Finsler metrics.

We improve theorem A by stating geometric conditions (weaker than the
metrics being C*-close) that indicate that (M,g) is ‘close’ to the canonical
metrics on a CROSS; specifically, we want the curvature tensor to behave as
it does in a CROSS:

A Riemannian metric is said to be e-almost symmetric if [VR| < e. The
pinching of a compact Riemannian manifold of nonnegative curvature is de-
fined as épr = Kpin/ Kmae, where Kpin (vesp. Kpgg) is the minimum (resp.
maximum) of the sectional curvatures over all 2-planes of TM. A Riemannian
manifold is said to be e-quatter pinched if the pinching 3 > 1/4 — ¢, c-one
pinched if the pinching satisfies épy > 1 — €.

Then we have

Theorem IT  There is ¢ > 0 such that if (M, g) is an c-almost symmetric,
Zoll metric, then M is diffeomorphic to a CROSS and (M, g) is symplectically
equivalent to (M, can).

Theorem IIT  There is € > 0 such that

o If(M,g) is an c-one pinched Zoll metric then M is diffeomorphic to S*

and (M, q) is symplectically equivalent to (M, can)




e If (M,qg) is an c-quarter pinched Zoll metric and M is not diffeomor-
phic to 5", then M is diffeomorphic to o projective space and (M,g) is

symplectically equivalent to (M, can).

In the realm of Finsler Zoll metrics, we have the following local path

connectedness result:

Theorem IV Let (M, go), (M, ¢1) be two Zoll metrics which are symplecti-
cally equivalent and C*-close. Then there is a 1-parameter family g, of Finsler

Zoll metrics, all symplectically equivalent to each other, joining go and ¢,.

It is probably true that, if ¢y and ¢; are Riemannian metrics, then the

deformation g; can be chosen to be through Riemannian metrics,

1.2 Integrability of the Geodesic Flow of Zoll

manifolds

There has been a renewed interest in recent years on the study of com-
pletely integrable Hamiltonian flows, with many new examples discovered rel-
atively recently. ([I'om88]). However, for geodesic flows, the classical origin
of the theory, progress has been slower. The condition of having completely
integrable geodesic flow on a manifold seems to be rather restrictive on both

the topology and the metric on (M, g); see for example [Pat91], and there

are very few examples of Riemannian manifolds with completely integrable




geodesic flows. For a recent review of complete integrability of geodesic flows,
see [Spa90].
We show that if (M, g) is any Zoll manifold, its geodesic flow is completely

integrable, giving us a potential new source of examples.

Theorem V' The geodesic flow on any Zoll manifold (M™,g) ts completely

integrable.

As an immediate consequence, we have

Corollary The geodesic flow on a compact symmetric space of rank one is

completely integrable.

This has been proved relatively recently, using some rather involved Lie-
algebraic calculations. The integrating functions we find are not as explicit

as in ([Thi81] or [GS83]), but the construction of the functions using the Zoll

property and the space of geodesics is a lot less involved.




Chapter 2

Mathematical Preliminaries

In this chapter we review the basic mathematical concepts used in this
work. Most of the material is covered in detail in [AMT78]; another reference
is [Arn89]. For specific topics, basic references can be: [MS95] (symplectic |
geometry); [BR95] (contact geometry) and [KN63] (principal fiber bundles).
For a very nice discussion of the geodesic flow on Riemannian manifolds, see

chapter 3 of [KIi82].

2.1 Symplectic and Contact Geometry

2.1.1 Symplectic geometry

A symplectic form on a manifold X is 2-form w satisfying:

1) w is closed, i.e. dw =10,

2) w is non-degenerate, i.e the transformation T, : T, X — T; X given by

v — wy(v, -) is an isomorphism for all z € X.



A pair (X,w) of a manifold and symplectic form w on X is called a

symplectic manifold.

Example.
Let X = C", with coordinates (z1,...,2,), 2 = @ + typ. Set wy =

> by dzy A dyy. Then w is a symplectic structure on C”.

A crucial property of symplectic manifolds is that they are locally isomor-

phic to previous example:

Theorem 2.1.1 (Darboux) Let (X,w) be a symplectic manifold, z € X.
Then there is an open neighborhood U, of = and a chart ¢ : U, — C” such

that ¢ wy = w.

In particular, symplectic manifolds have no local invariants. The only
‘local invariant’ of a symplectic manifold is its dimension, which has to be
even. Since w is closed, there is an obvious global invariant attached to a
symplectic manifold, namely the cohomology class [w] € H*(M,R).

Another aspect of symplectic manifolds is that symplectic structures can-
not be deformed non-trivially in a given cohomology class, in view of the

folowing theorem of Moser:

Theorem 2.1.2 Letw;, t € [0,1], be a one parameter family of cohomologous
symplectic forms on a compact manifold M. Then there exists a one parameter

family of diffeomorphisms ¢y : M — M such that ¢jwg = wy.

A consequence of Moser’s technique is the following:

10




Theorem 2.1.3 Let wy and wy be two cohomologous symplectic form on a
compact manifold M, which are close in the supremum norm. Then there
ezists a diffeomorphism ¢ © M — M, close to the identity in the C1 norm,

such that ¢"wg = wq.

An important special class of symplectic manifolds are those for which w
is integral, that is [w] lies in the image of H*(M,Z) under the coeflicient ho-
momorphism ¢ : H%(M,7) — H*(M,R). Next we give the ‘universal’ example

of such a situation:

Example.

Let X = CP™. Define ) as follows: let p € CP". The tangent space
T,CP™ can be thought as the space L{p,p*) of linear transformations from
the one-dimensional subspace p into its orthogonal complement. Given to
such transformations X, Y,, define h(X,Y) = trace(X*Y). Writing & in its
real and imaginary parts, we have A(X,Y) = ¢(X,Y) + iw(X,Y). The real
part ¢ is the canonical Fubini-Study Riemannian metric on CP", and w is the

canonical symplectic form, which is also the Kachler form of the metric.

This example is ‘universal’ in the following way: if (X,w) and (Y,0)
are symplectic manifolds, a symplectic embedding F : (X,w) — (¥,0) is an

embedding F' : X — Y satisfying F"o = w. Then we have [D’A87]:

Theorem 2.1.4 Let (X,w) be an integral symplectic manifold. Then there is

a symplectic embedding F : (X,w) — (CPY, Q).

11




We will use a delicate version of theorem 2.1.4 adapted to our particular

case.

2.1.2 Contact geometry

Roughly speaking, contact geometry is to odd-dimensional manifolds what

symplectic geometry is to even dimensional manifolds.

A contact structure on a manifold M2t is a 2n dimensional distribution

A which is non-degenerate in the following sense:

Locally, the distribution A is given by A, = kere,, for some 1-form
a € AY(M); A is non-degenerate if aA(da)™ is locally a volume form. A 1-form
« satisfying the non-degeneracy condition is called a contact form. Observe
that a A do™ being a volume form is equivalent to da|a being non-degenerate.
Two contact forms defining the same distribution are proportional, and the

non-degeneracy is independent of the choice of the contact forms.

Let us remark that the contact structure is given by the distribution, not
the contact form. Given a contact manifold (M, A), a contact transformation is
a diffeomorphism f : M — M that preserves the distribution A; ie fL,A = A.
Given a contact form « adapted o the distribution A, this is equivalent to the

condition f*« = A, where A : M — R is a smooth, never vanishing function.
Given a contact manifold (M, A) with contact form «, the characteristic
line field Ea is the one dimensional distribution given by Fa{z) = {v €

ToM [/ da(v,-) = 0}. The characteristic vector field £ is the unique vector

field defined by £ € Ea(z), a(é) = 1. The characteristic distribution is

12




independent of «, but « is necessary for the normalization required to define

the characteristic vector field.

Example.
Let M = C" x R with coordinates (#,1). Let ap be given by ag = dt +
>, xidy;. Then op s a contact form on M, and the distribution is given by

Az,t = {aia&,‘. + biay‘., o, b; € H}

As in the symplectic case, all contact manifolds locally look like their

model spaces:

Theorem 2.1.5 Let (M, A) be a contact manifold, with contact form a. Then
given any point p € M, there is a neighborhood U, of p and a local chart
¢p: U, = C* xR such that ¢*ap = «.

The following example will be useful in our work. It is the contact ana-

logue to the canonical symplectic structure on CP™.

Example.

Let M = 5%+ ¢ C™! Define the oneform o on M by a,(z) =

Re(ip,z). Then e is a contact form on ¥,

The Hopf fibration §? — §*+1 5 CP" relates this contact structure to

the canonical symplectic structure on CP". In fact, dagetr = 7*wepn. We

will exploit that relationship from several viewpoints in this work.

13
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2.1.3 Geometry of Cotangent Bundles

There is a canonical 1-form g, on the cotangent bundle T*M of any

manifold, defined as follows: if = : T*M — M is the natural projection, define
Qlean, () = v(7w)

Then it can be shown that we, = —da., is a symplectic form on T* M.
In local coordinates (gi,...¢n,P1,-..Ps), where ¢; are coordinates in M

and p; are the fiber coordinates, gy, and wy,, are given by

7
Xean — ZP@d%
=1

Wean = Zd(ﬁ A dpz

i=1

Now let F' be a Finsler metric on T*M; that is F': T*M — R is a smooth
function (off the zero section), homogeneous of degree. Let U*M be the unit
tangent bundle U*M = F~'(1),4: U*M — T*M the inclusion.

Define the vector field Xp by wean(Xp, -) = dF. (This is the Hamiltonian
vector field of F; we will study Hamiltonian vector fields in more detail in the
next section}). In local coordinates,
oF

- a_ma’“"

rL O
Xp=3"4
g ;32% v

We claim that U*M is a contact manifold, with 7*c,, as contact from.
Since di*togn = £*dCtogn = " Wean, A" Oeen has maximal rank 2n — 2.

Note that

tOF
Cean(XF) = Zpia—p = F(q,p)
=1 g
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since F' is homogeneous of degree one. Therefore i*a e, (Xg) = 1. Also,
P Wean(Xr,v) = dF(i,v) = 0 since ¢,v is tangent to the level surface F~'(1).
Therefore, T,U*M is spanned by Xz and ker e, from which it follows that

o 18 a contact form and Xy is the characteristic vector field of the contact

structure.

Homogeneous symplectic maps ¢ : T* M\O,ecion ~> T*M\0section and con-

tact maps f: U*M — U*M are intimately related:

First, note how oy, behaves with respect to ‘*homothety” maps. If A :
T* M\Osection — R is a function, we define Hy : T* M\Dsection — 1M \Dsection

by Hy(v) = A(v)v. In coordinates, Hy(¢,p) = (@, P) = (¢, Mg, p)p).

Then we have
H;':a = ZPngi = )\pidqi = Aa

Now let ¢ 1 T*M\Dsection — T*M\Osection be an homogeneous of degree
one symplectic map, and let Fy : ¢ : T*M\O,eetion — R be a Finsler metric.

Define a new metric Fy = Fy o ¢. Let Uy and U; denote their respective unit

cotangent bundles. Define X : ¢ : T*M\Qyection — R by A(v) = Fi(v)/ Fo(v).

Then H, takes Uy onto Uy, and Hia|y, = Ae|y,. Then the map o : Uy —
Us given by 1(v) = Hy' o ¢ is a contact map of (Up, a|ry) into itself.

Conversely, if we have a contact transformation ¢ : Uy — Uy, then ¢*a =
Aa for some A : Uy — R.

Extend A to a function on T* M\ 0,.ction by degree one homogeneity. Then
the map ¢ : T*M\Oyoction — 1" M\Dsection given by ¢(v) = A(v)p(F(v)~'v) is

a homogeneous symplectomorphism.
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2.1.4 Symplectic Reduction

Let M be a manifold and {2 be a closed 2-form of constant rank on M.
Define the characteristic distribution Eq by Eq(z) = {v € T,M [ Q(v,-) =
0}. The fact that Q is closed implies that Eg is integrable; thus defining a
foliation F on M. Assume that the quotient space N = M/JF obtained by
identifying the leaves of the foliation has a smooth manifold structure. Since
TN & T,M/Eg(z), @ descends to a non-degenerate, closed two form w on
N; thus N is a symplectic manifold. If 7 : M — N is the projection, Q and w

are related by Q0 = 7%w.
The process of obtaining (V,w) from (M, Q) is called symplectic reduction.

An important case happens when there is a group ¢ acting on a symplectic
manifold (X,w) by symplectomorphisms. We will describe the procedure for
(G = 51, which is the case of immediate interest to us; that way we will avoid
the complications of non-commutativity. For general Lie groups G, see [AMT7S,
chapter 4].

Assume we have an free symplectic action © : ST x X — X on (X,w).
Let the infinitesimal generator of the action be denoted by ¢; £ is the vector

field on X given by

d

g:c = E Is=f3®(3v 37)

Since the action is symplectic, Lzw = 0.

Observe that the 1-form 8 = 1w = w({, ) is closed, since

dB = ig(dw) + Lew = 0
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Assume § is exact, that is, there is a function J such ﬁhat dJ = 8. We
call J 2 moment map for the action. |

Then we have

Proposition 2.1.1 The map J is invariant under the action.

Proof.

Let z € M, and let v,(s) be the orbit through p. Then

d !
237 (12(8)) = A1) (7(5)) = A0y (i) = B(E) = w(£, ) =0
Thus J is constant along the orbits.

Q.ED.

Let ¢ be a regular value of J. Since J is invariant under the action,.S* acts
on M = J7(c). We apply the symplectic reduction procedure to (M,w|ar).
Observe that the characteristic distribution is generated by £, since ¢ 1s tangent
to M and w(é,v) = dJ(v) = 0 for any v tangent to M = J~!(¢). Therefore the
characteristic foliation is given by the orbits of the action, and the quotient
space is a symplectic manifold (N,w).

This construction will be the cornerstone of our study of Zoll manifolds,

the ST action being given by the geodesic flow of the metric.

2.2 Hamiltonian Dynamics

A Hamiltonian system is a triple (X,w, H), where (X,w) is a symplectic

manifold and H : X — R is a smooth function, called the Hamiltonian of the

system.
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Given such data, we can construct a vector field Xy on X, the Hamilto-

nian vector field of H, defined by the equation

LLI(XH, ) = dH

The flows of such vector fields are called Hamiltonian flows.

The theory of Hamiltonian systems has its origin in classical mechan-
ics: given a mechanical system, its dynamics can be described by a Hamil-
tonian system (1™X,weqn, H), where 7% X is the position-momentum space,
and H =T — V, where 1" is the kinetic energy and V is the potential en-
ergy. See [Arn89] for a very good introduction to classical mechanics from the

Newtonian, Lagrangian and Hamiltonian points of view.

An crucial property of Hamiltonian flows is that they preserve the sym-

plectic form, i.e. for each ¢t € R the flow ¢, : M — M is a symplectomorphism.

To see that, note that, infinitesimally,

Lx w = dix,w)—1ix,(dw)
= d"H —ix,0
= .0

Integrating, we get the invariance of w under the Hamiltonian flow.

In this section we study some fundamental properties of Hamiltonian

flows, and specifically, the geodesic flow of a Riemannian manifold.




2.2.1 Geodesic Flows

Let (M,g) be a Riemannian manifold. We can go -via g- from TM to
T*M and vice versa using the musical isomorphisms. I'or example, if v e T'M
we define v¥ by v!(w) = g(v,w). The inverse isomorphism is denoted by b.

Any tensor can be pulled back and forth between T'M and T*M via the
musical isomorphisms (classically, ‘raising and lowering the indices’). In par-
ticular, there is an induced Riemannian metric on T*M, g*(v,w) = g(v", o%).

Let H : T*M — R be given by H(v) = %¢'(v,v).Then we have

Definition.

The cogeodesic flow of M is the Hamiltonian system (T*M, weon, H)

Remark.

We can use the musical isomorphism to pull back the canonical symplectic
form of T*M to T M, and define the geodesic flow on T'M as the Hamiltonian
system {(T'M, (wcaﬂ)b, H), where H(v) = $g(v,v). In this work it is convenient
to have a fixed symplectic form when the metrics vary, so we use the (:o-v

geodesic flow all around. The musical isomorphisms intertwine all the relevant

constructions.
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Remark.

Sometimes the geodesic and cogeodesic flow are defined by the length
function L(v) = /g(v,v). Since Xy = L7'X}, these two flows are propor-
tional, with the propértionality factor being constant in each energy level. The
" main advantages of H over L is that it is defined in the zero section, and that

the quadratic character of the Hamiltonian is easily recognized.

2.2.2 Complete Integrability

Given a symplectic manifold (X,w), we can define the Poisson bracket

{,}: C°(M) x C*(M) — C*(M) as follows:

{f:g} = W(XﬁXg)a

where Xy, X, are the Hamiltonian vector fields corresponding to f and ¢ re-
spectively.

If {f,g9} = 0, the functions f and ¢ are said to be in involution.

Now let (X* w, H) be a Hamiltonian system. It is said to be completely
integrable if there are n functions H = fi,...,f, in involution, which are

linearly independent almost everywhere. In formulas, we have
. {f 3 f J } =0

o The set

{z : dfi(z),...df-(z) is linearly independent}

is open and dense.
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Remark.
In the definition of complete integrability, it is sometimes required that
the set on which the functions fi,... f, are independent is also of full measure

(with respect to the volume form w™).

The importance of completely integrable Hamiltonian systems is that they
can, in principle, be integrated by quadratures; that is, if we know explicitly
integrating functions f,..., fa, we can actually more or less explicitly solve
for the flow of X. For good examples of complete integrability in action, see
[Bes78, chapter 4], where the geodesic flow of Zoll metrics of revolution in 52
is integrated with the aid of Claireaut’s first integral, and [Kli82, chapter 3],
where the classical Jacobi integration of the geodesic flow of the 2-dimensional
ellipsoid is done.

Recently, it has been shown that the complete integra,biliﬁy of the geodesic
flow of a manifold (with some non-degeneracy conditions on the integrals) im-
poses rather severe restrictions on the topology of the manifold: if M admits
a metric with completely integrable geodesic flow through non-degenerate in-

tegrals then M must be rationally elliptic ([Pat91]).

2.3 Connections on Principal Fiber Bundles

A principal fiber bundle (PFB for short) with base space B, structure

group G and total space P is given by a right action of G (the fotal space) on

P satisfying:
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1. 7 acts Ireely on P, that is, if p- ¢ = p for some p € P, then g =e € (.

2. M is the quotient of P by the action of G; M = P/ and the projection

map 7 is differentiable.

3. P is locally trivial, that is for every x € M there is a neighborhood U
of & such that #7(U) is isomorphic to U/ x (G, the isomorphism being
equivariant with respect to the action of G in P and the trivial action of

Gon U x G,

We denote a PFB by £ : {G — P -5 B}. Observe that the first condition
implies that the fiber over a given point b is isomorphic to the group G; fixing
p € 7 1(b), the map ¢ — p- g is an isomorphism. However, we need to fix p
in the fiber for such a construction, and is therefore not canonical. Note that
if a PFB has a section s : B — P, then is globally trivial, the isomorphism
® : B x G — P being given by ®(b,g) = s(b) - ¢.

Observe that the tangent space to a given fiber at p is canonically isomor-
phic to the lie algebra g of G; given n € g, set f(n) = d/dt|;=op - exp(in). We
call the tangent space to the fiber at a point p the vertical subspace V,. Let
g : V, — g denote the inverse of f.

However, we have no canonical way of obtaining a ‘horizontal’ subspace
H, complementary to V,. A (consistent) choice of such a complement is called

a connection in the PFB.

Definition.

A connection in a PFB consists of a smooth distribution I, on P satis-

fying:
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1. H,@V,=T,P

2. H, is equivariant; that is H,, = R, I,

Observe that, restricted to H,, the projection #* : H,M — T,(,)B is an

isomorphism. Given X € T, B, the horizontal lift X of X is the unique

vector in H,P such that m(X) = X.

Then we have

Proposition 2.3.1 Let v : [0,1] — B be a curve, y(0) = b € B. Then,
given p € 7 1(b) there exists a unique curve ¥ : [0,1] — P satisfying 7(0) =

p,mF (1) =7'(8)-

Such a curve is called the horizontal lift of v with initial value p.

2.3.1 Connection Forms, Curvature

Observe that choosing a sp]jttihg of T,P =V, @ H, is equivalent to
choosing a projection p : T,P — T,P with image V, and kernel H,. since V,

is canonically isomorphic to g, we are led to the following definition:

Definition. A connection form on a PFB ¢ : {G — P 5 B} is a g-valued

1-form « satisfying:
1. ais G-equivariant; that is, Ria = Ady— o .

2. « restricted to the fiber is the identity; that is, if v € V}, then a{v) =

g(v) € g.
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Setting H, = ker « gives us a connection if « is a connection form. Re-
ciprocally, if we have a connection, we define a by a,(X) = g(pyv (X)), where
pv(X) is the vertical part of X in the decomposition T,P=H,3V,.

Now denote by pg the projection of 1,P onto H, with kernel V. The

covariant derivative D of a k-form f is defined by

DB(Xq,. s Xpga) = dB(pu(Xa), - - -, par(Xiesr)

(Given a connection form o, we define the curvature form §) by @ = Da.

Observe that since € is a ‘horizontal’ form, there is a g-valued 2-form w €

A?(B,g) such that @ = m*w.

Then we have

Theorem 2.3.1 (Structural equation) Let o be a connection form with

curvature form . Then

da(X,¥) = ~5la(X), (V)] + (X, Y)

Observe that in particular, if G is Abelian, da = .

The following lifting result will be used in an essential way in the next
chapter: Having a principal bundle with a connection allows us to lift curvature

preserving maps of the base to connection-preserving maps of the total spacesi

Proposition 2.3.2 Let G — Py, B By, ¢ = P, B By be principal bundles

with connection forms g, oy respectively. Assume that the base spaces By, By




are simply connected. Lel f 1 By — By be a curvature preserving map, t.e.
f*w1 = Wp-

Then there is G-equivariant map F . Py — Py such that F*ep = o

2.3.2 Classifying Maps

It is well known that there are universal classifying spaces for principal
G-bundles [Sted0] , that is, given a compact group G there is a principal G

bundle ¢ = {G — EG — BG} that is universal in the following sense:

1) Given any principal G-bundle, n = {G — P — B} there is a bundle

map

€ @
! !

F
P — EG

! |

B-—mf—w+BG

Such that f*£ is isomorphic to 7.

2) The isomorphism classes of principal G-bundles over a compact mani-

fold B are classified by the homotopy classes of maps £': B — BG.

The classifying spaces are directs limits of a sequence of finite dimensional
smooth principal G-bundles ¢n = {G — EGy — BGy}, and given a princi-
pal G-bundle over a finite dimensional compact smooth manifold B, we can

choose the map f to be an embedding into one of the spaces BGy for N big

enough.
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There is a similar situation in the category of principal bundles-with-

connection. The bundles ¢y = {G — EGy — BGn} have a canonical con-
nection 1-form, and the universality conditions (1) and (2) are satisfied, but
now in the bundle-with-connection category. This was discovered by [NR61];

see also [D’A8T], [Sch80] and [PR86]. More precisely, we have:

Theorem 2.3.2 [NR61{] There are connection forms A € AY(EGy,g) in the
uniersal bundles {G — EGy — BGy}, such that for any principal bundle

1 ={G — P — B} with a connection I-form « on P, there is (for big enough

N) a bundle map
G G

! !

I
P —— EGxN

! !

B —1 BGy

Such that F*£ is isomorphic to n, and F*A = «.

There is also a statement corresponding to the second universality con-
dition, but with a restricted concept of homotopy, essentially ‘connection-
preserving’ [Sch80] or ‘straight’ [PR86].

In the case of 5* bundles, the constructions and the proof of the classifica-
tion theorem in [NR61] can be greatly simplified. In this case, the classification
spaces are the Hopf bundles §' — $2V+!' 4 CPV, with their canonical con-
nection, which we analyze more carefully below.

Consider the unit sphere S?M+1 ¢ CN*1, The unit circlein C, $* = {# ¢

C/|0)> = 1} acts on S?M+! by multiplication: p -6 = fp. This is a free S*
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action whose quotient is CPY, Observe that the infinitesimal generator 7' for
this action is given by T, = ip.

Define a tR-valued 1-form A on S* 41 by A,(X) = i{ip, X}, where the

inner product is the standard inner product on CV*1, (XY} = Re(Y X, V%)
The form A is clearly invariant under the § action, and A,(7;,) = i{ip, ip) =

i. Therefore A is a connection form on the Hopf bundle &y = {S* — SN+ — CPV].

Proposition 2.3.3 The form A can be written as A, = 3. p;dp;.

Proof.
Let X, = (#1,...%zn41) € TV be a tangent vector to S*V+1 at p, that
is (p, X) = 0,
Then A,(X) = i{ip, X) = i Y ippae = —i° L prs = 2 Prdpi(X).
Q.E.D.

Now let ® : M — 52+ be a map (it will be a classifying map in the
applications). Consider ® = (¢q,...,dn11) as a map into CVH satisfying

S drdy = 1. Then we have . 1

Corollary 2.3.1 The pullback of A by ® is given by ®*A = Eﬁc\r:'ll drdy.
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Therefore, if we have a bundle-with connection 5 = ({S* — P — B},q)
with « the connection 1-form, in order to find a classifying map all we need to
do is to construct 2N + 1 Sl-invariant functions ¢y,... ¢, : P — C satisfying

the equations:

N4
Z P = 1
k=1

AN

D deddr = «
F=1




Chapter 3

The Space of Geodesics

Let (M, g) be a Zoll manifold. Recall that according to our definition,
the cogeodesic flow on U*M is periodic with minimal period the same for all

orbits and we normalized the period to be 27.

This situation gives rise to the fibration S* — U*M 5 Geod(M), where
S* acts on U*M via the cogeodesic flow (which is an S' = R/27Z action be-
cause of the periodicity of the flow); two vectors in U*M are identified iff they
are velocity vectors of the same geodesic on M. Therefore the quotient {(which
is a differentiable manifold under our hypothesis on the action) Geod(M) can
be considered the ‘space of geodesics’ on M. One of the most important conse-
quences of the Zoll property is that the space of geodesics has the structure of
a differentiable manifold Geod{M), on which many structures (Riemannian,

symplectic, almost complex) naturally arise, with a rich interplay between the

structures on M, U*M and Geod(M).

In this chapter we will describe the main features of the principal S'-

bundle § = {S' — U*M % Geod(M)}. For additional details, see [BesT8,
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chapter 2]. However, we warn the reader that in [Bes78| all constructions are

done in / M, instead of U*M. The musical isomorphisms intertwines all the

relevant constructions.

3.1 Symplectic geometry and geometry of con-

nections on ¢

The first extra structure we will consider on Geod(M) is its symplectic

structure:

Since the cogeodesic flow is an ST action on T*M by symplectomorphisms,
(because it is a Hamiltonian flow on 7% M), the most direct way of realizing

the space of geodesics as a symplectic manifold is the following:

Definition. The space of geodesics (Geod(M),w) is the symplectic reduction

of (T"M,..n) under the S* action given by the geodesic flow.

Observe that the moment map of the action can be taken to be H it-
self. Having said that, let us apply the symplectic reduction process to this
particular case: we first restrict to H1(1) = U*M by definition, Let o =

Qean|tons, @ = Qen|oenr = da. Then @ is horizontal, that is, there is a 2-

form w € A?Geod(M) such that @ = p*w. The symplectic reduction of
(T*M, Qepn, H) is then (Geod(M),w).

The link between the symplectic structure and the theory of connections

in a principal bundle is given by the following proposition:




Proposition 3.1.1 The form ic s a connection form on the principal U(1)

bundle S' — U*M — Geod(M).

Proof.

All we have to prove are conditions (1) and (2) from the definition of a
connection form:

The invariance of i under the action of the group follows from the in-
variance of ., and of H under the cogeodesic flow.

On the other hand, the infinitesimal generator of the cogeodesic flow is
just the cogeodesic spray Z, on U*M. Thus a,{Z,;(p)) = H*(p) =1 on U*M.

Q.E.D.

Observe that, from the bundles-with-connections point of view, a sym-
plectomorphism f : Geod(M ), — Geod(M), is a ‘curvature preserving map’.

Therefore, applying proposition 2.3.2, we have

Proposition 3.1.2 Let (M, g0) and (M, ¢1) be Zoll metrics on a manifold
M. Assume that there is a symplectomorphism f : Geod(M )y — Geod (M),
between the manifold of geodesics. Then there is a St equivariant map F

UsM — Ur M such that F*oy = ag.

As in section 1.3 of chapter 2, it follows that extending I' by degree 1
homogeneity gives us a symplectomorphism F T M\ Ogection — T M\Djection

such that F(U:M) = Uf M. Therefore, since F'is homogeneous of degree 1,

we have:
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Proposition 3.1.3 Let (M, ¢) and (M, ¢1) be two Zoll manifolds. Then the

following are equivalent:

1) The spaces of geodesics Geod(M )y and Geod(M), are symplectomor-
phic.

2) There exists a symplectomorphism F . T M\Dsection — T*M\Ogection
such that Hyo F' = Hj.

Therefore, we have the following

Principle 3.1.1 Finding symplectic conjugacies of the geodesic flows, ts the

same as finding symplectomorphisms between the respective space of geodesics.

When we have two Zoll metrics and their corresponding fibrations with
connections S — UM — Geod(M)y, S — UM — Geod(M),, it will
sometimes be convenient to have a common total space. To achieve that we
use the homothety map given by T{v) = A(v)v, where A : T*M — Ogection, — R
is given by A(v) = Ho(v)/Hi(v), Hi(v) = /gi(v,v).

Then T restricted to Uz M gives us a function T : UfM — Uy M, satisfying
T*ay = A(v)ag.

We pull back all the information of the system on UM to UjM via T

I ¢ UM —+: Ul M is a contact transformation satisfying ¢*Aag = ap, the
homogeneous of degree one extension of 7'o ¢ : Uy M is a symplectomorphism

F o T M\ Dyection — T M\Dyection (¢f. sec 1.3 of chapter 1), which carries UfM

onto U M. Then we have the next
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Principle 3.1.2 Finding symplectic conjugacies of the geodesic flows, is the
same as finding contact transformations ¢ : UM — UM satisfying ¢* Aoy =

Oyg.

Going back to connections in a PFB , we have the translation of the

preceding principle to this viewpoint:

Principle 3.1.3 Finding symplectic conjugacies of the geodesic flows, is the
same as finding a connection preserving map ¢ : (Ui M, O, a0) — (UF M, Oy, Aap),

where O, ©, are the S actions on UFM given by the respective contact flows.

3.2 Symplectic geometry and Riemannian ge-
ometry on G

Several naturally defined Riemannian metrics can be constructed on the
manifold of geodesics Geod(M). With the exception of the computation of the
geodesics and the curvature of the go metric (Besse’s terminology) on [Bes78],
they have barely been studied.

Here we study the metric g, on Geod(M); from the Riemannian and
symplectic vie'Wpoint, this metric behaves rather nicely with respect to the
submersion S* — U*M % Geod(M) and the ‘averaged’ metric g on U*M. In
this section, the relations between the Riemannian invariants of the submersion
51— U*M % Geod(M) and the symplectic invariants of Geod(M) are

studied; roughly speaking, they determine each other.

The notation everywhere is as follows:




(Geometric objects of the connection metric on U* M will be denoted by

a ‘c’ superscript: ¢°, V¢, R

¢ Geometric objects of the averaged metric on U*M will be denoted by

bars: g, V, R.

Geometric objects of the quotient metric on Geod(M) will be denoted

by 1’s subscripts: g4, V4, Ry,

geometric objects on M itself will not have any markings: ¢, V, .

3.2.1 Construction of ¢;

We follow [Bes78]. In general, the connection metric on U*M is not
invariant under the cogeodesic flow. In fact, it is easy to prove that ¢° is
invariant under the geodesic flow if and only if M is a round sphere. ([Bes78]).
So what we do is to force ¢g° to be invariant by averaging it over the orbits of

the flow. More precisely, let

1

XY = oo [ (I, Y)ds =

o [ o (0K, LY s,
where L; means left translation under the action of the cogeodesic flow. Now
this metric is ST invariant and therefore defines a metric on the quotient
Geod(M). this quotient metric is the metric g, on Geod(M).

The tangent space to Geod(M) at a geodesic 4 can be identified with

the space of Jacobi fields Y that are orthogonal to v (i.e. ‘true variations’ of

). With this identification, we have that given two Jacobi fields ¥7,Y; on
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1,Geod(M),
2m
(¥, ¥2) = [ 91, %5) +9(Vith, Vi¥s)
Or, since Y1,Y; are periodic Jacobi fields, integrating by parts we have

2w
a(, ) = [ 9%, %) + g(R(V, 44, )

3.2.2 Submersion Invariants

Following [O'N66|, given a Riemannian submersion F — E — B, we

define the tensors T and A as follows:

G = HVyr VG + VVyrHG
ArG = VVyrHG + HVup VG
Where H and V are respectively the horizontal and vertical projections
of a vector.

Now we prove the promised relation between symplectic and submersion

Invariants:

Theorem 3.2.1 Let X,Y be horizontal vectors. Then AxY = w(X,Y).
Proof. Observe that for the canonical 1-form c, we have
a(V) =9°(Z,,V)

Since Lz,a = 0, « is invariant under the cogeodesic flow. Therefore,

integrating both sides of the previous equation along an orbit we get

o(V) = (@m)* [ a(¢V) = @0 [ §(Z,,CV) = 5(2,,V)




Taking the exterior derivative of a and evaluating at two horizontal vec-

tors X,Y, we get
UX,Y) = da(X,Y) = Xa(Y) = Yo X) — o([X,Y]) = (%, [X, Y])
Q.E.D.

Corollary 3.2.1 Let N € Geod(M) be ¢ Lagrangian submanifold. Then the

restricted fibration S* — p~Y(N) — N is locally isometric to a product N x S*,

Proof of Corollary. The submersion S* — p~(N) — N with the restricted
metric is a Riemannian submersion with totally geodesic fibers and zero O’Neill

tensor. Therefore it is locally isometric to a product. Q.E.D.

3.3 Volumes of Zoll manifolds: Weinstein’s
Theorem

‘One of the most striking applications of the interplay between the different
structures on the bundle G is the following theorem, due to A. Weinstein: (see

[BesT78, chapter 2], [WeiTT7}):

Theorem 3.3.1 (Weinstein) Let (M™,g) be a Zoll manifold, with minimal

period of the geodesics normalized to £. Then the ratio

2x Vol(M",g)
£ Vol(5™, can)
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is an integer i(M, ¢) called the Weinstein’s integer.
In particular, if £ = 27 then the volume of (M,g) is an integral multiple

of the volume of (S™, can).

There are two major ingredients in the proof: first, since the symplec-
tic form w is the curvature form of a connection, then w/{ represents the
Euler class of the bundle ¢ = {$' — U*M — Geod(M)}. Thus w/¢ is
an integral form, ie. it lies in the image of the coefficient homomorphism

c: H*(Geod(M),7) — H*(M,R). Therefore the number

1

D=
£ JGeod(M)

(7

n—1

i(M,9) = | )y

Geod(M)

is an integer.

The right hand side of the last equation is just £17"Vol(Geod(M),w).
Then the relationship between the different metrics on Geod(M), U*M and
M itself, plus a basic topological lemma, finishes the proof.

Observe that, being a discrete quantity and a continuous function of the
~ metric, Weinstein’s integer is constant under deformations. Thus the natural
question: is ¢(M, ¢) independent of ¢ (g in the set of Zoll metrics)? This is a
mostly topological question, which consist basically in studying the possible
Fuler classes of a bundle § = {S* —» U*M — Geod(M)}. It has been
slowly answered, i the positive sense, and it is completely settled if M is

diffeomorphic to a CROSS:

Theorem 3.3.2 Let (M, g) be a Zoll manifold, M diffeomorphic to a CROSS.

Then i(M,g) = (M, can) for:
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M = S™ ([Wei77])

M = §*+1 ([Yan80])

M = CP" ([Yan91])

M =HP", or M = CaP? ([Rez85])

3.4 Examples of Spaces of Geodesics

The first example we present is Geod(S™, can), the space of geodesics
of the canonical round sphere of constant curvature 1. This example already
illustrates the richness of the structure of spaces of geodesics.

Since an image of a geodesic in S is given by the intersection of a 2-plane
trough the origin in R**!, the space of unparametrized geodesics of S™ is given
by the Grassmann manifold Gr(2,n 4+ 1). However, one has to remember the
orientation of the geodesics (since the orbit through v is not the same as the

orbit through —v); therefore, we have
Geod(S™ can) = Grt(2,n +1)

It is a classical fact that this space is isomorphic to the quadric ¢, C CP*
(see [GHT8]). In fact, as a symplectic manifold, Geod(S™, can) is isomorphic
to ), endowed with the symplectic structure mherited from CP".

Another example in which the space of geodesics can be readily described

in a very geometrical fashion is (CP™, can). We have !

IThe author is indebted to J.C. Alvarez who pointed out this description of

Geod(CP”, can), see [AlvId)].
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Proposition 3.4.1 The space Geod(CP", can) can be identified with the flag
manifold Fy 5(C™t1)

Proof.

Let v be an oriented geodesic in CP". The geodesic v is contained in
a unique totally geodesic holomorphic 2-sphere CP1 < CP". This sphere is
given by the set of lines contained in a given 2-plane P, in C™t1.

Now given an oriented geodesic v in 5%, using the ‘right hand rule’ it
determines, and is determined by, a point p € S%, which corresponds to a line

£ C P,. This completes the identification.

Q.E.D.
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Chapter 4

Symplectomorphisms Between Spaces of

Geodesics

In this chapter, given two Zoll metrics which are ‘close’ in the appropriate
sense, we construct an equivariant map A : (U*M,0q) — (U*M, O,) which
naturally descends to a diffeomorphism 6 : Geod(M ), — Geod{M), satisfy-
ing that é*w, is close enough to w; to apply Moser’s theorem; therefore, by the
principles stated in chapter 3, this suthces to give us a symplectic conjugacy
of the geodesic flows.

We will use the continuity of classifying maps from appendix A plus a

‘seometric isotopy’ construction explained in the next section.

4.1 Joining Nearby Embeddings

In this section we join’ two nearby embeddings in a geometrical fashion

which will be quite useful for our purposes:
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Proposition 4.1.1 Let Fy : M - @Q be an embedding, M compact and simply
connected. Then there is € > 0 such that for any other embedding Fy M Q
which e-close to Fy in the C norm, the following property holds: given any
point ¢ € Fo(M), there is a unique point p = Do(q) € Fi(M) realizing the dis-

tance from q to F1(M). The function Ay = Fy ' o Dyo Fy is a diffeomorphism.

Proof.

Let M; = F;(M), v; the normal bundle of M; in @, and v¢ = {v € v; :
|v| < a} let § > 0 be such that exp, : ! — @ is a diffeomorphism onto its
image, so that the tubular neighborhood of M; of radius § is parametrized by
the normal disc bundle 2.

Choose ¢ < £6, so that all of M, is contained in exp, ().

We use Fermm coordinates around M; and do everything in the bundle
v = My

Let F' = expyl oy M — 1. F makes sense by the conditions above. In

this coordinates, the map Dy is just the projection onto M;. More precisely,
roF = Dyo Iy

The map Fj in this coordinates is just the canomnical inclusion of M; in
vy as the zero section. Then we have reduced our problem fo the following

lemmas

Lemma 4.1.1 Let E 5 B be a vector bundle over a compact, simply con-

nected manifold B, z : B — E the zero section, and let zy : B — I be an

embedding C'-close to z. Then the projection m o zy is a diffeomorphism.
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Proof of Lemma.

If 2y is C"-close enough to the zero section, then z, (T3 B) N T, ) Fiber =
{0}. Thus z(B) is always transversal to the fibers. Therefore the derivative
(7 © 21 )4 18 an isomorphism. Thus 7o z is a local diffeomorphism. Since B is
compact, it is also a covering map. Since B is simply connected, any covering

map must be a homeomorphism. q.e.d.

Unraveling the identifications, lemma 3.1.1 implies that Dy is a diffeomor-
phism.
Q.E.D.

For notational convenience, we will work with the inverses D = D', A =
Ag'. Then observe that there is a section N of vy such that D(p) = exp,(IV,).
We can extend N to a vector field N on Q such that N|a;, = N. Then we have
an extension D : @ — @ given by D(q) = equ(ivq) such that the following

diagram commutes (¢ denotes the inclusion in Q):
MM
]
MM,

Let us compute the derivative of the map D (or, for that matter, any map

of the form D{q) = exp(V,), where N is a vector field on any manifold Q).

Proposition 4.1.2 Let N be a vector field on a complete Riemannian mani-
fold Q, and define D : Q — Q by D(q) = exp(N,). Let X € T,Q. Then:
1) If N, #£ 0, D.X = Y(1) where Y is the unique Jacobi field along the

geodesic y(t) = equ(tﬂfq) satisfying Y(0) = X, (V.Y)(0) = VxN.
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2) If N,=0, then D,X = X + VxN.

Proof.

First assume N, # 0.

Let o(s) be a curve adapted to X. Then o(0) = q,ﬁ—ilﬂg.: X. Let
T'(¢,8) = expa(s)(t]{"a(s)). Observe that I'(¢,0) = v and I'(0,s) = 0.

Then Y (2) = £T(s,t)|s=0 is a Jacobi field, being a variation of v through
geodesics. Clearly, Y(1) = D,X. All we need to show is that the initial values

of ¥ are as claimed. Since I'(0,s) = o, ¥(0) = X. On the other hand,

) %,
Vt&r(ia 3) |t=0,s=0 = V ar(tv ‘S) |f=U:S=0

O .
= Vsa exp(tNo(s)|t=0)|s=0
= Vs ]NVJ (s) |s=0

= VxN.

The case N, = 0 follows from the previous one by a limiting argument.

Q.ED.

Observe that proposition 4.1.2 in particular implies the following trans-
lation: ‘F, and F, are close in the C! norm’ translates to ‘N is close to the
zero vector field in the C* norm’.

For our applications, we will need an equivariant version of proposition

3.1.1:

Proposition 4.1.3 Let F; : M — @ be as in proposition J.1.1. Assume

‘¢

there are (G-actions 01,05 on M and a G-action “’ on X by isometries. If

the maps F; are equivariant, then the map A is equivariant.




Proof.

If suffices to prove that, for any g € G, if p = D(q), then D(g-¢) = g-D(q).
This follows from the following facts:

1) If the map F is G-equivariant and @ € 7, N is normal to (M) at p,
then so are the G-translates ¢,Q for all ¢ € G.

2) If v(?) is a minimal geodesic with 4/(0) normal to Fy(M), then so is
g-(t) for any g € (4.

3) Given p = D{g), the geodesic 7 € v; such that 7(0) = p,v(to) = ¢ is
UNIGUE.

Q.E.D.

Observe that in this case, the corresponding vector field N is G-equivariant.

Moreover, since VN must be orthogonal to the image My and p € M; = the
whole fiber over p € My, we can take N to be horizontal, that is, orthogonal to

the fiber, Then we have arrived at the version of proposition 3.1.1 for principal

bundles:

Proposition 4.1.4 Let G - E B, , G — E 3 B, be principal G-bundles
(The two G-actions on E are different, say Oy and ©3). Let G — Q 5 P
a principal G bundle with metrics on P and @ that makes the fibration a
Riemannian submersion. Assume there equivariant maps Fy,Fy : E — @

which are e-close in the C1 metric as in proposition {.1.1. Then:

1) There is an equivariant diffeomorphism A : (E,©,) — (E,©;) which

is Cl-close to the identity,
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2) There are vector fields N on @, 7 on P, with N horizontal and basic,
7N = n such that, if D(q) = exp, (Ng), d(p) = exp,(fip), we have the following

equivariant commutative diagram:

N

E—2-F

oAl A

Bl —5>'B2

SN

d

Q @

P P

where the maps f), A,d,§ are diffeomorphisms.

Observe that, in particular, we have proven that B; and By are diffeo-

morphic.

4.2 Joining Nearby Classifying Maps

In this section we use propositions 3.1.1 and 3.1.4 in our context:

Let gg, g1 be two Zoll metrics on a manifold M, with the same period. We
assume:

1) go and g; are C-close

2) The geodesic flows of go and ¢y are C*-close.

Condition (2) is, in particular, satisfied if gy and ¢; are C?-close, but in

the next chapter we will give some more natural curvature conditions which

(possibly after diffeomorphisms) assure conditions (1) and (2).




Then we have the principal fibre bundles with connection forms

(S' — UM — Geod(M)g, ag), (ST UM — Geod(M)g, ap)

As in chapter 3, we pull back the information on UM to UM via the

homothety T'(v) = (Hy(v)/H1(v))v. Then we have the total spaces of the new

principal fibre bundles with connections
(USMD @0,050), (UCTMv Glaal)a

where ay = (Ho(v)/H1(v))ag, and 0 is the pullback by T of the flow on U} M,
or , equivalently, the flow of the contact vector field of 1.

Then we have two principal fiber bundles with connectioﬁs, with the same
total space (but with different S* actions and connections) and such that

1) The actions of the group are C? close (this is guaranteed by the geodesic
flows being C* close)

2) The connection forms are C? close (this is guaranteed by the metrics
being C? close)

In appendix A, we prove the following continuity theorem for classifying
maps of bundles with connections: let @y, @, be free S1-actions on a manifold
P, such that the quotients By = P/@,, By = P/©, are manifolds. Let o

(resp. «3) be ‘connection forms’ for the actions, that is sR-valued 1-forms

satistying, for £ = 1,2,

O{k(Tk) = 1

ETka’k




where T}, is the infinitesimal generator for the group action ©y.

This gives rise to two bundles-with-connection S* — P 5 B, 5t N
P % B,. As such, they admit classifying maps into the universal bundles-
with-connection St — $2N+1 % CPN | that is, Op-equivariant maps from P
into S?M+1 such that ®}A = ay.

Then we prove that the classifying map construction is continuous in the

following sense:

Theorem A.1  Assume the actions ©y, 0, and the connection I-forms oy, ay

are C-close. Then the maps ®1, 0, : P — St can be chosen to be C'-close.

Applying theorem A.1 to our particular situation, we find that we can find
classifying maps Fy, Fy : U*M — S?N1! that are C' close and equivariant with

respect to the adequate ST actions. Then we have, from proposition 4.1.4,

82N+1 K S2N+1
I
F 29
U’lM & U‘lM
Geod(M) — Geod(M),
A
/ k
cpN - cpY

With the additional property that F'A = oy, F5A = ay and therefore
S =wi, [30 = w,.
Next we prove that Geod(M); and Geod(M), are not only diffeomor-

phic, but symplectomorphic. The next theorem will allow us to apply Moser’s

method to this problem:




Theorem 4.2.1 If the maps F\, Fy are C' close, then w, and §*w, are C°

close.

Proof. _
The vector field n on CPV guch that %(p) = exp,(n,) is close to the zero
field in the C" norm, being just the projection of a basic vector field N which

is C" close to the zero field. Therefore the map & is O close to the identity.

We also have
8wy = 6* 20 = £*Q

Since k is C? close to the identity, £*Q is C%close to 2. Thus
wr = 8 wlo = [0~ FE Qo = 172 = Q) < C(2 = ko < Cc

Where C is a constant that depends on the original embedding F.

Q.E.D.

On the other hand, w; and §*wy represent the same cohomology class;
since they both represent the Fuler class of their respective S* bundles (S* —
UsM — Geod(M)y, ), (S' = UM — Geod(M)y, o), and 6 is induced

from the bundle map A. Then using Moser’s stability theorem, we have

Corollary 4.2.1 There is a map h : Geod(M); — Geod(M); such that

h*6*w; = wy. The map h is C*-close to the identity.

And then taking ¢ = § o b, we have

Corollary 4.2.2 There exists a symplectomorphism ¢ : Geod(M); — Geod(M),.




Then applying principles 3.1.1, 3.1.2, 3.1.3 of chapter 3, we have

Theorem 4.2.2 Let gy, g1 be Zoll metrics on a given manifold M satisfying:

1) go and g1 are C1-close
2) The geodesic flows of go and g are C'-close.
Then the geodesic flows of go and g, are symplectically conjugate, by a

conjugacy ¢ which is C'-close to the identity.
This implies in particular our first main theorem:

Theorem I Let (M, go), (M,g1) be two Zoll metrics which are C? close.

Then gy and g1 are symplectically equivalent.

Translating this result in terms of principle 3.1.2, we have that given to
C*-close Zoll metrics go, g1, there is a contact transformation v UM - UM
such that 9"« = Ao, where 9 is C? close to the identity and A\ = 1/H, ().

On the other hand, the group of contact transformations is locally path

connected (see [BR95]):

Theorem 4.2.3 Let (X, A) be a compact contact manifold, 1 + X — X be a
contact transformation which is Cl-close to the identity. Then there ewists a

smooth family 1; of contact transformations with v = Id, iy = 1.
Then we can prove

Theorem IV Let (M, go), (M, g1) be two Zoll metrics which are C?-close.

Then there is a I-parameter family g, of Finsler Zoll metrics, all symplectically

equivalent to each other, joining go and g,.

49




Proof.
Let ¢, be as in theorem 4.2.3, and define H, by dfo = H . Extend
f:’rt_ ! by homogeneity to a function H, on T*M. Then by construction all H,
are a one parameter family of symplectically conjugate Hamiltonians joining
Hy and H;.
Q.E.D.

It should be remarked that if it is possible to find such a family with
the additional property of H; being a quadratic Hamiltonian, then the ‘local’
rigidity problem for Zoll manifolds is reduced to the ‘infinitesimal’ problem,

since we could construct a smooth path of Riemannian Zoll metrics joining g,

and g;.
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Chapter 5

The curvature tensor and the geodesic flow

In the previous chapter, we proved that two Zoll metrics on a given man-
ifold have symplectically conjugate geodesic flows if the metrics are Cl-close
and their geodesic flows are C'!-close. The easiest way to assure the fulfillment

of the hypothesis is to assume that the given metrics are C%-close.

In this chapter we exploit the intimate relationship between the geodesic
flow and the curvature tensor to give more geomeiric ‘closeness’ conditions

under which two Zoll metrics are symplectically conjugate.

In the first section, we review the relationship between the geodesic flow
and the curvature, allowing us to improve theorem I: instead of requiring the
metrics to be C*-close, we only require C%-closeness of the respective curvature

tensors.

In the second section, we specialize to the case of gy being a rank one
symmetric space. In this case, we can give simple conditions on the curvature
tensor of g; which imply hypothesis (1) and (2) of theorem 4.2.2, thus allowing

us to prove theorems II and III of chapter 1.
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Some technical details concerning the Jacobi differential equation and

Sturm-Liouville systems will be delayed until appendix B.

5.1 The curvature tensor and the geodesic

fHow

We want to compute, for each ¢ € R, the derivative of the time ¢ geodesic
flow ¢*. Let o(s) : (—¢,¢) = TM be a smooth curve, o(0) = £ € T, M, o'(0) =
ZeT:TM. Then

DE(E) = Tomodilo(s))

Observe that, for each fixed sy, T — w¢*(sp) is a geodesic in M with initial
velocity o(sp) € TM. This motivates the following construction:

Let 4(t) : [0,1] — M be a geodesic, v'(0) = £ € TM. Let I(L,s) :
[0,1] x (—¢,€) be a variation of v through geodesics, i.e. for each sp G (—¢, ),
I’(t, s0) is a geodesic in ¢, and I'(¢,0) = ~4(¢).

Define a vector field Y'(¢) along v by

Y(t) = %lszor(tas)'

Such a vector field is called a Jacobi field along v. Then we have the

following principle:

Principle 5.1.1 There exists a natural correspondence

Jacobi fields along v « T, TM,




given by

- d
€l TM - Y(t) = Elszowqﬁt(o‘(s)),

where o(s) is a curve adapted to =,

Recall that the Levi-Civita connection induces a decomposition
T.TM =H: 'V,

Where V; is the tangent space to the fiber and H; is the ‘horizontal’
subspace, generated by curves of the form 5(s), 5(0) = ¢ ,p(3) is the parallel
transport of ¢ along some curve p : (—¢, ¢} — M. Observe that m, : H —
Tr(eyM is an isomorphism, given by 5'(0) — p’(0). The vertical subspace Ve
is also canonically isomorphic to Tr(eyM, being the tangent space of a vector
space at a point.

Using these identifications, we have the following lemma: (see [K1i82,

Lemma 3.1.17])

Lemma 5.1.1 The Jacobi fields Y (t) along a geodesic (t) on M are in 1:1
correspondence with the flow invariant vector fields 7(t) along the correspond-

ing flow line ¢'(v'(0)) = v'(t) = T'. The correspondence is given by

Y(t) € T,Y(t)M — (Y(t),VTY(t)) e Hro Vr

Using freely the correspondences of principle 5.1.1 and lemma 5.1.1, we

have
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Theorem 5.1.1 Let = € TyTM. Decompose = = S @ Sy in its horizontal

and vertical components. Then
Dg(E) =Y (1),

where Y (1) is the unique Jacobi field along the geodesic () = exp(tf) satis-

Sying Y (0) = Ep, V,Y(0) = 5y

The Jacobi fields along a geodesic v are characterized be the Jacobi equa-

tion, which links the curvature tensor and the geodesic flow:
ViY + R(Y,T)T =0,

where T is the velocity vector field of v, and R is the curvature tensor.
(see [Mil70]). Since the Jacobi equation is a second order linear differential
equation, a Jacobi field Y is completely determined by the initial conditions
Y (0), V.Y(0) (thus the word ‘unique’ in the statement of the previous theo-
rem).

Putting principle 5.1.1, lemma 5.1.1 and theorem 5.1.1 together, plus the

constructions from appendix B, we have the following lemma:

Lemma 5.1.2 Let g, ¢4 be Riemannian metrics on a compact manifold M.
Assume that:

1) The metrics gy, g1 are O -close.

2) The respective curvature tensors By and Ry are C° close.

Then the geodesic flows of the metrics are C* close.

Then applying theorem 4.2.2 of chapter 4, we get
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Theorem 5.1.2 Let go, g1 be Zoll metrics on a manifold M satisfying:
1) go and g, are C' close.
2) The respective curvature tensors Ry and By are C%-close.
Then the geodesic flows of go and g1 are symplectically conjugate, by a

conjugacy ¢ which is C* close to the identity.

On the other hand, Jacobi fields gives us via Morse theory insights into
the topology of manifolds with special geodesic flows (see [Mil70]). Let us
recall a few basic facts:

Let p,q € (M,g), and let v : [0,a] — M be a geodesic joining p and g,

with velocity vector . The indez form is the symmetric, bilinear form
I(X,Y) =~ Y g(AVrX,Y) + f " 9(VEX,Y) + o(R(X, T)T, Y)dt
" 0

acting on the space T,02,, = { piecéwise smooth vector fields X along v such
that X(0) = X(a) = 0} and, for a piecewise continuous vector field Z, A;Z =
lim, 4+ Z — limn,_ - 7.

The indez of v is the maximal dimension of a subspace of 7,2, in which
1 i3 negative definite.

Then we have (see [Mil70, §15 |)

Theorem 5.1.3 (Morse Index Lemma) The indez of a geodesic v is al-
ways finite, and it coincides with the number of zeros on (0,a) (counted with

multiplicity) of Jacobi fields Y along v satisfying Y (0) = Y(a) = 0.

One of the most heautiful applications of Morse theory is the following

theorem (see [BesT8, chapter 7]), [Bot54], [Sam63]):
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Definition. A Riemannian manifold (M,g) is said to be a L¥-manifold if
there is a point p € M such that all geodesics emanating from p are simple

loops returning to p at length 1.

Theorem 5.1.4 (Bott-Samelson theorem) Let M be an d-dimensional LP-
manifold for some p € M. Let a be the index of one of the closed geodesic
loops emanating from p. Then « is the same for all the loops, and only the

following possibililies can occur:

e a =0, and M has the homotopy type of RP2.
¢ a=1,d=2n, and M has the homotopy type of CP™.
o a=3,d=4n, and M has the integral cohomology ring of HP".

o a=7,d=_8 and M has the integral cohomology ring of CaP?,

a=d~—1 and M has the homotopy type of S™.

We will use the Bott-Samelson theorem to limit the possibilities of possible
curvature tensors in a Zoll manifold. Given a Zoll manifold (M, g), let the Bott-
Samelson number B(M) be defined as the common index of its geodesic loops.

The Bott-Samelson theorem in particular asserts that A(M ) is well defined,

depending only on the cohomology ring of M and not on the metric.
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5.2 Curvature tensors similar to curvatures

of a CROSS

A simply connected symmetric space can be characterized locally by the

condition |VZ| = 0. Recall that the pinching §, of a Riemannian manifold
of positive curvature is given by &, = Kpin/Kpmas where K, and K, are

respectively the minimum and the maximum of the sectional curvature over

the set of all two planes in T M.

By the classification of symmetric spaces and the sphere theorem and its
rigidity version {[CE75]), the CROSSes can be characterized by their curvature

tensors as follows:

o A simply connected manifold (M, g) is isometric to a CROSS if and only

if ¢ has positive curvature and |VR| = 0.

e A simply connected manifold (M, g) is isometric to a round sphere (5", can)

if and only if §, = 1.

o A simply connected manifold (M, g), not diffeornorphic to ™, is isomet-

ric to a CROSS if and only if 6, = 1/4.

The following conditions therefore express the similarity of a Riemannian
manifold and a CROSS:

A Riemannian manifold (M, g) of positive curvature is said to be:

o c-almost symmetric if |[VR| < e.




® c-one pinched if §;, > 1 —e.

® c-quarter pinched if §, > 1/4 —e.

Observe that the first condition does not mean anything without a nor-
malization; but in our case the metrics are normalized by the length of the
closed geodesics being fixed. Throughout this section, € denotes either e itself

or a function of ¢ that goes to zero as ¢ — 0.

5.2.1 Almost symmetric Zoll manifolds

In this section, we assume that (M, g) is an e-almost symmetric Zoll man-
ifold. Recall that for us, ‘Zoll manifold’ also means that the common length
of the closed geodesics is normalized to 2r. Observe that, if v is a geodesic

with velocity vector T' and P is a parallel field along v, then

dit (R(P,T)T, P) = g(VR(P,T)T, P < ¢

Thus the curvature transformation Ky = R(-,T)T is ‘almost constant’ in

a parallel basis. We use that fact repeatedly to prove

Theorem IT  There is € > 0 such that if (M,g) is an e-almost symmetric,
Zoll metric, then M is diffeomorphic to « CROSS and (M, g) is symplectically

equivalent to (M, can).

Proof.

The strategy of the proof is to use the fact that any Jacobi field satisfying

Y(0) = 0 also satisfies Y'(27) = 0, plus the Bott-Samelson theorem, to give
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a rather detailed description of the structure of the curvature tensor; in fact,
it looks very much like the curvature tensor of a CROSS. Then theérem 5.1.2
completes the proof.

Let v : [0,27] — M be a geodesic, with velocity vector 7" and curvaturé
transformation Ky = R(-)T,T.

First, given ‘big’ eigenvalues of the curvature transformation Ko, we con-

struct vector fields along vy with (X, X) < 0:

Lemma 5.2.1 Let A be an eigenvalue K7 with corresponding eigenvector P
(which we extend by parallel transport to o vector field P, along ). Assume
A > 1 so that W/\/X < w. Then there are vector fields X = f(£)P, along
satisfying I{X, X) = 0.

Proof of Lemma.

Define the vector field Y* by
0, te€[0,a)
Yi) = %sin(t\/)_\)Pt, L€ o, + ’IF/\/X)

0, t € (a+7/VA, 2n]

Observe that in the interval [o, ac47/+/A], Y* is an ‘almost Jacobi field’,

that is,
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YL YY) = o(VaYY + R(YY,T), 1), Yy

1 petw/VA
= X f - SinQ(t\/X)g(Pt, Pt) -+ Sinz(t\/X)g(Rt(P, T)T, P)

! /:W\/X —Xsin®(eV/2) + sin* (V) {g((B, — Ro)(P, T)T, P) + A}

b}
1 oz+1r/\/3\-
X sin? (VX )e

o

1

Observe also that A, V,Y? = F,, BogapaViYE = =P 5

Now we can estimate the index of 4 by using the almost-Jacobi fields
and mimicking the ‘index producing vector fields’ of [Mil70, §15]: given X an
eigenvalue of the curvature vector, and « such that o + 37/2V/X < 2, let
X5 = Y4 Y™ Note that g(AV, Y, Yo%) = 3

Then, on [e, @ + 37 /2v/A], we have

o] (24 1
5,90 < e

atm/avA T A 1
g ey L

o yatn/2VN 1
XY VN < e

Therefore,

I(X)C:f,Xf) — I(y}\a’ S/)\o:) + .I(YAO[-I-W/Z\/X, 1[}\0+W/2V/X) + QI(X;?, YAa+7r/2\/X)
1

1
S \/X+3W6<0

Thus I(X¢, X$) < 0.




Observe that if A is too big, there are many disjoint intervals of the form
lo, e ++ 3m/2v/A], producing linearly independent vector fields X i satisfying
I{Xy, X;) = ~6y. Thus the index of 7 exceeds the limits imposed by the
Bott-Samelson theorem. These reasoning implies that we have an a priori
upper bound on the sectional curvature.

The next lemma shows that for any T ¢ T'M , the eigenvalues of K7 are

clustered around i X n?:

Lemma 5.2.2 Let (M, g) be an e-almost symmetrie, Zoll manifold. Let X be
an etgenvalue of the curvature transformation K. Then there is n € 2% such

that |4X —n?| < .

Proof of Lemma.
Let A be an eigenvalue of K with corresponding unit eigenvector P; let
Y the Jacobi field with initial conditions Y(0)=0,V,Y(0) = P.

By lemma B.1.4 of appendix B,
[Y(£) — A sin(tvV/))] < tKe
Evaluating at { = 27, we get
At sin(27vA)] < Kre.
Since A is a priori bounded by lemma 5.2.1, we have

sin(2mv/A)] < ¢

from which it follows that |27V — kr| < €. g.e.d.
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In particular, the curvature satisfies K‘;{f 2 1/4—6Denote by Er(n) the
subspace of T spanned by the eigenvalues of Kr (.:l.liste..réd a,round n2 / 4 Next

we show

Lemma 5.2.3 The dimension of Ep(n) is zero for n > 2.

Proof of Lemma.

Let A € (n?/4 — ¢,n?/4 4 ¢). Then we can find index producing vector
fields X5 with X§ =0 for ¢ € [r/2 — 7/10, 2n].

Therelore, if £r(n) is non-trivial for n > 2 then the index of ¥, > 0.
But by continuity and connectedness, if Er(n) is non-trivial for some 7' € UM
then Br(n) is non trivial for all T € U, M.

Thus any geodesic from p of length 7 is not minimizing, which contradicts

the fact that diam(M) = « for any Zoll manifold.

q.ed.

Therefore, we only have two possibilities for the cluster of eigenvalues:
Only Er(1) (corresponding to eigenvalues close to 1/4) and Er(2) (corre-
sponding to eigenvalues close to 1) are non-trivial,

Morse theory, via the Bott-Samelson theorem, restricts drastically the the
possible dimension of £7(2), i.e. the multiplicity of the space of *big’ eigenval-
ues of the curvature transformation. Roughly spea,king,rgiven the topology of

M we know -independently of the metric- which approximate eigenvalues and

multiplicities can occur:




Lemma 5.2.4 Let (M, g) be a Zoll maﬁzfold. Theﬂ the Bbtt;sﬂmﬂlson number
of M equals the dimension of Er(2) T

Proof of Lemma.

Let d = dim E7(2), and let Fi,i=1,...,d be a basis of eigenve.ci.:_cii'ét._”'-f_'.f:'

corresponding to eigenvalues A; ~ 1. Let X2(7) be the index producing vector
fields corresponding to the direction F;. Then as in lemma 5.2.1, 7 (Xi, X;) =
~8;j + . Thus d < B(M).

On the other hand, n — d = dim Er(1) < n — B(M), since by the com-
parison lemma B.1.4 on appendixB, any Jacobi field ¥ with Y(0) =0,
VY (0) = P € Ey(1) cannot have a zero on (0,2x), since its norm is close to
the function sin(¢).

q.e.d.

Lemmas 5.2.1, 5.2.2 and 5.2.3 complete the proof that the curvature tensor
of M is Cy close to the curvature tensor of its model CROSS, since on both of
them the space E7(1) corresponds to Jacobi felds which are zero at 27. Since

the corresponding variations are Co-close, the subspaces are also close to each

other.

Then theorem 5.1.2 finishes the proof of theorem II.

Q.E.D.

5.2.2 Pinched Zoll manifolds

Let us prove theorem III:




Theorem III  There is € > 0 such that

o If(M,g) is an e-one pinched Zoll metric then M is diffeomorphic to S™

and (M, g) is symplectically equivalent to (M, can)

o If (M,g) is an c-quarter pinched Zoll metric and M is not diffeomor-
phic to S, then M is diffeomorphic to a projective space and (M,g) is

symplectically equivalent to (M, can).

Proof.

We normalize the common length of the closed geodesics to be 27, and
for each case find the ‘right’ normalization of the curvature tensor.

First we do the almost 1-pinched case. This condition implies that there
18 A, € > 0 such that

A—e<Ky<A+e

Let i(M) be the injectivity radius of M. We have the inequalities

T

i) £ —

) T
min{ —-—,._A —

Where the first inequality comes from comparison theory and the second

(0]

inequality is Klingenberg’s lemma {[CE75]).

It then follows that 1 ¢ < Kpr < 1+ ¢, which is the right normalization
for the curvature.

On the one hand, a manifold satisfying 1—¢ < Ky < 14¢is diffeomorphic

to the standard sphere 5" ([Gro66], [CET5, chapter 7]). Morcover, in the

appropriate coordinates, (namely, exponential coordinates from the ‘north’
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and ‘south’ poles), the metric is C? close to the canonical metric of constant
curvature 1 on S”.

On the other hand, having the pinching condition plus the normalization
implied by the length of the closed geodesics means that the curvature trans-
formation K7 = R(-,T)T is C" close to the identity transformation. Thus the
curvature tensors of ¢ and the round sphere of constant curvature one are ¢,

close.

Then both conditions of theorem 5.1.2 are satisfied. This proves theorem

I for the almost 1-pinched case.

The almost 3-pinched case is somewhat more delicate; we have to probe
a little deeper in the structure of the curvature tensor.

Let A (resp. A) denote the absolute minimum (resp. maximum) of the
sectional curvature. Then 0 < A/A — 1/4 < ¢ (where the first inequality is by
the sphere theorem; we are assuming M is not diffeomorphic lto S™)

On one hand, since

75 S i(M) < min{r/V\, 7},

it follows that A > 1. On the other hand, by the Bott-Samelson theorem and
the pigeonhole principle, given any geodesic 4 there exists Jacobi fields Y along
7 such that Y(0) = Y(7) = 0 such that Y has no zeros on (0, 7). Therefore,
by comparison theory, it follows that A < 1/4. Putting the estimates for A

and A together plus the pinching hipothesis gives

lfd—e< Ky <1l+te
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This condition implies, by Gromov’s compactness teclinique ([MGP81)) as
applied by Berger ([Ber83]), that (M, ¢) is diffeomorphic to a projective space
and (possibly after diffeomorphism) the metric is C? close to the symmetric
metric ([Kas89]). Also, for a study of the structure of Jacobi fields on almost-
quarter pinched manifolds, see [AM94].

On the other hand, as in the previous theorem, the ‘index producing
Jacobi fields’ lie close to eigenvalues of the curvature tensor which are close
to one. The number of them is the same as in their model CROSSes, by the
Bott-Samelson theorem. Therefore the curvature transformation of (M,g) is
Cl close to the curvature transformation of its model CROSS. Thus by theorem
5.1.2, the geodesic flows of (M, g} and (M, can) are symplectically conjugate.

Q.E.D.



Chapter 6

Integrability of the Geodesic low on Zoll |

manifolds

In this chapter we show that if (M, g) is any Zoll manifold, its geodesic
flow is completely integrable, giving us a potential source of new examples of

manifolds with completely integrable geodesic flows:

Theorem V  The geodesic flow on any Zoll manifold (M™, g) is completely

integrable.
As an immediate consequence, we have

Corollary The geodesic flow on a compact symmetric space of rank one is

completely integrable.

The only previous proofs of this fact use some rather involved Lie-algebraic

techniques ( [Thi81], [GS83]).




6.1 Proof of Theorem V

The key lemma is the following, see for example [Fom88, page 145):

Lemma 6.1.1 Let (X?*,Q) be a compact symplectic manifold. Then there
exists functions hi,...,h, which are in involution and linearly independent

almost everywhere.

Applying the lemma to (X,Q) = (Geod(M),wq) we get n — 1 functions
hi,..., hp_y in involution, which are linearly independent almost everywhere
in Geod(M). Now let by UM — R be given by h; = h; o w. Extend each
h; to functions Fy : TM — { 0 section} — R by degree zero homogeneity, i.e.
Fi(z) = hiz/|z]). Then we have

Lemma 6.1.2 The set Fy ..., F,_y satisfies

1) {H,F) = {Fy By} =0

2) The set {dH,,dF\ (), - dF,_1(¢)} is linearly independent for almost
allz € T'M.

Proof.

Proof of (1):

Clearly {H,F;} = 0 since each F} is constant on the orbits of Xy by
construction.

For the rest of the proof of lemma 3.2, it is convenient to write the sym-
plectic form w in ‘polar coordinates’ let @ : R x UM — T'M — { 0 section}

be the diffeomorphism given by O(r,2) = rz. Then a computation shows that

O%w =dr Aay + run
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Observe that in this coordin.a'tés. F(rﬂ):fz(ﬂ),therefore dF;(0,) = 0.
Since each £ is invariant under the flow, dF;(X; H)'F 0 also On the other hand,
spani{0,, X} is symplectically orthogonal to the horlzonta,l d1str1but10n

Therefore, we have that X (r,6) is tangent to {r} x UM and honzoﬁtai
for each (r,0). Thus

W(XFE:XFJ') = WI(XFHXFJ') = wl(thth) = WG’(W*XE,-a"T*XBj) = wG(sz,-vXﬁj) =0,

which ends the proof of part 1.

Proof of (2):

Let ¢1,...,¢, be real numbers such that cgdH + S ¢;dF: = 0. Observe
that dFy(9,) = 0, dH(8,)(z) = H(z) # 0 if ¢ # 0. Therefore evaluating
codH =Y ¢;dF; at 8, we get ¢y = 0.

The sum is then reduced to 3> ¢;dFi(z) = 0. But since dF} = T dh;, We;
have 3= ¢;dh(mz) = 0 since 7 is a submersion. Thus the dependent set is given
by

{z : {dhi(7(2)),...dh,_1(x(z)} is linearly dependent }

which is a measure zero set.

Q.E.D.

Therefore the set F},... F,,_; constitutes a complete set of first integrals
for the geodesic flow of H on TM\0,eetion. We can extend these functions to

the zero section using the following lemma:

Lemma 6.1.3 Let H : TM — R be the Hamiltonian corresponding to a Rie-

mannian melric on M, and assume there are functions Fy ... F,,_1 : TM \Osection —




R such that {H, F;} = {F}, F;} = 0, {dH,,dF,(z),..., dF,_1(2)} is linearly in- |

dependent for almost all x. Then there are C™ functions fi,. .. fo1:TM—-R

satisfying the same properties as Iy,.. . F,_;.

Proof.

Let ¢ : R — R be an increasing function vanishing to all orders at zero.

Define
fi(z) = $(H(z))Fi(z), =#0, ,f(0)=0
Then each f; is smooth on T'M. To prove independence a.e., compute:
dfi(z) = ¢'(H(z))dHs + ¢(H (z))dFi(e)

Thus if codH, + - eidfi(z) = 0, we have

(cot¢'(H(2)) D c)dH, + ¢(H(z)) S cidFifx

For all z € TM — { 0 section}, this means

CG+¢’ Zcz) = ()

de; = 0 1<i<n—1

Since both ¢(H(z)), ¢'(H(z)) are positive off the zero section, the com-
plement of the set where the previous conditions are satisfied is an open dense
set,

On the other hand,

= ¢'(H(2))Xm + $(H(2)) X,




Then it follows that w(Xg, X},) = w( Xy, X ) =0.

Q.E.D.

Applying lemmas 6.1.1, 6.1.2 and 6.1.3, we complete the proof of theorem

6.2 An Example

We saw in chapter 3 that the space of geodesics of the round sphere is
given by Geod(S"™,can) = Grt(2,n 4 1) = Q,,, where (2. C CP" is the n-
dimensional quadric given in homogeneous coordinates by 24zt 422 = 0.

In view of the constructions of this chapter, it suffices to give n functions
fi + @ — R which are in involution with respect to the symplectic form of
.

We proceed to do that in the 3 dimensional case; a deeper understanding
of the geometry of the general quadric (Qn gives natural geometrically defined
integrals of the n-dimensional case.

It is a classical fact that Q3 2 5% x $2, with the product symplectic form
w O w (see [GHTY], [BesT8, chapter 4]). Put coordinates (z,y) € S? x 5% and
let fo(z,y) = M), f1(z,y) = h(y), where b : S - R is any function having

critical points only at the north and south poles. Then (the Iifts to T* M) of

Jo, f1 is & set of integrals in involution for the geodesic flow of S3.




Appendix A

Classifying Principal S! Bundles with a

connection

In this appendix we prove the continuity of classifying maps for § bundles-

with-connections.

Let ©4,0; be free S'-actions on a manifold P, such that the quotients
By = F[/0©,, By = P/O; are manifolds. Let oy {resp. ay) be ‘connection forms’

for the actions, that is iR-valued 1-forms satisfying, for k = 1,2,

o:k(Tk) = 3

'CTk Gy = 0,

where T}, is the infinitesimal generator for the group action 0.

This gives rise to two bundles-with-connection §1 — P By, §' —
P % B, As such, they admit classifying maps into the universal bundles-

with-connection S* — SN+ L CPN | that is, ©4-equivariant maps from P

into S*N*! such that ®XA4 = q,.




Here we will prove that the classifying map construction is contznuous in

the following sense:

Theorem A.1  Assume the actions 01,0, and the connection I-forms o:l; Ctz
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are C-close. Then the maps ®(, By : P — S2V+ can be chosen to be C’l-close..':::::;:.:_:.5'._._':.-

Such a result is certainly true for arbitrary structure group @, but we do
only the S? case since is technically simpler and we are mainly concerned with
the applications to the geometry of Zoll manifolds, which involves the principal
S* bundle S* — U*M — Geod(M) where U*M is the unit cotangent bundle
of the manifold and Geod(M) is the ‘manifold of geodesics’.

A.1 Construction of the Classifying map

In this section we construct a classifying map for an arbitrary conmec-
tion on a principal S? bundle. We follow closely the constructions in [INR61],
modifying it slightly so that the classifying map can be chosen o be an em-
bedding. Recall that, in order to classify an S bundle with connection form
a, we need to find N functions &; : £ — C such that 8,06, = 1 and
> 0:d®; = . We will show that the choice of such functions is a continu-
ous function of the data (i.e. the action and the connection form), and that
3= (@1,...,Px) : £ — S*-1 can be chosen to be an embedding.

We will first construct the classifying map locally. Then a partition of

unity argument will give us the global classification result. The next theorem

is the key local construction:




Then there exists functions ¢y, .. vy P U - C satzsfyzng
NE g = 1
Eﬁiléjd% = Q.
The functions ¢; can be chosen so that the map z — (f1,. ., Pan) € C*»

s an embedding.

Proof.

Define functions p,, v, by

1,1
Hs = 22n+a8)

1.1
v, =— 5(2—1;_053)

Then for all s, m, and v, are strictly positive functions, and they satisfy
Bs— Vs =02, X" s+ v, = 1 Let p, and ¢, be the square roots of y, and v,
respectively.

Now define the functions ¢; by
(
pse™i, 1<j<n

g™ n41<5<

A€ I+ 1< 5 <3n

A=e T 341 <5 <dn

2n




Then, on the one hand,

Z4n1¢_]¢3 = E?i2n+1 53’ ¢j 24n2n+1¢2 ‘?53

" 1

= Es:ﬂ’g + tﬁ + E2n+1 o
1

= En 1}'.1'5 + Vg + “

B U
= 3+5=

On the other hand,
L 1bidd; = DI 8idg; + S5, 1 6dd;

The first part gives us

E2n1¢’gd¢g = Ti_yp.e  {ip,e™dz, + dpse™} + B g, " {—ige " dy, + dg,e™}
= Ximi(p) — ¢ )dx, + podp, + g,dg,
= (Bt — va)dus) + (B0 ps -+ vs)
= X7 ialdz,

= o
The second part does not add anything to a:
24?1"2”_}_1@55,0{@, - En lw—ws wﬂdws Ze—imseiwsdms =0

The functions ¢; = €2 2n 4+ 1 < j < 3n are clearly independent, so

the map z +— (¢1,..., ¢4,) has maximal rank.

QED.
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Remark. The construction o« — q? in A.1.1 is continuous, in the sense":'tl.j:a,ti'_.
if two forms ap, oy are C* close then the corresponding maps qi‘;], q?g will be"Ck
close.

We use theorem A.1.1 to locally classify connections on a principal §1- :

bundle:

Theorem A.1.2 Let S* — P % B be a principal S*-bundle, dim P = n+1

with a connection I-form ay. LetU C B be a trivializing open set and o : U —

P be a local section. Then there is an S -equivariant map ®y : p~ U — §in-1
| q P

such that ;A = ap.

Proaf.
Choose a local coordinate map 7 : U — U where U C R™.
Define a function T': U x S* — p™U by T(u, ) = o(r(u))}- 0. Then the

following diagram commutes:

Ux 8 — sy | 5

| | !

u —— u |

Let & = Toyp, o = 7™"¢*ap. Changing coordinates if necessary, we can

assume that —ior satisfies the conditions of Theorem A.1.1, which then gives .'

us functions ¢y,..., ¢y, : U — C satisfying equations (1) and (2). Write the
functions ¢; as a vector in C", qu (¢1,...,P2,). Observe that |$| =1.

Define then ® : U x §* — §4~! by ®(u, 0) = 6¢(u). Then by construction

\
B is S-equivariant (with respect to the tautological action of S* on U x §%), 4
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and the fact that the functions (¢1,...,¢s,) are constructed as in theorem

A.1.1 translates to ®* A = @&.
Finally, define @y : p~'U — § ' by &y = & o T-'. Then clearly
Dy : p~iU — S*1 is an S'-equivariant map satisfying ®FA = ap.

Q.E.D.

In order to construct a global classifying map, we use a specialized parti-

tion of unity: let {#;} be a ‘quadratic’ partition of unity (that is, 3; k7 = 1)
subordinated to a covering by trivializing open sets ;. Let &; = po &;. Then
{k;} is a S' invariant quadratic partition of unity subordinated to the covering
pU;.

Define F': P — C¥ by

F(z) = (k1%u,, . . . kn®y, ) where @y, is as constructed in the last theorem,

Then we have

Theorem A.1.3 The map F' salisfies
1) |F(z)] =1
2) F*A = ap Therefore, F : P — S*N=1 is o classifying map for the

bundle-with-connection (S' — P — B, ap).

Proof.

On the one hand,

F@)f = YRRy = S = 1

SEN—l

Therefore F' is actually a map from P into




On the other hand,

A =3 k(P );d(ki(Du))
= DRl @) (Bus )5k + kid(Dy )

= 23 kidki(®u ) (Bs); + sum, PILACRICAR

But, for each fixed 1, ¥ (®u ) (Ds;); = |®yy|? = 1, and (Do) ;d( Py, ); =

ag. Therefore we have
F*A = Zktdkz + k,?()!g =

Since 3, k2 = 1,5, kidk; = %d(Eé k#) = 0.

Q.E.D.

A.2 The Continuity Theorem

Here we prove Theorem A.1. Recall that the situation is: there are prin-
cipal S*-bundles with connections ($' - P o Bi,), (8 - P — By, )

where we denote the respective S' actions by &4, 0,. Then we have

Theorem A.1  Assume the actions 01,0, and the connection 1-forms Qq, 0y

are Ot -close. Then the maps ®; : P — SN can be chosen to be Ct-close.

Proof.

"The proof is given in several steps:




1) Finding appropriate invariant coverings and trivializations for eak:;
action that are ‘close’ to each other. This will be expressed precisely in lemmsz;
A.2.1 below.

2) Do the local construction of the last section with respect to the cover-
ings Z:{?;,)},; and trivializations T}, R;. Since the connection 1-forms are ‘close’, -
then the local constructions are ‘close’ to each other.

3) Paste the local constructions together using partitions of unity. We
shall construct partitions of unity {f;} (resp {f;}), subordinated to the cover-
ing {Z?z} (resp {f)g}) that are ©; (resp ;) invariant, and such that f; and f;

are C? close; that is done in lemma A.2.2 below.

Lemma A.2.1 There exists coverings U; = pi U; (resp. V; = p3'V;) sal-
isfying: there are local equivariant diffeomorphisms Ty : U x S' — U, R; -

U xSV, where U ¢ R”™, giving local trivializations

~ T H; ~
Ui%—UXSq—>Vg

n m n|

U — U sy | 3

And such that R; and T; are CM-close, and their inverses (where both are

defined) are also C* close.

Proof of Lemma,

First we construct a Riemannian metric g; on P such that $* —» P 5 B,

becomnes a Riemannian submersion with totally geodesic fibers, and ay is given

by Oll(X) = gl(TlaX)‘




Remark. The construction of g; and the trivializing coverings in step (1) can
be done choosing an arbitrary connection on the bundle S* — P — By: the
existence of such coverings only depends on the actions 04, @, being C* close.

But for our porposes it i3 better to use the connection form given by «.

Define the horizontal distribution H on P by H, = ker(ay,). Given any
Riemannian metric g on By, define a metric g; on P by declaring 7y(p) L H,,
73] = 1, and for X,Y € H,, g:(X,Y) = g(p1. X,p1.Y). Clearly, under the
metric g, S* — P % By is a Riemannian submersion, and o (X)=¢(T1, X)
{since both sides are equal in a basis consisting on Ty, vy,...v,_; with each v;
horizontal). Under the metric g, the fibers are fotally geodesic. Denote by
E; (resp £) the exponential map of the metric ¢; (resp g).

Cover B; with a finite number of geodesic balls i; = B(b;,r) = E(B(0s,,7)),
where r > 0 will be chosen so that the pertinent constructions work. Choosing
a point e; € p;'(5;), let H; be the ‘geodesic Lift’ of 14, i.e. H; = Ey(B(0,,,7)N
H,,). We adopt the following notation: given A > 0, AH; = F,(B(0.,, Ar) N
H.).

Let U; = p7'(B;). The sets U; are of the form

U = U,es1 {01 (2, p)/p € Hi}

We identify T, B; = H,, = R™ by isometries, and we speak of a set
U e R" as living in H,, or Tj, By without mentioning the identification. Let

U = B(Ogn,7), 7; : U — U; be given the exponential coordinates from T3, B,

forming a set of local coordinates for B; the first condition on r is that 0 < r <
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inj(B,g). We also have local sections o; : I; — P given by o;(b) = FyE~Th,

where v is the horizontal lift of a vector v € T}, B. Observe that t¥ofay = Efay.
Define Ty : U x S* — U; by Ti(x,z) = 01(F(x),z). Since Oy acts by
isometries of (P, g1), this map is ©y- equivariant. Thus we have the following

trivializing diagram:

Ux 8 —2 i
| |
/A 7}

Note that at the point e;, the ©,-orbit is orthogonal to H, and, con-
sequently, 70y |o = Efeqlo = 0. Also the derivative T, is an isometry.

Therefore, we can choose r small enough so that:
e The angle between 2H; and any ©, orbit intersecting it is close to /2
o |rfofa] = |Efen] < 4
¢ 0<1/2<detT, < 3/2

Since we ate assuming that both actions and connection forms are C*
close to each other, note that we can assume that both conditions also hold
if we replace ‘O;’ and ‘e’ with ‘©y” and ‘a’. The first condition guarantees
that an appropriate open subset of H,, will be a trivializing coordinate set for
the actions; the second condition is needed for the construction of the local
classifying maps, and the third one guarantees that any map that is C* close
to T; will also be a diffeomorphism, with inverse €' close to the inverse of T..

Now define the sets 1}? as the translates under ©, of the sets U;:

}ZG = UzESl{®2(Zap)/P S 2/?1}




The final trivializations for the ©, action will be slight modé:ﬁ.c_ajtmns'.'.:(')f'_;.'
the covering V1 .

Denote by D{p) the maximum distance between the ©,-orbit thr():ii:g _
and the O, orbit through p, D(p) = max,ce dist(04(p, z),03(p, 2)). We af_e :
agsuming that the actions are C" close, so in particular D(p) < e which wé

assume to be less than r.

Let 6; = ma%e};?nEl(Hei)dist(ei,u). We have § < e+ r < 2r, s0 in

particular, V? N By (H,,) C 2H;.

Define V; = {@(u,2),u € 6H,,z € S*}. Then we have If; ¢ V° C Vs
therefore the sets {INJQ} form a Oy-invariant covering of P.

Define R; : U x §* — V; by Ri(z,2) = 0,(E, (6712, 2)).

The trivializations {4, T:}, {Vi, Uy} then satisfy the conditions in lemma

1. q.e.dl.

Now for each ¢, let of (resp(cy) be the induced forms on U by pulling back

oy (resp ) by the maps & — Ti(x,1) (resp. z +> Ryi(z,1)). These forms are
C" close, being the pullback by C? close maps of C'! close 1-forms. Therefore,
the local classification maps of last section are C' close. Diagrammatically,

the situation is as follows:

T; i
UxS§ —— g2+

] !

i bi
U — CPN

N

o
[y
—

U, ————




Where (restricted to U;, where both are defined) the maps &, = <I;;- ot

and Wy, = ¥, 0 R are C1 close.
Therefore we can find local classifications that are C! close. To globalize

the construction, all we need to do is to find (*-close partitions of unity, which

we do now:

Lemma A.2.2 Let {k;} be o quadratic ©-invariant partition of unity subor-
dinated to the covering {U;}. Then there is a ©q-invariant quadratic partition

of unity {k;} such that for each i, ki and k; are OV close.

Proof of Lemma.

Let k:? be the average of k; over the ©, orbits,

) == [ k(Oslp,2))dz.

T

Since ki(p) = ki(O1(p, 2)) for any z € S, and the actions O, O, are C*

close, it is clear that &; and k:? are C'' close for each 7. Then the functions

ke = (3092 )R

?

give us the desired partition of unity. q.e.d.

Lemmas A.2.1 and A.2.2 plus the continuity of the local construction of

last section with respect to « prove Theorem A.1. Q.E.D.




Appendix B "

The Jaé_()bl" equa n and Sturm-Liouville

We can traﬁéiate_ he J uahdn to a second order ordinary differen_—.._"-_ i

tial equation in R™ i

Let v: R S M be - p. Denote by T' the velocity vector

Denote by K} i ormation X — R(X,T)T. The map

Ky is a symmetric ineat

Choose an ofﬁlio:

Thus R(Pi,T{})TD = )\
Extend the basis

field V along v Whl_é

The Jacobi eqﬁa;t_lo_



Expressed in terms of the parallel fields {P,,. .. , Pr} is given by

2"(t) + R(t)z(t) =0 (B.1)
Where z(t) = (21(1),...,21(t)) € R, and R(t) is the matrix defined
by Ri;(t) = (R(F;, T)T, P;). In the basis we have chosen, we have R;;(0) =

diag(Ay, ..., Az). Let A (resp. A) denote the supremum (resp. infimum) of the

eigenvalues of R(1). We assume A > 0.
In this trivialization, we have the following translations:
o (M,g) is symmetric & VR =0 & £R(t) = 0
o (M,g) is c-almost symmetric <+ |VR| < € & |dR/dt| < c.
* (M,g) is c almost 1-pinched & |Ky — 1| < e & |R—1| < e

o (M,qg) is € almost 1/4 -pinched & 0<Xand [A\/A—1/4 <e

Therefore we must study second order differential equations of the form
B.1. We review such systems in what follows; we follow [CH89]. Since in

our case all the solutions z will satisfy z(0) = z(27) = 0; thence the name

‘Sturm-Liouville’ in the title.
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B.1 Review of vector-valued Sturm systems

B.1.1 The constant coefficient case:

We look at the constant coefficient second order ordinary differential equa-

tion

z"(t) + Rz(t) = 0 (B.2)

Where x(t) is a vector in R* and R is a constant & x k matrix. In our

applications, R will also be symmetric and positive definite, so we assume that

as well.
The unique solution of equation (1) satisfying z(0) = go,2'(0) = vp is
given by
z(t) = en(tv/R)qo + sn{tvR)vy,
where the functions cn(tx/ﬁ) and sn(t\/}_{) are defined as follows: choose an
orthonormal basis P4, ..., P of eigenvalues R, i.e. R(P) = AP, Then the

solution () satisfying z(0) = ¢ Py + ... + ¢p D, 2'(0) = v\ Py + ... 04 Py is

given by
SC(&) = EQiCﬂ)\i(t)Pj -+ ViBn )y, (t)Pi,

where the functions cny and sny are defined by

cny, = cos(t\/X)
sny = \/X_lsin(t\/X).
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B.1.2 The variable coefficient case:

We study the variable coefficient system
a"(t) + R(t)=(t) (B.3)

Where E(t) is not assumed to be constant anymore but we still assume

1s symmetric.

Let R = R(0). We want to compare the solutions of the constant coeffi-

cient system B.2 with the solutions of the system B.3.

Let &(t) = R(t) — R. Then ( B.3) can be rewritten as
2"(t) + Re(t) + e(t)x(t) = 0 (B.4)

Let #(t) be the solution of (4) satisfying 2(0) = g0, 2/(0) = vo. Let u(t) be
the solution of ( B.2) satisfying the same initial conditions: u(0) = go,4'(0) =
vo. Let w(t) = (1) — u(¢).

Then w satisfies the differential equation with initial conditions
w'(t) + Ruw(t) = —e(t)z(t)  w(0) = w'(0) =0
The solution to such an equation is given by
w(t) = /Ot sn((t — s)V/R)e(s)z(s)ds

Since w = z — u and u is a solution of B.2, we arrive at the following

recursive relation:




88

Lemma B.1.1 Let z(t) be the solution of the system (3) with initial conditions

2(0) = go, 2'(0) = vo. Then z satisfies the following recursive relation:
(1) = en(tv/R)ao -+ sn(tv/Rvo + [ “sn((t - 5)VR)e(s)a(s)ds
Thus, if u is the solution of B.2 satisfying u(0) = go,u'(0) = vy, we have
(1)~ ult) = | "sn((t — $)VR)e(s)a(s)ds
Differentiating, we also get a relation for the derivatives:

2(t)— ()= VE | “en((t — s)VR)e(s)z(s)ds

B.1.3 The almost constant coefficient case

Now assume that the matrix R is almost constant, i.e. there is € > 0 such
that |[dR/dt| < ¢ for all . Thus if e(t) is as in (4), we have |g(t)| < |t|e < 2xe
since we are only concerned with ¢ € [0,27x]. Let z and u be as in the last
section. Let A, A be respectively the smallest and greatest eigenvalues of R(t).
By comparison theory, a solution z(t) of (4) with 2(0) = 0, |2/(0)] = 1 satisfies
|z(t)] < snx(t) on {0,T], where T is the first zero of z.

Then using lemma B.1.1 and just bounding each term, we get

Lemma B.1.2 Under the conditions of the previous paragraph, we have

|2(t) —u(t)] < efyeni(t—s) < Kte

|2'(t) — w'(t)] < AKie.
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Notice that all we used is the closeness of R and B,. Thus we also have

Lemma B.1.3 Let Ro(t), I4(t) be bounded symmetric, positive definite ma-

triz functions satisfying [Ro — Ry| < ¢, and let 2(t) (resp. (u(t)) be solutions

of 2 + Ro(t)z =0 ( resp. u” + Ry(t)u =0). Then there is K such that
|2(1) —w(t)] < effsni(t—s) < Kte
|2'(t) — /()] < AKte.

B.1.4 The Jacobi Equation in an almost-symmetric

space

Let M be a compact Riemannian manifold Whi(l:h i8 e-almost symmetric,
te. |VE| < e. Assume M has positive curvature, Kps > & > 0. We want
to compare the Jacobi equation in M with the Jacobi equation of an actual
symmetric space.

We want to compare the solutions of ( B.1) with the sohitions of what

would be the Jacobi equation if M were symmetric:

() + R(0)z(t) = 0 (B.5)

Thus from lemma B.1.2 we get the following application to the Jacobi

fields in an almost symmetric space:

Lemma B.1.4 Let M be an e-almost symmelric space, v a geodesic in M,

and {Py,..., Py} as before. Let J be the unique Jacobi field along v satisfying

J(O) = (11P1+...—|—G.kPk
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th(O) - 61P1++kak

Let V' be the vector field V(1) = a1 ()P(t) + ... - zx(t) Py(t), wherez;(t)
is given by xi(t) = a;eny () + A7 lsny, (8). Then

|[J(t) = V()] < #Ke
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