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Abstract of the Dissertation
On Post-critically finite polynomials
by
Alfredo Poirier
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1993

We extend the work of Bielefeld, Fisher and Hubbard on critical
portraits to the case of arbitrary postcritically finite polynomials.
This determines an effective classification of postcritically finite
polynomials as dynamical systems. As an application of our re-

sults, we also state and prove necessary and sufficient conditions

for the realization of Hubbard Trees.
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Chapter 1
Basic Concepts and Main Results

This work is concerned with the classification of Postcritically finite
polynomials as dynamical systems. We provide two different types of effective
classification for such dynamical systems. In the first part, we extend the
work of Bielefeld, Fisher and Hubbard on critical portraits (see [BFH] and [F])
to the case of arbitrary posteritically finite polynomials. As an application
of these results we state and prove in the second part necessary and suflicient

conditions for the realization of Hubbard Trees.

First Part: Critical Portraits.

In the first three sections of this introductory chapter we define the
concept of critically marked polynomials and state their main combinatorial
properties. Our definition extends the concept presented in [F] and [BFH]
by including the possibility of periodic critical points. This definition differs
slightly from that given in the above references in the strictly preperiodic
case, but our results are the same. This small modification will later be

useful, because some proofs will be simplified.

QOur definition is supported by a number of examples given in Section

4. We remark here that the ‘hierarchic selections’ in the construction, are




essential only to the marking corresponding to Fatou set critical cycles. Here
they are needed in order to guarantee uniqueness for the polynomial with
specified critical portrait. (Compare Example 4.5, and see the remark fol-
lowing Lemma [1.2.4). The inclusion of the ‘hierarchic selection’ for Julia set
critical points was made to uniformize notation and is not essential (compare

[BFH] where all critical points are in the Julia set).

1. Preliminaries.

1.1. Let P be a polynomial of degree d > 1 with Q(P) the set of critical
points. For M C C denote by O(M) = U2 P (M) the orbit of M. If the
orbit O(Q(P)) of the critical set is finite, we say that P is posteritically finite
(PCF). It follows that every critical point of P is periodic or preperiodic.
We call the orbit O(w) of a periodic critical point w (if any) a critical cycle.

In this posteritically finite case a criterion to decide when a preperiodic (or

periodic) point is'in the Fatou set is as follows.

A preperiodic point is in the Fatou set if and only of 1 eventually maps

to @ critical cycle.

If P is postecritically finite, then the Julia set J(P) and the filled in
Julia set K(P) of P are connected and locally connected (see [M] Theorem
17.5). As there are no wandering domains for the Fatou components of this
polynomial P, each bounded Fatou component contains exactly one point z
(called its cemter) which eventually maps to a critical point. If we map this

component U(z) onto the unit disk by an uniformizing Riemann map ¢ with
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#(z) = 0, we can talk about internal rays in U(z) defined as the preimages of
radial segments under ¢. Because we are in the locally connected case those

internal rays can be extended up to the boundary.

In the case of the basin of attraction of co, if the polynomial is monic
and centered, the uniformizing Riemann map can be chosen tangent to the
identity at co. These rays are called ezternal rays, and éa,tisfy the condition

P(Rg) = Rys.

In general, let w — P(w) — ... P**(w) = w be a critical cycle. Then
P U(w) - U(w) is a degree D > 1 cover of itself (D is the product of the
local degree of elements in the orbit O(w), and U(w) the Fatou component
with center w). It follows then that the uniformizing Riemann map ¢, can

be chosen so that
$u(2)? = ¢u(P°"(2)).
In this case the Riemann map is known as the Béticher coordinate (compare
[M] Theorem 6.7). This coordinate is uniquely defined up to conjugation
with a (D — 1)** root of unity. In particular, it is easy to see that there are
exactly D—1 ‘fized’ internal rays, i.e, internal rays R satisfying Po{R) =R.
Bucki

They correspond in the Béttcher coordinate to the segments {re?-1 : 7 €

0,1), k=0,...,D—2}.

What is important to note here, is that the same construction is valid
for all elements in the critical cycle. Note that if we choose a coordinate ¢,
in which the internal ray R corresponds to the real segment [0,1), then we
can choose in a unique way a coordinate ¢p(,,) (at P(w)) for which P(R)

corresponds to {0,1). Furthermore in this case

) (P(2) = ($u(2))** ",
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where deg,, P is the local degree of P at w (for more details see [DII1, Chapter
4, Proposition 2.2]).

1.2 Lemﬁa. If @ critical point z belongs to a critical cycle of period

n = n,, then P°"|

T0) (which has degree say D, > 1) has ezacily D, — 1
different fized points in the boundary 8U of this component U(z) respect to
this return map. Furthermore, all external rays that land at such poinis have

period ezactly n.

Proof. The first part is well known. For the second, we consider near
this periodic point segments of all the external rays which land there, together
with the internal ray joining this point to the center z. The cyclic order of

these analytic arcs must be preserved under iteration. The result thus follows

easily. #

1.3 Supporting arguments. Given a Fatou component U and a point
p € 80U, there are only a finite number of external rays Ry, ..., R, landing
at p. These rays divide the plane in k regions. We order the arguments of
these rays in counterclockwise cyclic order {#1,...,6r}, so that U belongs
to the region determined by Ry, and Ry, (6, = 8 if there is a single ray
landing at p). The arg.ﬁment.é'l (respectively the ray Ry, ) is by definition
the (left) supporting argument (respectively the (left) supporting ray) of the
Fatou component U. In a completely analogous wéJy we can define right sup-
porting rays. Note that an argument supports at most one Fatou component
(compare [DH1, Chapter VII.4]). Furthermore, by definition, given a Fatou
componeﬁt U, for every boundary point p there is an external ray landing at

p, and therefore a supporting ray for U.
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1.4 Extended Rays. Civen an external ray Rg supporting the Fa-
tou component U(z) with center z, we extend Ry by joining its landing
point with z by an internal ray, and call this set an extended ray Ry with

argument 6.

X ;
/\%%ﬁﬁ-%

# o
b

Figure 1.1

1.5 Example. Consider the postcritically finite polynomial Pe(z) =
22 4 ¢ (where the critical value ¢ & —0.12256117 + 0.74486177: satisfies
& +2¢2 + ¢+ 1 = 0). The rays with argument 1/7,2/7,4/7 all land at
the same fixed point. But R47 is the only ray landing at this point, which

supports the critical component. (Compare Figure 1.1.)




2. Construction of Critically Marked Polynomials.

(iven a posteritically finite polynomial P, we associate to every critical
point a finite subset of Q/Z and construct a critically marked polynomial
(P,F = {F1,.... Fnp}, J = {T1,...,Tn,}). Here F would be the set of
arguments associated with the critical point 2 in the Fatou set, and Jk
would be the set associated with the critical point z;] in the Julia set. The
number of elements in these finite sets would be equal to the local degree of
the associated critical points. We remark that given a polynomial its critical
marking is not necessarily unique. Also note that one of these two families
will be empty if there are no critical points in the Fatou or Julia set. In

the following definition we will always work with left supporting rays. We

remark that we could equally well work with the right analogue, but there 4

must be the same choice throughout. Also, multiplication by d modulo 1 in

R /Z will be denoted by mg.

2.1 Construction of Fi. First we consider the case in which a given
Fatou critical point z = z{ is periodic. Let z = zf > P(z) = ..
> P°*(z) = z be a critical cycle of period n and degree D, > 1 (com-
pare §1.1). We construct the associated set F for every critical point z7
in the cycle simultaneously. Denote by d, the local degree of P at z. We
pick any periodic point p, € U(z) of period dividing n (which is not critical
because it is periodic and belongs to the Julia set J(P)) and consider the

supporting ray Ry for this component U{(z) at p,. Note that this choice nat-

urally determines a periodic supporting ray for every Fatou component 1

the cycle. The period of this ray is exactly n (compare Lemma 1.2). Given
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this periodic supporting ray Rs, we consider the d, supporting rays for this
same component U(z) that are inverse images of P(Rg) = Ry,(g). The set
of arguments of these rays is defined to be Fj. Keeping in mind that a pre-
ferred periodic supporting ray has been already chosen, we fepea,t the same
construction for all critical points in this cycle. Note that as the cycle has
critical degree D,, we can produce D, — 1 different possible choices for Fi. If
F; is the set associated with the periodic critical point 2z, there is only one
periodic argument in Fj (namely 6 as above), we call this angle the preferred
supporting argument associated with zf . Note that by definition, the period

of zf' equals the period of the associated preferred periodic argument.

Otherwise, if z = 2§ of degree d; > 1, is a non periodic critical point in
the Fatou set F(P), there exists a minimal n > 0 for which w = P°"(z) is
critical. Tf w has associated a preferred supporting ray g (at the beginning
only periodic critical points do), then P~ ™([Rg) contains exactly d, rays which
support this Fatou component U(z). The set of arguments of these rays 18
deﬁned- to be Fi. We pick any of those and call it the preferred supporiing
argumnent associated with z. We continue this process for all Fatou critical

points.

2.2 Construction of J;. Given z = z,{ (a critical point in J(P)) of
degree di > 1, we distinguish two cases. If the forward orbit of z contains no
other critical point, we have that for some 6 (usually non unique) Ry lands
at P(z). Now P~Y(Ry) consists of d different rays, among them exactly dr
land at z. Define Jj as the set of arguments of these rays, and choose a
preferred ray. Otherwise, z will map in n > 1 iterations to a critical point,

th

which we assume to have associated a preferred ray Rg. In the n™ inverse
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image P~"(Ry) of this preferred ray, there are d rays which land at z. The
set of arguments of these rays is defined to be J. Again we pick one of those

to be preferred, and continue until every critical point has an associated set.

The critical marking itself gives information about how many iterates
are needed for a given critical point to become periodic. For example we

have the following lemma.

2.3 Lemma. Let v be a preferred supporting argument in the set Ty
(respectively in Ji). Then the multiple m3™(y) (with n > 1) is periodic but
m$* () is not if and only if 2L (respectively zj] ) falls in ezactly n 1terations

into a periodic orbit.
Proof. This clearly follows from the construction. #

The importance of the above construction is stated in the following

theorem. The proof will be given in Chapter III (compare also Theorem

3.9).

9.4 Theorem. Every centered monic posteritically finite polynomial P
has o critical marking (P,F,J). This marking determines the polynomial
P in the following sense: if (P,F,J) and (Q,F,J) are critically marked
polynomials, then P = Q. In other words, two monic centered post-critically

finite polynomials with the same critical marking (F,J ) must be equal.

Remark. Note that the construction of associated sets was done in

several steps. We first complete the choice for all critical cycles, and then
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proceed backwards. In both the Fatou and Julia set cases we will have to

make decisions at several stages of the construction. Such decisions will affect
the choice of the marking for all critical points found in the backward orbit
of these starting ones. Fach time that this kind of construction is made, we
will informally say that it is a hierarchic selection. We encourage the reader

to take a look at the examples in Section 4.

3. The Combinatorics of Critically Marked Polynomials.

In order to analyze which properties the families (F,J) satisfy, it is

convenient to introduce some combinatorial notation.

3.1 Definitions. We say that a subset A C R/Z is a (d-)preargument
setif mg(A) is a singleton. For technical reasons we will always assume that A
contains at least two elements. If all elements of A are rational, we say that
A is a rational preargument set. It follows by construction that whenever
(P,F,J) is a marked polynomial, all the sets T, and F; are rational d-

preargument sets.

Consider now a family A = {A4,... ,An} of finite subsets of the circle
R/Z. The family A determines the family union set A = [JA;. We say
that any XA € AV is an element of the family A. Furthermore, we can say that
it is a periodic or preperiodic element of the family if 1t is so with respect to
mg. The set of all periodic elements in the family union will be denoted by

AU

per’




3.2 Hierarchic Families. We say that a family A is hserarchic if
for any elements in the family X\, A\’ € A", whenever mg"':()\),m;j (A) € Ag
for some i,§ > 0 then m%(}) = mzj(/\’). (This is useful if we think of a

dynamically preferred element in each Ay).

3.3 Linkage Relations. We will éay that two subsets 7' and 7" of the
circle R/Z are unlinked if they are contained in disjoint connected subsets
of R/Z, or equivalently, if 7" is contained in just one connected component
of the complement R/Z — T. (In particular 7 and 7" must be disjoint.) If
we identify R/Z with the boundary of the unit disk, an equivalent condition
would be that the convex closures of these sets are pairwise disjoint. If 7' and
T’ are not unlinked then either T NT' # B or there are elements 61,60 € T°
and @68, € T' such that the cyclic order can be written 61, 6},62,685,6,. In
this second case we say that T and 7" are linked. More generally a family
A ={Aq,... A} is an unlinked family if Ay,..., A, are pairwise unlinked.
Alternatively, each A; is completely contained in a component of R/Z — A;

for all j # 2.

The preceding definition has its motivation in the description of the
dynamics of external rays for a polynomial map. Suppose the external rays
Ry,, Ry, land at 2; for i = 1,2, If 21 # 2, then the sets {81,141}, {82,%.]} are
unlinked, for otherwise the rays will cross each other. The same argument
applies if we consider rays supporting Fatou components. But if we analyze
linkage relations arising from rays supporting a Fatou component and rays
that land at some point, we may get minor problems. Anyway, it is easy to
see that even in this case the associated sets of arguments will be ‘almost’

unlinked. (Compare condition (¢.2) and as well as Proposition 3.8 below.)
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3.4 Weak linkage relations. Consider two families F = {F1,...,Fn}
and J = {J1,...,Jm}; we say that 7 is weakly unlinked to F in the right
if we can chose arbitrarily small € > 0 so that the family {F1,...,Fn,
Ji—€...,Tm —¢}is unlinked. (Here A —e={A—¢c{mod I): A€ A}.) In
particular each family should be unlinked. Note that the definition allows
empty families. To simplify notation we will simply say that “F and J~ are

unlinked”.

3.5 Formal Critical Portraits. Consider families F = {F1,...,Fn}
and J = {J1,...,Tm} of rational (d-)prearguments. We say that the pair

(F,J) is a degree d formal critical portrait if the following conditions are

satisfied.

(e.1) d—1= 3 (#(Fe) — 1)+ LH(T) — 1)

(c.2) F and T~ are unlinked.

(c.8) Each family is hierarchic.

(64) Given v € FY, there is an i > 0 such that m3(y) € Fer.
(¢.5) No 8 € JY is periodic.

This set of conditions represent the simplest conditions satisfied by the
critical marking of a posteritically finite polynomial. Condition (c.1) says
that we have chosen the right number of arguments. Condition (¢.2) means
that the rays and extended rays determine sectors which do not cross each
other, and that F was constructed from arguments of left supporting rays.
"This reflects our decision to chose the supporting arguments as the rightmost
possible argument of an external ray. Condition (c¢.3) reflects our choice of

dynamically preferred rays. Condition (c.4) indicates that arguments in F
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are related to Fatou critical points. Condition {c.5) indicates that arguments
in J are related to Julia set critical points. Unfortunately there are formal
critical portraits which do not correspond to a posteritically finite polyno-
mial (compare Example IL.2.8). In order to state necessary and sufficient
conditions we need to study the dynamically defined partitions of the unit

circle determined by these elements.

3.6. Given two families F,J as above, we form a partition P =
{L1,..., L4} of the unit circle minus a finite number of points R/Z-F“-T",
in the following way. We consider two points ¢,#' € R/Z — F¥ — JY. By
definition, ¢,#' are unlink equivalent if they belong to the same connected
component of R/Z — F; and R/Z — Jj, for all possible i,j. Tet Li,..., Lq
be the resulting unlink equivalence classes with union R/Z — FY — J%. Tt

is easy to check that each L, is a finite union of open intervals with fotal

length 1/d.

Each element L; € P of the partition is a finite union L; = U(zj,y;)
of open connected intervals. We also define the sets LT = Ulz;,y;) and
L7 = U(zj,yj]. It is easy to see that both Pt = {Lf‘,...,LI} and
P~ = {L7,...,L]} are partitions of the unit circle. As every 6 € R/Z
belongs to exactly one set L}j, we define its right address AT(8) = L. In an
analogous way we define the left address A7(8) of 8. We associate to every
argument 8 € R/Z a right symbol sequence ST(8) = (AT(9), AT (ma(9)),...)
and a left symbol sequence S~(8) = (A™(8), A~ (m4(F)),...). Note that for
all but a countable number of arguments § € R/Z (namely the arguments
present in the families and their iterated inverses), the left S7(#) and the

right $F(#) symbol sequences coincide. By S(8) will be meant either (left or

right) symbol sequence.
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3.7 Admissible Critical Portraits. Let F = {F1,...,Fn} and
J ={H,...,Tm} be two families of rational (d-)prearguments. We say
that (F,J) is a degree d admissible critical portrait if (F,T) is a degree d

formal critical portrait and the following two extra conditions are satisfied.

(c.6) Let v € Fpop and A e R/Z, then X = « if and only of
St () = SH(A).
(c.7) Let 0 € Ty and §' € Ji. If for some i, S™(m3 () = S (¢), then

m;i(a) € Tk

3.8 Proposition. If (P, F,J) s a critically marked polynomial, then

(F,TJ) ts an admassible critical porirait.

Condition (c.6) indicates that arguments in /7 must support Fatou com-
ponents. Condition {¢.7) indicates that different elements in the family J
are associated with different critical points. The proof of this proposition

will be given in Section II.2.

Now we can state the main result for critically marked polynomials as

follows (the proof of this theorem will be given in Chapter III).

3.9 Theorem. Let (.?-",j) be o degree d admaissible critical portrail.
Then there 15 a unique monic centered posicritically finite pelynomial P, with

critical marking (P, F, 7).

Now we should ask if conditions (c.1)-(¢c.7) represent a finite amount of
information to be checked. This question is answered in a positive way by

the following lemma. The proof would be given in Section II.1.
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3.10 Lemma. Suppose 8 and §' have the same periodic left (or right)

symbol sequence. Then 6 and §' are both periodic and of the same period.

In particular condition (¢.6) can be replaced by condition (c.6)':

(c.6) Let v € F, and let A have the same period as 7, them A = vy f
and only if ST(y) = SH(N).

3.11. The next question that we ask is what kind of information about
the Julia set can be gained by looking carefully into the combinatorics. For
example, if can we determine if two rays land at the same point by only
looking at their arguments. In fact, left symbol sequences convey all the
information necessary to effectively decide whether two rays land at the same
point or not. This is done as follows. Suppose J; = {61,...,0c} € J with
corresponding left symbol sequences S7(6y),...,5 (). As we expect the
rays with those arguments to land at the same critical point, we declare them
(ih)equivélent; i.e, we write S™(04) =; S7(83). Then we set § = ' either if
S=(8) = S—(#) or there is an n > 0 such that A~ (m%(8)) = A~(m%(¢")
for all § < n and S™(m™(B)) =; S~ (m™*(#")) for some t. This relation ~
is not necessarily an equivalence relation, because transitivity may fail. To
make this into an equivalence relation we say that 6 ~; 8 if and only if
there are arguments Ag = 6, A\1,..., Ay = 8, such that Ao = ... = Ap. The
importance of this equivalence relation is shown by the following proposition.

The proof wilt be given in Chapter LL

3.12 Proposition. Let (P,F,J) be a critically marked pelynomial,
Then Ry and Ry land at the same point if and only of § ~; 8'.
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4. Examples.

We will illustrate with examples the definitions of the previous sections.
We will try to isolate and illustrate all possible complications. Of course, the

worst possible examples will involve several of these at the same time.

4.1 The rabbit. (See Figure 1.1.} Once again consider the degree two
polynomial P(z) = 2z* + ¢ with ¢ & —0.12256117 + 0.74486177:. The Fatou
critical point z = 0 has a period 3 orbit under iteration. Therefore P°*
restricted to the critical component is a degree 2 cover of itself. It follows
that the map P°® has a unique fixed point in the boundary of this critical
Fatou component. As noticed above, among the three rays Ry, Ry, Ry 7
landing at this fixed point, only the ray R, /7 supports the critical component.
By the definition of marking, we must look for the other ray that supports
this component and maps to P(Ry/r) = Rys7. This ray can only be Ryj14.
Thus, we have constructed a marking for P. In this case F = {F,} and

J =0, where F; = {4/7,1/14}.

It is important to note that we were looking for a fixed point of P°3
restricted to the boundary of the critical Fatou component. Such a fixed
point for P°* turned out to be a fixed point for P as well, but the rays
landing there have period equal 3.

4.2 The Ulam-von Neumann map. We consider now the strictly
preperiodic case. Let P(2} = z? — 2, and note that the orbit of the critical

point z = 0is 0 — —2 +— 2+ 2. ... Only the external ray Ry lands at 2 = 2,

16




4.4 Non trivial critical cycle. (See Figure 1.3.) Consider the degree

3 polynomial P(z) = z° — £z The critical points satisfy 22 = 1/2, and is
easy to see that they are interchanged by P (i.e, if « is a critical point then
P(a) = —a). In each of the critical Fatou components the map P°? is a
degree 4 (the product of the degrees of the cycle!) covering of itself. In this
way, there must be in the boundary of each component 3 (= 4 — 1) possible
choices of periodic points. One of those fixed points (z = 0) belongs to the
boundary of both components. The rays landing at z = 0 are B, /4 and Ity 4,
and each one supports exactly one of the Fatou critical components. The
period 2 rays that support the ‘rightmost’ component are Ry 4> Fr g, Rays
(their respective images R /4> fls 78, B3 s support the other). Therefore, the

choice of a periodic supporting ray for one component, forces the choice of

its image for the other,

R R R
& ST T R
: Rinz
|
<Jy —\‘/{ B \’/ A !"‘w
N /| \} ‘6/“5_{"
R
R R Fos (B R o4 ¢
712 5B
Figure 1.8

This polynomial has exactly three markings, all of type F = {Fa,Fgr},
J = . The periodic supporting rays are listed on the left.
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Component A Component B Fa Fn

Ry/a Ryya {3/4,1/12} {1/4,7/12}
Ry/s Ryss  {7/8,5/24) {5/8,7/24}
Rys Rys  {1/8,19/24} {3/8,17/24}

The question is now, why can we not take F4 = {3/4,1/12} and
Fp = {3/8,17/24} as a marking? This is forbidden by the rules of §3 since
3/4 and 3/8 do not belong to the same cycle. A good reason for this rule is

given in the next example.

4.5 Bad choice, wrong polynomial. (See Figure 1.4.) There is a
polynomial with marking F = {F4,Fp}, J = 0, where F4 = {3/4,1/12},
Fp ={3/8,17/24}. But it is not the one in Example 4.4.

For the polynomial P(z) = #* +az+b (where a = —0.75,b ~ 0.661438:),
the rays Ry ja>Rays, Rija, Ryys, land at a fixed point which belongs to the

19



R
2/5 Ry

478

3/5

Figure 1.6

4.7 Badly mixed case. (See Figure 1.6.) Consider the degree 5 poly-
nomial P(2) = ¢(2®+ 32% 4 32° 4 22%), where ¢ &~ 4.3582708. It has two Fatou
critical components, one (on the right) fixed of degree 2, and one (on the
left) preperiodic of degree 3 (absorbed by the first in one iteration). The
boundaries of these two Fatou components share a point, which happens to
be critical. The image of this Julia set critical point is the only fixed point
lying in the boundary of the fixed Fatou critical component. Only the ray g
lands at this fixed point. The rays Ry 5, Ry/5 are thus the only rays landing
at the Julia set critical point. Now, one of these rays (R4/5) supports the
fixed Fatou component, while the other supports the preperiodic one. Also
Ry must have two inverses supporting the fixed Fatou component ( Ry, Ryss),
and three supporting the preperiodic one (R, /5, Ry /5, Rg/5). Thus, the mark-
ing is F = {{0,4/5},{1/5,2/5,3/5}},7 = {{1/5,4/5}}. Note that in this
case there are arguments that belong to one family and to the other. Of

course, if this happens, these arguments must be strictly preperiodic.
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Component B Fp Fp

Ry {1/4,26/72,42/72,50/72} {66/72,2/72}
Rs s {5/8,53/72,21/72,20/72} {31/72,39/72}
Ry/s {3/8,43/72,51/72,19/72} {5/72,69/72}

This implies that we have 9 possible markings. Note that the marking for the

components A, B are independent, but they uniquely determine the marking

for A", B'.

4.9 (See Figure 1.7.) In our final example we show the importance of
working with two separate families 7, 7. Consider the sets A = {0, 3}, B =
2,2}, The polynomial P(z) = z* + Az + B (A = 2.25, B ~ —0.4330127;)
has marking F = {A,B}, J = §, while the polynomial P(z) = z* + A’z + B’
(A' ~ 2.181104577, B' ~ —0.38716862567) has marking F = {A}, 7 = {B).

R i3 Ry
$

fr
b )

+ Fese
L =)

T

\rl'

Frgure 1.7. Almost the same marking.
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Second Part: Hubbard Trees.

We provide necessary and sufficient conditions for the realization of
Hubbard Trees. This gives an effective classification of Post-critically finite

polynomials as dynamical systems.

5. Hubbard Trees.

Given a polynomial P of degree n > 2, we consider the set K(P) (called
the filled Julia set) of points whose orbit under iteration is bounded. This set
18 known to be compact and its complement consists of a ﬁnique unbounded
component (see [M, Lemma 17.1]). The behavior under iteration of the
critical points of this polynomial dramatically influences the topology of this
set I{(P). For example, this set is connected if and only if all critical points
are confained within (see [M, Theorem 17.3]). We arc interested in the special
case where the orbit of every critical points is finite, i.e, the case where the
orbits of all critical points are periodic or eventually periodic. We call such
polynbmials pos.icritécaliy ﬁnite (PCF in short). For such polynomials the
filled Julia set K(P) is connected. Furthermore, it is also known in this case

that K(P) is locally connected (see [M, Theorem 17.5]).

In order to proceed further we establish some notation. The set
J(P) = OK(P) is called the Julia set, and its elements Julia points. The
complement F(P) = C — J(P) of the Julia set is called the Fatou set and its

elements Fatou points. A periodic orbit zp — z; = P2} — ... = z, = zg
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which contains a critical point is called a critical cycle. In the PCF case
a periodic orbit belongs to the Fatou set F(P) if and omnly if it is a critical
cycle (see [M, Corollary 11.6]).

In this PCF case the dynamics of the polynomial admits a further
decomposition. When restricted to the interior of K(P) (which is not empty
if and only if there exists a critical cycle), P maps each component onto
some other as a branched covering map. Furthermore, every component
is eventually periodic (see [M, Theorem 13.4]). It is well known (see [M,
Theorem 6.7]) that each component can be uniformized so that in local
coordinates P can be written as z +» 2" for some n > 1. Furthermore, if
U is a periodic bounded Fatou component, the first refurn map is conjugate
in local coordinates to z — z™ for some n > 2. In particular such cycles of
components are in one to one correspondence with critical cycles. Also, in
each component there is a unique point which eventually maps to a critical

point (these points are those which correspond to 0 in local coordinates).

In the work [DH1], Douady and Hubbard suggested a combinatorial
description of the dynamics of such polynomials using a tree-like structure.

First we note the following (see [DII1, Corollary VIL.4.2 p 64]).

Lemma. Let P be a PCF polynomial. Then for any z € J(P), the set

J(P) — {z} consists of only a finite number of connected components.

Thus, the filled Julia set is arranged in a tree like fashion. To simplify
this tree we consider a finite invariant set M (i.e, P(M) C M) containing

all critical points. We join them in K(P) by paths subject to the restriction
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that if they intersect a Fatou component, this intersection must consist of
radial segments in the coordinate described above. Douady and Hubbard
proved that this construction is unique and defines a finite topological tree
T in which all points in M (and perhaps more) are vertices. Now, if from
this tree we retain the dynamics and local degree at every vertex, the way
this tree is embedded in the complex plane (up to isotopy class), and “a bit
of extra information to recover the tree gemerated by P~1(M)” (there are
several ways to state this condition in a non-ambiguous way), they proved
that different PC'F polynomials (i.e, not conjugated as dynamical systems)
give rise to different tree-structures. No criterion for realization was given

at the time. (The only previous partial results about realization are given in

Lavaurs’ thesis [L]).

A way to deal with this conditions is to introduce angles around ver-
tices in the tree structure (see [DH1, p.46]). In what follows we will measure
angles in turns (ie, 360° = 1 turn). Around a Fatou vertex v (which corre-
spond to 0 in the uniformizing coordinate), an angle between edges incident
at v is naturally defined by means of the local coordinate system. At Julia
vertices, where m components of K (P) meet (compare the lemma above),
the angle is defined to be a multiple of 1/m (this normalization is intro-
duced here for the first time). These angles satisfy two conditions. First,
they are compatible with the embedding of the tree. Second, we have that
Lpy(P(£), P(L')) = 8(v)Lu(€, ) (mod 1), where §(v) is the local degree of
P at v and £,£' are edges incident at v (£, and Z P(v) measure the angles at
v and P(v) respectively). When this further structure is given, we have a,

‘dynamical tree’, which we denote by H PM -
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Now let us start with an abstract tree and try to reconstruct the appro-

priate polynomial.

Definition. By an anglec;’,) tree H will be meant a finite connected
acyclic m-dimensional simplicial complex (m = 0,1), together with a func-
tion 4,8 r+ L(£,£') = L,(£,£') € Q/Z which assigns a rational modulo 1 to
each pair of edges £,¢' which meet at a common vertex v. This angle £(£,£')
should be skew-symmetric, with Z(£,¢') = 0 if and only if £ = ¢, and with
Loy(£,0") = £,(£,8")+ L, (£, £") whenever three edges are incident at a vertex
v. Such an angle function determines a preferred isotopy class of embeddings

of H into C.

Let V be the set of vertices. We specify a mapping 7 : V — V
and call it the vertez dynamics, and require that 7(v) # 7(v') whenever
v and v’ are endpoints of a common edge £. We consider also a local de-
gree function § : V - Z which assigns an integer 6(v) > 1 to each vertex
v € V. We require that deg(§) = 1+ 3, ., (6(v) — 1) be greater that 1.
By definition a vertex v 4s critical if §(v) > 1, and non-critical otherwise.

The critical set Q(8) = {v € V : v s critical} is thus non empty.

The maps 7 and & must be related in the following way. Extend 7
to a map 7 : H — I which carries each edge homeomorphically onto the
shortest path joining the images of its endpoints. We require then that
Loy (T(£), 7(£")) = 6(v) Lo (L, €') whenever £, arc incident at v (in this case

7(£) and 7(£') are incident at the vertex 7(v) where the angle is measured).

A vertex v is periodic if for some n > 0, 7°*(v) = v. The orbit of a

periodic critical point is a eritical cycle. We say that a vertex v is of Futou
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type or o Fatou vertez if it eventually maps into a critical cycle. Otherwise, if

it eventually maps to a non critical cycle, it is of Julia type or a Julia vertez.

We define the distance dy(v,v') between vertices in H as the number of
edges in a shortest path v between v and v'. We say that (H,V,7,6) is ez-
panding if the following condition is satisfied. For any edge £ whose end points

v,v’ are Julia vertices, there is an n > 1 such that dg(7°"(v), 7°"(v')) > L.

The angles at Julia vertices are rather artificial, so we normalizé them
as follows. If m edges €4,..., €, meet at a periodic Julia vertex v, then we
assume that the angles Z,(¢;, ¢;) are all multiples of 1/m. (It follows that
the angles at a perodic J ulia vertex convey no information beyond the cyclic

order of these m incident edges.)

By an abstract Hubbard Tree we mean an angled tree H = ((H,V,7,6), £)
so that the angles at any periodic Julia vertex where m edges meet are

multiplés of 1/m.

The basic existence and uniqueness theorem can now be stated as follows

(compare Theorem V.4.7).

Theorem A. Any abstract Hubbard Tree H can be realized as a tree as-
sociated with a posteritically finite polynomial P if and enly of H 13 expanding.

Such a realization 1s necessarily unique up to affine conjugation.

This abstract Hubbard Tree also gives information about external rays

_as the following theorem essentially due to Douady and Hubbard shows
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(compare [DH1, Chap VII]). This will follow in our case from Propositions
V.3.3, VI.4.3 and the fact that J(P) is locally connected.

Theorem B. The number of rays which land at o periodic Julia vertez v
18 equal to the number of incident edges of the tree T at v, and in fact, there 13
ezactly one ray landing between each pair of consecutive edges. Furthermore,
the ray which lands at v between £ and £ maps to the ray which lands at f(v)
between f(£) and f(£)).

After these theorems there is no reason to distinguish between the ab-

stract Hubbard Tree and the unique polynomial which realizes it.

Definition. A point p € J(P) is terminal if there is only one external
ray landing at p. Otherwise p is an incidence point. For incidence points we
distinguish between branching (if there are more than two rays landing at P)
and non branching (exactly two rays landing at p). For a posteritically finite
polynomial P, every branching pdint must be periodic or preperiodic. Also

every periodic branching point is present as vertex in any tree H P,M-

Proposition TV.3.2. Let P be a Posteritically Finite Polynomial and
z € J(P) a branching point. Then z is preperiodic (or periodic).

Proposition IV.3.3. Let P be a Posteritically Finite Polynomial and
z € J(P) a periodic incidence point. For any invariant finite set M con-
taining the critical points of P, we have z € Tppg. Purthermore, the number
of components of Tppy — {2} is independent of M and equals the number of
components of J(P)— {z}.
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Now we give a brief description of Chapters IV,V and VI which are
devoted to Hubbard Trees, In Chapter IV we have included the basic back-
gfbund of Hubbard Trees following the original exposition of Douady and
Hubbard. We have done so because there is nowhere in the literature where
we can find in a systematic way what was known up to now. In Chapter
V, we introduce our basic abstract framework., We have carefully justified
why there is the need to introduce all the abstract elements in our definition.
In Chapter VI we give the proof of our main result. This proof is based
in the theory of critical portraits developed in the first part of this work.
In Appendix B, we study necessary and sufficient conditions under which
an n'® fold covering of a finite cyclic set to a proper subset can be given a

compatible ‘argument coordinate’ so that it becomes multiplication by n.




Chapter 11
Critical Portraits.

In this chapter we isolate the combinatorial properties of a critical por-
trait (F, J) as defined in Section 1.3, and relate them to the dynamics of the
respective critically marked polynomial. Section 1 deals with the partition
in the unit circle determined by this marking. We also prove here Lemma
1.3.10. Section 2 translates to the Julia set the language of Section 1. As a
consequence we prove that the critical marking defines an admissible critical
portrait. In Section 3 we prove Proposition [.3.12 which gives the combina-
torial criterion for deciding when two external rays land at the same point.
Section 4 characterizes the preimages of marked periodic rays landing at that
same Fatou component from the combinatorial point of view. Almost all the
material in this chapter can be found in a weaker ‘formula,tion in [BFH] The
essential novelty here is Section 4, which plays a central role in the proof of

the realization Theorem for Critical Portraits.

1. Partitions of the unit circle.

In this section we fix a formal critical portrait (F,J), and study some

dynarmical properties of the partition determined by these families.
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Given a formal critical portrait (F,7), we defined in Chapter I the
partitions P = {Ly,...,L4} and P* = {Li, ... ,Ldi}. The first partition
omits the arguments in F“ U J"; while the other two cover the whole circle
R/Z. We also know that each L, (L) is a finite union of open (semiopen)
intervals with total length 1/d (compare Section 1.3.6). From the dynamical

point of view we can say even more.

1.1 Lemma. Fach L, is mapped bijectively by my onto the complement
of @ finite set. Fach L?f 13 mapped bigectively by my onto the whele unit

circle. Furthermore these correspondences preserve the circular order.

Proof. The proof is straightforward and is left to the reader. #

Before the next corollary, we recall briefly the standard language for
manipulation of symbol sequences. Let 8 = (S, S1,...), where S; € P. The
shift of S is the sequence o(8S) = (51, S5s,...). (Formally ¢ is a map from the
space of symbol sequences to itself.) The i** projection #; is the map from
symbol sequences to the partition space P defined by m;(S) = S;. The proof
of the following corollary is an easy induction using Lemma 1.1 and is left

to the reader.

1.2 Corollary. Suppose m3™(0) = m3™(0") and 7;(S*(8)) = =,;(ST(8"))
for all j < n, then § = 8. (The same is true if we consider left symbol

sequences instead. ) #

Warning. Corollary 1.2 is not necessarily true if we compare left with

right symbol sequences. From St(§) = S™(¢') and my(8) = my(8'), we
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can not infer § = §'. For example, in the Ulam-von Neumann map (compare
Example 1.4.2), $t(1/4) = S7(3/4), and both arguments become equal after
doubling.

As our partitions are well behaved under iteration, it is natural to intro-
duce dynamically defined refinements. The fact that these refinements are

also unlinked allow us derive some basic properties of symbol sequences.

1.3 Definition. For 5,,5;,... € P, set Ug,,..5, = {# € R/Z
m30 € S;,1 = 0,..,n}. The Lebesgue measure of this set is 1/d™t! as
can be easily verified by induction. Also set Ugy g, = (oo ¢l(Us,, ... 5. )-
This last set being a nested intersection of non empty compact sets, is non
empty. It is easy to see that if S5(8) = (S, S1,52,...) then 8 € Ug, 5, s,,.... It
follows that given Sy, .51,... € P, there exists an argument which has either

left or right symbol sequence (Sq, S1,.52,...).

1.4 Lemma. For each n > 0 the family {Us, .. s, } is unlinked.

Proof. This follows by construction and Lemma 1.1. #

1.5 Lemma. There are only a finite number of arguments which admat

a given symbol sequence.

Proof. Consider the full orbit of both families A = O(F)UO(TY). Tt is

enough to prove that the number of connected components of Ug, s, 5, — A

1=

is bounded by a number which depends only on (F,J). We claim that the
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cardinality N = #(A} of A is the bound we are looking for. We prove this
by induction. For n = 0 this is clear. Now suppose Ug, 5, .5, — A =
UE I, where each I, is connected and £ < N. By construction every
set Sy Nm;1(1,) is completely contained in a component of R/Z — A and

therefore is connected. The result follows. #

1.6 Lemma. Suppose 6,8 have the same periodic left (or right) symbol

sequence. Then 8,8 are periodic and have the same period.

Proof. First note that 8 can not be strictly preperiodic. For otherwise,
eventually it becomes periodic, and such periodic argument would have at
least two different inversés with the same symbol sequence, in contradiction
with Corollary 1.2. If 8, & are periodic of different period, we assume without
loss of generality that @ is fixed, but 8’ is not. In this case, we have at least
three points with the same symbol sequence, for which the cyclic order is not
preserved under iteration, but this is a contradiction to Lemma 1.1. Finally,

8 can not be irrational because of Lemma 1.5. #

1.7 Remark. We conclude this section with a trivial remark that will
be used later several times. If we take 8,8 € jk and A such that A7(A) =
A~(8), then by definition A € (#',6]. Analogously, if 8,8' € Fj and ) is such
that AT()) = AT(8), then Ne [6,8"). (There is nothing special about J or
F in this formulation; but this is the way in which these statements will be

used.)
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2. The induced partitions in the dynamical plane.

In this section we introduce the induced partition of the Julia set with
respect to the given critical marking. The main result is that this partition
is Markov. As a consequence of this, we establish that the critical marking
of a postcritically finite polynomial is in fact an admissible critical portrait,

establishing in this way Proposition 1.3.8.

Let (P, F,J) be critically marked. In analogy with the way we con-
structed a partition P of the unit circle where only the arguments in FYU 7"
were omited, we will construct a partition of the dynamical plane off the rays
with argument in 7" and extended rays with argument in F“. To simplify
this coﬁstruction we introduce some notation. For a set A € R/Z we denote
by R(A) the set of all external rays with argument in A and their landing
points, Also, whenever A C R/Z is a set of arguments cach of them sup-
porting a Fatou cornponeﬁt, we denote by £(A) the set of all extended rays

with argument in A and the respective centers of Fatou components.

Definition. We say that two points z,2 in C — R(J") — E(FY)
are “unlink equivalent”, if they belong to the same connected component of
C — R(J;) and of C — E(F;) for all possible choices of J; and F; in the

marking.
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Figure 8.1 The critically marked polynomial P(2) = 2* + 1.52 with critical
portrast (F = {{0,1/3},{1/2,5/6}},T = 0) determines a partition of the
dynamical plane. However the elements of this partition are not necessarily
connected open sets. Note that 0 and 1/2 share the same left symbol se-
quence in the circle, while the rays Ry and R,y lend at the same point in

the dynamical plane.

Looking at the circle at infinity we immediately derive some properties.
First, it is easy to see that there are exactly d (=deg P) equivalence classes.
Next, we have that either an external ray is completely contained in an equiv-
alence class, or is disjoint from it. Furthermore, we have that two rays Ry
and Ry belong to the same equivalence class if and only if their arguments
 and &' belong to the same element S € P. Thus, these equivalence classes
are m canonical correspondence with the elements of the partition P. For
S € P we denote by Ug the corresponding equivalence class in the dynamical
plane. Each equivalence class is by definition a finite union of unbounded

open sets. Note that if two arguments belong to the same connected com-
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ponent of some S € P, then the respective rays will be contained within the

same connected open region in the dynamical plane.

2.1 Lemmma. FEach region Us is mapped bijectively by P into the com-

plement of a finite number of rays end extended rays. #

2.2 Lemma. The closure cl(Us) and its restriction fo the Julia set

Js = J(P)Ncl(UUs) are connected. +#

Both proofs are somehow trivial and are left to the reader (compare also

the proofs of Lemma 2.3 and Corollary 2.4).

We can go a step beyond, and take the regions determined by the n-
fold inverse images of those rays and extended rays. Or alternatively we can
dynamically define sets Ug, ,....s, i analogy with §1.3. The analogy between
this and the definition given in §1.3, is clear: by definition, Rg C Us,,...,s, if

and only if @ € Us, ... 5,. Even if the sets Ug, g, are usually disconnected

we have that their closures are not.

2.3 Lemma. Let v : [0,1] — C be an arc which crosses neither
ray with argument in O(ma(T")) nor an extended ray with argument in
O(mg(FV)). Suppose further that the tmage of y is disjoint from the forward
orbit of all Fatou critical points. If v contains an interior point disjoint from
these rays and extended rays, then v can be lifted in o unique way within any

cl(Us), for all S € P.



Proof. Pick an S € P and start the lifting of v at an image point not in
the above rays or extended rays. Note that the hypothesis guarantees that
the lifting can be chosen in such way that it never gets into any region i

other than Ug. Uniqueness follows from Lemma 2.1. #

2.4 Corollary. The closure cl(Us,,....s,) and its restriction to the Julia

k03

set Js,,... s, = J(P)Ncl(Us,,.. s, ) are connecied.

Proof. Note that if we cut open the plane along all extended rays with
argument in O(mq(F")) and remove the forward orbit of all Fatou critical
points, we are left with a connected set. In fact, given a Fatou component U,
there is at most one argument in O(my(F")) which supports U. This follows
by construction of critical marking using the hierarchic selection. (This is
the only place where the hierarchic selection is essentially used in this work!)
Therefore we can join any two points in the Julia set with a path satisfying

the hypothesis of Lemma 2.3. The result now follows by induction on n. #

Remark. That Jg, . s, is connected depends upon the fact that the

definition of critical marking follows a hierarchic selection. Without hierar-
chic selection for extended supporting rays, the statement above is definitely

not true.

At the end, we are mostly interested in the effect of this partition in
the Julia set. We set Js, 5, = (nig Is,,....5. Note that because J(P) is
locally connected, it follows easily that the external ray Ry lands somewhere

in the set Jg+(g) N Jg-(g). Therefore we should ask if Jg(g) consists of exactly




2.5 Lemma. For any sequence {Sp,S1,...) the set Js, s,,.. contains

ezxactly one point.

Proof (Compare with [GM, Lemma 4.2]) We will make use of the
Thurston orbifold meiric associated with P. Let Mp be the surface with
boundary, equal to the disjoint union of all #g defined as cl(Ug) cut open
along all marked rays, extended rays and their forward images, and with
the orbit of the Fatou critical points removed. Define the distance p(z,2")
between two points of Mp to be the infimum of the lengths with respect
to the orbifold metric of smooth paths joining z to 2’ within Mp (or co if
they belong to different components). If z and 2z’ belong to the same sub-
set Js,5, C J(P), then any path from P(z) to P(z') within Us, can be
lifted back uniquely to a path from z to z' within ?/75-0 (compare Lernma
2.3). Since the orbifold metric is locally strictly expanding, a compactness

argument shows that

p(P(z2), P(z")) 2 cp(z,2)

for some constant ¢ > 1, independent of S; for this P. Therefore, the inverse
map

-1
PSQ cJs = Js, s

contracts lengths by at least 1/c. Hence the iterated inverse images Pg Lo
... 0 Pgnl(JSn +1) have diameter less than some constant divided by 1/c™.

Taking the limit as n — oo, we obtain the required unique point. #

2.6 Corollary. For any sequence (Sp,S51,...) we have P(Jgy 5, ) =

81,85,



Proof. For some 8, either its left or right symbol sequence S(8) equals
(S0, S1,-..). As the ray Ry lands at the unique point contained in J59,51,.5
the result follows. #

2.7 Corollary. If (5;,51,...) is a periodic sequence of period m, then

the unigue point in Jg, g, .. ts periodic of period dividing m.

Proof, This follows from Lemma 2.5 and Corollary 2.6. In fact, the

period is m but this is not a priori obvious, this will follow from Proposition

3.6. C#

2.8 A formal critical portrait not coming from a polynomial.

Consider the degree 4 formal critical portrait

3 18 19 34 1 46
J_{{%’@}’{Eﬁ’ '66}:{6“6! &}}7

which does not came from the marking of a polynomial. (Compare condition

(¢.7) in §1.3.7 and Corollary 2.9, here $7(19/60) = S~(46/60)).

If there is a polynomial P of degree 4 which realizes this critical por-
trait, there should be critical points w; # wy associated with {%, %} and
51 22} respectively. But as S™(19/60) = S~(46/60), then Lemma 2.5 tell
us w1 = wy. Thus, the critical points associated with {£2,32}, {1 48} myst
be actually the same. Therefore we do not have three degree 2 critical points,
but one of degree 3 and the other of degree 2. In this case, the rays R, /60’5
and Ryg/s0 land at the same fixed point. This fixed point has exactly one

other preimage, the degree 3 critical point. At this critical point the rays
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R]g/ﬁo, R34/60; R49/601 Rl/ﬁ{), R31/60: and R46/60 land. T]JGI'GfOI‘G, the actual

polynomial must have as critical marking either of the following,

3 18, (19 34 49

T=Usr e isr s

or
3 18 1 31 46

I =Ug a0 5050 50

L

Figure 2.2. Julia set of P(z) = 2% + Az + Bz + C with the rays 60, 630, %,

31 34 46
57 507 07 60 shown Here

=
[==] [~
-

A == 0.38437710 — 0.569512104
B = 0.30830201 + 0.032537182
C =~ 0.49119643 4 0.93292127¢

2.9 Corollary. Let (P,F,J) be a critically marked polynomial. Sup-
pose @ € T and 8" ¢ J;. If S“(mgi(ﬂ)) = S7(0) for some i > 0, then
m;i(é) € J;.



Proof. It follows from Lemma 2.5 that the rays with argument m3'(¢)
and # land at the same critical point. The result then follows from the

|
i
hierarchic selection of rays. (Compare §1.2.) #

2.10 Corollary. Let v € F5

pers and A € R/Z, then A =« if and only if
ST(y) = 5T\

Proof. Suppose Fr = {y = 41,...,¥n}, where the arguments v;,...,vn
are in counterclockwise cyclic order. Suppose A # v but ST(y) = ST(\).
By Lemima 2.5 the rays R, Ity land at the same point. As A is periodic by
Lemma 1.6, it follows that A & F;. But then, by definition of the right ad-
dress AT(X) of }, it follows that the cyclic order is v1, A, 72, ..., ¥n (compare
Remark 1.7). By definition of supporting argument (see §1.1.3), the corre-
sponding Fatou component must be in the sector determined by R, Rx (in
the counterclockwise sense). But this is a contradiction with the fact that

R.,..., R, also support this component. #

The following now follows from Corollaries 2.9 and 2.10.

2.11 Propeosition. If (P, F,J) is a marked polynomial, then the pair
(F,T) is an admissible critical portrait. #

3. Which rays land at the same point?

We would like to have a combiﬁatoria.} criterion to decide when two

ays land at the same point. Two arguments #,8" in the same [J; do not
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have equal (left or right) symbol sequences. Nevertheless, the external rays
Ry, Ry both land at the same critical point. In general, all exceptions are a
consequence of this fact. Furthermore, all the information we need is already

contained in left symbol sequences.

3.1 The landing equivalence (~;). We recall briefly the definition
of the “landing equivalence” ~; between angles, introduced in Chapter I
(compare §1.3.11). Let (F,J) be an admissible critical portrait. For 8,85 €
Ji € J we set S™(6,) =i S7(63). Then we write 6 ~s §' if either S7(0) =
S5=(#') or there is an n > 0 such that 7;(S™(8)) = 7;(57(8")) for all § < n
and o™(S7(0)) =; o*(S™(#')) for some ¢. Finally we make this into an
equivalence relation by letting 6 ~; ' if and only if there are arguments
Ao =0,)1,..., Ay =8 such that Ay = ...~ \,,. Note that condition (¢.7)
together with (c.3) guarantee that whenever 8; € F; (1 = 0, 1); then 8y ~; 64
if and only if 7, = F».

If the family J is empty, two arguments are equivalent if and only if
their left symbol sequences coincide. As $7(8) ié strictly preperiodic for every
argument # in the family union J", two periodic or irrational arguments &, 6’
are ~; equivalent if and only if S7(8) = 57(8"). Of course, a preperiodic

argument would never be equivalent to a non preperiodic one.

By definition, if § ~; & there is an m > 0 such that ¢™(57(8)) =
o™(S7(¢")). Also note that whenever § ~ 6 then also mg(f) == mq(0').

- Therefore the following lemma is trivial.

3.2 Lemma. If § ~; 8" then mg(8) ~; mq(6'). H
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Now let (P, F,J) be a critically marked polynomial. We will show now
that the ~; equivalence classes defined from the associated admissible critical
portrait effectively characterize the arguments of rays landing at a common

point.

3.3 Lemma. Suppose Rg, Ry both land at the same point z. If z is non
eritical then A~(0) = A~(8').

Proof. If 2 is not the landing point of a ray with argument in F", then

it is in the interior of some region Us. Otherwise, let Ry, ,..., g, be all rays
with argument in F" landing at 2. Around z we consider locally segments of
these rays together with internal rays joining this point z to the center of the
k associated Fatou components. This configuration divides a neighborhood
of z into 2k consecutive regions. As every other region is contained in Ug

where S = A7(61) = ... = A7 (6), the result follows. #

3.4 Lemma. Suppose Ry lands at a critical point w, then A™(0) =
A=(8") for some 8' € J,.

Proof. The external ray Ry is contained within some i 4-(g1). ##

3.5 Corollary. Suppose 8,8 are such that A=(8) = A™(8'). Then
Ry, Ry land at the same point if and only if R, 9), Roy(ey land at the

same point. _ . #

3.6 Proposition. Let (P, F,J) be ¢ marked polynomial. Then Ry and
Ry land at the same point if and only if § ~; 8'.
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Proof. First suppose that 8 ~; &. If S7(8) = S (8') then the rays
Ry, Ry land at the same point by Lemma 2.5. Otherwise, it is enough to
assume @ ~ §'. In this way, for some n > 0, 6™(S5(8)) =; ¢™(5~ (")) and
7;(S7(9)) = 7;(57(¢')) for j < n. By definition there are arguments in J;
with symbol sequences o™(S™(#)) and ¢™(S™(8'}). As the rays with these
arguments land at the same critical point w;, the rays I, 5 (g and Rm;n(gf)

also land at w;. The result follows now from Corollary 3.5.

Conversely, suppose Ry and Ry land at the same point z. There is a
minimal m > 0 such that P°™(z) neither is critical nor contains a critical
point in its forward orbit. We will prove by induction in m that 8 ~; 8'. Let
P°™(z) be non critical for all n > 0 (this is the case m = 0). For all n > 0,
Rgon(g), Rgen(gry will be rays landing at the same non critical point. In this
case the result follows from Lemma 3.3, Now, let my(8) ~; mq(8') (this is
the inductive hypothesis). If z is not a critical point we use again Lemma

3.3; if z is a critical point we use Lemma 3.4. In either case we deduce that

g~ 6. 4

3.7 Corollary. If (Sp, S1,...) is a periodic sequence of period m, then

the unique point in Jg, 5, ... has period m. #

4. Which rays support the same Fatou component?

In general it is impossible to give a combinatorial description of when
two arguments support the same Fatou component. This because the closure

of two Fatou components may share a periodic point which is not the landing
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point of a marked ray. In this case, the arguments of all rays landing at such
point will have the same left and right symbol sequences, and thus they are
undistinguishable from the combinatoric point of view. However, for some
cases we will study which rays support some given periodic Fatou component.

We will only consider rays for which some forward image belongs to the

(@)

Ser Lhe importance of the combinatorial

periodic part of the family union
construction below will become clear in the next chapter. In the meanwhile
we can tell the reader that in order to apply the theory of “Levy Cycles”
(compare Appendix A), we should artificially introduce some preperiodic

arguments for every periodic critical point. These preperiodic arguments are

what we call in this section “special arguments”.

As motivation for the combinatorial construction to follow, we consider
a critically marked polynomial (P, F,J). Let v € O(F5..), be of period k.

Suppose also that mfl”k()\) = .

4.1 Lemma. With the above hypothesis, Ry supports the same Fatou

component as R of and only if, for each ¢ > 0 esther

) mi(S1y) = mi(S*N), or
i) mS(y) belongs to some Fy and AY(m(N)) = AT(Y) for some

v e Fy.

Proof. The proof is straightforward and is left to the reader. #

This motivates the following definition.
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4.2 Special arguments. Let {(F,J) be an admissible critical portrait.
To every v € O(Fper) We associate a (periodic) sequence of sets 7(7,1) as

follows. First we define 7(~,0):

_J{AT(Y) 4 € Fal if y € Fu for some o
T(v,0) = { {A+(’}')} otherwise.

In the general case set T(v,j) = ‘T(mzj(*y), 0).

Definition. Let v € O(F,,) be of period k = k(7). We say that A is
a special argument for v, if there is an n > 0 such that =;(S1T())) € 7 (7,1)
for all i < nk and m3"*(A) = v. In case both 0 and ' are special arguments

for v € O(Fpu,) we write 6 ~ 6.

The following establishes an equivalence relation between ‘special argu-

mentls’,

4.3 Lemma. If A i3 a special argument for both v,', then v = +'.

Proof. Let n be a multiple of k{(y)k(y') big enough, then St(y) =
o™(§F(A)) = St (4") and the result follows from condition (c.6) in the defi-

nition of admissible critical portrait and Corollary 1.2. #

4.4 Remark. If 8 ~, ¢ and St(6) = S*(6'), it follows from the
definition of ~., condition (¢.6) and Corollary 1.2 that § = 8’

These relations between special arguments are compatible with mg in

the following sense.



4.5 Lemma. If \j ~y Ay then mg(Ay) ~ () ma(Xa).

Proof. For some high iterate v = m3*(\1) = m5¥(A\2). Thus mq(y) =

m3F(ma(A)) = mSF(ma(Xz)) and the result follows from the definition of

~mg()- #

The following proposition, is a technical result needed in the proof of

the main theorem (Theorem 1.3.9). Its meaning when translated to the
context of PC'F polynomials, is that inverse images of a {marked) periodic
ray supporting that same Fatou component, can be found very close to the
starting periodic ray (this is obvious in the context of dynamics, because we

are in the subhyperbolic case).

4.6 Proposition. Let (F,J) be an admissible critical portrait.
If ¥ € Fpor then there exist arbitrary small € > 0 such that v+ € ~ 7.

Proof. Let 8., = (At(7),...,AT(m5* () and take any W € 77 x
coo X ’If" —1 different from S.,. We form a sequence 7, ~~ v, where ST{y,) =
SBWS.,. Take a convergent subsequence to A. As ST(A) =S, = §T(y) it
follows by condition (c.6) that A = v, Now, for € > 0 small enough, 7, can

not be of the form v — € by Remark 1.7, therefore it must be of the form

7+ e #

In the language of special arguments Lemma 4.1 reads.

4.7 Proposition. Let (P,F,J) be o marked polynomial. If 6 is a

special argument for v € flljer then Ry and R, support the same Fatou

component. #



Chapter 111
Realizing Critical Portraits

In this Chapter we give the proof of the Realization Theorem for Critical
Portraits. In Section 1 we prove that the combinatorial data is ‘compatible’
in the sense that it allows us to construct a Topological Polynomial. The

actual construction is carried out in Section 2, where we also indicate (fol-

lowing [BFH]) that it is essentially unique. In Section 3 we prove that every
admissible critical portrait has associated a unique (up to affine conjugation)
polynomial which is Thurston equivalent to the topological polynomial so far
constricted. Tn Section 4 we show that the isotopies between the ‘actual’
and ‘topological’ polynomials can be chosen fixed not only relative to cer-
tain ‘marked’ points, but also relative to the whole boundary when suitably
chosen neighborhoods of Fatou points are deleted. In Section 5 we compiete
the proof of the Theorem by assigning the expected critical marking to the

associated polynomial.

1. Combinatorial Information of Admissible Critical Portraits.

In this Section we analyze the linkage relations that arise when we con-
sider the full orbit of the families and special arguments together. The main
result is summarized in Proposition 1.2 and is used in Section 2. This fact

is easy to believe but its proof is extremely technical.
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1.1 Consider an admissible critical portrait (F, 7). The orbit set O(F")
can be partitioned in a natural way as FU {{y} : v € O(F") - F“}. In
the context of dynamics, two elements in the orbit O(F“) belong to the
same element of this partition if and only if they support the same Fatou
component {compare Proposition I1.4.7). If in addition we consider a finite
invariant set of special arguments T (i.e, satisfying mg(I") C T'U F"), we
can include an element A € [' in that same class as v, whenever A ~., v. In
this way, we construet a family F* = {Ff,...,F¥} which is a partition of

O(FY)UT.

Next, we partition the set O(FYYUO(JY)UT U {0} into ~; equivalence
classes to form the family J* = {J},...,Jx}. In the PCF context we
are grouping all those rays we expect to land at the same point (compare
Proposition 11.3.6). Here we are adding the argument # = 0 to simplify

things later. This will reflect the choice of Ry as a preferred fixed ‘internal’

ray in the basin of attraction of co. (Compare Example 3.7.)

In the way the pair (F*, J*) was constructed, it is clear that if we think

in terms of external rays, the proposition below must be true.

1.2 Proposition. Let (F,7) be an admissible critical portrait and T
¢ finite tnvariant set of special arguments. With the notation above, JT* is

weakly unlinked o F* in the right.

The reader can skip the rest of this section without any loss of con$inuity.

The proof of the proposition follows immediately from Lemmas 1.3-1.9.
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1.3 Lemma. Suppose 81 =2 84, by 73 1py but 8y £y 2Py, Then {61,021}
and {11,v2} are unlinked.

Proof. Suppose this is not the case. We assume then that {6,682}
and {1,¢2} are linked because 8 = 15 implies 81 ~; 1. As a prelimi-
nary remark suppose A7(61) = A7(6y) = A7 (1) = A7 (3)2); then as the
cyclic order of these elements is preserved by mg (compare Lemma I1.1.1),
{ma(61),ma(62)} and {mgy(1p1), ma(3p2)} are still linked. For the proof we

distinguish several cases.

Case 1: S7(61) = S7(02) and S™(31) = S (1p2). This possibility is eas-
ily ruled out using Lemma I1.1.4. We can say even more. If A7(6;) = A= (6,)
and A7(¢1) = A7 (¢h2) then by that same lemma we have also A™(6) =

A~ (+1). Thus, according to our preliminary remark, it is enough to consider

the case when A7(61) # A7 (62).

Ca_se 2: 61,0, € Jp. As iy and 1y belong to different components
of R/Z — Ji, by definition A~ (p1) # A~ (yp2). Thus, also by definition
S57(¢1) =i S (¢2) for some i:. But then, again by definition, there are
¥i € J; (3 = 1,2), each in the same connected component of R/Z — {6;, 6, }
as 1, with S’_(v,b;) == §7(¢;). But this is a contradiction with the fact that
Jr, J; are unlinked.

Case 3: S™(6y) = S™(02) and S~ (3)1) = S~ (). By definition, there
is 8] € Jx such that S7(6]) = S7(8y). Now, if 8, and 8] belong to different
coraponents of R/Z — {11,192} then {61, 0!}, and {¢1, 42} are linked and we
are in case 1. Otherwise, we repeat the same reasoning using now 0 and we

reach either case 1 or case 2.



Case 4: S7(0;) = S7(62) and S7(¢1) =; S (92). We proceed as in

case 3 and this is reduced to either case 2 or case 3. #
1.4 Corollary. The ~; equivalence classes are unlinked. 4

1.5 Lemuma. For any Fr € F and any ~; equivalence class A, {A} is
weakly unlinked to {Fi} in the right.

Proof. Let 8y € A and take ¥4, vz consecutive iﬁ Fy so that 8y € (1,72l
It is enough to prove that if 8y =~ #; then also 81 € (vy1,72]. If A7(6) =
A~(8,), this follows by definition (f; and #; by definition belong to the same
connected component of R/Z —Fj). So suppose that S~ (6y) =i S7(61) with
81 ¢ (71,72). In this case there exist J; € J so that 65 € J; N (71,72) and
01 € Ji N {v2,11] with S7(8;) = §7(#;). But this is a contradiction with
condition (c.2) in the definition of critical portraits (7; will not be weakly

unlinked to F}, in the right). #

1.6 Lemma. Let 1)y ~, 12 and v ¢ Fy, then {y1,12} and Fy are

unlinked.

Proof. If A%(y1) = A*(s;) this follows by definition and Remark
IT.1.7. Otherwise we must have that v € F; for some ¢ # k. But then a

similar argument as that used in Lemma 1.5 shows that F; and Fj are not

unlinked. #

_ 1.7 Lemma. Let 8; ~, v, © = 1,2 with v, # 2. Then {61,%1} and
{02,%2} are unlinked,



Proof. We will consider right symbol sequences ST(8;} and ST (3);).
Suppose is not the case that they are unlinked. Then {61,411} and {62,%2}
are linked because 8, = 3, will imply v1 = v2 by Lemma 11.4.3. As pre-
liminary remarks, suppose A*t(6;) = AV(h1} = AT(62) = At(¢p2). Then
as the cyclic order of these elements is preserved by m, (compare Lemma
I1.1.1), {ma(61),ma(62)} and {ma(p1), ma(tp2)} are linked. Furthermore, if
A*(8;) = AT(6;) and AT(p1) = AT(¢2), by Lemma I1.1.4 we must have
At(6h) = AT (4h).

Now, suppose 6 is in the same connected component of R/Z —{8;,12}
as 71 (if not ¢ will be). In this case {#] = 71,91}, and {82, 12} are linked,
so we assume 6; = ;. In an analogous way we may suppose that 83 = ys.
Under this assumption we will prove that for all j > 0, {m3’(6,), mzj (1)}
and {m;j (92),m2j(¢2)} should be linked. Of course this is absurd because

by definition, for 3 big enough we have m;j(gl) = mzj(z,bl) = m;j(')fl).

Suppose that A*(6;) # AT (3);). Then by definition §; € F; for some
k. Furthermore, there is 9] € Fj with AT(¢p}) = A1 (3py). It follows from
Lemma 1.6 that #1,%] € Fp are in the same component of R/Z — {6,,4,].
Thus, {],¥1} and {02,%2} are still linked. Note that mg(y") = my(61).
Also by symmetry we may take A1(6,) = A'(¢),) (note that the prop-
erty mqy(62) = ma(y2) will not be lost). But then by the second prelimi-
nary remark A1(6;) = AT(y) = AT(6,) = At (3,), and so, by the first
{ma(81) = ma(m),ma(1)} and {mq(62) = ma(y2), ma(2)} are linked.
This is the desired contradiction. #

1.8 Corollary. The family {{8 : 6 ~, v} : v € O(Fge.)} 13
unlinked. #




1.9 Lemma. Let v € O(Fg,,) and A an ~; equivalence class. Then A
i3 weakly unlinked in the right to any finite subset of {6 : 6 ~, v},

Proof. Take v € F, € F. We Wﬂi prove by induction that any ~j
equivalence class A, is weakly unlinked to W, (v') = {8 ~ v : m$*(0) € F,}
(here 4 belongs to the same cycle as v, and m§™(y') = 7). The result follows
eagily. For n = 0, this is Lemma 1.5. In general take 6, ~ #; and assume

that {61,6;} is not weakly unlinked in the right to {11,902} C ¥n(y").

Case 1: AT (2)1) # AT(+p2). Then by definition v' € Fp € F for some k.
Thus, there are ¢! € Fi such that AT(3p!) = A*{(¥);), and because of Lemma
1.5, it is easy to see that {€;, 0} is not weakly unlinked in the right to either
{1h1,9¥]} or to {tP2,4}} (both being subsets of ¥,(y"}). Thus it is enough to

consider case 2.

Case 2: AT(+p1) = AT {(32). In this case we can not have simultaneously
61 = ¢ and 8, = 2. In fact, in this case Lemma I1.1.1 would imply that
{md(t’;’l.),md(é’g)} is not weakly unlinked in the right to {ma(%1), ma(v2)}
in contradiction with the inductive hypothésis. Thus we may suppose that
81 € (1,92) (and 0y € (g, 91]). If A= (61) = A~ (02) it follows from Lemma
I1.1.4 that for € > 0 small enough A*(6; —e/d) = At (6 —e/d) = At (sh1) =
A*(3);). By Lemma I1.1.1 we have then that {mg(61) — ¢, mq(f2) — €} and
{ma(1), mg{12)} are not unlinked, in contradiction with the inductive hy-
pothesis. Therefore 47(61) # A7(6,), and then by definition we must have
S7(61) =i S7(83). But then, using the same reasoning as in the previ-
ous lemmas, we can assume that #1,8, ¢ J;. But if this is the case, we

get a contradiction because it follows by definition and Remark I11.1.7 that

At () # AT (). #



Proposition 1.2 follows now easily from the above lemmas. #

2. Abstract and embedded webs.

In this section we construct from the combinatorial data a topological
polynomial of degree d. We also study some of its basic properties. None of
the material presented here is essentially new, and can be found in a slightly

different formulation in [BFH].

2.1 Let (F,J) be an admissible critical portrait. For any finite invari-
ant set of special arguments I', we consider the pair (F*,7*) as in Section
1. With these families, we construct first an abstract topological graph
W{F*,T*) as follows. We pick a vertex v = oo, and take as many edges
Ry incident at co as elements § € J*. Let vg be the other adjacent vertex
to Re. We identify the vertices vg, vy if and only if 6,8 € J for some k;
that is, if and only if 8 ~; §'. (This because we are expecting the rays with
arguments ~; related to land at the same point.) We write this vertex as
o(Jy¥). As each Ry is labeled by an argument 6, we call it the web ray of
argument 6. By abuse of language we will say that vy (= v{(J}) whenever

8 € J}) is the landing point of the web ray Ry.

Next, for each subset F; € F™* we consider a new vertex w(JFj). We
join this vertex to the landing points of R, for all ¥ € F}. (This because,
all those rays are supposed to support the same Fatou component; compare
Proposition I1.4.7). In this case the extended web ray £, is the set formed

by the web ray of argument -+, its landing point, and the edge joining this
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landing point with the vertex w(F7). In each set Fjf € F*Y there is a
preferred argument ;. We call the edge {r; joining w(Fy) with v, the

preferred internal ray associated with the “Fatou type” point w(F}).

Note that by construction (compare §1.1), the argument 0 is always
present in our construction. We say that the web ray Ry is the preferred
internal ray associated with v = co. The graph W(F*,J*) constructed in
this way, is the abstract web associated with (F, 7,['). We will denote by V

the set of vertices of this graph.

2.2 Exnbedded webs. We consider embeddings in the Riemann Sphere
& of this abstract web W = W(F*,J7*). An embedding such that the
cyclic order of the web rays corresponds to the cyclic order of the labeling
by arguments can always be constructed because of Proposition 1.2. We
can always assume that the respective points at oo correspond. Any such
embedding is an embedded web. We still call the image of edges incident at
“oo” web rays. Unless strictly necessary we will not distinguish between an

embedding and its image.

2.3 Web maps. The following two properties follow immediately from

the construction of {(F*,7*) and Lemmas 11.3.2 and 11.4.5.

If0,6' € Ji, there is a unique J¢,y, such that ma(8), my(6') € Ty
If v,y € Fy, there s @ unique Fryy, such that ma(y), ma(y') € Fiay-

These two conditions allow us to define a map f between the set vertices

of the web W(F*, 7*) (also define f(oco) = oc). We can extend this map to
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i) The diagram A A
¢ ¥ C

Al s
& v &

13 commutative.

Proof. It is not difficult and can be found n [BFH, Theorem 6.8]. #

2.5 Lifting Webs. Suppose W = ¢(W(JT*, F*)) is an embedded web.

Given this embedding, we fix a regular extension f:C — C of the web

map. If W' is another embedded web isotopic to W relative to the set ¢(V),
then f uniquely determines an embedded web W C f ~H(W') which is also

isotopic to W relative to ¢(V), as the following construction shows.

It is convenient first to define “the web ray of argument 0” in W', For

this we need the following remark.

Let 6 £ 0 belong to J*. If 0 ~; 0, then the web rays Re and Rqy in W

can not be isotopic relative to the set $(V).

To see this we note that these web rays determine two sectors. By
construction each of these two sectors contains all web rays with arguments
in (0,6) and (6, 1) respectively. Now, by Lemma I1.1.6, 8 is of the form
k/(d—1), so each of the sets 7*“ N (0,8) and J*“N (4, 1) is non empty. The

result follows easily.

As a consequence we have that there is a unique edge Rf in W' which ,

can correspond to Rg. Thus there is a unique ‘edge’ Ry C f ~HRY) joining
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$(vg) and oo, which is isotopic to R relative ¢(V). This is to be defined as.

the zero web ray in W".

To construct the web W' we consider first all edges £ C W incident at
vertices v = ¢(v(JY¥)) which are not critical. By definition, f(@) is also an
edge in W; now, there is a unique edge £ € W' which is isotopic to f(
relative to ¢(V). As f is locally one to one near v, starting at f(v), £ can
be lifted back in a unique way by f to an arc £“. As F(0) and ¢ are in
particular isotopic relative to the critical values of £, it follows that £ and £"

are isotopic relative to ¢(V).

Finally, we consider all edges ¢ incident at critical vertices v = ¢(v(T})).
Again we repeat the same procedure but keeping in mind that the correct
indexing for web rays can be found by its relative position respect to the
web ray Rg. The adequate choice of inverses can now be easily determined.
This finishes the construction of W". By abuse of notation, we denote this

embedded web W by F-1(W').

Note that we can apply the same construction to the web W' = F=1own

and so on; in this way we can form a sequence of webs
W FTEOV, L ROV,

all isotopic relative to..qS(V.).

3. There are no Levy cycles.

In this Section we will prove that any admissible critical portrait is

‘naturally’ associated to a unique polynomial P (see Corollary 3.6). The
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natural way to proceed is to construct from the family (F*, 7*) with T' =0
a web map f. The next step can be (as in [BFH]) to prove that any regular
extension has no Thurston’s obstruction by proving there are no Levy cycles.
This fact is by no means obvious. In fact, it is easier to prove this fact for
maps f' associated to a bigger family (F*, J"™) with I" suitably chosen. Now,
as a Levy cycle for the map f will determine a Levy cycle for the map f " we

can conclude that the former map has no Levy cycles.

We start with some notation and another result borrowed from [BFI]

Section 7.

3.1 Definition. Let W be an embedded web and £ C W an edge. A
Jordan curve C disjoint from ¢(V) is said to intersect £ essentsally, if for

every C' homotopic to € in € - ¢(V), we have that £N ¢ is non empty.

The following is together with Theorem A.5 a technical result needed

for the proof of the main theorem.

3.2 Lemma. Suppose f admits a Levy cycle A = {C1,...,Cr} (see
appendiz A). Then any C; does not intersect  preperiodic edge € of the web

n an essential way.

Proof. See [BFH]| Lemma 7.7. #

3.3 Remark. Using Proposition [1.4.6 it is easy to construct a finite

set of special arguments I' with the following properties.
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i) ma(I') CT"U O(FY).
1) If X € Fer, and X 13 the successor (counterclockwise) of A in J*V
then A~y X,

In the following lemma we assume that the web and a regular extension

where constructed with this set of special arguments. Here if C is a Jordan

curve, the intertor of C is defined as the bounded component of C-C.

3.4 Lemma. Let C be a Jordan curve disjoint from ¢(V). Suppose
further that C has the following properties,

a) All vertices in ¢(V) which belong to the interior of C are periodic and
do not belang to a critical cycle.

b) C does not intersect essentially any preperiodic edge £.

Under theses hypothesis, if vg,ve € ¢(V) (corresponding to the landing
point of the web rays Ry, Ro respectively) belong to the interior of C, then
A=(6) = A= (8").

Proof. Suppose vg, vy are in the interior of C (and therefore 8,8 are
periodic). Let v,7" € Ji for some k. The rays R., and R., divide the
plane in two regions. If vy, ve do not belong to the same region, then C will
cut either Ry or Ry in an essential way. Thus, 6,8 belong to the same
connected component of R/Z — 7;,. Now, let v,v € Fp for some k. The
extended rays £, and £y divide the plane in two regions. If both v," are
preperiodic the same argument as above applies, and again 6,8 belong to
the same connected component of R/Z — {v,~'}. Otherwise, suppose that v

1s periodic (and thus, v' must be preperiodic). By hypothesis there is € > 0
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such that v+ ¢ is a specizﬂ argument for v, and (v,v +¢) N J* = . Now
we apply the same reasoning with the extended rays £,y and £, and thus
8,6 belong to the same connected component of R/Z — {~v+¢,v'} (compare
Figure 3.1). As € can be chosen arbitrarily small, it follows that for € > 0

small enough, § — € and ¢ — € belong to the same connected component of

R/Z — Fi. It follows by definition that A=(8) = A=(8'). #

3.5 Proposition. Let f : € = € be a regular estension of the web map
over (F*,J*) for some T". Then f admits no Levy cycles.

Proof. We are going to add points to I' as needed (see the introduc-

tion to this section). Suppose by contradiction that f has a Levy cycle

Ci,...,Cx).

Step 1. As all “Fatou points” (i.e, vertices of the form ¢(w(F}))) are
preperiodic or belong to a critical cycle, no such points are in the interior of

an element of a Levy cycle (compare Theorem A.5).

Step 2. 6 ~; 8" but S(8) # S(8') then 8 is preperiodic, and so is

vg. Thus, vy is not in the interior of a curve in a Levy cycle.

Step 3. ¥ vg,ve are in the interior of an element of a Levy cycle, then

by Lemma 3.4 A=(6) = A~(6").
Step 4. There are no Levy cycles:

If vy, vp belong to the interior of an element Cy of a Levy cycle, then

there is another element C in this Levy cycle such that v, g and v,
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belong to the interior of C. This immediately implies S7(8) = S57(8") by
step 3 and the definition of Levy cycles. In this way vy = ve by construction
of the Web. But this implies there is a unique point in the interior of an
element of a Levy cycle, and this is a contradiction with the definition of

Levy cycles. #

3.6 Corollary. Let (F,T) be an admissible critical portrait. There is o
unique (up to conjugation) polynomsal P(F,T) which 1s Thurston equivalent

to f Here f is any regular extension of the wedb map. #

3.7 Example. We are left with the awkward situation of illustrating
a result about the impossibility of Levy cycles. In order to do this, some
hypothesis must be violated. We have chosen to violate the condition which
avolds the existence of Levy cycles, namely that ~; equivalence classes de-

termine only one point in the Julia set.

We consider the admissible critical portrait 7 = {{{, 5}, {3, 5 }} and

J = B (compare example 1.4.4). It is easy to check that S™(1) = S7(2)

(thus expecting the rays R 1 and Ra to land at the same point in the Julia

set). We consider also the set of special arguments I' = %%,%é- which

satisfies the hypothesis stated in 3.3 (here 42 ~, 1 and 3 ~

3
1y 35 ~2 7). Thus we

have formed

i 113 7. 331 1
f_{{4’36’12}’{4’%’ﬁ}}

. 1 13, /13 7 31
(recall the meaning of the elements in each family).
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To illustrate Lemma 3.4 (and Proposition 3.5), we construct a web
W(F*, J*) without identifying vy and vs. We will show how this leads

to a Levy cycle (compare Figure 3.1).

Lemma 3.4 claims that if there is a Levy cycle, then arguments of any
two vg, v in the interior of a constituent element C of this cycle should
have the same left address. In our case this means that any such C can
not cross any solid segment in Figure 3.1 because of Lemma 3.2, Thus, the
only possibility of a cycle is as shown in Figure 3.1. Of course, with the

appropriate identification of v 1 and v 2, this is impossible.

Figure 8.1

4. Untwisting the conjugacy.

Up to this point Corollary 3.6 tells us there is a polynomial (unique up
to conjugation) associated with the admissible critical portrait (F,J). We
must still prove that external and internal rays land at the expected places.
In other words, we have to prove that such post-critically finite polynomial

“admits the required marking. The proof of this fact is not as obvious as it
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will seem. We will consider first a particular example in order to show which

difficulties we can still find and describe a way to handle them.

4.1 Example. Consider the admissible critical portrait formed with

F={{0,3,%}}, T = 0. We first look at the map f(z) = 2> as a ‘topological
27i Ami

,e s } and

polynomial’ in the web W({F,T) with wertices V. = {0,1,e™s
extended web rays Exyy = {re” 3 :r € |0,00)} for k =0,1,2. By Corollary

2kxi

3.6 this topological polynomial is equivalent to a unique polynomial, which

will surely be P(z)} = 2°.

Consider the homeomorphisms

r3e2lm if r < 3;

o (r’ 2#29) P32 0+ (Rl i 3 <r <4
p3e2mile+3] if 4 <p,
re2dm ifr <3

h1(re? ™) = re%i[a”'"l(;g;:;zg)] if 3 <r <4
re2milo+3] if4 <.

Then clearly the following diagram is commutative

6 w6
i | P (1)
& wo &

We describe what is happening in the following terms. The map g
makes a ‘Dehn twist’ of 3/2 turns far from co. Thus the “Web’ vo(W(F, 7))
itself is twisted 3/2 turns. By this we mean that when keeping track of the
image 1Po(Ro) of the web ray Ro, we start as the actual ray Rg for a while,

then twist in counterclockwise direction until we have completed 3/2 turns,
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and finally continue our way to oo following the ray I jo! Similarly with all

other web rays.

Now, when lifting back the web 1o(W(F, J)) by P71 (compare §2.6}, we
see that the resulting embedded web ¢ (W(F, J)) has a completely different

behavior (but they are isotopic). The image web ray 11 (Ry) in this case goes
for a while in the direction of the actual ray Ry, then twists 1/2 turns, and

finally continues in the direction of the actual ray R/, to co.

The situation 1s even worse if we consider successive liftings of the web
ray o(Ro). In these cases, near oo they will be successively identified with
the rays Ry, Ry, Ry ... Of course, we will prefer to have always near
oo the correct identification. In order to describe a possible solution to this
dilemina, we note that ¥o(z) = ¢, (2) for |z| big enough. If we remove the set
{z 1 |z| > «} for « big enough, ¥y and ; would not be isotopic in this new
Riemann surface relative to the boundary (they will differ by exactly ‘one
turn’ around {z : |z| = «}. This is hardly a surprise because the difference
in 1 turn can be easily measured by comparing the embedded web to its lift.
Now, 1t 1s clear that we have not started with the best possible choice of a
web. Our original web was ‘twisted’ by a given number of turns (3/2 in this
case); when we ‘lift back’ the web, this twist will be divided by the degree
of the polynomial (3 in this case). Thus, the ‘difference in twist’ (which can
always be measured) allows us to state the relation

fwist

d

twist — = difference in twist. (2)

Where d is the degree of the polynomial (here d = 3) and difference in twist
is the relative twist of the ray ¥1{Ro) in the lifted web respect to the original
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Po(Ro). In this way, equation (2) suggests that any possible odd behavior
when lifting webs is because of a ‘Dehn twist’ in a neighborhood of Fatou

points. This is going to be in general the case as we will show below.

4.2, In the general case, we have that starting from the admissible crit-
ical portrait (F,J) we can construct a unique up to conjugation polynomial
P of degree d (which we take here to be monic and centered). Also diagram
(1) holds. Furthermore, by replacing f by 4 o f 005" and 1 by 1 045",

we may assume without loss of generality that ¢y = ud.

For notational convenience we include co in the critical set 2(P) of the
polynomial P. For each periodic Fatou point w € Q(P), let ¢, denote a
fixed Bottcher coordinate associated with w (oo included). For r < 1 define
Ny(w) ={z € U(w) : |¢w(2)| < r}. For each strictly preperiodic Fatou point
¢ € O(UP)), we inductively define N,.(c) as the connected component of
PN (P(c))) containing c. For X < O(Q(P)) set No(X) = Ueex Ni(c).

Now, as there is no topological way to distinguish between the sets

~

C — O(Q(P)) and € — N,(O(Q(P))), we can construct an embedded web in
C and a regular extension f such that the following conditions are satisfied,
i) f =P in Nijo(O(QP))),
i) preferred internal web rays are equal to internal preferred rays in
Nqjo(w) if w is in a critical cycle, and

iii) Web edges correspond to internal rays in Ny;2(O(Q(P))).

Denote by W the so constructed web, and by V be the respective set

of vertices (there is no further need to write this set as ¢(V)). Recall we
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are assuming that g is the identity in diagram (1). Note also that the
construction implies that near periodic critical points, 1, is a rotation in the

Bottcher coordinate.

4.3 Untwisting external rays. We consider first what happens near
oo (for example, in the set Nyj,(00)). As diagram (1) is commutative, we
have that for any positive r < 1/2, 95(W)NN,(c0) is by construction oo and
some segments of actual external rays. The portion of the web ray 1 (Ro)N
Ny(co) must then be a segment of a ray of the form R;/q. Furthermore,
we can measure the relative twist of ¥4(Ry) respect to ¥o{Ry) in ON.{o0)
(which by construction is a rational number of the form k/d). Stating this

as an equation

possible {wist

d

possible twist — = difference in twist

we have necessarily a rational solution of the form k/(d — 1) (same k as

above).

To prove that this ‘possible twist’ is in fact a twist we proceed as follows.
Take a positive s < r and consider the annulus N,u(co) - Ny(co). We
modify ¢y in N,2(co) by making a twist of *Eikff turns inside this anmulus.
This forces us to modify 1 in N,(oo) by a twist of ——ﬁ turns mside the
annulus N,{(00) — Ny{oo) in order to make diagram (1) commutative. Clearly
there is no problem in doing so because 1y is the identity in N,«(c0), and

1h; is a rotation in the set N,{co) respect to the Bottcher coordinate.

Formally, we have that in the set € — V — Ny{o0), 3o and 1 are not
isotopic respect to the boundary because they differ by k/d turns. In the an-
“nulus Ny(c0)—N,e(co), the modified 1g, by differ by —k/d turns. In this way,
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for z; rational with denominator D — 1. But it is clear that this can be done

if we rewrite the system as

dody ... dp—q frily) = di...dn_1 T, + dedy ... dna 1o
di...dpn_q T = dy...dp ) + di...dn 1 N
dp—adp_1 Tp—2 = dn_1 Tp-1 + Ap—gdn_1 Yn—2

dn—1 Tp—1 = To + dn_1 Yn—1
With the given solutions zg,...,2z,—1 we proceed to untwist the conju-

gacy in all neighborhoods of the cycle simultaneously as in §4.3.

4.5 Untwisting non periodic Fatou critical components. The last
basins that need to be ‘untwisted’ are the ones that correspond to strictly
preperiodic Fatou critical points. Let w be such critical point, and w’ =
fe™(w) the first critical point in its forward orbit. We assume that near
w’ the conjugacy has been already ‘untwisted’. In this case the resulting

equation is simply z, = y, so we proceed again as in §4.3.

5. Proof of Theorem 1.3.9.

5.1 Now we apply successively the construction in §2.5, The webs W, =
P~"(1pg(W)) have edges which coincide with the actual internal and external
rays in a bigger set after each lifting. Given n, for the web W,, we consider
for each v landing point of “web rays” and for each edge £ incident at it, the
orbifold length of £, = C— N,_an (O(Q(P)))NL. For fixed n denote by &, the
supremum of such numbers over all possible vertices and edges. Note that,

‘as the orbifold metric is strictly expanding for P in o N.(O(Q(P))}), and



each £, is the inverse image of some £/,_; we have that §,, | 0. In this way
we have that the respective rays (internal and external) of P can be found
arbitrarily close to the expected landing points. As J(P) is locally connected
they actually land there.

5.2 To finish the proof of the theorem, we only have to prove that the
rays R associated with a Fatou periodic critical point actually support the
respective component. But this i1s trivial if we consider Proposition 11.4.6.
In this case R, Ryy, land in the boundary of the same critical component
(compare Proposition [1.4.7). Thus, in the region determined by the ex-

tended rays R.,,,R.Y_i_e there i1s no place for a periodic ray R of the same

period as R, if € > 0 was chosen small enough. This completes the proof of

Theorem 1.3.9, #




Chapter IV
Hubbard Trees

In this Chapter we recall the definition and survey the main properties
of Hubbard Trees as defined by Douady and Hubbard in [DH1]. In Section
1 we define the main concepts and deduce some properties. We ask the
reader to pay special attention to Proposition 1.21. In Section 2 we define
the inverse of Hubbard Trees. In Section 3 we define and study the incidence
number at every point p of the tree and relate this concept with the number

of connected components of J(P) — {p}.

1. Regulated Trees.

1.1 Let P be a Posteritically Finite Polynomial. Given two points in the
closure of a bounded Fatou component, they can be joined in a unique way
by a Jordan arc consisting of (at most two) segments of internal rays. We
call such arcs (following Douady and Hubbard) regulated. The filled Julia
set K{(P) being connected and locally connected in a compact metric space
is also arcwise connected. This means that given two points 21,2, € K(P)
there is a continuous injective map « : I = [0,1] — K(P) such that 4(0) = z
and (1) = z;. In general we will not distinguish between the map and its

image. Such arcs (actually their images) can be chosen in a unique way so
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that the intersection with the closure of a Fatou component is regulated (see
[DH1, Chapter 2]). We still call such arcs regulated, and denote them by

[Zla Z2]K-

The following immediate properties hold for regulated arcs {compare

also [DH1, Chapter 2]).
1.2 Lemma. Let 1,y be regulated arcs, then 1 Ny is regulated. #
1.3 Lemma. Every suburc of o regulated arc is regulated. #

1.4 Lemma. Let z,2y,23 € K(P), then there ezists p € K(P) such
that |21, 22l N2, 23] 5 = [p, 22| In particular if (21, z9) kN2, 23] 5 = {22},

the set [z1, 22 ) U [0, 23] 18 a regulated arc. #

1.5 Regulated Sets. We say that a subset X C K(P) is regulated
connected if for every z1,z0 € X we have [z1,2z]x C X. We define the
regulated hull (X |x of X C K(P) as the minimal closed regulated connected
subset of K(P) containing X.

1.6 Proposition. If z,...,z, are points in K(P), the regulated hull

(21, vy Zn| K ©f {21, vy 20 } 15 @ finite topological tree.

Proof (Compare [DH1]}. The proof is by induction in the number of
points. This is clearly true for small n (= 1,2). Suppose [z1, ..., 2,,] i is a finite

topological tree, and let z, 41 € K(P). Let p any point in [z, ..., zxl 5 and y




the first point in the arc [z,41, p]k that belongs to [z1,..., zn| . In this way

[zla "-7zn+1]K - [21, ---7zn]K U [ya Z’rH-i]K and [21, teey zn][( N [y: Zn+1]K = {y}
The result follows. o8

1.7 Remark. By definition every end of the tree [z, ..., 2,]x is one of

zx, but there may be zp which are not ends.

1.8 Lemma. Let 4(I) C K(P) be a regulated arc containing no critical
point of P, except possibly for its end points. Then Plyp is injective and
P(y(D)) is a regulated arc.

Proof. The second part follows from the first, so let us show that P|.
is injective. As P o is locally one to one, the set A = {{(#1,%2) : t; < 1o
and P(¥(t1)) = P(7(t2))} is compact. If this set is non empty we can take
(t1,t2) € A with #; — ¢; minimal. Let ¢ € (#1,%2), then P(v([t1,%])) and
P(y([t,12])) are regulated arcs with the same end points; therefore they are

equal and ¢, — #; is not minimal. #

1.9 Definition. For a finite invariant set 3, containing the set Q(P)
of critical points of P, we denote by T(M) the tree generated by M, i.e,
the regulated hull [M}x. The minimal tree T(My), is the tree generated by
My = O(§)(P)) the orbit of the critical set. This last tree is usually called
in the literature the Hubbard Tree of P.

1.10 Lemma. For a finite invariant set M, containing the set Q(P) of
“all eritical points, P(T(M)) = [P(M)]k.
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Proof. The tree T(M) is the union of regulated arcs of the form [z, z2] i
with 21,29 € M not containing a critical point except possibly for their
end points. By Lemma 1.8, P(T(M)) is the union of the regulated arcs
[P(21), P(z2)] k. As this set is regulated connected and contains all of P(M),
by definition this set equals [P{M)] k. #

1.11 Remark. If X C K(P) is arbitrary, the same argument shows
that P(T(X)) C [P(X UQ(P))k.

1.12 Definition. Let T*(M) be the family whose elements are the
closures of components of T{M) — Q(P).

1.13 Lemma. P induces a continuous map from T(M) to itself, where

the restriction to every element (component) of T*(M) is injective.

Proof. This follows from Lemmas 1.8 and 1.10. #

1.14 Lemma. Let v(I) C K{(P) be a regulated arc containing no critical
value of P except possibly for its end points. Then any lift of v(I) by P is a

regqulated arc.

Proof. As 7|1 contains no critical value of P, it can be pulled back

by P in d different ways, each being a regulated arc. #

1.15 Definition. Given z € T(M) the incidence number vy (2)
of T(M) at z is the number of components of (M) — {z}. In other words,
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vr(ar(z) is the number of branches of T(M) that are incident at 2. Note that
this number might be different from the number of connected components of

K(P) — {2} (the incidence number at z for P).

A point z € T(M) is called a branching point of T(M) if vp(a)(2) > 2
and an end if vrpy(2z) = 1. The preferred set of T(M) is Vippry = M U
{z € T(M) : vyany(z) > 2}. Note that Vpea is finite. This because there

are only a finite number of vertices in this tree.

1.16 Proposition. The sct Vipgpyy ts tnvariant. Furthermore, 1t gener-

ates the same tree as M; i.e, T(M) =T (V).

Proof. If z is a branching point and deg,P = 1, then P(z) is also a
branching point with vy (P(2)) > vran(z) because P maps T(M) into

itself and P is a local homeomorphism in a neighborhood of z.

We must prove that [M]g = [Vranlkx. As M C Vir(ay then [M]g C
[VT(M)]K Also by definition VT(M) C [ﬂ/f][(, 80 [VT(M)]K C [[M]K]K =
(M. #

1.17 Corollary. Let M, M' be finite invariant subsets containing Q(P).
If Vogary = Vigary then T(M) = T(M"). "

1.18 Proposition. Let v,v' € J(P) be two periodic points. If for
alln > 0, P°™(z) and P°"(2') belong to the same element (component) of
T*(M), then v =" '




Proof. Suppose P°*(v), P°"(v') belong to the same component of
T*(M) for all n > 0. By Lemma 1.8 there is no precritical point in [v, v'] .
It follows easily that [v,v']xr C J(P). Next, let m be the least common
multiple of the periods of v and v'. Thus, v,v’ are fixed by P°™, As there
are only a finite number of such fixed points, we may assume that there
are no other in this set [v,v'|x. Both endpoints of this regulated arc are
repelling. Also by Lemma 1.8, P°™ induces an homeomorphism of [v,v']x
onto itself. It follows that there must be other fixed point in the interior of

the arc [v,v']k, in contradiction to what was assumed. #

1.19 Remark. Note that the same is true if v,v' are assumed only
to be preperiodic. In this case, high enough iterates of both points must
be periodic and therefore coincide. Lemma 1.13 will imply that v, v’ are

identified as well.

1.20 Definition. We define the distance dppry(v,v") between points
v,v' € 'VT(M) as follows. Set dp(ar(v,v) = 0. Otherwise, take a regulated
arc [v,v']x and define dpany(v,v") = #(Vipiany N [v,0']5c) — 1 (# denotes as
usual cardinality)_. Thus, dr(a) measures the number of ‘edges’ between v

and v', In this language Proposition 1.18 can be read as follows.

1.21 Proposition: Expanding Property of the tree T(M). For
all pairs v,v" € Vo N J(P) satisfying dpan(v,v') = 1, there is ann > 1
such that dpany(P°"(v), PP*(v")) > 1.

Proof. As v,v' are eventually periodic, the result follows from Propo-

sition 1.18. ##




2. The Regulated Trees 7(P—")

In this section we study the inverse under P of the tree T(M).

2.1 Proposition. P™'T(M) = T(P™1M) = TP~ Vran). In this

case the vertices of the tree are given by Vrp-1ay = P_IVT(M).
Proof. As P~1M C P 'Wr(py we have T(P~'M) C T(P Vi)

From Lemma 1.10, PT(P_IVT(M)) = [PP_lvT{M)]K = [VT(M)]K =
T(M). It follows that T(P“1VT(A4)) C Pan(.Mr).

Now let z € P7'T(M) - P~ M, then P(z) belongs to a regulated arc
¥(I) C T(M), with only end points in M. By Lemma 1.14 any inverse of this

regulated arc is also regulated with endpoints in P~' M and therefore belongs
to T(P~1M); in this way z € T(P'M). If z € P7'M then by definition
z € T(P~'M). This completes the proof of the chain of inequalities.

The second part follows from the first together with the definition of

Vr(p-1 ) and Proposition 1.16. #

Proposition 2.1 extends easily.

2.2 Corollary. P7"T'(M) =T(P™"M) = T(P™"Vipany). In this case

the vertices of the irec are gwen by Vipp-nary = P™"Vipiary. #

2.3 As T(M) C P71T(M) there are two incidence functions, vop =
vrom) for T(M) and vy pr = vyp-1pr) for P7AT(M). Tt is immediate that
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vo,m(z) < v_1,m(z) at every point of T(M). TFurthermore, we have the

following (here deg, P denotes the local degree of P at z).

2.4 Lemma. v_; p(2) = vo,pm(P(2)) deg. P, for every z € P~ T(M).

Proof. This follows from Lemma 1.10 and Proposition 2.1. #

These inequalities can be easily generalized for the incidence functions
V_n,pm of the trees P™"T(M). For example, v..p ap(2) < vpo1,m(z) at every

point of P7™T(M).

The next proposition is a weak attempt to reconstruct the tree P~ T(M)
starting from T(M). An improved version will be given in Chapter VI (com-

pare Proposition V1.2.5).

2.5 Proposition. Let X be ¢ component of T*(P71M). Denote by
C(X) = QP)N X the critical points in X. Then P induces o« homeomor-

phism between X and the component Ty of T(M) cut along P(C(X)) that
contains P(X).

Proof. By Lemma 1.13 P|X is injective. Also, P(X') is relatively open

#

dn T, As it is also compact 1t must be the whole component,




3. Incidence.

In this Section we take a closer look at terminal, incidence, branching
and non branching points of the Postcritically Finite Polynorﬁial P. A point
p € J(P) is terminal if there is only one external ray landing at p. Other-
wise p is an incidence point. For incidence points we distinguish between
branching (if there are more than two rays landing at p) and non branching
{exactly two rays landing at p). We will show that for a postcritically finite
polynomial P, every branching point must be periodic or preperiodic. Also
we will prove that every periodic branching point is present as a preferred

point (see §1.15) in the minimal tree T(My), and thus in any tree T(M).

3.1 Let P be a Posteritically Finite Polynomial, and z an arbitrary point
in the Julia set J(P). Every component of J(P) — {z} is eventually mapped
onto the whole Julia set, and therefore contains points whose orbit contains

any specified point. We will use this fact in the following two propositions.

3.2 Proposition. Let P be a Postcritically Finite Polynomial and
z € J(P) a branching point. Then z is preperiodic (or periodic).

Proof. Suppose z does not eventually map to O(Q(P)) (otherwise z is
already preperiodic). Fix w € Q(P) and pick in every component of J(P) —
{2} a point p; which eventually maps to w. The orbit O({p1, ... , Pk }) of this
set {p1,...,pr} is a finite set. In this way, the set M' = MUO({p1,...,pr})

Is invariant and contains the critical points of P Asze Vpgary, the result

#

follows from Proposition 1.16.




3.3 Proposition. Let P be a Postcritically Finite Polynomial and z C
J(P) a periodic incidence point. Then z € T(My), and in this way z € T(M)
for any finite invariant set M D Q(P). Furthermore, vy p(2z) is independent
of M and equals the number of components of J(P)—{z}. In particular there

are ezactly vo ar,(2) ezternal rays landing ot z.

Proof. The number of rays landing at z equals the number of compo-
nents of J(P)— {z}. After this remark the proof is analogous to that of last
proposition. Further details are left to the reader (compare also Lemma 1.10

and Remark 1.11). #

3.4 Corollary. Let z € J(P)NT(M) be such that P°"(z) is periodic.
Then v_y, m,(7) equals the number of components of J(P)—{z}. In particular

there are ezactly v_,, a(2) external rays landing ot 2

Proof. This follows from Proposition 3.3 and Lemma 2.4 #

3.5 Corollary. T(M) contains a fized point of P.

Proof. If P has a fixed critical point, then such point is in M and by
definition in T(M). Otherwise, as there are only d - 1 fixed rays, but d fixed

points, one must be an incidence point. By Proposition 3.3, this fixed point

is in T(M). #




Chapter V
Abstract Hubbard Trees.

In this Chapter we set our basic abstract framework. We carefully justify
the importance of all the elements in the definition of abstract Hubbard
'Irees given in the introduction (compare Examples 2.11-13). In Section
1, we introduce some basic notation related to finite topological trees. In
Section 2, we introduce dynamics in finite topological trees, and explain
why further structure should be added in order to have a characterization of
postceritically finite polynomials. In Section 3, the elements needed for this
characterization are defined. In Section 4, we give a normalization in order
to simplify notation, and we state our main result, namely necessary and

sufficient conditions for the realization of Hubbard Trees.

1. Cyclic Trees.

In this Section we only introduce some notation related to finite topo-

logical trees which would be used throughout the rest of this work.

1.1 Definition. By a topological tree T will be meant a finite connected
_acyclic m-dimensional simplicial complex (m = 0,1). Given p € T we define

the incidence number v (p) of T' at p as the number of connected components
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of T — {p}. We say that p € T is a branching point if vr(p) > 2, and an end
if VT(p) =1.

A homeomorphism v : I = {0,1] — 7T is called a regulated path in T. In
general we will not distinguish between the map v and its image y(I). This

because given two points p,p’ € T, any regulated path joining them will have

the same image, which we denote by [p,p']7. Given X C T we denote by
[X]r the smallest subtree of T' which contains X. Clearly this notation is

compatible with that introduced before.

1.2 Definition. A cyclic tree is a triple (T, V, x), where

(a) T is the underlying topological tree;

(b) V C T is finite set of vertices so that each component of T' — V is
an open l-cell (an edge);

(c) For each v € V, x, represents a cyclic order in the set E, =

{€1,.... 41} of all edges with v as a common endpoint.

The presence of these y, naturally determines an isotopy class of em-

beddings of this tree T into C.

1.3 Pseudoaccesses. If £,{' ¢ E, are consecutive in the cyclic order of
E,, we say that (v,£,£') is a pseudoaccess to v. Take a pseudoaccess (v, £, 2)
to v, and let the end points of the edge ¢ be v,v' € V. At B, let £7 be the

successor of £' in the cyclic order. We say that (v',#,£") is the successor of

(v,€,£).




Proof. A trivial induction in the cardinality of V. =

1.5 Remark. A Posteritically Finite Polynomial P and a finite 1nva11_
ant set M containing the critical set Q(P) of P, naturally deﬁlléé.a'c'y:élié_z"
tree (T(M), Vreary, x). Here v, represents the cyclic order of the cdmp'Oneﬁts_

around a point v € Vipan taken counterclockwise.
P T(M)

1.6 Definition. Let (7, V, y) be a cyclic tree, a;l‘c‘l_lé_tjj;tdfi C VWe ﬂéﬁne
the restriction of (T,V, ) to M, as the cyclic tree (.[M]T, VM, X’).W.here Var
is the union of M and the branching points in the topological tree [M]r, and
Xy i8 the natural restriction of the cyclic order x, of E, to the set E! of all

edges of [M]r incident at v.

2. Dynamical Abstract Trees.

In this Section we give our first attempt to describe the dynamics of a
Posteritically Finite polynomial by means of the dynamics in a finite topo-
logical tree. Unfortunately this simple characterization proves to be weak
(compare Examples 2.11-13), and further structure has to be added. This

will be done in Sections 3 and 4.




2.1 Definition. A dynamical abstract treeis a triple T = ((T,V, x), 7, §)

where

(a) (T,V,x) is the underlying cyclic tree,
(b) 7:V — V is the vertez dynamics,

(c¢) & : V — Z is a positive local degree function.

We require these elements to be related as follows,
(i) For any edge £ with endpoints v,v’ € V we must have 7(v) # 7(v').

This condition allows us to extend 7 to the underlying tree as follows.
For any edge ¢ with endpoints v,v' € V, map £ homeoniorphically to the
shortest path joining 7(v) and 7(v'). Any extension ‘v’ well defines a map

Ty + By — Ei(yy. We require,

(ii) For any v € V, there exists a cyclic ordered set £, such that 5,
embeds in an order preserving way into &£,. We require that 7, can be
extended to a degree §(v) orientation preserving covering map between &,
and E.(,) (see appendix B). For the practical interpretation of this set £, we

refer to Remark 2.2 and Proposition VI.2.5.

We define the degree of T as deg(T) =143, ., (6(v) — 1). We require

(iil) deg(T) > 1.

2.2 Remark. A Postcritically Finite Polynomial P of degree n > 1

and a finite invariant set M D Q(P) naturally defines a dynamical abstract
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tree Tpar = (T(M), Vr(ary, X), P, deg. P) of degree n. Here &, represents

the components around v in the tree T, (see §1V.2).

2.3 Definitions. Let T = ((7,V, x), 7, ) be a dynamical abstract tree.
We extend é to all the tree T by letting §(p) = 1 if p ¢ V. We define
the critical set of T as QT) = {p € T : §(p) > 1}. Condition (iii) above
implies that ((T) is always non empty. A point p € Q(T) is a eritical point;

otherwise, it is non critical.

The orbit of S C V is the set O(S) = U, 7°%(S).

2.4 Definition. Let ¢ € F,, we denote by B, 7(£) the closure of the
connected component of T' — {v} that contains £, This is just the branch at

v determined by £ in the tree T,

2.5 Definition. Let T = ({7, V,x),7,6) be an abstract tree, and let
M C V be an invariant set of vertices containing the critical set (r(M) U
QT) C M). We define the restriction T(M) of T determined by M, as the
abstract tree T(M) = ((T'(M), Vs, x), 7', 8"), where (T(M), Var,x) is the
restriction of the angled tree as defined in §1.8, and 7/, ' are restrictions of

the functions 7,6 to the set Vj,.

2.6 Definition. Let T, T be two abstract trees of degree n = deg(T) =
deg(T') > 1. We say that T' is an estension of T (in symbols T < T), if

there is an embedding ¢ : T' — 7" which satisfies the obvious conditions:

(1) ¢(V) c V',



(i) 7'(¢(v)) = ¢(r(v)) and
(ii1) 8(v) = &'(¢(v)) for all v € V,
(iv) ¢ induces a cyclic order preserving embedding of Ey into Eg(y). (At

this point it is convenient to think of the elements of E, as ‘germs of edges’.)

Clearly = is an order relation.

2.7 Let T,'T" be two abstract trees of degree n = deg{T) = deg(T') >
1. We say that T’ is cquivalent to T (in symbols T =~ T'), if T X T’
and T' < T. This determines an equivalence relation befween abstract
trees. Furthermore, the order relation < extends to a partial order between

equivalence classes of dynamical abstract trees of degree n > 1.

2.8 Definition. We say that an equivalence class [T} of dynamical
abstract trees of degree n > 1 is minimal if given [T'] = [T] we necessarily

have [T'] = [T].

From the definition of extension tree we can deduce that if [1'] is an
extension of [T], then [T] is a restriction of [1] in the sense of Definition

2.5. Therefore we have the following,

2.9 Proposition. Every abstract tree T contains o unique minimal tree
min(T). Furthermore, this unique minimal iree 13 the tree generated by the

orbit O(QU'T)) of the critical set. +#

2.10 The question now is if this description completely characterizes

Posteritically Finite Polynomials. In other words, given a class [T] of dynam-
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ical abstract trees, is there a unique (up to affine conjugation) Postcritically

Finite Polynomial P and an invariant set M O Q(P) such that T pu € [T)?

The answer is negative as the following examples show.

2.11 Non uniqueness. Suppose a degree 3 polynomial has the follow-
ing minimal tree T (where the double star stands for a double critical point,

i.e, its local degree is 3).

7 g To—=&g

Figure 2.1, The vertex dynamics is given by xg v &1 v Ty — 23 == Z4.

If we want a centered monic polynomial with this minimal tree we sup-
pose that zg = 0. We have then P(z) = 2* + ¢ (For polynomials of the

form Pc(z) = #° + ¢, the number ¢

is a complete invariant up to conju-
gacy. In other words F. is affine conjugate to Py if and only if ¢? = ¢2.)
If P has this minimal tree, then the orbit of the critical point is as follows,

O e~ t+e—cd +e.

In this way, the relation P2%(0) = P23(0) determines the equation ¢® +
¢ = {c* + ¢)® + c. Thus ¢ must satisfy ®(c¢* + 3¢ +3) = 0. If we want
¢® + ¢ # 0 we must have ¢ # 0, and we have two different possible values
for ¢? = iﬁ;{ﬁ For both values of ¢? the respective polynomials P, have
minimal tree T(M) as shown in Figure 2.1. In fact, by Lemma IV.1.13,
¢ and ¢® + ¢ belong to different components of 7' — {0}.
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In this way, we have constructed two different non affine conjugate poly-

nomials P, P! which define the same class of minimal trees. Nevertheless, the

trees Tp op-10(p), Tpiopi-19(py belong to different classes (see Figure 2.2

below).
-1 &1 gt o z 1 Ty==T3
0 To =
I. T . . -k|* . .
—1 —1
oz, .,
-1
. -_1 ,\:* . : .oz
T Ty Zg Ty To=&g

Figure 2.2. Here z ; ! maps to z j- Even if the trees are isomorphic, they

fail to have the same cyclic order around .

2.12 Non existence {compare Figure 2.3). The class of the tree below
can not be obtained from a polynomial map. Tt must correspond to a degree

two polynomial with three fixed points, which is impossible.

Yo=¥1 To=121 20=21

Figure 2.3. All vertices are fixed. Here §(zo) = 2, and §(yo) = 8(zp) = 1.

Here is an alternative description of the obstruction for ‘realizing’ this
tree. If this tree is equivalent to a tree T p,m of a degree two polynomial

P, edges whose common vertex is the Fatou critical point must be realized
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near this vertex as internal rays in the uniformizing coordinate (see Section
IV.1.1). Let a be the difference of the two arguments in this coordinate.
We have then 2« = & +4 1 (mod 1). But this implies that the two segments
should be identified. Note that the minimal tree corresponding to this tree

has only @q as vertex. Thus, this minimal tree can be realized as T, .2 (o1.
3 z—z2,{0}

2.13 Non existence (compare Figure 2.4). The class of the minimal
tree below can not be obtained from a polynomial map. If there is a tree
Tpa in the class of such tree, it will not satisfy the expanding property

(compare Propositions IV.1.18 and 1V.1.21).

Oy

O z;
e e
*

*NER

Figure 2.4. For any k > 0 there is no vertex between 7°F(z¢) and 7°%(z¢).

2.14 All that can go wrong al‘re‘ady. :happéﬁédbin these three examples.
Uniqueness failed because we had too little information. Here too little in-
formation means that we do not have enough information to recover in a
unique way the tree T M) (see Section IV.2, compare also Propositions
IV.2.5 and VI.2.5). Examples 2.12 and 2.13 failed because they do not sat-
isfied necessary conditions. Namely, the trees must have well defined angles
around Fatou critical points (see Section IV.1) and should satisfy the ex-

panding condition between Julia type vertices (see Proposition IV.1.21).
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3. Angled Trees.

In this section we introduce the class of trees that will model our results.
In this class we must be able to consider an analogue of the expanding

condition, and also to define angles between edges near Fatou points.

3.1 Definition. An angled treeis a pair A = (T, /), where

(a) T = ((T,V,x),7,6) is a dynamical abstract tree,

(b) together with a function £,£' — £(£,£") = £,(£, ') € Q/Z which
assigns a rational modulo 1 to each pair of edges £, £ which meet at a common
vertex. This angle Z(£,¢') should be skew-symmetric, with £,(£,£) = 0 if
and only if £ = ¥, and with £,(£,0'") = £,(£,8") + £,(€,£"} whenever three

edges are incident at a vertex v.

The maps £, 7 and § must be related as follows. Again we extend 7 to a
map 7 : T — T which carries each edge homeomorphically onto the shortest
path joining the images of its endpoints. Any extension well defines a map

between ‘germs’ 7, : By — F,;(,). We require then that

Ly (Ta(@), 7)) = 8(0)Lu(0,0), (1)

whenever £,¢ € E, (in this case 7,(£),7,(#) contain edges incident at 7(v)

where the angle between them is measured).

Such an angle function determines a cyclic order in £, which we suppose
to coincide with y. Note that in this case the angle function Z, at v can be

extended to a bigger set £, (see §3.3 below).
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The degree deg(A) of the angled tree A = (T, Z) is by definition the
degree of the abstract tree T. The critical set Q(A) of A is by definition
Q(T).

3.2 A vertex v € V is called periodic if for some m > 0 we have +°™(v) =
v. The orbit of a periodic eritical vertex 1s a critical cycle. We say that a
vertex v is of Fatou type (or ¢ Fatou vertez) if eventually maps to a critical
cycle. Otherwise it is of Julia type {or a Julia vertez). If vy — vy — ...
vy, = Yg 18 a critical cycle, we define the degree of the cycle as the product

8(vg) X ... X 8{v,_1) of the degrees of the elements in said cycle.

3.3 The function 7 induces a function 7, between the set £, of edges
incident at v and the set F,(,) of edges incident at 7(v). Given a Fatou
periodic vertex we can find embeddings ¢, — R/Z called local coordinates

of the set F, (see Appendix B) such that the diagram

E, e ET(‘!})

e

b | | s (2)
R/Z ™ R/Z

commutes, Here m, is multiplication by é(v) (modulo 1). Note that the
number of possible embeddings for each critical cycle is the degree of the

cycle minus one.

At other Fatou vertices v we can still make diagram (2) hold by pulling

back the local coordinate at 7(v) and using relation (1}.

At periodic Julia vertices relation (1) easily implies that 7, is a bijection.

We pick an element £ € E, to which we assign the 0 coordinate (¢,(€) = 0).
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If E.,) has not been assigned a local coordinate, we assign to each edge
7o(£) € E, () the argument ¢,(¢). In general we can not make diagram (2)
commute for all vertices. (It might fail at the starting vertex v). In this last

case the induced function m, in R/Z becomes translation by some constant.

At non periodic Julia vertices a local coordinate ¢, can be pulled back

from E,(,) in §(v} different ways such that diagram (2) commutes.

3.4 Definition. Let A = (T = ((7,V,x),7,6),£) be an angled tree.
For a finite set of invariant vertices M D Q(A), we denote by A(M) =
(T(M), £ar) the angled tree generated by M, i.e, take T(M) the dynamical
abstract tree determined by M (see section_275), and let Z 5 be the restriction

of £ to the vertices of T(M). Of course, A = A(V).

3.5 Lemma. For any extension ‘T’ and invariant sel of vertices M O

UA) we have 7{T(M)) = [r(M)]r.

Proof., A copy of Lemma IV.1.10 with the appropriate change of nota-

tion (see also Lemma 3.7). _ _ #

3.6 Definition. Let A be an angled tree of degree n, and let Q(A) =
{v1,...,v} be the critical set. For a fixed family of local coordinates {¢},cv,
we construct a partition T™ = T™({¢}) of T consisting (counting possible
repetitions) of exactly n subtrees of T'. This partition will have the property
that every point p € T will belong to exactly 6(p) elements of 7. Note

that this will be possible only if we somehow ‘unglue’ the tree around every
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critical point. This is formally done as follows (compare the example within

the proof of Proposition V1.2.5).

Let Ty be {T'}. We will inductively define partitions 75 (¢ <) of T with

the following properties

(a) For j < 4, v; belongs to exactly §(v;) elements of 1;,
(b) For j > 4, v; belongs to exactly one element of the family T;,

(¢) Ty is constructed from T;_; by replacing the unique element T{«) of

- T;—1 to which v; belongs by é(v;) subtrees of T'(a).

~ We proceed as follows. Let T(a) be the only element of T;_; to which
v; belongs. We partition T(a) into 6(v;) pieces as follows. First divide the
set F; = E,, in 6(v;) subsets using the local coordinate. For this we define
for k=0,...,8(vi)—1,

n+1

k
EF = EF = (£ € E;: ¢, (0) € [5( v;) 6(vs)

yome))

Now, we take the union of all branches in a set E* e, define
T*(@) = T(a) N (v: U 1 Bu,2(0).
eeBR

Define now T; by removing T{(a) of the family and including all such T%(a).
By definition 7™ is the last partition T;.

3.7 Lemma. Let A be an angled tree. Then the vertex dynamics 7
“induces a continuous map of T into ilself, where the resiriction to every

element (component) of T is injective.
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Proof. (Compare Lemma IV.1.8.) Let T, be an element of T*. Suppose
there are different pi,ps € T so that 7(p1) = 7(p2). Take a path v
I = [p1,p2]r C Ta joining py,ps. As 7|p, is locally one to one, the set
A = {(t1,12) : t1 < {3 and 7(y(t1)) = 7(v(t2))} is compact. As we have
assumed that this set is not empty we can take (ti,t2) € A with &, — ¢
minimal. Let £ € (t1,%), then 7(([t1,%])) and 7(¥{([¢t,{2])), are regulated
arcs with the same end points. Therefore they are equal and thus ¢, — #; is

not minimnal. #

3.8 Remark. As T* consists of n — deg(A) elements { counting possible
repetitions), 1t follows from the last lemma that for any p € 7(7") and any

possible extension ‘7’

Z 5(q) < n.

{velir(g)=p}

3.9 Lemma. Let v be a periodic Fatou werter, and €y,0; € E, be
different edges. There 1s an n > 0 so thot 70"({1) and 75™(4y) belong to

different components of T™.

Proof. Let d > 1 be the degree of the cycle vp = v > v > ...
Vi = vp. We write ¢,(f1) and ¢,(€2) in base c:l.g.xpaa_lsion. If for all n,
To™(¢1) and 79™(fs) belong to the samé componént of T, by construction
for all k > 0 the integer parts of mg(y,)du, (T°F(€1)) and ms(u,) Pu. (775 (£2))
are equal. But this implies that £; = 5. #

3.10 Definition. {Compare §1V.1.20.) We define the distance dp(v,v")
between vertices as follows. Set dr(v,v) = 0. Otherwise let dp(v,v') be the

number of edges between v and v'.
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We say that the angled tree A = (T, Z) is ezpanding if the following
property is satisfied (see also Propositions IV.1.18 and IV.1.21).

For any edge £ whose end points v,v" are Julia vertices there 1s anm > 1

such that dp(T°™(v), 7°™(v") > 1.

Equivalently, A is not expanding if and only if there ezists periodic Julio

vertices v,v' such thet dr(r°™(v),7°™(v")) =1 for all m > 0.

3.11 Lemuma. An angled tree A 13 expanding if and only if for any two
periodic Julia vertices v,v’ there ts an m > 0 such that 7°™(v) and 7°™(v")

belong to different components of T*.

Proof. Suppose A is not expanding. By definition there are periodic
Julia vertices v,v" with dp(7°™(v),7°™(v')) = 1 for all m > 0. As there
are no critical points in the orbit of periodic Julia vertices, by construction

7°™(v) and 7°™(v') will be in the same element of T™ for any possible choice

of the family {¢,}.

Let now A be expanding. Suppose there are different Julia vertices v, v’
such that 7°™(v),7°™(v") belong to the same component of 7% for all m > 0.
Among such pairs we can take v,v' periodic and with the property that
dr(v,v") is minimal. By assumption the regulated path [7°™(v)r°™(v')|7 is
completely contained within a component of 7™ for all m > 0. It follows
from Lemma 3.7 that all [r°™(v)7°™(v")]7 are homeomorphic. We take v €
{v,v']7 NV such that dr(v,v"”) = 1. As A is expanding it follows that v" is
a periodic Fatou vertex. In this way E,» N [v,v'|7 = {€1,£2} with €1 # £s.
We get a contradiction in applying Lemma 3.9. #
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3.12 Corollary. Let A be an expanding angled tree. The induced angled
tree A(M) i3 ezpanding for every invariant set of vertices M O Q(A). #

3.13 Lemma. Let A be an expanding angled tree. Given a periodic

Julia vertez v, every component of T — {v} contains a vertex which belongs

to O(QUA)).

Proof. ' Suppose that B, 4(f) does not contain a vertex in O(2(A))
different from v for some £ € E,. The relation 7,(¢) € E.(,y determines a
cyclic sequence of edges £ = £y € E,, {1 € Erp,...,8n = Lo € Erom(y) = Ey.
If for some k < m the branch B ek(,) 7{fr) contains a critical point, we
may assume that k is as big.as possible and derive a contradiction by using
Lemma 3.7. We assume though that Bruk(.v),-’l"(-ek). doés not contains a critical
point for all k. This implies using again Lemma 3.7 that all Brox(,, 7(£2) are

homeomorphic with only periodic Julia vertices. Thus, A is not expanding,.

#

4. Abstract Hubbard Trees.

The angles at Julia vertices are yather artificial, so we normalize them
as follows, If m edges £1,...,%n, meet at a periodic Julia vertex v, then
we assume that the anglés Ly (£, L) are all multiples of 1/m (it follows that
fhe angles at periodic Julia vertices convey no information beyond the cyclic
order of these m incident edges). Fortunately, this number is preserved under
restrictions which contain the orbit of the critical set. This will allow us to

give a coherent description.
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4.1 Definition. By an abstract Hubbard Tree we mean an expanding
angled tree H = (T, Z) such that the angles at any periodic Julia vertex

where m edges meet are multiples of 1/m.

4.2 Let H,H' be two abstract Hubbard Trees of degree n = deg(H) =
deg(H') > 1. We say that H' is an eztension of H (in symbols H < H'), if

there is an embedding ¢ : T' — 71" which satisfies the obvious conditions:

(@) (V) V',

(i) 7'(4(v)) = ¢(7(v)) and

(1ii) &(v) = 8'(¢(v)) for all v € V,

(iv) £,(L,8") = Z:ﬁ(v)(qﬁ(ﬁ), ¢(")) for all £, 0 € E;,.

Clearly < is an order relation.

4.3 Let H,H' be two abstract Hubbard Trees of degree n = deg(H) =
deg(H') > 1. We say that H' is equivalent to H (in symbols H = H'), if
H <H' and H < H.

This determines an' equivalence relation between abstract Hubbard
Trees. Furthermore, the order relation =< well defines a partial order be-

tween equivalence classes of abstract Hubbard Trees of degree n > 1.

4.4 Lemma. Let H be an abstract Hubbard Tree, and M O Q(H) «
finite invariant set of vertices. Then (M) is an abstract Hubbard Tree and
H(M) =< H.
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4.5 Proposition. Every absiract Hubbard Tree H contains a unique

manimal tree van([H]). Furthermore, this unique minimal tree is the iree

generated by the orbit O(QUH)) of the critical set.

Proof. This follows from Proposition 2.8 and Lemma 4.4. #

4.6 Remark. A Posteritically Finite Polynomial P and a finite in-
variant set M O Q(P) naturally defines an abstract Hubbard Tree Hp 3 =
(Tpum,L). To define the angle function we note the following. At Fatou
periodic vertices the edges of the tree are by definition segments of constant
argument in the Bottcher coordinate (see IV.1.1), we define the angle be-
tween two such edges as the difference of their coordinates. For other Fatou
points the coordinate can be defined such that the diagram (2) commutes,
and we proceed as above. For a Julia set point v, J(P) - {v} consists of a
finite number (say m) of components. We define the ‘angle’ between these
components to be a multiple of 1/m. As edges in the tree correspond lo-
cally to some of these components we have an angle function between them.
(This procedure is well defined and compatible with the definition above,
see Proposition IV.3.3). It is easy to see that the minimal tree Thy, (see
1V.1.9) corresponds to the minimal tree Hp pr, = min(Hp ) of any bigger

invariant set M.

The main result of this work is the following.
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4.7 Theorem. ZLet H be an abstract Hubbard Tree. Then there 18 a
unique (up to affine conjugation) Posteritically Finite polynomial P, and an

invariant set M D Q(P) such that Hp ps € [H].

4.8 Theorem. Eguivalence classes of minimal abstract Hubbard Trees
of degree n > 1 are in one to one correspondence with affine conjugate Post-

critically fintte polynomials.

We prove Theorem 4.7 in the next chapter. Theorem 4.8 is an easy

consequence of this result and Proposition 4.5.
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Chapter VI
Realizing Abstract Hubbard Trees.

In this chapter we give the proof of the realization Theorem for Abstract
Hubbard Trees (Theorem V.4.7). Our proof depends in the theory of Critical
Portraits developed in the first part of this work. In Section 1 we define
the class of extensions which do not add any essential information to the
tree. We will prove later that every extension belongs to this class (compare
Corollary 4.6). Section 2 gives the abstract analégﬁé of §IV.?;, where we show
that a Hubbard Tree contains all the information required to reconstruct its
‘inverse’. Section 3 gives the abstract analogue of §IV.3. In Section 4 we
relate the ‘accesses to Julia points’ with the argument of a possible ‘external
ray’ (compare Theorem B in the introduction). As a consequence of this,
we prove that every extension of a Hubbard Tree is canonical in the sense
described in Section 1. In Section 5 we associate a Formal Critical Portrait
to our Tree. This Critical Portrait is also admissible as shown in Section 6.
Finally we prove that the Hubbard Tree associated with this critical portrait
is equivalent to the starting one, thus establishing the result. From now on,

we omit the trivial case in which T is a single critical vertex.

1. Canonical Extensions.

In this Section we define what we call ‘canonical extensions’. We will
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“prove in Section 4 that every extension which itself is a Hubbard Tree, is

‘canonical in the sense described here. This fact will allow us later to associate

in a natural way a critical portrait to every Hubbard Tree.

1.1 Definition. Let Hy < H; be abstract Hubbard Trees. We say that
H, is a canonical extension of Hy if for every extension H = Hj, there 1s
-~ a common extension of H and Hy. Canonical extensions always exist. By
definition every Hubbard Tree is a canonical extension of itself. Our final goal

in this direction will be to prove that every extension is canonical (compare

Corollary 4.6).

1.2 Proposition. Let H be an abstract Hubbard Tree and w a pertodic

Fatou vertex. There 138 a canonical extension H' of H such that

(a) E, = E, at all vertices of the original Hubbard Tree H.
(b) For every periodic £ € E!, with end points w,v in H', the vertez v is
of Julia type and dy (7°™(w), 7°™(v)) =1 for all m > 0.

In fact, the underlying topological trees can be chosen to be the same,
with only new Julia vertices to be added. .
period k. In other words suppose the induced maps 7, determine a periodic

|
Proof. Suppose the edge £ has end points w,v, and its germ is of !

sequence of edges £y = £ € Ey, 0 € Eryy,. .., 0k = Lo € Erorgy = B We

distinguish two cases.

Suppose dg(7°™(w), 7°™(v)) = 1 for all m. If v is of Julia type, condi-
tion (b) is already satisfied. If v is of Fatou type then by Lemma V.3.7 all
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Ly = [7°™(w), 7°™(v)]r are homeomorphic. In this case we insert a vertex vy,
in each £, (if £, = £; then v, = v;) and define 7(vm) = vis1. Then clearly
v is periodic of period k or k/2. The angles at vy, are 1/2 because two edges
will meet now. Note that in this case this is the only possible extension that

involves the segments [r°™(w), 7°™(v)]r and gives an expanding tree.

Otherwise, suppose dyg(7°™(w), 7°™(v)) > 1 for some m > 1. In this
case we insert a vertex vy, in each £,, as close as possible to 7°7(w) (note
here that if £,, = {; then we must have v,, # v;) and define 7(v,,) = Vmp1-
Clearly v is periodic of period k. The angles at vy are 1/2 becanse two

edges meet now.

The only obstruction to this construction is if condition (b) is already

satisfled. Therefore the extension is canonical. #

1.3 Corollary. Every abstract Hubbard Tree has a canonical extension

with al least one Julia vertez. #

2. Inverse Hubbard Trees.

We now describe an important type of canonical extension. In the case
of the Hubbard Tree Hp 3s generated by a polynomial P and an invariant set
M, the interpretation is simple. We will reconstruct the equivalence class of
the abstract Hubbard Tree generated by P™'M starting from Hp . Thus,

this section is the abstract analogue of Section IV.2.
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2.1 Definition. An abstract Hubbard Tree H of degree n > 1 is
homogeneous if

(a‘) Yo € T(V)s n= Z{v‘EV:vzr(v’)} 5(’0'), and
(b) Q(H) C (V).

In other words, every vertex with at least one inverse must have a max-
imal number counting multiplicity (compare Remark V.3.8). Furthermore,
all critical vertices must have a preimage. The terminology is justified by
the fact (proved below) that the underlying topological tree can be ‘chopped’
into n pieces; each piece being homeomorphic as a graph to the abstract tree
generated by restriction to 7(V'). More formally, T establishes a homeomor-

phism between each of the n elements of T* (compare Section V.3.6) and

the abstract Hubbard Tree H(r(V)).

2.2 Lemma. For any election of local coordinate system {dy toev, each

To € T*({do}) s homeomor?hic to H(w(V)).

Proof. By Lemma V.3.5 we have 7(T') = [r(V)]r. Also, every v €
[7(V)]r has at most one inverse in T, by Lemma V.3.7. It follows easily
from condition a) that every v € [7(V)]r should have a unique inverse in T,,.

The result follows. #

2.3 Corollary, Let H be an abstract tree of degree n > 1, such that
QH) C 7(V). Then H is homogeneous if and only if (V) — 1 =

n(#(r(V)) - 1).

Proof. This follows from Lemma 2.2 and Remark V.3.8. #
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2.4 Definition. Let H' < H be abstract Hubbard Trees with H homo-
geneous. We say that H' is the image of H if the embedding which defines
the order II' < H is such that also H(r(V)) = H'.

This definition clearly extends to equivalence classes of abstract Hub-

bard Trees.

2.5 Proposition. Bvery equivalence class [H] of abstract Hubbard Trees

18 the image of o unique class of homogencous abstract Hubbard Trees.

Proof. The proof of existence is constructive using only necessary con-
ditions, uniqueness follows. Let {¢,}oev be a fa,mﬂy of local coordinates for
V CT. We will work with the family T* = T*({¢,}) (compare §V.3.6). We
construct a new simplicial complex by gluing a different copy of ' to each
component 7, € T following 7 {compare Lemma 2.2). In other words we
consider n disjoint copies H* of T (o = 1...n), with a suitable identifica-
tion at “critical points” described below. By Lemma V.3.7, the dynamics 7

restricted to each subtree T, of the family T% = T*({¢,}) is one to one. We

denote this restriction by 7, (“¢” stands for identification). Thus we have a

family of maps t, : Ty — H®. We establish an equivalence relation ~ be-
tween points in the disjoint union J] H® as follows. Whenever w € T, N Ty
(and this can only happen if w is critical), we write io(w) ~ ig(w). Thus
the new underlying topological tree is X = [[H%/ ~. There is a ‘natural
inclusion T C X’ induced by the maps 7. The new set of vertices is the

disjoint union of vertices of H, modulo ~.

In order to avoid confusion in the above notation, we will interrupt the
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proof in order to exemplify our construction.

ok *

1 Ty Ty =— T3
The abstract tree in the figure above can be chopped into 4 pieces according
to the construction in §V.3.6. We think of these pieces as mapping onto

different copies H, of T' (this is emphasized below by the superscripts in the

.
right).

T . . i1 . . .

1. Ty To —_— .’Li 15 .'1:%

T N * iz * L] *

2 xp — oz} z}° z2

T . . ia . . .

3. To T9==ag — 1? z3 :1,'3

T, - . iq . . .

4 - Ty — x} xh wl

In this way the new tree is given by identifying 2] = i1(zp), 2% = 42(20)
and z} = i3(z) (because zg € T4 N.Ty, N Ty) and by identifying a3 = i3(z)
with z3 = 14(z2) (because zo € T3 N Ty). ‘Note that the bl“iginél tree is

canonically embedded in this new one by using i,.

Proof of 2.5 (Continue). We continue the proof by defining the
dynamics and angle functions. What we have done so far is simply to replace
each piece T, by the copy H®. In this way, if we think of the H® as the
corresponding pieces for the new tree, the ﬁnal structure is induced by the

old one by gluing the H® following that same pattern of the T},.

106



The vertex dynamics 7 maps each new vertex to the actual point in V
from which it was constructed. More formally, take v € H® a vertex of X;
as H® is also partitioned by the family T*, it follows that v € T for some
B. We define 7(v) = ig(v) € Hg C X. (Clearly this is well defined and two
consecutive vertices have different image). The degree is one at each vertex
not present in the original tree. In other words, if v € T}, (that is if v belongs
to the original tree T'), we define the degree at i,(v) (which is the point in
X to which v is identified) as §(io(v)) = 6(v). If v € X is not of the form

i3(w) for some w, we set é(v) = 1.

The angle function at non critical points is pulled back from the iden-
tification: if 6{w) = 1, we have a natural homeomorphism between a neigh-
borhood of w € X and a neighborhood of w € T. The angle function is then
copied from the original Hubbard Tree H. At critical points, it is enough to
extend the coordinate functions ¢, in a compatible way; the angle between
edges can be read from this. We proceed as follows. Let v € T, be critical.
We will define the coordinate ¢;, ¢,y at io(v) € X as follows. By definition
(compare §V.3.6) there is a k such that £ € E, belongs to T, if and only if
$.,(€) € [Tkv)’ -%fii;l)-) Now, an edge £ incident at ¢,{v) must belong to a unique
H, and therefore corresponds to a unique edge £" € F(,) in the original tree

ket e (¢
T. Define i, (ny(6) = 12l

As no new periodic vertices are added the tree is still expanding. At
periodic Julia vertices no new edges are added (compare §V.3.3). Therefore,
we have a Hubbard Tree which is homogeneous by Corollary 2.3 and satisfies

the required properties.

To prove uniqueness, we note that any other local coordinate system
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{¢v}vev is alse canonically present in the new tree constructed. It follows
from Lemma 2.2 that the corresponding partition with respect to this coor-

dinate is independent of the starting local coordinate system. #

2.6 Definition. Let [H], [H'] be equivalence classes of abstract Hub-
bard Trees. We say that the equivalence class (H'] of homogeneous abstract
Hubbard Trees is the inverse of [H] (in symbols inv(H) = H'), if [H] is the
image of [H'|.

Thus, by Propositions 2.3 and 2.5, inv determines a one to one mapping
from equivalence classes of abstract Hubbard Trees of degree n > 1 to itself.

Furthermore, in this new language Proposition 2.5 reads as follows.

2.7 Proposition. Let H be an abstract Hubbard Tree, then inv(H) is

¢ canonical extension of H. #

2.8 Corollary. Let H be an abstract Hubbard Tree and w g Fatou

vertex. There is a canonical extension H' of H such that

(a) Ey = B at all vertices of H.
(b) For every £ ¢ E! with end points w,v, we have that v is of Julia
type, and dip (7°%(w), 7% (v)) = 1 for all k > 0.

Proof. We apply first Proposition 1.2 and then take & finite number of

‘inverses’ (Proposition 2.5), Finally we restrict to the tree generated by the

original vertices. #
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2.9 Corollary. Let H be an abstract Hubbard Tree. Then H has a

canonical extension in which all ends are of Julia type.

Proof. We apply first Proposition 1.2 and then take a finite number of
‘inverses’ (Proposition 2.5). Finally we restrict to the tree generated by the

required vertices. 7

3. Incidence.

In this section we study from the dynamical point of view, how the
number of edges incident at a Julia vertex can grow as we take inverses.

This section is the abstract analogue of Section IV.3.

3.1 Definition. Let [H] be an equivalence class of abstract Hubbard
Trees. We define the incidence number v (v) at a vertex v € V as the number
of connected components of T'— {v} in any underlying topological tree T.
In the inverse trees inv°™([H]) we have also incidence functions vg,_p,, =
Vingom([g)) 8t the vertices of inv°™(H). By definition vgg(v) < vy, 1(v)
for v € V. Also by construction of inv(H), it follows that vy _i(v) =

6(v)vg,o(7T(v)) for all vertices in inv(H).

3.2 Proposition. Let [H] be an equivalence class of abstract Hubbard

Trees. For every periodic Julia vertez v € V' and m > 0 we have vi,o(v) =
l/H,.__m('U).
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Proof. As 6(v') =1, for every point v’ € O(v), no new edges are added

around v in the construction of inv°™([H]). (See also Lemma V.3.13.) #

3.3 Corollary. Let [H] be an equivalence class of abstract Hubbard
Trees. Letv € V be a Julia vertex such that 7°%(v) is periodic. Then for

every m > k we have vy _p(v) = va,—m(v). #

3.4 Corollary. Let [H] be an equivalence class of abstract Hubbard
Trees. There is a k > 0 such that for allm > k we have vy _¢(v) = vy, _m(v)

at every Julia vertez v € Vyy. _ ' #
We denote such numbers by vy, —oo(v).

4. Accesses and External Coordinates.

In this section we associate to every ‘access’ at a Julia vertex an
argument. This coordinate system will allow us to define extensions with
‘reasonable’ properties. Combining these two tesults we prove that every

extension of a Hubbard Tree is canonical.

4.1 Definition. (Compare Definition V.1.3.) Let H be an abstract
Hubbard Tree. Given ¢,¢ € E, consecutive in the cyclic order, we say that
(v,£,£') is an access to v if v o(v) = v, _—w(v). If vao(v) < VH, —c0(?)

we say that (v,£,¢') is a strict pseudoaccess to v in H. Note that at Fatou
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vertices there are no possible accesses, Clearly an access at v is periodic if

and only if v is periodic. These concepts extend to equivalence classes.

4.2 Lemma. Let H be an abstract Hubbard Tree of degree n. Then
T induces ¢ degree n orientation preserving covering mapping between the
pseudoaccesses of the trees inv(H) and H. Furthermore, accesses in inv(H)

map to accesses in H.,

Proof. If (v,{,f') is a pseudoaccess in inv(H), by construction
(T(v), 7o (£}, u(€")) is a pseudoaccess in H. Clearly this is n to 1, and or-

der preserving by construction. The second part is obvious. #

4.3 Proposition. Let H be o homogencous dﬁstmct Hubbard Trec of
degree n > 1 with at least one Julic vertex. There ezist an cmbedding ¢y
of the accesses of H into R/Z such that the induced map between accesses
becomes multiplication by n (modulo 1). Furthermore ¢y is uniquely defined

up to a global addition of o multiple of 1/(n —1).

Proof. Instead of proving directly that we can assign an argument to
each access of H, we will prove this fact in a larger tree inv°”(H), where m
is big enough. The result follows then by restriction (compare Lemma B.1.7

and Corollary B.2.8 in Appendix B).

By Lemma 4.2 the induced map between accesses is an orientation pre-
serving covering of degree n. In order to be able to assign an argument to
each access we must prove that this map is expanding (compare Appendix

B). Take two consecutive periodic accesses A; = (v, £;, £4) in H (1 = 0,1).
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The idea is to show that for some m big enough, these accesses are not
consecutive in tnv°™(H). As no new periodic vertices are added in the con-
struction of snv°™(H), we have no new periodic accesses and the conditions
of Lemma B.1.7 are trivially satisfied; this will establish the result. We

distinguish between vy = vy and vy # v;.

If vo = vy then £y < &5 < € < ¢} < &y at F,,. It is enough to find an
m 2 0 such that inv°™(H) has an access in the ‘branch’ Bug inverm @y (£p). If
there is a Julia vertex in By, u(f}) this is obvious by Corollary 3.4. If not, £,
has end points vy,w where w is a Fatou pomnt. Now the edge £, corresponds
to an argument in the coordinate gﬁw at w; as w eventually maps to a c11t1c*1,1
point, we can ﬁnd an argument 9 75 gbw(ﬁ') \vhxch eventuaﬂy maps to the
same argument as ¢, (£) under successive multlphcatmn by degrm(w) modulo
1 (compare diagram (2) in §V.3.3). It follows that for some m big enough,
there is an £ € E/, such that ¢,{¢') = . The result then follows easily from
Corollary 2.8. (Alternatively, we can use Corollary 2.9.)

Now let vg,v1 be dillerent periodic Julia points. By Lemma V.3.7, for
some m > 0 there is a vertex v’ of inv°™(H) in [vg, v1 ]z for otherwise H will
not be expanding. If v/ is a J ulia vertex we ploceedas above Otherwme,
we let (v',£,0') be the pseudoaccess (1112?w°m(H) at the Faton vertex o' )
between Ay, A; in the'byclic.ofder. We take an argument between b ()
and ¢, (£} which eventually maps to the same argument as ¢, (£) and préceed

as in the last paragraph. #

4.4. As every abstract Hubbard Tree H of degree n > 1 has a canonical

extension satisfying the conditions of Proposition 4.3, we can associate to
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every access a coordinate compatible with the dynamics. Such map:-ng
is called an ezternal coordinate. In practice, this will correspond to the

argument of the external ray landing throughout this access.

Now let 8 — my,(8) — ... = m3F(@) = 6, be a periodic orbit under
the standard n-fold multiplication in R/Z. The question is whether ther

is a canonical extension of H at which accesses cor 1espond1ng to the ar ren

ments {6, m,(8),...,m*"1(8)} are present. For thxs We have the followm

proposition.

R/Z, there is o canonical extension ofH in whzch accesses. corf'espondmg to.

{8,mn(8),...,m¥"1(6)} are present.

Proof. Using Corollary 2.8 we may assumne that the distance between
two Fatou vertices in never equal to 1; and furthermore- .whenever the dis-
tance between a Fatou and a Julia vertices 1s one so is the dlstance between
all their iterates. Also, because of Corollary.2. 9 we may assume without loss
of generality that no Fatou vertex is an end. V\fe-assume that there are no
accesses to which we can associate the referred periodic orbit and construct

a canonical extension of this tree.

Case 1. The easiest way to construct extensions with periodic orbits
of period k is whenever there is a Fatou periodic orbit of period dividing

k. Suppose the total degree of such critical cycle is d. In this case, for all
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arguments of period k under my we can include an edge which correspond
in local coordinates to this argument and a periodic vertex (if they are not
already present). When this is done simultancously at all Fatou vertices of
the cycle we clearly get a new expanding Hubbard Tree. Clearly this con-
struction is canonical. If the required accesses are present in this canonical

extension, we are done; otherwise we have to work harder.

To continue the general case, first note that Corollary 3.4 guarantees
that for m big enough v_,, u(v) = v_co,u(v) at every original vertex v € V4.
We will only keep track of the following information: the original tree H and
all these accesses of inv°®™(H) at vertices v € Vg in the original tree (we
have ‘pruned’ the tree inv°™(H)). In this case if £ € ET* but { € F, (i.e, if
the germ £ at v in the tree énv°™(H) is not present in H) we say that the

tree inv°™(H) was pruned at £.

Let {¥1,...,7a} be the arguments of all such accesses ordered counter-
clockwise. Working if necessary in a canonical extension, we may further
suppose that the Lebesgue measure of (y;,vi41) is at most 1/n%**F2. (In
fact, we may work in an inverse inv°!(H) with ! big enough thanks to the
expansiveness of my, in R/Z.) It follows that (; 441 ) contains at most one
periodic orbit of period diving 2% in its closure: Inparticular; each m2i(8)

belongs to an interval (9;", ;) with 9? strictly preperiodic. It follows that

3

the vertices v;}f,v; at the respective accesses are not periodic.
t -

Suppose first that v;'; # vy . By further subdividing the tree (for ex-
ample by taking an extra k inverses and restricting to the vertices in the
original underlying topological tree), we may suppose that for any edge ¢,

the iterated maps 7°, are one to one (¢ = 1,...k).
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Case 2. Suppose [vj,vy ] C 7% ([vf vy ]). Tt follo
techniques for subshifts of finite type that we can canbhic’a}l*
vertices of the tree so that it includes an orbit of perié'&'- L

Umsi(g) € ['vg;, vy.]. Because v;ij are strictly preperiodic, the éxbé,n_siy

tion for the new set of vertices is trivially satisfied . Therefore a;1i3:r"'ac_::c
Umai(g) belonging to the set (6F,67) should have an associated arguﬁiént‘

period dividing 2k. By construction this argument can only be m2(#).

Case 3. Suppose [v(}';,v;)] M T”k([v;:,'v;)]) = [v1,v2]. Then the vertices
v1,v7 belong to the interval [vg;,vg_o ]. Now, by hypothesis this last inferval
contains no vertex of Julia type (for otherwise after completing the accesses
at such vertex, we will have that 93 and f; are not consecutive in the cyclic
order) and at most one vertex w of Fatou type. It follows that v; = w and
that vy equals either U;; or v, . In either case we get d('r°k(vg;),1'°k(v6_o)) >
3. However, by assumption this is impossible since d(fr"k(vg;),ﬂ"’k(w)) =

d(TOk(Ua_o)= T°k(w)) = 1 implies d(r“k(v;{,), TOk(Uﬂ—o)) < 2.

Case 4. Suppose ['Ug'0 ,vg | intersects 1'°k['u;'; Vg, ] = [*r"’“(vét)), (v )]
at an interior vertex w € [vg; ,0g, |- It follows from the preliminary discussion
in case 3 that w is a Fatou vertex: This'FéLtOﬁ'.\'zéi:"lﬁ_éx should be periodic of pe-
riod dividing k because otherwise 7°%(w) ;ﬁw belongsto ['r°’“(vé2), Tok(vgo)]
and therefore d(7°*(v{ ), 7°%(vg ) = 3, which can be shown to be impossible

as in case 3.

Denote by £ the edges ["Lt},’f‘”“(?)gfj )] with local coordinates o at w,
and by ﬂoi the edges [w,v;to] with local coordinates af. Clearly (of, ay) C
(a:::, ay ) because this is the only ordering compatible with the order of the

accesses. Denote by d the local degree of 7% at w,
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Claim. mg maps (af, a7) homeomorphicaly onto (a7, ay).
0% P Y ko %k

In fact, if this is not the case, in some inverse tree there is an edge €' =
[w,v'] with corresponding argument ¢,,(£') € (af,ay ) and with 7°F(#) =
T°F(¢F). Tt follows that after completing the access at the vertex v' there
is an access with corresponding argument 4 € (87,6, ) such that m,(8) =
mn(90;r). But this implies that the interval (f7,; ) has Lebesgue measure

at least 1/n®, which is a contradiction.

To finish the proof of case 4, we notice that the claim implies that my

has a fixed point inside the interval (o, oy ). Therefore we are in case 1.

Case 5. Suppose the intervals [v;;,vé"o] and {T"’“(U;Z),T“k(ve_a)] have
disjoint interiors. In this case we consider the subtree generated by the
vertices 'u(:)b and T°k(vf}t) to notice that there is vertex v strictly contained
in the interior of [T°k(v2;),7'°k(vg_0 })]. Also there is an edge £ at this vertex
such that vi € B(f) the branch at £. In fact, this follows from the ordering

of accesses. This implies in particular that for some inverse of th(—‘ tree there

is a vertex v' € ['”9 s Vg, With fr°’”(v') = v AISO we ‘can ﬁnd an ‘edge I

at v' which maps locally to ¢ under 'r . If v 1s.:'of' .Juha type thele are

consecutive accesses (after completmg the accesses)- -at;v W1t11 assoma,ted:

arguments #4 and fg such ‘that 6 ¢ (9,4,93) ¢ (3 9 ) If v’ 15 of Fatoﬁi'__:

type, there is a Julia vertex vy in the branch B(¢') such that (aftel 1cst1"1ct1011'
to the a tree which only includes this vertex in such branch) thele are two
consecutive accesses with that property described above. In fact, these two
properties follow immediately from the fact that accesses at v’ (respectively
at v1) map to accesses at 7°F(v') (respectively at 7°%(v1)), and that (8], 6;)

has Lebesgue measure at most 1/ n2k+2,
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In either case we have reduced the problem to case 6.

Case 6. Suppose now that vg; = vg,. After taking inverses and re-
stricting if necessary we may suppose that 'r°i(v§i) = v;,t for:=0,...k - 1.
Thus, the accesses A;" and A; with external arguments 8, , 67 share an edge
Z;. As there is no further access with argument in (9?,9; ) it follows that
some tree inv°™(H) was “pruned” at £;. In this way, the required extension
is achieved by adding the vertices v,,0:(#) at the other end of #;. Note that
the extension is canonical because for any extension including the vertex v;; ,

the vertex vp,.:(f) should belong to the branch ¢;, and thus, according to

Lemma V.3.13 these periodic vertices should be ends. S | #

4.6 Corollary. Every extension of an abstract Hubbard Tree is

canonical,

Proof. Given any extension we assign to every periodic access its canon-
ical argument (compare Proposition 4.3). Then starting with the minimal
tree we add all these periodic orbits according to Proposition 4.5. Finally,

we take a finite number of inverses and restrict if necessary. #

5. From Hubbard Trees to Formal Critical Portraits.

Using canonical extensions we will mimic the constructions from the

first part of this work.
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5.1 Extending the tree. Let H be an abstract Hubbard Tree of
degree n > 1. We start with a canonical extension H' of H as in Oorollarjf
2.8; i.e, we require from this extension that if w is a Fatou point and £ € Ew-;

then for the endpoints w,v of £ we must have that v is a Julia vertex, and

dHr(T°k(v),T°k(w)) =1forall k> 0.

We fix local coordinates {¢,},ev. For any critical cycle we extend the :
tree by adding an edge and a vertex at every 0 argument (if they are not
present). Next, for any Fatou vertex w we proceed as follows. Inductively
suppose that the 0 edge is present in the local coordinate of 7(w). We
insert a new vertex and edge (if they are not present) at every argument
of ¢:(L)(O). Then we use Corollary 3.4 to guarantee that pseudoaccesses
defined at such points are indeed accesses. We call any extension satisfying

the above conditions supporting (compare §1.2).

Let w be a Fatou vertex, an access (v, £, ) is said to support w if £ has
endpoints w,v and dg(7°F(w), 7°F(v)) = 1 for all k> 0 Clearly T('v 2.0 =
(T(v), To(€'), To(£)) supports T(w). An access (v,E" |
Fatou critical point w will be denoted by@(

abstract

T(H) Such that

5.2 Constructlng rnarked ac esses

Hubbard Tree. Usmg Corollary 3 4 we p1ck an n_ erse n
at every v € V we have vgy _ m('u) = VH m(v) Flom this it 18 oasy to chose

hierarchic accesses as in §1.2:

For each critical vertex w € Q(H) set

w =1L € E,:6w)p,(f) =0}
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(in this case the hierarchic selection is reflected in the choice of a 0 argument
in the local coordinate). Let Q(F) = {w{,...,w} be the set of Fatou
critical vertices, and Q(J) = {wy,...,w{} the set of Julia critical vertices.
For each w € Q(F) we construet §(w) marked supporting accesses to w in the
following way. Take £ € A, with end points v,, w; then there is a supporting
access 1o w at vg of the form D(w, £) = (vy, ¢, £). The set of such accesses for

all possible £ € A,, is by definition 7.

For each w € Q(J) we construct §(w) marked accesses in the following
way. Take £ € A, then there is an accesses at w of the form & (w,€) =

(w,€,£'). The set of such accesses for all possible £ € A, is by definition 7.

Note the slight difference in the construction, at a Julia critical vertex
v, the marked accesses are at v. While for Fatou critical vertices the accesses

are taken at the other end of each edge.

In this way we have constructed two families

Fo=AF sy Fur}
T = A{Ter, - T}

of accesses. As these accesses correspond in the external coordinate 11 to
arguments, we will not distinguish hetween the accesses and their corre-

sponding argument. In this way we have the following (see 81.3).

5.3 Proposition. The marking (F,J) is ¢ formal critical portrait.

Proof. This follows directly from the construction. #
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There are several trivial consequences of this construction that we want
to point out. To simplify notation, the vertex at which an access C is defined
will be denoted by ve. The proof in all cases is the same: by removing the

edge £ we are left with two connected pieces.

5.4 Lemma. Letw be a Fatou critical vertez. If ve € By o (€), then for
all ¢ € Ay — {£} we have D(w, ") < C 2 D(w,?). #

5.5 Lemma. Let w be a Julia critical vertez, and C an access at
ve € Buuw(l) — {w}. Then for any accesses A, A" at w we have either
A<C<LA or A <C <A #

5.6 Lemma. Suppose w ts a Fatou critical vertez and let £ & A,,.
If C an access at ve € Bu(f), then for any ', 0" € A, we have either
D(w, ') = C < D(w,£") or D(w, ") < C < D(w, ). #

6. From Hubbard Trees to Adm1351ble CrltlcalPortralts

In this section we prove that the fofma,l critical poftraif co.nst.ructéd
above is also admissible. For this we must verify conditions (¢.6),(c.7) in
§1.3.7. We first verify condition (¢.6). The verification of condition (¢.7),
will also show that any polynomial with critical marking (F, ) has Hubbard
Tree equivalent to this starting one. In this way the main Theorem A will

follow.
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6.1 Proposition. The formal critical portrast (F,J) is an admissible

eritical portrait.

Proof. This follows from Corollaries 6.4 and 6.9 below. #

6.2 Lemma. Let A;,B; be accesses at v; for 1 = 1,2 with vy # v,.
Then {A;1,B1}, and {Ay, B2} are unlinked.

Proof. This follows from the fact that {A,, B2} are defined in the same

connected component of T — {v;}. #

6.3 Lemma. Let A, A' be periodic accesses. I cither SH(A) = S*+(A")
or ST(A) = S (A", then vg = vy,

Proof. By contradiction suppose vy # v. We distinguish two cases.

Sﬁppose TOkl[m,vAr]r is injective for all £ > 1. In this case there is
a periodic Fatou vertex v € v 4,v.4/]7, because otherwise the tree will not
be expanding. Let d > 1 be the deglee of thc critical cycle vo = v =
vy ... = v, = vg. There are e\:actly two dlﬁ'erent edges ﬁ ¢ € E contained
in [v4,va]r. The dynamics of these edges must be periodic by Lemma.
V.3.7. We write ¢,(£), ¢,(£') in base d expansion. As they are not equal by
hypothesis, we may suppose that the first coefficient in the expansions are
different. As d is the product of the degrees of the vertices in the cycle, we
may suppose then that when multiplying by §(ve) they have different integer
part. But in this way by Lemma 5.6 we will have 7o (S (A)) # mp{ST(AN).
(In fact, for e > 0 small enough, the argumnents ¢ (A) and ¢p(A") belong
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to different connected components of R/Z -~ {¢u(D(v,8): £ € A} =R/Z —
F,.) But implies that ST(A) # S¥(A'). If we consider instead of ¢, the
‘coordinate’ 1 — ¢, the same reasoning give us S7(A) # S~ (A').

Suppose now that 7|, , w4 ]z 18 not locally one to one near w. If w is

It
a Julia critical vertex the result follows from Lemma 5.5. If w 1s a Fatou

critical vertex, by Lemma 5.6 we always have mo(S™(A)) £ mo(S(A")) and
thus §7(A) # S~(A").

~ If neither A nor A’ support w, again by Lemma 5.6 mo(ST(A)) #
mo(ST(A")). We start though by assuming that A is a marked access associ-
ated With w. By Hypothesis there is a preperiodic marked access C € F,, (and
therefore such that 7(C} = 7(A4)) with ve € [v.4,v.4]7. Thus L
eventually maps into [v4,va]r. It follows there is a point w' € [ve,va]r
that eventu.a,ily maps to w. Working if necessary in a canonical extension
inv°*(H) we may assume without loss of generality that w’ € V. But then

by Lemma V.3.7 for some i > k, 1’°i|[wgw is not locally one to one near some

N
point w". If ¢ is minimal, neither of the periodic accesses 74 A) = 7°(C)
nor 7%(A") can support the critical point 7°* 1(w') if it is of Fatou type.
It follows from the previous reasoning that ST{r°'71(A)) # ST(+'71(A")),

and therefore ST(A) # ST(A"). SRR SR #

6.4 Corollary. The formal critical portrait (F,J) satisfies condition

(c.6).

Proof. Let A be a periodic marked access. Suppose there is a periodic

argument A such that ST(A) = S*(A). By Proposition 4.5 we can assume
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that there is an accesses corresponding to A. By Lemma 6.3 this access 1s

supported at v4. By Lemma 5.4 this access can only be A. H

6.5 Lemma. Let vqg = vy be a non critical Julia vertez. Then A and

A’ have the same left address, i.e, 7o(S™(A)) = mo(S™(A")).

Proof. If £,&' are marked accesses associated to the same Julia critical

vertex, Lemma 6.2 implies that {4, A'},{€, &'} are unlinked.

If D,D' are marked accesses associated to the same Fatou critical ver-
tex, we distinguish if v4 equals vp or not. If vy # vp,vp then clearly
{A, A’} {D, D'} are unlinked because the regulated path [vp, vp]r does not
contain v4. If v4 = vp then by Lemma 5.5 D' <~ A < A’ < D.

All these facts together mean by definition that the accesses A and A’
have the same left address, i.e, m(S™(A)) = (S~ (A")). #

6.6 Lemma. Let B be an access at a Julia critical vertez v. Then there

18 a marked access £ at v, such that mo(S—(£)) = mo(S~(B)).

Proof. Take consecutive €, &' marked accesses at v, such that
A < € % A. Using Lemma 6.2 and the same 'féa's"dﬁ.iﬂg';a_s__iht’einma

6.5 we get mo(S(A)) = mp(ST(E)). #

6.7 Corollary. Suppose mo(S7(A)) = my(S™(A")). Then vy = vy if

and only Zf Vr(A) = V(AN

Proof. One direction is obvious. On the other hand, we may assume

that v, (4) has n inverses in the tree counting multiplicity. As there are only
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6.6. S

n possible choices of addresses, the result follows combining Lemmas 6.3, 65

6.8 Proposition. v4 = v if and only of ST(A) ~; S5 (A"

Proof. First suppose S™(A) ~; S (A"). It is enough to prove that
if ST(A) = S7(A") then va = v, If S7(A) = S™(A') this follows from
Lemma 6.3 and Corollary 6.7. In the other case the result follows from this

fact, Lemnma 6.6 and again Corollary 6.7.

Suppose now v4 = v. Let m > 0 be the smallest integer such that
7°™(v.4) does not contain in its forward orbit a critical vertex. The proof will
be in induction in m. For m = 0 this is Lemma 6.5. Suppose now that the
result holds for m —1. This implies that all accesses at 7(v4) have equivalent
symbol sequences. If v is not critical we use again Lemma 6.5. If v is critical

we use Lemma. 6.6. #

6.9 Corollary. The formal critical porirait (F,J) satisfies condition
(c.7). o . #

The admissible critical portra:it (]7 , j } determines aﬁ11ique:(u1$ to afline
conjugation) polynomial P with marking (P, F,J) by Theorem 1.3.9. By
Propositions 6.8 and 1.3.12 its Hubbard tree is the starting one. The angle
function at Fatou vertices are the starting ones because of Proposition 2.7,

and Corollaries 2.8 and B.2.5 #
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Appendix A
Thurston’s Topological Characterization of Rational Maps.

Let f: 5% — S? be an orientation preserving branched covering map of
the topological sphere. The set Q(f) of all critical points of f is called the
critical set of f. The posteritical set of fis the set P(Q(f)) = o, £omQ(f).
Whenever the set P(Q(f)) is finite, we say that f is posteritically finite.

In what follows, we assume always that f is postcritically finite. A
finite invariant set M; i.e, f(M) C M, containing all critical points of f is
called a marked set. In analogy with the previous notation, we set P(M) =
S, £°"M, and call it a postmarked set. The elements of M (respectively
P(M)) are called marked points (respectively postmarked points). We say
that (f, M) is a marked branched map.

Two marked branched maps (f, M( f)) and (g,M' (g)) are Thurston-

equivalent if there are homeomorphisms ¢1,¢2 52 - .5'2, 180’501)1(: rela,a

tive to the set P(M(f)) such that gody = ¢y 0 f, and ¢1( (M(f)))
¢2(P(M(f))) = P(M(g)).

We say that a simple closed curve v C S% — P(M) is non-peripheral (for
the marked branched map (f, M)), if each component of 5% — v contains at

least two points of P(M). A multicurve I' = {1, ..., vn} is a set of simple,
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closed, disjoint, non-homotopic, non-peripheral curves in S? — P(M ). A
multicurve I is stable, if for every v € T, every non-peripheral component of

F7Y(7) is homotopic (relative to P(M)) to a curve in I.

Let 7i,j,o be the components of f~1(v,) homotopic to v; relative to
P(M), and d; ; o be the degree of the map Flvisa t Yigia — 5. We define
the (7,7) entry of the Thurston Matriz f1 as

(fr)i; = Z 1/d; ;.0

Note that by the Perron-Frobenious theorem there is a largest positive elgen-

value A(fr).

There is a smaller function v : Py + {1,2,...,00}, such that for all
x € f~Ny), v(y) is a multiple of v(z)deg,f. We have that the orbifold

(52, Par,vs) is hyperbolic if its “Buler characteristic” satisfies

2~ Y (1-1/up(e)) <0

rEP(M)

Note that we are aﬂowing extensions of thé cri.tic:.sml' a.ﬁd_' p'c.)"s.;:t.cri;uica,l. sets.
This is because we what to use Thurston s theorem in more generahty than
presented in [DH2| and uscd in [F} or [BFH] Our mnk@d seb is the usual
one and maybe a finite number of additional periodic or preperiodic orbits.
Note that at these additional points, the orbifold function has value 1, so

that the orbifold structure is only determined by the original posteritical set

PQS))-
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A.1 Theorem (Thurston’s Characterization of Rational Map'.s-
A marked branched map, with hyperbolic orbifold is equivalent to a rational
function if and only if for any stable multicurve I", we have Alfr) <1
In this case the rational function is unique up to conjugalion by a Mobius

transformation.

Proof. The proof in [DH2} applies without modification.

A.2 Topological Polynomials. A branched map f: $2 - $2 is smd

to be a topological polynomial if f~1(c0) = co.

If we are interested only in topological polynomials Thurston’s theorem.

)

is equivalent to the following (see [BFH Theorem 3.2

A.3 Theorem. 4 marked t_dpblog_ch ﬁ_o"ly

a polynomial if andonl’y ]
1. In this case,

transformation.

Definition. A stable multicurve T, with A(fr) 2 1lscalleda Thurston
Obstruction (for (fM)). |
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Levi Cycles

Everything here is taken from [BFH] section 4.

Let (f, M) be a marked topological polynomial. Let I' be a stable mul-
ticurve. Suppose there exists {vo,...,7x = v} = A C I’ such that for cach
t =10,...,k — 1, v is homotopic relative to P(M) to exactly one component
v of f~1(vip1). Suppose also that f : 4" — ;4 has degree 1. Then A is
called a Levy cycle.

A4 Theorem Ifa marked topologzcalpolynomml (f,M) has.'.d Thur.ston

obstruction I, then (M) has a Levy cycle

A.5 Theorem. The disks of the elements of A = {vo,...,76 = 7}
(i.e, the bounded components of S? — +;), contain only cycles of periodic

non-critical points of P(M).

The last two Theorems together have an interesting interpretation.

For Post-critically finite topological Polynomials, only misidentification

of periodic points can lead to an obstruction.
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Appendix B |
Finite Cyclic Expanding Maps.

1. Expanding Maps.

We consider a finite cyclic set X, and a degree n > 2 orienf.n'atzo_p pre
serving map f : X — f(X) C X. We will study under Whlchcond1t
we can assign an ergument ¢(p) to every point p € X such th:.dﬁ the indue

map becomes multiplication by n.

f: X f(X) CXBy f_;I_n
F(p:) = f(p;) if and only if
Sucpxy(F(p)). It follows tﬁatf':_:': |

because f is a degree n cover and order preservi

restriction of f to the set {p,Su ;
onto f(X). i




Given a cyclicly ordered set X as above, we define the ordered distance
dx(p1,p2) between two points p1,py € X, as the minimal m for which pa =
Suc®™(p;). Thus, the ordered distance between two points is always less
than kn. It follows easily that f(p1) = f(p2) if and only if dx(p1,p2) is a
multiple of k.

Given three points pi,ps,ps and numbers 0 < m < m' < kn, with
m = dx(p1,p2), m' = dx(p1,p3), we write p; < p; < p3. If in addition
m < m' we write p; < py < ps.

1.2 Lemma. Suppose p; < pys < ps <p1ThendX(p1,p3)

= dX(Pl,Pz) + dx(p2,p3)-

Proof. Completely trivial. o _ SEERER #

1.3 Remark. Even if we are considering two orders (one in X and that
induced in f(X)), we will only be considering the ordered distance of X.
In other words if p;,p; € f(X), the ordered distance dx(pi,p;) is always

measured in X.

1.4 Definition. We say that f X <> X as above is ezpanding, if given
P1, P2 periodic

(x) there ezists 1 > 0 such that dx(f°(p1), f°!(p2)) #£ 1.

*

In other words, if two periodic points are consecutive, the distance be-

tween them eventually increases. From the facts that dx(pi,ps) < k implies
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int is eventually periodic, we can easily deduce

that fe : ondition (%) is also satisfied for every pair of

1 ly _o;'r_dered set X and a degree n > 2 orientation
Q. t at f . X > X can be angled if there is an order
s R/Z, such that ng(p) = ¢(f(p))(mod 1). Of

course, an angléed fi s expanding.

1.6 R M k If W ré’ erse the order in all the definitions above (i.e,
if we replzfm(::_'é;t. ._e: u :c_e's:s_ functwn by a predecessor function Prex), all the
deﬁnltlons a,bove_ mal{e sense’ In partlculal 1f ¢g,¢ p are the angle functions

for these two orders then clemrly gé s+ q5 p=1

1.7 Proposition. Let X be a finite cyclic set and f an orientation
preserving degree n > 2 map. Then f 1 X — X is angled if and only if is

expanding.

Proof. Being angled implies being expanding as remarked above. We

prove the converse in several steps.

Step 1: We can assume without loss of generality that f has a fixed point.
In fact, if there is no fixed point, then f(X) has at least two Qléiﬁ}gni_;s. We
define a function ¢ : X — {1,...,kn—1} by the formula g(q:): dx(a:
It follows easily from Lemma 1.2 that whenever i =j ( mo'c.'l'-'_k )..t

g(z;) + dx(z;,z;) (mod kn). Therefore for y € FX), 'tl.der_e_.'_;:
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< g(zi) < kn (in fact, g(z;) = k(n—1) would

1mplyth oint): Let d be the maximum of ¢. Among all g

with g(z) hich ¢(Sucx(z)) < d. 1t follows easily that the

 H(Suex(e)) = Suesoo(f(2) < ()

To Sirﬁplify nota féwnté_"X as {po = T, P1,.--,Pkn_1}- We insert a

new pomt' T b i -péii'r pi; and prit1. All of this new points will

be ma,pped:to go. In this Wa,y, we have a degree n > 2 orientation preserving

map whlch is an extension of the omgm'ﬂ one.

We must _verlfy' hat thls'nap is expwndmg The only new periodic point

mcluded 1s ‘G0 ._The expandmg property is obviously verifies if Suc X(q[)) is

periodic: if dX(f(qg) f(Sch(q()))) 1 then Swucx(go) is a fixed point, i

contradiction t6 what was assumed. If Pre x1{¢o) is periodic the result follows

analogously.

Step 2: We assign an argument to each point in X as follows. Let
g0 < q1 < a1 < ¢o be all points which map to the fixed point qo. We

assign to ¢; the argument i/n for ¢ = 0,...,n — 1. For an arbitrary point

r € X, we dynamically find its numerical expansion in base n.

Step 8: The assignment is order presermng. Because the funct10n R

to one order preserving, we may introduce inverse 1terates of the ﬁx d point.

Thus, we may asswme that given m there are in the cy 10" rder

values {go = ¢,...,qmn_1} with the property that':f"_"m )

big enough the result follows.




Step 4: Different points are assigned different arguments. Consider s
set {21,...,21} of maximal cardinality to which equal periodic base n ex.
pansion is associated. Clearly all z; are periodic. Furthermore, if | > 1
we have for all m > 0 dx(f°™(z1), f°"(22)) = 1 because of maximality-,: '
But this contradicts the expanding condition. There is a case in which this.
argument does not apply. Suppose that in applying step 2, there is an argu.
ment to which the decimal expansion 0.n — 1,7 - 1,... is assigned. In this

case we reverse the order, and apply the same argument to derive a

contradiction. 4

2. Finding the Coordinates.

Consider an integer n > 1, and denote by m,, multiplication by n modulo
1. From the dynamical point of view the election of 0 as the origin is arbitrary
in the sense that any dynamically property present at a point z € R/Q, is
also present at x+j/{n—1). In this way, with the knowledge of the dynamical
behavior of a point #, the natural question is not which is the value of #, but

that of m,_1(z).

2.1 For n > 1 define 6, : R/Z — {0,...,n—1} by

bp(z) =1 I mpale)e [—,

In other words, if we take m,_y(z), we define 5n(

n(my..1(z)).



2.2 Remark. It follows that 6n(2) is the number of inverses of mn
(other than z) in the cyclicly counterclockwise oriented interval (z, md(
(if = is fixed this interval is interpreted to be empty ). To see this, we rev:vf
Mn—1(z) as ma(z) — z (mod n). In this way, 6n(2z) counts the numgéf

intervals of size 1/n to be found in (@, m4(x)). The claim follows easily.

2.3 Example. Consider with n = 3 the point z = 1/5. We ki
ma(e) = 2/5 and 1 < 3(2/5) < % so by definition 6;(1/5) :1 Note af
that 63(1/5+1/2) = 1, which is not a surprise because ma () =7712(::: _.
for all z € R/Z. Lo

2.4 Lemma. Letn > 1 and = € R/Z, then '

My (2) = _71; 3 M

By

=0 0

Proof. We successwely subd

semiopen intervals. Th1s det

by symbol seqLieﬁ'cé's: in:_t_h : syml

symbol sequenée- Wlthtaﬂ(n o
sequence Sy, Sy, . i if ‘and OnIy.:':if:‘;-;::.
mn_1(z) = L3072, -;%» (and all refé%éﬁce-;-’fo- he

The result follows as S; = 5n(m;z' ( u'f?))b
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2;5.._.:C6"ciféinates for expanding maps. We return to the case de-
scribed i in §1 It follows by definition of covering map and Remark 2.2 tha,t..
on(z) equals the integer part of M Thus, according to Lemma 2.4,
mnu_1(m) is mdependent of the coordinate assigned in Proposition 1.7. Fur-

thermore, we have proved the following.

2.6 Theorem. Let X be a finite cyclic ordered set and f: X — X be a
degree n orientation preserving ezpanding map. Then f can angled in ezactly

n—1 ways.

2.7 Example. (Compare Figure B.1.) Let X be the cyclic set shown
in Figure B.1. (The notation is justified by the dynamics.) We consider a

map f: X — X for which

F(A") = f(A")=B
f(B)=f(B")=C
f(O')m (C”

1(4)
f(B)
e
HD )

The unique periodic orbit is.g'i\;en. by.' A B+ C 1+ D— A This
map is clearly expanding. According to Remark 2.5, we have that §(A4) = 1,
6(B) =0, 6(C) =1, and §(D) = 2. Using Lemma 2.4, we can easily find

the base 3 expansions of my(A) = 0.1012. It follows that ma(A4) = 2/5, and
therefore A takes value either 1/5 or 7/10.
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Figure B.1

2.8 Corollary. Let z be periodic under My, end denote by O(z)

s or-

bit. Then mn_1(x) s uniquely determined by the cyclic order of m; 1 (O(2)).

Proof. This follows directly from Remark 2.2 and Lemma 2.4, (Com-
pare also Example 2.7). #
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