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Abstract of the Dissertation

K-Theory Index of Dirac Extensions with Periodic

Multipliers on a Universal Cover
by
Peter Armand Miegom
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1993

After defining an adjoined Dirac extension with periodic multipliers on the
universal cover of a compact riemannian spin manifold, we show that its index
maps in K-theory are 1-1 in the case where M is odd-dimensional and has
nonpositive curvature. Moreover, a connection is established between these
index maps and the Thom isomorphisms in K-theory. A rough index theorem
is also established.

In the special case where the base manifold is the flat odd-dimensional

m-torus, the index maps are shown to be isomorphisms.
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Chapter 1

Introduction

In [BmDg3], a Toeplitz extension is constructed for each self adjoint,
elliptic, pseudodifferential operator A on a compact riemannian manifold M.
The index map for this extension is the Fredholm index of certain Fredholm
operators and in [BmDg3], a formula is given for this analytic index in terms

of topological data related to M and to the symbols.of A and T,,.

We study in this thesis, a certain Toeplitz-like extension on the universal
cover of a compact Tiemannian spin manifold M. The multipliers chosen for
this Toeplitz-like extension, are those continuous functions on the universal
cover which lift from continuous functions on M. The index maps of this
extension are not ordinary Fredholm index since the ideal in the extension is

not the algebra of compact operators.

In the case where M is the flat odd-dimensional torus T™, the ideal £ in
this extension is isomorphic to the algebra of k x k matrices over C (T™) <. R™

where « is the action of R™ on C(T™) given by translations. The index maps

in this case are isomorphisms.




The apparent similarity between these index maps and the Connes-Thom
Isomorphism in the special case M = T™, suggested to the author an approach
to studying the general case involving the construction of a “Wiener-Hopf”
extension analogous to the Wiener-Hopf construction used in Rieffel’s proof of
the Connes-Thom Isomorphism.

In order to carry out this construction, assumptions of nonpositive curva-
ture on M are used. With these assumptions, it is shown that the index maps
obtained are 1 — 1. Also, a rough index theorem is obtained connecting these
index maps with the topological Thom isomorphism.

In Chapter 2, we look at index maps of extensions involving multipliers
vanishing at co. This is to be used later in Chapter 7.

In Chapter 3, 4, and 5, the “Wiener-Hopf” extension is constructed. In
Chapter 6, the index maps of the slanted-cone Thom extension is shown to

be the same as the topological Thom isomorphisms. In Chapter 7, the main

theorem is proved and the special case of M = T™ is treated.




Chapter 2

Dirac Extensions

2.1 Flip Functions and the Fourier Transform

Notation 1.1 Let S denote the Schwartz space on R, F: & — § the Fourier
transform. If f € S f will denote the Fourier transform of f. If M is a
differentiable manifold, C® (M) will denote the algebra of C*° functions on
M with compact support, and C® (M) the algebra of C™ functions on M
which vanish at infinity.

Also, let (&) = f(—z) for every function f on R and every z € R.

Proposition 1.2 The set F(CP(R)) C CP(R) is a dense *-subalgebra of

CP(R) closed under the operation f v~ f.

Proof: The Fourier transform is an algebra homomorphism from the al-
gebra § with convolution as multiplication, to the algebra & with ordinary
multiplication of functions. Since C°(R) is an algebra with convolution as
multiplication, it follows that F(CZ(R)) is a subalgebra of Cg°(R) witli re-

‘spect to ordinary multiplication.



Now, it is not hard to see that f(—~ac) = (F)(:c) for all z in R. That is,

e

(H =0

Suppose that g belongs to F(C&(R)). Say, g = f where f € C=(R). Then,
of course, f~ also belongs to C2°(R), which implies that g~ = ()~ = (F)
belongs to F(C(R)). Thus, F(CZ{R)) is closed under the operation g — ¢~ .

Now, for f € &, it is also easy to see that f(;r:) = JAE(M:I:) for all z in R.

That is, }A = (}F)" which means that

f=
by using the previous formula. Suppose that g belongs to F(CX(R)) and
g = f where f € C*(R), as before. Of course, f~ also belongs to CZ°(R). So,
from the above formula, we have that g = } = (}::) belongs to F(CZ(R)).
Thus, F(C2(R)) is closed under the operation of taking the adjoint, or the
conjugate, of a function. That is, F(C*(R)) is a *-algebra.

To show that F(C(R)) is dense in C5°(R), it therefore suffices to show
that F(C>(R)) separates points in R (by the Stone-Weierstrass Theorem).

So, take z,y € R, z # y, and suppose f(z) = f(y) for all f € F(CF(R)).
Take an f € F(C®(R)). Since C=(R) is closed under multiplication by the
function u — e for all ¢ € R, then F(C®(R)) is closed under translations.
Thus, f(z —t) = f(y —t) for all t € R. This implies f(t) = f(¢ +(y —2)) for
all t € R. Hence f is periodic with period y — z. But, f € Cg(R), and the
only periodic function in C§°(R) is the 0-function. Thus, f = 0. This implies
that F(C®(R)) = {0}, which is certainly not true. For instance, F is a one to

one mapping. So, it is impossible for F(C°(R)) to be {0}. Therefore, there



exists f € F(C®(R)) such that f(z) # f(y). That is, F(C*(R)) separates

points in R. &

Corollary 1.3 If f € C(R) and € > 0, then there exists g € & such that §

has compact support, and ||f — glle < €.

Proof: By Proposition 1.2, there exists g € F(C>(R)) such that |[f —
gl < € Of course, g € S. Suppose g = h where h € C®(R). Then, A~
also belongs to C2°(R). 1t is not hard to show that & = u~ for every u € §.

Therefore, § = h = h~ belongs to C(R). &

Definition 1.4 Let Flip denote the algebra of all continuous functions f on
R such that f(z) approaches finite limits as x goes to +00, and as © goes to
—00.

If f € Flip, let f(—oo) equal the limit of f(z) as z — —oo, and let
f(oo) equal the limit of f(z) as x — oo.

Also, let Flip, denote the set of all C*™ functions f in Flip such that
f'" has compact support. This is the set of all C* Flip functions which are

constant outside some compact subset of R.

Recall the definition of a tempered distribution. (See, for example, page 15

of [Ter].)

Proposition 1.5 Every Flip, function f can be wrilten as the sum f = fi+fz
of a C®-Flip function f; and a Schwartz function f, in such ¢ way that
(when viewed as a tempered distribution) fi has a compactly supported Fourier
transform ;‘; Moreover, if € > 0, we can choose fi, fy so that the support of

‘E is a subset of [—€, €.




Proof: All bounded measurable functions on R are tempered distri-
butions (Exercise 10(a) of Section 1.2, Chapter 1, of [Ter]). Hence, f is a
tempered distr'ﬂ;ution. Since f € Flip,, then f’ has compact support and is
C, which implies (?T) € S. By Theorem 3(2), Section 1.1.2 of [Ter], we have
that

——

omizf = (f) € S.

Now, choose any interval (—¢, ¢) about 0 and any C'® bump function p such

that p=1on [-£,f]and p=0on R\(—¢,¢€). Let

1 o~
g =1 —p)- m(f’)

(At = = 0,g2(z) = 0.) Since GET) € S, then g, € S. Let f2 € § be the Schwartz
function such that ; = g and let fy = f — fa. Since fo € S and f € Flip,,
it follows that fi € Flip and fy is C*. Also, fi = f — f2, which implies
Omizf, = omizf — Uiz fz = (—}T) — 2mizg, = (?T) ~{1— p)(F) =p- (F) That
is, ImizfL = p- (f’;) Since p has support in [—¢, €], then 9riz f; has support

in [—¢, ¢}, which gives us that F: has support in [—¢, €] #

Corollary 1.6 Given a Flip, function f and an ¢ > 0, there exists a C™ Flip

function g such that || f — glle <€, § has compact support, g(—oo) = f(—o0),
and g(oo) = f(0).

Proof: By Proposition 1.5, f = fi+f2 for some C°°- Flip function fi such
that 35; has compact support, and some f, € 8. By Corollary 1.3, there exists
g2 € 8 such that g has compact support, and ||fa—¢2llec <€ Letg= fi+ g2

Since both ‘f: and 7; have compact support, then g = ?; + 5 also has compact



support. In addition, [|f — gllee = |lfi + f2 = (fr + g2)lle0 = |lf2 — g2llcc < ¢,
and g € C-Flip since f € C*-Flip and g, € § C C-Flip. Finally, since
f= fi+frand f, € S, then f(—oo0) = fi(—c0) and f(co) = fi(cc). Similarly,
since g = f1 + g2 and gz € 8, then g(—o0) = fi(—o0) and g{oo) = fi(e0).

Hence, g(—o00) = f(—o0) and g(oo) = f(oo). The corollary is therefore true. &

Proposition 1.7 Given f € Flip and € > 0, there exists g € Flip, such that
g(o0) = f(o0), g(—00) = f(—o0), and |lg — fl| <.

Proof: This follows from the Stone-Weierstrass Theorem. &

Corollary 1.8 Given f € Flip and ¢ > 0, there exists g € C*°-Flip such that

g(00) = f(00), g(~00) = f(—00), § has compact support, and || — gllee < €.
Proof: This is a consequence of Proposition 1.7 and Corollary 1.6. &

Corollary 1.9 Given f € Flip and ¢ > 0, there exists a C°-Flip function
f; and a Schwartz function f, such that fi{(—o0) = f(—o00), fi(oo) = f(o0),
If = (fr + f)llo < €, and f1, viewed as a tempered distribution, has Fourier

transform fy with compact support in [—¢, €.
Proof: This follows from Propositions 1.7 and 1.5. &

Corollary 1.10 Given a,b € R and v > 0, there exists f € C®-Flip such

that f{—o0) = a, f(oco) = b and f has support in (—r,7).
Proof: Follows immediately from Corollary 1.9. &

Remark 1.11 By FEquation 2.16 of BDT], Corollary 1.9 is also true for

those functions f in the space SO defined in (2.14) of [BDT].




Definition 1.12 Let
Flip; = {f € Flip: f has compact support}.

Proposition 1.13 The algebra of C*-Flipy functions, is dense in Flip in

the || - lloo norm. Hence Flipy C Flip is dense in Flip in the || - || norm.

Proof: This is just a rephrasing of Corollary 1.8. &

Corollary 1.10 can be made a little stronger as we now show.

Lemma 1.14 For every ¢ > 0 there exists h € S such that b # 0,h > 0, and

h has support in (—¢,€). We may choose such an h so that [h=1.

Proof Take ¢ > 0. Start with any ¢ € S, ¢ # 0, such that § has support

in (—%,£). It is easy to show that g(z) = §(—=). Hence, g, like §, also has

support in (—%,5). It follows that §#§ has support in (—¢, €). Since g # 0 then
h = |g|* = g § is a nonzero, nonnegative, Schwartz function whose Fourier
transform h = §+§ has support in (~¢, ). The function f = (ﬁ) - h has these
same properties with the additional property that [f = 1. This completes

the proof. #

Lemma 1.15 For every ¢ > 0, there exists f € C®-Flip such that —1 <
f(z) <1 for all z € R, f(—00) = —1, f(+o00) = 1, and f has support in

[—e, €]

Proof Suppose € > 0. By Lemma 1.14, there exists a nonzero Schwartz

function A such that A > 0, & has support in (—e¢,¢) and [h = 1. Take any

C* Flip, function g such that g(z) = —1 for z € (—o0, —1},¢9(z) = 1 for




¢ € [l,00) and —1 < g(z)} < 1 for all z. Let f = hx*g. Then fis C%,
real-valued, and, since h has support in (—¢, €}, f = k- § also has support in
(c.q). Also, for every = € R, 17(@)] = I(k * 9)(z) < Jh(®) - lge = Dldt <
lglleo -+ f R(t)dt =11 = 1. Which shows that ||fll. < 1. Hence, for every

z € R,

0<1—f(z) = 1_]_‘: h(z — t)g(t)dt
- f_ °; Bz — t)dt — ]_ Z Wz — t)g(t)dt
= [7 e -1 - g(t)dt
= [ M- 00 - ge)dt

(since g(t) =1ift > 1)

2 L 100 h(z — t)dt

(since 0 <1 — g(t) < 2 for all t)

1A

= Qfoo R(t)dt — 0 as z — oo.
r—1

Therefore f(z) — 1 as & — oo. Similarly,

I
ol
1]
S
+
[a—y

0< fz) —(-1)

- 1h (& - t)(g(t) + 1t
(since g(t) = —1 for t < —1)
< 2[’: h(z — t)dt

(since 0 < g(t) +1 < 2 for all 2)



»+1
= f h(t)dt — 0 as = — —oo0.

Thus f(z) — —1 as # — —oo. This completes the proof. &

Now, we present the stronger version of Corollary 1.10.

Corollary 1.16 Given a,b € C and v > 0, there exists f € C*-Flip such
that f(—o0) = a, f{o0) = b, f has support in [—r,7] and f(x) lies on the closed

line segment [a,b] C C with endpoints a and b for all z € R.

Proof Suppose a,b € C and r > 0. By Lemma 1.15, there exists a -
Flip function g such that g(—c0) = —1,¢(00) = 1,~1 < g(z) < 1 for all =,
and § has support in [—r,r]. By multiplying ¢ by an appropriate constant
A € C and adding to this another constant ¢ € C, we obtain another function
f = Ag + ¢ with all the required properties of the function we are seeking
including the property that f has support in [—r,r] (which is due to the fact
that the Fourier transform of a constant function has support concentrated at

0). The corollary is therefore true. #

Corollary 1.17 Given a Flip function f and r > 0, there exists a C*°-Flip

function g such that f — g € Co(R),§ has support in (—r,r), and

llgllee < max{}f(—o0)},1f(c0)[} < [}/]loo-

Proof Let f be a Flip function with f(—c0) = a, f(+00) = b. By
Corollary 1.16, there exists a g € C™-Flip such that g(—o0) = a, g(+00) = b,§
has support in (—7,r), and g(z) lies on [a,b] C C for all z. Thus, we also have
f = g € Co(R) and min{|al, |0} < the infimum of |g| < the supremum of gl

< max{|al,|b|}. The corollary is therefore true. #
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2.2 Symbols

Let M be a complete riemannian manifold and £ -~ M a finite dimen-
sional hermitian vector bundle over M. Let # : T*M — M be the projection
map, and let 7*E — T M be the pullback of the bundle £ — M by the projec-
tion map 7 : T*M — M. This determines another bundle Hom(r*E) — T*M.
Ifz € M and ¢ € (T*M), , then the fiber Hom(r*E); may be regarded as the
algebra B(E,) of bounded operators on the finite dimensional Hilbert space E.
That is, each element 7' € Hom(x*E); is a bounded operator T : E; — £, on
E,. If A: C*°(E) — C=(E) is a differential operator on M, there is associated
to A a smooth section oA of the bundle Hom(n*E) — T™*M called the prin-
cipal symbol of the differential operator A. (See Section ITL.1 of [L&M].) Let
d be any real number. In the case where M is a compact riemannian manifold,
recall the definition of the space S%( E) of symbols of order d with respect to the
bundle E. (See Definition 111.3.18 of [L&M].) Elements of S¢(E) are smooth
sections of the bundle Hom(r*E) — T*M. Now, every pseudodifferential
operator P : C®(E) — C®(E) of order d on a compact riemannian man-
ifold has an associated principal symbol [o1(P)] € S%(E)/S% ' (E) where
or(P) € S4(E). (0P is well-defined up to S4-1(E).) (See Thereom II1.3.19
of [L&M)].) If P : C®(E) — C*(k) happens to be a differential operator of
order m on a compact riemannian manifold the two notions of principal sym-
bol a1 P of P given, namely the principal symbol of P where P is considered
a differential operator, and the principal symbol of P where P is considered a
pseudodifferential operator, are actually the same. That is, if of P is the prin-

cipal symbol of the differential operator P, then o, P is an element of S™(FE),

11



and the principal symbol of the pseudodifferential operator P is the element
[0 P] of S™(E)/S™ Y(E). So, there is no ambiguity in the definitions of the

principal symbol of P.

Proposition 2.1 Let P : C®(E) — C*(E) be a self-adjoint pseudodiffer-
ential operator of order d on a compact riemannian manifold. Then we can
find a self-adjoint o € S%(E) whose symbol class [o] € SHUE)/S*UE) is the

principal symbol of P.

Proof: Suppose the principal symbol of P is [7] where 7 € S4(E). Then
the pseudodifferential operator P* of order d has principal symbol [7*] €
S4(E)/S?1(E) . But P is self-adjoint. So P = P*, and therefore [r] = [7*] in
SUE)/S*YE). Thus 7 — 7* € S YE). Let 0 = Xr+71"). Theno € S4(E)

is self-adjoint, and

il
D1 = b |-

S+ =[o]

in SY(E)/S*Y(E), since (1 —7*) € S*"(E). Therefore the principal symbol
of P is represented by a self-adjoint o € S4UE). &

The following theorem is due to Seeley {See3] and Kohn-Nirenberg [K&N]

for “classical” pseudodifferential operators.

Theorem 2.2 : Let P : C®(E) — C®(E) be a pseudodifferential operator
or order 0 on a compact riemannian manifold M. Let K (L*(E)) denote the

compact operators on L*(E). Since P has order 0 it extends to a bounded

operator P : L}(E) — L*(E). Suppose the principal symbol of P is equal to

12



[oL(P)] € SU(EN\S™Y(E) where ar(P) belongs to SO(E). Then the distance of
P from K(L*(E)) is equal to

lim sup{ (o P)(w)]|  w € TM, Jlwl| = r}.

(Note: Each (o P)(w) is a bounded operator (oL PY(w) : Ergw) = En(w) on the
finite dimensional Hilbert space Ex(w) (where w : T*M -~ M is the projection

map) and so has an operator norm |(e.PYw)|.)

Proof: This is given by the remark following the proof of Theorem 3.3

in Hormander’s paper [Horl]. &

2.3 The Dirac Operator

In this section, M is a complete, riemannian, spin manifold of di-

mension m, k is a positive integer, and
AM —r M

is the bundle of spinors over M. Wherever possible, I will suppress the sub-
script M and use A instead of Apr.
Let
Dy G (D) = CZ(4)
denote the Dirac operator acting on the algebra C®(A) of smooth sections of
A with compact support, and let L*(A) be the L%-sections of A with respect

to the natural measure on M induced by the given riemannian metric on M.

I will use Dar and D interchangably unless there is a need to be precise, in

which case [ will only use Dys.
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It is well known that C3°(A) is dense in the Hilbert space L*(A), and
that the Dirac operator Djyy : CP(A) — C>(A) is formally self-adjoint. That
is, D has the property

(D&,m) = (£, Dn)

for all ¢, 5 in C°(A), where ( , ) denotes the L*(A) inner product.
Thus, considered as an unbounded operator on L*(A) with dense domain
C(A), D is closable, and we let D denote the closure of D on LE(A).

We have the following theorem.

Theorem 3.1 The unbounded operator D on L*(A) is essentially self-adjoint.

That is, D is a self-adjoint operator on L*(A).

Proof: This is Theorem 5.7 of the book, [L&M], by Lawson and Michel-
sohn.

From now on, we will use D and D interchangably unless some confusion
arises.

Since D (= D) is self-adjoint, then, for any bounded, continuous {complex-
valued), function f on R, we can define the bounded operator f(D) on L*(A)

using the functional calculus for self-adjoint operators.

Notation 3.2 If X is a metric space, A C X, andr > 0, let

B(A,r)={z € X :d(z,A) <r}.

If fis any function on any space X, we let supp(f) C X stand for the

closed support of f.




Definition 3.3 Let r > 0, let X be a complete riemannian manifold, E «
finite dimensional hermitian vector bundle over X, and A : L*(E) —» L*(E)
a possibly unbounded operator on L*(E). Then A is said to be r-local if, for

every u € LY E), the support of Au lies inside B(supp(u),r).

Theorem 3.4 (Unit Propagation Speed Property) If t € R, then the

opémtor P € B(L*(A)) is |t]-local, and, for every u € C=(A), ePu also

belongs to C°(A).
Proof: This is Theorem 1.3 of [Roe2]|. &

Corollary 3.5 If f is a bounded continuous function on R and sz has sup-
port in the interval [—r,r] for some r > 0, then f(D) € B(L*(A)) is an r-local

operator. (f is regarded as a tempered distribution.)

Proof: We can write

1) = 5 [ ittt

T J-00
= L[ fea.
2r J-r

Since P is r-local for every ¢ € [—r,7] (by Theorem 3.4}, it follows that

f(D) = — [ Ft)ePat

2 Jr

is also r-local. #
We now turn our attention to the symbol of D.

Let m be any positive integer, and let Cl, and A,, denote the com-

plex Clifford algebra, and complex spinors respectively, of the euclidean space

15
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R™. Recall that A,, is a hermitian vector space over C and a module over
the algebra Cl,,. Let S™~* denote the unit (m — 1}-sphere sitting inside R"™,

(Note: S° is the two-point set {—1,1}.)

Remarks 3.6 1. It is well known that if v is in S™!, then the operator
s+ v-8 fors in A, (where - denotes Clifford multiplication) is a unitary

operator on A,,.

2. If v in R™, define the operator
o, AL — AL
by letting
o,{8) =1w-s

for every s in A,,. From (1), it follows that o, is unitary for every

veSmL
3. For every v € R™, (iv)? = ||v||*, which implies that
o2 = |v||* - Ida,,-
Thus, the spectrum of o, is a subset of {—||v]l, +||v]|} for everyv € R™.
It follows that o, is self-adjoint and lou|| = llv|| for every v in R™.

4. Thus, for v in S™ 1, g, : Ay — Ay, is a self-adjoint unilary, and the
operator

-‘3(1 +o,): A = An,

is the projection onto the +1 eigenspace of o,.




5. It is clear from the definition of o, that

T_y = —0y

for every v € R™.

6. From 5, it follows that, for every v € R™,
spec(o) U spec(a) = {—[lvll, o]}

Proposition 3.7 For each x € M, identify T;M with Ty M in the canonical
way, so that Clifford multiplication { - w makes sense for every £ € Ty M and

w € A,. Then the principal symbol o (D) of D is such thal
o (D)) (w) =i -w (3.8)

forallz e M, ¢ € T} M and w € A, and the map or(D)(¢) : Ay = Dy, on

the inner product space A, is self-adjoint. Moreover, D is elliptic over M.

Proof: The equality (3.8) is Lemma IL.5.1 of [L&M]. It immediately
gives us that D is elliptic over M. By Remarks 3.6, it also implies that the

map o(D)(€) : A, — A, on the inner product space A, is self-adjoint. #

2.4 Multiplication Operators

If ¢ is a function on a manifold M and u is a section of a bundle F over

M, then M_u will stand for the section

M,u=1¢-u



of E. That is, (M, u)}(z) = ¢(z) - u(z) for every x € M. If M is a riemannian
manifold, F is a smooth finite-dimensional vector bundle over M, and ¢ is a
bounded measurable function on M, then M, gives a bounded operator M,
on L%(E). When the symbol M, is used we will usually mean this operator
on L:(E). If k > 0 is a positive integer, ¢ is a bounded measurable k& x &
matrix-valued function on a riemannian manifold M and F is again a smooth

finite dimensional hermitian bundle over M, then
M, : L}(EY — L*(E)*

is the bounded operator satisfying M,u = @u for every v € L*(E)*. That
is, (M u)(z) = @(z) - u(x). More precisely, each u € L*(E)* can be regarded
as an element of L?(E*). So, ¢(z) - u(z) is the obvious multiplication of the

vector u(z) € (E,)* by a k x k matrix ¢(z).

Remark 4.1 If E and M are as above, ¢ is a bounded measurable k x k
matriz-valued function on M, and A : L*(E) — L*(E) is a bounded operator,
then, in the future, when we write AM, and M,A, what we will really mean

are the operators

( ) ( )
A A
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A

A€ B(H¥) we will mean the operator

0 A

\

k

2.5 Coincidences

on M.

respect to the orthogonal decomposition H* =H & ... 0 H
A —

)

/

with compact support to L*-sections of E, and let B be a linear operator from
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on L*(E)*. In fact, if H is any Hilbert space and A € B(H), when we write

in B(H’“) with

Finally, operators M, will be called multiplication operators with

symbol ¢, and the symbol ¢ will sometimes be referred to as a multiplier.

Definition 5.1 Let E —» M, F — N be smooth hermitian bundles over iso-
metric riemannian manifolds M and N respectively. A bundle isometry
from E to F is a smooth bundle isomorphism from E to F which preserves

both the hermitian structure on the fibers of E and the riemannian structure

Definition 5.2 Let £ — M and F — N be smooth hermitian vector bun-
dles over complete riemannian manifolds M and N respectively. Let U C M,
V C N be open balls of the same radius, and suppose there is a bundle isom-

etry b : Elg — Fly. Let A be a linear operator from smooth sections of K




smooth sections of F with compact support to L?*- sections of F'. We say that
(A, B;h) is a coincidence, or that (A,B;U,V;h) is a coincidence, or that
(A, B; U,V E,F; h) is a coincidence, or that h is a coincidence between A

and B, or that A coincides locally with B (over U), if

1. For every u € C®(E) with compact support in U, Au is an L?-section

of E with compact support also in U;

2. For every v € C®(F) with compact support in V', Bv is an L%-section

of F' with compact support in V; and

3. The linear operator induced by A from C*(U, E) to L*- sections of E
over U, is identified via h with the linear operator induced by B from
C>(V,F) to L*-sections of F over V. That is, if hs : LYU,E) —
LV, F) is the unitary operator induced by h, then h,. gives a unitary
equivalence between the operator Alcew gy + C2°(U, E) — LYU,E) and
the operator Blowv,ry : CZ(V, F) = L*(V, F). In other words,

h. - Aleewr) = Bleew.ry -

We say (A, B;R) is an exact coincidence, or that h is an exact co-
incidence between A and B if (A, B, k) is a coincidence, and if Au =0
whenever u € C(E) has support outside U, and Bv = 0 wheneverv € Cx(F)

has support outside V.

Proposition 5.3 Let M be a complete riemannian manifold in which U is an

open ball, and suppose ¢ is a continuous function on M with compact support

in U. Then, for every coincidence (A, B;U; V, k),

(AM,, BM on-1; U, Vi R)
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is an exact coincidence.

Proof: Let (A, B;U,V;E, F;h) be a coincidence. Suppose u € C(F)
has support in U and v € C°°(F) has support in V. Then pu has support in
U and (@ o h~') - v has support in V. Since (A4, B; U, V; k) is a coincidence,
it follows that A(pu) has support in U and B({y o h~1) - v) has support in
V. That is (AM,)(u) has support in U and (BMes-1)(V) has support in V.
Moreover, A, ((AM)u) = h,(A{p - u)) = B(hd{p - u)) since (A,B;U,V;h) is
a coincidence. Hence, b ((AM)u) = B((¢ o h71) « (hau)) = (BMyop-1)(hsus).
Thus, (AM,, BMoh-1,U, V, k) is a coincidence.

To show it is an exact coincidence, take u with support outside U and v
with support outside V. Since ¢ has support in U, then ¢o h~! has support in
V. Therefore ¢-u = 0 and (poh~!)-v = 0, which implies that (AM,)u = 0 and
(BM jop-1)(v) = 0. Thus (AM,, BMyop-1; U, V; k) is an exact coincidence. #

Proposition 5.4 Let (A,B;U,V; E, F;h) be an exact coincidence. Then the

following are true.
1. A extends to a bounded operator on LY E) if and only if B extends to a
bounded operator on L*(F).

2. A extends to a compact operator on L*(E) if and only if B extends to a

compact operator on L*(F).

2. A extends to a Fredholm operator on L*(E) if and only if B estends to

a Fredholm operator on L*(F), and, in this case, ind(A) = ind(B).
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4. If A extends to a bounded operator on L*(E} (and so B also eztends to a
bounded operator on L*(F')), then (A*, B*;U,V, E, F;R) is also an exact

coincidence.
Proof: The operator
Aloswpy : C2(U, E) = L*(U,E)
is unitarily equivalent to the operator
Blepwry : C2(V, F) — LV, F)

(via hy) and both Alcwo,r) and Blesnv,F) are equal to 0. Thus, A extends
to a bounded operator A on L*(E) & A|ce(v,s) extends to a bounded operator
Ag on L}(V, E) & Blcw(v,r) extends to a bounded operator By on L}V, F) &
B extends to a bounded operator B on L?(F). (This proves 1.) When this
happens, Ag will be unitarily equivaient to By via h,, and, with respect to the

decompositions

L}E) = L'V, B) ® L*(\U, B),

and

L}(F) = I}V,F)y® L*(\V, F),

we may write

A:AQEBO

and

B=DBy®0.

Statements 2, 3, and 4 now follow immediately from the fact that Ag is unitarily

equivalent to By via the unitary h.. #
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Theorem 5.5 Let Dy and Dy be the Dirac operators on complete spin rie-
mannian manifolds M and N respectively. Suppose (Dpr, Dy, U, V,h) is a
coincidence. Suppose r > 0, and that ¢ € C2(U) is such that the distance of
the support of p from the complement of U s larger than . Let f be a C% Flip

function whose Fourier transform f has support in the interval [—r,r|. Then

(f(DM)M‘#? f(DN)Mqooh“l; U’ V} h):

(M, f(Dar)y Mpon—1 f(Dn); U, Vi ),

and

([f(DM)v Mtp]’ [f(DN): Maooh—lh U, v; h)

are all exact coincidences, and if |t| <r, then (e"P¥ M, DN M1 U, Vs )

and (M,e*PM M o,-1e"P8 U, Vi k) are also ezact coincidences.
Proof: Suppose u € C=(U), then
up = PM Mou = e'PM(pu), teR

is a solution of the initial value problem

Hd—tuf = 1Dy,
> (%)
Ugp = @-uU
Also,
d Dy d DN
& DN M (b)) = (D (ha(ipu)

dt dt

= Dy - PV (ha(ipu)).




Now, if |¢t| < r, then by Theorem 3.4, the operator P is r-local. Together
with the fact that the distance from the support of A.(¢ - u) from the com-
plement of V' is larger than r, this gives that the support of e*2¥(h, (¢ - u))
remains inside V if [t| < r. The differential operator Dy does not enlarge sup-
port. Thus iDye*P¥(h, (- u)) also has support in V when |t| < r. Therefore,

for t € [—r,r], the expression h*(e*P¥ (h,(p - u)}) makes sense and we have

LR (EP5 (hulpw)) = KL (b))

dt
= h*(iDn - €Y (hu(pu)))
i(h* D) - h™(e"PF (hu(pu)))

iDpr - R (2% (R (pw))).

li

i

Also, if ¢ = 0 then A*(e"P¥(h,(wu))) = h*(h.(pu)) = ¢ - u. Thus, h*(e"P¥
(h.(pu))) is a solution of the initial value problem (*) for |{| < r. By unique-

ness of the solution of {x), it follows that

il

M) = R (P (hi(ou))

= h*("P¥ M op-1(hout))

for t € [—r,r]. This means that (eP™ M, e*P¥ M o1, U, V, k) is a coinci-
dence for all ¢t € [—r,7].

It is an exact coincidence, for if u is a compactly supported section, with
compact support outside U,then, because ¢ has support in U, M,u = 0, and
therefore ¢*P™ M_u = 0. Similarly, €*P¥ M, o,—1v = 0 if v has support outside

V. This proves that

(e“DMM(p, etPn Mon-1; U, V5 )
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is an exact coincidence when |t| < r. By replacing ¢ with ¢ and ¢ with —¢, we
get that

(e7HPM M, e PN M1 U Vi R)
is an exact coincidence when |t} < r. By Property 4 of Proposition 5.4, the
adjoint
(Mcpe"tDM, M on—1 PN U Vi h)
is also an exact coincidence when |t| < r. For the rest of the theroem, note

that, since f has support in [—r, 7}, then

f(Dym) = %LZf(t)e”DMdt

. 1 T DN
= 5=/ f(t)e™Mdt.
and
1 7 ..
D — itDy .
F(Dw) = 5= [ feon

We just showed that
(e*PM M., €PN M yop—1, U, V, h)

and

(M etP% M op-1e"P% U, V, h)
are exact coincidences for |t| < r. Thus,
ha((MP% M) (w)) = €PN Migop-1) (hott)

and

b M ePMy) = (M op-1€"P )(hut)
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whenever |t| < r and u € C*(U, E). Tt follows that

R DM = 5 [ FOR D M)t
1

- L / F(E)GPN M o1 (hott)dt

2m
= F(Dw)Myoes ()
for all u € C°(U, E), which implies that (f(Dar)M,, F(DNYMpon—13 U,V h) s
a coincidence. Tt is exact for if u € C®(E) has support outside the sup-
port of ¢, then f(Dap)Myu = 0 and if v € CZ°(F) has support outside
the support of ¢ o k™' then f(Dn)Myop-1v = 0. By a similar argument,
(M, f(Dar)y Moon— f(Dn); U, Vi k) is also an exact coincidence.

Finally, the property that

([f(DM)a Mw]7 [f(DN)a Mgooh_l]? U7 Vv h)

i¢ an exact coincidence follows from the fact that
(f(DM)Mm f(DN)MgoOh_l; Us V; h)
and
(Mlpf(DM)! Mtpoh‘lf(DN); Ua V) h)
are exact coincidencgs. [ 3
Proposition 5.6 Let M be a complete, riemannian, spin manifold, Dys the
Dirac operator on M, U,V © M open coordinate balls centered at the same

point such that U CU CV, and N a compact spin manifold with the same di-

mension as M. Then there is ¢ riemannian metric on N whose corresponding
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Dirac operator Dy (with respect to any chosen spin structure on N) coincides
locally with Dy over U.

Moreover, if (Dar, Dy, h) is a coincidence over U, then
(Da* + 1), (D + 1), h)

is @ coincidence over U. If, in addition, p € C®(U),r > 0 is smaller than
the distance between the support of ¢ and the complement of U, and f is a
C®_Flip function whose Fourier transform has compact support in [~r,7],

then
(f(Dar)My, F(DN)Mypon-15 ),
(M, f (D), Moor= f(Dn); ),
and

([f(DM): Mtp]v [f(DN)a Mtpoh_l]; h)

are exact acoincidences over U. And if |t| < r, then
(e“DMMw, PN Mgon-13 )

and

(MweitDM, M(poh-—leitDN; h)
are also exact coincidences over U.
Proof : Let ¢ : B — V be a normal coordinate mapping where B C R™

is a ball centered at 0. Take any point y in N and any coordinate mapping

71 B — W where W is an open neighbourhood of y and n(0) = y. Transier

the riemannian metric on V to a riemannian metric on W by using the map




n o . This gives a riemannian metric on @ & (1 0@ 1 )(U). By a simple
partition of unity argument, we may extend this riemannian metric on O to a
riemannian metric p on the whole of N. Thus, p is a riemannian metric on NV
whose restriction to @ agrees with the metric on U once we identify O with
U by the map 5o '. Now,let Dy be the Dirac operator on N determined
by the riemannian metric p and any chosen spin structure on N. Let Ay and
Ap be the bundle of spinors ovef M and N respectively. Let h: U — O be
the restriction of the map op ! to the open set U. The map h: U — O1is an
isometry. It induces a bundle isometry which we also denote by k from Aumlo
to Aylo. That is, b : Aply — Anlo is a bundle isometry. It is then clear
from the definition of the Dirac operator, that (D, Dn; k) is a coincidence
over IJ. Thus the first part of the proposition is true.

Now, let (D, Dy, h) be any coincidence over U, and let O = A{U). It
is clear that (Da® + 1,Dn? + 1,R) is also a coincidence over /. Since the
operators Dps® + 1 and Dp? + 1 are differential operators, they are 0-local.
Hence, the operators (Da® + 1)~! and (Dn® 4 1)7! are also 0-local. Thus,
if v € C(0, An), then (Dn? + 1)7'(v) = w for some w € L}0,Ay), in
the domain of Dx2 + 1 and v = (Dn® 4+ 1)(w). Since (Dp 4+ 1,Dn* +1,4)
is a coincidence, it follows that h*w € L*(U, Anr) belongs to the domain of
Day* + 1 and that h*v = (Dpy® + 1)(A"w). Thus, (Da® + 1)7Y(h*v) = h*w,
which implies that w = h((Dy® + 1)1 (h*v})). Hence,

(Dy? + )7 (v) = hu((Dag” + 1) 7 (A7)

which shows that (D + 1)"L(DN* +1)"L k) is 2 coincidence over U. The

rest of the proposition now follows from Theorem 5.5. #
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2.6 Elliptic Operators

Theorem 6.1 Let P : C®°(E) — C®(F) be an elliptic pseudodifferential op-
erator of order d on a compact manifold. Suppose the principal symbol of P
is o P} € SHE)/SYE). Then there exists a pseudodifferential operator
Q : C°(F) — C®(E) of order —d, called a parametrix for P, such that
PQ = Id+ S and QP = Id + 5" where S and S are infinitely smoothing
operators. The principal symbol of Q is (o1 P)™] € S~4(E)/S~1(E).

Remark 6.2 If [0 P] is the principal symbol of an elliptic pseudodifferential
operator P, then (oL P)(€)™! may make sense only for large enough {. But
the principal symbol of a pseudodifferential operator @ only depends on whal
(oL Q)E) does for large €. So [(orP)(€)71] is well-defined for elliplic P.

Proof: This is part of Lemama 1.3.5 of [Gil].

Proposition 6.3 If E and F are smooth hermitian vector bundles over a
compact riemannian manifold M, and if P : C®(E) — C®(F) is an elliptic
pseudodifferential operator of order d, and if H,(F) is the s-th Sobolev space

of E for every s € R, then the kernel of the operator
P: Hy(E)— H,_a(F)
is a finile dimensionc.zl subspace of C(E), for every S € R.
Proof: This is Lemma 1.4.5 of [Gil]. #

Definition 6.4 Let P: C®(E) - C*(E) be a pseudodifferential operator on

a compact riemannian manifold. Then P : C*(E) — C®(E) is said to be
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invertible if it is invertible as a map from C*(E) to C*°(E). In this case,

the inverse map is denoted by P~ : C°°(E) — C*®(E).

Lemma 6.5 Let P : C®(E) —» C*(E) be a pseudodifferential of order d on a
compact riemannian manifold. If it so happens that the extended operator P :
H,(E) — H,_4(E) is invertible for every s € R, then P : C*(E) — Ce(E)
is invertible and the inverse P~% : C®(E) — C*(E) exlends to the inverse

Pl H,_y(E) — H,(E) of the operator P : H,(E) — {,_a(E).

Proof: Assume P : H,(E) -+ H,_4(¥) is invertible for every s € R.
‘Then for every s € R, there is a bounded operator Pl H, 4(E) — H,(E)
inverse to P : Hy(E) — H,_4(E). This gives a well defined operator

pi: | HA(E)— U H.(E)
seR seR

It w € C(E), then u € H,_4(E) for every s € R, which implies that Plue
H,(E) for every s € R. Therefore P~'u € C°(E) for every u € C>(E). So

Pt | H(E) - | H(E)
seRR se

restricts to a map

P71 C®(E) » C®(E).
Tt is now easy to show that PP~'u = u and P~'Pu = u for every u € Ce(E).
Thus P : C®(E) — C*°(E) is invertible with inverse P11, C=(E) = C*(E).
o

Proposition 6.6 Let P : C*(E) — C*(E) be an elliptic pseudodifferential

operator on a compact riemannian manifold. Then the following are equiva-

lend.




1. P:C®(E) — C®(E) is 1-1 and the indez of P is 0.
2. P is invertible.

9. For somes € R ,P: H(E)— H,_4(E) is invertible.

Proof: Suppose P : C®(E) — C®(E) is 1-1 and that the index of P is
0 Take s € R. Since P : C(E) — C(E) is 1-1, then so is P : H,(E) —
H,_4(E). Hence the kernel of P : H,(E) — Hy_q(E) is 0. Since the Fredholm
index of P : H(E) — H,_4(E) is 0 and the dimensiion of its kernel is 0,
then the image of P : H,(E) — H,_4(E) must be all of H,_4(E). Thus,
P : H,(E) — H,_4(E) is both 1-1 and onto which means it is invertible. This
is true for all s € R. Hence, from Lemma 6.5, P : C®(£) — C™(E) is
invertible. Thus (1) = (2). Now suppose P : C*°(E) — C>(E) is invertible.
Then it is 1-1 and its range is all of C(£). It follows that, for every s € R,
the extended Fredholm operator P : H,(E) — H,_4(E) is 1-1, onto (since its
closed range contains the dense subspace C*°(E) of I s—a(F)) and therefore
invertible. Thus (2) = (3). Now suppose that there exists s € R such that
P : H(E) — H,_4(E) is invertible. Then the index of P would be 0, and
P : C®(E) — C®(E) would be 1-1 since it is the restriction to C®(E) of the
map P : Hy(E) — H,_4(E). Thus (3) = (1). &

Proposition 6.7 If A: C°(E) — C®(E) is a self-adjoint elliptic pseudodif-
ferential operator on a compact riemannian manifold, and if the spectrum of

A does not contain 0, then A : C®(E) — C(E) is invertible.

Proof: Suppose the spectrum of A does not contain 0. Let us use A to

denote the closure A : Dom(A) — L*(E) of A: C*(E) — C*(E). Since 0 is
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not in the spectrum of A, then A : Dom(A) — L*(E) is L-1. This implies that
A C™(E) — C=(E) is 1-1. Since A is self-adjoint, we also have that the
index of A is 0. Thus, by Proposition 6.6, A : C°°(E) — C°(E) is invertible.
)

Proposition 6.8 Let d be any real number, and P : C*(E) — C(E) an
invertible elliptic pseudodifferential operator of order d on a compact Tie-
mannian manifold, ( with principal symbol (o, P] € S4(E)/ 5% E) where
oLP € S%(E).) Then the inverse P71 : C*(E) — C>=(E) is an ellip-
tic pseudodifferential operator of order —d with principal symbol [(erP) 1] €
S~4(E)/S~4}(E). Moreover, for each s € R, the estended operators

P:H,(E)— He_o(F)

and

Pl H, 4(E)— H,(E)

are inverse bounded operators.

Proof: By Theorem 6.1, there exists an elliptic pseudodifferential oper-
ator Q of order —d with principal symbol [(o2P)™] € S=HEN\S?(E) and

an infinitely smoothing S such that
PQ=1+25.

Multiplying this equation on the left by P~': C*°(&) — C°(E) gives us that
Q= P!+ P15, or that

pl=Q-P7'S
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But § is infinitely smoothing and so maps each H,(E) to C*°(E). Since p-1
maps C(E) to C(E), it follows that P75 is an infinitely smoothing opera-
tor. Putting this together with the fact that ¢ is an elliptic pseudodifferential
operator of order —d gives us that P~!' = @ — P-15 is an elliptic pseudodif-
ferential operator of order —d with the same principal symbol [(orP) ' as Q.

The rest follows from Lemma 6.5. @

Lemma 6.9 Let P : C°(E) — C°(E) be an invertibfe, self-adjoint, elliptic
psendodifferential operator of positive order d > 0 on a compact riemannian
manifold. Then there exists a complete orthonormal basis {v.}32, for L*(E)
consisting of C=(E) eigenvectors vy, of P, and, if A\ is the eigenvalue of P

corresponding to v, then Ay € R and I\g| = co as k — oo.

Proof: The inverse operator P~1 : C®(E) — C®(E) of P : C>*(E) —
C>(E) is an elliptic pseudodifferential operator of order —d (by Proposition

6.8). Moreover, for each s € R, the extended bounded operators
P: H,(E)— H,_4(E)

and

Pl H, 4(E) — H,(F)

are inverse to each other. Now P~! maps Ho(E) = L*(E) onto Hy(E). Since
d >0, Hy(E)is included in L*(F) and the inclusion map is compact. Thus,
P! maps L*(E) into L?*(E) and this operator Pl LHE) — L[*E) is

compact. Now, since P is self-adjoint, then P L¥E) — L*FE) is also

self-adjoint. By a well-known thereom on self-adjoint, compact operators (see




Thereoms 12.29 and 12.30 of [Rud] for example) there is a complete orthonor-
mal basis {v1,vs, ...} for L*(E) consisting of eigenvectors vy, vz, s, . .. of P71,
Moreover, if uy is the eigenvalue of P! corresponding to v, then each i be-
longs to R, and j — 0 as k — oo. Of course, no py is equal to 0. Otherwise,
for such a px, we would have P~ v, = 0 and thus P{0) = v which is not true.
So uk # 0 for all k. Let Ax = -:—k Then ve = AxP~!(vz). Since the image of
P1 . IE) — L*E) is actually Hg(E), it follows that v, € Hy(E) and that
Puy = Mg, or that (P — Ag)ve = 0. That is, vx belongs to the kernel of the
operator
P — M\ : Hy(E) = L}(E).

Now P — A, : C®(E) — C®(E) is also an elliptic pseudodifferential operator
of order d. By Proposition 6.3, it follows that the kernel of P — X\ : Hy(E) —
L*(E) is a subspace of C*°(E). Thus, v € C>(E) for each k. Also, from
above, {vx}2, is a complete orthonormal basis for L2(E) and each vy is an
eigenvector of P with eigenvalue Ar. Finally, since px — 0 as k — o0, then

| Akl = ]I};! s 00 as k — oo, which completes the proof. #

Theorem 6.10 Let P : C°(E) — C®(E) be a self-adjoint, elliptic pseudod-
ifferential operator of positive order d >0 on a compact riemannien manifold.
Then there exists a complete orthonormal basis {ug}fZ, for L*(E) consisting
of C*(FE) eigenvectors vy of P, and, if Ay is the eigenvalue of P corresponding

{o vy, then A € R and [A\i} — oo as k — 0.

Proof: By Proposition 6.3, ellipticity of P implies that the kernel ker(P)

of P: C®(E) — C®(E)is afinite dimensional subspace of C*°(E). Since P is
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self-adjoint then we also have that ker(P) is orthonormal to the image Im(P)
of P : C®(E) —» C®(E). Let @ : L*(E) — L*(E) be the orthogonal projection
onto ker(P). Then P + @ : C*(E) — C*(E) is 1-1 and self-adjoint (since
both P and @ are self-adjoint). Moreover, since kerP is a finite dimensional
subspace of C*°(E), it is not difficult to show that @ : LY E) — L*(E) is an
integral operator with a C'* kernel. Thus Q is infinitely smoothing, which,
together with the fact that P is an elliptic pseudodifferential operator of order
d, implies that P+ Q : C®(E) — C*(E) is also an elliptic pseudodifferential
operator of order d > 0. Since the operator is self-adjoint then its index
is 0. Thus P + Q : C®(E) — C®(E) is both 1-1 and has index 0. By
Proposition 6.6, it is invertible. We can therefore apply Lemma 6.9 to the
operator P + () to obtain a complete orthonormal basis {wi}ie, for L*(E)
consisting of C®(E) eigenvectors wy, of P+ such that, if yx is the eigenvalue
of P + @ corresponding to wg, then yx € R and \pg| — o0 as k — oco. If
ker(P) = {0}, then Q = 0 and we are done. Suppose ker(P) # {0}. Note that
ker(P) is a subspace of the eigenspace V1 & C>*(E) of P+ @Q corresponding
to the eigenvalue 1. Suppose Vi has dimension n and that the dimension of
kerP is m < n. We may assume that wy,ws, ..., W, is a basis for V;. Change
this to another orthonormal basis vy,...,v, of ¥} so that the first m vectors
vy, Vs, .- -, U span ker(P). Then let v = wy for k> n+ 1, and let Ay = 0 for
1<k<n,and Ay = gy for k= n+1. Then it is clear that Pv; = Aoy for all
k, that {vi}32, spans L2(E), and that |Ag] — oo as k — oo. Thus Theorem
6.10 is true. &
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Recall: If d € R, then a Calderén-Zygmund operator (or CZ0) P :
C=(E) — C(E) of order d on a compact riemannian manifold M is a special
case of a pseudodifferential operator of order d on M. (Please see [Hor2],
[K&N], [Pal], or [See2] for its definition.) For this thesis, we only need to
know that differential operators of order n, are special cases of C Z0's of order

n, and that CZ0's of order d are special cases of pseudodifferential operators

of order d.

Theorem 6.11 Let A: C®(E) — C=(E) be a self-adjoint, invertible, elliptic
Calderdn-Zygmund operator (CZ0) of positive order d > 0 and with principal
symbol [o,A] in SY(E)/S*(E) on a compact riemannian manifold. We will
assume that ar A is self adjoint. This assumption is justified by Proposition
2.1. Then, for every s € C, A* is an invertible elliptic CZ0 (and hence a
pseudodifferential operator) of order d - Re(S), with principal symbol [(o1.A)’]
in SERI( )/ SERel)-1(E).

Proof: This is a special case of Theorem 3 of [Seel]. &

Theorem 6.12 Let M be a compact riemannian manifold, E a smooth, finite
dimensional, hermitian vector bundle over M, and A : C*(E) — C*(E) an
elliptic self adjoint C’dldercin-Zygmund operator (CZO) of positive order d > 0.
If I C R is an interval, let x; denote the characteristic function on I. Then,
for every a € R, the operators X[a,m)(A),x(_oo,a](A),x(a,w)(A) and X(-coa)(A)
‘are Calderén-Zygmund operators (and hence pseudodifferential operators) of

order 0. Moreover, suppose oA € S E) is self-adjoint and represents the
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principal symbol [o1,(A)] € SUENS(E) of A. Such a oA exists by Propo-
sition 2.1. Then, for a € R and for I = (—o0,4a), (—o00,d], (a,00), or [a,00),
the principal symbol of x1(A) in SOE)/SYE) is Ixi(or{A))].

Proof: Suppose o(A) € SU(E) is self-adjoint and represents the prin-
cipal symbol of A. By ellipticity of A and Proposition 6.3, the kernel ker(A)
is a finite dimensional subspace of Cw(E). Let Q : L*(E) — L*(E) be the
orthogonal projection onto ker(A). Then, as mentioned before, () is an in-
tegral operator with C* kernel, and therefore an infinitely smoothing pro-
jection. 'Thus, the operator B = A+ Q is an elliptic CZO of the same
order d as A, and with the same principal symbol [eL(A)). It is also self-
adjoint (since both A and @) are self-adjoint) and therefore has index 0. More-
over, it is clearly one to one. By Proposition 6.6, it follows that B is an
invertible elliptic self-adjoint CZO of order d > 0. Therefore B? is also
an invertible elliptic self-adjoint CZO of order 2d > 0, and with principal
symbol [(orA)?] € S*(E)/S**~'(E). From Theorem 6.11, it follows that
B! = (%)~} is an invertible elliptic self-adjoint CZO of order ~d and with
principal symbol [((e1,A)2)72] = [lordl™] € S~ E)/S~*(E). Therefore
B -|B|™! is an invertible elliptic CZ0 of order d 4 (—d) = 0 with principal
symbol o (B-|B|™")= (o A) - lop Al = [g(orA)] in SO(E)/S7Y(E) where

1, ifz>0

-1, ifz <0

\

37



38

Note that, with respect to the decomposition

L*(E) = ker (A)* @ ker (4),
Ay 0 00

A= and (} = ,
0 0 0 1

where Ay is the operator Alie(a)t : ker(A)* — ker(A)*. Thus,

A 0 |Ao]™* 0
B=A+Q= , |BI™t = ,
0 1 0 1
and
Ay 0 |Ao|_“1 0
B-|BI"! =
\ 0 1 0 1
(
Ao ‘Agl-l 0 g(Ao) O
\ 0 1 0 g(0)

Therefore,




So, we have shown that g(A) is an invertible elliptic C'ZO of order 0 and

with principal symbol [g(crA)]. Since Xjooo) = (1 + g), then xpe)(A) =

3(1+g(A)) is a C'ZO of order 0 with principal symbol [3(1 + g(orA))] =
[X10,00)(czA)]. From this it follows that X(—e0(A) = 1 — X[0.00)( A} 18 also a
070 of order 0 with principal symbol [1 — X[o,e0)(00A)] = [X(-c0,0)(FLA)].
Thus we have shown that the principal symbol of x1(A) is [xr(orA)] for I =

[0,00) and [ = (-00,0).

Now let T be any finite interval C R. Since A is a self-adjoint, elliptic
pseudodifferential operator of positive order, then, by Theorem 6.10, there is
a complete orthonormal basis {v¢}52, for L*(E) consisting of C®°(E) eigen-
vectors vy, of P, and if we let ), be the eigenvalue of A corresponding to vy,
then A € R at |A| — o0 as k — oco. From this we see that x;(A) is an
orthogonal projection onto a finite dimensional subspace of C*(E). As we
have seen before, such a projection is an infinitely smoothing operator. Thus
x1(A) is infinitley smoothing. Let r > 0 be such that I C [—r,r]. By the fact
that A is an elliptic operator of positive order d > 0, there exists an R > 0
such that whenever £ € T*M, ||¢|| > R, and X is in the spectrum of (e A)E),
then |A} > r. Thus

€l > R = xi((orANE)) = 0.

Therefore, the symbol class [xr(orA)] of x:(a1A) in S%(E)/S7H(E) is O. That
is, [x1(ozA)] = 0 for every finite interval I C R.

Now, if @ € R, then X[s,c0) = X0} TXI for some finite interval I. Thus
Xla,oo) (A) = X[o00) (A) + xr(A). We just showed that x7(A) is infinitely

smoothing and that X[oce) (A) is a CZO of order 0. Thus, X[a,c0) (A) is a pseu-
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dodifferential operator of order 0 with principal symbol equal to the principal
symbol [Xoee) (o(AN] € SE)/S™(E) of Xioe) (91A). Since [xi{ozA)} = 0
in S%(E)/S~1(E), then [Xjoeo) (72A)] = [X(o00) (L AN+ [xr{oA)] = [Xiao0)
(a,A)] in SO(E)/S~(E). We can therefore say that the principal symbol of
ys{A) is [xs(opA)] whenever J = [a,00),a € R. The rest of the theorem can

now be proved by a similar argument. »

2.7 Toeplitz Extensions

Lemma 7.1 If D : C°(A) — C*(A) is the Dirac operator on a compact

riemannian spin manifold. Then {D* + 1)1 is a compact operator on L*(A).

Proof: The operator D? +1: C®(A) — C>(A) is an elliptic self-adjoint
differential operator of order 2 on a compact manifold. Its spectrum which lies
in [1,00) does not contain 0. It is therefore invertible and, by Proposition 6.8,
(D 4+1)71: C2(A) = C*(A) s a pseudodifferential operator of order —2 on

a compact manifold. It therefore extends to a compact operator on L*(A). #

Proposition 7.2 IfD: C°(A) — C(A) is the Dirac operator on a compact
riemannian spin manifold, and if f € Co(R), then f(D) is a compact operator
on L*(A).

Proof: Since S is dense in Co(RY), it suffices to show that f (D) is compact
for f € S. So take f € S. Then f(D) = g(D} - (D* +1)7! where g is
the function on R sending = € R to f(z) - (2* +1). Since f is Schwartz,

it follows that g is Schwartz and therefore ¢(D) is a bounded operator on
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L*(A). By Lemma 7.1, (D* + 1)~ is a compact operator on L*(A). Thus,
f(D) = g(D)(D*+1)7" is compact. #

Proposition 7.3 If D : C*(A) — C*®(A) is the Dirac operator on a compact
riemannian spin manifold M, f € Flip, and ¢ € C(M), then the commutator

[f(D), M,] is compact on L (A).

Proof: Take f € Flip and (p € C(M). Let a = f(—o0) and b = f(-+o0).
Since M is compact, D has discrete spectrum. Hence, there exists ¢ € Flip
such that g(co) = b,g(—oc) = a,g(}) =bforallA > 0in the spectrum of D,
and g(A) = a for all A < 0 in the spectrum of D. So, for all X € spec(D), we

have

g(A) = @+ X(=oo0)(A) + b X[0,009(A)5

and therefore

g(D) = a - X(=s00)(D) + b Xpo,00) (D)-
Therefore,
[¢(D), M,] = @ - [X(co0o0)(D)s My] + b [Xp,00){ D), Mo]-

Now, since I is an elliptic self-adjoint elliptic differential operator on
compact M, it follows from Proposition 6.12 that x(—co0)(D) and X[o,00) (D) are
pseudodifferential operators of order 0 on M. M, is also a pseudodifferential
operator of order 0 on M. Thus [X(=co,0) (D) M| and X0y (D), M) are
pseudodifferential operators of negative order —1 on the compact manifold

M. They are therefore compact on L}(A). Hence {g(D), M,] is compact on

LAA). &



Lemma 7.4 Let M be a complete riemannian spin manifold and D the Dirac
operator on M. Then, for every o € C(M), the operators (D*+1)7' M, and

M, (D% 4 1)t are compact.
v

Proof: Since C°(M) is dense in C§°(M), it suffices to prove this for the
case where ¢ has compact support. By a partition of unity argument, we can
then reduce to the case where ¢ has compact support in an open coordinate
ball V C M. So take such a . We only need to show that {(D? + 1)1 M,
is compact since My(D? + 1)1 = [(D? + 1)7'My]*. Since ¢ has compact
support in V, we can find an open ball U C M with the same center as V
such that U € U € V and such that U contains the closed support of ¢.
Now, let S denote the sphere of the same dimension as M. By Proposition
5.6, there is a riemannian metric on S whose cotresponding Dirac operator Dg
(acting on C'°(Ag)) coincides locally with D over U. Moreover, by the same
proposition, (D? 4 1)~" coincides locally with (Ds® +1)~! over U. By Lemma
5.3, (D2+1)'1M¢ coincides exactly with (Dg*+1) 7" Myoy-1 over U. By Lemma
7.1, we have that (Dg® 4+ 1)7! is a compact operator on L*(As). Tt follows
that (Ds* +1)7!Men-1 is compact on L*(Ag). Since (Ds®+1)7' M, coincides
exactly with (Dg? 4 1)™ M1, it follows from Property 2 of Proposition 5.4

that (D? + 1)7' M, is compact. This completes the proof. #

Proposition 7.5 Let M be a complete riemannian spin manifold and-D the
Dirac operator on M. Then, for every f € Co(R), for every ¢ € Co{ M),
the operators f(D)M,, and M,f(D) (acting on L%-sections of the bundle of

spinors over M) are compact.
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Proof: Since S is dense in Co(R), it suffices to prove this for the case
where f € S. So, take f € S and ¢ € Co(M). Then the operator f(D)M,, is
equal to the operator g(D)-(D?*+1)~' M, where g is the function = — flz)(z*+
1) on R. Since f is Schwartz, then so is g. Thus g(D) is a bounded operator.
By Lemma 7.4, the operator {D? 4+ 1)7'M,, is compact. Hence F(D)M,, is the
product of a bounded operator g(D) and a compact operator (D% 4+ 1)~ M.
We have thercfore that f(D)M, is compact. Now since f € S and ¢ € Co(M),
then f(D)M, is also compact. Therefore, the adjoint M, - f(D) is compact.

This completes the proof. #

Proposition 7.8 Let M be a complete riemannian spin manifold, D the Dirac
operator on M, f an element of Flip, and ¢ an element of Co(M). Then the

commutator {f(D), M,] is compact.

Proof: Since C®(M) is dense in Co(M), and Flip, is dense in Flip, it
suffices to prove this for the case where ¢ € C®(M) and f € Flip.. By
using a partition of unity, we can then further reduce to the case where ¢
has support in an open coordinate ball. Assume this to be the case and that
f € Flip.. Let U C V be an open ball with the same center as V such that
U contains the closed support of ¢ and U C U € V. Pick a number r > 0
smaller than the distance between the support of ¢ and the complement of
U. Since f is in Flip,, then by Proposition 1.5, f can be written as the sum
f = fi + f; where f; is a Schwartz function, and f; is a C*°-Flip function
whose Fourier transform f; has support in [—r,7]. Now [f2(D), M, is compact
by Proposition 7.5. Since [f(D), M,] = [f1(D), M| +1fe(D), M), the problem

reduces to showing that [fi(D), M,] is compact.
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Let S be a sphere of the same dimension as M. By Proposition 5.6, there
is a riemannian metric on S whose corresponding Dirac operator Dg coincides
locally with D over U. Let h: U =V be the coincidence map. By Theorem
5.5, it follows that [fi(D), M,] coincides exactly with [f1(Ds), Myon-1] over U.
But S is compact. Hence [fi(D,), Mon-1] is compact by Proposition 7.3. Since
[f1(D), M,] coincides exactly with [£1(Dy), Myon—1} then, by Proposition 5.4
(part 2), [fi(D), M,] is also compact. This comnpletes the proof of Proposition
7.6. &

Definition 7.7 : Let
Flip, = {f € Flip: f(—o0) = 1 and f(o0) =0}

Flip, = {f € Flip: f(—0c0) =0 and f(c0) = 1}
Flip,. = Flip:ﬂFlipc

Flip,. = Flip, [ Flip..

Definition 7.8 Let M be a complete riemannian spin manifold, A the bundle
of spinors over M and D : C*(A) — C=(A) the Dirac operator on M. Let
KC denote the algebra of all compact operators on L*(A). Define the (double)
Toeplitz algebra T (of D) as the C*-subalgebra of B(L*(A)) generated by
K, and by the set of all f(D) - M, and M, - f(D) in B(L*(A)) such that
¢ € Co(M) and f € Flip. IfT € T let [T] denote the class T' + K in the

quotient C*-algebra T [K. Define the Toeplitz map

71 Co(M)® Co(M) = T/K
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by letting

e @ n) = [f(D)M, + g(D)M,]

where f is any Flip function and g is any Flip. function.
Lemma 7.9 The Toeplitz map
71 Co(M) ® Co(M) = T/K
of Definition 7.8 s a well-defined surjective x-homomorphism.
Proof: If f1, fa € Flipi, g1, 92 € Flipy, and ¢,n € Co(M), then
(A(D)M, + gi(D)M,) = (fo{D)M,, + 9:(D) - M)

=(fi — f2)(D) - My + (61 — 92)(D) - My

is compact by Proposition 7.5, since fi — f2 and g1 — g2 belong to Co(R) and
w,n € Co(M). So T is well-defined. It is clear that 7 is linear. To show that 7

is a O*-algebra homomorphism, we use Proposition 7.6 which says that
F(D)M, = M, f(D) mod K
whenever f € Flip and ¢ € Co(M), and Proposition 7.5 which says that
F(D)M, = M,f(D)=0mod K

whenever f € Co(R) and ¢ € Co(M). Now, take @, 1, 4, v € Co(M), f €
Flipi, and g € Flip,. Then '

(F(D)M,, + g(D)M,)(f(D)M, + g(D)M.)
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= f(D)M f(D)M,, -+ J(D)Mog(D)M,

+9(D)Mﬂf(D)Mn + g(D)MJL (D)ﬂ/fu

H

F(DY(DYM M, + f(D)g(D)MM,
+g(DYF(DYM M, + g(D)g(D)M, M,
= fHD)Mpn+ (fg)(D)My

+(9‘ : f)(D)M#n + gz(D)MM.{,

If

FA(D)YMpn+9*(D)- My, mod K

for fg € Co(R) and so (fg)(D)M,, = 0 mod K and (fg)(D) M,y =0 mod K.
Thus

(o @ p)T(n @ v)
= [f(D)M, + g(D)M,][f(D)M, + g(D)M.]
= [fz(D) Moy + gH{D) M.
= 7(pn,pv)
since f2 € Flip; and ¢°> € Flip,. This shows that 7 is an algebra homomor-

phism.

Next we note that if we take the same f,g,p, 4 as before, then
(f(D)M, + g(D)M,)" = My - f(D) + My - (D)

so that

e ®p) = [(f(D)M,+g(D)M,)']




= [f(D)Ms + 3(D)Mj]
— r@®p)

since f € Flip; and g € Flip,. Therefore 7 is a *-homomoprphism.

We now show that 7 is onto. Note that, since [f(D)M,] = [M, - f(D)]
in T /K, then T/K is generated by all the [f(D)}M,] such that f € Flip and
@ € Co(M). Also note that Flip is the algebra generated by Flip; and the
constant functions. Therefore 7 /K is generated by the set A of all the [M,]
such that v € Co(M) and the set B of all [f(D)M,] such that f € Flipi and
¢ € Co(M). B is certainly in the image of 7 since each {f(D)M,], where
f € Flip; and ¢ € Co(M), is equal to 7(y ©0). The set A is also in the image
of 7 since each [M,] in A is equal to [f(D)M, + (1 — FY(D)M,] = (0 B )
where f is any Flip; function. This shows that all of T /K lies in the image of

7, or that 7 is onto. This completes the proof. [ )

Theorem 7.10 Let M be a compact riemannian spin manifold, and let A, D,
T, K, and
r:C(My®pC(M)—-T[K

be as in Definition 7.8. (When M is compacl, Co(M) is the same as C(M).)
Then 7 is a C*-algebra isomorphism. This implies that if f € Flip,g €
Flip,,p,n € C(M), then f(D)M, + g(D)M, is compact if and only if ¢ =
n =0.

Proof: We already know that 7 is a surjective C*-algebra homomorphism

(by Lemma 7.9). So we only need to show that it is 1 —1, or that ker(7) = {0}.

Suppose 7(p,n) = 0. Since M is compact, the spectrum of D is discrete. We
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[F(D)M + g(D)M;]

(¢ ® )

since f € Flip; and g € Flip,. Therefore 7 is a *-homomoprphism.

We now show that 7 is onto. Note that, since [f(D)M,} = [M, - f(D)]
in 7/K, then T /K is generated by all the [f(D)M,] such that f € Flip and
¢ € Co(M). Also note that Flip is the algebra generated by Flip; and the
constant functions. Therefore 7 /K is generated by the set A of all the [M,]
such that ¢ € Co(M) and the set B of all [f(D)M,] such that f € Flip; and
¢ € Co{M). B is certainly in the image of 1 since each [f{D)M,], where
f € Flip; and ¢ € Co(M), is equal to (v & 0). The set A is also in the image
of 7 since each [M,] in A is equal to [f(D)M, + (1 — DM, = (e & )
where f is any Flip, function. This shows that all of T /K lies in the image of

7, or that 7 is onto. This completes the proof. #

Theorem 7.10 Let M be a compact riemannian spin manifold, and let A, D,
T, K, and

T CO(MY®C(M) - T/K
be as in Definition 7.8. (I/Vheﬁ M is compact, Co(M) is the same as C(M).)
Then 7 is a C*algebra isomorphism. This implies that if f € Flip,g €
Flip,,p,q € C(M), then f(D)M, + g(D)M, is compact if and only if ¢ =

n=0.

Proof: We already know that 7 is a surjective C*-algebra homomorphism
(by Lemma 7.9). So we only need to show that it is 1 —1, or that ker(r) = {0}.

Suppose T(yp,n) = 0. Since M is compact, the spectrum of I is discrete. We
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can therefore find f € Flip, such that f(A) = Xfo,e)(A) for all A in the spec-
trum of D. Therefore f(D) = X[o0)(D) and (1 = YD) = X(-c0p)(D). S0,
0 = rp@n) = [(1= D)D) My + F(DYM} = [tioomey(D) - My + Xpp (D) M)
which means that X(—,0) (D) * My + X(0,00)( D) My is compact. Multiplying on
the left by X[o,c0)(D) gives us that Xfo,00) (D) M, is compact, and multiplying
instead by X(—c0)(D) gives us that X(~o00)(D) - M, is compact. By The-
orem 6.12, P = Xjo,c0){ D) and Q = X(-00)( D) are both pseudodifferential
operators of order 0 with principal symbols [o7P] and [o1Q)] respectively in

59(A)/ S Del), where
JLP = X[O,m)(ULD)v
01Q = X—eoploLD),

and o7 D is the principal symbol of D. Thus PM, and QM, are pseudodif-
ferential operators of order 0 with principal symbols oL (PM)], lon(@M,)] €
5°(A)/S7H(A), where or,(PM,) is the section

¢ n(z) - (oo P)(€), VE € (T"M)s
and o1(QM,) is the section
¢ = p(z) - (02Q)(), ¥ € (T M)
By Proposition 3.7, oD € S1(A) satisfies
(oLD)(€)(w) = ¢ - w

whenever z € M, ¢ € (T*M), and w € A,. So, for every £ € (T* M), (or.D)(£) :

A, — A, is the map o¢ : Ay — A, given by Clifford multiplication on the
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left by i¢. From Remarks 3.6, Point 5, we see that, for every £ € T" M,
spec (o D)E) Uspec (2 D)(—€)) = {=i¢ll liEll}- (7.11)
Hence, for all £ # 0 in (T*M),

spec(ay,(PM,)(€)) U spec (on(PM,)(—£))
= {n(z) xpe (=€l n(e) - X[o.oo)(_+ll€||)}
= {0,n(z)}

and

spec (70(QM,)(E)) U spec(ar(QM,)(—£)
= (o) - Xeoon (—NEN 2(2) - x(eo (1€
= {p(2),0}.

Hence, for every r > 0, for every x € M,

sup{||on(PM)(E)] : € € (T" M)z, €]l = 7} = ln(2)]

and

sup{[|on (@M ) )]l : & € (T*M)s, llg] = 7} = le(2)]

It follows that, for every r > 0, a, W sup{||lon(PM)(E)]| : € € T*M, ||€| = 7}
— rllo, and b, & sup{lon(@M)©)] : € € TM, ]l 2 7} = lipllo Now,
since PM, and QM, are compact pseudodifferential operators of order 0,
then, by Theorem 2.2, ¢, — 0 as r — 09, and b, — 0 as r — o0. Since
ar = |[Nloos br = llplleo for all 7 > 0, it follows that 7lloo = lllloo = 0, which

implies that 7 = 0 and ¢ = 0, and thus (v, 1) = 0. This proves that 715 1-1. &



Theorem 7.12 Let M be a complete riemannian spin manifold, and let A, D,
7, K and

7 Co(M) @ Co(M) — T/K

be as in Definition 7.8. Then 7 is a C*-algebra isomorphism. This implies
that if f € Flip;, g € Flip,, 0,1 € Co{ M), then f(DYM,+g{D)M, is compact

if and only if o =71 =0.

Proof : We already know that 7 is a surjective ('*-algebra homomorphism
(Lemma 7.9). So we only have to show that 7 is 1-1, or that ker 7 = {0}.
Assume (¢, 7) = 0 where @, € Co(M). Suppose f € Flip.. Then there is a
g € Flip such that g- f = f. Note that 1 — ¢ € Flip,.. Since 7(p,n) =0, it
follows that

(DM, + (1 —g)(D) - My € K.

Multiplying on the left by g(D) gives us that
F(DYM, + (g — ¢} D) - My € K.

But ¢ — ¢° € Co(R) which implies that (g— g )(D)- M, € K (by Proposition
7.5). Therefore f(D)M, € K for every f € Flip,.. Since Flipy is dense in
Flip,, then f(D)M, € K for every f € Flip;. Similarly, we can show that
g(D)M, € K for every g € Flip,.

Now take any ¢ € M and let U,V & M be coordinate balls centered at =
such that I C V. Let p € C2°(U) be a bump function such that p(z) = 1. Let
r > 0 be smaller than the distance from the support of p to the complement
of U. Let f be a C®-Flip; function and g be a C*-Flip, function such that

f and § has support in [—7, r]. (This is possible by Corollary 1.10.) Let S be
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the sphere of the same dimension as M. By Proposition 5.6, there exists a
Femannian metric on S with corresponding Dirac operator Dg : C*(Ag) —

C>(As), and exact coincidences

(f(D)Mw-pa f(DS) “ Mgpon-1; h)
and

(g(D)Mn-psg(DS) » My pon—1; h)

over U. Since f(D)M,., and g(D)M,., are both compact {(for f(D)M, and
g{D)M, are compact from above), it follows from Proposition 5.4 (part 2),

that f(Ds) - Mypai—s and g(Ds) M, pep-+ are compact. This means that
7s{@-poh~m-pohTl) =10
where
75 : C(S) @ C(S) — Ts/K(L*(As))

is the Toeplitz map corresponding to D, and T is the (double) Toeplitz algebra
for Dg. But since S is compact, we know that 75 1s 1-1 (by Theorem 7.10).
Hence, ¢ - po h~ = 0, and - po A™" = 0. This implies that ¢ - p = 0 and
n-p=0. Since p(z) = 1, it follows that o(z) = n(z) = 0. This is true for all
z € M. Hence ¢ = 0 and n = 0, which proves that 7 is 1-1. #

If M is a complete riemannian spin manifold and A, I, T7,K and 7 are as

in Definition 7.8, then, since
T Co(M) &) Co(M) — T/K:
is an isomorphism (Theorem 7.12), we get a C*-algebra extension

02 K5 T = Co(M)D Co(M) =0 (%)




where i : K — T is the inclusion map and the map

T — Co(M) @ Co(M)

is the composition
T 4 TIK ™S Co( M) @ Co( M)

where g : T — T /K is the quotient map.

Definition 7.13 The C*-algebra extension (x) above will be called the (dou-

ble) Toeplitz extension of Co(M).

The single Toeplitz extensions for compact M. Now, we introduce two
related extensions, for the case where M is compact. Let M be a compact

riemannian spin manifold and let D : C®(A) — C°°(A) be the Dirac operator

on M. Let
PXo,00)(D)
Q = X(~c00)(P)
H, = P(L*(A)),
and

H, = Q(LH(A).

Since M 1s corﬁpact then D has discrete spectrum. Hence, P = f (D)
for some f € Flip,, and Q@ = g(D) for some g € Flip,. Thus, for every
o € C(M), [P,M,] = LF(D), M,] is compact, and [Q, M) = [g(D), My} i
compact. Define the positive, single Toeplitz algebra 7, to be the C*-
subalgebra of B(H,) generated by K(H,) and the set of all the compressions
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T, = PM,P € B(H,) such that p € C(M). Also, define the negative single
Toeplitz algebra 7; to be the C*-subalgebra of B(H,) generated by K(Hi)
and the set of all §, = QM,Q € B(H;) such that p € C(M). Since [P, M,]

and {@Q, M,] are compact, we get x-homomorphisms

1, : C(M) — T,/K(H,)
T C(M) — ﬁ/K(H[)

defined by
7.(p) = [PM,P]

n(p) = QM,Q].

The map 7, is 1-1 for the following reason. Suppose 7,(¢) = 0. Then
PM,P would be compact. But PM,P = F(DYM,f(D) for some f € Flip..
Hence, f(D)M, f(D) would be compact. This would imply that 7(0,¢) = 0
where 7 : C(M) ® C(M) — T/K is the Toeplitz map for D. Since 7 is 1-1,
we get that ¢ = 0. Therefore 7, is 1-1. Similarly 7 is 1-1. (Note that this

also shows that I, and H, are infinite dimensional, or that P and () are not

compact.) These maps 7, and 7 are clearly onto. So they are *-isomorphisms.

Hence we have corresponding extensions
0—K(H)—>T, = C(M)—-0

0— K(H)—~T—C(M)—0
which we call the right Toeplitz extension of D and the left Toeplitz

extension of D. They generated index maps (Fredholm index maps)

8, : Ky(C(M)) = Z



d: KLi(C(M)) = Z

since K, of the algebra of compacts is Z. Now identify Ki(C(M) & C(M))
with K;(C{M)) ® K,(C(M)). The Toeplitz extension

0 K—=T—-CM)aC(M)—0
also generates an index map
d: K{(C(M))® Ki(C(M)) — Z.

It is clear from the definition of the index maps of C*-algebra extensions that

the following is true.

Proposition 7.14
8(0,a) = d,(a)

and

8(a,0) = d(a)

for every a € K,(C(M)).

2.8 Odd-Dimensional Spheres

Let S be an odd-dimensional sphere with a given riemannian metric, and
with Dirac operator D : C®(A) — C*(A). We know that K°(S) = Z and
that K1(S) = Z. Let

K°($) ® K1(S) & Ki(S)
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denote the cap product (see [BmDg3}). The positive Toeplitz extension of D
defines an element [D] of K;(S). Poincaré duality for K-theory ((BmDg3})

tells us that cap product with [D] gives an isomorphism
K°(S) 5 Kq(S).

From this, we see that K(S) = Z and that [D] € Ki(S) = Z is a generator

of K1(5). Now, there is an isomorphism

1

vt Ki(S) S Hom (K(S), K°(K)) £ Hom (Z,Z).

For every [r] € K1(S) represented by the extension 7,
0K - A C(5)—0,

~{[7]) : K*(S) = K°(K) is the index map determined by . Thus,

(D)) : K'(S) - Z

is the index map

8, : K (C(S)) — T

determined by the positive Toeplitz extension
0K —-T, - C(5)—0.

(K1(C($)) is the same as K'(S).) Since [D] is a generator for K1(S) and
since «y is an isomorphism, then ([D]) = 0, must be an isomorphism from

K1(C(8)) 2 Z to Z. So, the following is true.
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Theorem 8.1 If S is an odd-dimensional sphere with a given riemannian
metric and with a corresponding Dirac operator D : C®(A) - C=(A) (with

respect to a chosen spin structure), and if 7, is the positive Toeplitz extension
0K -1, —-C(S)—0

for D, then the induced inder map
8, : K{{C(S)) = Ko(K)

is an isomorphism from K1(C(S)) = Z lo Ko(K)= 7. Thus, tfa € K.(C(S5))
is a generator of K1(C(S)), then 8:(a) = +1 or —1.

If

0=+ K—-T=C(SYDC(S)—0

is the double Toeplitz extension of D), and if
a: K (C(S)) @ K(C(S)— 12

‘s the induced index map, then from Theorem 8.1 and Proposition 7.14, we
sce that the map a — 8(0,a) € Z is an isomorphism from IC(C(S)) to Z.
Now, let a € K;(C(S)) and suppose a = [¢] where ¢ € M(C(S5)) is a
unitary. Then M,, € B(L*(A)*) is Fredholm with Fredholm index 0, and so the
element, [M,] € K1(C(S)@®C(S)) represented by M, is such that 8([M,}) = 0.
But if f € Flip,, then '

Mtp:(l‘f)(D)'Mw+f(D)'Mso



and therefore [M,,] € K1(C(S) ®C(S)) is the same as the element ([¢], [¢]) =
(a,a) in K:(C(S)) ® Ki(C(S)). So 8(a,a) = H[M,]) = 0 which implies that

Ha,0) = —8(0,a)

for all a € K,(C(S)). Since the map a +— 9(0,a) from Ki{(C(S)) to Z is an
isomorphism, it follows that the map a 3(a,0) is also an isomorphism. Also,

if a € K(C(S)) is a generator of K1(C(5)), then
HNa,0) = —9(0,a) = +1 or — 1.

Moreover, since 8(a,0) = di(a) for all a € K(C(S)) (Proposition 7.14),
then & : K1(C(S)) — Z, like 8,, is also an isomorphism, di{a) = 9(e,0) =
—5(0,a) = —d,(a) for all a € Ky(C(S)), and if a is a generator of Ki(C(5))
then &(a) = —8,(a) = +1 or —1. So, we have proved the following two

theorems.

Theorem 8.2 Both 8, : K,(C(S)) — Z and 8 : K{(C(S)) — Z are iso-
morphisms. Moreover, di(a) = —0,(a) for every e € K, (C(5)), and if a €
K,(C(S)) is a generalor, then Oi(a) = ~3,(a) = +1 or ~1.

Theorem 8.3 The index map
d: K (C(8)) & Kr(C(5)) = Z

is an isomorphism on each component. That is the maps a — 0(0,a) and
a — a,0) are isomorphisms from K(C(S)) to Z. Also O(a,a) = 0 or
8(a,0) = —8(0,a) for every a € Ki(C(S)). If a is a generator of K1(C(5)),
‘then 8(a,0) = —0(0,a) = +1 or —1.
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2.9 0Odd Dimensional Manifolds Homeomor-
phic to R™

Here we consider an odd-dimensional, complete riemannian manifold M,
homeomorphic to R™, with Dirac operator 1) : C®(A) — CX(A), and

Toeplitz extension
0= K =T Co(M)dCo(M)—D (9.1)
which we call 7. This extension induces an index map
8 : K1(Co(M)) ® K1(Co(M)) — Z.
Since M is homeomorphic to R™ and m is odd, then
K1(Co(M)) 2 Ki(Co(R™)) = Z.

Thus @ is a map

0:Z260Z— 7.
We use Co(M)* to denote the C*-algebra Co(M) with identity adjoined. (See
Definition 3.2.1 of [Bla).) Elements of Co(M)* will be regarded as functions
@ on M for which there exists a constant A, € C such that for every € > 0,
there exists compact K C M such that jp(z)—X,| < efor all z ¢ K. Roughly
these are functions with a limit at infinity, or continuous functions on the one

point compactification of M. We have the following theorem.

Theorem 9.2 The index map

81 Ky(Co(M)) ® Kr(Co(M)) = Z
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is an isomorphism on each component. That is, the maps a 8(0,a) and
a — 8(a,0) are isomorphisms from K1(Co(M)) to Z. also, a(a,a) = 0, or
Ha,0) = —0(0,a) for every a € K (Co(M)). So, if a € Ki(Co(M)) is a
generator of K1{Co(M)) then (a,0) = —3(0,a) = +1 or —1.

Proof : Let a € Ki(Co(M)). Then a = [¢] for some unitary ¢ €
M, (Co(M)1), for some k > 1. Let f be any element of Flip,. Then1—~ f €
Flip; and 8(a,a) = &([(1— f)(D)-M,+ f(D)-M,}) = 8([Mw]) is the Fredholm
index of the Fredholm operator M, € B(Lz(A)j“). Since ¢ is unitary, so
is M,, and hence the index of M, is 0. Thus d(a,a) = 0, which gives us
da,0) = —0(0,a).

Thus, to complete the proof, we only have to show that 3(0,a) = +1
or —1 when a is a generator of K;(Co(M)). For this would also imply that
&(a,0) = —9(0,a) = +1 or —1 for a generator a. For this, we take a generator
a € K1(Co(M)). T a = [¢] and f € Plip,, then (0,a) = [(1 = f)}(D) + f(D)-
M,,], which means that (1 — f)(D)+ f(D)- M, is Fredholm, and 8(0, a) is the
Fredholm index of (1 — f)}(D) + f(D) - M,. So it suffices to find appropriate
f and @ as above, and then show that the Fredholm operator (1 — f)(D) +
f(D) - M, has index +1 or —1. To do this, we take any two coordinate balls
U,V C M with the same center such that U C V. Then take a unitary
© € My, (Co(M)*) (sﬁy @ € Mi(Co(M)T) for some k = 1) such that a = []
and ¢ — 1 has compact support in U. Let r > 0 be a positive number smaller
than the distance between the support of ¢ — 1 and the complement of U.
Let f be a Flip, function whose Fourier transform has support in [~7,7].

(This is possible by Corollary 1.10.) Let 5 be the sphere of dimension m.
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By Proposition 5.6, there is a riemannian metric on S, a corresponding Dirac

operator Dy : C®(Ag) — C®(As), and an exact coincidence
(f(D) . M(p_1, f(DS) : M((p—l)oh_la U'J V? h‘)

Since the coincidence is exact, L2(U,A)* and L*(V,Ag)* are reducing for

F(DYMg_y and f(Ds) - M(p-1)on-1 respectively, and, with respect to the de-

compositions

L}A) = LU, A) @ L*(M]U, A,
L}(As)t = LAV, 8s)* & L*(S/S, As)',

we may write

f(D) My =A®0,
f(DS) ' M(qo—l)oh"l = AS & 0,
where A and Ag are the compressions of f(D)M,_; and F(Dg).My_1jen— to

the spaces L*(U, A)* and L*(V, A s)¥ respectively. Now, consider the operators

C=1+f(D) My

and

Cs =1+ f(Ds) . M(q,_]_)oh—] .
With respect to the decompositions of L*(A)* and L2(Ag)* given above, we
note that

C=(1+Aal

and

Cs=(1+As) 1.
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Also, we may write

C=Q0-NHD)+f(D) M,

So, from the discussion above, we know that C is Fredholm, and, to complete

the proof, it suffices to show that the index of C is +1 or —1.

Well, since € = (1+ A) &1 and C is Fredholm, then 1 + A € B(L*(A))

must also be Fredholm and ind(C) = ind(1 + A4) + ind(1) = ind(1 + A)+ 0

= ind(1 + A). That is,

ind (€) = ind (14 A).

From the definition of coincidences, we have that A € B(ILMU,A)) is
unitarily equivalent to Ag € B(LX(V,Ag)¥). Therefore 1 + A € B(LX(U, A)¥)
is unitarily equivalent to 1 + Ag € B(L*(V, AgY). Thus, 1 + As is also
Fredholm and

ind (1 4+ A) = ind (1 + As).

Since Cs = (1 + Ag) & 1, it follows that Cs is Fredholm and ind (Cs) =

ind(1 + As) + 0 = ind(1 + Asg). That is,
ind (1 + As) = ind (Cs).

Thus we have shown that ind (C) = ind (1 + A) = ind (1 + As) = ind (Cs).
That is,
ind (C) = ind (Cs).

So, to finish the proof, we only have to show that ind (Cs) = +1 or —1.
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Now let

(poh™')z), z€V
n(z) = 4

1, tgV

.

Then 5 : § — M;(C) has value 1 outside V and coincides with p viah : U — V
over V. Since ¢ is a unitary in My (Co(M)T), it follows that n € Mi(C(S)) is
a unitary. More important, since [p] = K;(Co(M)) is a generator, it is clear
that [] € K1(C(S)) is a generator. Now, we observe that (p—1)oh™ =9 —1

and therefore
Cs =1+ f(Ds) Myi = (1 — £)(Ds) + f(Ds) - My,

Since f € Flip, and 5 is a unitary, then [Cs] = (0, [7]) in K1 (C(S))@K1(C(5)),
and

ind (Cs) = 8(0, [7]).

But we just showed that [17] is a generator of K;(C(S)). Hence, by Theorem
8.3, 30, [n]) = +1 or —1. It follows that ind (Cs) = 41 or 1, which completes

the proof. &
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2.10 r-strings

Definition 10.1 Let X be a metric space and let 7 > 0. An r-string (of

beads) in X is any disjoint union I, UR,UR3U. .. of a sequence Ry, Ry, Hs, ...

of Borel subsets R; C X such that each R; has diameter < 2r, and such that
B(R;,v) N B(R;,r) = 0 whenever s £ §. An r-string will also be called simply
a string, and the R; will be called r-beads (of the string).

I E — X is a hermitian vector bundle over a complete riemannian mani-
fold X, A : L*(E) — L*(E) a bounded operator on L*(E),and S € X a Borel

subset of X, we will use Alg to denote the operator
Alg = Alpas,py : L2(S, E) = L*(E).

Proposition 10.2 Let 7 > 0, E — X a hermitian vector bundle over a
complete riemannian manifold X, A : L}(E) — L¥(E) an r-local bounded

operator on L*(E), and S = |J R; an r-string with beads R;. Then the operator

Alg has norm

I Als] = sup lAlw].

Proof: Let u € L*(E). Then we can write u = ) u; where each u; €
L*(R;, E). Since A is r-local, then each Au; has support in B(R;,r). Since S is
an r-string, the B(R;,r) are mutually disjoint. Hence, the Au; have mutually

disjoint supports. This implies that

Al = Y fAu?
S Al 2 - al?



< (sup Al ) - Sl
(suplAle) el

il

which gives us that ||Als]| < sup; |Alr|. Of course, each NAlr |l < || Als]-
Therefore, ||Als|| = sup; || Alz]- #

Proposition 10.3 Let r > 0, E — M o hermitian vector bundle over a
complete riemannian manifold M, and A : L*(E) — L*(E) an r-local bounded
operator on L2(E) with the property that, for some ¢ > 0, Als]l < ¢ for all
balls B of radius r. Assume further that M can be covered by a finite number

q of r-strings. Then ||A|| S c¢-q.

Proof: Let § be an r-string and R one of its beads. then R has diameter
< 2r and is therefore contained in a closed ball B of radius r. Since the
operator A|p has norm < ¢, then Alg also has norm < c. This is true for all
beads of §. So, by Proposition 10.2, the norm of Als is < ¢, and this is true
for every r-string S in M.

Now, let Sy,...,8, be g r-strings which cover M. Let
S = S\($1U---USic1).

From above, [|Als;|| < ¢ for all i. Since S; C §;, we also have ||A|g |} < ¢ for

all i. Take u € L*(E). Note that the S; are mutually disjoint. Hence, u =
5°9_, u; where each u; has support in 8. 1t follows that ||Aul| < S5, [|Au =
LAl sl < S AL - ) < Ty el < Thog ol = gl
Thus ||| < gc- |ju]| for all u € L*(E). Therefore hAl <g c. &
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Definition 10.4 Let M be o complete riemannian manifold. Then M is said

to have bounded geometry if M has positive injectivity radius, and if the
curvature tensor of M is uniformly bounded as are all its covariant derivatives.
Proposition 10.5 IfM isa compact riemannian manifold, then M has bounded
If M 1s the universal covering space of a compact, riemannian

then M has bounded

geometry.
manifold, and has the geometry anduced by the lifting,

geometry.

Proof: Easy. #

Proposition 10.6 If M has bounded geometry and r > 0, then M can be

covered by a finite number of r-strings.

Proof: This is Lemma 7.3 of [Roe2]. &

Corollary 10.7 If M is a compact riemannian manifold and r > 0, then its

universal cover M can be covered by a finite number of r-strings.

Proof: By Proposition 10.5, M has bounded geometry. Hence (by Propo-
sition 10.6), M can be covered by a finite number of r-strings. #

We will need soﬁlething slightly stronger than Corollary 10.7 for small r.

If « : [a,b] = M is a smooth curve in a riemannian manifold M, we will

use |e| to denote the length of a. If S is a subset of a metric space, we will

use | S| to denote the diameter of §. If S, T are subsets of the same metric

~ space, we will use d(5,T') to denote the distance from S to T'.
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Lemma 10.8 For every t > 0 let B(t) C R™ denote the ball of radius ¢
centered at 0. Assume B(t) has the usudl euclidean metric coming from R™.
Let p be a point in a compact riemannian manifold M, let v >0 be a number
smaller than the injectivity radius of M and small enough so that for every
z,y € B(p,r), there is only one shortest geodesic between x and y, and it lies

completely in B(p,r). Let
exp, : B(r) — B(p,7)

be a normal coordinate map at p. Then there exist o, 8 > 0 such that, for

every smooth curve vy in B(r),

a- v} < |(eap,)ev] < B |yl (1)
for every subset S C B(r),

a|S| < |ezp,(S)] < B-15] (2)

(where |exp,(S)| stands for the diameter of exp,(S) in M), and, for every two
sets S, T C B(r),

a-d(S,T) < d(expp(s)’ ewpp(T)) <B-d(S,T) (3)

(where d(exp,(S), exp,(T)) stands for the distance between ezp,(S) and exp,(T)

Proof First we note that, by the assumption made on r, the distance in
M between two points in B(p,r) is the length of a geodesic lying completely

in B(p,r) and is therefore the distance in B(p,r) between the two points.
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From this, it follows that if S, C B(r), then |exp,(S)l, which is the diam-

eter of exp,(S) in M, is the same as the diameter of exp,(S) in B(p,r), and

d(exp,(S), exp,(T)), which is the distance between exp,(S) and exp,(T) in M,

is the same as the distance between exp,(S) and exp,(T') in B(p,r). We sec

therefore that (2) and (3) will follow from (1). So it is enough to prove (1).
To do this, it suffices to show that there exists o, > 0 such that, for

every z € B(r) and v € T(B(r)), aflv] < | De(exp,}v]l-< Bl|v]] where
Dy(exp,) : To(B(r)) — Texp,«M

is the derivative of exp, at the point . Since 7 is smaller than the injectivity
radius at p, we can find s > r, still smaller than the injectivity radius at p,

and a normal coordinate map
exp, : B(s) — B(p,s)

which extends exp, : B(r} — B(p,r). Since s is smaller than the injectivity

radius of M, then the derivative

D, (exp,) : TxB(s) — TexppmM

at  is invertible with inverse A, say, for every  in B(s). Let || D, (exp,)]| and
| Az]| denote the operator norms of these operators, for every = € B(s). Since
B(r) is compact, there exist §, 4 > 0 such that | Az)| < 6 and ||Dz(exp,)|| < 58
for every z € B(r). This implies that | Dz(exp,)ol| < B ||v|| for every = €
B(r) and for every v € T(B(r)). Since D,(exp,) is the inverse of Ag, it -also
implies that || Dy (exp,)v]| = 3||v|} for every « € B(r) and every v € To(B(r)).

Thus, the lemma is true. @
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Proposition 10.9 Let M be a compact riemannion manifold of dimension
M and let M be its universal cover. Assume M has the riemannian melric
induced by the lifting. Then there is an R> 0 and an integer L > 0 such that

for every r > 0 with 0 <r < K, there are L r-strings which cover M.

Proof Let @ be the injectivity radius of M and let p : M — M be the
covering map. If z,y € M are two different lifts of the same point in M then
the distance from « to y is > 2a. Take R < Ya small enough so that if B C M
is a ball of radiug R and z,y € B there is only one shortest geodesic joining @
to y and it lies completely in B. Since M is compact, it is covered by a finite
number, say k, of balls of radius H. Let B(q:, R), B{q2, R), ..., B(qr, R) be
such a cover for M, where qq,...,q € M. For every ¢;, we can write

B R)= U Bl R)

g€m (M)

where p; € M is a lift of ¢; and m, (M) is the fundamental group of M. This
is a disjoint union and, in fact, if g,k € m(M),g # h, and i € {1,..., k}, the
distance between g - p; and h-p; is > 2a > 4R (as mentioned above), and thus
the distance from B(g - p;, R) to B(h - p;, R} is greater than 2R.

Let exp,; : B(R) — B(g:, R) be a normal coordinate map for each . By

Lemma 10.8, for each i € {1,...,k}, there exist i, 5; > 0 such that
;|| < lexpy,(S)] < Bil S|
for every S C B(R), and

a; - d(S,T) < d(exp,,(S),exp, (1)) < Bi - a(s,T)
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for every S,T C B(R). Let o = min o, and 8 = max ;. Then «, 8 > 0,
olS| < lexp, (S)] < B 151,
and
- d(S,T) < dlexp,, (5),exp, (T) < B+ d(5,T)
for every ¢ € {1,2,...,k} and every 5,7 C B(R).
Now, for every g € m(M), lift the normal coordinate map
exp,, : B(R) = Blgi, B) & M
up to a normal coordinate map
exp,p; t B(R) = Blg-pi, R) C M.
Then, for every S,T € B(R),g € m(M), we have
a - 15} < lexpy, (S) < B-|S]
and
- d(S,T) < d{expyp(S), exp, (1) < B d(S,T).

Let I be the smallest integer such that

Bym

[> +1

and let
L=Fk-I"
Take any r > 0 less than R, and let

2r

pvm’

A=
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Let

I=[0,1)", L=I+z

for every z € R™, and, for every n € 2™, let
T, = U (L+!-7)
jeZm
= U Ioy;
- jelZm
Then
R™ = |J I
- jEdm
= U U Insjs
nel JnZm jel.Zm
>R"™ = |J T.
nelINZm™
= R" = AR"
= A U Tn
ne(I)NZ™
= U AT,
ne(inynZ™
Thus

BR)= U (AT nBR)

ne(iNNZ™

So, for each g - p; where g € m(M),i € {1,...,k}, we have that

B(g * Piy R) = CXPgupy (B(R))

= U ey, (AT NBR)

ne(ilnZm™

= U Sn,:',g

ne(llnZm




Where
Snio & exp,, (A Ty) N B(R))
forn € (INNZ™,1 <t < k,andg € 7 (M). Since, for eachz € {1,...,k}, {B(g

p;,R) : g € m(M)} is a disjoint collection of balls, each pair of which is sep-

arated by a distance greater than 2R > 9r, then, for each n € (II)NZ™, and
i € {1,...,k}, the collection {Snig: g €7, (M)} is disjoint and each pair of
this collection is separated by a distance greater than 2r. We now let

Sni = U S'n.,i,g

g€m (M)

for each n € (INNZ™ i€ {l,...,k}
Claim 10.10 S,; is an r-string for each n € (L[}27,1 € {1,...,k}.

Proof of Claim 10.10: Let n € (II)NZ™,i € {1,...,k}. Since each

pair of elements in {Snig : g € m(M )} is separated by a distance greater than

9r, it suffices to show that S,g is an r-string for each g € m(M). Now

Tn = U Iﬂ.-l—j'

jelZm

So
OT) NB(R)= | (Mas) NB(R),

jeldm™

and thus

Spig = XDy ((AT%) N B{R))
= expy (- I NB(R))

jelZm

= U Bﬂ,i,gj

jeldm
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where

Roigi s expyp (A Tngj) N B(R)).

We will now show that S is an r-string with r-beads R, ;g . For this, it

suffices to show that | Ry g.i] < 2r for cach Ruigs 7 ¢ and that
(R gjis Brigia) > 27

whenever j1,72 € [ - Z™, j1,# J2, and Ruigirs Baig., are both nonempty.

First we show that LR, ] < 2r. Well,

\Ruigil = 1expgp (3 Tass) N B(R))]
< B-\(r L) BRI
< B g
= B ALyl

B+ A/m
2r

= 2r.

i

This shows that |Rnig | < 2r-
Now, we take j1,72 € I-Z™, 11 # ja. The distance from Rrigin 10 Bnjigias

(assuming both are nonempty) which by definition of Ryig, is the distance

from expg.p, ((A - L) B(R)) to expgpi( (A Lnyin) NB(R)), 1

o+ d((A+ Ley) N B(R), (A- Tnia) N B(R))

Y

> o d(Mug, Motia)

= oAd(Lupji> dntin)



T3

Since j1 — j2 € {-Z™ and is not 0, it is clear that the distance from f,,; to

is > I — 1. Thus the distance from Ry g, t0 Rnjigj. 18 2 a-A-(I—1)

> o 2r ,3\/1771—
B-vym a

This completes the proof of Clai-m 10.10. &

In-i—jz

= 2r,

Proof of Proposition 10.9 (cont’d): We showed that, for each ¢ €

{17' e k}ag € 7?1(M),
Blg-pyR)= U Sniig:
ne(lliNZ™
Since M is covered by the set of all B(¢i, ), then M is covered by the collection

of all B(g - pi, R) such that < € {1,2,...,k} and g € 71(M). Hence,

~

M = UB(g'an)

= CJ U U Sniig

i=1 gem (M) ne(INNZ™

= U Lk) U Snyirg

ne(NZm i=1 gem (M)

U U S

ne(iinZm =1

Now the set ({I) N Z™ is equal to the cross product of {0,1,2,...,1— 1} with
itself m times, and therefore has cardinality {™. Since each S, ; is an r-string
in M (Claim 10.10), it follows that M is covered by L ( = k™) r-strings,

which completes the proof. #

Lemma 10.11 Let M be a complete riemannian spin manifold with Dirac
operator D : C(A) — C2(A). Let f be a C Flip function and let @ be a

“bounded continuous function on M. Suppose r > 0, f has support in [—r,7],



74

and that, for some > 0, |p(z) —@(y)| < p whenever d{z,y) £ 3r. Then, for

every r-string S in M, we have

WL (D)y Mlsll < 2/ flloopt-

Proof: Let S be an r-string of r-beads Ry, Ry, Ha, .. .. Since f has support
in [-r,7], then f(D) is r-local (by Corollary 3.5). Of course, M, is 0-local.
So, [f(D), M,] is r-local. By Proposition 10.2, it follows that

ILF(D), Mllsll = sup [Lf(D), M|kl

| < 2||flloo « 4 for every ¢ 2 1.

So, it suffices to show that ||[f(D), Myllr;
Take ¢ > 1, pick p € R; and let A = ¢(p). Since R; is an r-bead for
each i, then d(z,p) < 3r for all z € B(R;,r) and so by the assumption on
o, llp(x) = M| < pforall z € B(R;,r). Therefore [|M,_v| < p|jvl} for all
v € L¥(A) with support in B(R;, 7).

Now take u € L*(A) with support in R;. Since f(D) is r-local, then

f(D)u has support in B(#;,r). Thus

IF(D), M| = | f(D)Myu— M, f(D)u]
= |F(DYMyu — F(D)hu) + F(D) (M) = Mo f(D)u]

< NAD)Mooxull + | Moo f(D)ull
< D pllull + 4 1D

{since both u and f(D)u have support in B(R;,r))
< U flloo + pellall 4 Y Mool

= 2 flleo - pilluall-

Therefore ||[f(D), Mg || < 2| f]lcop Which completes the proof. #




2.11 Dirac Extensions on a Cover

Let M be the universal cover of a compact riemannian spin manifold.
Assume M has the riemannian metric and bundle A of spinors induced by
the lifting. Since M is the universal cover of a complete riemannian manifold,
then M itself is complete. Let D : C(A) — C®(A) be the resulting Dirac
operator. Let UC(M) denote the (*-algebra of all bounded uniformly con-
tinuous functions on M. Let C be any C* subalgebra of M (UC(M}). Each
clement of C is a bounded, uniformly continuous k x k matrix-valued function
on M. Let D' be the C*-subalgebra of B(L*(A)*) generated by the set of all
f(D) and M, € B(L*A)F) such that f € Flip and ¢ € C. Define the Dirac

algebra of C to be the ideal D of D' generated by the set of all M, such that

w€C.

Remark 11.1 In the case where the constant function 1 belongs to C, we
actually have D = D'. So, in this case, D is the C*-subalgebra of B(IA(A)F)
generated by the set of all f(D) and M, such that f € Flip and ¢ € C. Also,
since the set A of all f(D) such that f € Flip, and the set B of all M, such

that ¢ € C, are both C*-algebras, then when 1 € C, D is actually the closed

algebra generated by these two sets A and B.

Next, we let £ € B(L*(A)¥) denote the C"-subalgebra of B(L*(AF)
generated by the set of all f(D) and M, such that f € Co(R}) and ¢ € C.
Then we let £ be the ideal of £’ generated by the set of all M, f(D) and
f(D)+ M, such that f € Co(R) and ¢ € C. Of course, Lisa C*—subalgébra

of A.
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Lemma 11.2 Let A be a famaly of functions in UC(M, M(C)) with the prop-

erty that, for every € > 0, there exists 6 > 0 such that whenever x,y €

M,d(z,y) < 6, and ¢ € A, then ||@(x) — o(¥)|| < €. Then, for every € > 0,

there is an r > 0 such that if g € C®-Flip, § has support in (—7,7), l|gllee < 1

and @ € A, then [g( D), M|l <.

Proof: Take any ¢ > 0. By Proposition 10.9, there is an R > 0 and an

integer 1 > 0 such that, for every v > 0 with 0 <r < K, there are [ r-strings

which cover M. By the assumption on the family A, there exists 6 > 0 such

that [Je(z) — W < % whenever © € A and d(z,y) < . We can, of course,

choose & so that § < 3R. Let us do this. Let r = -f;. So 0 < 7 < R. Since

r < R, then, from above, we can find ! r-strings Sy, S, ,5’; which cover M.

Now, suppose ¢ € A,g € ¢ Flip, § has support in (—r, r) and [|gle <

1. Since § has support in (—r,r) and since lo(z) — el < 3 whenever

(4

d(z,y) < 3r, it follows from Lemma 10.11 that ||[g(D), Mylls: || < 2glleor < 1

(since ||glleo < 1) for all i € {1,...%k}. This implies that |[g{ D), M}l
M|

(A

I Z?:l[g(D)JMW]lSi” < Zf-—"l% =k7< e(since k < 1). Thatis g(D),

¢. Thus, the lemma is true. [ )

Lemma 11.8 If p € UC(M, M (C)), then for every € > 0, there ezists r > 0

such that if g is ¢ C°-Flip function, § has support in (=7, r), and liglls < 1,

then ||[g(D), Mo]l| < &

Proof : This is a special case of Lemma 11.2. &

Lemma 11.4 I[fpe C and f € Flip, then [f(D), M/} € L.



Proof : Suppose p € C and f € Flip. If f = 0 then we are done. If
f # 0, then, by taking ﬂ?ﬁ; =1.

Take ¢ > 0. By Lemma 11.3, there exists v > 0 such that if g € C*-Flip, §
has support in (~r,7), and ||g|le < 1 then [[[¢(D), M,]|| < e By Corollary
1.17, there exists g € C°-Flip such that § has support in (—r,r),g—f €
Co(R), and [|gllos < || fllco = 1. Since h = f—g € Co(R) then [R(D), M,] € L.
From this and the equation [f(D), M,] = [g(D), M,] + [A(D), M}, it follows
that the distance from [f(D), M,] to £ is < ||[g(D), Myjl < e. This is true

for every ¢ > 0. Therefore [f(D),M,} € L. &

Lemma 11.5 Suppose ¢ € C,g € Co(R), and f € Flip. Then multiplying

M, - g(D) and g(D)- M, on the left or on the right by f(D) gives an element

of L.

Proof : Multiplying M, - g(D) on the right and g(D) - M, on the left by
F(D) gives M, - (g - f)(D) and (f - ¢)(D) - M, which are clearly in £ (since
f-g € Co(R)). Also, if we show that f(D)-M,g(D) € £ then we can conclude
that g(D) - M, - f(D) = (f(D)- Mg - (D))" € L. So it suffices to show that
f(DYM,g(D) € L. But

F(DYM,g(D) = [f(D), Mlg(D) + My - (fg)(D)-

Since fg € Co(R), the second term M,(f - g)(D) on the right belongs to
£. By Lemma 114, [f(D),M,] € £. Since g(D) € L' and L is an ideal of
L', it follows that the first term [f(D), M,] - g(D) also belongs to L. Thus
F(D)YM,g(D) belongs to L. #



Lemma 11.6 If f € Flip,a € L', then [f(D),d] € L.

Proof : L' is generated by the set of all M, and g(D) such that ¢ € C
and ¢ € Co(R). Using this and the fact that £ is an ideal of L', we can
reduce the proof of the lemma to showing that [f(D),g(D)] and [f(D), M,]
both belong to £ when f € Flip,g € Co(R), and ¢ € C. But for such f. g
and o, we have [f(D),g(D)] = 0 and, by Lemma 11.4, [f(D),M,] € L. Thus

Lemma 11.6 is true. #

Corollary 11.7 £ is an ideal of both D' and D.

Proof: Since D C T it suffices to show that £ is an ideal of D'. Since
T’ is generated by the set of all M, and f(D) such that ¢ € C and f € Flip,
then we only have to show that, given L € £, € Flip, and ¢ € C, that
M,L,LM,, f(D)L and Lf(D) belong to L. By taking adjoints, it is only
necessary to show that M,L and f(D)L € £ for such ¢, f, and L.

So take such ¢, f, and L. It is easy to see that ML € L. For M, € L' (by
definition of £'), L € £, and £ is an ideal of L'. Therefore M, L € £. To show
that f(D)L € L, we observe first that I can be approximated by finite sums
of terms of the form a-g(D) My -bor a- My -g(D)-b where g € Co(R),n € C,
and a,b € £'U{1} (where 1 is the identity operator on L}(A)*¥). So, it suffices
to show that f(D)-a- ¢g(D) - M, and f(D)+aM, - g(D) - b belong to £ when
g € Co(R), a,b€ L'U{1},and n € (. We take such g, a, b, and . By Lemma
116, [f(D),d] € £. (If @ = 1 then [f(D),a] = 0.) Similarly, [f(D),b} € L.

Now,

F(D) - a- g(D)Myb = [f(D),al - g(D)M, - b+a-(f-9)(D)- My-b




Note that g(D)- M, - b€ L. From above, [f(D),a] € L. Therefore [f(D),q] -
g(D) - M, - b belongs to L. Also, since f g € Co(R), then (f - g}(D)M, €
L. Since a,b € L£'U{1}, it follows that a(f - 9(DYM,, - b € L. Therefore

f(D)-a-g(D)- Myb belongs toL. Similarly, we have that
f(D)-a-Mqg(D)-b= [f(D),a-My)-g(D)-b+a-My-(f-9)(D) b
belongs to £. #

Proposition 11.8 Ifae,b €T, then [a,b] € L. Consequently if a,b€ D, then
[a,8] € L.

Proof: This follows immediately from Lemma 11.4 and Corollary 11.7. &
If o € D, we will let [a) € D/L denote the class ¢ + Lin D/L.

Proposition 11.9 D is the O*-subalgebra of B(L*(A)*) generated by £ and
the set of all f(D) - M, such that f € Flip and ¢ € C. Therefore D/L is
generated by elements [f(D) - M,) where f € Flip and ¢ € C.

Proof: Since [f(D), M,] € L for every f € Flip,¢ € C, then, from its
definition, D contains as a dense subset the set of all finite sums of terms of
the form f(D)M, + L such that f e Flipyp € C,and L € L. Thus, D is
generated by £ and the set of all f(D)- M, such that f € Flip andpeC. &

Lemma 11.10 If L € £ and p € Co(M), then M,-L and L- M, are compact.

Proof: Take p € Co(M). From its definition, £ contains as a dense subset

a vector space spanned by operators L of the form f(D)MT or M, f(D)T




where T' € B(L*(A)),¢ € C, and f € Co(R). So it suffices to prove that

M,L and LM, are compact for such operators L.

By taking adjoints, we only have to show that M, - L is compact for

such L. So take T,¢, and f as above. Let L = f(D)- M,T. Then ML =
M,f(D)-M,-T. But M, - f(D) is compact since 4 € Co(M) and f € Co(R)

(Proposition 7.5). Therefore M, L is compact. Next, let L=M,f(D)-T. In

this case M, L = M, f(D)-T. ‘The operator M, - f(D) is compact since
e € Co(M) and f € Co(R). Thus M, L is compact. ®

Corollary 11.11 Suppose f € Flip;, g € Flip,, and @,1 € C. Then f(DYM,+

g(D)M,, belongs to L+ K(LHA)) if and only if p =1 = 0.

(DYM, € L+ K(L*(A)¥). Then, by Lemma
(M). This means

Proof: Suppose f(D)My,+g

11.10, {(f(D)- M, + g(D)M,)M, is compact for every p € Co

that f(D)My, + 9(D)My, is compact for every g € Co( M). Since pp,npt €
Co(M) for ¢t € Co(M), it follows from Theorem 7.12 that pp = np = 0 for

every p € Co(M). Hence p =7 = 0. &
Definition 11.12 Define the Dirac map
r:CdC —=D/L

by letting _
o) = [F(D) - My +9(D) - My)

where f is any Flip; function and g is any Flip, function.

Proposition 11.13 The D

iracmapt:CHC = D[L isa well-defined sur-
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Proof: The proof of this is identical to the proof of Lemma 7.9. The only

difference is that here we use Proposition 11.8, which says that the commutator

of two elements of D belongs to £, and Proposition 11.9, which says that D

is the C*-subalgebra of B(L*(A)*) generated by £ and the set of all F(DYM,

such that f € Flip and ¢ € C. [ )

Theorem 11.14 The Dirac map 7 : C®C — D/L is a x-isomorphism. This

implies that if f € Flip;, g € Flipr, ¢,n € C, then f(D)Mq,-I—g(D)Mn belongs

to £ if and only if p =71 =0.

Proof: We already know that 7 is a surjective +-homomorphism (Propo-

sition 11.13). We only have to show that 7 is 1-1, or that ker(r) = {0}.

So, take (¢,7) € C @ ¢! and suppose 7(¢,n) = 0. Take any f € Flipy and
g € Flip,. Then [f(D)- M, + g(DYM,)]

f(D) - My +9(D)- M, € L. Hence ¢ =1 = 0 by Corollary 11.11. Therefore

risl-1. #

Theorem 11.14 gives us a (*-algebra extension

= 7(p,7) = 0, Which means that

0 Lo 2De—CBC—0 (11.15)

where we now put subscripts on £ and D to show their dependence on C'.

Also, # is the inclusion of Lo into Dg, and the map from D¢ to C @ C is the

composition of 1. De/Lec— CH C with the quotient map Do — Do/Lc.

This extension (11.15) will be called the Dirac extension of C. By Corollary

11.11 we also have an extension

0 Lot K SDe+K—-COC =0




where £ ¥ K(L*(A)¥) and i is the inclusion map. This extension will be
called the Dirac extension of C with compacts adjoined. If C = Cy(M)
(which is allowed since every function in Co(M) is uniformly continuous) then
Ly (my 18 an ideal generated by operators of the form M, f(D) and f(D)M,
where ¢ € Co(M) and f € Co(R). By Proposition 7.5, every such operator 1

compact. Hence Lo,y € K, which implies the following.

Remark 11.16 The Dirac extension of Co(M) with compacts adjoined is the
same as the (double) Toeplitz extension of Co( M) of Definition 2.7.13.

Now, we say a function is periodic on M if it is the lift of a continuous
function on the base manifold. Let Per denote the (*-algebra of periodic
functions on M. Of course every periodic function on M is uniformly contin-
sous. Thus we can let ¢ = Per in (11.15) to get the Dirac extension of Per.
This extension

0 — Lpey — Dper — Per @ Per — 0 (11.17)

will also be called the Dirac extension with periodic multipliers. In this
thesis, we are mainly interested in the K-theory index maps (or connective

maps) induced by this extension.




Chapter 3

Tangential Cones

3.1 Tangential Cones

I A is any algebra, we will use the term matrix over A to mean any
& % k matrix over A. The symbol M, (A) will stand for the algebra of all
matrices over A. (M{A), as usual, will stand for the algebra of k x k matrices

over A.)

If Ais a C*-algebra, we will use Proj(A) for the set of all projections in
A and let Proji(A) = Proj(Mi(A)). An element of Proji(A) will be called
a k X k projection over A or simply a projection over A. We will use
Projo(A) for the set of all projections over A. S0, a projection over A is a
matrix o§er A which .happens to be a projection.

If X is a topological space, a (k % k) matrix-valued (M, x(C)-valued) func-
tion (not necessarily continuous) on X will be called a (k X k) matrix on
X. If a (k x k) matrix on X, as a function on X, is continuous, it will be

called a continuous (k X k) matrix on X. A (k x k) matrix on X which is
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projection-valued (has values in Proji(C)) will be called a (kX k) projection

on X. A continuous (k X k) projection on X has the obvious definition.
¥ M is a complete riemannian manifold, 7w : TM — M will denote the

tangent bundle over M, 7 : S — M, the (unit) sphere bundle over M, and
exp:TM — M, the exponential map.

Lemma 1.1 Let M be a complete riemannian manifold of dimension m, and,
forr >0, let V, be the set of all v in TM such that \|v]| < r. Then, for every

compact subset K of M, and, for every r > 0, the set 7 1K) NV, is compact

an TM.

Proof : For every r > 0, we let B(r) stand for the ball in R™ centered

at 0 and with radius r.

Let r > 0. Since every compact subset of M can be covered by a finite

number of balls B(z,a) where a is smaller than the injectivity radius at x,

it suffices to show that #='(B(z,a)) N V. is compact in TM for such balls

B(z,a). So take B(z,a) € M where a is smaller than the injectivity radius

at z. Let s be a number > a but still smaller than the injectivity radius at

z. Identify T,M with R™. The exponential map exp, : T.M — M can then

be regarded as a map exp; : R™ — M and the derivative exp,’ is a map

.R™ x R™ — TM. The ball B(0,s) C ToM is identified with the ball
is identified with B(s) x R™.

exp,’

B(s) € R™ of radius s centered at 0. TB(0,s)
So we have

exp, : B(s) — B(z,s)

and

exp,’ : B(s) x R™ — TB(z,s).
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Both of these maps are diffeornorphisms since s is smaller than the injectivity

radius at z. Thus, for each u € B(s), the derivative
exp,'(u) : TuB(s) — Texp, () B(®, 5)
or

exp,'(u) : B(s) x R™ — Texp, () B(2,3),

is invertible, and, since B{a) is compact, there exists C' > 0 such that || (exp,’
(u))™! || € C for all u € B(a). So, if v € TH(z,a), and (exp’)™ (v) = (u,w)
€ B(s) x R™, then jlwl| < C- llv||. Hence, (exp’)™" (x~(B(z,a)) NV;) is a

closed subset of the compact set B(a)x B (C'a) and is therefore compact. Since
exp,’ : B(s) x R™ — TB(z,s)

is a diffeomorphism, it follows that 7~ (B(z,a)) N V. is compact. #
If M is any complete riemannian manifold the symbol TM\M will de-

note the tangent bundle minus the zero section of TM, and
r: TM\M — 5,
will denote the retraction map given by
v
r(v) = -
[l

The map r will be called the retraction onto S, or the tangent bundle
retraction map. If ¢ and 1 are matrices on TM\M, we will say that ¢

equals ¥ at infinity if for every € > 0, there exists L > 0 such that

lle(v) — ) <e

whenever ||v[} > L.




Definition 1.2 Let M be a compact, riemannian manifold. Suppose p is a
nonzero conlinwous k X k projection on the sphere bundle S where k is some
positive integer. Then the (upright) tangential p-cone of M, or sim-
ply the (upright) p-cone of M, denoted by C(p), is the C*-algebra of all
continuous k x k matrices @ on T'M, which, for some function f, in C(M),
equals the matriz (7*f,) - (r*p) af infinity. (Note that r*p is a projection on
TM\M.) The slanted tangehtial p-cone, or the slanted p-cone, de-
noted by SC(p), is the C*-algebra of all continuous k x k matrices ¢ on TM
which, for some function f, in C(M), equals the matriz exp*(f,) - (v*p) at

infinity.

Remark 1.3 Let C(p) and SC(p) be upright and slanted p-cones of a compact
riemannian manifold M. Let © be an element of either C(p) or SC(p). Since
@ is equal to a bounded matriz al infinity, and since M is compact, it is easy
to see that o is bounded on T'M. That is el is < oo and is the C*-algebra
norm of @ in the C*-algebra C(p) or SC(p)-

Proposition 1.4 Let C(p) and SC(p) be upright and slanted p-cones of @
compact riemannian manifold M. Let ¢ be an element of either C(p) or SC(p).

Then f, is unique.

Proof: Let p, = p|s, for every z in M. Let llpz]| equal the supremum
of ||p.(v)]| as v ranges over S;. Since p is a projection on S then, for every
z in M, ||p,| is either 0 or 1. By continuity of p, ||pz|| varies continuously

with z. Since M is connected it follows that the function ||p<|| of = is either
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the constant function 1 or the constant function 0 on M. But p is a nonzero

projection by assumption. Hence llp.|l = 1 for all = in M.

Therefore, for every z in M, there exists v € 5 such that p(v) # 0 (i.e.
|p(v)|] = 1). From this, it follows that, for every N > 0, there exists v € T M
such that [[v]] > N and such that ||(»*p)(v)|| = 1.

Suppose p € C(p), f,9 € C'(M), and that ¢ is equal to both (x*f){(r*p)
and (7*¢)(r*p) at infinity. We want to show that f = g. From the assumption
on f and g, it follows that #*(f — ¢)(r*p) is equal to 0 af infinity. Let € > 0.
Then it follows that there is an N > 0 such that |7 (f — ) (){r*p)(v)|] < ¢
whenever v € TM and ||v|| > N. Take ¢ € m. From above there exists v €
T, M such that ||v|| > N and [|(mp)(v)]| = 1. Since ||v]| > N, we have |f(z) —
(@) = [=*(f—9) )| = [ (f=g) @) [ (P) (W) = | 7*(f—g)(w)r*p) o)l <&
That is, |f(z) — g(z)] < € for every ¢ > 0. Thus f(z) — g(z) = 0 for every =
in M, which implies that f = g.

So the proposition is true for ¢ € C (p).

Now, suppose ¢ € SC(p), f,9 € C(M), and that ¢ is equal to both
(exp* f)(r*p) and (exp” g)(r*p) at infinity. We want to show that f = g. This
implies that exp*(f — ¢)(r*p) is equal to 0 at infinity. Thus, if ¢ — v(t) is

a curve in TM such that [Jo(t)]| — oo as i — o0, then |lezp*(f — 9)(v(t))

(rp)(v(t))]| — 0 as £ — oo

Take now z in M. From above there exists v in S, such that |jp(v)||

Nerp) ()| = 1. Let a - (—00,00) — M be the geodesic with the property

that o(0) = ¢ and o/(0) = —v. Let

w(t) = —t - () € Ta@M.



Then ¢ — w(t) is a curve in TM such that ||w(t)]| = |[{| — co as — co. From

above, it follows that
lezp™(f — g)(w(t)) - (Fp)w(t))| = 0 as ¢ — co. (1.5)
Now,

exp*(f — 9)w(t) = (f — g)exp(w(t)))

= (f — g)exp(—tc'(t)))
(f — 9)(al0))
= (-9

since « is a geodesic in M with a(0) = 2. Therefore, from (1.5), we have that

[(f = )@ p) ()] = 0 as £ — oo (1.6)

Also, (r*p)(w(t)) = p(r(w(t))) = p(r(—te/(t))) = p(=(t)) for all £ > 0.
This is because |ja/(t)]| = 1 (since « is a geodesic) for all # > 0, and, by defi-
nition, r(—ta (1)) = [ty = ol = —/(t) (since ¢ > 0). So, (r*p)(w(1))
= p(—a/(1)) for all t > 0. Thus limeor (r*p)(w(t)) = limeor p(=a/(t))=
p(—(0)= p(—(~v))= p(v) # 0 by our pick of v. So, [[(F"p)(w(t))l] —
lp(v)]] = 1 as ¢ — 0+, Thus |(r*p)(w(t)l| = 1 for ¢ close to 0. Since ¢+
(r*p)(w(t)) is a continuous curve of projections, it follows that H(rp)(w(@))|| =
| for all ¢ > 0. This together with (1.6) implies that |f(z) — g(z)l = I(f -
9)(@)] - |(rp)(w(®))]] — O as t — oo. Hence f(z) = g() for every z € M,

which implies f = g. This completes the proof. [ )
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Definition 1.7 Let C(p) and SC(p) be upright and slanted p-cones of a com-

pact riemannian manifold M. Let
l:C(p) — C(M)

and

1:SC(p) — C(M)

denote the maps which sends @ to l(p) = f, in both cases. (By Proposition
1.4, these maps are well defined.)
It is clear that both of these maps are surjeclive x-homomorphisms. In

both cases, () will be called the limit of ¢ at oco.

Remark 1.8 Even though the same symbol I is used for two different maps,

it should be clear from the context what l{p) means.

If M is a compact riemannian manifold, it is not difficult to see that
Co(TM), the C*-algebra of continuous functions on TM which vanish at o,
is the same as the set of all continuous functions ¢ on T'M such that for every
¢ > 0, there is an N > 0 such that |¢(v)| < € whenever [jv]| > N. So Co(T'M)
is the set of all continuous functions on TM which equal 0 at infinity. Hence,
for each integer k > 0, My(Co(T M)) is the set of all continuous k X k matrices
on TM which equal 0. 1) at oo (where 1 is the k X k identity matrix). Thus,
if C(p) and SC(p) are upright and slanted p-cones of M, where p is a nonzero,
continuous k x k matrix on the sphere bundle of M, then M(Co(TM)) is the

set of all continuous k x k matrices on TM which are equal to 0 - (r*p) at

infinity. Therefore, My(Co(TM)) is a subalgebra of both C(p) and SC(p) and
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is the set of all ¢ € C(p) such that {(¢) = 0, or the set of all p in SC(p)
such that I(p) = 0. In other words, My (Co(T'M)) is the kernel of both maps
I, whether [ is from C/(p) to C(M) or from SC(p) to C(M).

We therefore have two C*-algebra extensions given in the next proposition.

Proposition 1.9 Let M be a compact riemannian manifold, p a nonzero con-
tinwous k x k projection on the. sphere bundle over M. Then we have two

C*-algebra extensions
0 — My(Co(TM)) 5 Cp) 5 C(M) =0 (%)

and

0 — Mp(Co(TM)) 5 SC(p) & C(M) >0, (%)

where i is the inclusion map in both cases.
Proof: Follows from the previous remarks. '

Deﬁnitioﬁ 1.10 The two extensions (x) and (+x) given in Proposition 1.9
will be referred to as Thom extensions. The first extension (*) will be called
the C(p) Thom extension of C(M), and (xx) will be called the SC{p)
Thom exténsion of C(M).

Now, suppose M is a compact Tiemannian manifold and that
pM—-M

s its universal cover. Give M the riemannian metric that comes from lifting

the riemannian metric on M up to M.
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We will use Per(M) to denote the C*-algebra of periodic functions on
M. Recall that periodic functions on M are those functions which are lifts
of continuous functions on M. Clearly, Per(M) is isomorphic to C(M) as

C*-algebras.

If ¢ is a matrix on M, then @ will denote the lift of ¢ up to a matrix on

M. That is,

@=yop.
Also, if ¢ is a matrix on T'M, then @ will denote the lift of ¢ to a matrix on
TM. That is,

where

p,.:TM—-)TM

is the map induced by p. The symbol & will stand for the unit sphere bundle
over M, while, as before, S will stand for the unit sphere bundle over M. If
A is a matrix on the sphere bundle S over M, then we let A denote the lift of

A up to a matrix on the sphere bundle § over M. That is, we let
A = A o p**g.

Definition 1.11 If p is a nonzero continuous projeciion on the sphere bundle
S over M, we define §E'(p), the lift of the slanted cone of p, as the
C*-algebra of all matrices ¢ on TM such that ¢ belongs to SC(p).

Note 1.12 The map ¢ — @, € SC(p), clearly gives a *-isomorphism be-
tween the C*-algebras SC(p) and SC(p). Hence, [|plloc = lpllo < 00 for

every @ in S'H(j'(p)
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Remark 1.13 Note that, for each ¢ in SC(p), there ewists f, in Per(M)

such that ¢ is equal to

exp*(f,) - (r*B) = (fp o exp) - (Por)

at infinity. (The projection p is the lift of p to a projection on S.) This
gives a definition of f, for cach ¢ € SC(p). It should be clear that the map
[ from SC(p) to Per(M) which sends ¢ to f, is essentially the same as the
map 1 : SC(p) — C(M), once SC(p) is identified with SC(p) and Per(M) is
identified with C{M). We can express this by saying that the followirig diagram

§0(p) —— Per(M)

E‘[p‘ ETP‘

SC(p) —— C(M)

commutes. In other words, if n belongs to SC(p), then f; in Per(M) is equal

to E

Now define Co(TM) as the lift of Co(T'M) to functions on TM. That is,
Co(T'M) is the set of @ such that i belongs to Co(TM). Clearly Co(TM) is a

C*-algebra and is isomorphic to Co(T'M) via the lifting map p*.

Proposition 1.14 Let M be a compact riemannian manifold with universal
cover p: M — M. Suppose M is given the riemannian structure induced by
the lifting, and thatlb is a nonzero, continuous k X k matriz on the sphere

bundle over M. Then the diagram

0 s My(Co{TM)) —— §C(p) —— Per(M) —— 0

ETﬂ‘ ETP“ ET.O‘

0 s My(Co(TM)) —— SC(p) —— C(M) —— 0




commutes, and the two rows are C*-algebra extensions.
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Proof : Follows immediately from Proposition 1.9 and Remark 1.13. #

The top extension of Proposition 1.14 and Remark 1.13. will be called

the SC(p) Thom extension of Per(M).

3.2 Nonpositive Curvature

In this section, we assume that M is a simply connected, complete,

riemannian manifold of nonpositive sectional curvature.

known that, in this case, the exponential maps

expg : IxeM — M, zeM,

are (°° diffeomorphisms. For this reason, we let

M,=T,M

for every x € M.

Proposition 2.1 The map

rxerp: TM — MxM

is a homeomorphism.

It is well

Proof: The exponential map exp: TM — M isa C* map (by Theorem

7.1 of [Boo] for example). The projection = : TM — M is also C* by the

definition of the € structure on TM. Hence 7 x exp : TM — M x M is C*




and therefore continuous. It is bijective for it has the map (z,y) — (exp, )~ (y)
from M x M to TM as its inverse.

To show that m X exp is a homeomorphism, we need to show that (7 x
exp)(U) is open in M x M for every open U in TM. If r > 0, let V. = {v &
TM : ||v]| < r}. It suffices to show that (1 x exp)(U) is open in M x M for
those U/ which are open subsets of the open set (7 x exp)~'(B(z,r) x B(y, s})
for some z,y € M,r > 0,5 > 0. Yor these ['s certainly form a basis for the

topology of T'M.

So choose z,y € M and r,s >0, and let
C=r+d(zy)+s.

We note that if v € (x x exp)~'(B(z,r) x B(y,s)), then 7v € B(z,r) and
exp(v) € B(y,s) so that the distance d(xv,exp v) from 7v to expv is < the
diameter of B(z,r)UB(y,s) which is < r+d(z,y)+s = C. But d(mv,expv) =
l|v]]. Hence [|v}| < C or v € Vg for every v in (7 X exp)™!(B(z,r) x B(y, s))-
It follows that

(r x exp) *(B(a,r) x B(y,s)) C =Y B(z,r)) N V.

By Lemma 1.1, # }{B(z,r))NV¢ is compact in TM. Hence, (mxexp) HB(z,r)

xB(y,s)) is a closed subset of a compact set and is therefore compact. We

know that 7 X exp is a continuous bijection from (7 x exp)~(B(z,7) X B(y,3))

onto B(z,r)x B(y, s). Since (7 xexp) Y (B(z,r)x By, s)) is compact, 1t is also

a homeomorphism. Thus the map 7 X exp from (7 X exp)~Y(B(z,r) x By, s))

onto B(z,r) x B(y,s) is a homeomorphism.
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Tt follows that (i xexp)(U) is an open subset of B(z,7)x B{y, s) and there-

fore an open subset of M x M for every open subset U of ( X exp) Y B(z,r) x
B(y.s)). #

Definition 2.2 (Metric space structure on TM.) We give TM the met-
ric space structure that comes from pulling the metric space structure of M x M

back to TM via the homeomorphism
Txexp:TM—->MxM
of Proposition 2.1. In this metric, we have
d(v,w)? = d(mv, 7w)* + d(exp(v), exp(w))’
for every v, w in TM.
Proposition 2.3 Fvery closed bounded subsel of TM is compact.

Proof: Since M is a complete riemannian manifold, every closed, bounded
subset of M is compact. It follows that every closed bounded subset of M x M
is compact. Since TM is isometric to M x M as a metric space, every closed

bounded subset of TM is therefore compact. #

Definition 2.4 If X is a metric space, UC(X) will denote the C*-algebra
of all bounded, uniformly continuous functions on X, and UC(X, M(C))
will denote the C*-algebra of all bounded, uniformly continuous maps from

X to My(C). If ¢ € UC(X,M(C)) then the C*-algebra norm of ¢ is the

same as the infinity norm ||plle. We will often identify UC(X, M (C)) with
M(UC(X)).
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Remark 2.5 Note that UC(X, My(C)) is a C*-subalgebra of the C*-algebra
BC(X, M,,(C)) of all bounded continuous maps from X to M(C).
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Since TM and M are both metric spaces then UC (M), UC(TM), UC(M, M(C))

and UC(TM, M(C)) all make sense.

Definition 2.6 If ¢ is a matriz on TM, and if © belongs to M, then the

z-component of ¢ is, by definition, the matriz

pr = exp,(Plm.)

on M.

Proposition 2.7 If ¢ belongs to UC(TM, M(C)) then @, belongs to uc
(M, Mi(C)) for every z in M, and the map x — @ 15 a bounded continuous
map from M to UC(M, M;(C)).

Proof: Follows immediately from boundedness and uniform continuity

on TM of every ¢ in UC(TM, Mi(C)). &

Notation 2.8 If A, B are points in M, we will somelimes use |AB]| to denote
the distance d( A, B) from A to B which is the same as the length of the unique
geodesic segment from A to B.

For each x in M, let Sph, denote the set of all z in M whose distance

from z is equal to 1. Let

re : M\{z} - M

denote the retraction which sends each z in M\{z} to the unique element on

Sph, which lies on the geodesic ray starting at x and passing through z.




Lemma 2.9 let A, B,C be three points in M such that [CA| > 1 and |CB| >
1. Let E =74(C) and D = rg(C). Then |DE| < |AB].

Proof: Note that from the definition of the retractions, we have that &£

belongs to Sphy and D belongs to Sphg, which means
|AE| =1, and |BD| = 1. (2.10)

So, by the assumptions |[AC| > 1, |BC} > 1, the point & lies inside the segment
AC, and D lies inside BC.

Let us assume that

AC] < |BC.
Make the definition,
|CD
A= —, 2.11
B0 (2.11)
Let F be the point on the geodesic segment AC satisfying
|CF| |CD|
— = = 2.12
|AC|  |BC]| (212)
Of course,
|DE| < |DF|+ |EF)|. (2.13)

We now get upper bounds for |DF] and |FF|. Since %’i_g]l is equal to lI%%Ii’ then
1-—- % is equal to 1 — JI%%’ which implies li%% equals 15%%1' That is, jl—ﬁ—g—ll is

—1_ :
the same as 4, from which we get

|AF| = [%Célr (2.14)

Since |AC| is less than or equal to |BCY, by assumption, it follows that |AF|

is less than or equal to 1. But, |AE| equals 1, by (2.10), and F lies on the
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geodesic line segment AEC. Therefore, F' must lie on the segment AF. From
this, it follows that |EF| equals 1 —|AF|. From 2.14, it then follows that |EF|
is equal to 1 — %%ll’ which is the same as ]B—C!‘g-"-cj-‘@. But, |BC| — |AC] is less
than or equal to |AB|, by the triangle inequality. Thus,

1AB|

EF| < .
mF| < 12, 1)
Now, from p.2, Section 1A, of ((BGS]), we have that

|DF| < AAB|. (2.16)

Thus, from (2.11), (2.13), (2.15), and (2.16), it follows that

AB| _[CDI o, 1ABI
DE| < MABI+ 155 = [5G I+ 50
- (oDl + 28 = (001 + 18D 57y
_ |BC’|:gg|‘ 1ABI.

Thus, the lemma is true. ®

Lemma 2.17 Let A, B,C be three points in M such that {CA| > 2 and
|CB| > 2. Let D =r¢(A) and E = rc(B). Then |DE| < |ABJ.

Proof: Of course, D lies on the segment CA, and E lies on the segment
CB. Also
|DC|=1 and |[CE|=1.
Assume |AC| < |BC|. Let F be the unique point on the geodesic segment

(B satisfying
| CF| _10D| _ 1 wr,

[CB| ™ |ICA]  |CA




Then, as in the proof of Lemma 2.9,
IDF| < A {AB| =

Also, since |CF| = ligl > 1, and since [CE| = 1, then E lies on the geodesic
segment CF and |CF| = |CE| 4+ |EF| =1+ |EF|. Hence
\EF| = |CF|-1

1BC] _
|AC]

By the triangle inequality, |BC| < |AB} + |AC|. So
|AB| + |AC|
EF| < Y———=—
IEF| < |AC|

|AB|
[ACT

Thus,

IDE| < |DF|+|EF|

_ Bl |ABl
= lAC| ' |AC]
. |AB|
L1}

So to show that |[DE] < |AB], it suffices to show that o < 1 or that

|AC| > 2. But this is true by assumption. Therefore Lemma 2.17 is true. &

Corollary 2.18 Let Vy = {v € TM : |jv|] < N}, and let S be the sphere

bundle over M. Then the retraction map

r:TM\V; = S

is uniformly continuous on TM\V,.
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Proof: It suffices to show that
d(r(u),r(v)) < d(w,v)
when u,v € TM\V; and 7u = 7v, and that
d(ru, ™) < V2 d(u,v)

when u, v e TM\V; and expu = exp v.

Look first at the case where u,v € TM\V; and 7u = 7v =  say. Then
both u and v belong to TuM, |[ull = 2, and {jv|| = 2. Let ¢ = exp(u),
b = exp(v). Then d(z,a) > 2, d(x,b) > 2, and

d(u,v) = \/c?(wu,wv)z + d(exp(u),exp(v))? = d(a,d)

since 7u =wv, exp(u) = a and exp(v) = b. By Lemma 2.17, it follows that
d(r4(a), (b)) < d{a,b).
Notice that

exp(r(w)) = ry(exp(w))

for every w in T, M\{0}. Thus

d(r(w),r(v)) = d((exp,)(ru), (exp)(rv))
= d(rz(exp, u), ro(exp, )
— d(rya,rsb)
< d(a,b)

= d(exp, u,exp,v)

= d(u,v).
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So d(ru,rv) < d(u,v) when u,v € TM\V; and 7u = 7v.

Now look at the second case where u,v € TM\V; and expu = expv =2
say. Let 7u = a,mv = b. That is,u € ToM and v € TyM. Since u,v € TM\V>,
then {|ul] = 2 and |jv|| > 2, and therefore d(exp(u),a) > 2, and d(exp(v),d) =

9. That is, d(z,a) > 2 and d(z,b) > 2. By Lemma 2.9, it follows that
d(roz,rpz) < d(a,b).

Also, we have that

d(u,v) = \/d(fru, 7v)? + d{exp(u), exp(v))?
- \/;i(a, b)? + d(z, z)?
= d(a,b)

Thus,

d(ru,rv) = \Jd(x(ru), m(rv))? + d(exp(ru), exp(rv))’
| = e b + d(ru(exp(w)), ro(exp(v)))?
= yJd(a,b)? + d(rez, rez)?
< \Jd(a,b) + d(a, b)?
= V2 d(a,b)
L= V2 d(u,v).

The corollary is therefore true. [




3.3 Components of a Slanted Cone Element

In this section, M is a compact, riemannian manifold of nonpositive

curvature, and

p:M M

is its universal cover. We give M the riemannian structure that comes from
lifting the riemannian structure on M up to the cover M. So, M also has

nonpositive curvature.

Proposition 3.1 If p is a continuous k X k projection on the sphere bundle

over M, then SC(p) C UC(TM, Mi(C)).

Proof: Let p be a continuous & x k projection on the sphere bundle S
over M, let ¢ be an element of SC(p), and let 7 be the unique element of
SC(p) such that p =4. If N >0, let

Vw={veTM:|v| <N}

and let

V=W

Since M is compact, there exists = € M and r > 0 such that B(z,r) covers

M. That is, p(B(z,r)) = M where p: M — M is the covering map. Let
B = B(z,2r).

We want to show that ¢ is a bounded, uniformly continuous matrix on

TM. By Note 1.12, it is bounded. To show it is uniformly continuous on ™™,
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it suffices to show that it is uniformly continuous on 7~'(B). For if so, then
for every € > 0 there would exist § > 0 and < r such that llov — pw|| < €
whenever v,w € #~(B) and d(v,w) < é. Suppose now that v,w € TM and
d(v,w) < §. Since B covers M, there exists 0 in TB = 7~ Y(B) such that
p(t) = p(v) in TM, where p: TM — TM is the map induced by p : M- M.
The action of the fundamental group I' = 71 (M) on M induces an action of I’
onTM. Sov=g-viora unique'g € I'. This action preserves distance in TM
(easy to check). Therefore, if we let W =g - w then d(%,®) = d(v,w) < § and
llp(9) — @(ib)|| would be smaller than . But ¢ is the lift of a matrix on TM
and so is invariant under the action of T'. Thus, |lpv — pw|l = lle(d) — @(@)||
would be < ¢. That is, |jgv — ww|| would be < € whenever v,w € T™
and d(v,w) < 6. Hence ¢ would be uniformly continuous on T'M if it were
uniformly continuous on TB = n~'(B).

Let us now show uniform continuity of ¢ on x~Y(B). By Lemma 2.11.11,
=~1(B)N ffN is compact for every N > 0. Thus ¢ is uniformly continuous on
7~ Y(B) N Vi for every N > 0. Using this and the fact (Remark 1.13) that ¢
is equal to exp*(f,)- (r*p) at infinity, we can reduce the proof to showing that
exp*(f,) - (r*p) is uniformly continuous on »Y(B)\V. (Recall V = V;.)

Now, f, is a periodic function. That is, it is the lift of a continuous
function on M. f, is therefore uniformly continuous on M. It follows that

exp*(f,) is uniformly continuous on all of T'M. For

|exp*(f,,)(z) — exp*(£)(v)] = |folexp(w)) = fo(exp(v))}

and, d(exp(u),exp(v)) < d(u,v) for every u,v € TM. Hence exp*(f,) is

uniformly continuous on all of T M.
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So, to complete the proof, we only have to show that r"p = por is
uniformly continuous on 7 }{BN\V.
Let S be the sphere bundle over M. The map por on 7 (B\V is the

composition of the function
p: SNz YB) — My(C)

with the function

r:a Y (B)\V — §Sn="(B).

To show

por: 7w H(B\V — M (C)

is uniformly continuous, it suffices to show that both maps above are uniformly

continuous.

Now, it is not hard to see that SN 7~*(B) is a bounded subset of TM.
For 7(§Nx~Y(B)) C B and exp(SNx~*(B)) € B(B,1) = B(z,2r +1). Since
S and ©~1(B) are closed in TM, then § N x~(B) is a closed bounded subset
of TM. Tt follows, by Proposition 2.3, that SN7~1(B) is compact in TM. So
515 N#Y(B) = M(C) is a continuous function on a compact metric space,

and is therefore uniformly continuous.

Thus, to complete the proof we only have to show that r : r(B\V —
Snr~1(B) is uniformly continuous. But Corollary 2.18 tells us that, in fact, r is

uniformly continuous on all of TM\V. So it certainly is uniformly continuous

on 7~ }(B)\V. Proposition 3.1 is therefore true. #
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Proposition 3.2 If p is a continuous k X k projection on the sphere bundle
over M, and o belongs to SC(p), then the mapz — ¢,, z€ M, is a bounded
continuous map from M to UC(M, M(C)).

Proof: Suppose tp € g_é(p) By Proposition 3.1, ¢ is a bounded, uni-
formly continuous function from TM to M,(C). By Proposition 2.7, it follows

that the map z — ¢, is a bounded continuous map from M to UC(M, M(C)).

Hence, Proposition 3.2 is true. #
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Chapter 4

Hilbert and C*-algébra Bundles

4.1 Hilbert and C*-algebra Bundles over M

In this section, M is a compact, riemannian spin manifold of non-
positive curvature, and M is its universal cover with covering map p: M —

M. Also, throughout the section, k will denote a positive integer.

If X and Y are riemannian manifolds, the term isometry between X
and Y will be reserved for any diffeomorphism f from X to Y such that, for
zin X, and v, win T, X, (fov, fuw) = (v,w). If this condition is satisfied by
some [ which is not necessarily bijective, then we say only that f is a locally

isometric map from X to Y. The group of diffeomorphisms on X will be

denoted by Diff{ X), ‘while the group of isometries on X will be denoted by
Isom(X).

Similarly, if V — X and W — Y are two hermitian bundles over X and
Y, then we will use the term, bundle isometry from V to W, for a bundle

isomorphism from V to W which preserves the hermitian structure, and whose
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restriction to a map from the zero elements of V' (which we identify with X)
to the zero elements of W (which we identify with Y) is an isometry from
X to Y. If a bundle homomorphism f from V to W preserves the hermitian
structure, and is a local isometry from X to Y, when restricted to a map from
the zero elements of V to those of W, but is not neceésarily bijective, then we
will call f only a locally isometric bundle homorphism from V to W. We

will use Isom(V') to denote the group of bundle isometries on V.

If & is any Hilbert space, then U(h) will stand for the group of unitaries
on h, and we will use the symbol k¥ to denote the direct sum of h with itself

k times. That is, we let

W=ha --dh.

k times
Of course, h* is also a Hilbert space. Also, we have an obvious *-isomorphism
between B(h*) and My(B(h)).
Similarly, if A — X is a Hilbert bundle, we let h* — X denote the
Hilbert bundle

he=hap---®h

k times

over X. We also let B(h) — X denote the C*-algebra bundle over X as-
sociated to the Hilbert bundle k. So, B(h) is the C*-algebra bundle over X
whose fiber B(h)s, a,i; each point  in X, is the C*-algebra B(h;). The bundle
structure on B(h,) is the obvious one coming from the bundle structure on A.
Note that if a in B(k) and ¢ in h lie over the same point z in X, that is, if @
belongs to B(h), and & belongs to Az, thenl we can multiply £ by a to get the

element a - £ of k.
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If A — X is any C*-algebra bundle over X then we have, associated to
A, the C*-algebra bundle My(A) — X whose fiber at each z in X is the
algebra My(A,) of matrices over the C*-algebra A,. The bundle structure on
M;(A) is the one induced by the bundle structure on A.

Tt is clear from the definitions that the C*-algebra bundle B(h*) associated
to the bundle AF is canonically isomorphic to the C*-algebra bundle My(B(h)).
So, every element of B(h*), can be represented as a matrix (a;) over the C*-
algebra B(hs), where each a;; is an element of B(h;). If Ais in B(h¥)s,
and A = (a;;) where each a;; is an element of B(h)s, and if ¢ belongs to
(B*)z = (hg)¥, and € = (&,-..,&) where each £; belongs to hy, then the
multiplication of ¢ by A is given by matrix multiplication of the k-column
(&1,...,&) by the k x k matrix (a;;). Thatis, A-{ = (ai;) - (Exy ooy Ek)-

Now, for each @ in M, we use the diffeomorphism
exp, : M, — M,

to pull the riemannian and spin structures on M back to the manifold M,.
This makes M, into a riemannian manifold of nonpositive curvature, and the
map

expy : My — M
becomes an isometry of riemannian manifolds.
The spin structure on M, thus obtained gives us a bundle

Alz) = M,

of spinors over M, and the isometry

expy : My — M
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extends to a bundle isometry
exps : Alz) — A. (1.1)
This map then induces the unitary operator
expy : L*(A(x)) = L*(A),
which, in turn, induces the unitary operator
7ot LH(A(2))* = LAY
Note that if (£1,...,&k) is an element of L2 A(z))*, then
caps(ter. - &) = (copalt)s - seapu(£e). (12)
We now let I, denote the Hilbert space

H, = L*(A(2)).

So, we have the unitaries

~

exp, : H, — LY(A),

and

ETPg - (I:Ia:)k - L2(A)k7
and if (£y,...,&) is an element of (H,)* then we have that
expo(be,. - k) = (expa(br),. - -, expa(i))- (1.3)

Now, define H as the set

109



We have the map
exp: H — L*(A)
defined by setting
exp|g, = exps

for all z in M.

Since each f, is a Hilbert sbace of L2 sections living on the manifold M.,

it makes sense to denote the map from H to M, which sends everything in

each H, to =, by the symbol 7. That is,

1s the map that satisfies

for all ¢ in H,.

We have the map
7 x exp: H— M x L*(A)

given by
(m x exp)(£) = ((£), exp(£))

for every ¢ in H. This is a bijective map since ezp, : H, — LQ(Z\) is a unitary

for every z. Also, when restricted to each H,, 7 % exp is a unitary operator

from H, onto {z} x Lz(ﬁ).

Now, M x L*(A), with the product topology, is a trivial Hilbert bundle

over M with bundle projection map

Mx L*A)y—- M
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defined by
(z,6) —

and with Hilbert space fiber {z} x L*(A) at each point = in M. If we now

give I the topology which makes the map
T xexp: H — M x L*(A)

into a homeomorphism, then, from the fact that 7 X exp restricted to each H,
is a unitary operator from I, to {z} x L*(A), we see that H becomes a trivial

Hilbert bundle over M, with bundle projection map
r H - M,
defined above, with fiber H, at each point z in M, and with trivializing map
xx exp: H — M x L*(A).
Similarly, we also have the Hilbert bundle

~

H* = M
with fiber (H,)¥ at each  in M, and with bundle projection map
x:HY - M
which sends everything in the fiber (H,)* to z. We have the map
exp : H¥ — L*(A)F
whose restriction to the fiber (ﬁ *) is the unitary operator

exp, 1 (Hy)F — LA




Moreover, the Hilbert bundle H* over M is trivial, with trivializing map
7 % exp: H¥ — M x L} A,

Definition 1.4 The Hilbert bundle

T HF 5 M

will be called the kth Hilbert bundle over M associated to the bundle

A over M.

Now let B be the C*-algebra bundle over M associated to the Hilbert
bundle H , and let B, be the C*-algebra bundle over M associated to the
Hilbert bundle #*. That is,

B = B(H)
and
B, = B(H%)
Of course, we have that
B~1 = B~,
since
o =H.

The fiber of By at each z in M will be denoted by Bk,x-
From remarks made earlier, we have a canonical C*-algebra bundle iso-

morphism between By = B(H*) and M (B(H)) = My(B). That is,

B = My(B)
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as C*-algebra bundles. So,

for each & in M , and each element A of ék,x can be expressed as a k x k matrix

(ai;) over B,. We write, in this case,
A= (a,'j).

Multiplication of an element (€1,...,&) of (ﬁx)k by an element (a;;) of lg'k,x
is given by ordinary multiplication of a k-column by a &k X k matrix.

We let 7 represent the bundle projection map for this bundle. So,
T gk —¥ M

maps every clement in each Bz to .

For every z in M, the unitary
exp, : (f)F — L*(A)*
induces a C*-algebra isomorphism
exp, : Bie = B((Ha)) = BL(A)):

Using the canonical identification of B(L*(A)F) with M (B(L*(A))), we can
write each element A of B(L*(A)*) as a k x k matrix (@) over B(L*(A)). By

Equation 1.3 on page 109, we then have that
exp,{ai;) = (r={ais)) (1.5)

for all (a;;) in ék,m.
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Define

exp : B, — B(L}*(A))

as the map whose restriction to each B &,» gives the x-isomorphism exp,. Then,

as before, we have that By is a trivial C*-algebra bundle over the manifold M

with the map

T

X exp :Bk — M x B(L}A)Y)

being a C*-algebra bundle trivialization.

Definition 1.6 The C*-algebra bundle

will be called the k-th
bundle A.

TI'IBNk——+M

C*-algebra bundle over M associated to the

Definition 1.7 We have the identification map

rxescp:TM-—»MXM

of TM with M x M, and trivialization maps

and

of the bundles HF, and Bi. If a belongs to one of TM, H*, or By, we will call

n(a) and exp(a) the m- and exp-coordinates, respectively, of a, and I will

say

in w-exp coordinates.

x x exp: H* — M x LHA),

7 x exp: By — M x B(L*(A)®).

a = (n(a), ezp(a))
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Remark 1.8 Note that a map
f Bk - Bk

is a C*-algebra bundle isomorphism if and only if the corresponding map from
the bundle Mx B(L*(A)*) to itself, that is, the map f, in w-exp coordinates,
is a C*-algebra bundle isomorphism.
Similarly, a map
A:[* - fI*
is a Hilbert bundle isomorphism if and only if the corresponding map from the
bundle M x L}*(A)* to itself, that is, the map A, in mw-exp coordinates, is

a Hilbert bundle isomorphism.

Definition 1.9 If A is a section of By, and z is in M, we define the -
component of A, denoted by A, as the element of B(LQ(A)") given by the

equation

A, = exp(A(z)).

(Note that A(z) is an element of Bﬂk,x.) So A, can also be described as the

exp-coordinate of A(z).

Definition 1.10 Suppose A is a section of By,. For each z in M, let A(z) =
(aij(z)) where each ay(z) is an element of B,. The a;; are then sections of

the bundle B. We write, in this case, A = (ay;).
Proposition 1.11 [f A is a section of By, and A = (ay;), then
Ay = ((aij)e)

forallz in M.
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Proof:

Ay = exp,(Az))
= exp; ((ai(x)))
= (ezps(aii(=)})) (by Eq. 1.5)
= ({ai)z) . W
Proposition 1.12 A section A ;)flg’k is a continuous section of By if and only

if the map
z — exp{ A(z)), zeM

is @ continuous map from M inlo B(L*(AY¥). That is, if and only if the =

component, Ay, of A varies continuously with z.
Proof: This follows immediately from the fact that
© x exp: By — M x B(L*(A)F)
is a trivialization of B.. &

Definition 1.13 A section A of By is said to be bounded if there exists an
N > 0 such that | A(z)l|, which is the same as || A||, is less than N for all z in
M. The C*-algebra of all bounded, continuous sections of B, will be denoted

by BC(By,). Of course, the norm on each element A of BC(By) is given by

4] = sup [ A(z)]-
zeM

Definition 1.14 Let b — X be a C*-algebra bundle. Any section a of My(b)

‘can be written as

a = (ai;)
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where the a;; are sections of b. If A is a C*-algebra of sections of b, define
M, (A) as the algebra of all seclions a = (ai;) of M(b) such that, each a;;

belongs to A.

Proposition 1.15 If A is a section of By and A = (ai;), then A is a bounded,
continuous section of By — that is, A is in BC(gk) — if and only if each a;;

belongs to BC(B). Hence, we can write that

BC(By) = M (BC(B))
as C'x-algebras.

Proof: By Proposition 1.11, we have A, = ((ay;);). Therefore A, varies
continuously in z, and is bounded in z, if and only if each entry (ai;). varies
continuously with z, and is bounded in z. That is, A belongs to BC (Bk) if

and only if each ;; belongs to BC(B). #

4.2 Actions by the Fundamental Group

In this section, we assume that M is a compact, spin manifold, and

that k is a positive integer.

Definition 2.1 If E _ X and F — Y are hermitian vector bundles over
the riemannian manifolds X and Y respectively, if f: E— Fis alocally
isometric bundle homomorphism from E to F, and ifg: X =Y isa Alocal
isometry from X to Y, then we say that f is an extension of g or f extends

g if, after identifying the zero elements of the bundles E and F with X andY



118

respectively, we have that f restricted to X equals g. Another way of saying
this is that f(Ep) = Fy for all z in X.
If G is a group, and
a: G — Isom(E)

is an action of G on E by bundle isometries, and
8:G — Isom{X)

is an action of G on X by isometries, then we say that o is an extension

of B, or a extends 3 if, ofg) extends B(g) for every g € G.

Now, let T'y equal the fundamental group of M. Wherever possible, I
will drop the subscript M and use only T' to represent this group. Also, let

— ~

Cl—-M

and

cCl-M
denote the complex Clifford bundles over M and M respectively, and let
V. T*M @ C®(A) — C=(A)

be the covariant derivative on C°°(A). The group T acts on M by deck trans-
formations. These deck transformations are actually isometries on M. 1wil

use

a:T — Isom(M)

to denote this action. Recall that

p:M—»M



is the covering map from M to M. The action
a: =1 .90771‘,(17\;1f )

has the property that the diagram

M alyg) M
M

commutes for every g in T'.

Since the riemannian and spin structures on M were defined as the lifts

of the corresponding structures on M by the covering map p : M- M, it

follows that p: M — M extends to locally isometric bundle homomorphisms

p:A——bA,p:TM——»TM, andp:g'l-—rC'l,

and the action

a:T — Isom(M)

of T on M, extends to actions
a:T — Isom(Cl),a: T — Isom(A) and o : ' — Isom(TM)

of T on Cl , A, and TM in such a way that the diagrams

& oflg) L) AL o(g) A

Cl A —— A
\ , and
p p p p P »
Cl A ™™

commute for all ¢ in T'.

(2.2)

(2.3)

(2.4)
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Also, the two actions of T on A and Cl respect Clifford multiplication. In
other words, if we use g + a to denote the action of g on @, for ¢ in [ and ¢ in

either A or C1, then, for every = in M, the following equation,

g-(a-s)=(g-a) (g-3), (2.5)

is true for all ¢ in I'; a in Cl,, and s in A,.
Moreover, since a(g) : A — Ais a bundle isometry preserving the spmn

structure on M, then

Veolg-£) =g Vil (2.6)
for every v in TM and ¢ in C=(A).
| Now, each bundle isometry e(g) in Isom(A) induces a unitary operator,
which I also call a(g), on the Hilbert space LY A)*. So, the action a of I on
A induces an action
o T — U(LHA¥)
of I on Jf,z(/:\)"c by unitary operators. This, in turn, gives an action

a: T — InnerAut(B(Lz(A)k))

of T' on B(L*(A)*) by inner *-automorphisms. (An inner #-automorphism of
a C*-algebra A, or an element of Inner Aut(A) is an automorphism of A given
by conjugation by a unitary.)

For ¢ in T and a in one of M, L2(A)*, or B(L*(A)¥), let g - a represent
the action of g on a. Note that, if (¢;,...,&k) is an element of L2(A)*, where

the ¢; are elements of L?(A), then

g (Eeesbe) =(g-61,-- 9 &) (2.7)

1

0



Hence, since the action of T on B(L*(A)*) is induced by the action of I' on
L*(A)*, it follows that if A is an element of B(L*(A)*), and A = (a;;) where

ihe entries a;; are elements of B(L?(A)), then
g-A=(g-a;) (2.8)

for all g in T.

Now, I’ also acts naturally by bundle isometries on the bundle

TM — M.
Each bundle isometry afg) on T M is the one induced naturally by the isometry
a(g) on M. We let
a: D — Isom(TM)
denote this action, and we let g - v denote the action of g on v for g in I'
and v in TM. When I need to distinguish the T' action « on one space from
the T action « on another, I will use the symbols for the different spaces as
subscripts on the symbol a. For example, oy may be used for the action of I’
on the manifold M, whereas I may use aqy; for the action of I' on the space
TM.

Proposition 2.9 If v belongs to TM, g belongs to T, and = belongs to M,

then
m(g-v) = g-7(v), (2.10)
exp(g-v) = g-exp(v), (2.11)
g-expl(z) = exp (g ), (2.12)

and g -TeM = Ty.M. (2.13)
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If M has nonpositive curvature, then we can write 2,13 as

g Mz = Mg—a:- (214)

Proof: Here, I will use a7 for the action of I' on M. Note that

7r(g'?) = n{ag(g)(v))
= ay(g)(r(v))

= g- W(U),

which proves 2.10.

To prove 2.11, we take the unit-speed, geodesic segment
B:t—exp(tv), 0<i<1
and move it by « to the segment
alg)o B:10,1] — M.

Since a(g) is an isometry, then the segment afg) o 8 is also a geodesic segment

of unit speed. Therefore,
(a{g) 0 B) (1) = exp ((alg) 0 8)(0))- (2.15)
But, A(1) is equal to exp(v), and B'(0) is equal to v. Thus,

((g) o B) (1) = elg)(ezp(v))
= g-ezp(v), (2.16)
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and

(e(g) 0 BY(0) = a(g)'(B'(0))

= g.v (2.17)
Thus, by Equations 2.15, 2.16, and 2.17, we get
g - exp(v) = exp(g - v),

which proves 2.11.
Now, note that 2.12 follows from 2.11, and that 2.13 follows from 2.10.

Thus, the proposition is true. #
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4.3 Hilbert and C*-algebra Bundles over M

In this section, M is a compact riemannian spin manifold of non-

positive curvature, as in Section 4.1, and k is a positive integer.

From Equations 2.10 and 2.14, it follows that the diagram

alg) ~
¥ gz

x
eXPy l lexPQ'I

M — M

a(g)

commutes for all ¢ in M and g in I'. The maps exp,, exp,.,, and

ofg): M = M

are all isometries. Therefore, from 3.1, the map

alg) : M, — M,

is also an isometry.

We now define a bundle isometry

alg): Az) — Alg - 2)

as the map which makes the diagram
ofg)

A(z) — Alg-2)

exp, l lexpg.z

A —s A
alg)

(3.2)

commute, where the vertical maps, exp, and exp,.,, are given in 1.1 on

page 109, and the map
o(g): A=A




is the map given by 2.3 and 2.4 on page 119. In other words,

~ ~

afg) : A(z) — Alg - =)
is defined by setting

1

a(g) = exp,,” o alg)oexp,,

where exp,.,, a(g), and exp,, are the three other maps given in Diagram 3.2.
Since the three maps in the composition are all bundle isometries, which are
extensions of the corresponding isometries in Diagram 3.1, it is clear that the
map

og) : () — Alg - 2)

is a bundle isometry which extends the isometry
alg) : M, — Mgy.;.

The commutative diagram, 3.2, of bundle isometries, induces a commu-

tative diagram
~ ce(g) ~
H x "_g') H gz
exp, j’ le_xpg-x (3 3)
L}A) — LA)
alg)
of unitary operators, which, in turn, induces a commutative diagram

alg)

B, —— B
exp_,,l J'expgv:z' (34)
B(L*(8)) — B(L*(4))

alg)

of *-isomorphisms of C*-algebras.
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The diagram, 3.3, also induces a commutative diagram

Y = (H,.)

expzl le’ﬂ)g-x (35)

of unitary operators, which induces a commutative diagram

~ ofg) ~

expml lexpg¢ (3.6)

of *-isomorphisms.

Note that Diagrams 3.2, 3.3, 3.4, 3.5, and 3.6, are all extensions of Dia-

gram 3.1.
Let

g - a=calg)a)

for ¢ in I' and a in (H,)* or By .. Since the action of ' on H* is induced by

the action of T on [T, then we have

g'(&la---agk):(g'gh"'sg'gk) (3'7)

for all ¢ in T and (£1,...,€k) in (H,)*.
Also, if a belongs to Bz = B({(H,)*), and a = (a;;) where each a;; belongs
to B, = B(ﬁw), then

g (ai;) = (9 aij) - (3.8)

for all g in T,
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We now put the maps

ofg) : [)N’k,a, — gk,g.r,

together to form the map

alg) : By, — By,
and we do the same with the maps

a(g) : (H")z = (H)g

to form the map |
. \

a(g) : HE — H*. |
These are the maps which satisfy

a(g)(a) =g -a
for a either in % or in l§k.

Proposition 3.9 In 7-exp coordinates, the maps

a(g) : ¥ — i*

and alg) : B, — B,

can be writien as

a(g)(a,z) = (92,9 )

for all @ in L2(AYF or B(L(A)YF), and all z in M.

Proof: This follows from Diagrams 3.5 and 3.6. [ ]



Since the map

a(g) : P(BY — LAY
is a unitary operator, and the map
alg) : B(L*(A)%) = B(L*(A)")
is a #-isomorphism, it follows {rom Proposition 3.9 that the map
a(g) : H* — H*,

in 7-exp coordinates, is a Hilbert bundle isomorphism on M x LA, and

the map
alg) B, — By,

in 7-exp coordinates, is a C*-algebra bundle isomorphism on M x B(LA(AY).

Thus, by Remark 1.8, the map
alg) : H* — H*
is a Hilbert bundle isomorphism on H*, and the map
a(g) B — By

is a (*-algebra bundle isomorphism on Bs.

For any C*-algebra bundle A and any Hilbert bundle k, we let Isom(.A)
and Isom(h) denote the group of all C*-algebra bundle isomorphisms on A,
and the group of all Hilbert bundle isomorphisms on h, respectively.

From Equation 3.9, it is clear that the maps

a:I'— Isom(ﬁk)

1

3
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and

a: ' — Isom(Bx)

which sends g to afg) are actions of I' on H* and By respectively.

Now, recall that an action of a group G on a topological space X is
said to be properly discontinuous if, for every z in X, there is an open
neighbourhood U of z such that (¢ -U)NU is empty whenever g is not the

identity element of the group.

Definition 3.10 Let F be a fiber bundle over X. IfU 15 a subset of X, we
let

Fy= | F..
zelf

If a group G acts on F by bundle isomorphisms, then the action is said to be ;
properly discontinuous if, for every z in X, there is an open neighbourhood

U of z such that (g - Fy)N Fy is empty whenever g is not the identity element

of G. ‘

From its very definition, the action of the fundamental group I' on Mis
properly discontinuous. Since ¢ - (H,)* = (H,z)* and g Biy = Biga, for all
ginT and z in M, we have that the diagrams

ﬁk a(g) ﬁk

(3.11)
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and

- alg) "
y —— By

" | (3.12)
M — M
alg)

commute for every ¢ in ['. 1t follows, therefore, from the fact that the action

of T on M is properly discontinuous, that the actions of T on H* and By are
both properly discontinuous actions.

This implies that we can take quotients to get a Hilbert bundle
D - M )1“ =M
over M, and a C*-algebra bundle
By/T = M/T =M
over M, with bundle projection maps
x: H¥/T - M(= M/T),

and

7 By /T — M(= M/T),

defined by setting
w(l'-a) =T 7(a) . (3.13)

for ain either H* or Bj.

It also implies that the quotient maps

p:f["-—rfl"/f‘
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and

p:gk—>3~k/f‘

defined by the equation
pla)=T-a, (3.14)

for a in either H* or By, are covering bundle maps.

Definition 3.15 Let

H-M
denote the hilbert bundle
HIT - M
and let
Bk — M
denote the C*-algebra bundle
B,/T — M.

By Equation 3.7 on page 126, we have that
g- (€, &)= (g &s-r9Ek)
for all g in T and all (¢1,...,&) in H*. This implies that
H*/T = (H/T)f = H* (3.16)
as Hilbert bundles over M, with Hilbert bundle isomorphism, the map-

‘IJ:F'(ih"'?gk)H(F'gh"':r'gk)- (3'17)



The isomorphism ¥ maps each fiber (H* /T, onto the fiber ((ﬁ/F)k) . That

is, it is the kind of bundle isomorphism that does not change the base point

on which the fiber sits.

So, from now on, the symbols H* and ﬁk/F will be used interchangeably,

and if £ is an element of H* /T, then we can write
E - (Els" wfk)
for some (£1,...,&) in HE.

Definition 3.18 The bundle 7 : H* — M will be called the the k-th Hilbert

bundle associated to the bundle A over M.
We have the bundle projection map
i HF > M
and the bundle covering map
P H* — H*.
Also, from Equation 3.17, we have that
pbr,.. &) = (p(60);- - oK) (3.19)

for all (é1,...,&) in HF.

Note that the covering map

pM—-M



can be described by the equation

7(p(a)) = p(r(a)) (3.20)

for @ in either II* or By. This means that if z belongs to M, and a belongs to
either (H,)* or By, then p(a) belongs to (H*)4z) or Bi p(a, respectively. So,

the bundle covering map p : H* — H* restricts to unitaries
p: (H)F— (H‘c,(a:))'c

and the bundle covering map p : By — By restricts to *-isomorphisms

p i Brg — Bi o)
Now, since the action
a: T — Isom(By)
is the action induced by the action

a: T — Isom(H"),

.

and since the bundle

TFZBNk—l'M

was defined as the C*-algebra bundle over M associated to the Hilbert bundle

r: HF - M,
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then the bundle
By =BT - M

is the C*-algebra bundle over M associated to the Hilbert bundle
7 H* = H*)T - M.
That is,
B, = B(H*)
as C*-algebra bundles. If a belongs to By . and & belongs to (H*), for some z
in M, then we have

p(a)(p(€)) = plal§))- (3.21)

In particular,

B = B(H).
By remarks made earlier, it follows that
B, = M(B).

So, every element a of By can be represented by a matrix (a,;) over B, and we
express this by writing

a = (ai;)-
If ¢ = (&4,...,&) belongs to (H,)F, for some z in M, and a = (a;;) belongs to
B, where each a;; is in B(H.,), then a - { is given by ordinary multiplication

of the k-column {£1,...,£x) by the k x k matrix (ai;).

Proposition 3.22 If ¢ = (ai;) belongs to B, where each a;; belongs to B,

then
pla) = {plai;))- (3.23)
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Proof: Let
pla) = (b;;)
where each b;; belongs to B. We want to show that b;; = p(a;;) for every (4, 7).

Assume that ¢ belongs to BNk,,,, where z is in M. Take £ in H,. Let

be the element in (I;fm)jc with 0 in all the entries except in the jth position

where we have ¢ as an entry. By Equation 3.19, we have that

p(3(6)) = j(p(£)) = (0,...,0,p(€),0; ..., 0), (3.24)

the element in (H,())* with p(£) in the jth position, and 0 everywhere else.
Also,

p(a(i(€))) = plasit,. . akd)
= (p(arj€),- -, pla;6))  (by Eq. 3.19)

= (plag;)p(é),- -, plar;)p(€))  (by Eq. 3.21)

At the same time, we have that

pa(G©))) = pla)p(i(§))  (by Eq. 3.21)
= p(a)(j(p(€))) (by 3.24)
= (byp(&), .- - beip(€))-
Thus,
(p(a1)p(8), - - - plar;)p(E)) = (brp(E), - -, brip(€))

for every ¢ in I,. Since

p:H, — Hym
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is a unitary, it follows that
(p(a1j)ms -+ plars)m) = (bijm, - b))

for all i in H,(;). This implies p(a;;) = bi; for all (¢,7). Thus, the proposition

is true. &




Chapter 5

A “Wiener-Hopf” Extension on the Tangent

Bundle

o~

5.1 PET‘(Bk)

In this section, I carry over all the assumptions of the previous section. So,

in particular, M is a compact riemannian spin manifold of nonpositive

curvature.

Definition 1.1 Let C(By) denote the algebra of all continuous sections of the

C*-glgebra bundle By over M.

Let BS (l§) , denote the C*-algebra of all bounded sections of By. If A
belongs to BS(By), then
|| All = sup || Azl
zeM
~ where A, is the z-component of A. Elements of BS(B;) need not be con-

tinuous. If A is any C*-algebra, we let I som(A) denote the group of
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isomorphisms of A. Note that the action a of I' on By, induces an action
a:T — Isom(BS(B))

of T on BS(By) by *-isomorphisms. If g is in I and A belongs to BS(By), 1
will write g - A for a(g){A).

Recall that BC(By) is the C*-algebra of all bounded, continuous sections

of B;. Note that the action « of T on BS(ék) restricts to an action
a: T — Isom(BC(B:))
of T on BC(B;) by *-isomorphisms.
Proposition 1.2 If A = (a;;) belongs to BC(By), then
g-A=(9-ay)
Proof: For each z in M,

(g-A)z) = g-Alg™'-2)

= {g-a;(¢""-2)) (byEq 38on p.126)

for all g in T'. Thus,

for all ginl. &



Definition 1.3 An element A of BC(By) is said to be periodic if g- A equals
A for every g in I'. We will use Per(By) to denote the C*algebra of all

periodic, bounded, continuous sections of By.

Proposition 1.4 If A = (ai;) is an element of BC(Bg), then A belongs to

Per(By) if and only if each a;; belongs to Per(B). Hence,
Per(B;) & Mi(Per(B)).

Proof: By Proposition 4.1.2, - A = (g-a;;). Thus, g- A= Aif and only

if g - ai; = a;; for each (z,7). Therefore, the proposition is true. #

Proposition 1.5 Ifa and b are elements of BC(By), and g belongs to T, then
b=g-a if and only if

byr =9 ag

for every z in M.
Proof: By definition,
(9-a)g-z)=g-a(z)
Also, we have
a(z) = (z,az)
in w-exp coordinates. By Proposition 4.3.9, we have that
g-a(z)={(g2,9 " az)

in w-exp coordinates. So,

(¢9-a)g-z)=1(9-79"az)
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in w-exp coordinates. This means that the (g - z)-component, (¢ a)g., of g-a
is given by the equation

(g-a)ge =9 as. (1.6)
This proves the “only if” part.

Now, if b, = g+ @, for every z in M, then (1.6) implies that

bypw = (9 @)gz
for all z in M. Thus,
by = (g a)e
for all x in M. Hence, b=g-a. &

Since B was defined as the quotient B; /T of By, by the properly discon-
tinuous action of T on By, then periodic continuous sections of l;’k_ correspond
exactly to continuous sections of B, and the correspondence is given by the
map

® : Per(B:) — C(By)
defined by the equation
(B(A))(=) = p(A(E))
for every A in Per (B) and = € M, where & is any lift of = up to the manifold

M. We state this formally.

Proposition 1.7 ®, defined above, is a C*-algebra isomorphism belween Per(By)
and C(Bx).

Note that, since By = B(HF), then C(Bi) & My(C(B)) in the obvious
way. So, every a in C(B;) can be written uniquely as a = (a;;) where the a;;

belong to C(B).




Proposition 1.8 If
& : Per(By) — C(By)

is the x-isomorphism given in Proposition 1.7, and a = (a;;) is an element of
Per(By), then
O(a) = (®(ay))-

Proof: Take z in M. Choose any # in M such that p(#) = z. Then

(®(a))(e) = pla(d))

Since this is true for all z in M, then ®(a) = (®{a;;)). #

Definition 1.9 If h — X is a Hilbert bundle, let K(h) denote the subbundle
of B(h) consisting of all A in B(h) such thal A is compact. Thus, for each z
in X, the fiber K(h)y of K(h) is the algebra K(hy) of all compact operators

on hg.

Definition 1.10 Let K, denote the C*-algebra bundle K(HY), and let Ky
denote the C*-algebra bundle K(HF).

Also, let & = Ky, and K = Ky. Note that Ky = M(R) = My(K(H))
and Ky, = My(K) = M,(K(H)).

As usual, C(Ky) will denote the conlinuous sections of Kg, C(Ky), the

continuous sections of Ky, and BC(Ry), the bounded, continuous sections of
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K. By compactness of M, C(Ky) is the same as the algebra of all bounded,
continuous sections of K. Of course, C(R}) = My (C(R)) and C(K,) =
M (C(K)).
Also, let Per(Ry) denote the algebra of all periodic elements of BC(K4).
That is,
Per(Rx) = BC(Kx) N Per(By).

Then Per(Ry) = My(Per(R)).
Remark 1.11 Note that the bundle Ky is the lift of the bundle Kg by the

map p: M — M. Also, note that the x-isomorphism @ : Per(By) — C(By) of

Proposition 1.7 restricts to a *-isomorphism from Per(R}) onto C(Ky). So,

P&"(Rk) = C(Kak)




5.2 Invariance of f(D) under the I’ Action

In this section, we assume that M is a compact, spin riemannian

manifold of dimension mm and that k is a positive integer.

There is an obvious action a of I’ on C*(A). It is given by the equation

a(g)(&)(z) =g -(g™" )

for ¢ in T and £ in C°(A). If we let g- £ = a(g)(£), then we can write this as
(9-O))=g-&g™ ).

Proposition 2.1 The Dirac operator

D: C®(A) - C*(A)

is invariant under the action of the fundamental group.I‘ of M. That s, if ¢
belongs to T’ and £ belongs to C*(A), then

D(g-€)=g- D(§).
Or, we can say thal

g-D=D

~

where g+ D is, by definition, the operator a(g)oDoalg)™ on C=(A). So, we

can write

D = al(g)oDoalg)™ _(2.2)

forall g i T.
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Proof: By Equation 2.6,

vg-v(g ' f) =gV

for every v in TM, and £ in C’°°(/E\.). Let eq,...,e, be a local orthonormal
frame, Since a(g) is an isometry on M, g-e1,...g-en is also a local orthonormal

frame. Hence, locally, we can write

Do &) = 20+ Voulo-)

= Yg-e&) (g-Vef) (from above)

=1
m

= ZQ" (e;- €73;€) (by Eq. 2.5 on p. 120)
=1
= g Zei ! {7e,§
=1
= g D§3

which proves the proposition. #

Proposition 2.3 If f is a bounded, continuous function on R, and if g is an
element of T, then
f(D) = a(g) o (D) 0 afg™).
That 1s,
f(D)=g- f(D).

Proof: This follows from Equation 2.2 of Proposition 2.1 and the fact

that the operator
alg) : I¥(R) - I*(A)

is unitary for every g in I'. #
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Now, if A is any C*-algebra, and ai,...,a; are elements of A, define

diag(a,,...,a;) in Mi(A) as the diagonal matrix

( aq \
az 0

Gr—1
0

\ @

Also, if a is in A, let

a; = diag(a,...,a).

k times

Proposition 2.4 If [ is a bounded, continuous function on R, then the op-

erator f(D)e in B(L*(A)¥) satisfies
g f(]j)k = f(b)k

for all g in 1.

Proof: Since




then by Equation 4.2.8 on page 121, we have

a- 1(D) )
g- f(D) 0

g- f(D) =

\ g f(DY
But g- f(D) = f(D) by Proposition 2.3. Thus

g+ f(D) = f(D) M
Remark 2.5 As mentioned earlier in Remark 2.4.1, when we write f(D) €
B(L*(A)*), what we really mean is the operator f(D)g. Also, if ¢ is a bounded

measurable function on M, then we may write F(D)M,, in place of F(D)eM,,
and M,f(D) in place of M,f(D)x.

5.3 Dirac Extensions on the Tangent Bundle

Here, M is assumed to be a compact riemannian, spin manifold of

nonpositive curvature.

Definition 3.1 If ¢ is an element of B(L*(A)), we define Yy(a) as that

section of By whose z-component Ti(a), equals ai for all z in M. That is,

(@ )

Ti(a) = ax =
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for all x in M. Whenever possible, I will suppress the subscript k and use T

instead of Y. Of course, T will always be used instead of 1.

If Ais a section of By, and A = Ti(a) for some a in B(L?(A)), then the z-
component of A, being a constant a; for all = in M, clearly varies continuously

with z, and is bounded in z. Thus, by Proposition 4.1.12, such an Ais bounded

and continuous. So, Ty is a map, |
Y, : B(I*(A)) — BC(By),

from B(L*(Q)) to BC(By). Tt is not hard to see that Ty is an injective *-

homomorphism, or an embedding of B(L*(A)) into BC(By).

Remark 3.2 If a € B(Lz([k)) and we write a € BC(By), what we really

mean is the operator Ti(a) in BC(By).

Proposition 3.3 If f is bounded and continuous on R, then T.(f(D)) is a

periodic, bounded, continuous section of Bi. That is, Te(f(D)) is an element

of Per(By).

Proof: In this proof, I will use T in place of Y. We already know that
the section T(f(D)) is bounded and continuous. So, we only need to show
that it is periodic. That is, we need to show that ¢ - T(f(D)) = T(f(D)) for

all ¢ in T'. By Proposition 1.3, it suffices to show that
(CFDN)g= = g~ (YIDD)a (3.4)
for every ¢ in I' and z in M. But, from the definition of T, we have that

T(a)y = ax
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for all @ in B(L*(A)) and all y in M. Thus, showing 3.4 is the same as showing

that
F(DYe=g- F(D)

for all g in I'. But, this is given by Proposition 2.4, which says that f(D)g is

invariant under the action of I'. Thus, Proposition 3.3 is true. é

Proposition 3.5 Let ¢ be a bounded, continuous function on M. Then the

operator M, € B(L*(A)) is such that
g-M,=M,,
for all g in I'.
Proof: Suppose u € L¥A), and z € M. Then,

(9- M)w)z) = (9-M(g™" ) (@)
= (9-(p (g™ u)) (@)
= (p-(g7 w)(g7"0)
= plg'z) (g7 u)(gTMe)
= (g-¢)z)-ulg-g7'x)
= (g-¢)(z) ulz)
= (My,u)(e),

which implies that ¢ - M, = M,.,. #

Proposition 3.6 Let ¢ € Per(M). Then Ti(M,) is a periodic, bounded,

continuous section of By. That is, Ti(M,) belongs to Per(ék).
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Proof: Asin the proof of Proposition 3.3, it suffices to show that (M,), =

g+ (M,), for all g € T'. This is equivalent to showing that g- M, = M, for all

g€l
So, take ¢ € T'. Since ¢ € Per{M), then g ¢ = p. Thus, by Proposi-

tion 3.5, it follows that ¢ - M, = M,., = M,,, which proves the proposition. #
Notation 3.7 Let
0 — Lperip) = Pprer(ar) — Per(M) @ Per(M)— 0 (%)

be the Dirac extension of the algebra Per(M). For reasons that will be apparent
later we will also use A,, (M) to denote the Dirac algebra Dper(my, Aszo( M)
to denote Lper(ar), and A (M) to denote Per(M) @& Per(M).

Proposition 3.8 For all a in Dp.any, Ti(a) belongs to Per(ék). So, we

have an injective *-homomorphism
T : Dper(py — Per(B)

or

Tk . ./421 (M) - PBT(Bk).

Proof: By Propositions 3.3 and 3.6, T(f(D)) and Tx(M,) belong to
Per(By) for all f in Flip, and ¢ in Per(M). Since Dpey(u) is the C*-algebra
generated by all such f(D) and M,, and since Per(By) is a C*-algebra, it
follows that Ty(a) € Per(B;) for all a € Dper(ar)- ®

Definition 3.9 Suppose a € Ay (M). Then, whenever we refer to the element
a of Per(By), we will actually mean the element Ti(a) of Per(B},). This makes

sense since the map Ty : An(M) — Per(ék) is an injective *-homomorphism.
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So, in particular, if ¢ € Per(M) and f € Flip, then the expressions
M, € Per(By) and f(D) € Per(B;) make sense.

Definition 3.10 If is a k x k matriz on TM, we let M, denote that section

of B, with z-component

(Mw)z = wa
in B(L*(A)¥).
So, M, is the section of By whose value (M,)(z) € B((H.)*) at each

in M is the operator given by
(M) (@) = Mg)g,)-
Thus, for every « in M, ¢ in (ﬁk)r, and v in M,, we have that
(M€)(v) = p(v) - £(v). (3.11)

Proposition 3.12 [f¢ € M(UC(TM)), then the section M, of By is bounded
and continuous. That is, M, € BC(By) for every ¢ in M (UC(TM)). More-
over, the map @ — M, is an injective x-homomorphism from M (UC(TM))
to BC(By). Hence |Mylloo = l¢lleo for every @ in My(UC(TM)).

Proof: Let ¢ be an element of M, (UC(TM)). By Proposition 3.3.2, the
map By Proposition 3.2.7, the map z — @, 15 2 bounded continuous map from
M to the C*-algebra UC(M, Mi(C)) € BC(M, Mi(C)). Since || My|| = [l9]lee
for every 1 in BC(M, Mi(C)), it follows that the map z — M, is a bounded
continuous map from M to B (L*(A)¥). By definition of M,,, the z-component

(M,), of M, is equal to M, for every = in M. Thus, the map z — (M,)e



is a bounded continuous map from M to B(L*(A)*). In other words, the z-
component of M, varies continuously with z in M, and is uniformly bounded
in z. By Proposition 4.1.12 and the definition of a bounded section of By, it
follows that M, is a bounded continuous section of B;.

Moreover,

1Mlloo = sup (M )|

= sup || M(gq)||
TzEM

= sup ||¢zl|o
reM

= [|¢llco-

This proves that the map ¢ — M, from Mk(UC'(TM)) to BC(ék) is an

injective *-homomorphism, and completes the proof of Proposition 3.12. #

Definition 3.13 If C is a C*-subalgebra of My(UC(TM)), define DY, to be
the C*-subalgebra of BC(B,) generated by the set of all M, and f(D) in
BC(By) such that ¢ belongs to C' and f belongs to Flip.

Then define the Dirac algebra of C to be the ideal D¢ of D} generated
by the set of all M, such that ¢ is in C. |

Nezt, we let £}, C BC(By) denote the C*-subalgebra of BC(By) generated
by the set of all f(D) and M, in BC(By) such that f € Co(R) and ¢ € C.
Then we let L be the ideal of £ generated by the set of all M, f(D) and
F(DYM,, such that f € Co(R) and ¢ € C.

Remark 3.14 Let C be a C*-subalgebra of M (UC(TM)). Since the set A

" of all M, in BC(By) such that ¢ belongs to C, and the set B of all f(D)
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in BC(ék) such that f € Flip, are both C*-algebras, then Dp ts actually the

closed subalgebra of BC(By) generated by thése two sets A and B.

Proposition 3.15 Let C be a C*-subalgebra of My(UC(TM)). Let A be a
C*-subalgebra of C. Then D)y C Dy, Da CDe, LYy CL,, and L4 C Lg.

Proof: Obvious from the definitions. &

Let C be a C*-subalgebra of M(UC(TM)). For every = € M, the map
@ @ is a x-homomrphism from My(UC(TM)) onto Mu(UC(M)). We let

C, be the image of C under this *-homomorphism. That is
Ce={p::p€ C}hL

Then C, is a C*-subalgebra of M, (UC(M)).

Proposition 3.16 Let C be a C*-subalgebra of M (UC(TM)), and let z be
an element of M. Then the *-homomorphism ry : a — a, maps D¢ onto Dg,,
L onto L., C(Ry) onto K(L*HAW), and Lo+C(Ry) onto Lo, +K(LAHA)F).

Moreover, the diagrams

LC—i'"“)‘DC

7 |

Lo —

. — D¢,

and

Lo+ C(R) —— Do+ C(Ry)

Lo, + K(LXAY) —— Dg, + K(LHA))




Proof: This follows from the definitions of the C*-algebras

De, Lo € BC(B) and

De, Lo, € B(LAHA))). #

Note 3.17 If A and B are C*-subalgebras of some larger C*-algebra, we let
C*(A, B) denote the C*-algebra generated by A and B and we let T(A, B)
denote the ideal of C*(A, B) generated by the set of all a+b and b- a such that
ac€ Aand b€ B.

Proposition 3.18 Suppose A and B are C*-subalgebras of some larger C*-

algebra. Let 1, denote the identily matriz in M,(C). Then
I(A ® M(C), B® {1+}) = (4, B) @ M,(C).
Proof: For convenience, let
I(A, B)y =I(A® M, (C),B® {1;}).

For1<i<k 1<j <k, let E;; denote the k X k matrix in M,(C) whose

entries are all 0 except for the ¢j entry which has value 1. Note that
I(A, B); C C*(A, B) ® M;(C).

Let C;; equal the set of all z € C*(A, B) such that z ® Ei; € Z(A, B).
Suppose ¢ € A, b € B. Then (¢ ® E;)(b® 1) = (ab) @ E;; and (b ®

1;)(a ® E;;) = (ba) ® E;; belong to (A, B); by definition of T(A, B);. Thus

ab and ba € C;; for every a € A, b€ B.

| Suppose now ¢ € A,y € B and z € C;;. Then both z® 1; and y ® 1

belong to C*(A® Mi(C), B® {1;}), and z® E;; € I(A, B)i. So by definition
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of I(A, Bk, (z®@ 1)z ® 1i)(2 ® Ey;) and (2@ Eij)(z ® 1) € I(A, B)i. That
is, (vz) ® E;; and (zz) ® F; belong to Z(A, B), which means that both zz
and zz belong to C;;. Therefore Cj; is an ideal of C*(A, B) containing all the
ab and ba such that « € A and b € B. Thus I{A, B) C C;;. This is the same
as saying that I(A, B) ® E; € I(A, B); for every i,j with 1 <1 < k and
1 € 7 < k. From this we get that

I(A, B) ® My(C) C I(A, B)s. (3.19)

Next we show that Z(A, B) ® M(C) is an ideal of C*(A ® My(C),B @
{1:}). But C*(A® Mi(C), B ® {14}) is a subalgebra of C*(4, B) ® M(C),
and since Z(A, B) is an ideal of C*(4, B), then Z(A, B)® Mi(C) is an ideal of
C*(A, B)® Mi(C). Thus, (4, B) @ M,(C) is an ideal of C*(A® M(C),B®
{1x})-

Of course, if @ € A, b € B,z € Mi(C), and ab and ba € I(A,B),
= (a®z)(b® 1}) = (ab) ® z € I(A,B) @ My(C) and (3 ® Li)(a ® z) =
(ba) @ = € I(A, B) ® Mi(C).

So Z(A, B)® Mi(C) is a closed ideal of C*(A® M,(C), B® {14}) contain-
ing (a® z)(b® 1;) and (b® 1;)(a ® z) for every a € A,b € B. Since Z(A, B)i

is the smallest closed ideal with these properties, it follows that
I(A, B): C T(A, B) ® My(C).
From (3.19) we then get that

I(A, B)s = (A, B) ® Mi(C). &
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Corollary 3.20 Let C be a C*-subalgebra of Mi(UC(T' M)). Consider M(C)
as a C*-subalgebra of Mu(UC(TM)). Look at the C*-subalgebras Dy, oy and
Loty of BC(Bu). Then the isomorphism BC(By) = M, (BC(B))) restricts
to isomorphisms

Dus,icy = Mi(De)

and

Loy = Mr(Lo)-

Proof: Let B be the C*-algebra of all f(D) € Per(B) such that f is in
Flip and let By =the C*-algebra of all f(b) € Per(B) such that f € Co(R).
Note that if A is a C*-subalgebra of M,(UC(TM)), then

Ds=TI(Ma,BQ {1.})

and

La= I(MA,BO 024] {1n})

where M is the algebra of all M,, in BC(B,) such that ¢ is in A. So

Duycy = Z(MuycyB® lu)
= I(Mg® My(C),(B® L) ® 1)
= I(Mg, B® 1) ® M(C)
(by Proposition 3.18)

= Dec® Mi(C)

and similarly Cac) = Lo @ Mi(C). Tt is a simple matter to show that the

isomorphisms correspond to the isomorphism BC(By) = M (BC (Br)). &
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Lemma 3.21 The isomorphism between Per(B;) and Mi(Per(B)) restricts

to an isomorphism between Dyy, iy rary 2nd Mi(Deyrany). So

ﬁMk{C’D(TM)) = Mk(DC‘O(TM))-

Proof: This is a special case of Corollary 3.20. #

Lemma 3.22 Ifp € UC’_(TM, M(C)), then, for every e > 0, there exists r > |

0 such that if g is a C®°-Flip function, § has support in (—r, 1), and ||g)ee <1,
then the section [g(D), M,] in BC(By) has norm ||[g(D), M,|lle < €.

Proof: Suppose ¢ € UC(TM, Mi(C)). Consider the family 4 = {¢.},cnr
of functions @, € UC(M,Mi(C)). Let ¢ > 0. Then, by uniform con-
tinuity of (o, there exists § > 0 such that ||¢{v) — ¢(w)| < € whenever
d(v,w) < 8. Thus, if € M,a,b € M, and d(a,b) < 6, then [l¢,(a) —p.(b)| =
lle(expzt{a))—p(exp;l(B))|| < €, since d(exp;'(a), exp;' (b)) is equal to d(a, b)
which is < 8. Thus, the family {¢,},cx satisfies the conditions of Lemma
2.11.2. By that lemma, there exists r > 0 such that if g € C°-Flip, § has
support in (~r,7), ||g]lec <1, then, for every z € M, ||[¢(D), M,.]|| < e. Since
[g(D), M,,]is equal to [¢(D), M,]s, it follows that, for such g, ||[g(D), My)|| <
¢ for all € M. Therefore ||[g(D), My)[loo < € for such g. #

The following three propositions follow from Lemma 3.22 in exactly the
same way that Corollary 2.11.7, Proposition 2.11.8, and Proposition 2.11.9

follow from Lemma 2.11.3.

Proposition 3.23 If C is a C*-subalgebra of My(UC(T'M)), then L¢ is an
. tdeal of both Dy and Dg.
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Proposition 3.24 Let C be a C*-subalgebra of My(UC(TM)). Then [a,b] €

Lg for every a,b € Dy, Consequently, [a,b] € L for every a,b € Dg.

If C is a C*-subalgebra of M(UC(TM)) and a € Dg, we will use [a] to

denote the class a + L in Do /L.

Proposition 3.25 Let C' be a C*-subalgebra of My(UC(TM)). Then Do
is the C*-subalgebra of BC(By) generated by Lo and the set of all f(D)M,
such that f € Flip and ¢ € C. Therefore Do /Lo is generaled by elements
[f(D)M,] where f € Flip and p € C.

Definition 3.26 If C is a C*-subalgebra of Mk(UC(TM)), define the Dirac
map

70: C®C — Do/Le,
by letting

to(pm) = [F(D)M, + g(D)M,)

where f is any Flip; function and g is any Flip, function.

Proposition 3.27 If C is a C*-subalgebra of Mk(UC(TM)), the Dirac map

170 : C® C — Do/Lc is a well-defined surjective x-homomorphism.

Proof: The proof is identical to the proof of Proposition 2.11.13 ex-
cept here we use Proposition 3.24 and 3.25 instead of Proposition 2.11.8 and
2.11.9. &

Proposition 3.28 Let C be a C*-subalgebra of Mk(UC’(TM)). Suppose [ €
Flip;, ¢ € Flip, and ¢,n € C. Then f(D)M, + g(D)M, belongs to Lc +
+ BC(Ky) if and only if p =5 = 0.
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Proof: Suppose f € Flip;, g € Flip, p,n € C, and f(f))Mw -f—g(f))Mn

belongs to Lo + BC(Ky). Then, for every z € M, f(D)M,, + g(D)M,,
= (f(DYM,, + g(D)M,), belongs to Lc, + K(L2(A)F)) (by Propositon 3.16).
By Corollary 2.11.11, it follows that ¢, =, = 0 for every z € M. Therefore

p=n=0 #
Theorem 3.29 IfC is a C*-subalgebra of M(UC(TM)), then the Dirac map

TG:C@C —)Dc/ﬁ()
is a *-isomorphism.

Proof: This is a corollary of Proposition 3.27 and 3.28. &
For every C*-subalgebra C of My (UC(TM)), Theorem 3.29 gives us a

C*-algebra extension.
0o LeHDeHCHC -0 (%)

where ¢ is the inclusion of L¢ into Dg and the map ¢ from Dg to C'@ C is the
composition of 7‘51 : Do/ Le — C & C with the quotient map Do — Do/ Le.

This extension will be called the Dirac extension of C.

Proposition 3.30 If C' is a C*-subalgebra of My(UC(TM)), and A is a C*-

subalgebra of C, then the following diagram

0 s Lo —— Do — s CHC —— 0
R
0 v L4 —— Dy — ADA —— 0

I I I

0 0 0
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Proof: Suppose ¢ is in I' and € is in (H*),, where z is in M. Then, for

~

every v in M,,

(- M) = [9- (Melg™" - E))(v)
= g (My(g" - E(g7" - v))
= g-(plg™ v} ((g7" O™ - v))
(by Equation 3.11)
= g-(plg™ - v) - (7" - €(v)))
= o™ ) (g (7 EO))

= (MQ'¢€)(U)1
by Equation 3.11. Therefore, g - M, = M., as asserted. &

Proposition 3.32 If p is a continuous k x k projection on the sphere bundle
S over M, and if p is an element of §5’(p), then M, is a periodic, bounded,

continuous section of By. That is, M, belongs to Per(By).

Proof: Suppose p € 5C(p). By Proposition 3.3.1, ¢ belongs to UC(TM, M(C)).
It follows (from Proposition 3.12) that M, is a bounded continuous section of
By.
Now, since ¢ belongs to SC(p), it is the lift of an element of SC(p) and
is therefore periodic. That is, g+ = ¢ for all g in I'. By Proposition 3.31,
it follows that ¢ - M, = M,, = M, for all g in I'. This means that M, is

periodic. Hence M,, is a periodic, bounded, continuous section of By. [
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Now fix a nonzero,continuous & X k projection p on the sphere bundle over

M, and consider the Dirac extension

0— ES’Té(p) — Dg‘é(p) — SC{p)® SC{p) — 0
of SC(p), and the Dirac extension
0— EM,,(GD(TM)) - 79M,,(é,,(TM)) - Mk(éo(TM)) = Mk(éo(TM)) — 0

of My(Co(TM)). Both of these extensions are well defined since, by Propo-
sition 3.3.1, SC(p) is a C*-subalgebra of M (UC(TM)), and, by Proposition
3.1.14, Mi(C,(TM)) is a C*-subalgebra of SC(p). Since My(Co(TM)) C

SC(p), we have, by Proposition 3.30, a commutative diagram

0— Lz, — Dwmy SC(p) ® SC(p) — 0

1 ] o

0 = Ly oy — PrtuiGoirany) — Mi(Co(TM)) ® Mi(Co(TM)) — 0

T T I

0 0 0
exact at every point.

We add to this diagram the double of the SC(p) Thom extension

0 — M(Co(TM)) 5 SC(p) > Per(M) — 0

of Proposition 3.1.14, and the Dirac extension

0 = Lper() = Pperiary = Per(M) @ Per(M) — 0



of Per(M), to get a commutative diagram

0
0— 'CPer(M) _;')' DPer(M) i} PeT(M) © PGT(M) — 0

TIEBI

0— £ L D 4 SC(p) ® SC(p) ~0

5C(p) 5C(p)
Ii Ti T‘i@i
0 = Lascoiany = PuyGoiran) L Mi(Co(TM)) & Mi(Co(TM)) — 0

I T | I

0 0 0
(3.33)

also exact at every point.

Proposition 3.34 The algebras E%(p),Dﬁ(p), Lag, Goiranys 904 Doy coiran)
are all C*-subalgebras of Per(By).

Proof: It suffices to show that Dgz is a C*-subalgebra of Per(B;) since
all of the other algebras are C*-subalgebras of DSTE'(p)' We already know, of
course, that Dgé(p) is a C*-algebra.

By Proposition 3.3, f(D) in BC(B) belongs to Per(By) for every f €
Flip, and, by Proposition 3.32, M, belongs to Per(By) for every i in .?é(p)
Since D ) is generated by all such f(D) and M, in BC (By), it follows that

D:?E‘(p) is a C*-subalgebra of Per(By). Since Dggp 18 2 subalgebra of Df?&(p)’

Ithen Dty 18 2 C*-subalgebra of Per(By). #

Thus, Dgz,,, + Per(Ry), Lot Per(R), Dag, oy + Per(Ky), and

L, Goirmy) + Per(Ky), are all C*-subalgebras of Per(By), and by Proposition
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3.98 and an argument similar to the proof of Theorem 3.29, we obtain C™-

algebra extensions

60— L Per(Ry) 5 Dstim + Per(Ry) % SC(p) ® SC(p) = 0

som T

and
0 — EM;;(GQ(TM)) + Per(f{k)

|i

Dty (Gorraay) + Per(Ri) — My (C(TM)) ® My(Co(TM)) —— O

which we will call the adjoined Dirac extensions of SC(p) and of M (Co(TM)),
respectively. The map ¢ in both cases is the map which sends f(DYM, +
g(D)M, to (,n) for every f in Flip, g in Flip,, and ¢,7 in SC(p) (or
Mi(Co(TM))). |
For convenience, the adjoined Dirac extension of SC (p) will also be de-
noted by
0 = Aro(p) = Au(p) > Au(p) = 0,

the adjoined Dirac extension of M, (Co(TM)) will be denoted by

0 — Ago(M)g 2 Aot (M) = Aoa(M) — 0,
and the Dirac extension

0 — Aoo(M)1 =+ Aoy (M)s = Aop(M)1 — 0
of Co(TM) = My(Co(TM)) will also be denoted simply by

0 — Ago(M) 5 Ap(M) 2 Agy(M) — 0.
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The commutative diagram (3.33) can then be written as the commutative

diagram

which is exact at every point. We state this formally.

Proposition 3.36 Diagram 3.35, which is the sume as the diagram

0
0 —— EPBT(M) '_t_} DPe?‘(!\ff) —'q_) PeT(M)®PeT(M) —— 0
) Tleal
0 ——  Awlp) — Au(p) *q—’ STE(P)@ST@(P) — 0,

Ti - Ti Ti@f
0 —— Agp(M)s —— A (M) —— My(Co(TM)) & Mi(Co(TM)) —— 0
I [ I
0 0 0

commutes, and is exact at every point.



In the next section, we fill in the gaps in this diagram by defining a limiting
map | : Ay1(p) = A (M), thereby obtaining “Wiener-Hopl” extensions
0 — Aa (M) 5 Au(p) = An (M) - 0
and
O —y ADO(M)k —!? .Alg(p) —lP AQQ(M) -+ 0.

Before doing that however, we make the following simple observations.

Proposition 3.37
Aoo(M)i Z L coqrany + Per(Ri)
— Per(fy) = C(Ky) 2 My(C(K)) = Mi(Aoo(M)).
Proof: It suffices to show that

Lag(Goirary S Per(Ry).

We already know that

EM,,(C'O(TM)) G Pe’"(gk)-

So we only have to show that for every A € Ly, 5,crary) 2nd T € M,A, €
K{L*(A)).

Let €' = Mi(Co(TM)) and fix z in M. Then, of course,

Co = {¢o 1 ¢ € Mi(Co(TM))}

is the same as Mk(CD(M)). By Proposition 3.16, if A € L¢, then A, € Lo,
Thus to complete the proof it suffices to show that Lz coim) & K (L2(AR).
But Ly, (g, (1) 18 @ certain ideal generated by operators of the form M, - f (D)
and f(D)- M, where p € Mi(Co(M)) and f € Co(R). These operators are
compact by Proposition 2.7.5. Hence Lpg, (coimy & K(L*A)%). &
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Proposition 3.38 The isomorphism between Per(By) and My(Per(B)) re-

stricts to an isomorphism between Ao (M) and Mi(Au(M)). So
Aot (M )i = M (Aa(M)).

Proof: Let ® be the isomorphism from Pgr(gk) onto Mi(Per(B)). By
definition, Ao1{ M) is the C*-algebra Dy goran) T Per(K;). By Lemma
3.21, ® restricts to an isomorphism from Dy ¢ (rary ©nto Mi(Co(TM), and,
of course, @ also restricts to an isomorphism from Per(&y) onto M {Per(K)).
Thus ® restricts to an isomorphism from Dy, (57 M))+Per(f§1 1) onto Mi(De,(rany+
Per(R)) = M (Aa(M)). &

For the next proposition, Ag (M), should be regarded in two ways: as a
C*-subalgebra of Per(By), and as a C*-subalgebra of C(Bx).

Proposition 3.39 The adjoined Dirac extension

0 — Ag(M) = Au(M) - Ap(M) —0
of Co(TM) is the same as the extension
0 = Per(R) — Aa(M) — Co(TM) @ Co(TM) — 0
which is isomorphic to the extension.
0 = C(K) 2 A (M) 5 Co(TM) & Co(TM) — 0.
Also, the adjoined Dirac extension

0— AOO(M)k — Am(M)k - AO?(M)k —0
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of My(Co(TM)) is the same as the extension
0 — M(Awo(M)) = Mi(An(M)) — Mi(An(M)) — 0,
which is the same as the extension
0 — My(Per(R)) — Mi(An(M)) = My(Co(TM))) & Mi(Co(TM)) — 0,
which is isomorphic to the extension ' ‘

0 = My(C(K)) = Mi( Ao (M) — Mu(Co(TM)) & Mi(Co(TM)) — 0, |
(3.40)

Proof: Foliows from Proposition 3.38 and 3.37. &

Thus, Proposition 3.36 can be rephrased as follows.

Definition 3.41 The extension (3.40) will be called the adjoined Dirac
extension of My(Co{(TM)). By Proposition 3.39, this is isomorphic to the

adjoined Dirac extension of M(Co(TM)).

Proposition 3.42 Diagram 3.35 is the same as the diagram |

0
0 e 'cPer(M) ——i—) DPcr(M) -—q-} PCT(M) @P&PM —_— U
. T!@l
0 ——  Awp) —  Aulp) —— SC(p) ® SC(p) — 0

{ I o

00— M(Per(R)) —— My(Au(M)) —— My(Co(TM)) & Mi(Co(TM)) —— 0

I I T

0 0 0
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which is the same as the diagram

0

0 — E.PET(M) —':_} DPET‘(M) —'E_’ C(M)®C(M) —— 0
II@I

0 — Ap(p) — Aul) — SCp@sc(p) ~ —— 0

0 My(C(R)) —— Mi(Aa(M)) —— My(Co(TM)) ® My(Co(TM)) —— 0

I [ [

0 0 0

i i o

(by identifying Per(By) with C(Bi)) and commutes and is ezact at every point.
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54 “Wiener-Hopf” Extensions

In this section, M is again a compact, riemannian spin manifold of
nonpositive curvature. Moreover, we assume k is a positive integer, and
that p is a nonzero continuous k X k projection on the sphere bundle
S over M. Let us also assume the notation of Section 3.3.3. So, in particular,
S will denote the sphere bundle over M.

Recall from Section 3.3.3 that p stands for the lift of p up to a projection
on §. Let r : TM\M -+ S be the retraction map. Note that for is the
extension of § to a projection on all of TM \M along the radial lines extending

from 0 on each tangent space.

Notation 4.1 For convenience, we will sometimes use the symbol p in place

of por. That is, we let p=por.
Definition 4.2 Ifr > 0 let
V,={veTM: || <r}.

Also, let x, be the characteristic funclion on TM with value 1 on V, and value
0 outside V.. That is, X» = xv,. Finally, let P, denote the bounded section of
By defined by setting

P, = My, q,

where 1, is the diagonal k X k matriz with 1’s along the diagonal.

Definition 4.3 If « € BC(By), then we say that @ has property * if there

exists b € Ay (M) which, when regarded as an element b € Per(gk), 18 such
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that ||(a — b) - My - (1 — Pn)|| = 0 as N — cc. Any such b is said to have

property *a.

Definition 4.4 Ifn is a positive integer, A = (A1,...,A,) belongs to C*, h is

a Hilbert space, and v belongs to h, then define A @ v in h™ as the vector
ARv = {Av,..., A0).

Lemma 4.5 If n is a positive integer, h is a Hilbert space, A belongs to C,

and v belongs to h, then
A& vl = A1 ol
Proof: We have
revl* = Ell)\ ol
II/\II2 lvll?,

which implies that [|A @ v|| = ||Al - {|v]]. #

I

Lemma 4.6 If K C R™ is such that its diameter diam(K) is finite and

d(K,0) > 0 (where d(K,0) represents the distance between K and 0), then,

T iam{K
for every z,y € K, we have |lgfp — mll < %(ﬁ%)—l.

Proof: If z,y € K, then

oy loll = ll=]
el nyn“ = “n [ nyu( el )\1
[T Hlyll—llxill
N - I, “1'
S el T
2|z —yl| _ 2diam(K)

= TRl S a0 *




Definition 4.7 Let Y be a metric space, and A a subset of Y. Then we will
use diam(Y) to denote the diameter of Y. Let f : X — Y be a map from a
set X to Y, and suppose K C X. Then the variation of f over K, denoted
by Varg f, is, by definition, the diameter of f(K). That s,

Varg f = diam(f(K)).

If z € M, the tangent space T.M has two different metrics: one coming
from the riemannian structure on M, and the other coming from identifying

T M with the product space M x M via the map 7 X exp.

Definition 4.8 Ifc € M and K C T .M, then the notation diam(K) will
stand for the diameter of K in the metric on T.M coming from the riemannian

structure on M.

Lemma 4.9 For every € > 0, there exists § > 0 such that, fzeM,vwe

Sy, and [Jv — w|| < 8, then ||p(v) — p(w)i <.

Proof: Otherwise, we can find ¢ > 0 and a sequence (v,,w;) in .5 X S,
such that each (v, w,) belongs to Sz, x S,, for some z, in M, and such that
llon — wall < L, and ||p(ve) — p(w,)|| > e for all n. Since M is compact, it
follows that S is compact, and therefore S x S is compact. Hence, by passing

to a subsequence, we can assume that (v,,w,) converges to some (v,w) in

S x S. Thus, z, = 7(v,) converges to m(v). Since z, also equals 7{wy), it also
converges to 7(w). Let z = limz,. Then z = 7(v) = m(w). That is, both v
and w belong to T, M. Now, by continuity of the riemannian metric, we have

that ||v — w]| = lim[jv, — w,|| < lim% = 0, which implies that v = w. By

171



continuity of p, it follows that 0 = ||p(v) — p(w)]] = lim ||p(va) — p(wn)|}. But
lp(va) — p(wn)]j 2 € for every n. Thus, 0 > € > 0, a contradiction. Therelore,

the lemma is true. &

Proposition 4.10 Suppose 0 < s < +00 and € > 0. Then there ezists N >0
such that, for every T € M and for every K C T M with diam(K) < s and
d(K,0) > N (where 0 € T,M ), we have that Varg(por) <e.

Proof: Recall thatif z € M and y € M, then S, is the fiber of § at z,
and §, is the fiber of § at y. By Lemma 4.9, there exists § > 0 such that, if
z € M,v,w € S, and |jv — w| <4, then p(v) — p(w)}| < e. Since p is the lift
of p to 5, the same is true for p. That is,ifz € M,v,w € S,, and lv—w|| <6,
then [[3(v) - 5(w)]] < e |

Now, take any s > 0 such that s < co. Let N = %3. Suppose = € MK C
T M, diam(K) < s, and d(K,0) > N. Now, take any y,z € K. Then, by
Lemma 4.6, we have that -

[l
iyl Nl
That is, ||[r(y) — r(2)|| < §, which implies that I((1)) — B(r(z)ll < e. There-

2diam(K) _ 25 _
= d(K,0) TN

fore Varg{por) <e. '

Proposition 4.11 Suppose 0 < s < 00, Then, for every € > 0, there exists
an N > 0 such that, if K € M, diam(K) < s,z € M, and d{z, K) > N, then

Varexpx_l (K) (ﬁ 0 'r) S €.

Proof: Suppose 0 < s < oo, and € > 0. By Proposition 4.10, there exists

N > 0 such that if ¢ € M, A C T.M, diam(A) < s, and d(4,0) > N, then




Varg(por) < e. Now, take z € M and K C M such that diam(K) < s and
d(z, K) > N. To complete the proof, it suffices to show that diam(ezp, 1 (K)) <
s and that d{ezp,~'(K),0) > N. But, M has nonpositive curvature. Hence,

the exponential map exp, : T.M — M increases distance. Therefore,
diam(exp, ' (K)) < diam(K) < s.

Also, the exponential map has the property that, for all u € T, M, d{u,0) =
d(exzpyu, ), which implies that d(exp, 1(K),0) =d(K,z) > N. #

Lemma 4.12 Ifa € BC(By) has property * and b € Ay (M) has property +a,
then |[b]] < |lal}.

Proof: Takeany ¢ € Lz(ﬁ) with compact support K , and take any y € K.
Since K is compact, then, by Propesition 4.11, there exists N, > 0 such that,
if z € M and d(z, K) > Ny, then

Var p< : |
o~ P S S Tl €

Since b has property *a, there exists Np > 0 such that, if N > IV, then

b - ) My - (1 = Pl < 3

Let N = max{Nl, Ng}.
Now, take any = € M such that d(z, K) > N and take any A in the range

of the projection plexp,~1(y)) such that Al = 1. Then,

(4.13)

Vatexp, -1 (k)P < 2(1 4+ |8l - e



174

Note that the support of exp,*(¢) is exp,~'(K). So, if v € M, lies in the
support of exp,*(£), then, exp(v) = exp,(v) € K, which implies that [[v|| =
d(exp(v), 7(v)) = d(exp(v),z) = d(K,z) > N. Hence, supplexp,*(€)) C
TM\Vy, which implies that (1 — Py) - exp,"(£) = exp,*(§), and therefore

(1 = Pr)(z) - (A®exp,"(€)) = A @ exp,”(§)-

Furthermore, since the support of AQexp,*(£) is exp, ' (K), and since exp, Hy) €

exp, ' (K), then we have that

“Mﬁ(expz‘l(y))—ﬁ(m) ’ (’\ @ eXPx*(f))H < Varexpx—i(K)f" “A ® expw*(ﬁ)ll.

Hence,

66l = A ® exp," (B
= [|b(z) - (A ® exp,“(£))]]
(where we regard b here as an element of Per(By))
= ||b(z) - plexp, " () - (A @ exp" ()]
(since X is in the range of p(exp,'(y)))
= 16(2) - Mpgexp, s u)-5() - (A @ exp,”(£))
+((b—a)- Mp)(z) - (A @ exp,"(£))
+(a- M;)(z) - (A @ exp,"(€))]
(6 Mp(exp,~1@upy-3)(@) - (A ® exp,"(€))]
(b= a) - My - (1 — Pw))(z) - (A @ exp," ()l
+Hl(a - Mz)(z) - (A @ exp, ()]

18] - Varesp, -1 (218 - 1A ® exp," (£)]]

IN

IA
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HI(b—a) - Mz - (1 = Pl - 1A @ exp." ()]

+all - A ® exp, (€l

< 45+ el -1l
= lal - il + €.

This is true for every e. Thus, |66]] < el - ||€]] for every £ € L}(A) with
compact support. Since the compactly supported £ € LQ(A) are dense in

L*(A), it follows that ||b]} < |la]|. &

Corollary 4.14 Ifa € BC’(Bk) has property *, then there is a unique b €

Az (M) such that b has property *a.

Proof: Suppose a € BC(By) and that b,,b, € Ay{M) both have prop-
erty *a. Then, {[{a—b1)- M;-(1— Py)|| = 0 as N — oo and l(a—ba)- M- (1—
Py)|| = 0 as N — oo. From this, it follows that [|(b; - bg.)-M,; (1=Py)] =0
as N — o0o. This means that b, — by has property *0. By Lemma 4.12, it

follows that ||b; — bal| < ||0]] = 0. Thus, b, = by, which proves the corollary. #

Definition 4.15 Ifa € BC(By) has property =, we define l(a) to be the unique

element in Ay (M) with property *a. This makes sense by Corollary 4.14.
Proposition 4.16 We have ||I(a)|| £ lial} for every a € BC(By).
Proof: This follows from Lemma 4.12. &

Definition 4.17 If X is a Banach space, z,y € X, ¢ > 0, and le -yl < ¢

we will say that ¢ is e-close to y, and we will write & ~. y.
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Proposition 4.18 If X is a Banach space, z,y,z € X, x is e-close to y, and

y is 6-close to z, then z is (e + §)-close to z.

If, in addition, X is a Banach algebra, and a belongs to X, then az is

(llal|€)-close to ay.

Proof: Obvious. #

Lemma 4.19 Suppose ¢ € Per(M) and ¢ € SC(p). If we regard M, €
B(L*A)) as an element of Per(By), then, for every N > 0, the sections

My, Py, M,, and M; of B, are such that My and Py commute with themselves

and with the other two sections, M, and M;. 1

Proof: For every z € M, the operators My(z) and Py(z) in B(L*(A,)¥)
are multiplication operators with complex-valued functions as multipliers. The
operators M, (z) and M;(z) in B(L*(A,)¥) are also multiplication operators,
but with complex matrix-valued functions as multipliers. Thus, My(z) and
Py(z) commute with themselves and with the other two operators, M, (z)

and M;(z). This is true for every z € M. The lemma, therefore, follows. #

Proposition 4.20 Let ¢ € .?é(p) and € > 0. Then there exists N > 0 such

that if we regard My, € An{M) as an element of Pe'r(lgk), then
(M, — My, - Mp)- (1= Pr)| <e

Moreover, M, € Per(By) has property * and {(M,) = My, in Ay (M).
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Proof: By Remark 3.1.13, ¢ is equal to (f,0exp)-p at infinity. It follows

that, for every € > 0, there exists N > 0 such that

M, (1 —Pn) ~c M(oeexpys {1 — Pn)
= ﬁfffw -Mﬁ-(l —PN),

where, in the last line, we regard My, € Ay (M) as an element M, of Per (By).

This proves the first part of the lemma.
To prove the second part, we note that, for the same N > 0, we have that

Mw'Mﬁ'(l—PN) = Mlp(l—PN)Mﬁ

~e My, - M;-(L— Py)-M;

= My, M,-(1-Py).

Therefore, M, € Per(B;) has property *, and {(M,) = M;,. #
Lemma 4.21 If¢ € .?é(p) and € > 0, there ezists N > 0 such that
M, Mz (1— Py)~e M- M, - (1 = Py).
Proof: Suppose ¢ € 3’6(19) and € > 0. By Proposition 4.20, there exists
N > 0 such that |

M,- (1 — Py)~g My, - My (1= Fr).

It follows that

Mw'Mﬁ'(l—PN) -




= M;

o Mz - Mg - (1 — Pn)
= My My, - M;-(1—Py)

~s Ms- M, (1 - Py).
Thus, the lemma is true. &

Lemma 4.22 Let h be a Hilbert space, I the identity operator on h, K a-
compact operator on h, and 0 < ¢ < q2 S --. be a scquence of orthogonal

projections on h such that g, — I in the strong operator topology as n — oo.

Then ||K - (I = ¢,)]] = 0 and [|[(I — ¢z) - K[| = 0 as n — co.

Proof: This is clearly true if K is a finite rank operator. Every compact
operator can be approximated in norm by a finite rank operator. Hence, by a
simple approximation argument, we can prove that the lemma is true for any

compact K. #

Proposition 4.23 Let N be a complete, riemannian, spin manifold, Ay the
bundle of ;spinors over N, z a point in N, and K a compact operator on
the Hilbert space L2 (An)*. Then ||(1 — Myp, ) - Kl — 0 as r — oo, and
i (1= M,

B(w))H — 0 as r — 00.

Proof: By completeness of N, we have that N = e ,B(z,n). By
Lemma 4.22, it follows that ||(1 — My, ) - K[| — 0 as n — oo, for positive
integers n. If r > 1, then, of course, {(1 — My, ) - K1l = (1~ My, (1=

My, ) K| < (1 - My, ) Ki for any integer n between r —1 and r. So,

B(x,n} B(z,n

(1= Myp..)- K|} also goes to 0 as r — co. Taking the adjoint then proves

the second part of the proposition. #
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Proposition 4.24 If K € Per(Ky), then | K - (1 — P.)[| — 0 as r — oo, and
(1= P) - Kl =0 asr— oo.

Proof Suppose K € Per(Ry). If z € M and r > 0, let

wr(2) = |1 = Pr)(=) - K(2)]].

By Proposition 4.23, we have that w,(z) decreases to 0 as r — oo for every z
in M. Since K is periodic, then w, is also a periodic function on M. (That
is, it is periodic with respect to the I action.) The function w, is also clearly
continuous on M. Since M is compact, it follows that w,(z) decreases to 0

uniformly in z as r — oo. Hence, w, — 0 in the co norm, as r — oo. But, of

course,

11 = Pr) - K| = [lewrloo-

Thus, |1 — ) - K|| — 0 as r — oo. By taking adjoints, we also get that

|K-(1—P))] > 0asr— oo #

Corollary 4.25 If K € Per(Ry), then K has property * and I(K)=0.

Proof: Suppose K € Per(Ky). Then, for every N > 0, K - M; (11—
Pyl = |1 K - (1= Py) - Mz < |K - (1= Py)ll, which by Proposition 4.24, goes
to 0 as N — oo. Hence, |[(K —0)-M;- (1 — Py)|| = 0as N — oo. Thus, K

has property * and {{(K)=0. #

Corollary 4.26 If K € Per(Ky), then || [K, M- (1—Py) || = 0 as N — oo,



180

Proof: Suppose K € Per(Ky). Then

| [K, M) - (1= Pn) || S KMy~ (1= Py)ll+{|M;- K- (1— Pu)
= [|[K-(1~Pn) M|l +||M; - K-(1— Pn)

< 2K - (1 - Py

which goes to 0 as N — oo, by Proposition 4.24. Thus, || [K, M3]-(1—Py) || —
Oas N = oo,

Proposition 4.27 If a € An(M), then the operator a, considered as an el-
ement of Per(By), has property =, and I(a) is the operator a € An(M). We
can therefore write 1{a) = a. More precisely, the element Ti(a) € Per(By) has

property ¥, and I(Ty(a)) = a.

Proof: We have (a —a) - M; - (1 — Py) = 0 for all N > 0. Therefore, a

has property * and {(a) = a. &

Lemma 4.28 If f € Flip, then || [f(D),Ms]- (1= Py) || 2 0 as N — o0,

where f(D), here, is considered as an element of Per(By).

Proof: By Proposition 2.1.13, the collection Flipy of Flip functions with
compactly supported Fourier transforms forms a dense subspace of Flip in the
| - ] norm. Thus, {f(D) € Per(By) : f € Flip,} is a dense subspace of
{f(D) € Per(By) : f € Flip}. So, it suffices to prove Lemma 4.28 only for
the case where f € Flip;.

So, take such an f € Flip; whose Fourier transform has support in {—r, 7]

- for some r > 0, and let ¢ > 0. By Corollary 2.10.7, M can be covered by a
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finite number, say g, of r-strings. Let

€

~ 200+ 1/l

By Proposition 4.11, there exists Ny > 0 such that if K M has diam(K) <

31

4r and if z € M and d(z, K) > Ny, then
Va'rexpx*l(f()(f’) < €. (429)
Now, let
Ng = N1 + 3r

and take any N > Np. Let
A= [f(D),My]- (1 - Py).

To prove Lemma 4.28, it suffices to prove that || A|| € ¢, and to prove this, we
have to show that

Al <€, VzeM. : (4.30)

So, fix z € M. Note that A, € B(L*A)*) is the operator

As = exp,,(Ale))

= [exp,.(f(D)(2)), expe.(Mp(2))] - (1 — expe,(Fr(2))

= [f(b)kvMﬁoerpx"] ) (1 - MXB(::,N))' (4’31)
Since the Fourier transform of f has support in [—7, 7], then, by Corollary 2.3.5,
f(D) € B(L*(A)) is an r-local operator. Thus, F(D)e € B(LA(A)*) is also an
r-local operator. Thus, from the expression (4.31) for A, we see that A, is the

sum of terms involving the product of the r-local operator f (D), with (0-local)

multiplication operators. Hence, A; € B (LZ(A)") is an r-local operator.
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Now, suppose we were able to show that
| Asl]l < g V ball B ¢ M of radius r. (4.32)
Then, since A, is r-local, and since M can be covered by ¢ r-strings, we would
have, by Proposition 2.10.3, that
€
Al < 2 -a=¢
which would give (4.30). So, the proof of Lemma 4.28 reduces to showing

(4.32).
So, take any ball B = B(y,r) C M of radius r and centered at y € M,

and take any u € LQ(A)”c with support in B. Let
Pon = Myp, - 1k
and let
u, = (1 — P y)u.
Then
Azl = I [F(D)e Mpoexp,—] - (1 = Pon)u |
= [ Lf(D)ks Mpoexp, 111 |1

Note that f(D) p(expxﬂ (yhH = Mp(expt'l(y)) f( )k since the matrix Mp(expm 1y))
is constant, and the operator f(D) is diagonal w1th f(D) on the diagonal en-

tries. Thus, we have that
Ml = | (D) - Miowmp,—+ (1) = F(D)e - Myfonp, 1) (1)
+ (M,a(exp,-l(y» - F(D)e(1) = Myoenp,—1 - S(D)elwn)) I
< ”f( ) :ooexpx") —plexp,™ ’(y))( )”

H Mtexp, = (g))—goexpe 2 * F (D).



Now, since u; has support in B = B(y,r) C B(y,2r), and, since F(D)
is r-local, then F(D)s(uy) has support in B{supp(w,),7) C B(B(y,r),r) =

B(y,2r). Thus,

I4zu < IF(D) - Varpggan (B oexp,™) - [lu]
+VarB(y.2r)(f’° expx_l) ) ||f(f7)k|l el
< 2| flloo - Varp(yan (P o exp, ™) - [[ui|

= 2V&I’expx—1(8(y,2'r))(ﬁ) ’ ”f“w : “m”

That is,
| Azul] < 2Vare,-1@w2)(B) - 1 lleo - leall: (4.33)

Now, if B is such that B C B(z,N), then u would have support in
B(z, N), which would imply that Pryu = u, and, therefore, that u; = (1 —
P, n)u = 0, which would then give us that Azu = 0. So,in this case, we would
clearly have that ||Aul| < ?Hu\[

In the other case, where B\B(z,N) # ¢, there would exist a point z
outside B(z, N) such that z belongs to B = B(y,r). For any a € B(y,2r), we
would then have d(z,a) < d{(z,y) + d(y,a) < 7+ 2r = 3r, which would imply
that d(z,a) > d(z,2) — d{z,a) > N = 3r > No—3r = Ny +3r —dr = N;.
So, B(y,2r) would be a set of diameter 4r such that d(B(y,2r),z) > Ny. By

(4.29), we would then have that

\["-'1'1‘13):1:';,'l (B(y,2r)) (ﬁ) < e,

which, together with (4.33), implies that

Azl < 2eallflle - [lul]

183



184

€
QW A Flloo Nl

€
< = ||u.
pa I
Thus, [|Asuf < £ - |lul| whether or not B C B(z,N). Hence, ||A:|s]| < <.

which proves (4.32) and completes the proof of Lemma 4.28. #

Lemma 4.34 If a € Ay (M) is r-local, and if we regard a as an element of

Per(ék), then, for every N > r, we have that Py, -a- (1 — Py)=0.

Proof: Take z € M. We need to show that (Py_,-a- (1 — Py)), = 0.
That is, we need to show that M., . . -ar-(1— My, a) = 0. So, take
w € L*(A)*. Then (1 — My, »,)(u) has support in M\B(z,N). Since a is r-
local, then so is a,. Hence, a((1 —MXB(I’N))(U)) has support in M\ B(z, N —r),
which implies that My, ,_ . (ax((1 - My . ) () = 0. That s, Mygionon
ar (1= Mypeny) = 0. 8

Proposition 4.35 The set of all a € BC(ék) such that, for every N,e > 0,

there exists R > N such that
”PN'a'(l_PR)” < €
is @ closed subalgebra of BC(By).

Proof: Let A denote this set. It is not difficult to show that A is a closed
vector subspace of BC (lgk) Suppose, now, that a and b are two elements of

A. We want to show that ab also belongs to A.

Take N > 0 and ¢ > 0. Since a belongs to A, there exists B > 0 such
that

||PN'G'(1—PR)”<W,
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and, since b belongs to A, there exists S > R such that

HPRb(l—PS)“ <m.

1t follows that

|Py-ab- (1= Ps)lf = |(Pnv-a-(1—Pg))-b-(1—Ps)

+(Py-a)-(Pr-b-(1 - Ps))|

< [1Px-a- (1= Pa)|- (1 — Po)|
Pl b (1 £5)

< s Nl e

< e

Hence, ab belongs to A. Therefore, A is a closed subalgebra of BC’(ék) [ )

Lemma 4.36 Suppose a € An(M), N >0, and ¢ > 0. Then, there exists a

number R > N such that, if we regard a as an element of Per(gk), then
(Py-a-(1—Pr)|| <e

Note that this is the same as saying that a- (1 — Pg) is e-close to (1 — Py) - a-

(1 Pr).

Proof: Let A denote the collection of all a € BC (By) such that, for every

N,e > 0, there exists £ > N such that
|Pn-a-(1— Prill <e

" We want to show that T(An(M)) C A



By Proposition 4.35, A is a closed subalgebra of BC(Bi). Now, suppose
o € Per(M) and N > 0. By Lemma 4.19, Tx(M,) € Per(By) commutes
with Py. Thus, for every B > N, we have that Py - T¢(M,) - (1 ~ Pgr) =
Ti(M,) - Pn(1 — Pg) =0, since R > N. Therefore, Y,(M,) belongs to A for
every ¢ € Per(M).

Now, let f € Flipg and let r > 0 be such that f has support in the interval-

[—r,r]. Take any N > r. By Corollary 2.3.5, f(D) € B(L*(A)) is an r-local
operator. Thus, by Lemma 4.34, TL(f(D)) € Per(By) has the property that
Py_r - Te(f(D)) - (1 — Pn) = 0. Therefore, T(f(D)) belongs to A for every
f € Flipg. By Proposition 2.1.13, Flipa is dense in Flip. Together with the
fact that A is closed, this implies that T(f (D)) belongs to A for all f in Flip.

Therefore, A is a closed subalgebra of BC (By) containing all the Tx(M,)
and all the Ti(f{D)) such that ¢ € Per(M) and f € Flip. By Remark 2.11.1,
Axn(M) is the closed subalgebra of B(L*A)) generated by all such M, and
F(D). Hence, Ti(Au(M)) C A &

Definition 4.37 For convenience, we let

-A'u(p)’ = DS’E(p)’ + Per(kk)

and

A (M), = DMk(éo(TM))’ + Pe’"(kk)-

Remark 4.38 Since DM,;(G'Q(TM))’ is a C*-subalgebra ofiDEE,(p)’, then Ao (M);,

is a C*-subalgebra of An(p)’.
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Remark 4.39 Recall (Remark 3.14) that D.g'“é(p), is a closed subalgebra of
Per(By) generated by A, the set of all M, in Per(B}) such that ¢ € SC(p),

and B, the set of all f(D) e Per(By) such that f € Flip.

It follows that An(p) = ’Dgg,(p)' + Per(fy) is the closed subalgebra of

Per(ék) generated by the sets A, B, and Per(Ky).

Remark 4.40 By definition (Definition 3.13), the Dirac algebra Dgz, is the
closed ideal of Dgap)' generated by the set of all M, in Per(B,) such that o

belongs to 5C(p)-

Hence, since Per(Ky) is an ideal of Per(By), Au(p) o ’Dgg,(p)—FPer(Rk)
is the closed ideal of Ay (p) & D?;E‘(p)’ + Per(Ky) generated by Per(Ry) and
the set of all M, in Per(By) such that ¢ € SC(p).

Similarly, Dy, sormy) ¥ by definition the closed ideal of ’DMk(éD(TM))'
generated by the set of all M, in Per(By) such that ¢ is in Mi(Co(TM)), and
Aoy (M) is the closed ideal of Ao (M), generated by Per(Ky) and the set of

all M, in Per(By) such that ¢ € Mi(Co(TM)).

Lemma 4.41 Suppose a € An(p), N >0, and e > 0. Then there ecists a

number R > N such that
Py a-(1—Pr)li <e
This is the same as saying that a- (1 — Pg) is e-close to (1—Py)-a-(1—Pr).

Proof: Let A denote the collection of all @ € B C (Bk) such that, for every

N,e> 0, there exists R > N such that

[Py-a-(1— PRl <e
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We want to show that A (p) C A

By Proposition 4.35, A is a closed subalgebra of BC(By). Suppese ¢ €
SC(p), f € Flip, K € Per(Ry), and N > 0. By Lemma 4.19, M,, € A (p)’
commutes with Py, and so, for all R > N, Py - M, - (1 — Pr) = M, Pn-
(1 — Pg) = 0. Therefore, M, belongs to A. By Lemma 4.36, f(D) € Au(p)
belongs to .A. By Proposition 4.24, |[K - (1 — Pr)}l — 0 as R — oo. Since
| Py K-(1—Pg)|| < K -(1—Pr)l|, it follows that || Pv- K -{1—Pgr)|| also goes to 0
as R — oo. Thus, K also belongs to A. Therefore, A is a closed subalgebra of
BC(By) containing all the M,, f(D), and K such that ¢ € SC(p), f € Flip,
and K € Per(Ry). Thus, A;(p), which, by Remark 4.39, is the closed

subalgebra of Per(By) generated by such elements, is contained in A &

Corollary 4.42 Let A' C Per{(By;) denote the C*-algebra generated by the
C*.subalgebras Ti(An(M)) and Au(p) of Per(Bi). Then, every a € A has

the property that, for every N > 0, there exists a number R > N such that
|Py-a- (1= Pgr)|| <e.

This is the same as saying that a- (1 — Pg) is e-close to (1 — Py)-a- (1 — Pg).

Proof: Since both T(Axu(M)) and Ay (p) are C*-algebras, then A s
the same as the closed algebra generated by Ti(A2(M)) and Au(p)”.

Now, let A denote the collection of all a € BC(By) such that, for every

N, e > 0, there exists R > N such that

|Py-a- (1= PRl <e

0



We want to show that .4 < A. By Proposition 4.35, the algebra A is a

1osed subalgebra of BC(By). By Lemmas 436 and 441, botb T oA (M)

nd Asi(p) are contained in A. But A’ is the closed algebra generated by

(A (M)) and Ai1(p). So, A’ is also contained in A. #

emma 4.43 Suppose a belongs to the C*-algebra generated by Ti(An(M))

nd An(p)- Then || [a, M3] - (1 —Py) || =0 as N — oco.

Proof: Let A C Per(B;) denote the (*-algebra generated by the subal-

(A (M)) and A, (p) of Per(By). Let A denote the set of alla € A’

ebras Ty
(1—Pn) || — 0as N = o0. We wan

-h that || [a, M;) t to show that A = A'.
‘It is not hard to see that Ais a closed vector subspace of A’. Suppose,

that @ and b belong to A, and that ¢ > 0. Since a,b € A, there exists

b°Mﬁ'(1'Pﬂ)~3(:+eu'ﬁMf"b'(l_PR)'

. then by Corollary 4.42, there exists N > R such that

b (1 = Px) ~ gy (1~ Pr) b+ (1= P

ab- M;- (1 - PR)(1— PN)

~atsn ¢ M b- (1 — Pr)(1— Fn)

a-M;-b-(L=Py)



~llall g3 a- M- (1—Pr)-b (1—Pn)
N”bﬁﬁ'("x—ﬁﬁﬂ_) lWﬁ'a'(l—PR)-b-(l—PN)
M;-ab- (1= Py).

~eollgiTem

Since

”“”3(1: i * | 'Lfsu e s s e
_<_ § + 'é + g + g = €,

it follows that ab- M; - (1 = Py) is e-close to M - ab- (1 — Py). That is,
| [ab, M;)- (1 — Py) || < e. Therefore, ab € A. Hence, A s a closed subalgebra
of A’

Now, A’ is, by definition, the C*-algebra generated by T(An(M)) and
Ay {p). Thus, A’ is the C*-algebra generated by the C*-algebras Ay, Az, Aa,
and Per(Ky), where A, is the set of all f(D) € Per(By) such that f € Flip,
Ay is the set of all My € Per(By) such that ¢ € Per(M), and As is the set of
all M, € Per(ék) such that ¢ € SC(p). Since these four generating subsets
of A’ are all C*-algebras, then A’ is actually the closed subalgebra of Per(By)
generated by these four sets. So, to show that A = A, it is enough to show
that the four elements, My, f(D), K, and M, € Per(B;) all belong to A for
é € Per(M), f € Flip, K € Per(Ry), and p € SC(p).

So, take such ¢, f, K, and @. By Lemma 4.19, M, € Per(By) commutes
with M;. Hence, My € A. By Lemmas 4.21 and 4.28, and Corollary 4.26,
we have that M,, f(D), and K in Per(B;) also belong to A. Therefore,

Proposition 4.43 is true. #
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Proposition 4.44 The set of all elements of BC(By) with property * is a
closed subalgebra of BC(By), and the map a — I{(a) is a bounded algebra
homomorphism from this algebra to A (M) with [l(a)|]  |le]| for every a in

this algebra.

Proof: Let A denote the set of all elements of BC(By) with property *..

Suppose a,b € Aand A € C. Then, [((atb)—(H{a)+i(b)))- Ms(1—Pn)i| <
(a—U{a)) M;- (1 =Pl + (b~ I(b))- M- {1 — Py)l} — 0 as N — oo. Hence,
a + b belongs to A and {a + b) = I(a) + L(b).

Similarly, {[{(Aa—A(a))- Mp (1 - Pr)ll = |- [l(a=1(a))- Mz (L= Pw)[| — 0
as N — co. Thus, Aa € A and [(Aa) = A(a).

Now, suppose € > 0. Let

€

= B(1+ [lafl + 16D’

!
€

Since a € A, there exists R > 0 such that
CL-MI;-(].-—PR) o~ I(G)Mﬁ(l—PR)

By Lemmas 4.36 and 4.43, and the fact that b belongs to A, there exists N>R
such that

b M- (1 — Px) ~o () Mj- (1 — PN),
1(8)- (1 = Pa) ~o (1= Pa) - 1(b) - (1 = Pw),

and

M; - 1(B) - (1 — Py) ~o 1(B) - My - (1 = Pr).




1t follows that

ab-M;-(1 = Py)  ~age arl(b)- My (1 - Py)
Naller @+ M- 1(b) - (1 — Py)
~jafe @ Mp - (1= Pr) - () - (1 — Pn)
~ueye 1) My (1= Pr) - 1(8) - (1 = Py)
”Hf{a)llc-’ I(a)- M- 1(b) - (1 — Pn)

~ater 1(a) - Hb) - My - (L — Pn)

Now, both l|a||¢ and ||4j|¢’ are < §. From Lemma 4.16, we have that ||[{a){le’ <
lialle’ < £. Similarly, we have that i(B)||¢’ < £. Therefore, ab- Mz (1—Pyn) ~.
I(a) - 1(b) - Mz - (1 — Py). This shows that ab € A and I(ab) = I(a)l(b).

Thus, we have shown that A is a subalgebra of BC(B.) and that the
map ! : A — Ay (M) is an algebra homomorphism. We already know from
Lemma 4.16 that |[{(a)l] < ||a|| for every a € A. It remains to show that A
is closed. So, take a in A. Let a, be a sequence of elements of A such that
a, — ¢ as n — 0o0. By Lemma 4.16, the map | from BC(Bx) to An(M) is
norm reducing. It follows that the sequence I(a,) is Cauchy, and therefore

converges to some b € Ay (M). Thus,

a—8)- M- (L= Pl < Ha—an) My (1= PNl
+li((an — H(an)) - Mz - (1= Pr)|

+(Ian) — ) - My - (1= Fw))

P4

la — al]

+|((an — Han)) - My - (1= Pr)l
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+|{(an) — .

Since the term ||((an — {(an)) - My - (1 — Py}l goes to 0 as N — oo for every

n, it follows that

limsup||(a— ) My - (1 = Py)i| < lla = aall + 16— an)]

N—oco

for every n. But, the right hand term goes to 0 as n — oo. Hence,
Jim l(a =) Mz (1= Pa)l =0
Therefore, a € A and {(a) = b. That is, {(limn_.co an) = limpoco l{as). #

Proposition 4.45 All elements of A1 {p) have property x. Moreover, [ is
defined on all of Au(p), and L: Aii(p) — B(L*(A)) is a x-homomorphism.

Proof: Let A denote the set of all a in Aj;(p) with property * We
want to show that A = An(p). Let A = Per(Ky), be the set Az of all
f(D) € An(p)' such that f is Flip, and A; be the set of all M, € Ay (p) such
that ¢ € SC(p). By Remark 4.39, A;1(p) 1s the closed algebra generated by
ihe sets A, Ay, and As. But, by Propositions 4.44, 4.25, 4.27, and 4.20, all
three algebras A;, Az, and As;, are contained in A, and A is a closed algebra.
Therefore, Ay (p), is a subalgebra of A. On the other hand, A is a subset of
A (p). Thus, we have A = An(p). That is, every element of A {p) has
property *. Fr’o’m this and Lemma 4.44, we get that the map [ is defined on

all of Ap(p)’ and that I: Au(p)' — B(L¥A)) is an algebra homomorphism.

To show that [ is a *-homomorphism, it suffices to prove

(4.46)



for a equal to either K, f(D), or M, where K € Per(Ry), [ € Flip, and
p € SC(p). So, take such elements K, F(D) and M. Note that [(K*) =0 =
0* = I(K)*, which proves 4.46 for a = K. Also, I(T( FIDYY) = {(TW(F(D))) =
F(D) = f(D) = {T(F(D)))". Hence, 4.46 is true for a = Yi(f(D)). Next,
we see that [((M,)") = (M) = My,.. By Remark 3.1.13 on page 92, we
have that f,« = f,. Therefore, [(M,") = My, = (M;,)* = {M,)*. Thus, 4.46

is also true for @ = M,,. Therefore, I is a *-homomorphism. )

Proposition 4.47 The image of the x-homomorphism
[ An(p) — BULA(A))
is the C*-algebra An(M). So, we have a surjective x-homomorphism

[ . A11(p)’ — -A'Zl(M)'

Its restriction

L2 An(p) = Au(M)

is also surjective.

Proof: By Proposition 4.45,
1+ Au(p) — B(L*(A))

is a *-homomorphism. Since D§E‘(p)' is the C*-algebra generated by the set

of all M, and f(D) € Per(By) such that ¢ € SC(p), and f € Flip, then

I(Dgé(p)') is the C*-subalgebra of B(L*(A)) generated by the set of all (M),

and I(f(D)), with M, and F(D) as above. By Propositions 4.20, and 4.27, it
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follows that I(Dgg, ) is the C*-algebra generated by the set of all f(D) and

M;, in B(LZ(ZX)) such that f € Flipand ¢ € Per(M). By Proposition 3.1.14

the map p — (@) = f(p) from SC(p) to Per(M) is onto. Thus, l(ngap)')

is the C*-subalgebra of B(L*A) generated by the set of all f(D) and M,
in B(L*(A)) such that f € Flip and ¢ & Per(M). But, this is exactly the

algebra Ay (M), Hence,

I(D )’) = Agl(ﬁf{)

SCip

Now, it follows from this, and the fact that Ds’"é(;;) is the closed ideal

ra of all M, such that ¢ is in SC(p), that

of ’Dgé(p)' generated by the algeb
ebra of all (M) =

I(Dsﬂé(p}) s the closed ideal of Ay (M) generated by the alg
M;, in B(Lg(ﬁ)) such that ¢ € SC(p). But, as just mentioned, the algebra

of all My, in B(LQ(Z:\.)) such that ¢ € SC(p), is the same as the set of all

M, € B(L*(A)) such that ¢ € Per{M). Since Per(M) contains the constant

function 1, then this algebra contains the identity operator on L*(A). Thus,

l(’DSf-é(p)) .is a closed ideal of A (M) containing the identity operator, and
therefore equals the whole algebra Aq (M),
That is,
I(Dg?;(p)) = An(M).
gebra generated by the algebras ’Dg:é(p) and
= {0} for all K € Per{Ry),

Now, since Au(p) is the C*-al
Per(K,), and since, by Proposition 4.25, I(K)

then we have I(Au(p)) = I(D'S—E.{P)) = Ayu(M). &
Proposition 4.48 We have that

I(A(p)) = l(Aw(p) = Awnl(M),
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which gives a surjective *-homomorphism
2 Agol(p) — Awl(M).

Moveover, the diagram
0 0
Agg( Af) "—‘“—"‘ Ag} ( Af)
I I
Ao(p) —“—“‘* Anlp)

commutes, and is exact at every point.

Proof: The proof that I(A4,,(p)) = 1(Ao(p)) = An(M) s similar to
the proof of Proposition 4.47. That the diagram commutes 1s oBvious since
I . Aw(p) — An(M) is the restriction of I : Au(p) — An(M) to Awl(p).
That it is exact at every point is the same as saying t;ha.t the two maps [ :
Awo(p) —>-A29(M) and 1 : Auu(p) = An(M) are onto. We just showed that
[: Aw(p) — An(M) is onto, and Proposition 4.47 gives us that [ : Au(p) —

Ay (M) is onto. The proposition is therefore true. #

Proposition 4.49 For every a in A (M), l{a) = 0.
Proof: By Proposition 4.45, [ 1s defined on all of Ao (M)} and
2 Ap (M), — An(M)

is a *-homomorphism. Let 7 denote the kernel of this map. Then T is a closed

ideal of Ag(M),. By Remark 4.40, Aor(M) is the closed ideal of Ag (M),
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generated by Per(Ky) and the set of all M, such that ¢ € Mi(Co(TM)). By

Proposition 4.25, I(K) = 0 (i.e. K € I) for every K € Per(Ry), and, by
Proposition 4.20, for every ¢ € M(Co(TM)), UMY = My, = Mo = 0 (ie.
M, € I). Hence, Aoy (M) is a closed ideal of Aoy (M), generated by certain

elements of the ideal T of Ag (M. It follows that Ag (M)x € I.#

Proposition 4.50 The following diagram
Dper(an LN Per(M) @ Per(M)-

Tl A[IEBI »

Au(p) —— SC(p)& SC(p)

which is the same as

A (M) —— Agn(M)

zT [r@z :

Ai:(p) —T"'* Ai2(p)

commutes.
Proof: Take a € Ay1(p). Suppose
g(a) = (sm)

where ¢,n € SC(p). Take f € Flip, g € Flip,. Then q(f(DYM, + g(DYM,)

is also equal to {@,n). By exactness of the extension

—

0 = Aw(p) > Au(p) > SC(p) ® SC(p) = 0

there exists b € Ajo(p) such that a = (f(D)
(M). By exactness of 0 — Ap(M) 5 An(M) 4

M, +g(DYM,)+b. By Proposition

4.48, I(b) belongs to Az

Ag(M) — 0 it follows that
q(i(6)) = 0.



Also, by Propositions 4.20 and 4.27, (M,) = My, in B{L*(A)) for every
i € §C(p), and {(h(D)) = k(D) in B(L}(A)) for every h € Flip. Thus,

l(a) = (f(D)Myp) +9(D)Mign) + 1{P)

in Ay (M) and
gl(a)) = q(f(D)Mye) + g(D)Mygy) + a(1{b))
= ({(v). ln)) + q(i(b))
(I(p), {(n))since q(I(b)) =0

= (I3 O(p.mn)

= (1@ D(gle)).
So the above diagram cominutes. #

Definition 4.51 If ¢ € BC(By), we say that a has property ** if there
exists b in An (M) such that ||(a —b- M;)- (L —Py)if — 0 as N — oco. When

this happens, we say that b has property * * a.

VProposition 4.52 The set of all a € BC(B\) with property %, is @ closed,

left ideal of the closed algebra of all a € BC(gk) with property *. If a has

property xx, there is a unique b € An(M) with property * * d, and we have

that 1(a) = b.

Proof: Let A be the closed algebra of all a € BC(By) with property *,

and let T denote the set of all a € BC'(I;’;C) with property *#. fac T, and b

has property **a, then ||{a—b- M;)-(1— Py}l — 0 as N — oco. Therefore, by

| multiplying on the right by Mj, we have that [\(a-M,g—b-Mﬁ)»(l—PN)H — 0 as
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N — oo, which implies that a has property *, b has property *a, and {(a) = b.
That is, a € A and l(a) = b. This, of course, gives unigueness of b, and shows
that 7 C A.

The proof that T is a closed subvector space of A is similar to the prool
that A is a closed vector space in the proof of Proposition 4.44. So, to complete
the proof of the proposition, we only need to show that, if be T and a € A,
then ab belongs to Z. Take such a and b, and € > 0. Let

€

=61+ flall - 181D

Cn’
Since a € A, there exists R > 0 such that
a 'M;B . (]_ — PR) ~ [(a) . 1\;{}5 . (1 _ PR)'

By Lemmas 4.36 and 4.43, and the fact that b belongs to I, there exists N > R
such that |
b (1 — Py) ~e I(b) - M; - (1= Pn);

1(b) - (1 = Py) ~e (1= Pr)-1(b) - (1 = P},

and

M; - 1(b) - (1 — Py) ~o 1(8)- M- (1= Pi).

Tt follows that

ab-(1—Pn) ™l & (b - M;-(1— Pxn)
N“allgel G‘Mp[(b)(l—-PN)
e @ Mz (1= Pr)-1(8) - (1 - Py)

~peye 1a) M- (1= Pg) - 1(b)- (1 = Pn)




~piaye (@) - My 1(B) - (1 = Pw)

~iayle Ha) - 1(0) - My - (1 — Pw).

" Now, both ||al|¢ and [|b]|¢’ are less than F. From Lemma 4.16, we have that
li(a)]ie < |lalle’ < §. Similarly, we have that ||{(b)]|¢’ < &. Therefore, ab- (1 —

Py) ~ l(a) - 1{b) - M;-(1— Pn). This shows that ab € A and I{ab) = I(a)l(b). #

Proposition 4.53 The set of all a € Aulp) with property *x, is a closed

ideal of Anlp)

Proof: Let A denote the set of all a € A1 (p) with property *x. By
Proposition 4.45, every element of A;1(p)’ has property *. By Proposition 4.52,

't follows that A is a closed, left ideal of Aun(p). So, it suffices to show that

A is a right ideal of Aui(p).
To do this, take a € Au(p), b € A, and € > 0. Again, note that a has
property * by Proposition 4.45. Now, let

T (L + fall + 0l

Ef
Since b € A, then there exists &> 0 such that
b- (1~ Pg) ~e l(b) - M- (1 — Pr).
By Corollary 4.42, Lemma 4.43, and the fact that a has property *, there
exists N > R such that
a{1—Pn) ~e (1-Pr)-a-(1 — Pn),
M;-a-(1—Pn) ~o @ M;-(1-Pn),

a-M;-(L—Pn) ~¢ l(a)- M;- (1~ Pn)



(I—PR)'I(G)'U”PN) ot [(G)(l—-PN)
It follows that

ba-(1—Py) ~pje b (1= Pr)-a-(1~Pn)
~alte 1(0) Mz (1= Pp)-a- (1= Pn)
= ib)-(1—Pr)-Ms-a- (1= Pn)
~pgeye HB) - (1 = Pr)-a- M- (1~ Pn)
~pyer 1(8) - (1= Pr)-1(a) - My (1 = Py)
= U(b)-(1—Pr)-Ua)- (1 — Pn)- Mz
~pwie {(B) - H{a) (L — Py} My

= I(b)-Ua) My {1 — Py).

Now, ||a]|¢ and ||b]l¢’ are both < £, and, since 1)) < Y8ll, then [H(b)]le" <
lolle’ < &. Therefore, ba - (1 - Py) ~e 1(b) - () - My - (1 — Pn), which implies
that ba belongs to A and that A is a right ideal of Aulp). #

Proposition 4.54 All elements of Ayi(p) have property »*. That 1s, ifa €

u{p), then l{a — I(a) - Mﬁ) {1 — Py)|| — 0 as N — o0.

Proof: Let A denote the set of all a € Ay(p)’ such that a has property
+. We want to show that A (p) € A. By Proposition 4.53, Ais a closed ideal
Aiy(p). By Remark 4.40, Au(p) is the closed ideal of Au{p)’ generated
Per(R;) and the set of all M, such that ¢ € SC(p). So, to show that

p) C A, it suffices to show that M, and K belong to A for every ¢ €



§6‘(p) and K € Per{Ky). So, take such ¢ and K. By Proposition 4.20, M,
has property **. Since I[(K) = 0, then showing that K has property ## is
equivalent to showing that || /(- (1 — Py)|l = 0 as N — oo. But, this is given

by Proposition 4.24. Therefore, An(p) C A. .

Corollary 4.55 If a € Ayulp) and (@) = 0, then ||la - (1 — Pw)|| — 0 as

N — oo,

Proof: This follows directly from Proposition 4.54. &

Lemma 4.56 Suppose ¢ € Ap(p) and l(a) = 0. Let {og} be a sequence of
functions p.ta in Co(TM) such that Py < on <1 for every integer N > 0.

Then aM,, — a as N — oo in Au(p).

Proof: By Corollary 4.55, |la - (1 — Py)|| — 0 as N — o0. Note that
(1 —xn)-(L— on) = 1 — oy where xn is the characteristic function on Vy.
Thus, (1 — My )l = fla(l = Py)(1 = Mol € fla(1 = Pw)l| > 0 as N = oo.
Therefore ||a - (1 — My, )|l = 0 as N — 0. That is |la — aMy,|| — 0 as

N — 0o, which means that aM,, — a as N —oo. #

Proposition 4.57 Dy, 6y¢ram)) is a closed ideal of both ’Dg.é(p)f and 'Dgé(p).

Proof: For convenience, let Do = Dy, (ray) and let Do’ = Dy, GoTa))-

We already know that D is closed. Since D3t - D§Zr(p)’ we only have to

show that Dy is an ideal of Ds'b'(p)" Since ’Dg-é(p)’ is generated by the set of all

M, and f(D) in Per(By) such that f € Flip and ¢ € SC(p), then we only
have to show that, for such ¢ and f, M, -a,f(f)) -a,a-M,, and a- f(ﬁ)
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belong to Dy for every a € Do. By taking adjoints, we only need to show that
a-M,and a- f(D) belong to Dy for such a, ¢, and f.

Now, f(f)) in Per([;’k) belongs to Dg’ (by defimtion of Dy for every

f € Flip, and D, is an ideal of Dy’. Therefore, a- f(D) belongs to Dy for every
a € Dy and every f € Flip.

So, it remains to show only that a - M, belongs to Do for every @ € Do
and every ¢ in SC(p). Now, let g € Flip,n € Mi(Co(TM)), and ¢ € Do.

Then D, has, as a dense subset, the vector space generated by elements a of

the form a = g(f))M,,,a =cM,,and a = c-g(f)). It suffices therefore to show

that g(D)M,M,, cM,M,, and cg(DYM,, belong to Do when ¢ € SC(p). But
w1 € Mk(é'g(TM)) and therefore M., € Dp. Since ¢ is also in Dy, then of
course, cMy M, = cM,, belongs to Do. Also since g(D) in Per(B) belongs to
Dy's M,y € Do and Dy is an ideal of Dy’ then g(D)M, M, = g(DYM,,,, belongs
to Dy.

Finally we have to show that c- g(DYM, € Dy. For this we note that
cg(DYM, € An(p) and that (eg(D)M,) = l(c)(g(DM,). = 0 since l(e) =0

by Proposition 4.49. By Lemma 4.56, it follows that there is a sequence py of

A

functions gy € Co(TM) such that e g(D Moy = cg(D) MM, — cg(D)M,

in A;,(p) as N — co. Since ¢ 4y € M (Co(TM)) for every N > 0, then

M,,, € Do for every N > 0. Butc- g(D) also belongs to Do. Therefore

cg(D)M,y € Dy for every N. Thus cg(D)- M, is the limit of elements in Dy

and is therefore in Dp. #

Corollary 4.58 Ag (M) is a closed ideal of both A1 (p) and An{p).
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Proof: Since A1 (p) C An(p)’, we only have to show that Ao (M) is an
ideal of Ap(p).

From the definitions, Ao (M)k = Dpricormy Per(Ky), and An(p) =
D5z
This, together with the fact that Per(fy) is a closed ideal of Per(By) gives

)’+Per(17€k). By Proposition 4.57, Dy, ¢ty 18 2 closed ideal of D.‘;’E('p)l'

us that Ao (M) is a closed ideal of Au(p). #

Theorem 4.59 The surjective *-homomorphism [ : Aulp) = An(M) has

kernel ker(l) = Aoy(M)y. Thus, we have a C*-algebra extension,

i {
0 —— An(M)y —— An(p) — An(M) — 0
where 1 1 Ag (M) — Au(p) is the inclusion map.

Proof: By Propositions 4.49 and Corollary 4.58, Aq (M) is a closed
ideal of ker(l). We have to show that ker(l) € Ao (M.

Let a € ker(l). By Lemma 4.56, there is a sequence {en} of functions
©N € Co{TM) such that aM,, — a in Aii(p) as N — oo. But M,, €
Ao (M)ra € Aulp), and (by Corollary 4.58) An(M)x is a closed ideal of
A (p). Therefore aM,, belongs to Aoy (M) for every N > 0. Since aM,, —

a in An(p), and since Ao { M) is closed, 1t follows that a is an element of

Ao (M)g. This proves that ker(l) C Ao(M)x. #
Definition 4.60 The extension of Theorem 4.59 will be called the Wiener-

Hopf p-extension of Deer(w): (Recall An(M) = Dperipny)

For the next proposition, we consider the *-homomorphim [: Awlp) —

20(M) of Proposition 4.48.



o
o}
N

Proposition 4.61 The sequence
0 — Ago(M)x = Aro(p) = Aw(M) — 0

is @ Cx-algebra extension which will be called the Wiener-Hopf p-extension

of Lper(ar-

Proof: By Proposition 4.48, we already know that I : Aw(p) — Az (M)
is surjective. So we only need to show that this map has kernel ker(l) equal
to Aol M ).

By Theorem 4.59, [(a) = 0 for every a in Ao (M)g. Since Acw(M)e €
Aot M), it follows that Ac(M)x & ker(().

Now take an element a in ker(!) C Ap(p). Then a € An(p) and l{a) = 0.
By exactness of 0 — A (M)x — An(p) — An(M) — 0 (Theorem 4.59), it
follows that a is an element of Ao (M)r. Also, by exactness of the adjoined
Dirac extension 0 — Ajo(p) L An(p) & Ap(p) — 0 (Proposition 3.36),
q(a) = g(i(a)) = 0 in As2(p). By commutativity of

q

Au(p) —— Aulp)
[ i@
Aot (M) —— Aoa(M)
(Proposition 3.36), it fdllows that a in Aoi{ M) is sent to 0 in Ag(M)x by the
map q : Ao (M)r = Aoa(M)x. By exactness of the adjoined Dirac extension
0 = Ao(M)e > An(M)e > Ao(M)x — 0, (Proposition 3.36) it follows
that a is an element of Aoo(M ). Thus, ker(l) C Ago(M )y, which implies

ker(l) = Ag(M)g. #



We now add the two Wiener-Hopf extensions of Theorem 4.59 and Propo-

sition 4.61 to the commutative diagram (3.35) of Proposition 3.36 to get the

diagram

0 —— Azq(M) —— .A‘Z](A/I) ——F AZZ(AI) — ()
It TL Tr@l
0 —— -'410(1’) - An(P) — An(P) — 0, (4-62)
‘(1 Ti /[1631
0 — Am(M)k — Am(ﬁrf)k — .AQQ(M)]C — 0
0 0 0
which is the same as
0 0 0
0 —— Lperm N Dper(at) s " Per(M) & Per(M) — 0
T: Iz Tzaat
0 — Aulp) — Aulp) — SC(p) @ SC(p) — 0

T; | L‘ Tieai

0 s Per(fy) —— An(M)y —— M(Co(TM)) ® Mu(Co(TM)) — 0
| | I
0

0
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which is isomorphic to

] 0 0

0 ——  Lperan LN Dper(m) . C(M)a C(M) — 0
Tr Tl Tzqar

0 —  Aulp) —  Aulp) — SC(p) @& SC(p) — 0

Ti T Jies
0 —— My(C(K) — Mi(Aot(M)) —— Mu(Co(TM)) & My(Co(TM)) —— 0

I T I

0
(4.63)

Theorem 4.64 Diagram {.62 which is isomorphic to Diagram 4.63, is a com-

mulative diagram ezact at every poinl.

Proof: This follows from Proposition 3.36, Theorem 4.59, Proposition

4.61, and Propositions 4.48 and 4.50. #




Chapter 6

The Thom Isomorphism in K-theory

6.1 A Fundamental Projection on an Even
Sphere

Suppose ! is an even positive integer and S !'is the even [-sphere. Then
Ko(C(5")) is isomorphic to Z @ Z where Z is the group of integers, and if p
is a projection over C(S'), and [p], the class in Ko(C(S5')) determined by p,
| and if [p] is equal to (m,n) for two integers m and n, then one of the integers
measures the rank of p, whereas the other measures the amount of twisting
of the vector bundle over S' determined by p. Let us assume that m is the
rank of p and that n measures the twisting. Then the projection p over C(S)
will be called a fundamental projéction on S' if [p] in Ko(C(S") is equal
m,1) or (m,—1) for some positive integer m, and a trivial projection
S! if [p] = (m,0) for some positive integer m. Also, a complex vector
ndle V over $' will be called a fundamental vector bundle over st if

Ko(C(8Y) class [V] determined by V equals (m, 1) or (m,—1) for some
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positive integer m.

We also need to look at the “0-sphere” S°, which is the two-point discon-
nected set {—1,1}. We identify C(S°) with C® C. If f € C(8°), then f is

identified with (f(-1),f(1)) € C® C.
The elements (0, 1), (1,0), and (1,1) in C{S°) are all projections on 59 and

determine elements [(0, D)}, [(1,0)], and [(1,1)] in Ko(C(5%)). Since C(S°) =

C @ C under the identification given above, then
Ko(C(S°)) = Z{(1,0)] @ Z[(0, 1)] (1.1)

where Z[(1,0)] is the subgroup of Ko(C(S°)) generated by [(1,0)], and Z[(0,1)]

the subgroup generated by [(0,1)].

Lemma 1.2 Define o : ZDZ — Z D Z by letting
@(m,n) = m(1,1) +(0,1).

Then o is an isomorphism of groups. So, each (k1) € Z®Z can be written

- uniquely as m(l, 1) + n(0,1) for some (m,n} € Z S Z.

Proof: Easy. #
Using Lemma 1.2, we see that Ko(C(S?)) is also isomorphic to Z- (1, 1)

Z[(0,1)]. So, each element a € Ko(C(S®)) can be written uniquely as a =
(1,1)] + n[(0,1)] for two integers m and n. Ifa =m: (1, 1)] + n[(0, 1)},

will also write @ = (m,n), and when we talk about an element (m,n) in

Ko(C(S)) = Z{(1, 1)] & Z{(0, 1)),



not the isomorphism given in (1.1).

We say a projection p on S° is fundamental on S° if [p] in Ko(C(S))
is equal to (m,1) or (m,—1) for some integer m. We say it is trivial if
[p] = (m,0) in Ko(C(S°)) for some m > 0. Also, a complex vector bundle V'
over S° is a fundamental vector bundle over S° if the Kq(C(SY)) class

[V] determined by V equals (m, 1) or (m,—1) for some integer m.

Remark 1.3 The projection (0,1) € C(S°) is fundamental by definition. (It
determines the element (0,1) in Ko(C(S%)).

Let us assume from now on in this section that m > 3 is an odd integer,
and let CL,, and A,, denote the complex Clifford algebra, and complex spinors
respectively, of the euclidean space R™. Recall that A, is a hermitian vector
space which is also a module over the algebra C'ly,. Also, let S m=1 denote the
unit (m — 1)-sphere which sits inside R™.

Recall the map

Oyt A — A

defined for each v € R™ by the formula
a(3) =1v-s

for every s € Ap. (See Remarks 3.6.) By Part 4 of Remarks 2.3.6, if v € Sm—i

then o, : A,, — A, is a self-adjoint unitary and the operator
1
~2—(1 +0,) Ap = Ap

the projection onto the +1 eigenspace of o,. Now, after choosing an or-

honormal basis for A, each 3(1 + o), for v in § m-1_can be regarded as a

210



211

projection over the complex numbers C. Let
pr: 5™ = Proj.(C)
denote the map given by

(14 0y).

oo =

pr(v) =
Then, of course, we can regard py as a projection over C(S™71),

Theorem 1.4 pg, defined above, is a fundamental projection on Sm=1, (Note

we are assuming m > 3.)

Proof: Of course, it does not matter which orthonormal basis of A, is
chosen, since projections over C(S™ ') obtained by two different choices of

orthonormal bases will clearly be unitarily equivalent.

Let (e1, €z, ... ,€n) denote the standard orthonormal basis of R™, and set
ﬁg =1+ 1:6162, ﬁ4 =1+ 2'6’364, ey ﬁm-l =1+ ?:em_gﬂm_l,
and
Batr =1 +1ep.

By definition,
A = Cly » B2fy - Brmsae
Let
E — 8™t
be the vector bundle over $™~! determined by pr. That is, E is the vector
undle with fiber
E,=(1+1iv) Ap
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at each v in S™ . Then, proving Theorem 1.4 is equivalent to showing that
E is a fundamental vector bundle over S™1.

Now, from the proof of Proposition 9.25 in Chapter I of [L&M]J, one can
construct a fundamental vector bundle over S™! as follows.

A construction of a fundamental vector bundle over an even

sphere. Define the two hemispheres,
St t={ve S™ (v, em) > 03,

and

STl ={v € 8™ (v,em) < 0},

Let us call S7' the top hemisphere, and Sm=1 the bottom hemisphere, of

the sphere S™~!. Note that the intersection of ST~" and Sm=1 is the sphere
§m2 = {v e 5™ (v,e,) =0}

Now, regard R™~! specifically as the subspace of R™ generated by the

vectors ey, ..., em_1, and let CI(R™™1) denote the complex Clifford algebra of

R™! generated by the vectors ey,...,em-1. Define A(R™') specifically by

AR™ ) = CIR™™) - By By Bt

Next, let AT(R™ 1) and A~(R™"') be the spaces

AR = (14 Tma) - AR™TY,

AR N =(1—Tm)- AR™Y),
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where T,,_; is the volume element of CI(R™'). These are the positive and

negative complex spinors respectively of the space R™~ 1. Also, note that 5™

is contained in the space R™ 1.
Take ST~' x A* (R™"1) and S™~! x A~ (R™!) regarded as trivial vector

bundles over S7~! and S respectively. For each v in 5m=2 let
po: AT(R™) — A~(R™)
be the linear isomorphism which sends each s in A*(R™') to
pu(s)=wv-s

in A=(R™1). This makes sense since each v in §m=2 is actually a member
of R™-1. Let us use Isom(V, W) to denote the collection of all linear isomor-

phisms between any two vector spaces V and W. Now, use the map
p: 8™ Isom(AT(R™ 1), A" (R™1))

which sends v in S™% to p, in Isom(AT{R™ 1), A~ (R™)), to glue the

-vector bundle

A+(R~m—1) — ST_l

to the bundle
A— (Rm-—l) . Sr_n—-l

long the intersection, ™2, in order to get a new vector bundle
yF o gm-t

§m=1, According to the proof of Proposition 1.9.25 of [L&M), VF is a

ndamental vector bundle over S™™1.
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Thus, in order to prove Theorem 1.4, it suffices to construct vector bundle

isomorphisms

Tt Blgpm = ST x A(R™Y,

and

n-: Blgm-1 — ST X AT(R™TH),

such that, for (v,s) in S™7% x AT(R™1),

1- ()7 @:9)) = (0,0 9).
This, we will do after a few lemmas. First, let Pin,, and S pin,, represent
the Pin and Spin groups respectively of R™, and let
a: Pin, — GI(Cl,)
denote the action of Pin,, on Cl,, given by
(o{@)) (8) = aba’

for every a and b in Pin,,, where a! stands for the transpose of a. For conve-
nience, we let

a, = afa)
for every a in Ping,. If wis a Spin,, element, and v a unit vector in R™, then
we know that @, and a, act as a rotation and a reflection respectively on R™.
- We will call ¢, the rotation on R”'1 induced by w, and we will call o, the

reflection on R™ induced by v.

Lemma 1.5 I[fv, u, belong to S™71, let

v+ u
Wyy = U .
v+ ull




Then wy, is @ Spingy, element, and the rotation of R™ induced by wy, s the
one which sends v to u, and which leaves the orthogonal complement of {v,u}
fized. Furthermore,

Wy — Waw.

Proof of Lemma: The Clifford algebra element w,,, is the product of

two vectors of norm 1. Hence, it is a Spin,, element.

o malu 2L — a(u)oa vty
o v+ ul] [lv+ ull

Thus, to obtain «, ,(v), we first reflect v about the orthogonal complement

of ﬁﬂ I we note that T]%i_zﬂ is the unit vector lying exactly between v and

u, then it is not difficult to see that the reflection of v about the orthogonal

complement of ﬁ‘;—ﬂ is just —u. Or, one can show this algebraically by showing

that
v+u . v+u _
lo+ull — flv+ul

Next, we take —u and reflect it about the orthogonal complement of u itself.
Clearly, what we end up with is u. Hence, a, ,(v) equals u.

. To show that everything in the orthogonal complement of {v,u} is left
fixed by o, , is easy, because anything in the orthogonal complement of {v,u}
st lie in the orthogonal complements of both H—’;i'—zﬁ and u, and therefore is

ected onto itself by the two reflections which compose ay, -

: v+u veu—1

= e—— Y =
“or = o + uf ek
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and
v-(u+v) wv-u-—1
w -

T Tt T flut ol

Hence,

14
Wyu = Wy

as claimed. Therefore the lemma is true. # (End Proof of Lemma 1.5)

Lemma 1.6 If u and v belong to R™, then Clifford multiplication by wy, on
the left gives a linear isomorphism from the space (1 + i) - A, to the space
(14 iv) - A, and if s belongs to A, then

14 u

&y (1 +'E’U,) c 8 = (}. +w) . (—1)m - S,

Proof: If a belongs to Cl,;, let

W) = Wy * @

Cun (L+1%) - Ap) = wup-(1+w) Ap
= Wy (14 u) Wy Wa A
= (1+1v) wyp B

- (1 +iv)'Am1

eAm is a module over Cl,,.
Clifford multiplication on the left by w,, maps (1 +1u) - A, into the

+w) . A,,. Similarly, Clifford multiplication on the left by w,,, maps




217

(1+14v)- A, to the space (1 +iu) - Ap. Since the inverse of w,,, 18 wy,," which
equals wy ,, these two maps must be inverse maps of each other.

Now, if s belongs to A, then, from above,

Ll'c'm,u((]- + 3U) . 3) = Wy (1 -+ 2”U.) - 5

= (1+1"U)'wu.,u'3

= (1+iv)-v-ﬁ-s

- (1+iu).(—ﬁ—i—;’ﬁ°).s

= (1“”)'%'_

- (1+z'v).w-(_1)ﬁ.s
- (1+iu)-(_1)ﬁ.s.

Note that we used twice the fact that (14 iv) - v equals 1 4 v. Thus, Lemma
1.6 is true. & (End Proof of Lemma 1.6)

Now, define the linear isomorphism
Guw: (1 +u)- Ay = (14w0) - Ay,

in the previous lemma. For each v in the top hemisphere ST~ and a in the

ﬁ_ber E, = (1 +iv) - A, of the bundle E, we let

‘Pv(a) = (Pv,em(“) = Wye,, G

ich lies in (1 + éep) - Ap. Also, for v in the bottom hemisphere S™~! and

he fiber E,, we let
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which lies in (1 — iey,) - A Now, define bundle maps
P E|ST“I — ST x (1 tien) A

and

@ Egm — ST x (1 —den)  An

by letting ¢ equal the map ¢, on the fiber E,, for v in the top hemisphere
57=1, and by letting ¢ equal the map ¢, on the fiber F, for v in the bottom

hemisphere S™~%. That is, for each a in E,, v in S},

"‘P(a) = ('”1 ‘f"v(a))v

and, for each @ in F,, vin ST},

Since ¢ equals @, ,, on the fiber £, for v in 571, it follows from Lemma 1.6
‘that ¢ maps the fiber, E,, of E isomorphically onto the fiber (1 + i€m)* Ap
of ST x (1 + tep) + Ap. Similarly, for v in Sm=1 & maps the fiber E,

somorphically onto the space (1 — ie,) - Ap. Hence, the following is true.

»mma 1.7 The maps

¢ : Elgn-t — 5771 x (1 +ien) - A

¢ 1 Blgm — ST X (1 —iew) - Ap,

ctor bundle isomorphisms.



Proof: The lemma follows from the remarks just made. # (End Proof
of Lemma 1.7)

Next, we define linear isomorphisms
pi (1 4iey) A, — ATR™,

and

f:(l—iep) A — A (R™)

as follows. Every element a of Cl,, has an algebraic expression in terms of the

elements eq,...,e,. We will write

o= flery...,em)

to denote that expression. We may think of f(z4,...,2n) as a polynomial of
21, ..., Tm With complex coefficients. We will write a = f(e1,e3), say, if a can

be expressed in terms of e; and e only. Note that any element s of A,, can

be written as

3= f(ela---,em-l)'ﬁzﬁd'“ﬁmﬂ-

-'Fo'r, by definition,
| Ap = Clu - B2Bs -+ Bty

nd so s can be written as
s=a-Pofa Pt
ne a in Cl,. Of course, we can write a as

a=gleg, . .rem-1)+ hler, .., em1) " t€m
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for some ¢ and h, and so we can write s as

i€y * Bme1 18 the same as B,,14. It thus follows that

iem  B2Bs Bmr = BabBa o B,
and therefore s can be written as
s=[g(er,..osem—1) + her,...,em-1)] - BB Bntr.
So, the claim is true, and we can write

Ay = Cl(Rm_l) ‘ﬁ2ﬁ4 Tt .Bm+1-

a= (1 +i6m) : f(eh-“:em—l) BBy By

Yor such an @, we make the definition

pla) = (14 7m-1) - fles,. o emi) - 2P B

ich is an element of AT(R™1).

Similarly, if a belongs to (1 — iey) * A, then we can write
a=(1—1en)- fleg,.. cyeme1) BB By

e make the definition

ﬂ(“) = (1= 7pm_1) - fler,. .. y€m=1) " P2Ba - Bt

‘an element of A—(R™"1).

5 = 9(31, .- -aem—l) BB B + h(ela <oy 6m—1) e+ PofBs  Brt1.

But, note that ie,, commutes with all of the elements 3, ..., #,_1, and that

(1.8)

(1.9)

Now, if a belongs to (1 + iey) - Ay, then, by Equation 1.9, we can write
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Lemma 1.10 The maps

pi (Lt ien) - Am — A*(R™Y),
and

foi(1—dey) A — AT(R™
are well-defined linear isomorphisms.

Proof: 1 first show that they are well-defined. First, we note that the
volume element 7,,_, relates to the elements of A(R™~1) in the same way that

ie,, relates to the elements of (1 + iem) - Ap. That is, we have

i - f(ery. oy ema) = f(—€1, s —€m1) - iem, (1.11)

Tt flens e oremat) = f(—€1y0n oy —€mt) Tmot,  (112)

tem - P2Bs-+ Pmar = Baba Byt (1.13)

and Tt - P2fBa - P = B2Ba- - Bt (1.14)

iquations 1.11 and 1.12 simply say that e, and 7,1 anticommutes with each

.. em_1. Equation 1.13 is the same as Equation 1.8 above, and Equation

14 is true because T,_; actually equals By -« fB—1, because the elements
", Bu—1 all commute with each other, and because each ﬂf is equal to 1.

Now, notice that it follows from Equations 1.11 and 1.13, that, for any f,
(1 + tem) - fle, ... yem—1)* Bafa--- Bt

[flers. . rem—t) + fl=er, o, —€m-1)] - BoBa- - B

rly. from Equations 1.12 and 1.14, it follows that

(1 + Tm—l) : f(eli e 7em—1) ) ﬁ2ﬁ4 .t 'ﬁm—l
[f(el-.'- . sem—l) + f("‘ely sy _6m—1)] ) B2ﬁ4 " 'ﬁm—l-
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Hence, we have that

1+ Tm—1)* f(€iy--sem-1) B2fa- - Prui1

= (1+i6m)'f(eia"-aem—l)'B2ﬂ4"'ﬁm+1 (115)
By a similar argument, we also have

(1 - Tm—l) ' f(elv oo aem—l) ' ﬂ2ﬁ4 e ﬁm+1
= (]- _iem)'f(ela"'sem—l)'ﬁ2/84"')8m+1 (116)

Now, take a in (1 +ie,) - Ay, and suppose a can be written in two ways,
a=(1+1en)- fler, o sem=t1)- BB Bt

and

a= (1 +tem) '9(6’1, can 13m—1) - Bafa Pt

(1 i) Jlersevosnes) - B B
= (1+iem)-gler, - rem-1) F2Ba- - Bmyr.
ence, by Equation 1.15, we have
(14 Tme1) * flen, oo s em—1) - BB v By - (1 +ten)
= (147 1) -glen,  oremot) B2Ba B (1 +1iem).
the above equation, we keep only the terms not involving e, we are then
ith the equation

(1+ Tm-1) - Flex, ... vem—1)* P2 Pt

= (1 + Tm,—l) : Q’(ﬁh srey l‘3m-1) - BafBy Bt



which implies p(a) is well defined.

Moreover, by Equation 1.15, we have that
a=pla) (14 1e,) (1.17)

for every a in (1 4+ iep) - Ap.

Similarly, if @ is in (I — ien) - Ap, and @ can be written in two ways

a = (1 —'?:e'm) . f(ela"':em—l) ) ﬂ2ﬁ4"'ﬁm+1,

and
a = (1 - iﬁm) '9(61,--»,6m-1) : 5254 e 5-m+1,

then, by Equation 1.16, we have

(1 - Tm-—l) : f(ela e aem—l) ’ 182)64 Tt 'ﬁm—l . (1 + iem)

= (1 - Tm—l) ' g(elv .. '1em—1) : )82184 te '/Bm_—l ' (1 + 2-em)a

~and by keeping only those terms not involving e,,, we obtain

(1 = Ts) - flery e oseman)  BaBa- B

= (1 - Tm—l) 'g(ela" . 161'71—1) 'ﬁz/@“ t 'ﬁm—l:

which follows that fi(a) is well defined. Moreover, by Equation 1.16, we

(a) - (1 4 iem) (1.18)

fou
f
=

ow, it is clear that both maps p and ft are linear. From Equation 1.17,

ve that, if p{a) is 0, then a, which equals p(a) - (1 +fe,,), is also 0, and

223




Similarly, from Equation 1.18, we have that the kernel of f is 0, and
therefore g is 1-1.
Also, since AY(R™™") is generated by elements of the form (1 + 7,,—1) -

fler,o.oyem_1) - P2fBa- - B, it is clear that the map
g (L +ie,) Ay, — AYR™

is onto,
Similarly, 2 is onto, which completes the proof of the lemma. & (End

Proof of Lemma 1.10)

Now, the isomorphisms
gl +ie,) - A, — AHR™,

and

fi(l—dey) A, = AT(R™)

“determine vector bundle isomorphisms

p: ST X (1 tden) - Ay — ST x ATR™,

£ ST X (1 —dem) - Ay — ST x AT(R™T).

ow, take the vector bundle isomorphisms

‘P:Elsjf—l — ST X (1 +ien)  An .

$: Elgmet = S x (1 —ien) - A




of Lemma 1.7, and let
n=pop,

and

-

n=pog.

This gives vector bundle isomorphisms
7: Elgpm = ST AT(R™Y),

and

7 Blgmt — ST x AT (R™Y).

We define

m: By = ATR™TY, ve ST

fot By — AT(R™Y), wve ST
by the equations

n(a) = (v,n0(a)), wve ST,

and H,(a) = (v,f,(a)), wveSs™ L

Ny = 0y, VE Si‘_l,
and #H,=fop,, veESISPL

W, 'suppose v belongs to 5™~? and @ belongs to




Say, a is equal to (1 +1v) - s for some s in A,,. Then, by Lemma 1.6,

@u(a) = Wye, (1 +1i0):s

(1 4ien) - (—1)—T2

I N
[v + eml|
By Equation 1.9,

Ap = CUR™ ) Bofls -+ B,

and so we can write
5= f(81,~~,6m-1) . ﬁzﬁ4"'ﬂm+1

for some f. Hence,

nia) = ulp.la))

. 14w
— 1 +ien,) - {—1)—— -
Ju' ( + € ) ( )]|U+6m||
1
= B (1+i6m)‘( )_—“_“U-—:;:;H f(ﬂla---aem—i)'ﬁ2ﬂ4"'ﬁm+1

Also, S™? is contained in R™"!. So, v can be written in terms of

., €m—1 only. Therefore,

= pl(l+ien) |—= ) (L+w) fler,. . ema1) BaBar Bmia ]

(1+Tm—1) 7—" (1+?"U) f(ela'--sem—l)'ﬁl’ﬂfl"’/@m—l- (119)



14w

= (1 —ien)" (—1)m'

= (1—36-,,—,,) '\_/_"]2-- (1‘|‘7:U)'f(eia-")em—1)'ﬁ?ﬁ4"'ﬁm+1a

= ﬁ (1—’!.6.m) —_\/-3 (1+iv)'f(el‘.'"'aem—l)'ﬁ?ﬂt‘i'“ﬁm-}-l H

and therefore

ia) = (1 —7m) | == ) (L +10) - fler, s em—1) - BaBa- - Bmoa.  (1.20)

V2
Now, let

Ny =1, N-=-u.

‘ Then,
Ny E|Sr-1 — ST % AYR™,

7t Elgn = ST X AT(R™T)

U:(l + Tm—l) ' (1 + w) : f(ela e aem-l) : )82/64 e 'ﬁm—l

Sl

(1 +“)) ' f(ela"'aem—l) '182164" ‘ﬂm-—l
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It follows that

- ((77+)_1 (v, (1 + mel) : (1 + Z"U) ; f(els sy em—l)  Bafly "ﬂm—1))
= ('U, _2(1 - Tm) : (1 -+ “”) ' f(eli < '!em—l) ' IB‘Zﬁti e Bm—l)

= ("U,’U . (1 +Tm-1) : (1 + M)) ‘ f(ela- O] aem-—l) ) 18264 t '/Bm—l) )
for every f, since
v (L4 Tpor) - (T4w0) = (—i)iv- (14 7mq) - (1 +10)

= (—i)(1 = mg) -t (1 4 i)

= (=) {1 = 7m_y) - (1 +50).
Since 4 and 5_ are vector bundle isomorphisms, it follows that

n- ((n4)7'(v,5) = (v,v- 5))

for every (v,s) in 77! x A*(R™1).

~ Therefore, Theorem 1.4 is true. & (End Proof of Theorem 1.4)

2 Projection Orientations

L n > 0 is an even integer and S — X is a an S™-bundle over a compact
X, then a projection p over C(S) will be called a projection orien-
for § if, for every z in X, the restriction of p to the fiber S; of §
damental projection on the even sphere S;. If this is the case, then

als ‘say that S has a projection orientation p, § is projection

T that p is a fundamental projection on S. Also, a complex



vector bundle V over the sphere bundle § is said to be a fundamental vector

bundle over S if V restricted to each fiber, S;, of 5, is a fundamental vector
bundle over the even sphere S,.

In the case where X is an odd-dimensional compact riemannian manifold
M, and 5 — M is the sphere bundle over M, then a projection orientation
p for S will also be called a projection orientation for M, and we will
also say that M has a projection orientation p, or that M is projection

oriented.

Theorem 2.1 If M s an odd-dimensional, compact, riemannian, spin man-

ifold, then the unit sphere bundle of M is projection oriented.

Proof: Let m be the dimension of M, and let
.85 =M

enote the sphere bundle over M.

| Look first at the case where m > 3. By Swan’s theorem (1.2.2 of [Bla}),
ry complex vector bundle over S is a summand of a trivial complex vector
dié over S. Thus every complex vector bundle over S corresponds to a
1ous projection on S, and fundamental vector bundles over S correspond
[amental projections on S.

'.h'u. , to prove the proposition in this case, it suffices to show that there
fﬁndamental vector bundle over 5.

do‘zt"his, we let 7~1(A) denote the lift of the bundle A of spinors over

. The lift is via the projection map 7. If x is in M, then 7~1(A)




restricted to S, is really the same as the trivial bundle S; x A; over the sphere

S,. For each v in S, we let
E,={14w) A,
We define E — S to be the subbundle of #71{A) whose fiber at each v in 5 is

E,=(1+4w) A,

By the proof of Theorem 1.4, F restricted to each fiber S, is a fundamental
vector bundle over the sphere S;. Therefore, F is a fundamental vector bundle
over 5. So the proposition is true when m > 3.

Now, look at the case m = 1. In this case, M is a compact one dimensional
manifold. M is therefore diffeomorphic to the one dimensional unit sphere S*.
So, TM — M is isomorphic to TS! — S! which is isomorphic to the trivial
bundle S§' x R — S!. The sphere bundle of M is therefore isomorphic to the
sphere bundle
St x {-1,1} — S.,

'D'eﬁne pon S* x {~1,1} by letting p(z,1) = 1 and p(z,—1) = 0 for every z
5. Then p is a projection on S* x {—1,1} which, when restricted to each
er {z} x {—1,1} & §° is the fundamental projection (0,1) on S°. Hence p
'f{;::hdamental projection on 5! >< {-1,1}. So, the sphere bundle over M is

ction oriented in the case m = 1. #
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6.3 A Fundamental Unitary on Odd Euclidean

Space

If X is a topological space, a k& X k unitary on X is any map from X
to the group U(C) of k x k unitaries over C. A k x k unitary on X will also
be called simply a unitary on X. If a k£ x k unitary on X is continuous, as

a function on X, we call it a continuous k x k unitary on X.

If Ais any C*-algebra, we let AY denote the C*-algebra A with identity

adjoined. Even if A already has an identity, this definition still makes sense
and A1 will be a strictly larger C*-algebra than A. We define U, (A) to be the
group of all unitaries in M(A*) which are equivalent to 1; modulo Mi(A).
(1, is the k x k identity matrix over C.) In the case where A already has a

“ unit, Ur(A) can be identified with the group of all unitaries in M(A).

In the commutative case where A = Co(X) for some locally compact
Hausdorff space X, Up(Co(X)) is the same as the algebra of all continuous

'k %X k unitaries on X whose limit at infinity is 14.

If Ais a C*-algebra, we let §2(A) denote the suspension of A which
v be regarded as the C*-algebra of all continuous functions f from the unit

c_ie 5! to A such that f(1) = 0. That is
Q(4) = {f € C(S", A): f(1) = 0}.

.a_fively, Q(A) may also be regarded as the C*-algebra Cq(I, A) where I

open subinterval of R. Both views of Q(A) will be used.




Definition 3.1 If f : A — B is a C*-algebra homomorphism, the suspen-
sion of f denoted $2(f) is the map

Q) YA) — Q(B)
defined by the formula
QU H)(t) = flg(th), Vi € (0,1)

for every g € Q(A). (Elements of U A) and QU B) are considered here as maps

on the interval (0,1)).
Remark 3.2 Note that if we make the identifications
A) = Cy(0,1) @ A,
Q(B) = C(0,1) ® B,
and f: A > B is a C*-algebra homomorphism, then.the suspension map
Q(f) : A) = Q(B)
-is the same as the map
@ f:C(0,)® A— Co(0,1)® B
where 1d is the identity map on Co(0,1). That is,
QUH=I1d f.

Let m be a positive integer and let ™! C R™ denote the unit sphere.
imbed the suspension Q(C(S™™1)) of C(S™"') into Co(R™) by first
ying Q(C(S™ 1)) with Co((0, 00), C(S™1)) and then letting

i Q(C(S™1)) = Co(R™)
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be the embedding

FU(ED, i Tlell #0
(iHw=1{ (3.4)

0 it o]l =0

L
for every f € Q(C(S™1)),v € R™. This induces an embedding

i Up(QC(5™ 1)) = Un(Co(R™)) (3.5)

i KL (QHC(S™ D)) — Ki(Co(R™)). (3.6)
If Ais any C*-algebra, let
31 Ko(A) S K(Q(A))

enote the Bott map (See Section 9.1 of [Bla]). Note that depending on how
view Q(A), if A has a unit, Ux(€(A4)) may be described by

Ue((A)) = {f € C(S",Ux(4)) : F(1) = L},

UR(QUA)) = {F € C([0,1], Up(A)) : £(0) = f(1) = L4}

‘A has a unit, the Bott map 8 : Ko(A) — Ki(Q(A)) is the map in
ory determined by maps

B : Proji(A) — Ux(§(A)), (3.7)
ted by A3, which, depending on how the Ur(Q(A)) are viewed, can be

s the map

B(p)(z) = 2p+ (1 - p), Vze€ S,




or as the map
A(p)(t) = e p+ (1 — p), Yt € [0,1].

These maps 8 : Proji{(A) — Ur(£2(A)) will also be referred to as Bott
maps.

In the case where A = C(S™™ 1), we have Bott maps
B : Proji(C(S™71)) — U(QC(S™))), (3.8)

and

8 : Ko(C(5™ 1)) = Ky (QUC(S™ ). (3.9)

Composing with the maps i : Up(Q2(C(5))) — Ur(Co(R™)) and ¢, : K ((C(S))) —
K, (Co(R™)), we get maps

i0f: Proji(C(S™7)) — Uk(Co(R™)) (3.10)

iv0 8 Ko(C(S™ 1)) = Ki(Co(R™)). (3.11)

P_foposition 3.12 Let m be a positive odd integer, and identify Ko(C(S™ 1))
th Z®Z as in Section 6.1, Wrile

i, 0 A1 Ko(C(S™ 1) — K1(Co(R™)),

wo0fB: 2072 — 2.

0-Za{0}—»Z0Z2"FZ -0



18 @ short ezact sequence. (The map Z® {0} — Z @ Z is inclusion.) That is

(1.0 B)(n,0) = 0 for every integer n, and the restricted map
of:{0}pZ - 7Z
1$ an isomorphism.

Proof: Consider the extension

0= QUCS™ N S CGR™ L C -0

where ¢ : Co(R™) — C is evaluation at 0 € R™. That is, ¢(f) = f(0). We get

the six-term exact sequence

Ki(Q(C(S™ 1)) — K4 (Co(R™)) —2s K:(C)
] !
Ko(C) e Ko(Co(R™) = Ko(UC(S™)).
Now, K;(C) = 0 and, since m is odd, Ko(Co(R™)) = 0. By exactness of the
above sequence, it follows that Ko(S(C(S™1))) = 0. So the above sequence
'-;.'fhe same as
Ki((C(S™ 1)) — Ky (Co(R™)) s 0
o] | (3.13)
Ko(C) = Ko(Co(R™)) = 0

h reduces to the exact sequence
05238 K(QCE™ )32 - 0. (3.14)

15 We have
d([1]) = B([1]),




or

([1]) = B(1,0),

where [1] in the ezpression 0o([1]) is the element of Ko(C) determined by 1 €
C, and [1] in the expression B([1]} is the element [1] = (1,0) of Ko(C(S™'))

determined by the constant function 1 on S™71,

Proof of Claim 3.15: Let
g:[0,00) — (0,1]

be any decreasing continuous function such that g(0) = 1, and g(t) — 0 as

¢t — oo. The function g gives an isomorphism
g : Col(0,1), (5™ 1) = Col(0,00),C(5™ 7))

given by ¢*(f) = fog for every f € Cg((G,l),C(Sm'l)). We now identify
.'Q(C'(S’m‘l)) with Cp((0,1), C(S™1)). With this identification, and using the
E'i_somorphism g*, the definition (3.4) of i : Q(C(S™™")) — Co(R™) translates

, the formula

Fallel)igp, i v#0
(if)w) = (3.16)

0, if v=0.

L

Now, if 1 is the constant function 1 on Sm™=1 then B(1)(t) = ™ 1 +

BOYW) = -1
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for every t € (0,1).
Now, let f € Co(R™) be the function

gllvll), if v#0
flv) =

1, if v=0

\

Since f(0) = 1, then ¢(f) = 1. So, by the definition of the index map
8o, Oo([1]) = [e*™] € Kq(i(QUC(S™1)))) = K1(Q(C(S™7))).
Now, for every v € R™,v # 0, (e¥™/)(v) = 2"/ () = 2mialll}) = (j3)(v)

where u € U;(Q(C(S™1))) is the unitary satisfying
u(t) = ¥ 1, ¥t € [0,1]

where 1 is the constant function 1 on S™ L. That is, €2/ = i(u), which means
that 9y([1]) = [¢>"/]in K, (i{(Q(C(S™1))) corresponds to [u] in K;(Q(C(S™1))).
That is, do([1]) = [u].

We showed above that #(1) = u. Hence, 8([1]) = [u] = dol([1]), which
roves Claim 3.15. & (End Proof of Claim 3.15)
Proof of Proposition 3.12 (cont’d):
By Claim 3.15, §(1,0) = 6o([1]). By exactness of Diagram 3.13, (2, o
)(1,0) = 5. (o([1])) = 0. Thus, (i 0 B)(n,0) = 0 for every n € Z.
Also, by exactness of (3.14), 7. : K;(QUC(S™1'))) — Z is onto. Since
Bott map 8 : Ko(C(S™ 1)) — Ki(Q(C(S™ ")) is an isomorphism, it
ws that i, 08 : Z® Z — Z is also onto. From this and the fact that
B)(n,0) =0 for all n € Z, it is clear that i, o A is an isomorphism from

nto Z. The proposition is therefore true. #



Corollary 3.17 Let m be an odd positive number. Let p be a fundamental
projection on S™71. Then (i, o B)([p]) in K1(Co(R™)) 2 Z is a generator of
Z.

Proof: Since p is fundamental, [p] = (n,1) or {n, —1) for some integer n.

So, by Claim 3.12, (¢. 0 8)([p]) is a generator of Z. #




6.4 The Kunneth Map

Let N denote the class of “nice” C*-algebras defined in 22.3.4 of [Bla]. If
A and B are C*-algebras and A € NV, let

& (Ko(A) ® Ko(B)) @ (Ki(A) ® Ki(B)) — Ko(A® B),  (4.1)

and
K (Ko(A) ® K1(B)) & (K1(A) @ Ko B)) = K1(A® B), (4.2)
be the injective group homomorphisms given by the Kunneth Theorem for ten-
sor products (Theorem 23.1.3 of [Bla}}. We also use x to denote the restricted
maps
k: Ki{A)® K;(B) —» Ki;(A® B),
which are also injective group homomorphisms. All of these maps x will be

referred to as Kunneth maps. However, we have the following definition.

Definition 4.3 The maps & in ({.1) and ({.2) will be called the full, or the
total Kunneth maps for A ® B.

‘heorem 4.4 The total Kunneth maps & in ({.1) and ({.2) are isomorphisms
ther K,(A) or K,(B) is torsion free.

:-:Proof: This is part of Theorem 23.1.3 of [Bla}. #
f A is any C*-algebra, we know that K;(A) & Ky (2(A)). The Bott map
0'(.' ) — K;3(f(A)) gives the isomorphism between Ko(A) and K;(§2(A)).

symbol @ is used in [Bla] for the isomorphism

0 : K1(A) = Ko(QA)).
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Notation 4.5 In this thesis, the symbol 3 and the term Bott map will also
be used for the isomorphism K (A) 5 Ko(QUA)) given above. If we need to

distinguish this Bott map
B Ki(A) — Ko((A))

from the other Bott map B : Ko(A) — K (U A)) we will use the subscript ¢
for the Bott map

Bi s Ki(A) — Ki+1(Q(A))-

Proposition 4.6 The Kunneth maps ({.1) and (4.2) are natural and respect
suspension and index maps (or boundary maps).

To respect suspension means that if A, B € N then the diagrams

K(A)® K;(B) ——  Kui{A®B)

lfd@,@ 1;3

Ki(A)® K;ja(UB)) ——  Kiyin(A®N(B))
= Kiyjn(UA® B))

K(A®K;(B) —— Ky {A®B)

|sera. G

K1 (A) ® Ki(B) ——  Kiy;a(Q(A) ® B)
= Kiyj+1(S{A® B))

To respect index maps means that if

0o LHBLE -0
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is an extension of C*-algebras in N, and if A is another C*-algebra in N such

that the sequence
00 AQRJ S AQB'BTAQE -0 (4.8)

is exact, and if

3i : I(,’(E) — I(H.](J)
are the index maps of (4.7) and
aA,i : .KL(A & E) —3 I{,‘_H(A & J)

are the index maps of (4.8), then the diagram
K(A)® K}(E) — K j{A® E)
j’fd.@;aj la,‘,,,-ﬁ
Ki(A)® Kjm(J) — Kipjir(A® J)

commautes.
Proof: See page 446 of [Sch] or Theorem 5.1 of [Kar]. #

Remark 4.9 By definition of «, if p € Projy, (A), and q € Proj; (B), then

1@ [q] in Ko(A) @ Ko(B) is sent by & to

(lp]®[q]) =P ®d] (4.10)
<o (A® B).

4.11 The Kunneth map




isomorphism. &

If we view Q(C) as {f € C(S") : f(1) = 0}, then clearly
QO = C(SY).
Thus the inclusion : : Q(C) — C{(S') induces an isomorphism
i, K (QC)) S K (C(SY)).
Composing ¢, with the Bott map
B Ko(C) — Ki(Q(C))
gives an isomorphism
1.0 f: Ko(C) — K (C(5Y))
determined by the maps
ix 0 B : Proja(C) — Un(C(SY)

th the property that
(10 B)(1) = 2

- € C(S") is the identity function z — z on 5.

242

Proof: Since K{(C) == 0, one of the total Kunneth maps in this case is
the map (4.12). But, since Ko(C) =2 Z, and K(C) = 0 are both torsion free,

the total Kunneth maps are isomorphisms. Therefore the map (4.12) is an

(4.13)
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Now, we observe that Q(C(X) ® C(Y)) 2 Q(C(X)) ® C(Y). Also, the
Kunneth map respects suspensions. What this means is that the diagram
Ko(C(X)®@ Ko(C(Y)) ——  Ko(C(X)® C(Y))
|sera. E
K (Q(C(X)) ® Ko(C(Y)) ——  Ki(QC(X) ® C(Y)))
~ K (Q(C(X)) ® C(Y))

commutes,

Hence, the diagram
Ko(C)® Ko(C) ——  Ky(C®C)
|sara. |
K (Q(C) ® Ky(C) —— K, (Q(C)® C)
= K, ((Cg C))

commutes. By naturality of «, the diagram

K1(Q(C)) ® Ko(C) —— K1(2(C) ® C)
Jj.@fd. l(:@[d).

K(C(SY) ® Kol C) —— K (C(SY) @ C)

so commutes. Putting these diagrams together gives the commutative dia-

Ko(C)® Ko(C) ——  Ko(C®C)
|Geomrora. | Goray.on (4.14)

K1(C(SY) ® Ko(C) —— K (C(SY) ® C).
ma 4.15 The Kunneth map

£ K (C(5Y)) ® Ko(C) — K{(C(S") ® C)
omorphism which satisfies

w(lz] @ [1]) = [z ®1].
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Proof: By (4.13), (2. 0 8)(1) = z. Thus,
((loB) @ Id (1@ [1]) =[] ® 1]
in K1((C(S')) ® Ko(C). By commutativity of Diagram 4.14, it follows that

k([2] @ [1]) = (( ® Id.). 0 B)(([1] @ [1]))

= (@ Id).of)([l@1])

= (1@ IdJ([A(1®1)

where [8(1® 1)] € K;(2(C ® C)) = K1(2(C) @ C).
Now, 8{(1®1)is themap z—~ 2(1®1) = (2 ® 1) from S’ to C® C. We
may therefore write
Blel)y=201
in U3(2(C) ® C). Thus
(x ® 1d),([8(1 @ 1)])

= (@ld.(z01)
= [(z)®1]

= {z®1]

(C(SY) & C).

Cherefore k(z)®@ 1)) = [z ® 1]

e [z®1] is a generator of K;(C(S1)QC) 2 Z, and [2]®]1] is a generator
C(S") ® Kyo(C) = Z, it follows that the map « is an isomorphism in
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If @ is an element of a C*-algebra, we will use C*{a) to denote the C*-
algebra generated by a.

Now take p € Proj; (B) and v € U (A). Assume p # 0.

The spectrum of v is a subset of S1. So, for every f € C(5"), we have by

the functional calculus an element f{v) in C*(v) C M;(A). Let
5:C(8Y) — Mi(A)

be the x-homomorphism given by the formula

Next, we note that C*(p) = C, the isomorphism being the map
j:C—C(p)
with the formula
i(A) = Ap.
Now, the diagram
Ki(C(SY) ® Ko(C) —— K4(C(SH) @ C)
ls,@u‘. l@@j). (4.16)

K(A)®KoB) —— K(A®B)

mmutes (by naturality of &).
Proposition 4.17 The Kunneth map

k: Ki(A) ® Ko(B) — Ki{(AQ B)

blep)=Pker+L®@L-1,0p



246

Proof: Note that s(z) = z(v) = v, so that s.([z]} = [v] in Ki(4). Also,
5(1) = L(v) = 1; (since v € U, A). Furthermore, j(1) = p, which implies that
J([1]) = [p] in Ko(B). So [v] @ [p] = (5. ® j.)([z] ® [1]). By commutativity of
Diagram 4.16, it follows that

~([v]  [p])

(5. ®32)(121® [1])) = (5 ® ).(([2] ® [1])
= Geiel)

(by Lemma 4.15)
= 8NN+ Le L - (s®)1e1) |
= B2 ®i0) + 1@ L - s(1) ® (1)

= PP+ LO@L -1, ®p. &




6.5 The Diagonal Map and Cup Product

Let X be a compact Hausdorff space. Let 7 : B — X be a continuous
(*-algebra bundle over X. Assume that B is a B-bundle where B is a fixed
C*-algebra. Let A be a C*-subalgebra of the C*-algebra C(B) of continuous

sections of B. Define the *-homomorphism
0 C(X,A) — C(B)

by the formula
p(f)(z) = f(z){(z) € Bz, Vr € X,

for every f € C(X,.A). This map p will be called the diagonal map on
C(X,A).

_Deﬁnition 5.1 A is said to be preserved on the diagonal of X if p(f)
‘belongs to A for every f € C(X, A).

Remark 5.2 If A is preserved on the diagonal of X, then the diagonal map

on C(X, A) is actually a x-homomorphism
p:C(X,A) — A
m the C*-algebra C(X, A) to the C*-algebra A.

Identify C(X,.A) with C(X)® A. If ¢ € C(X) and a € A, the object

as an element of C (X, A), has the formula

(p®a)(z)=¢(z) a in A

247



Note that if » € C{X) and a € A, then we can multiply a by ¢ on the

left to get an element ¢ - a of C(B). For z € X, we have
(- a)(z) = o(x) - oz).

Lemma 5.3 If p € C(X) and a € A, then
ple®a)=w-a

Proof: By definition of p, we have, for every € X, p(p®a)(z) = (¢®a)
(z)(z) = (p(z) - a)(z) = ¢(z) - a(2) = (¢ - &)(z). That is, plp @ a) = -a. &

Proposition 5.4 A is preserved on the diagonal of X if and onlyife-ae A
for every @ € C(X) and every a € A, that is, if and only if A is C(X)-

invariant.

Proof: Suppose A is preserved on the diagonal of X. Let ¢ € C(X), a €
A. We want to show that ¢-a € A. But ¢ a is equal to p(¢ ® a) (by Lemma
5.3) which belongs to A by our assumption that A is preserved on the diagonal
of X. So, the proposition is true in one direction.

Now, suppose that ¢ -a € A for every p € C(X) and a € A. We want to
how that p(f) € A for every f € C(X, A). Identily C(X, A) with CX)® A
e C(X) ® A is generated by the set of all ¢ ® a such that ¢ € C(X) and

A, it suffices to show that p(p ® a) € A for every p € C(X) and a € A.
or every p € C(X) and a € A, p(p ® @) = ¢ - a (by Lemma 5.3) which

gs to A by assumption. The proposition is therefore true.
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Definition 5.5 If A is C(X) invariant, then, for every a € K;(C(X)) and
b€ K;(A), we can define the cup product a U b in Kiy;(A) by the formula

aUb¥ p.(k(a® b))
where
k: K(C(X)) © Ki(A) = Kiy(C(X, A) 2 Ky (C(X) © A)

is the Kunneth map, and p : C(X,A) — A is the diagonal map (which maps
into A by Remark 5.2 and Proposition 5.4).

Remark 5.6 If A is C(X)-invariant, we will also regard the cup product as

the map
U=p.os: K(C(X))® K;(A) = Ky ;(A).

Remark 5.7 Let D be a C*algebra. If A € Mi(C),B € Mi(D), A =
i) B = (bi;), we identify A® B with the element

auB auB alkB

AR B = :

amB apB - akkB}

\

ement A-of M,(C(X)) may be regarded as a continuous function

). So A(z) € M(C) for every z € X, if A € M;(C(X)).




Since A is a C*-subalgebra of C(B), then M;(.A) can be considered a C*-
subalgebra of C'(M;(B)). So for every B € M(A}, z € X, B(x) is an element
of My(B,).

We have

M(C(X)) ® My(A) = C(X, Mu(4). (5.5)

So M (C(X))® M;(A) may be viewed as a C*-subalgebra of C(X, C(My/(B))).

Remark 5.9 If A € M, (C(X)),B € M/(A) and if A is thought of as a
function from X to My(C) and B is thought of as an element of C(M(B)),
then we identify AQ B with the element of C(X, M (A)) given by the formula

(A® B)(z)(y) = A(z) @ Bly) € Mu(B,) (5.10)

(for every z,y € X ), where A(z) ® B(y) can be regarded as in Remark 5.7.

Definition 5.11 Suppose A is C(X)-inveriant. If A € Mi(C(X)),B €
1(A), we define A ® B in Myu(A) by the formula

(A O] B)(.'J:) = A(:c) & B(m) € Mkl(BI)
every « € X, where A(z) ® B(z) is given by Remark 5.7.

mark 5.12 In Definition 5.11, A ® B belongs to My(A) because A is

-invariant.

a 5.13 Suppose A is C(X)-invariant. If A € M (C(X)),B € Mi(A),

(A B)(z) = (A® B)(2)(z)




for every x € X. Therefore
in Mk;(.A).

Proof: Take A € My(C(X)) and B € Mi{A).
By (5.10),
(A ® B)(z)(z) = A(z) ® B(a),

So

(A0 B)(z) ¥ A(zr)® B(z)
= (A® B)(z)(z)

= p(AQB)(z) #

Lemma 5.14 Assume A is C(X)-invariant and has a unit. Suppose q €
Proji(C(X)),v € Ul(C(X)), and p € Proji(A). These represent elements
lg] € Ko(C(X)), [v] € K1(C(X)), and [p] € Ko(A). Then

[dUlpl =g © ]

PWlUpl = PEP+1LOL~1LOp

= pOp+1l—-1L0p]

A), where 15 is the lk x Ik identity matriz, regarded as a constant



Proof: By Remark 4.9,

~(lg] ® [p]) = [¢ ® p}
in Ko(C(X, A)). Henee
[QUlp] = (peox)(g)® [p])
= p(lg®@p])
= [ple®p)]
= lqop]

in Ko(A), by Lemma 5.13.

Also, by Proposition 4.17,
Mpl@p)=vep+L®l—1,®p
in K(C(X,.A)). Hence
Plulp] = pda(f] ® )
p(p®p+1L® 1 -1, ®p)

[P(v®@p+ 1, @1 — 1, @ p)|

PEP+1 01 —10p]
by Lemma 5.13.4

R’ér_nark 5.15 Note that the algebra C(X) may be considered the algebra of

ntinuous sections of the trivial C C*-algebra bundle over X. Thus for every

Mi(C(X)), B € My(C(X)), AO B in Mu(C(X)) is well-defined and we

(40 B)(z) = A(z) ® B(z)
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in My (C) where A(z) @ B(x) is regarded as in Remark 5.7. Also,
(AR B)=AGB
where p: C(X,C(X)) = C(X) is the diagonal map defined by the formula
(pf)(z) = f(z,2),
and A® B is considered an element of C(X, Mu(C(X))) with formula
(A® B)(z)(y) = Alz) ® B(y)
as in Remark 5.9
The following definition stems from (5.16).

Definition 5.17 IfY is a set, A is a k X k matriz-valued function on Y, and
B is an I X | matriz-valued function on'Y, we define the kl X kl matriz valued

Junction A © B on'Y by the formula
(A® B)(y) = A(y) ® Bly)
revery y € Y, where A(y) ® B(y) is defined in Remark 5.7.

mma 5.18 [f B’ — X is another C*-algebra bundle over X and A’ is a
() invariant C*-subalgebra of C(B'), then A® A’ is a C(X)-invariant C*-
@.Igéf;ra of C(B& B')Y= C(B)® C(B'), and if we make the identification

C(X, A® A) = C(X, A) & C(X, A)

Ki{(Ap A) 2 Ki(A) @ K (A),
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then, for every c € K;(C(X)), a € K;(A), and b € K;(A"), we have
cU(a,0) =(cUa,0)

and

cU{0,b) = (0,cUb)

n I{,'.;_J‘(A) & I{;+j(.Af).

Proof: Follows easily from the definitions and the corresponding facts

about the Kunneth and diagonal maps. #

Naturality.

Definition 5.19 If B® — X is another C*-algebra bundle over X and y :

B — B’ is a homomorphism of C*-algebra bundles over X, we let

pe : C(B) — C(B'),

et C(X,C(B)) = C(X,C(B"),

he x-homomorphism induced by p. That is, we let

pe(b) = pob
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Proposition 5.20 If p : B — B' is a homomorphism of C*-algebra bundles
over X (as in Definition 5.19), then, for every f € C(B) and ¢ € C(X), we

have
pelp - fY = pf)

m C’(B’).
Proof:

- f(z) = (polp- f)z)

I
=
—
—
A
s
S
Famm

8
S’
S

plp- ) z) = @lz)-(po f)(z)
= o(z)(eS ) ()
= (¢ (Sf))x)

hich implies p (¢ - f) = ¢ - (). #

na 5.21 If u : B — B' is a homomorphism of C*-algebra bundles (as
finition 5.19), and if A is C(X)- invariant, then p.(A) is also C(X)-

Of Take b € p,(A) and ¢ € C(X). We want to show that ¢ - b

o i(A). Now, b = pu.(a) for some a € A S0 b= - p(a)




pi«(p - @) by Proposition 5.20. But A is C(X) invariant. So ¢ - a € A. Hence
w - be .iu’*(A)‘ .

Proposition 5.22 If B' — X is another C*-algebra bundle over X and u :

B — B’ is a homomoprhism of C*algebra bundles over X, then the diagram

4

C(X,C(B)) — C(B)
[ = (5.23)
C(X,C(B) —— C(B)
commutes,

If, in addition, A is C(X) invariant, A’ is a C(X) invariant C*-subalgebra
of C(B'), and p.(A) € A, then the diagrams
C(X,A) —— A
= [ (5.24)
C(X,A) —— A
KA(C(X, A) —— Ki(A)
lﬂ. 1;‘. : (5.25)

Ki{(C(X, A)) -2 Ki(A)

and

Ki(C(X)) ® K;j(4) —— Kips(A)
l[dt@#t j’.ut (526)
Ki(C(X)) @ K;(A) —— Kiyj(A)
mute, and thus, if a € K;(C(X)) and b € K;(A), then

pu(aUB) = aU pa(b)
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Proof: Suppose f € C(X,C(B)) and 2 € X. Then

Pl () = (panf) (@) ()
= (pe o0 f)(=z)(2)
= u(f(2))(z)
= (po f(z))(z)
= p(fle)=))

So p(pee(f)) = palp(f)), which implies that po p,. = p,0p. That is, Diagram
5.23 commutes.
Commutativity of Diagram 5.24 follows from that of Diagram 5.23. Com-

mutativity of Diagram 5.25 then follows from that of‘Diagram 5.24. [

Naturality of the Kunneth map & gives commutativity of

K(C(X))® K;(A) — Kii(C(X, A))

lId.@,ﬂ. lu'

KA(C(X)® K;(A) —— Kip;(C(X, A4)).

tting this together with Diagram 5.25 (after first replacing ¢ with ¢ 4+ 7 in

.: .)_, and using the fact that p. o« is the cup product, gives commutativity

"H:e':_s_.pect for Suspensions.

all that B — X is assumed to be a B-bundle where B is a fixed




Definition 5.27 The suspension of B denoted by
7 Q(B) - X

is the Q(B) C*-algebra bundle derived from the bundle B — X with fiber

(B, = O(B,) = O(B)
for each @ € X.
Definition 5.28 Define

1 QC(B)) — C(Q(B))
as follows. If

f e Co ({0,1),C(B))
is an element of Q(C(B)) and o € X, define i(f)(z) € UB) = AUB)s by the
formula
W f)(@)(t) = f(t)(z) € B, , (5.29)

for every L€ (0,1).
Claim 5.30 The map i : Q(C(B)) — C(Q(B)) defined above is an embedding,
hat is, an inective *-homomaprhism, of Q(C(B)) into C(QU(B)).

Proof: Easy. #
Since §2(.4) is a C*-subalgebra of Q(C(B)) this embedding i : Q(C(B)) —

Q(B)) also gives an embedding

i1 Q(A) — C(UB))

(A) into C(B)). So N(A) may be regarded as a C*-subalgebra of
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Definition 5.31 If f € QC(B)) = Co ((0,1),C(B)) and ¢ € C(X) define
- [ e QC(B)) by letting

(e - F)E) = - (f(1)), Yt € C(0,1).

Lemma 5.32 If A is C(X) invariant and f € Q(A) = Co((0,1), A), then
@« [ belongs to Q(A).

Proof: By definition,

(o Nt =9 (f(2))

for every t € (0,1). Since A is C(X) invariant and since f(¢) € A for every
t €(0,1), then ¢ f(t) € Afor t € (0,1). Hence (¢ - f){t) = ¢ - (f(¢)) belongs
to A for every ¢ € (0,1). Therefore - f € Q(A). &

Lemma 5.33

(o ) =p-ilf) in COUB)

for every f € Q(C(B)).
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Proposition 5.34 If A is C(X) invariant then so is the C*-subalgebra i(Q( A))
of C(SYB)). That is, Q{A), regarded as a C*-subalgebra of C{QBY)), is C(X)
invariant if A itself is C(X) invariant.

Proof: Take ¢ € i(Q(A)) and ¢ € C(X). Then ¢ = i(f) for some J
f € Q(A). So, by Lemma 5.33, ¢-g =0 -i(f) = i(p- f) in C((B)). Since A |
is C(X)-invariant and f € ©(A), then, by Lemma 5.32, - f belongs to f(A). |
Therefore i - g = (1 - f) belongs to i(f4(A)). This shows thal - g € {(0(A))
for every ¢ € i(Q(A4)). Hence, i((A)) is C(X) invariant. #

If Ais C(X) invariant, then, by Proposition 5.34, i(R(.A)) is also C/(X)-

invariant, and therefore the diagonal map on C(X,§(€2(A))) is a map
p: O(X,i(Q(A))) — (2 A))
which we also consider as a map
p: C(X,0(A4) — Q(A) (5.35)

after identifying 2(.A) with i(Q(.A)). If we now make the identification

C(X,0(A)) = QC(X, A)

then this map can be considered as a map

p: QUC(X, A)) — Q(A).

roposition 5.36 Suppose A is C(X) invariant. Then the diagonal map

pa : C(X,{(Q(A4))) — i(2(A)),
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considered as a map

pa : Q(C(X, A)) — Q(A),
is the suspension of the diagonal map

p:C(X,A) — A.
That 1s,

pa = Qp).

Another way to express this is lo say that the diagonal map p respects sus-

pensions.

Proof: If
1 QCX, A)) S CX, i(Q(A)))

is the identification map, we want to show that the diagram

0

C(X,i(QA))) —— {(2(A))
]y [ (5.37)

Note first that f € Q(C(X,.A)) is mapped by u to p(f) where

#(F)(@)y)() = fB)(=)(y) (5.38)

ry ¢,y € X and t € (0,1). S
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= p(f()(=)
= (2)(N))(=)

= i(Qp)(z)() (by (5:29)),
which implies that {pgou)(f) = io(lp). Diagram 5.37 therefore commutes. #

Corollary 5.39 Identify §}(A) as a C*-subalgebra of C(Q(B)), and assume
A is C(X) invariant. Then the diagrams

Ko (C(X, A —— Kina(QAA)
~ K (QC(X,A))

fs &

K(C(X,A) —— KA

(5.40)

and

K(C(X) @ Ki(A)  ——  Kiui(A)
l[d.@ﬁ L@ (5-41)

U

K(C(X)) @ Kin(QA)) — Kiyjn(Q(A))

 Hence, if a € Ki(C(X)) and b € K;(A), then
BlaUb) = aU B(})
BlaUb) = aU ()
Ceria ((A)).

roof: Commutativity of (5.40) is a consequence of (Proposition 5.36)

e fact that the Bott map 8 : Ki(A) — K;,1(A) respects suspensions.



Since the Kunneth map « respects suspension, we also have commutativity

of
K{(CX)® K;(A) —— K, (C(X,A))

| ra- |
K(C(X)) ® Kja(UA)) — Kivjia(C(X, A))).
Putting this together with Diagram 5.40 (after first replacing ¢ with ¢ + 7 in
(5.40)) and using U = p* o &, gives commutativity of Diagram 5.41. &
Respect for Index Maps.
Let By = B and A4; = A and suppose that By — X and B; ~+ X are two
other C*-algebra bundles over X. Let

be a sequence of C*-algebra bundle homomorphisms and let 4, € C(B,) and
Az C C(B3) be C*-subalgebras such that

(A1) = A,
nk(AO) g -Ah
nd such that the sequence
0= A DA 5 A -0 (5.42)

‘xactness of (5.42) implies exactness of

0— C(X,A40) I3 C(X, 4) 2 C(X, A;) — 0.
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Proposition 5.43 Assume that Ay and A, are C(X) invariant. (By Lemma
5.21, it follows that Ay = p. (A1) is also C(X) dnvariant.) Then the diogram

0 —— C(X, Ay) — C(X, Ay) ——s C(X, Ay) — 0
lf’ [ [
0 —_— Ao Em— «41 —_— ./42 — 0

commautes.

Proof: Follows from Proposition 5.22. &

Corollary 5.44 Assume Ay and A; are C(X) invariant. (By Lemma 5.21,
A3 is also C(X) invariant.) Then the diagrams

P

I(l(C(X,Az)) R— I(;(Ag)
la.- la,- (5.45)
K 1(C(X, Av)) RGN K11 (Ao)

..a,nd

K{C(X) ® K;(As) —— Kips(A2)
lId.@aj lai“ (5.46)

Ki(C(X)) ® K;41(A0) —— Kipjia(Ao)

(9,'4_5;(0, U b) =al aj(b)

roof: Commutativity of Diagram 5.45 follows from Proposition 5.43

urality of the index maps.
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Since the Kunneth map respects index maps, the diagram
K(C(X))® Ki(A) —— Kij(C(X, A2))

lfd.@&,- lam‘
K(C(X)) ® Kj1(A) —— Kipjpa(C(X, Ao))

also commutes. Putting this together with Diagram 5.45 (after first replacing

i with i 4 7 in (5.45)) and using U = p. o &, we get commutativity of Diagram
5.46. &
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6.6 The Thom Isomorphism

Let X be a compact Hausdorff space and £ 5 X a real continuous vector

bundle of dimension m over X.

We let £ -5 X be the Cp(R™) C*-algebra bundle over X whose fiber at
each z € X is the commutative C*-algebra Cy(E;). The bundle £ 5= X will
be called the commutative C*-algebra bundle over X associated to

the vector bundle E = X.

The C*-algebra C{£) of continuous sections of £ is of course isomorphic
to the C*-algebra Cy(E) of continuous functions on E vanishing at co. Under
this isomorphism ¢ € Cy(F) corresponds to the continuous section z — ¢|g, €
Co(E,) for z € X.

We will often view Co(F) as the algebra C(£).

With this identification, we have the diagonal map
p: C(X,Co(E)) — Co(E)

| the cup product

U:P*OF‘.’&

U: K(C(X)) @ K;(Co(E)) — Kiy;(Co(E)).

aUb= p.(r(a®b))

C(X)),b € K;(Co(E)).

let 1, « £, — F denote the inclusion of E; into £.
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Definition 6.1 A4 Thom class for E, or ¢ K-theory orientation for E,
is a class u € K™(E) with the property that (i;)*(u) in K™(E,) is a generator
for K™(F;) =2 K™(R™) =2 Z for every z in X,

If E has a K-theory orientation, we also say that F is K-theory ori-
ented. If [u] € K™(E) is « Thom class represented by some unitary u €
Ur(Co(E)), then we call v @ Thom element for E.

Definition 6.2 If M is a compact C®-manifold, a Thom class for TM will
also be called a Thom class for M or a K-theory orientation for M. If
M has a K -theory orientation we will say that M is K-theory oriented. 4
Thom element for TM will also be called a Thom element for M.

Theorem 6.3 (Thom Isomorphism Theorem) Ifu € K™(E) is a Thom

class for E, then the map

D, Ki(C{X)) = Ky Co( £)),
:which sends a in K;(C(X)) to |
d.(a)=alu

n Knii(Co(E)), is an isomorphism, which will be called a Thom isomor-

hism for F.

Proof: This is Theorem 3.2 of [Kam]. See also [Swi].#

The Thom Isomorphism and the Bott Map

Now, let 7 : E — X be a riemannian, real, vector bundle of dimension

compact Hausdorff space X. That is, there is a euclidean metric on



268

each fiber E,, which varies continuously with z. Let
S={ve E:|v| =1}
Then 7 : S — X will be called the (unit) sphere bundle of E over X.

Definition 7.1 The suspension Q(C(S)) of C(S) can be imbedded into Co( F)
by first identifying Q(C(S)) with Co((0,00), C(S)) and then letting

i : Q(C(S)) — Co(F)
be the map

| FARDGEDs i (ol #0
() = 4 (7.2)

0, if ol =0

Jor every f € Q(C(S)),v € E.
This embedding induces another embedding

i Up(QUC(S5))) = Uk(Co(E)) (7.3)

iy s KA (Q(C(S))) — Ki(Co(E)). (7.4)

For each z in X, we have embeddings




and

re : C(S) = C(Ss),

and the induced maps
ry ¢ Proju(C(S)) — Proji(C(S,)),
re : Up(Co(E)) — U(Co(Es)),

(ra)e : QC(S)) = AUC(S2)),

and

(). : Ue(Q(C(S))) = U(QC(S.))).

The last two maps will also be denoted by

s 2 QC(S)) — QC{S:))

~and

ra 2 U((C(5))) = Un(8UC(52)))-

* Now imbed Q(C(S,)) into Co(E,) in the same way that Q(C(S™™")) was
‘mbedded into Cy(R™). This gives us, for every x € F, an embedding

f ying the formula

FAlMmg)s 1 ol #0
(3z/)(v) = |

0, if ol =0

\
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for fin Q(C(S,)),v € E,, an embedding
is 2 U(S{C(S2))) — Un(Co(£2)) (7.6)

and a map

(i) : Ki(QC(S2))) = Ki(Co(Ew)). (7.7)

The maps (7.5), (7.6) and (7.7) are essentially the same as the maps (3.3),
(3.5), and (3.6), once E; is identified with R™.
From the definitions, it is not hard to see that, for every z € X, the

diagram

QC(S)) —— ColE)
|- |- (7.8)

Q(C(S,)) = Co(Ex)
commutes. [ follows that the diagram
U(QUC(S))) ——= Up(Co(E))
lrx l ' (7.9)
Ur(Q(C(54))) —— Ui(Co(Ex))
commutes, and from this we get commutativity of
K(QUC(S))) —— Ky(Co(E))

=), |- (7.10)

K(Q(C(5.))) . Ky1(Co( Ey)).

We also have the Bott map

B : Ko(C(S5)) = Kr(YC(S)))
ined by the Bott maps

B 1 Proji(C(S)) — U((C(5))),
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and, for every z in X, we have the Bott map
B Ko(C(Sa)) — K1(Q(C(S:))) (7.11)
determined by the Bott maps
B Proji(C(S:)) — U(Q(C(Ss))). (1.12)

The maps (7.11) and (7.12) are essentially the same as the maps (3.8) and
(3.9) once E; is identified with R™.

From the definitions, or from naturality of the Bott map, we see that the

diagram

. b
Proji{C(5)) — Ui(Q(C(5))
) a
Proje(C(Ss)) —— U(Q(C(S:)))
commutes for every z € X, which gives commutativity of

Ko(C(S)) —2= K(AC(S))

J'(TI)- l(""z)#
B
Ko(C(5:)) — Ka(Q(C(S:)))
r every z in X. Putting these last two diagrams together with Diagrams 7.9

7.10 gives us commutativity of

Proju(C(8)) — UW(Q(C(S))) —> Uk(ColE))

[+ |- | |-
Proju(C(Ss)) —— Un(Q(C(S:)) —— Us(Co(Ey)

L KfC(S) — K(AC(S))) —— Ki(Co(E))

J'(m). l(u); J'('f'z)t

(6(C(S2)) —2 Ki(QC(SL)) —2 Ky(ColE)
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which gives commutativity of

Proji (C(5)) L‘B** U(Co(E))

lrw l” (7.13)
Proj(C(5:)) =, U(Co(£2))

and
Ko(C(S) =L Ki(Co(E))

[ |o)e (7.14)
Ko(C(52) ~22 Ky (Co(E2)).

By comments made earlier, we remark that the maps

iz 0 31 Proji(C(S;)) — Up(Co(EL))

and

(t)a 0 81 Ko(C(S;)) — KI(CD(E?))

are essentially the same as the maps

i0 8 : Proj(C(5™71)) — Up(Co(R™))
iy 0 81 Ko(C(S™ 1)) — K1 (Co(R™))
10) and (3.11), once Ey is identified with R™.

m 7.15 Suppose E is odd-dimensional and that p is a projection ori-

rS. Sayp € Proj,(C(S)). Then (ioB)(p) € Up(Co(F)) is a Thom
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Proof: If z € X, let S; be the fiber of S at «, let p, = p|,, = r={p), let

u = i(B(p))

in Up(Co(E)), and let uy = ulgy(m,) = ro(u) in Up(Co(E,)).

By commutativity of Diagram 7.13, u, = ry(u) = r,(i(8(p)}) = (i o
B)(rzp) = (iz 0 B)(ps) for every z € X. Since p is a projection orientation for
S, po is a fundamental projection on the even sphere S, for every x € X. By

Corollary 3.17 and by the fact that the map

iz 0 81 Projp(C(S;)) — Ui(Co(E,))

is the same as the map
0 f: Proji(C(S™71)) — Ue(Co(R™)),

once E is identified with R™, it follows that [u,] = [(1,08)(p.)] € K1(Co(E,)) =
Z is a generator of K(Cy(E;)) for every z € X. Therefore, u is, by definition,
a Thom element for £. &

Now, let

T:8§ =X

enote the C'(S™~1) C*-algebra bundle over X whose fiber at each z in X is
e C*-algebra C'(S,). The bundle § © X is the commutative C*-algebra
ndle associated to the sphere bundle § 5 X.

Of course we have

orphism being the map which sends each ¢ € C (5) to the continuous
= (PISI of C(S)




Identifying C(S§) with C(S), we obtain the diagonal map
p:C(X,C(8)) — C(S5)
and the cup product
U: Ki(C(X)) @ K;(C(S)) = Kip i (C(S))
where U = p, o &.
Definition 7.16 Define the C*-algebra bundle homomorphism
1 Q(S) . £
as the map which, on each fiber QS), = Q(C(S,)), is the embedding
iyt QC(S)) = Col(E,) = &,
defined in (7.5).

That is,

;Iﬂ(s)x : Q(S)J, — 83,-

s the same as the map
izt C(Sy)) — ColEy).

Now since C(S) can be considered the same as C(S), then Q(C(S)) can
dentified with C'(£(S)).

identification is the map which sends each f in Q(C(S)) to the section
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where

re t (C(S)) — QC(S,))
is the map induced by the restriction map
re : C(S) = C(S:)

which sends ¢ to ¢|s,.

Now, by commutativity of Diagram 7.8, we have that

ro(¢(f)) = tx(ra(£))

for every f € Q(C(S)). Thus, considered as a map
i: C(QS)) — C(€)

on sections of C*-algebra bundles, we see that i is the C*-algebra bundle

homomorphism 5'*. So the following is true.
.:L_emma 7.17 The embedding
i QUC(S)) — Co(E)

the same as

1 C(RUS)) = C(E)

making the appropriate identifications.

Ve can therefore apply Proposition 5.22 (naturality of the cup product)
mmutativity of the diagram

' U

K{(C(X)) ® K (UC(5))) — Kiyj1a(C(S)))

11’:!.@:’.. l-‘. (7.18)

K(C(X)) ® Ki(Co(E)) ——  Kipjsa(Co(E))




By Corollary 5.39 (respect for suspensions of the cup product), we also
have commutativity of the diagram
- U r
K(C(X))® K{C(S)) ~——  Kiy;(C(S))
lId.@.G lﬁ
U
K(C(X)) @ Kiyan(UC(S))) —— Kiyja(UC(S)))

Putting this diagram above Diagram 7.18 gives us the following proposition.

Proposition 7.19 The diagram

u

K(C(X)) @ K;(C(5)) —— Kiyy(C(S))
lIa!.@(i.oﬁ) ‘ li.oﬁ
K{(C(X)) ® Kis1(Co(E)) —— Kiyi1(Co(E))

commutes. That is,

(.0 f)(aUb) =aU (. 0 B)(b)
for every a € K;(C(X)) and b € K;(C(5)).

Now, suppose A € M;(C(X)) and B € My(C(S)). Then we have 7*(A) €
1(C(S)) where # : S — X is the bundle projection map. We have the
;duct A©® B in Mu(C(S)) (Definition 5.11), and the product n*(A4) ® B
-'ﬁﬁe_same space M (C(S)) (see Remark 5.15). These two elements are the

e as asserted in the next lemma.
na 7.20 If A € My(C(X)) and B € My(C(S)), then

AoB=7"(A)®B
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Proof: A © B is defined with B considered as the section z — Blg, €

C(S.). By definition
(A© B)(z) = Az) @ (Bls.) € My(C(5s)).
Thus, for v € S,,
(A G B)(z)(v) = A(z) @ B(v) € Mu(C).
That is, considered as an element of My, (C(S)), for every v € S,

(A® B)(v) = A(mv)® B(v)
= (7" A)(v) ® B(v).
But
(m*(A) © B)(v) = (7" A)(v) ® B(v)
by Remark 5.15, or by Definition 5.17. Thus A® B = (1°4) © B. &
Lemma 7.21 Suppose q € Proji(C(X)), v € U{C(X)), and p € Proji(C(5)).

;;.__Then
{qlUp] ={(="q) © pl

n Ko(C(S)), and

julp] = [(*v)Op+LOL -1 0P

= [(#*)Op+1x—1,0p]

:C'(S)), where 1y, is the Ik x lk identity matriz, regarded as a constant



Proof: By Lemma 7.20,

(") Op=q0Op

and
(7"v)Op=vQOp.

Thus Lemma 7.21 follows from Lemma 5.14. &

Corollary 7.22 Suppose E is odd-dimensional (dimension m) and that p is
a projection orientation for S. Let w = (i o B)(p) be the Thom element for
L corresponding to p. (By Theorem 7.15 , u is a Thom element.) Then the

Thom isomorphism
P, : (C(X)) = K1 (Co(E))
sends each a € K;(C(X)) to

Pu(a) = (10 B)(a U [p]) (7.23)

in Kip1(Co(E)).

Moreover, if ¢ € Proji(C(X)) and v € U(C(X)), then

©u(lg]) = (ix 0 B)([(v"q) © p]) (7.24)

(w0 A)([(m™0) Op+ L O 1t - 1,0 p])

(w0 B)({(m*0) O p + L — 1 O p]).
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Proof: By Theorem 6.3, ®,(a) = a U [u] for every a in IG(C(X)). Since
u = (0 B)(p), then [u] = (i o B)([p]). Hence,
d,(a) = aUluyl
= aU (ixo B)(Ip])
= (ivof)(aU[p))

by Proposition 7.19 (respect for suspensions, of the cup product). This proves
(7.23).

Now take ¢ € Proj;(C(X)) and v € U;{C(X)). Then

() = (i-0B)([d U B
(by (7.23))
= (o B)((m* ) O pl)

by Lemma 7.21, which proves (7.24).

Similarly,

&, ([u]) = (ixo B[]V [p)
= (ko A((r™v)Op+ 1k — 1,0 pl)

which proves (7.25). &

6.8 Thom Extensions and the Thom Isomor-
phism

- In this section, M is a compact riemannian manifold and S — M is the

t sphere bundle over M.
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Recall (from Proposition 3.1.9) that if p is 2 nonzero continuous &k x k
projection on the sphere bundle over M, there are two Thom extensions, the

C(p) Thom extension
0 — M(Co(TM)) 5 C(p) & C(M) > 0
and the SC(p) Thom extension

0 — My(Co(TMY) 5 5C(p) 5 (M) — 0.

Theorem 8.1 Suppose M is odd-dimensional and that p is a fundamental

k x k projection on the sphere bundle over M. Let u = (10 8)(p) be the Thom

element for M determined by p. Then the index maps
3,‘ : I(;(C(M)) s 4 I{,+1(C@(TM))

determined by the C(p) Thom extension are the same as the Thom isomor-
phism maps

b, : KG(C(M)) = Kipr(Co(TM)).

That is,

n Ki(C(M)).
Proof of Case 1: First look at

8y : Ky(C(M)) = Ko(Co(TM)).
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So far we have used 1, to denote the n x n identity matrix. Let us now

extend its use to denote any matrix of the form

1, = diag(1,1,...,1,0,0,...,0)
N e

n

Now, take any w in C([0, 00}, Uppi{C(S))) such that
'LU(O) - 12kl 3

w(t} approaches a limit w(oo) € Uy (C(S)) as t — oo, and

() Op+lu—-10p 0
w(oo) =
0 (mv)Op+1lu—1L0p)
(7 v)Op+1p—1L0p 0
0 (v} Op+1lp~-1,0p
Let

for every t € (0,00). That is, let
g =1w l,u w*.

q is an element of Proju(Q{C(5))*) and by the definition of the Bott

B Ki(C(S)) — Ko(UC(5))),
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we have

Blllz™v} O p+ L — L © pl) = [¢] — [1u] (8.2)
in Ko(Q(C(S))).
Now, we find an expression for d;([v]) in Ko(Co(TM)). Define
1w € C(TM, ng[(C))

by letting

w(lall)(74), i a#0
(iw)(a) = 4

]-Qkh fa=0

For a € TM,a # 0, we have

(tw){a) = w(lalf}(r(a))
= r(w(lle]})(a)

_where r : TM \M — S is the retraction map. (Originally, ¢ was defined on
~matrices over (}(C(S)). This definition extends the domain of this original :
o include w.) As |la]| — oo, (iw)(a) = r*(w(||a|[})(a)} — r* (w(o0))(a). That

s, i(w) is equal to r*(w(oo))

"((mv) O p+ 7" (1) © (L —p)) 0

(") © p+ 77(1) © (L~ p)
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(7*0) © (r*p) + 7*(11) © (1 — r*p) 0

0 W*(U*)@r"‘p—l—?r*(lg)@(lk—?"*lo)
at infinity. ‘

It follows that
i(w) € Uu(C(p))

(i.e. i(w) is a unitary in Myu(C(p)*) equivalent to 1y modulo Myu(C(p))) and
that

in Un(C(M)) (where
L:C(p)t — C(M)*
is the natural extension of the limiting map
I: C(p) » C(M)
in the C(p) Thom extension, and {(iw) in Upy(C(M)*) is identified in a stan-
dard way with an element of Uy (C(M))).
So, by definition,
([v]) = [(w)la(iw)™]— [1u]
= [{{w: 1y w")] - [14]
[i(@)] — [Lu]
toflg] — [1w])
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in Ko(Co(TM)). {Note: [¢] is in Ko(Q(C(S))*). So [i(q)]is in Ko(Co(TM)Y).)
From (8.2), it follows that

(o)) = (Lo B)([(7"0) O p + 1y — 1, © p)).

By Corollary 7.22, this is equal to ®,([v]). So 8 ([v]) = ®.([v]). & (End
Proof of Case 1)

Proof of Case 2: Now look at the second case.
60 : I{Q(C(M)) - I{I(CO(TM))

Take ¢ € Proj(C(M)).
Let g(t) = e7% for t € (0,00). Then g{t) increases from 0 to 1. By

definition, the Bott map
B Proju(C(5)) — Un(R(C(S)))

sends each a € Proj,(C(5)) to 8(a) in Uy(Q(C(9))) = {v € C([0, 00), Un(C(S)))

:0(0) = 1y and v(t) — Ly as ¢ ~ oo}, where
Bla)(t) = €70a + (1, — a)
€ (0, 00). Therefore
Bl(r*q) 0 p)(t) = ™ (r*q) O p+ 1 — (7"¢) O p (8.3)

(0, o).

W we get an expression for Oo([q]) in K1(Co(T'M)). Define

F@&) = g()((7*q) © p) € C(S),



for t € {0,00). Note that f € C([0,00),C(S)). Since g(0) =0, g{oo0) =1, we
have that
£(0) = 0, and f(oo) = (") O p.

Look at i(f) € C(T M) where i(f) is by definition the function

Fol (e, i v#0
i(f)(v) =

0, if v=0.

\

As before, we have that i(f) € C{TM) is equal to r*(f(c0)) = r* (z*q) ®
p) = (7* ¢) © {r*p) at infinity.
Since q € Proj(C(M)), it follows that i(f) belongs to M;(C(p)) and that

(i(f)) = q € Proji(C(M)).
By definition of the index map 8, we therefore have that
Bo(lq]) = [*7] (8.4)

in K1(Cyo(TM)). (Note to the reader: In the expression ¢?™f) the left 7 is the
complex number ¢ = v/—1, the right 7 is an inclusion. They were not supposed

to meet like this. For the time being, we will use /—1 for the complex number

Observe that
621r\/-—1i(f) — i(ei!fr\/:ff) (8.5)

{hat

(621r\/-_1f)(t) —_ 621r\/—_1f(t)
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= &VTHO((r*q) @ p) + L — (") O p
(since (7*q) @ p is a projection)
= Bl q) ©p)(1)
(by (8.3).
(For any projection P in a C™-algebra with identity 1, and for any ¢ € R,
et = ¥t P 4 (1 — P).) That is,
& = B((x"q) @ p).

Together with (8.5) and (8.4) this gives us that

A([q)) [(z0 B){((7"q) © p)]
= (.o B)[(7"¢) © p])

= ®.(lq})

by Corollary 7.22. Therefore dy = @, on Ko(C(M)). # (End Proof of Case
2 and of Theorem 8.1).

Lemma 8.6 Let A be a C*-algebra with unit. Suppose p,q € Proji(A), and
llp.—q|l < 1. Then
Ip] = [g] in Ko(A).

Proof: This follows from Proposition 4.3.2 of [Bla]. #

‘The following lemma is the corresponding fact about unitaries.

ma 8.7 Let A be a C*-algebra. Suppose u,v € Up(A) and that ||u—v|] <
en [u] = [v] in Ki(A).
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Proof: Since u € Uy(A), then v is an element of My(A™) equivalent to 1,
modulo M, (A). The same is true for v. Hence u — v is equivalent to 0 modulo

Mi(A). Let uy =tv+ (1 —t)u, for 0 <t < 1. Then up = u, u; = v, and
u — g = t(u ~ v)

for t € [0,1]. Since u—wv is equivalent to 0 modulo M (A), the same is true for
t(u—v). Hence u—wu; is equivalent to 0 mod Mi(A). Sinceu = 14 mod Mk(Aj,
it follows that

u = 1y mod Mi(A)
for all ¢ € [0,1].

Moreover ||u ~ u,|| = |¢| {[u —v|] < |[¢] < 1 for every t € [0,1]. That is,
flu — ] <1,V ¢ e[0,1]. Since u is invertible, it follows that u; is invertible
for every t € [0,1].

So wu, is an invertible element of M;(A*) equivalent to 1, modulo M;(A)
for every t € [0,1]. In other words, u, € GLi(A) for- every ¢t € [0,1]. Since
ug = u, u; = v, it follows that [u} = [v] in K;(A). &

We now give the SC(p) analogue of Theorem 8.1.

Theorem 8.8 Suppose M is odd-dimensional and that p is a fundamental
projection on the sphere bundle over M. Let u = (i o §)(p) be the Thom

~element for M determined by p. Then the index maps
8,- . I(,(C(M)) — I(i_H(O@(TM))

determined by the SC(p) Thom extension are the same as the Thom isomor-
phism maps

q)u : I{I(O(M)) —% I{,_{_l(OQ(TM))
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That is,

on K, (C(M)).
Proof: We will use in this proof the subscript A on the limiting map

la: C(p) = C(M)

of the C'(p) Thom extension to distinguish it from the limiting map
[:5C(p)— C(M)

of the SC(p) Thom extension.

Also, in this proof, let 04, : K;(C(M)) = Kiy1(Co(T M)) denote the index
map determined by the C'(p) Thom extension. By Theorem 8.1, 84; = @, on
K;(C(M)). So to prove this theorem, it suffices to show that ; = 9,4,.

Proof of Case 1: First, we show that §; = 84,. Take v € U(C(M)).

Let

V={(exp*v) © (r"p) + 11 © (1x — r"p)

which is an [k x Ik unitary on TM\M. Then
V* =exp*(v) O (v"p) + 1 © (15 ~ r"p).
Similarly, we let
W=(Ev)0*p)+10(1k—r"p)
1ch is an Ik x Ik unitary on TM\M. Then

W =r*(v*) O (r"p) + 1, © (1 — r"p).




For t € [0,1], let i

cos(tZ) —sin(tZ) '
a(t) = O 1 ‘

sin(t2)  cos(tZ)

cos(t5) - Ly —sin(tZ) - 1y

sin(¢3) - Lig  cos(tL) - 1

and, for t > 1, let
a(t) = afl) = @ i

If s >0 we let

o) = a(z), for ¢ > 0.

We also define v, € Usp(SC(p)) and 4, € Use(C(p) by letting
(
Bag(V (), 1) - ([l - diag(V ()", 1) - (ol i 0 £ 0
¥s(w) = <
Lok, if w=10

(8.9)

diag(W (w), 1) - g ([lwl])” - diag(W(w)", 1) - eu(fJwll), ifw #0

Lok, ifw=0

(8.10)
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for every w € T M.

Since V, W, and a,(}|w|) are all unitaries, then v, and 74, are continuous

unitaries on T'M for every s > 0.

Suppose s > 0. If w € T'M, ||w]| > s then “%H > 1 which implies that

0 -1
a(”%ﬂ) = ® L. So
1 0
0 ~1
a(llw|) = ® 1y whenever [|w|| > s.
1 0

It follows that,

V(w) 0 ' |
Yo(w) = if lw]| > s (8.11) |
0 V{w*
[ if fluw]| > s. (8.12)

Vo w0

nce v, is equal to at infinity and v, , is equal to
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at infinity. Since
V= (exp" 0} © (r'p) + 1, © (1x — r*p) (8.13)

and

W = (m*v) & (r*p) + 1, © (1 - 7*p) (8.14)

it follows that

¥s € Mu(SC(p)"),

Ya,s € Mzz(C(P)+)a

and that ~, is equivalent to 1y modulo My (SC(p)), and va,, is equivalent to
15 modulo My (C(p)). Since both «, and v, , are continuous unitaries on TM,

we have

s € U2I(Sc(p)+):

and

Yas € Un(C(p)").

Since 7, is also equivalent to 1oy mod My (SC(p)) and va,s is equivalent to 1y
mod My(C(p)), then we actually have v, € Uy(SC(p)) and v4,, € Un(C(p)).

Moreover, from the expression (8.13) and (8.14) for V and W, and from
vV o W 0
fact that v, equals and v,4 , equals at infinity, it

0 Vv 0o wr
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follows that

So, from the definitions of d; and 8, 1, we have

O([v]) = [7s - Lar - 73] — [La]

and : !

daa([v]) = [vas - Lo - va,5"] — (1] i

in Ko(Co(TM)), for all s > 0. f

We want to show that 9,([v]) = 94,1([v]). From above, it suffices to show

that, for some s > 0, ) -

s - Lit -] = [Vas - Lot - 75" i

in Ko(Co(T'M)*). By Lemma 8.6, it suffices to show that for some s > 0, we

have

”73 lkl '7: — YA lkl 7A,s*“oo < 1.

By (8.11) and (8.12),
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and

when ||w] > s. It follows that

(Vo r Ler - 73 )(w) = Lt = (Y40 1t va,.")(w)

whenever ||w|| > s. That is

1t T 7)) — (vasLuran)(@w)l] = 0 whenever o]l =5 (8.15)

For any w € T M, we have ' |

H(Fra ' 1kl ' 7:)(“") - (FYA.s ) 1.k:l' ' 7‘4,3*)(1‘))”

< [(¥s(w) = va,5(w)) - g - s (w)”||

Hlvas(w) - La(7s(w)" = 74,5 (0) )

(since v,(w) and 4 ,{w) are unitaries) |
< [a(w) = gaa()l] + ()" = v, ()] a

= 2[}ys(w) —vas(w)].
hat is
s - L S ) (w) = (Yays - La - va,s ) ()] £ 21y (w) — ya,6(w)|] (8.16)

HweTM.
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From the definition (8.9) and (8.10) of v, and 74,, , we get that if w # 0,

then [|7,(w) — 4, (w)l]
< [idiag(V(w) — W(w), 0] - les(|lwl])*diag(V(w)*, 1) - eu([Jw )

+idiag(W (w), Lie) |l - lles([lwll)"diag(V (w)* — W(w)*, Oujers (||l

I

[V (w) = W(w)[| + [[V{w)" — W (w)*|

(since V{(w), W(w), and a,(||w|]) are all unitaries)

= 2{|V(w) — W(w).
That is,
s (10) = ()| < 20}V () — W(w)]| (8.17)
for all w # 0. But, from the definitions of V and W we have that
V —W = lexp™(v) — 7" (v)] © (r*p)
from which it follows that
[V(w) = W(w)]| < |[[{exp”v)(w) — (z"v)(w)]]

= |[v(exp(w)) — v(r(w))] (8.18)

Since v continuous on the compact set M, v is uniformly continuous. So

there is a § > 0 such that ||v(z) — v(y}|| <

e |

whenever d(z,y) < 6. So, if
w € TM and ||w|| < §, then d(exp(w), (w)) = ||w|| < §, which implies that
l|lv{exp(w)) — v(x(w))|| < 3. By (8.18), it follows that

I,
IV(w) = W(w)]| < 7 if [lw] <é.
From (8.17) it then follows that

175 () — Yao(w)]| < %2- if || < 6.




This implies, by (8.16), that

(s« Tar - v Hw) = (Ya,s - L yas ) ()|l < 1 o] < 6.

From (8.15) and (8.19), it follows that

||’)(3 TR ’)’: — YAs "' g - ')‘A,3*|loo <1 if 0<s<é.
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(8.19)

This completes the proof that &, = 04,:. # (End Proof of Case 1}

Proof of Case 2: Now, we show that 0y = 940. Take ¢ € Proji{C(M)).

We want to show that 9p(lg]) = 9ae([q]) in Ki(Co(TM)).

Let g be any function in C([0,00)) such that 0 < ¢ < 1, ¢(0) = 0, and

git)y=1forallt>1. If s >0, let

for all t € [0,00). Then
gs(t)y=1ift > s.

(8.20)

Now define continuous Ik X {k matrices X, and Y, on TM by letting

{

gs(Ivll) - ((exp™q) © (r*p))(v), ifv#0
Xo(v) =5
0, fv=20
gs(lviD((x*q) © (r*p))(v), ifv#0
Yi(v) =«

0, ' ifo=10

\



forvin TM.

Since g,(t) = 1 for all ¢ > s, it follows that

X,(v) = (exp™ q)(v) © (r"p)(v), if ||v]| = s (8.21)

and

As a consequence, we have that X, is equal to (exp* q) ® (r*p) at infinity,
and Y, is equal to (7*q) ® (r*p) at oco. It follows that X, € M(SC(p)), and
that I(X,) = q € Proji(C(M)), and similarly, Y, € M{(C(p)) and Ls(Y)) = q.
From the definitions of 8y and 84 o, it follows that d,([q]) = [e*™**] and that
Daollal) =[] in Ky(Co(TM).

To show &(lq]) = B40([q]) it therefore suffices to show that [e?™%:] =
[€2"+] in K(Co(TM)) for some s > 0.

By Lemma 8.7, we only have to show that

2miX, 2niY,

[ e — ¥l < 1 (8.23)

for some s > 0. But
PRXa(y) =
= oM (exp® ¢)(v) © (r*p)(v)
+11 — (exp” g)(v) © (r"p)(v)
nce (exp” ¢)(v) @ (r°p)(v) s a projection and X(v) = go(flv]]) ((exp™ g)(v) ©
*p)(v)). Similarly,
| (™)) = eIt g)(v) O (r*p)(v)

+h — (77¢)(v) © (rp)(v).

Y,(v) = (°g)(v) @ (r*p)(v), if |of| > s. (8:22)
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Therefore

(™) (v) — (277 )(w)]|
< e WD) ((x=g) (v) — (exp® @) () © (" p)(v)|
H((exp® ¢)(v) — (77¢)(v)) @ (r*p)(v)]
< 2fj(exp® g)(v) — (7" g)(w)].

That is

1(e*™ ) () = () (w}| < 2/|(exp” g)(v) — (7*g)(v)]| (8.24)

for all v € T M.

Now, by uniform continuity of ¢ on M, there exists § > 0 such that

llg(z) — q(y)|| < —;— when d(z,y) < é.

[fv € TM and ||v|| < &, then, of course, d(exp(v),7v) = |[v]| < §. Therefore

(exp* 4)(0) = () ()| = llalexp(v)) ~ q(wo)]| < & if [lo] < 6. By (8.24), it
follows that

I(e*™ %) (v) — (e*™¥*)(v)|| < 1 whenever o]} < é. (8.25)

Now, from (8.21) and (8.22), X,(v) and Y,(v) are projections when |Jv|f >

5. Therefore e2miXs() = 2m¥a(v) — 1; when ||| > s. This implies that
[[(€2m %) (v) — (e¥¥*)(v)]| = 0 when J|v] > s. (8.26)

From {8.26) and (8.25), we get that, if 0 < s < §, then ||e?™*Xs — 27i¥s || . < 1,

_This proves (8.23) and the proof of Case 2 is complete. & (End Proof of

ase 2) & (End Proof of Theorem 8.8)




Chapter 7

Index Maps of the Dirac Extension of Cy(TM)

7.1 Triviality of Hilbert Bundles

In this thesis, every Hilbert space is assumed to be separable.

If V is an infinite dimensional separable Hilbert space, and X is a compact

Hausdorff space, we let

Ty : X XV o X (1.1)

i
denote the trivial hilbert bundle given by the formula ‘
|

Ty (z,v) = |

for every (z,v) in X x V. This bundle will be called the trivial hilbert | i

bundle over X associated to V.

I3

If Ais a C*-algebra, we have similarly defined the trivial bundle

Fai X XA— X

alled the trivial C*-algebra bundle over X associated to A. Note that
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the C*-algebra bundle
B(XxV)y—=X

associated to the trivial hilbert bundle

Ty : X xV =X

is isomorphic to the trivial C*-algebra bundle
vy X X B(V) = X
in an obvious way, and, similarly, the KL C*-algebra bundle
KX xV)- X

over X associated to my : X X V — X is isomorphic to the trivial C*-algebra

bundle
TR(V) X x I&’(V) — X.

Theorem 1.2 FEvery continuous infinite-dimensional Hilbert bundle h — X
over a compact metric space X 1s trivial. That 1s, for any infinite-dimensional
Hilbert space V, there is a hilbert bundle isomorphism U from the bundle h —

.'X to the trivial hilbert bundle X x V — X associated to V.

Proof: Let A — X be a hilbert bundle over a compact metric space X.
t V' be a Hilbert space. The pair € = ((hz)zex, C(h)) is a continuous field
"'f'._Hilbert spaces over X as defined in 10.1.2 of [Dix].

Now, since ~ — X is a hilbert bundle, the field £ is locally trivial. Also,

‘e X is a compact metric space, it is a separable metric space. Moreover,



ks is a separable Hilbert space by assurnption for each z € X. By Proposition
10.2.7 of [Dix], it follows that the field £ is a separable continuous field of
Hilbert space over X (as defined in 10.2.1 of [Dix]). This, together with
compactness of X, implies (by Lemma 10.8.7 of [Dix]) that £ is trivial, which
is the same as saying that the hilbert bundle & — X is trivial. '

Let A — X be a continuous infinite dimensional hilbert bundle over a
compact Hausdorff space X, let V be an infinite dimensional Hilbert space,
and let U : A — X x V be the hilbert bundle isomorphism (given by Theorem
1.2) between the hilbert bundles A — X and 7y : X x V — X. For each

z € X, we let
Ug:ihy, =V

be the restriction

Ulp, : Hy = {2} x V 2V,

Each U is a unitary.

U induces an isomorphism
Ue:B(h) = X x B(V)

between the C*-algebra bundles, B(A) — X and

TR(V) t X X B(V) — X

nd is given by the formula
Uda) = (2,Uz - a - U,")

or every a € B(h), = B(h,).
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Because conjugation of a compact operator by a unitary gives another

compact operator, we have that U, restircts to an isomoxrphism

U, : K(h) — X x K(V)

between the C*-algebra bundles K(h) — X and the trivial bundle
TRy X x K(V) - X.
This isomorphism in turn inducés a C*-algebra isomorphism
U, : C{K(h)) — C(X,K(V))

between the algebra C{K(h)) of continuous sections of K (k) and the algebra
C(X, K(V)) of continuous functions from X to K(V). The formula for this
map 1s
(Uif)(z) = Us(f(2)).
We state this formally.
Theorem 1.3 Let h — X,V, and U be as in Theorem 1.2. Then the induced
C*-algebra bundle isomorphism
U.:B(h) = X x B(V)

between B(h) — X and mpy : X x B(V) — X, restricts to a C*-algebra

bundle 1somorphism

U K(R) - X x K(V)

between K(h) — X and mxv): X X K(V)— X. |

This, in turn, induces a C*-algebra isomorphism

U.:CK(R) —  C(X,K(V))
~ C(X) @ K(V).



Let X be a compact Hausdorff space, and let X denote the algebra of

compact operators. Let

0= K5 AL C(R) — 0 (1.4)
be any C*-algebra extension of Cy(R) by K whose index map
d: Ki(Co(R)) — Ko(K)
is an isomorphism. The extension (1.4) induces the extension
0— C(X,K) 2 C(X,A) 5 C(X, Cy(R)) — 0. (1.5)

Let,

Ox,i + Ki{C(X,Co(R))) = K11 (C(X,K))

denote the index maps determined by the extension (1.5).

Since the Kunneth map respects index maps, the diagram

K{(C(X)) ® K1(Co(R)) —— Kip1(C(X, Co(R))
l[d,@ﬁ lax,.-ﬂ (1.6)
K(C(X) @ Ko(K) ——  K{C(X,K))

commutes.
Now, both Kunneth maps in this diagram are isémorphisms. For Ko(Co(R)) =
G nd K1(K) = 0 imply that the two Kunneth maps are both total. (See Def-
ition 6.4.3). Since K.((Co(R)) and K,(X) are both torsion free, it then
ﬂéws that the two Kunneth maps in the above diagram are isomorphisms.
Since J : K1(Ch(R)) — Ku(K) is assumed to be an isomorphism, then

® 8 in the diagram is also an isomorphism.




So, all the maps in Diagram 1.6 are isomorphisms except possibly the map

dx,i+1- Since the diagram commutes, this map must also be an isomorphism,

That is, the following is true.
Lemma 1.7 The index map
Oxi  Ki(C(X,Co(R))) = Kia (C(X, K))
is an isomorphism.
Definition 1.8 If B — X is a C*-algebra bundle over X, andz € X, we let
re : C(B) — B,
denote the x-homomorphism which sends each f € C(B) to flz) e B,.

Definition 1.9 Ifk — X is a K C*-algebra bundle over X, then b € Ko(C(k))
is called @ Thom class for C(k) if, for every z € X,

(r2)e(b) € Ko(k,) 2 Ko(K(H)) = Z
is a generator of Z.
Now regard
X x K5 X x A X x Cy(R) (1.10)

é._s a sequence of bundle homorphisms of trivial C*-algebra bundles over X. The

C*-algebras C(X,K), C(X,A), and C(X, Co(R)) may be regarded as algebras

of continuous sections of the bundles X x K, X x A and X x Cy(R) respectively.

ed in this way, we see that the extension (1.5) is induced by the sequence

30
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We can therefore apply Corollary 5.44 to the extension (1.5} to obtain the

following.

Lemma 1.11 The diagram
KA{C(X)) ® K;(C(X, Co(R))) —— Kip;(C(X, Co(R)))
lfdo®3x,j Jf%(.ﬂ— ; (1.12)
Ki(C(X)) ® Kjpa(C(X,K)) ——  Kip;a(C(X,K))

commutes.

Now it is clear that, for every z € X, the diagram
0 — C(X,K) — C(X,A) — C(X,Co(R)) —— 0
0 — K ———t A —_ Co(R) — 0

commutes. It follows from naturality of index maps that

K\(C(X, CofR))) —s Ko C(X,K)

[ [ro)e (1.13)

8
K1(Co(R)) —Q Ko(K)
commutes.
Proposition 1.14 Ifa € Ky (C(X,Co(R))) is a Thom class, then b= 0x,1(a)

s @ Thom class in Ko(C(X,K)). Conversely if b € Ko(C(X,K)) is a Thom
lass, then (9x,)~1(b) € K1(C(X, Co(R))) is @ Thom class.

- Proof: Suppose a € K1(C(X,Co(R))) and b = 9x1{a). By commutativ-

of Diagram 1.13, we have that
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forevery z € X. Hence bis a Thom class if and only if 8((r;).(@)) is a generator

of Ko(K) for every z € X. But 9 is an isomorphism. Hence A(ry)e(a))
is a generator of Ko(K) for every z if and only if (r.).(a) is a generator of

K;(Co(M)) for every x. Thus, b is a Thom class if and only if @ is a Thom

class,

This completes the proof since the map dx; is an isomorphism.(Lemma

1.7). &

Definition 1.15 If B — X is a C*-algebra bundle, A’ is a C(X)-invariant
C*-subalgebra of C(B'), and b € K;(A"), we define

Qb H _K;(C(X)) — I{,‘+j(a4’)

by the formula

$y(c) =cUb.
Lemma 1.16 If a € K1(C(X,Cy(R))) and b = 8x 1(a), then
(I)b = 8X,,-+1 0 (I)a.

Proof: If ¢ € K,(C(X)) then, by Lemma 1.11, ®4(c) = cUb = cU
(Ox1(a)) = Ox,ir1(cUa) = Oxi41 (Palc)). Therefore &, = x4y 0 By B

Lemma 1.17 Let b€ Ko(C(X,K)) be a Thom class. Then
$, : K, (C(X)) — K(C(X,K))

. isomorphism.



Proof: Let a = (Jx,;)"'(h). Then, by Proposition 1.14, a is a Thom
class. By the Thom Isomorphism Theorem (Theorem 6.6.3), it follows that

®,: Ki(C(X)) = Ki(C(X,Co(R)))

is an isomorphism. Since

¢, = dx,iy10 D,

(Lemma 1.16) and since Ox ;41 is an isomorphism, it follows that @, is an

isomorphism. Lemma 1.17 is therefore true. #

Corollary 1.18 Let k —» X be a K C*-algebra bundle over X, and let b ¢
Ko(C(k)) be a Thom class. Then

¢, : Ki{(C(X)) — K(C(k))
s an tsomorphism.

Proof: By Theorem 1.3, k — X is isomorphic to X x £ — X as C*

algebra bundles. Corollary 1.18 therefore follows from Lemma 1.17. &
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7.2 Index Maps of the Dirac Extension with

Periodic Multipliers

Let M be a compact riemannian spin manifold of nonpositive cur-
vature. We assume in this section all the notation of Sections 5.1.

We consider now the adjoined Dirac extension
0 — C(K) 5 Ao(M) 5 Co(TM) @ Co(TM) = 0 (2.1)

of Co(TM) (Definition 3.41). Note that Ap1(M) is considered here a C*-
subalgebra of C'(B).
Let

0;  Ki(Co(TM)) & Ki(Co(TM)) = Kita(C(K))
denote the index maps obtained from this extensiorn.
Define
Oig : Ki(Co(TM)) = K (C(K))
and
B 1 Ki(Co(TM)) — Kip1(C(R))

by the formulas
Bi,g(a) = 6,'((1,0)

0i-(a) = 0i(0,a).

In this section we will show that the maps

8,;'1 . f(i(CO(TM)) — I(l.;.l(C(K;))




and
6,-,,_ : I{‘(CQ(TM)) —* I{H.1(C(Ka))
are isomorphisms, and that
Dip = ~0i .
Let
OHIC—STLOD(M)@CO(M)—J,O

be the Toeplitz extension of Co(M ) given in Definition 2.7.13. Recall from

Remark 2.11.16 that this is the same as the Dirac extension of Co(M)
0= K = Do,y + K = Co(M) & Co(M) — 0

with compacts adjoined. Recall that the bundle K — M is the X C*
bundle

-algebra

K(H) - M,
We will show that
Ao (M) = C(F)
where £ - M isa T C*-algebra bundle over M.

Recall that B(H) — M is isomorphic to the trivial C*-algebra bundle
M x B(L}(A)) — M,

the isomorphism being the map

™ x exp: B(H) S M x B(L*(A)).

¢ Section 4.1.7.)
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Definition 2.2 We define the bundle £ — M of Toeplitz operators as

the C*-algebra subbundle of B(H) — M corresponding to the sub-bundle

MxT - M

of the bundle M x B(II) — M. That is, we let
t = (x x exp)™ (M x T).
Note that t isa T C*-algebra bundle over M.

Lemma 2.3 IfT €T and h € U = m(M), then h-T also belongs to T. So
[ acts on T.

Moreover, if g : T — Co( M)@Co(M) is the map in the Toeplitz extension,
then for every he ', Te T, we have

g(h-T)=h-o(T).
That is ¢ is invariant under the action by T,

Proof: I' of course leaves K(L*(A)) invariant (since T' acts by inner
automorphisms). It also clearly leaves {M, : ¢ € Co(M)} invariant, and
h M, = M., for every ¢ € CO(M) and h € T'. Aléo, by Proposition 5.2.3

g+ f(D) = f(D) forall g € T and f € Flip. It follows that for every f €Flipy,
; g €Flip,, ¢ € Co(M),n € Co(M), K € K, and h € T, we have

b (F(D)M, + g(D)M, + K) = F(DYMuy + g(D) My + h- K

which remains in 7. Since every element of 7 is of the form f(D)M, +

DYM, + K as above, it follows that 7 is invariant under the action of T'.
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Moreover, if T' = f(b)Mq, + g(f)) - M, + K as above, then

q(h-T)

ff(D- Myy+g(D) - My + b+ K)
= (h-p, h-n)

= h-{e, 1)

= h-q(f(D) M, +g(D)M, + K)

= h-¢(T). &

The action of I' on 7 induces an action o of ' on M x 7T, given by,

g-(z, Ty={g-=, ¢g-T)

which gives an action a of I on t making the diagram

~ a(g) M

commute. We can therefore take a quotient t /T to get a T C*-algebra bundle

over M.

Definition 2.4 Define the bundle £ — M of Toeplitz operators as the
C*-algebra bundle

t=t/1 - M.

Now, we have a sequence

M ox K258 x T "557 N x (Co(B1) @ Co(M)) (2.5)
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of C*-algebra bundle homomorphisms derived from the Toeplitz extension

0— K 5T 5 Co(M) @ Co(M) — 0.

This gives a sequence (using 7™ X exp)

ES5TS | (CoTod) @ Co(TA)) (2.6)

wEI\;I

of bundle homomorphisms on bundles over M.
Since ¢ is the inclusion it, like ¢, is also invariant under the action of T.

The sequence (2.6} therefore induces a sequence

K5t | (CoAT.M) @ Co(T,M))
TEM

of bundle homomorphisms on the quotient bundles over M.

This in turn induces a sequence

-

C(K) 25 C) & Co(TM) & Co{T M) (2.7)
of *-homomorphisms on algebras of sections.

Remark 2.8 So Co(TM) & Co(TM) should be viewed as the algebra of con-
tinwous sections of the bundle U,ep(Co(ToM)® Co(T:M)).

Alternatively, let P er(i) denote the C*-algebra of periodic sections of %,
and view Cy (T M} as the algebra of periodic sections of the bundle

U (ColT2 1) @ ColT.51)).

:I:EM'

Then (2.6) induces a sequence

Per(R) % Per(t) 5 Co(TM) & Co(TM)

* homomorphisms. This sequence is the same as {2.7) up to isomorphism.
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Proposition 2.9 Ao (M) = C(t) or Ao (M) = Per(%), depending on how
one views Ag (M), and the map

q.: ./401 — éO(TA/I) &P éo(TM)
is the same as the map
Gu Per(i) — Co(TM) & é’o(TM).

Proof: For the proof, we will view Ao (M) as a C*-subalgebra of Per(8).

Since the sequence

0= Per(R) 5 Ay (M) % Co(TM) @ Co(TM) — 0

is exact, then each T in Ao1(M) can be written as
T = f(D)M, + g(D)M, + L

for some f €Flip;, ¢ €Flip,, ¢, € Co(TM) and I € Per(K). If z € M, the

z-component T, of such a T is the operator
T = f(D)My, + g(D)M,, + L,

in B(L*(A)). Since ¢,, 1, € Co(M), and L, € K(L*A)), then T, € T for i
allz € M and for all T € Ao1(M). Thus T is a continuous section of i We
]ready know that elements of Ay (M) are periodic. Hence Ao (M) C Per(i).

Now, take T ¢ Per(i). Let 4.(T) = (p,n) where p,5 € Co(TM). Take
ny f €Flip; and ¢ €Flip,. Let

A= f(b)Mtp +9(E)Mn'




Then A is an element of Ay, (M). Now, since ¢.(T) = (¢, n), we have that

9(T:) = (e, 72)
in Co(M) ® Co(M), where ¢ is the map
g: T — CU(M) @ C’O(M)
in the Toeplitz extension. It follows that for every © € M,

T, = f(D)M,, + g(D)M,, + K,

= A+ K,

for some K, € K(Lz(ﬁ.)). Since T, and A, are continuous in x, sois K,.

Let K be the continuous section of A where the z-component is K. Then
T=A+K.

So K € Per(!%) C Ag(M). Since T = A+ K and A, K € Ay (M) it follows
that T' € Aoy (M), Thus Ay (M) = Per L.

Now to show §, = ¢, take a typical element
T = f(D)M, + g(D)M, + K

in Ao, (M), where f € Flip;, g €Flip,, ¢, n € Co (TM), and K € Per(R).
Of course, ¢(T) = (¢, n).

~On the other hand §,(T) is such that
(@) = o(T2)

= o(f(D)- My, +9(D) M,, +K.)

(00 1)
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for all z € M. Thus G.(T) = (¢, 1) = ¢(T). &

Of course the map

i:Per(R) — Aoi (M)

is the same ag

«: Per(R) — Pe?"(i)a

|
since they are both inclusion maps. Thus, we have proved the following. ;

Proposition 2.10 The adjoined Dirac extension

0= Per(R) 5 Au(M) 5 Co(TM) & Co(TM) — 0
which is the same as

0= C(K) = An(M) 5 Co(TM) @ Co(TM) > 0

is induced by the sequence

»

K5t U Co(To M) & Co(T, M)
enM

of C*-algebra bundle homomorphisms.

Proposition 2.11 Assume M is odd dimensional. If a € K (Co(TM)) is a
Thom class, then b= 8, ,(a) € Ko(C(K)) is also a Thom class.

Proof: By Proposition 2.10, we have, for every z € M, commutativity of

0 —— O(K) —— C(t) —=— Co(I'M) ® Co(TM) — 0

0 — K, —— L HL»CO(TQ,M)EBCU(TEM)—)O.




This implies, by naturality of the index maps, commutativity of

3 ,r
K(Co(TM)) —5 Ko(C(K))
[ {2 (2.12)
8:::.!'
K(Co(ToM)) ——  Ky(R,)
for every z € M.

Now, from the definitions, the extension
0= K, S, 5 Co(Tub) @ Co(TLM) — 0
is isomorphic to the Toeplitz extension

0K ST 5 Co(M) @ Co(M) — 0.

Since M is odd-dimensional by assumption, then, by Theorem 2.9.2, the index

map
01, K1(Co(M)) — Ko(K)

of the Toeplitz extension is an isomorphism. Therefore the index map
aw H I{I(CU(TxM)) — I{U(Rg‘-)

1s also an isomorphism.

Suppose now that a € K1(Co(TM)) is a Thom class. Then, for every z €
M, (r:}x(a) € K1(Co(TM)) is a generator of Z. Since Op,r 18 an isomorphism,
it follows that 8, .((r.).(a)) € Ko(K,) is a generator of Z for all z € M. By

commutativity of 2.12, it follows that

(rz)e(015(a)) = Our((rz)s(a))

‘a generator of Ko(K,) for every z € M. Therefore 8; ,(a) € Ko(C(R)) is a
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Proposition 2.13 Ifa e K1(Co(TM)) and b= 1 ,(a) in Ko(C(RK)) then
(I)b = a1'+1,1' o (I)a-

where

and

@ : Ki(C(M)) — Kiys (Co(TM)).

Proof: It follows from Proposition 2.10, Corollary 6.5.44, and Lemma
5.18 that the diagram
Ki(C(M)) ® K\(Co(TM)) —— Ki1(Co(TM))
1rd.®al,r lam.r
K(C(M) @ Ky(C(K)) ——  K(C(K))
commutes. If ¢ € K;(Co(TM)), b = O1+(a), it follows that, for every ¢ €
Ki(CM)), dip1p(cUa) = cUb. That is, iy1,r(B,(c)) = By(c), which gives us
that @, = ;41,0 9,. &

Theorem 2.14 If M is odd dimensional, then both
Oir + Ki(Co(TM)) — Ki:(C(R))

and

(9;,[ : I{,(CO(TM)) — I(,'+1(O(f€))

“are isomorphisms. In fact, if a € K1(Co(TM)) is a Thom class and b =
r(a) € Ko(C(R)), then both

@a : I(,(C(M)) — I(,_H(Co(TM))
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and

are isomorphisms,

Dipr,r = Ppo 0, 7"

ai+1,1 = ~Uit1r

Proof: Since M is spin, there exists a Thom class a € K;(Co(TM)). By
Proposition 2.11, 5% 8, ,(a) € Ko(C(K)) is also a Thom class. This implies,
by Corollary 1.18, that the map

is an isomorphism. Now, ®, = 3,1, o ®,, by Proposition 2.13, where @, :
Ki(C(M)) = Kip1(Co(TM)). Since a € K1(Co(TM)) is a Thom class then
®, is a Thom isomorphism. Since both ®, and @, are isomorphisms, it follows
that ;41 = ® 0 ®,7' is an isomorphism.

The rest follows from

Oip = —0;,

1

which is given below in Proposition 2.16. &

Note that if @ € Co(T M), then M, is an element of Ay; (M) and

q(M,) = (v, ¢)-

i Co(TM) — A (M)
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be the map

wlp) = M,.
Then g o pu = (Id, Id). That is, ¢(u(p)) = (¢, @) for every ¢ € Co(T'M). 1t
follows that

gu(ptu(@)) = (@, 0)

in K;(Co(TM)) @® K(Co(TM)) for every a € K(Co(TM)). That is, (a, a) €

Im(q.) for every a € K;(Co(T'M)). By exactness of

K:(An(M)) %5 K(Co(TM)) @ Ki(Co(TM)) 2 Kon(C(K))

it follows that

61'(0., a) =0

for every a € K;(Co(TM)). This implies that

Oi{a)+ 8;.(a) = 0:(0,a)+ 3i(a,0)
= ai(a,a,)

= 0

or that

f 0; instead denoted the index map
8 : KAC(M)) © Ki(CUM)) = Kia(Lpror)
f the Dirac extension

0— LPer(M] — ﬁPer(M} —> Per(M) & PCT(M) — 0
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with periodic multipliers, and if again

Bil,n(a) = 6,‘(0, a)

&u(a) = 8i(a,0),

then
Oy =—0;,

is again true and can be proved by the same argument given above.

The following proposition is therefore true.

Proposition 2.16 Let 0;, 0;,, and 0;; (defined above) be the index maps

resulting from either the extension

0~ C(K) = Au(M) — Co(TM) & Co(TM) — 0

or the extension (2.15). Then 8(a,a) =0, and §, = -8, .

Now, let us return to Diagram 5.4.63,

0 0 0

0 — 'CPer(J\/I) _'—'1_—’ DPer(M} '_f"'"") O(M) D C(M) — 0
Tl Ai klﬂsl

0 —  Aw(p) —  Aulp) — SC(p) ® SC(p) — 0

T; ; i®i

0 —— MC(K)) —— Mi(Aor(M)) ——s Mi(Co(TM)) ® Mi(Co(TM)) —— 0

T - ~
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of Chapter 5.

This diagram is commutative and exact at every point. Let us now use

Jn for the index maps resulting from the top extension
0— ‘CPBT(M) - DPBT(.M) - C(M) & C(ﬂ/f) — 0,

Ow for the index maps of the left extension

0 — Ago(M)r — Asp(p) = Ap(M} — 0,
Js for the index maps of the bottom extension
0 = Mi(C(R)) = Mi(Aor(M)) — Mi(Co(TM)) & M(Co(TM)) — 0
and Jg for the index maps resulting from the right extension

0~ Aga(M)r — Aga(p) = Ap(M) — 0,

(which is the double of the SC(p) Thom extension). Let

Oni(a) = On(a,0)
Ons(a) = On(0,a)
Igi(a) = Og(a,0)
Og.(a) = 9&(0,a)
dsi(a) = Os(a,0)

dsy(a) = 0s(0,a). | |
By naturality of the index maps, we have

BwoaNzasan.
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This splits mnto

Ow o Ong = Js; 0 05y

and

Ow © O,y = Osr 0 OB,y (2.18)
Theorem 2.19 Suppose M is odd dimensional. Then both

aNr . I{i(C(M)) - I{i-l-l(EPef'(M))

and

vy Ki(C(M)) — Kip1(Lperan))

are 1 -1 (and Oy, = —0On,)-

Moreover, if p is a fundamental projection on the sphere bundle S over
M, if a € K1(Co(TM)) is the Thom class (a = (i 0 B)[p]) determined by the
fundamental projection p, if b € Ko(C(K)) is the Thom class b= Js.(a), if

B, : K{(C(M)) = Kiy1(Co(TM))

8, : K{(C(M)) = Ki(C(K))

are the corresponding isomorphisms given by cup product on the right by a and

b respectively, then

I

5W o BN,I' (I)b
= aS,r 0 (I)a

= aS,r o aE,r'

Thus, Ow o Oy, is an isomorphism equal to @p.




- Proof: Let p be a fundamental projection on the sphere bundle S over
M. By (2.18)

aw Q 8N,r = 35,,. o) 85',,". (2.20)

By Theorem 6.8.8,

is the Thom isomorphism. By Theorem 2.14, s, is an isomorphism. Thus,

from (2.20) Ay, is 1 ~ 1. For if On,r(c) =0, then (85, o 9+ )(s) = 0 by (2.20).

Since dg, and Jg,s are both isomorphisms, we would then have ¢ — 0. Hence,

On,is1—1.

Moreover, since g, = ®,, (2.20) implies that

aw 0O aN,r = 85,T O @a.

By Theorem 2.14, this is equal to ¢,. &
Remark 2.21 [t seems reasonable to interpret
Ow 0 Oy, : Ki(C(M)) — K(C(K))
as some sort of analytic index map, and to interpret
Dy : K{(C(M)) - K(C(K))
as a topological indez map. The st-atement
Ow o aN,r =9,

may then be interpreted as a rough index theorem, a statement that analytic

indez is equal to topological indes.
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In the next section, we look at the special case where M is equal to an
odd-dimensional flat torus. In this case, it is shown that the index map Oy,

is actually an isomorphism.
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7.3 The Case M =Tm™

We now look at the Dirac extension

0 = Lperiary ~ Dper(ary — Per(M) & Per(M) -+ 0 (3.1)

with periodic multipliers (see (2.11.17)) in the special case where M = T™

and m is odd. The metric on T™ is assumed to be the flat metric induced

by the euclidean metric on R™. More precisely, if we let Z™ act on R™ by

translations and view T™ as R™ /Z™, then the riemannian metric on T™ ig

the flat metric on R™/Z™ induced by the euclidean metric on R™. We will
refer to T™ with this metric as the flat m-torus.

For convenience, the Dirac extension

0 = Lpep(rm) — Dper¢rmy = Per(T™) @ Per(T™) — 0

will be denoted simply by

0= LD Perd Per — 0.

In addition £p,,(Tm)’ will be denoted by L.

R™ is of course the universal cover of T™. We will use A — R™ (not

-~

A) for the bundle of spinors over R™. The algebras £ and D are then C*-
subalgebras of B(L*(A)).

Let CLIF,, denote the complex Clifford algebra of R™ and let A,, denote
the complex spinor module over CLIF,,. The bundle A — R™ is isomorphic
to the trivial bundle R™ x A,, — R™. So L*(A) may be regarded as the space

of L*-functions from R™ to A,n. After choosing an orthonormal basis for A,




L*(A) may also be identified with the Hilbert space L(R™)* where k is the
dimension of A,,. Each f € L*(A) can be written

f= (fls f?; )fk)

for some f; € L*(R™), 1 <4 < k. We can therefore define a Fourier transform
U: LHA) — LEA)

by the formula

A

U(f):(fh f?a ---af):

where f; is the Fourier transform of fi. The operator U is unitary.
One can show that

UDU* =M,

o:R™ — B(A,)

satizsfies

a(v)(s) =o,(s) = iv-s (3.3)

for v € R™ and s € A, (where iv - s is Clifford multiplication of s by iv),

and M, is the multiplication operator on L%(A) with symbol o. That is, if

w € L2(A)F, then

(UDU*)(w)(v) = o(w(v)) = iv - w(v)

for every v € R™. (o, was introduced in 2.3.6.)

By (3.2), we also have

Uf(D)YU™ = My.
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for every f € Cp(R).

For each z € R™ let T, denote the translation operator on L*(A)
LA(R™)* given by
T(N) = fly — z)
for every f € L*(R™),

Definition 3.5 Define N to be the C'*-subalgebra of B(L*(A)) & B(L*(R™)*)
generated by the set of all M, such that @ € Per and the set of all UM,U ¢
B(L*(R™)*) such that n € M (Co(R™)).

Then define N' C N’ to be the ideal of N generated by the set of all
UM U such that n € My(Cy(R™)).

Lemma 3.6 If f € Cy(R), then

f(o) € M (Co(R™)).

Proof: Suppose f € Co(R). From Remarks 2.3.6, for every v € R™,
o(v) is self-adjoint with spectrum contained in {=ltvll, [lv]|}. Hence, for every

v € R™, f(o)(v) = f(o(v)) has spectrum contained in {F(=1Il)), FleD3.
Since f € Cy(R), it follows that, for every € > 0, there exists R > 0 such that
| £(o)(v)]| < € when {|v|| > R. Therefore (o) € M(Co(R™)). &

Lemma 3.7
LCN and LCN.
Proof: Suppose f € Cy(R). From 3.2, we have

f(D) = U"MyU,
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and, by Lemma 3.6, f(o) belongs to M (Co(R™)). So, forevery f € Co(R),f(D) =
U*M,U for some n € M,(Cy(R™)). Since £’ is generated by M, and f(D) such
that @ € Per and f € Cy(R), and since A is generated by M, and U*M, U
such that ¢ € Per and n € My(Co(R™)), it is then clear that £ C N

Since £ is the ideal of £’ generated by f(D) such that f € Co(R), and

since A is the ideal of N generated by U*M, U such that n € Mi(Co(R™)),
then it is also clear that £ CN. &

Lemma 3.9 Let z € R™ and let
ply) =€, Vy e R™.
Then
U MU =T,
Proof: This is well-known. #
Lemma 3.10 Ifn € Z™, then the translation operator T, belongs to UL'U*.
Proof: Suppose n € Z™ and let
o(z) = ™ ¥V z € R™.

Then o € Per which implies that M, € L. Also, by Lemma 3.9, UM, U* =

T,.. Therefore T, c UL'U*. &

Definition 3.11 If 5 is a function from R™ to M(C), and n € Z™, define
the translation T, (n) of n by letting

Tu(n)(z) = n{z —n)

for every x € R™,




Lemma 3.12 Ify is a function from R™ to M(C), and n € Z™, then
MT,,(?;) =T, M, T_,.

Proof: Easy. &

Lemma 3.13 If g € My(Co(R™)) and M, € UL'U*, then, for everyn € z,

Ta(n) € My(Co(R™)) and M,y € UL'U®.

Proof: It is obvious that T,(n) belongs to M (Co(R™)).

By Lemma 3.12, Mz = ToM,T_,,, and, by Lemma 3.10, T, and T,
both belong to UL'U*. Since M, also belongs to UL U* by assumption, it
follows that My, ¢y = T, M, T_, belongs to UL'U*. &

Now, let

7 CLIF, — B(A,)

be the representation of CLIF,, on A,, given by Clifford multiplication on the
left. That is, if w € CLIF,, and s € A,,,

T(wls) = w-s.

Proposition 3.14 The representation © : CLIF,, — B(Ay) is irreducible.
That is,

#(CLIF,) = B(A,,).

Proof: This is Proposition 1.5.15 of [L&M]. #

Definition 3.15 Let

r: R™M\{0} - §™1
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be the retraction map

?"('U) = -”_'Uﬂ-

Lemma 3.16 [fv € R™, there ezists n € My (Co(R™)) such that M, e UL'U*

and p{v) = o,.

Proof: Let v be a vector in R™. Let f be any function in Co(R) such
that f([[v]]) = |loll and f(~|[v|]) = —|jv[l. As in the proof of Lemma 3.6,
oy € B(An) is self-adjoint with spectrum contained in {—||vl[, ||v||}. From
the assumptions on f, it follows that f(o,) = ¢,. Let 5 = f(o) which belongs
to Mi(Co(R™)) (by Lemma 3.6). Since U f(D)U* = My = M, (by 3.2),
it follows that M, € UL'U*. Moreover, 9(v) = f(o)(v) = f(o,) = o,. The

lemma. is therefore true. &

Lemma 3.17 Ifz € R™, v € R™ and there exists p € M (Co(R™)) such that
M, e UL U* and n(z) = a,.

Proof: Take z € R™ and let A be the set of all g(x) € B(A,,) = M,(C)
such that n € M, (Co(R™)) and M, € UL U*. Then A is a C*-subalgebra of
B(A,,). We want to show that o, € A for all v e R™.

We may assume without loss of generality that |[v]] = 1. So, suppose
Jlofl = 1.

Take a sequence t,, € R such that ¢, > 0 and ¢, — 0o as n — oo. Then

choose w,, € z + Z™ such that lwa =t - 0| < V2. Tt is then clear that



Also, it follows from Lemma 3.16 that, for each n, there is an M € Mp(Co(R™))

such that 9,(w,) = o,(y,) and M, e UL U™ By assumption,

Wy, =1+,

for some I, € Z™. By Lemma 3.13, T_1.(n.) € Mp(Co(R™)) and Mr_, . €

= Or(uwn). Lherefore,

UL' U*. Furthermore, T_;, (n,)(2) = n.(z + ) = 9a(w,)

Or(w,) € A for all n.

Since r(w,) — v as n — oo (by (3.18)), we have Tr(ws) —* Oy 38 N — €O,

Therefore o, also belongs to 4. &

Lemma 3.19 If x € R™ and T € B(A,,) & M(C), then there ezists 1 €
Mi(Co(R™)) such that M, € UL U* and n(z)="T.

Proof: As in the proof of Lemma 3.17, let A be the C*-algebra of all
n(z) € B(A,) such that y € My(Co(R™)) and M, € UL U*. We want to
show that A = B(A,,).

By Lemma 3.17, 6, € A for all v € R™. Let 7 - CLIF, — B(A,)

be the representation given by Clifford multiplication on the left. Note that

oy = w(iv). Of course, CLIF,, is generated by the set of all the iv such that

v € R™. Thus, the o, = 7(iv), such that v € R™ generate 7(CLIF,,). Since

oy € A for all v € R™, it follows that 7(CLIF,,) C A C B(AL).

But 7(CLIF,,) = B(A,,) (by Proposition 3.14). Therefore 4 = B(An). &

Lemma 3.20 Let § be an element of Co([0,00)). Let p € Co(R™) be such
that p(v) = p(||v]f) for everyv € R™. Let f € Co(R) be the function satisfying
F(&) = p([t]) for alit € R. Then M, = Moy = Uf(D)U*. So M, € ULU™.




Proof: From Remarks 2.3.6, for every v € R™, a(v) is self adjoint with
spectrum contained in {—{lv]l, |lv||}. It follows that fle(@)) = p|lv]) - Ida,,
= p(v) - Ida,,. That is f(o(v)) = p(v) - Ida,, for every v € R™ which implies
that

fo)=p-1da,.

It follows that M,y = M,. From (3.4), we get that U f(D)U* = M, &

Lemma 3.21 Letz, ye R™, z £y, and let T € B(An) = M (C). Then
there exists ) € My(Co(R™)) such that M, e UL U*, n(z) = T and 5(y) = 0.

Proof: We may assume that [|z|| # [|y||. Otherwise, if x|l = |y, we
find n € Z™ such that ||z —n|| # ||y —n||. If we can find # € Mi(Co(R™)) such
that M, € UL U*, p(z —n) = T and w(y —n) =0, and if we let g = T,,(u),
then, by Lemma 3.13, we have 5 € M(Co(R™)) and M, € UL' U*. Moreover,
we have that 5(¢) = T and 5(y) = 0.

Thus, the proof is reduced to the case where ||z|| # lyll.

Assume ||z|| # ||y]l. Choose any j € Cy([0, 00) such that Alllz]]) =1 and
Allyll) = 0. Let p(v) = 5(||v])) for every v € R™. By Lemma 3.20, p € Cy(R™)
and M, € UL U*. Moreover, we have p(z) = 1 and ply) = 0.

Now, by Lemma 3.19, there exists p € M (Co(R™)) such that M, €
v U and p(z) =T. Let p = p-p. Clearly 5 € Mp(Cy(R™)). Since p and p
both belong to UL’ U*, then so does = pp. Furthermore, we have p(z) =T

and 7(y) = 0. Lemma 3.21 is therefore true. #

Lemma 3.22 Let z, y € R™,z +# vy, and let 5,T € B(A,,) 2 My{(C). Then

there exists n € My (Co(R™)) such that M, e UL U* p(z) =S and p(y) = T.
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Proof: Find », %,, as in Lemma 3.21, such that n(z) = 3, m(y) = 0,
n2(z) = 0, and 72(y) = T. Then let =1 +n. &

Lemma 3.23 M, c UL U* for every n € My(Co(R™)).

Proof: Let A equal the set of all € Mi(Co(R™)) such that M, € UL'U*.

Then A is a C*-subalgebra of M {(Co(R™)) with the property that, for every
Z, ¥ € R™ such that ¢ # y, and for every S, T ¢ M;(C), there exists neA
such that (z) = S and 9(y) = T (by Lemma 3.22). By a Stone-Weirstrass
Theorem (Corollary 11.5.3 of [Dix]), it follows that A = Mip(Co(R™)). &

Proposition 3.24
L= N,
Proof: We already know that £’ C A (Lemma 3.7). So it suffices to

show that A C £,

Now, A’ is generated by M, and U*M,U such that ¢ € Per and n e
M (Co(R™)). From the definition of L', we know that M, € £’ forall ¢ € Per,

and by Lemma 3.23, we have that UM, U € £ for all p € Mi{Co(R™)).
Hence, A" is generated by elements in £’. Therefore NCL. &

Lemma 3.25 U*M,U € £ for all n € My(Co(R™)).

Proof: Let 5 ¢ M (Co(R™)). Suppose n has compact support.

By Lemma 3.23, we have

UM, U ¢




Since 7 has compact support, there exists N > 0 such that % has support
inside B(0, N). Let 5 € C4([0,0)) be such that

p=1on[0,N]
Define p € Cy(R™) by letting
ple) = ().
Then p =1 on B(0, N), which implies that
pen=n,

since 7 has support in B(0,N). By Lemma 3.20, M, € ULU* which implies
that
UM, U € L.

Since £ is an ideal of £ and since U*M, U € £’ (from above), it follows that
UM, U = UM, U
= (U"M,U)(U*M,U)
belongs to £. #

Proposition 3.26 £ = A,

Proof: We have already seen that £ C A" (Lemma 3.7) and that £’ = A/
(Proposition 3.24). We need to show therefore that A" C £.

Now A is, by definition, the ideal of N7 = £’ generated by the set of all
U* M, U such that n € M (Co(R™)). But such operators are in £ by Lemma

3.25. So N is an ideal of £’ generated by objects in L. Since £ is an ideal of

L', it follows thta N C £. Hence £ = N. #
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Definition 3.27 Define N to be the C*-subalgebra of B(LX(R™)) generated

by the set of all M, such that o € Per and the set of dlU*M, U € B(L*(R™))
such that n € Cy(R™),

Then define Ny C Ny to be the ideal of M’ generated by the set of all
U*M,U such that n € Co(R™).

It is a simple excercise to show that

N = MM (3.28)
and
N = My(M). (3.29)
As a consequence, we have from Proposition 3.25, the following.
Proposition 3.30 £’ = M(N"), and £ = Mi(N).
Now, consider the covariant representation (w, 3, L?(A)) where
7 : Per — B(L*(R™))
is the map
(@) = M,, ¥ € Per,
and
B:R™ — U(L*(R™))

is the map defined by

where, as before, T, is the translation operator (T, f)(y) = f(y—z), fory € R™
and f € L}(A).




This induces a representation

7: Per x, R™ — B(L*(R™))

where « is the action of R™ on Per by translations.

Definition 3.31 Let P equal #(Per x, R™) in B(L}(R™)).

Remark 3.32 Note that if A€ P and ¢ € Per, then MyA and A- M, belong

to P. We express this by saying that P is a module over Per.
Proposition 3.33 Ifn € S(R™) and % has compact support, then
UM, U = /R i(z) T, da.

Proof: This follows from a simple computation using the formulas for

the Fourier transform U/ and its inverse U*. &
Lemma 3.34 If n € Co(R™), then U*MLU belongs to P.

Proof: If » € S(R™) and % has compact support, then, by Proposition
3.33,
U* MU = /R ()T
So U*M,U = #(g) where g is the element in the convolution algebra C(R™, Per)
defined by g(z) = #(z)- 1. Thus, U*M,U € P in this case. Since the set of all
n € S(R™) such that 4 has compact support, is dense in Co(R™), it follows
that U*M,U € P for all n € Co(R™). &

Lemma 3.35 N, = P.
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Proof: By Proposition 3.34, U*M,U € P for all 5 € Co(R™). Since P is
a module over Per (Remark 3.32), since A7’ is the algebra generated by M,
and U*M,U such that ¢ € Per and 5 € Co(R™), and since A] is the ideal of

N, generated by the U*M,U such that 5 € Co(R™), it folows that A, C P,

Now, to show P C N, it suffices to show that, if g € CX(R™, Per) and

if we let g(z) = @, € Per, then
/ Mth'Tx d$€Nl.

To do this, we note that if € > 0, we can choose a '™ partition of unity p;,

1 <14 < n, of the compact support of ¢, and z; in the support of p; such that
H Z Jon Moy i) T [ b, 1, e <
Then we note that each
Al /R M, (@) T do = M, fR _pil@)T, da.

Now let 7; € S(R™) be such that 7: = p;. Then

A = M, fR B () T, de

= qu(U*Mns U)

A; is therefore an element of N;. It follows that fg.. M, T, dz belongs to A, .
Hence P C N, and the proof is complete. #

As a corollary, we have, by Proposition 3.30, the following,.

Proposition 3.36 £ = M,(P).




Proposition 3.37 The representation
%1 Per x, R™ — B(L*R™))
gives an isomorphism from Per x, R™ to its image P. So

P = Per x, R™.

Proof; Let
Ty Per xo R™ —— B(L*(R™), L} (R™))
= B(LYR™ x R™))
be the regular representation of Per x, R™ as given in 7.7.1 in [Ped]. By
definition, this is the representation induced by the covariant representation
(72, A, L*(R™ x R™) which is defined as follows.
If f € L*(R™ x R™) is considered a function f(z,y) of (z,y) € R™ x R™,
if we let

fa:(y) = f(a'", Yy

and if ¢ € Per, then

m(e) (e y) =L (Mr, ) (£)()
= (T(e) - f2)y)

= p(z+y) flz,y),

and

A(’?")(f)(:“':} y) = f(SL' -2, ?J)
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Note, we may view the representation 72 of Per(M} in a different way,

We may write

m ) ()2 y) = (Mr_)(f-y)(2)
(where (f_)(2z) = f(e, v)).

This is true because

) ()2, ¥) = wlz + ) f(z,y).

Now, consider the unitary map
V:L*R™ x R™) — LAR™ x R™)
given by
V(e )= fle +v, ).
Let
m3(p) =V ma(p)V
for every ¢ € Per. Let
As(z) = V*A(z)V.
Since V' is unitary, the covariant representation (m3, A3, L*(R™ x R™))
is isomorphic to (w2, A, L*(R™ x R™)).

Now, one checks easily that

T3(0)(f)(z, y) = o(z)f(z,y)

and

CAs(2)(Ny) = flz—2 )
= M2)(f)(=, y).




(That is A3 = X.)
From this, it is clear that the representation of Per x, R™ induced by

(73, Aa, L*(R™ x R™)) is isomorphic to the representation
T Per xo R™ — B(LY(A))

of Per x, R™ induced by (7, 3, L} R™)).
Since (3, A3, L*R™ x R™})) is isomorphic to (m2, A, L} (R™ x R™)),
then the corresponding representations of Per x, R™ are also isomorphic.

Hence the representation
T : Per xo R™ — B(L}(A))

13 isomorphic to the regular representation of Perx ,R™. Since R™ is amenable,
it follows from Section 7.7 of [Ped] that the regular representation of Per X o

R™ is an isomorphism onto its image. Therefore

7 Per X, R™ —» P
is a *-isomorphism, Thus P 2 Per Xe R™. #
Corollary 3.38

L = Mk(Per Xa R™)

& My(C(T™) x4 R™).

Proof: Follows from Propositions 3.36 and 3.37. [

Corollary 3.39 K;(£) = 2" for bothi =0 andi = 1.
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Proof: R™ is a simply connected, solvable Lie group, of odd dimension,
and « is a continuous action of R™ op Per. Hence, by Corollary 19.3.9 of
[Bla], it follows that Per x_, R™ is I K-equivalent to the suspension Q(Per)
of Per which is isomorphic to Q(C(T™)). Therefore

Ki(Per x, R™) = K (C(T™)),
One can use the Kunneth formula, for example, to show that
K (C(T™)) = 2277

Therefore

Ki(Per x, R™) & 72"

Since £ = M (Per X R™) (Corollary 3.38), it follows that Ki(L) =z
forbothi=0and:=1. &

We return now to the Dirac extension
0—>£-5D—Q->Per69Per—»0

with periodic multipliers on R™. Again, we are interested in the X -theory
index maps of this extension. We use the notation In, and dyy, employed in

Theorem 2.19 for the index maps of this extension.
Theorem 3.40 The indexr maps
Oy, K(C(T™)) — Kips (L)

and

Oyt Ki(C(T™)) ~ Kipy(L)

are isomorphisms, and Oy, = —dny.
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Proof: By Theorem 2.19, we know that Ony and Oy are 1 - 1, and that
Oy = —0On,. Since Oy, = —On,r, then, to complete the proof, we only need
to show that dy, is onto.

Now K;11(£) & Z*"" by Corollary 3.39. Let us pick 2™~ generators

@1, z,...,89m-r of K;y1(L) such that
I{i+1(£) :Z'GIGBZ'GQGB...@Z‘GZmH-I.

To complete the proof, it suffices to show that all of the a; lie in the range of

N -

~ Suppose this were not true. Say, for example, that

ay & Im{(Oy ;).

Then by exactness of
K(C(T™) 5 Ko (L) 5 Kip (D), (3.41)

we have that 1,(a;) € K41 (D) is not zero.

Note that some nonzero element of Za; must lie in the image of Jy,.
Otherwise, since dy, is 1 - 1, we would have Z2™™ isomorphic to a subgroup
of Z*"™" contradicting the fundamental theorern for finitely generated abelian
groups.

So,

l-ay € Im(On,)

for some | € Z, [ # 0. By exactness of (3.41), it follows that

l' i*(al) =0 € I{{+1(D).
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Hence 7,(ay) is a torsion element of K i+1(D).

Now choose a fundamental projection on the sphere bundle over T™ and

let us reproduce Diagram (2.17), which, in this case, looks like
0 0

0
I | l I

0 — £ D ., C(T™) & C(T™) — 0
b o

00— Au(p) ——  Anp) —— SC(p) ® SC(p) —— 0
Ta’ | Ti Ti@i

0 —— MyC(R)) —— My(Ap(T™)) —y Mi(Co(TT™)) & My(Co(TT™)) ——s 0.

[ [ [

Note that since the index maps dg,,, dg,, dsr, Os; are isomorphisms

(from previous theorems), then

K;(SC(p)) =0

K (M Ao (T™)) =0

for both j = 0 and j = 1. Therefore the map

Lt Ky (An(p)) 5 Ky (D)

is an isomorphism. Ki41(Apn(p)) therefore must also contain torsion elements

(for K;+1(D) has torsion # 0).

Similarly the map

ix 0 Kip1(Apo(p)) 3 Kip1(An(p)
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is an isomorphism, and so Kit1(Aio(p)) also has nonzero torsion.

By commutativity of the diagram
Kia(£) — K. (D)

Tl. g[z.

Kiy1(Aw(p) —%—r Kip1(An(p))

it follows that , is 1-1. Therefore K i+1(£) also has nonzero torsion! This is &
contradiction, for Ky1(£) = 2™ is free.
Therefore all of tha a; lie in the image of dy .. It follows that O, is onto.

Hence, dy . is an isomorphism. #

7.4 Conclusion

It is of interest to know for which M the index map dy , of Theorem 2.19 is
an isomorphism. A better understanding of the index map dw would certainly
help. However, as is clear from the example of the flat odd dimensional torus,
if one knows enough about the K-groups of C(M) and L per(ar), onte may have
enough to conclude that On» 1s an isomorphism.

A special case of a manifold of nounpositive curvature is the manifold
G/ K where G is semisimple Lie group and X is a maximal compact subgroup.
Hyperbolic spaces are examples of such manifolds. By taking quotients of
G/K by certain discrete actions, one can generated compact manifolds M of
nonpositive curvature. Since we have more structure in this case, we may be

able to describe £ Per(M) TOTe concretely as we did in the case of the m-torus,
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