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Abstract of the Dissertation

On Teichmiiller spaces of b-groups

with torsion
by

Pablo Arés Gastesi

Doctor of Philosophy
n

Mathematics
State University ‘of New York at Stony Brook

1993

We compute coordinates (called horocyclic coordinates) for the

~Teichmiiller spaces of terminal regular b-groups uniformizing orb-

ifolds of finite hyperbolic type. We extend the results of the torsion

free case obtained by Irwin Kra to the general case; the main tool is

the existence of an equivalence between pairs of (orbifolds,maximal
partitions) and weighted graphs. As an application of our re-
sults, we give explicit formulae for the Patterson Isomorphisms

in horocyclic coordinates. In the last part we prove that the Bers-

Greenberg Isomorphism between Teichmiiller spaces of orbifolds of




the same type splits into a product mapping in the Maskit embed-

ding.
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Chapter 1

Background and Statements of Main Results

In this chapter we introduce the background needed in this dissertation
and state the main results of it. Section 1 contains the terminology and ba-
sic facts about orbifolds and Kleinian groups. In section 2 deals with the

deformation spaces. Section 3 contains the main results of our work.

1.1 Orbifolds and Kleinian Groups

1.1.1. Tt is a well known fact that the full set of complex automorphisms
of the Riemann sphere ¢ is the Mébius group, M ob(@), which consists of the
transformations of the form z — %}r'-db-, with ad — bc # 0. Multiplying all the

coefficients by a complex number we can assume that ad — be = 1, and then

we can identify Mob(C) with PSL(2,C), whose elements will be written as

- -




Any Moébius transformation not equal to the identity can be conjugated in
PSL(2,C) to one of the following types:

i) parabolie: z — z + 1, which has only one fixed point in C;

i) elliptic: z — Az with |A| = 1;

iii) loxodromic: z — Az with [A] # 1; those transformations with A
real and positive are also known as hyperbolic. Elliptic and loxodromic
(hyperbolic included) have two fixed points in C.

Suppose T' is an elliptic element of finite order ¢. Let H be the sub-
group of PSL(2,C) generated by T, H = {T"/n € 7}. We conjugate by a
Mébius transformation so that the fixed points of the transformation T' are
0 and oo. Then the elements of H are of the form z — e**i/2z, The map-
pings z 227/ are called geometric generators of H (or simply geometric
transformations). |

We can consider the group SL(2,C) as a subset of C* and give to it the
subset topology. Taking the quotient by its center, I, we have a topology on
PSL(2,C), and therefore a concept of discrete subgroups.

1.1.2. Given a subgroup G of PSL(2,C) and a point z of C, we will say
that (@ acts discontinuously at z if the following conditions are satisfied:

i) the stabilizer of z in G, Stab(z,G) = {g € G/g(z) = =z} is finite; and

ii) there exists a neighborhood U of z such that g(U)NU = { for all
g € G - Stab(z,G).

The set of points where G acts discontinuously is called the regﬁlar set,
‘or region of discontinuity, and it will be denoted by £ = Q(G). Its comple-

ent on the Riemann sphere is known as the limit set, A = A(G). A group

i
i
1
b
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of Mébius transformations is called Kleinian if its regular set is not empty.
A Kleinian group is always discrete, but the converse statement is not true.

A Kleinian group that leaves invariant some disc is called a Fuchsian
group. The limit set of such a group is contained in the circle that bounds the
disc.

1.1.3. The limit set of a Kleinian group has a peculiar behaviour: either
it has less than three points or it is uncountable. In the former case we will
say that the group is elementary. These groups are very well known, and
the reader can find more information about them in [Bea83] or [Mas88].

1.1.4. Given an element g of G, we will say that it is primitive if there
are 1o roots of it in the group, or more precisely if b € G is such that A® =g
then n = £1.

1.1.5. Given a subset of the sphere, say X, and a subgroup H < (4, we
will say that X is precisely invariant under ff in G if H = Stab(X,G) and
g(X)NX =P forall g e G- H. This simply means that the action of the
whole group on the set X is reduced to the action of the subgroup H on X

1.1.8. A 2-orbifold is a generalization of a manifold: it is a Hausdorff
topological space where every point has a neighborhood homeomorphic to
either the unit disc or the unit disc quotiented by a finite subgroup of rotations.
The covering from the disc to the orbifold is in this case locally n-to-1, assuming
that the group of rotations has order n. If z is the center of the above disc, we
will say that z is a ramification or branch point with ramification value
n (and branch value n-1). An orbifold where every point has ramification value

one is just a Riemann surface.



Remark: topologically, any 2-orbifolds is a manifold; what changes is the
complex structure (see below).

A puncture in an orbifold S is a open subset conformally equivalent
to the punctured disc {z/|z] < 1} and such for any sequence z, — 0, the
corresponding sequence in § has no limit. We can identify the puncture with
the point z = 0 (see [FK92]). In this setting, a puncture is a point removed
from the orbifold; by abuse of notation, we will say that a puncture is a point
with ramification value oo, even though the point is not in the orbifold.

1.1.7. The orbifolds we will work with are of finite conformal type,

which means that the underlying topological space is a closed manifold of

genus p, with the possible exception of some punctures, say z1,...,Zn and
there are some points, Say Tm41, -+ - » Tny With ramification values Vy,41,..., V5.
We will write all this information as (p,n;o0,..., 00, Umals+-1Vn), and we

call it the signature of the orbifolds.l It should be remarked here that the
ramification values in the signature can be in any order (we do not require that
the punctures appear first). The pair (p,n) is called the type of the orbifold.

1.1.8. The signature of an orbifold & determines its universal branched
covering space as follows. If the signature is (p,n;vi,...,vn), then

L |
2p—2~}-n——z—-
=1 Y

J

is negative, zero or positive if and only if the universal branched covering space
of § is (conformally equivalent to) the Riemann sphere, the complex plane or
the upper half plane H = {z/Im(z) > 0}. Other authors called this covering

the universal covering orbifold ([Thu79]). The conformal structure on &



comes from 1ts universal covering by natural projection.

1.1.9. It is an easy exercise to prove that for a Kleinian group G, the
quotient space {1/G is a union of (possibly infinitely many) orbifolds. An
important result in the theory of Kleinian groups, Alhfors’ finiteness theorem
([Ahl64], [KraT72al), states that if G is finitely generated, then /G is a finite
union of orbifolds of finite conformal type. We will call the space /G the
quotient orbifold(s) (associated to GJ).

1.1.10. A triangle group is an elementary group with quotient orbifold
of type (0,3) or a Fuchsian group with two quotient orbifolds of type (0,3).
We will divide the triangle groups into elliptic, parabolic or hyperbolic
depending whether the region of discontinuity is (conformally equivalent to)
the Riemann sphere, the complex plane or two discs, respectively. Similarly
we will call the orbifolds elliptic, parabolic or hyperbolic depending on their
universal branched covering space.

1.1.11. Another important result of Ahlfors is about the punctures: sup-
pose G is Kleinian and /G has (at least) one puncture. Then we consider a
simple small loop around the puncture, bounding a punctured disc; this loop
will be represented by some element of G. Ahlfors’ Lemma. tells us that the
representative must be a parabolic element.

Similarly, if we consider a simple small loop bounding a disc whose center
is a point with finite ramification value n, then the representative must be an
elliptic element of order n.

1.1.12. Suppose G is a Kleinian group and let A be a simply connected

invariant component of Q((). Being invariant by the group G means that



g(A) = A, Vg € (. Let H be the upper half plane, and let w : H — A
be a Riemann mapping. Let us assume that T is a parabolic element of G.
We will say that 7' is accidental parabolic if the Mdbius transformation
w10 T ow is hyperbolic. This definition is independent of the choice of the
Riemann map w, since two such maps differ by composition with a Mébius
transformation. More information about accidental parabolics can be found
in [Mas70] or [Mas88].

1.1.13. One of the most important tools to construct Kleinian groups
from smaller ones are the Klein-Maskit Combination Theorems. The first
combination theorem says roughly speaking the following ([Mas92]}. Suppose
G, and G, are two Keinian groups, and suppose that they share a common
proper subgroup J. Let W be a curve dividing the Riemann sphere into two
topological disc, By and By, such that B; is precisely invariant under J in Gy.
Then, if certains conditions are satisfied, the First Combination Theorem tell
us that the group generated by Gy and G, say G, is also a Kleinian group. G is
known as the Amalgamated Free Product, or the AFP, of Gy and Gy across
J. We will write G = G *<4> G3. A smart choice of fundamental domains
for ¢, and Gy will give that their intersection is a fundamental domain for G.

The situation for the other theorem is slightly different, in the sense that

we start only with a Kleinian group G. Suppose that H; and H; are subgroups

of 7, and that A is a Mdbius transformation, A € G, that conjugates H; into
H,, that is, the mapping B — ABA~! is an isomorphism between H; and H,.
Then the group generated by G and A, say K, is called an HNIN Extension

of @, and it is denoted by K = G*c4>. In the Second Combination Theorem



we find a set of conditions that, if they are met by the group G, then we can
say that the HNN extension of that group, K, is also Kleinian. A way of
prodﬁcing a fundamental domain for K from a fundamental domain for G is
also given in that theorem.

The technical statements of these theorems can be found in Maskit’s book,
[Mas88], or in the coming paper [Mas92].

1.1.14. The following lemma gives conditions on the elements of a discrete

group that contains a parabolic transformation.

Lemma 1 (Shimizu-Leutbecher) Let I’ be a discrete subgroup of Mob(@),

where I' contains the transformation f(z) = z + t,t € €. Then for every

1

€T, eitherc=0 or|c| > mi

@
IIt

c d

For a proof soo [Mas88].

1.1.15. One last definition we need concerns the cross ratio on the Rie-
mann sphere. This is a measure of the relative position in C of four distinct
points, but since there are six different possible definitions, we state here the

one we will use thorough this dissertation:

Definition 1 Given four distinct points on € , say a,b,c,d, the cross ratio

of them is defined by

d—bec—a
d—ac—5b’

er(a, b, ¢, d) =
and by continuity if one of the points is oo

Observe that cr{oo,0,1,2) = 2.




1.2 Teichmiiller and Riemann spaces. The Maskit em-

bedding

1.2.1. Let GG be a non-elementary Kleinian group. An isomorphism
6:G — PSL(2,C) is called geometric if there exists a quasiconformal map-
ping w of the complex sphere such that 8(g) = wogow™, Vg € G. We will
say that two isomorphisms #; and #; are equivalent if there exists a Mobius
transformation A such that #,(g) = A o0 8,(g9) o A™'. The set of equivalence
classes of geometric isomorphisms is called the Teichmiiller or deformation
space of G, T{G). In order to put a topology on this space, we can consider ‘
a different approach: a quasiconformal mapping w of the Riemann sphere is
compatible with G if wGw™! is a subgroup of PSL(2,C). Then we can nor-
malize a compatible mapping by choosing three points in the limit set of G,

say xq, Ty, x3 and ask for the mapping to fix them pointwise. Two normalized

mappings are equivalent if and only if they have the same values on the limit
set A(G). In this setting, the Teichmiiller space of a group G can be described
as the restrictions to the limit set A(G) of normalized compatible mappings;
then the complex structure of T(G) is given by requiring that, for each limit
point z € A, the map T'(G) 3 w — w(x) & C be holomorphic (see for example

[Kra72b] or [Kra88)).

1.2.2. Let QC denote the space of quasiconformal homeomorphisms of

“the Riemann sphere. We define the normalizer of G in QC as the set:

N, (G) = {w € QC; wGw™ = G}.



The modular group of G, Mod(G) is the group of geometric automorphisms
of G quotiented by the group of inner automorphisms of @. Since (7 is not
elementary, it does not have center, and therefore the group of inner auto-
morphisms of ( is isomorphic to . So the modular group is isomori:)hic to
Mod(G) = Noo(G)/G, where h € G actson G by G3g— hogoh~! € G.

If wis an element of Ny (G), then it induces a group automorphism of G
by the rule G 3 g = wo gow™ € G. We denote this mapping by 0,. We
want next to define an action of the modular group on Teichmiiller space. To
do it, we consider an element w € N .(G) and the induced mapping 8,. This
mapping gives rise to a mapping on T((G), that we will denote by 8%, defined
as follows: suppose that u is a representative of a point of T(G), then 6% (u)

is the mapping on & induced by u o w™; that is,
(62(u))(g) = (wow™)ogo(uow™)™,

for all elements ¢ € G. The group of inner automorphisms of G acts triv-
ially, since we conjugate by M&bius transformations, which does not change
the Teichmiiller class. This means that the modular group acts on Teichmiiller
space. The quotient space T(G)/Mod(G) is known as the Riemann or mod-
uli space of GG, R((), and it represents the PSL(2,C)-conjugacy classes of
Kleinian groups quasiconformally equivalent to G.

1.2.3. Let S be an orbifold with signature (p,n;m,...,1,) and let S’ be
the surface with punctures constructed by removing from § all the ramification
points, i.e.

§'=8~{z;; 1<j<nv <ool



A MAXIMAL PARTITION, C, on S is a set of 3p—3+n simple unoriented

closed curves in &’ such that:
1.- no two curves on the partition are freely homotopically equivalent on
S’
2.- no curve on the partition is homotopically trivial on &,
3.- no curve on the partition is contractible to one of the punctures of &,
The maximal part comes from the fact that any set of curves satislying

the above three conditions has 3p-3-+n or less elements. Existence of maximal
partitions is a well known topological fact that can be found in [Str82].

1.2.4. A terminal regular b-group G is a geometrically finite (it
has a finited sided funda,menta.l polygon for its action on hyperbolic 3-space,
[Mas88]) Kleinian group with a simply connected invariant component ACf,
and so that (22— A)/G is a union of orbifolds of type (0,3). Given an orbifold &
with hypgrbolic signature o = (p,m; 11,..., V), and maximal partition C, we
will say that the terminal regular b-group G uniformizes the triple (8,0,C),
if the following conditions are satisfied:

1.- the quotient of the invariant component A by the group G is confor-
mally equivalent to the orbifold §;

9.- for each element a; of the partition C, there is a curve d; in A, precisely
invariant under an accidental parabolic subgroup < A; > of G, and such that
ADd; 5 w(d;)=a; CS,wherer: A—81s the natural projection.

The following theorem of Maskit tells us that such an uniformization is

possible:

10



Theorem 1 (Maskit [Mas70], [Mas75]) Given a triple as above, there ea-

ists a terminal regular b-group G such that:

1.- G uniformizes the triple in the above sense (in the invariant component
A);

2.- G is unique up to conjugation in PSL(2,C);

3.- (UG) — A)/G is the union of the orbifolds of type (0,3) oblained by
squeezing each curve of C to a puncture and discarding all orbifolds of signature

(0,3;2,2,00) that appear.

1.2.5. This theorem gives us a way of decomposing the orbifold S into
‘smaller’ surfaces (whose deformation spaces are simpler) as follows: let 7 (1<
k < 3p—3+4n) be the connected component containing ay obtained by cutfing
S along a;,7 # k, that is Ty is the connected subset of 5 — {a;/a; € C,5 # k}
containing ag. The orbifolds Ty,..., 3,34 are called the modular parts of
S. Let Dj be a component of 7~ (T%) and let Gy be the stabilizer of Dy in
(. These subgroups are known as the modular subgroups of G. They are
terminal regular b-groups of type (1,1) or (0,4). Geometrically they represent
the surfaces T, where we have attached to each boundary curve a punctured
disc. Note that the modular parts are equipped with a maximal partition
consisting of a;. The group G is generated by the union GyU .. U Gapoagn
in PSL(2,C). There is an algorithm to construct the modular groups, and
therefore the group G, for which we refer the reader to the paper by 1. Kra
[Kra88].

1.2.6. We will work with a set of coordinates for Teichmiiller space given

11



by B. Maskit in [Mas74] and 1. Kra in [Kra88]. Consider a triple (9, 0,C)
11niformized by the terminal regular b-group  in the simply connected invari-
ant component A. The partition C gives a decomposition of I' into modular
subgroups Gi,...,Gsp-34n (as explained above), whose deformation spaces
T'(G;) are one-dimensional. It is clear that any deformation of (G supported
on A induces a deformation of ¢, and this gives a mapping from 7(G) to
1224 T(G5). The. following theorem states that this mapping is actually

injective, providing a set of coordinates on the deformation space T(T').

Theorem 2 1.-([Mas7{], [Kra88]) The mapping defined above

3p~3+n
TGy = [[ 7(Gy)
=1
18 holomorphic and injective with open image.
2.- (Gentilesco [Gen79]) The image of this mapping is a proper subset of
H?g{?”"" T(G;), except in the case of 3p-3+n=1.

We will call the mapping of this theorem the Maskit embedding of
7(G).

1.2.7. We also need the definition of deformation spaces of orbifolds,
rather than deformation spaces of groups. Let S be an orbifold of finite confor-
mal type with hyperbolic signature ¢ = (p,n;v1...,1,). Let f: 8 — &; and
g : 8§ — 8, be quasiconformal homeomorphisms that ‘preserves’ the complex
structure of &, in the sense that they ma,.p ramification points to ramification
points with the same ramification value. Then we will say that f and g are

Teichmiiller equivalent if and only if there is a biholomorphism ¢ : §; — &,




that ‘preserves’ the complex structures and such that the following diagram

commutes up to homotopy:

-

Sa
By commuting up to homotopy we mean that g Lo ¢o fis homotopic to the
identity map of 5.

The Teichmiiller space of S is the set of equivalence classes of quasicon-
formal deformations. The intuitive idea behind this definition of deformation
spaces is that two quasiconformal deformations of the orbifold S are in the
same Teichmiiller class if we can pass from one to the other by composing
with a mapping homotopic to the identity and with a conformal homeomor-
phism.

1.2.8: Now suppose S is given with a maximal partition, C. By theorem
1 in §1.2.4, there exists a terminal regular b-group G uniformizing (S, 0,C)
on its invariant component A. We have that the spaces T(G) and T(S), as
defined in §1.2.1 and above respectively, are equivalent. This last fact can
be found in [Nag88] and [Kra72b}; in the.ﬁrst of these two references it is
proven that the deformation space of an orbifold, T(S), is equivalent to the
deformation space of a Fuchsian group uniformizing it, while in the second
paper Kra proves that the deformation space of a (terminal regular) b-group

is equivalent to the deformation space of the Fuchsian group uniformizing the

orbifold.

13



The deformation space of the orbifold 8 will be denoted by

T(p,n;vy...,v,). By the above paragraph, if G is a terminal regular b-
group uniformizing (8, 7,C), then we have T(S) = T(G) = T(p,n;11 ..., vn)-

Remark: in Kra’s work, [Kra72b], a more general result about equivalences

among deformation spaces is proven, but for our purposes what we have told

suffices.

1.3 Statements of Main Results

1.3.1. Our work deals with the problem of finding good coordinates for
the deformation spaces of {terminal regular). b-groups. The uniformization
theorem of Maskit (§1.2.4), tells us that the study of the deformation spaces
of terminal regular b-groups and the study of the deformation spaces of orb-
ifolds is equivalent. Ideally, we would like, given a complex structure on an
orbifold S, to be able to find its position in the corresponding deformation
space T(S), or equivalently in the deformation space of a terminal regular
b-group, I', uniformizing S. A possible solution to this problem is the one
given by Irwin Kra in [Kra90]: to find coordinates on 7(T') from which is pos-
sible to construct explicitly Kleinian groups. The case of surfaces (orbifolds
without ramification points) of hyperbo]jc finite type was completely solved
in the quoted paper. Qur work is a generalizatioﬁ of his in the sense that
we compute similar coordinates for the deformation spaces of terminal regular

b-groups with torsion.

1.3.2. The b-groups we work with are constructed from triangle groups by

14



use of Maskit Combination Theorems; that is, by AFP’s and HNN extensions.
Therefore, first of all we need to study these basic triangle groups. Given
two such groups with the same signature, we know from the classical theory
of Kleinian groups that they are conjugate in PSL(2,C). Since a Mdbius
transformation is determined by the images of three points, to know a triangle
group all we need is three complex parameters, besides its signature. This is
the content of our first result:

Proposition 1(§2.3.7): Given three distinct points (a, b, ¢) in the Riemann
sphere, and a hyperbolic signature (0,3; 11, v2, v3), there exists a triangle group
T'(v1, va, v3; @, b,c) of signature (0,3;v1,vs, vs), generated by a unique pair of
Mobius transformations (A, B) determined by the parameters (a,b,c). The
transformations A and B are called canonical generators of the group for the
given parameters (a, b, c).

The definition of canonical generators is given in §2.3.6. For this section
it suffices to say that what that definition does is to relate the parameters
(a,b,c) to the Mobius transformations (A, B) in a geometric way.

A similar result for the parabolic groups with signature (0,3;00,2,2) is
in the proposition 5 of paragraph §2.4.3.

1.3.3. One can consider two triangle groups and apply Maskit First
Combination Theorem to obtain a terminal regular b-group G uniformiz-
ing a surface of type (0,4). To do it, we start with T'(co,w, va;a,b,c) and
I'{co, 3, va;a, b, ¢), with a choice of parameters so that they share a parabolic
element, say A, and we then construct the group GG by an AFP:

G = I'(00, v, V2; 8, b,¢) *ca> (oo, vs, v4; a, ¥, ¢'). The coordinate for the

15



deformation space of G 1s given as a cross ratio:
Theorem 3(§3.2.5): a = cr(a,b,c,¥) is a global coordinate for T((¥), and

we have the following inclusions:

{afIm{a) > y1} C T(0,4; 05,9, 03, v4) C {afIm{a) > 42},

where
1 1 i 1

= + ;y2=ma$( ) P
f1+q: gt+q f1+G2 @3+ G

h

and ¢ = cos(mw/vq).
1.3.4. If we start with only one triangle group, I'(c0,00,v;4,b,c) and
we do a HNN extension, then we will obtain a group uniformizing an orbifold
of signature (1,1;»). The result about the coordinate for the corresponding

deformation space is in §3.2.9 {theorem 5).

1.3.5. By use of Maskit embedding we obtain coordinates for the defor-
mation spaces of orbifolds of finite hyperbolic type:
Theorem 7(§3.2.12): Let § be an orbifold of finite hyperbolic type with sig-
nature o = {p,n;v1,...,¥,) and let C be a maximal partition on §. Then there
exists a set of (global) coordinates for the deformation space T(p,n5 01,01 Vn),
say (ap,...,0q), where d = 3p — 3 +n, and a set of complex numbers,
(1,...,48,v3,...,y3), that depend on the signature o and the partition C,

such that

{{e1y...,04) € Ct/Im(e;) >y, ,V1<i<d} C T(p,m;V1,- -1 Vn)
and

T(pyn;vh,y -y ) C {01, 0a) € C?/Im(e;) > vy V1< i< d}




1.3.6. A result of Patterson states that the only isomorphisms between
Teichmiiller spaces of orbifolds of different type (with 2p — 2 + n > 0) are
T(2,0) = T(0,6), T(1,2) = T(0,5), T(1,1) = T(0,4). In chapter 4 we
compute this isomorphisms explicitly in the coordinates given by the above
theorem:

Theorem 12(§4.2.2); The mapping

&

(71,72, Ta) — (%, L7214

gives an isomorphism between T'(2,0) and 7(0,6;2,2,2,2,2,2). If we con-
sider the cases of 73 = 0 and 73 = 7, = 0, then we obtain the isomorphisms
T(1,2;00) & T(0,5;00,2,2,2,2) and T(1,1;00) = T(0,4; 00,2, 2,2), respec-
tively.

1.3.7. Another type of isomorphism between deformation spaces are those
addressed in the Bers-Greenberg theorem: two Teichmiiller spaces of orbifolds
of the same type, but different signature, are equivalent. One may ask what
happens when we look at this theorem in the Maskit embedding. That is the
content of the main theorem of chapter 5:

Theorem 13(§5.1.2): Let I'; and I' be terminal regular b-groups uniformizing

orbifolds of signatures (p,n;c0,...,00) and (p,n; 1, ..., vn) respectively. Let
3p—3+n 3p—3+n )
TTe) — [ T(T;) and T~ J[ T(T,)
J=1 i=1

be the Maskit embeddings. Then there exist isomorphisms

B} T(T;) — T(Gamma;-),
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for I <7 < 3p— 3+ n, such that the restriction
( ,{1 SRR h;p—3+n)|T(F0) : T(FO) - T(F)

is an isomorphism.

This theorem shows that the Bers-Greenberg lsomorphism is a conse-

quence of the fundamental structure of the groups. The proof uses the fact

that deformations on an orbifold can be made conformal on neighborhoods of
the punctures, staying in the same Teichmiiller class:

Lemma 5(Deformation Lemma) (§5.4.12): Suppose S is an orbifold with
(at least) n punctures. Let Uy,..., U, be punctured discs around the punc-
tures of S, with disjoint closures. Then any quasiconformal deformation of S

is equivalent to a quasiconformal deformation that is conformal on the sets

Usy ... U

18




Chapter 2

Triangle Groups

2.1 Introduction

2.1.1. The basic building blocks for hyperbolic compact surfaces are pairs
of pants (spheres with three discs removed); a surface of genus g(> 2} can be
obtained by gluing 2g—2 spheres with three holes along their boundaries. The
pairs of pants can be constructed from spheres with three punctures by remov-
ing ‘neighborhoods’ of the punctures, a,nd.then gluing along the boundaries.
The size of these neighborhoods (‘radius’ of the punctured discs, in a good
coordinate) and how twisted the boundaries identifications are (twisting an-
gle) produce a sct of complex coordinates in the deformation (Teichmiiller)
space of the surface (remark: this is not quite correct, as the construction is
independent of the ‘radius’, but it is the right philosophy. For a better expla-
nation of this technique, and how it can be understood, the reader is referred

to Irwin Kra’s paper [Kra90]). With this method we can construct surfaces

with punctures as well.
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One can generalize the abover technique to construct orbifolds (see chapter
1 for the definition). All we need to do is to start with orbifolds with signature
(0,3; vy, vy, v3), where the numbers v; could be oo (punctures), or integers, with
v; > 2 (ramification points).

2.1.2. The only Kleinian groups uniformizing orbifolds of type (0,3) are
the triangle groups. The classical theory tells us that two such groups with the
same signature are conjugate in PSL(2,C). Since a Mobius transformation is
determined by the images of three points, all we need to know a triangle group
is three different points in C (besides its signature, of course). This is the
main objective of this chapter: to give presentations for triangle groups based
on three points of C that we call parameters, and to study the dependence
of the generators on the paramenters. We will study hyperbolic and parabolic
groups; the results about the elliptic groups will appear somewhere else in the

future.

The chapter is divided as follows: we motivate our work in the second
section by studying the torsion free case solved by I. Kra in [Kra90]; the third
section deals with hyperbolic triangle groups; section 4 is dedicated to the
parabolic groups; section 5 studies the geometry of the corresponding quotient

orbifolds, and we finish with a section about the automorphism groups of some

of these orbifolds.

2.2 The torsion free case

2.2.1. In this section we will study the case of torsion-free triangle groups




(these are Fuchsian groups with signature (0, 3; 00, 00, c0}), based on the work
of Irwin Kra, [Kra90]. The reason for iﬁcluding these results here is two
fold: first as a motivation for all our later work, and second for the sake of
completeness.

2.2.2. Let (a,b,c) three distinct ordered points in €. We want to find
Mobius transformations A and B such that they generate a group with signa-
ture (0,3; 00, 00,00) and they are somehow related to (a,b,¢).

The three given points determine a unique oriented circle on the Riemann
sphere C . Here we take circles in the general sense, where a line is simply a

circle passing through oo (think of € as $?). That circle bounds two discs,

one of them lying to the left. This is a well defined concept:

Definition 2 If z does not belong to the oriented circle determined by a, b, ¢,
then z is to the left of that circle if and only if cr(a,b,c,z) has positive

imaginary part.

Since Mobius transformations preserve cross ratios and the family of cir-
cles on the Riemann sphere, the concept of being to the left of an oriénted
circle is PSL(2,C)-invariant, therefore it is a good definition for our purposes.

Going back to our problem, on the disc to the left of (a, b, ¢) we consider
the metric of constant curvature —1. What we are going to do is to find a
fundamental domain the group, that will consist on two triangles whose sides
are relates to (a, b,c), and the transformations we are looking for, A and B,

will be the side identifications (in the spirit of Poincaré’s theorem). But in

order to make things clear, we will first consider the case a = oo, b = 0 and
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c=1.

The circle determined by these points is the extended real line R, with its
usual orientation. H = {z € C/ I'm(z) > 0} is the disc to the left of the real

line. The metric is the known Poincaré’s metric, J-C—;ZJ (z=z+1y).

2.2.3. Before computing the matrix expressions of the elements A and
B, let us stop for a moment to see what we want. A parabolic transformation
(given by the oo in the signature) can be understood as the limiting case of an
elliptic element when the order goes to infinity. Elliptic elements of PSL(2,C)
of finite order are rotations with two fixed points in €; if the transformation
fixes our circle, then it must have one fixed point inside each disc. A geodesic
ending at the fixed point will be rotated by certain angle (inversely propor-
tional to the order of the element). As a parabolic element is the limiting case
when the order goes to infinity, the ‘rotation angle’ will be zero. If the element
had a fixed point in the interior of one of the discs, a geodesic abutting at
that point should be rotated by a zero degrees angle, and therefore this trans-
formation would be the identity. So the fixed point should be in the circle at

infinity, where it is possible for two different geodesics to meet with zero angle.

A natural requirement to ask is that A fix oo a,nd B fix 0. We will also
ask for their product AB to fix the third point 1; and we know that these
three transformations, A, B and AB, have to be parabolic. To compute their
formulae, let us consider a triangle with its vertices at co,0 and 1, and the

reflections on its sides as shown in the figure 2.1.

The formulae of these reflections are:
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Figure 2.1: A triangle for the torsion free case

F4

5_;‘:, rg(z) =2 -7

ri{z) = =7, ro2) =

2.2.4. These reflections generate a discrete group of isometries of (H, L‘iﬂ)
containing orientation reversing maps. There is an index two subgroup consist-
ing of the orientation preserving mappings, which are those mapping obtained
by compdsing an even number of these reflections. Two possible generators

are:

rami(z) = A(z) = 2+ 2,

and

T 91

rira(z) = B(z)

The group ' =< A, B > is a triangle group with signature (0, 3; 00, 00, co}.

Tt is easy to compute the inverse of the preduct of these generators, namely

C(2) = (ABY(2) = rars(2) =




which fixes 1 as we wanted. A fundamental domain for the action of I' on
T) = C —R can be obtained by considering the above triangle and applying
first the reflection r3, and then a reflection on the real axis; such fundamental

domain is shown in figure 2.2.

@ 1 2

‘f////// 777

Figure 2.2: A fundamental domain for T'.

In [Kra90], the group T generated by A and B is denoted by F(c0,0,1). In
order to include the signature, we will adopt the notation of I'( 00, 00, 00; 00,0, 1)
for the above triangle group.

2.2.5. It should be remarked that the order of the composition of the r;
is extremely important, because if we take rir3 = A™! as the first generator,
and we keep B as the second, then the inverse of the product A7'B is NOT
parabolic (and therefore it will not represent the third puncture).

2.2.6. The general case of parameters (a,b,c) is obtained by finding a
Mobius transformation that takes these points to oco,0 and 1, respectively,
and then conjugating by this transformation the group I'{co, 0000; 00,0, 1)

previously obtained. This new group will be denoted by I'(co, 00,005 a,b,¢).
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2.3 Hyperbolic groups

2.3.1. In order to generalize the result of the previous section, we will
start by considering the case of a group I', with signature (0, 3; 00, o0, v/), where
v €Z,v>2. A good generalization should be such that as v goes to infinity,
the generators of I', approach those of the group I' in the previous section
(assuming we keep the same set of parameters). This makes sense, since we
‘understand’ parabolic elements as the limiting case of elliptic transformations.
A way of getting the group T, is by constructing a triangle that generates it
(in the sense of the previous section) and whose sides approach to those of the
triangle of the previous section, as v goes to co. To fix ideas what we will do
is to consider the case with parameters (00,0, 1) as before. Our triangle must
have two zero angles with vertices on the {extended) real axis, and one interior
vertex, where two geodesics should meet making an angle of 7/v. We will ask
for this vertex to be on the line {z/Re(z) = 1}. It is easy to see that this is
possible,land only in one way (cir. [Bea83]). See figure 2.3.

Computing as before we get the following reflections:

1 1
- + )
+¢Z—(1+q) 1+g¢

ry(z) =2 —Z.

ri(z) = —%, r(2)=

The orientations preserving subgroup of index two is then generated by:

rary(2) = A(z) = 24+ 2, rira(2) = B(z) = (1__*_;)27:"1"

where ¢ = cos(Z). The inverse of their product is given by
B z—2
T (l4+qz—-1-2¢

(AB)™' = C(z)



AN

Figure 2.3: A triangle for the group of section 2.3.1

We can see that the transformations B and C converge, as v goes to infinity,
to the corresponding transformations studied in section 1. In our notation,
this group will be described as ['(oc, 00, #; 00,0, 1).

2.3.2. If the group has signature (0,3; c0,», ;) with v, and v, finite
integers, then we can construct a unique triangle with a vertex at infinity, and
two vertices inside H on the lines {z/Re(z) = 0} and {z/Re(z) = 1} (see

(Bea83]). This will give us a group generated by

—qz+0b
(g1 — q2)z — a’

A(z)=2+42,B(z) =

where ¢; = cos(Z) and b = qilfi-; (in this way the matrix corresponding to B

has determinant equal to 1). |
2.3.3. Suppose now that the group has no parabolic transformations;

(that is, the signature is (0,3; vy, 12, ¥3) with 2 <w; < 00). We then construct

a triangle on the upper half plane, with angles ul.-’ 1 =1,2,3, and such that two

of its vertices lie on the line {z / Re(z) = 0} and the other on {2/ Re(z) = 1}.




To generalize the previous results we need to take the first two vertices (angles
™ and ;”;) on the imaginary axis, and the third vertex on the other vertical line.
But under those conditions it is possible to find TWO different triangles (see
2.3.4). The goal is to get the parabolic case as the limiting case of elliptic, so we
make a choice: the vertex corresponding to A (angle J-) has bigger imaginary
part than the one corresponding to B (angle ); or loosely speaking, the
vertex corresponding to A is ‘closer to 100’ than the vertex corresponding to
B. Later we will give a conjugacy invariant definition of this ordering. Let us
remark now that these conditions give us a triangle like the one in figure 2.4,
and that the group we are looking for is generated by

—iz — "»‘P1
k=lpyz — q’

_ —qaz+b

]
€z — 2

Alz) = B(z)

= ® w-agtal —qa4l 3 _ 431
where ¢; = cos(Z),k LN ¢ = ﬂﬂﬁﬁ'—,b = %— and

l= \/ @ + @2 + ¢% — 2q142q3 — 1. The inverse of the product of the two gener-

ators is given by

-1 _ (k~'bp1 + q192)2 + bgr — kp1ga

C = (AB = .
(Z) ( ) (k_lplfh -+ ng)z + qigz — kpic

2.3.4. Let us stop for a moment in order to explain how we obtained
the triangle of the ﬁgure 2.4. First, we construct any triangle with angles
7/, /vy and 7/ and vertices vi, v, and vy respectively. A basic fact from
hyperbolic geometry is that two triangles with the same angles are congruents
(one can be mapped by an isometry into the other); therefore there is, essen-

tially, only one triangle with the given angles. Then we map v; to a point in

the imaginary axis, say ¢. By use of a rotation, we can map the side v, v; into
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Figure 2.4: A triangle for the group of section 2.3.3

the imaginary axis. If necessary, we apply the reflection 2 ++ —% so that the
third vertex has positive real part. If this vertex has real part equal to 1, we
are done; if not, we can apply a dilatation z — Az, with A > 0, to get its real

part exactly equal to one. This will give the triangle we want.

But we can see that there are two possible triangles, depending whether
the imaginary part of the second vertex is bigger than the imaginary part of
the first or not. We will deal with this problem later (see definition 3 in the

next subsection).

2.3.5. We will now give invariant definitions for the particular cases
studied above. We start with three distinct points in C, say a,b,c. Let A be
the circle determined by them, and orient it so that a,b,c follow each other
in the positi\.re orientation. Let L be the circle orthogonal to A and passing
through « and b. Similarly, let L' be the circle orthogonal to A and passing

through a and ¢. For the case of @ = 00, b = 0 and ¢ = 1 we obtain the real

axis, the imaginary axis and the line {z/ Re(z) = 1}, respectively.
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Figure 2.5: The circles for parameters (oo, 0,1).

Let A denote the disc to the left of A; that is,
A = {z € C; Im(er(a,b,c,2)) > 0};

and let A denote its closure in the Riemann sphere. Since Mobius transfor-
mations preserve angles and the family of circles on the Riemann sphere, we
have that the following definition is a PSL(2, C)-conjugacy invariant choice of
triangles, similar to that of 2.3.3. We need that choice in order to obtain the

uniqueness statements of the proposition of §2.3.7.

Definition 3 Let z; and z, be two distinct points in L NA. We will say that
they are WELL ORDERED, with respect to a_.qnd b, if one of tﬁe fqllowing
set of conditions is satisfied (they are not mutually exclusive):

1) z; = a,

2) Z9 :b,

3) 21 # a, z # b and cr(a, z1, 22, b) 45 real and strictly bigger than 1.
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If @ = 0o,b =0 and ¢ = 1, the third case happens when z; = )\ and
2y = pi, with A > p, which agrees with our previous work.

2.3.6. For an elliptic or parabolic Mobius transformation, A, let |A|
denote its order, where order equal to infinity means that the transformation

is parabolic.

Definition 4 Let (a,b,¢) be three distinct points of C, and let A, A, L and
L' be as in §2.8.5. Suppose that T is a triangle group with hyperbolic signature
(0,3; v1, v, v3) and whose limit set is A. Lel A and B be elements of I'. We
will say that (A, B) are CANONICAL GENERATORS of T' for the parameters
(a,b,c) if they generate the group I' and the following conditions are satisfied:

1) |A] = vy, |B| = vo, |AB] = vs,-

2)A and B have their fized points on L, and AB on L',

3) if z, and z, are the fized points of A and B on L NA, then they are
well ordered with respect to a and b,

4) A and B are primitive elements, and geometric whenever elliptic.

It is clear that this definition is conjugacy invariant in the following sense:
if T' is a group with canonical generators (A, B) and 7" is a Mobius transfor-
mation, then (T'AT~!, TBT™!) are canonical generators for T I'T'~1. This is so

. because conjugation preserves the order of transformations, and the elements
‘of PSL(2,C) preserve cross ratios.

We already have computed the canonical generators for i)arameters oo, 0
and 1.. To find canonical generators for a group I' with parameters {a,b,c),

all we need to do is to find a transformation that takes these three points
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to 00,0, 1, respectively, and conjugate by that transformation. The only IM-
PORTANT detail left is to prove the uniqueness of the generators for the case
of parameters (00,0,1). That is what we will do next.

2.3.7. We now state our Aprevious results in the form of a proposition. The

Mobius transformations will be given as (representative of classes of) matrices

of PSL(2,C).

Proposition 1 Given three different points (a,b,c) in the Riemann sphere,
and a hyperbolic signature (0,3; vy, v2,v3), there exists a triangle group
[(v1, 2, va; a, b, ¢) with a unique pair generators (A, B) canonical for the given
parameters.
In the case {a = o0,b = 0,¢ = 1), these generators are given by:
1)Signature (0,3; 00, 00, ¥)

- - - -

-1 -2 -1 0

0 -1 14¢ -1

- - L -

Here ¢ = cos(w/v) with ¢ =0 if v = oo.
2)Signature (0, 3; 00, v1,12), v; < 00

[ | I ]
-1 -2 —4 b

0 -1 G1t+4g —q

i1
i = cos(m/v;) and b= .
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3)Signature (0,3; 1, 2, 13), where all the v; are finite.

—¢  —kpy —q2 b

We have

¢; = cos(m[v;), p; = sin(w/v;),

k=Q2+Q1Q’3+Q15 . 192 + ¢z + ! b:q§—1
ml ’ kpy ’ c

where [ = \/qf + @3+ ¢+ 2q1q095 — 1

7

and the square root is chosen to be positive.
For any other set of parameters, (a, b, ¢),the generators are given by conju-
gating the above generators by the unique Mébius transformation T that maps

a,b,c to oo,0,1 respectively.

A few words about this result are needed. First of all, lemma 2 guarantees
that the expression under the square root is positive. The existence of the
generators was established in the previous sections. The uniqueness will be
proven in proposition 3 (§‘2.3.10)..

2.3.8. Next we prove a lemma showing that the term under the square

root in the above proposition is positive.

Lemma 2 Let I' be a triangle group with signature (0,3; py, s, ft3), where

pi € ZU {co}, i 2 2, and let ¢; = cos(n/p;). Let

P=q+¢+a0+2q0e 1.




Then {* is positive, zero or negative if and only if I' is hyperbolic, parabolic or

elliptic, respectively.

Before proving this lemma we have to say that we think this is a well known
fact, but we could not find it anywhere in the literature. As usual, along the
proof, ¢; = cos(m /).

Proof.The elliptic triangle groups have signatures (0,3;2,2,v), finite v, or
(0,3;2,3, 1) with g = 3,4,5. The values of I? is for each of these signatures

are

(cos(m/v))* — 1, and :11- + cos*(xfp) — 1,

respectively which are all negative numbers.
The parabolic signatures are (0,3;2,3,6), (0,3;2,4,4) (0,3;3,3,3), and
(0,3;00,2,2). The value of [* is zero for these cases, as it easily checked.
In the hyperbolic case we have that the partial derivative of I* with respect
to ¢ is eqﬁal to
o

5; =2q1 + 2q243.

This expression is zero if and only if two of the cosines are zero; but this would
imply that the signature has two ramification values equal to 2, and it would
not be hyperbolic. So we can conclude that for hyperbolic signatures, the
value of 2 is increasing with ¢;, or equivalently with »y. Since the expression
is symmetric with respect to the ¢;, we have that the same increasing behaviuor
of 1 with respect to the other cosines. Therefore it will be enough to compute

the values of I? for ‘small’ signatures. Because of the mentioned symmetry,
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we can also assume, without lost of generality, that v; < 1, < 13, There are
several cases to be studied:

Case 1: 1 = 2. The smallest values of the ramification numbers occur in
the case of signature (0,3;2,3,7). For this case we have that {? is positive
(i* = cos*(x/7) — 3/4 ~ 0.0617449); and this completes the argument in this
case. |

Lase 2: v = 3. We have that the smallest signature is (0,3;3,3,4), for which
the value of [? is the positive number /2 /4. This proves this case.

Case 3: vy > 4. For the case of (0,3;4,4,4) we obtain I = I—'E,j@, which is
positive. This solves this case and completes the proof of the lemma. 7

2.3.9. The following proposition is a technical result that we need in

order to prove the uniqueness of the generators of the group I'(v, 15, v3; a, b; ¢)

in §2.3.7.

Proposition 2 Let A and B be canonical generators for the hyperbolic group
I'(v1, v, v3;,00,0,1). Assume that A and B have liftings to SL(2,C) with neg-

ative traces. Then their product AB has negative trace.

Proof.First of all, a matter of natation: along the proof we will use ¢; and p;
to denote the sin(m/v;) and cos(r/v;),respectively.

We start with the observation that the ramification values should all be
bigger than 2, since if not the proposition does not make sense as the trace of
an involution is zero.

Suppose first that our group has signature (0,3; 00, 11,v2). Let A and B

be canonical generators for the parameters (oo, 0,1}, with matrices
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representatives with negative trace, and so that their produ‘ct has a matrix
representative with positive trace. The discreteness of the group forces the
signature to be (0,3;00,00,3), but we will check that there is an element in
the group with order two, reaching a contradiction.

So let us assume that the canonical generators are A and B. Let ¢; =
cos(n/v;), 1 = 1,2.. The element A is parabolic and fixes co. We also have
that the matrix representative for B has negative trace equal to —2¢;. This

gives the following matrices:

-1 —a a b
A: ’B:

0 -1 ¢ —a—2q

- o L E

There are three more conditions that have to be satisfied, namely AB has
positive trace equal to 2¢,, B has its fixed points on the line {z/ Re(z) = 0}

and AB has the fixed points on {z/ Re(z) = 1}. This translates to:

(
—2q — ac = 2¢;
{ 2(1—*2(]1 :0
c
—ac—2¢, — 2a
=1
| —2e

Solving these equations we get the following matrices:

, B




with b = %. The Schimizu-Leutbecher lemma (see chapter 1) implies that
lq1 — qz| = 1/2 or ¢t — q2 = 0. This last case is not possible since the group
would be elementary. In the other case, the only option we have is ¢, = 1 and
gz = 1/2 (or viceversa), since cos(Z) > % for n > 3. This implies that the
group would have signature (0, 3; 00, 00, 3). But considering the element ABA
we see this is NOT true, because (ABA)* = I. Therefore A and B are not the

desired generators.

Suppose now that the group has parabolic elements, but the signature is
(0,3; 11,00, 00), with v finite. The group I'(11, 00, 00; 00,0,1) is gencrated by
the elliptic element A and the parabolic B, whose product is parabolic. The
fixed point of B is 0; the fixed points of A have real part equal to 0, and the
fixed point of AB is 1. Take @ = 0, # = 0o and v = 1. Then the fixed point
of B is a, the fixed points of A are in the line that joins « to v, and the fixed
point of AB is 8. This means that B and (AB)™! are canonical generators
for T'{c0, 00, 11; @, B,7) = I'(1,00,00; 00,0,1), and we are in the case already

covered.

We can think similarly in the other cases with parabolic elements. For
example, if our group is T'(vy, 00, v3; 00,0, 1), with v; and v; finite, take o = 0,
3 the end point of the geodesic that joins 0 to the fixed point of AB in the upper
half plane, and v = oo. Then T'(vy,00,v3500,0,1) = I'(co,vs,v1; @, 8,7). For
the group I'(v, 3, 00; 00,0, 1), with v; finite, we take o = 1, § the end point of
the geodesic joining 1 to the fixed point of A (in the upper half plane), and v

will be the end point of the geodesic that goes from 1 to the fixed point of AB in
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the upper half plane. Then we get I'(vy, v2,00; 00,0, 1) =T'(o0, 1, va; 0, B,7)-
We see then that the all the cases of signatures with parabolic elements are

covered by the one already studied.

Consider now the case of signature (0,3; 1, vz, v3), where all the ramifica-
tion values are finite, and assume that A and B are generators with negative
traces but that the product has positive trace. By a geometrical argument we

will see that ABA and B share the fixed points, and this will give that v3 =0,
a contradiction with our first hypothesis.
Computations similar to the previous case give liftings for A and B as

follows:

—q1 —mp —q3 b

mopr T ¢ —

where

G—Qetar  @ig2— g3t b__‘l%"‘l
m= , €= 1 ¥ = )
mr mm c

Tz\/;f+q%+qg—QQ1Q2Q3*1-

Observe the change of signs with respect to the formulae obtained bgfore, since
we are requiring that AB have positive. trace.

We have two cases to study:

CASE 1: m > 0, which is equivalent to say that ¢ — q1ga + a7 > 0.

In this situation we have that the point A(cc) = -5 is negative.

We also get that gzm™"'py + qc > 0. To sce this, multiply the left hand
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term by the positive number mp; to get
g pmpy + qempr = Pl + (e — s+ 1) = Pie Gl — gz + qur =

=¢ —a@+an

and this last number is positive by hypothesis.

This will give that AB{o0) < 1. In fact, an easy computation shows that

Mgy —mpc T — 43
—gmTip — g @mTipr+ ¢

AB(>0) =
and then this number will be less that 1 if and only if
r—gs < gm 'p+ qic.
Multiply both term by the positive quantity pymr to get
r<gsz+ EmT i+ apee

rpimr < @pimr + ggmipimr + qepymr &
gz — g3 + @1r) < @3l — qgs + @ur) + @pir + ar(ee — @ +1) &
@ — qugar + @’ < G2gs — 1@ + @gar + @r(PI + @) — qgr + o’ &
0 < q2ga — 193 + 1o = @3{(@2 — Qe + 1),

which is the product of two positive numbers. Observe that we have used the
fact that 1 = sin(7/vy) + cos®(r/m) = pi + 4.

Consider the triangle of the figure 2.6 with vertices vy, vz and vy, which are
fixed by the transformations A, B and AB respectively. Reflect that triangle

on the geodesic that joins v to vs to get a fundamental domain for the group
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Figure 2.6: A possible fundamental domain for a group with no parabolics.

generated by A and B. The actions of A and AB are also marked in that
figure.

The angle at the vertex v, is 27 /vy, and the distance from v; to v, is equal
to the distance from vy to vs. Since Mobius transformations are isometries,
we have that A maps v, to vy. Similarly, the angle at vy is 2 = pi/v3, and the
distance from v4 to vs is the same that the distance from v; to vg. Therefore,
AB maps ;)4 back to vy, and we have that ABA fixes vg, which is also fixed by
B. This implies that ABA and B have the same fixed points (both of them)
and therefore ABA = B", for some integer n. If n = 0 then B = A2 which
is not possible as A and B generate a triangle group, not a cyclic one. Since

vs > 3,if n # 0 we have

I=(AB)* = AB=(B'A™)» 1>
= B" = ABA= (B'ATY* 'A= BTV AT BT P AT A=

— (B—IA—I)V3—2B—1 =
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= (AB)*™% = B

But this would imply that v3 = 2 contrary to the first assumption.

CASE 2: m < 0. In this case, with a computation like the one in the

first case , we will get that A(c0) > 0 and AB(o0) > 1. This means that

A71B71A~! and B share a fixed point. But taking inverses we will have that

ABA and B share a fixed point, which is the situation proven in the first case.
This completes the proof of proposition 2.3.9. ]

2.3.10. In this paragraph we will provide a proof of the uniqueness of

generators for given parameters.

Proposition 3 The canonical generators A and B for the triangle groups

I'(v1, v2,v3;a,b,¢) are uniquely determined by the parameters (a,b, c).

Proof.Qur definition of canonical generators is invariant under conjugation by
elements of PSL(2,C). So if we can prove the uniqueness of generators for a
particular triple of parameters, we have then proven uniqueness for any set of
parameters. Therefore we will conjugate by a Mobius tr(;msforma,tion to get as
parameters the points 0, 1 and co. Without lost of generality we can assume as
well that v, > vy, v, since this can be achieved by another conjugation by an
element of PSL(2,C). The proof is divided into two different cases, depending
on whether or not the group contains parabolic transformations. Our line of
thought will be as follows: we choose matrices representing the elements A and

B with negative (or zero) trace (or zero, if they are involutions), and then we

use the definition of canonical generators (§2.3.6) to compute those matrices
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explicitly. One result that we will use in the proof is proposition 2, in §2.3.9,

that tells us that the matrix representing AB has negative (or zero) trace.

CASE 1: the signature is (0,3; 00, v1,¥2). As in the proof of proposition
9, we see that this case covers all the signatures with parabolic elements. Let
us look first at the element A: this is a parabolic transformation fixing oc.

Choose a matrix representing it,

A fixes oo if and only if 4 = 0. The negative trace condition is expressed by
o+ 8§ = —2. The determinant of the matrix is 1, which gives the equation

aé = 1. These two equations together give a = 6 = —1.

Consider now the element B, with matrix representative

Then we have the following

trace(B) = —2¢, <0 & e+ h=-2¢

the fixed points of B have real part 0 < e—h=0
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These conditions give e = h = —¢;. Thus

- 8 - 5

-1 p -q f

0 -1 g —0

We also have three more conditions; namely, (i) AB has non-positive trace
equal to —2¢s, (ii) the fixed points of this transformation have real part equal
to 1 and (iii) the determinant of B is also equal to 1. Computations give that

these conditions are equivalent to:

'3

g1 — g8+ q = —2q;

@ tgf—a _
—2g

Lqf—fgml

By solving these equations we get the matrices of proposition §2.3.7.
CASE_2: the signature is (0,3; 1, v2, v3), where all the ramification val-
ues are finite. We have to compute as in the first case 1, but this time A has

two fixed points with real part equal to 0. So let us start again with a matrix

representing A, say

I ]

The trace has to be non-positive, which implies « + & = —2¢,; the fixed points
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have real part equal to 0, which means o — é = 0. These two equations give
a=6=—q. |

Now, for the transformation B we have a similar situation, that is, iis
fixed points have real part equal to 0 and the trace of the matrix is negative

or zero. So if we choose a matrix representing B, say

r -

then we have e = h = —¢y.

Other necessary conditions that have to be satisfied are that AB has non-
positive trace equal to —2gs, the fixed points of AB have real part equal to
1, and the matrices of A and B have determinant equal to 1. These four

statements are given by the following four equations:

8

ag+ 9B+ fv+ ag = 243

U+ 98— fv— 019 _ |

) 2(“127— G'rg)
g-py=1
G —fg=1

L

To solve these equations, we also use that the absolute value of the imaginary
part of the fixed points of A is greater than that of the fixed points of B.

" (This last fact is part of the definition of canonical generators in the case of



parameters (00,0,1), see definition 4 in §2.3.6). Then the solutions are the
elements of the proposition in §2.3.7. ' 0

2.3.11. Qur next result is about the possible pairs of canonical generators
a group can have. Assuming we fix the signature and one generator, say 4;
what is the form of any other element of the group, B, so that (A, D) is
a canonical pair of generators? We will need this information later, when

we will study the uniqueness of certain geodesics on orbifolds (see subsection

2.5.3).

Proposition 4 If (A, B) and (A, D) are two pairs of canonical generators for
a hyperbolic triangle group with signature (0,3; 00, vy, ;) then there exisls an

integer number, n, such that D = AM*BA~"/2.

Proof.By conjugation we may assume that

- -y - —

1 -2 —-q b

0 -1 nt+q —q
| J L i

By proposition 2 in 2.3.9 we have that the transformation D has a matrix
representative with trace —2q;; we also have that their product AD has neg-

ative trace. Computations shown then that under these conditions D 1s given

by

htq 2qa-a
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The fixed point of AD are

2q1 + 245

The real part equals
2o+ 2¢; _a+taq
20 +20 i+
Let k& be equal to ﬁt' The transformation

conjugates B into Dj; that is, TBT™! = D. So 7' belongs to the normalizer
of I'in PSL(2,C), and induces an automorphism of the quotient surface that
fixes one puncture (since TAT~! = A). This means that either T € T or

T* €T, givingus T = A" or T = A™? as desired. a

2.4 Parabolic groups

2.4.1. In this section we will give definitions similar to those in the
previous one, but for triangle groups with one limit point (also called Eu-
ﬂidean groups, since their region of discontinuity is conformally equivalent
to the plane). We will have to deal with two different cases, depending on
'Wil__(_ather or not the quotient surface has punctures. The same phenomenon
Iready occurred in the case of hyperbolic groups, where we have to put an

xtra’ condition (choice of triangles) in the case the quotient surface was




As we did in the previous section, we will conjugate by a Mbius trans-
formations in order to reduce all the computations to the case of parameters
(00,0,1).

2.4.2. The only parabolic signature of type (0,3} whose quotient orbifold
has some punctures is {0, 3;00,2,2), up to order of the ramification values. It
should be remarked that the fixed point of the parabolic element corresponding
to the puncture is also fixed by any other element of the group (see [Mas88] for
a proof of this simple fact about parabolic groups). The definition of canonical

generators for these cases is as follows:

Definition 5 Let I be a triangle group with signature (0,3; vy, ¥a, v3), where
one of the ramification values is equal to co and the other two are equal fo
2. Let A and B be two generators of the group. We will say that they are
CANONICAL for the parameters (a, b, c) if the following conditions are satis-
fred:

1) 1A = wn, |Bl =1 andl|AB| = va,

2) A(a) = a, B(b) = b and AB(c) = c,

3) A and B are primitive.

2.4.3. With this definition we can prove the existence of canonical gen-

erators:

Proposition 5 Given three different points on C, (a,b,c), there exist a unique
~ pair of canonical generators for a group with signature (0,3; 14, v2,v3), as de-
scribed in the previous definition, and for the parameters (a,b,c). This group

will be denoted by 1'(0,3; vy, va, va; @, b, ¢).




Proof.As we have already said, we can conjugate by a Mobius transformation
so that we have to prove the uniqueness of canonical generators of the group
['(00,2,2;00,0,1). In this case, the transformation A is parabolic and fixes
o0, so A(z) = z + a, where « is a complex number to be determined. The
mapping B is an involution that fixes co and 0. This implies B(z) = —=z.
Now, the product of these two mappings is AB(z) = ~z + @. We have that
the fixed points of AB are oo and 1. Therefore & = 2, and this completes the
case of signature (0,3;00,2,2).

We have to more cases to deal with, namely, I'(2, 00,2;00,0,1) and
I'(2,2,00; 00,0,1). But these cases are obtained from the previous one by con-
jugating by a Mobius transformation. For example, in the case (0, 3; 2, 00, 2),
the parabolic element B fixes 0, and therefore so does any other element in
the group. The involution A corresponding to the first 2 of the signature
will fix oo, and the product AB = (AB)™! fixes 1. We consider the Mobius

transformation

which maps {c0,0,1} to {0, 00,1} pointwise. Conjugating by it we will obtain
the generators of this new group, which are

4 —Z

Alz) = —2, B(z) = 57, AB(z) = ECPEE

In a similar way, if we want to obtain the parabolic group with signature

(0,3;2,2,00), what we need to do is to consider the transformation
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and conjugate by it to obtain the generators, which are

A(z) = 21—:23, B(z)=—z+2, (AB)_1(zj

A
——2z+1‘

a
In this particular case we have an explicit formula for the covering map
from the complex plane to the quotient orbifold &. To compute that covering.
map. let us consider the group I'(c0,2,2;00,0,1), generated by the Mobius
transformations A(z) = z + 2 and B(z) = —z. If § : C — § is the natural
projection mapping, than we must have that ¢(z + 2) = ¢(z). This means
that the function ¢ has a Fourier expansion of the form ¢(z) = T2 aze™.
We also have that ¢(—z) = ¢(z), which is translated to a, = —a,. Choosing
the simplest case; that is, ag =0 =a,,n>1landa; =a_1= 1/2 we obtain
the function ¢(z0 = cos(miz). It is a classical result that any other covering
map C — § is a rational function of our ¢ (see [Forbl], p. 144).
2.4.4. The parabolic groups with compact quotient orbifolds have signa-
tures (0,3;2,3,6), (0,3;3,3,3) or (0,3;2,4,4), up to order of the ramification
values. We have a slightly different definition of canonical generators for these

Cases:

Definition 6 Let T be parabolic triangle group with signature (0,3;vy,v2,v3),
all v!s finite, and let A and B two elements generating this gréup. Let (a,b,c),
be three different points of €. We will say that A and B are CANONICAL
GENERATORS of T' for the given parameters if the following conditions are
| satisfied:

I) |A| = vy, |B| = v, |AB] = v,
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2) A(a) = a, A(b) = b,
3) B(a) = a, B(c) =,

{) A and B are geometric primitive.

2.4.5. The result about existence and uniqueness is given in the following

proposition:

Proposition 6 Let (0,3; v, v2,v3) be a parabolic signature where all the v; are
finite. Let (a,b,c) be three distinct points of the Riemann sphere. Then there
exists two pairs of canonical generators for the group I'(vq,v4,v3;a,b,¢). More

precisely, if (A, B) is one such pair, then the other is given by (A™1, B71).

Proof.Conjugating by a Mdbius transformation we reduce the proof to the
case of the groups I'(vy,vs,v3;00,0,1). In this case, the transformation A

fixes oo and 0, so it is of the form
A(z) = Az,

where \ = e:r:p(:l:%’;‘:), since A has to be primitive. For the transformation B
we have the formula

with g = exp(£2#). Then their product is

v2

AB(z) = Ap(z — 1)+ A,

We have to find A and g so that AB has order v5. To do it, first we see
that the fixed points of AB are oo and 2z = %ﬁ—:—%; so we take the translation

T(z) = z — 2, and conjugate by it to obtain T(AB)T~!(z) = (Au)z. The order



of this transformation has to be v, since conjugation preserves the order. We
have several cases, depending on our choices for A and u.

CASE 1: X = exp(+22) and y = ezp(+22). Then

2re 27y 1 — 27
AL = — +—) = 271l — —)) =
= eop(o + ) = eap(2mi(l - ) = ean(—

)7

which implies that AB has order v3 as we wanted. Here we have used the fact
that for parabolic signatures - + s+ =1

CASE 2: )\ = exp(—2 ) and g = exp{-— ) It is solved as the previous
case, but this time we get that the generators are the inverses of those of case
1, proving the non-uniqueness stated in the proposition.

CASE 3: A = e:::p(—l—z’") and p = e:cp( . 2’”) Mult1ply these two numbers

to get

A= e:np(?vrz'(}—— — _}_))

141 5]

We have to remark at this moment that if »; = 2 or »,=2 there is nothing to
prove, as ea:p(”‘) = exp(—%*). So we are left with the following signatures
(0,3;3,6,2), (0,3;6,3,2), (0,3;3,3,3) and (0,3;4,4,2). Computing ;11— — - in
all four signatures we get %5-, ——é, 0 and 0, respectively, but none of these gives
the correct order of AB.

CASE 4: ) = exp(—2 ) and p = e:cp(—i—z’r") This case is like the previous

one.

This completes the proof of the proposition. O

2.5 The geometry of the quotient orbifolds

2.5.1. This section is dedicated to study the geometry of (some of) the
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quotient orbifolds corresponding to the groups of the previous sections. Before
getting involved in the particular cases, some general ideas about the subject
are needed. We will work with orbifolds of type (0,3), where the universal
branched covering space is (conformally equivalent to) either the upper half
plane or the complex plane. In these two cases, the spaces carry metrics that
are preserved by the corresponding groups (they become groups of isometries),
and therefore we can push down the metrics to the quotient spaces. In the
case of the upper half plane we are talking about Poincaré’s metric ji_?-l, while
the case of the complex plane is the usual Euclidean metric, |dz|.

With this in mind, we project the metric of the covering space to the
orbifold, obtaining a Riemannian structure, and fherefore a metric structure,
with a well defined concept of distance.

2.5.2. Let I be a triangle group acting on the upper half plane (or some
bounded disc which is conformally equivalent to the upper half plane) or on
the complex plane. Let denote either one of these sets by ¢{. Put on each the
corresponding metric of constant curvature —1 or 0 that makes I a group of
isometries. Let the quotient space U/ /T be denoted by §. A geodesic on the

quotient orbifold is just a curve that lifts to a geodesic on . Formally:

Definition 7 A geodesic on S is the projection by 7 : U — S of a geodesic
on .

2.5.3. The goal of this section is to find geodesics on S and use them
to compute coordinates. We will do it by mapping those geodesics to certain

subintervals of the real line, with a metric so that the mapping is an isometry.
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The geodesics we are looking for are especial, in the sense that they ‘start’ at
the punctures, or at some ramification value, and therefore they can be used to
produce coordinates on the orbifold related to these special points. We do this
because, later on this thesis, we will need to cut and paste neighborhoods of
those points, and a good set of local coordinates will make our computations
much easier.

Qur first result is for hyperbolic groups whose quotient orbifold has punc-

tures.

Proposition 7 Let S be a hyperbolic orbifold with signature (0,3; 00,11, v7)
and with covering U conformally equivalent to the upper half plane (thus Vll +
% < 1). Let P ¢ S be the puncture corresponding to the first oo in the
signature, and let P! the puncture or branched point corresponding to 1. Then
there exists a unique simple geodesic ¢ : I — S joining P and P' such that
if ¢ is parametrized by arc length s, we have the following:

liMgmtooc(s) = P

1) if vy = oo, then I =R and |

lim,_, _ooc(s) = P!

"

limy_ 4ooc(s) = P
2) if vy < 00, then I = [0,400) and

¢(0) = P?

and the image of ¢ does not contain the pc;z'nt corresponding to vy.

Proof.The existence part is easy. These orbifolds have no moduli, so we

can assume that the covering space is & = H, and the covering group has
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parameters (00,0,1). As a fundamental domaion for our group we can choose

(depending on the signature of the group) one of those in figure 2.2 below.

SONNAANN

PRI
SIS

Figure 2.7: Fundamental domains for hyperbolic triangle groups

The projection of the part of the imaginary axis that lies in the boundary
of that fundamental domain gives a geodesic on & that satisfies the conditions
of the statement of the proposition.

For the uniqueness part, let us assume that there is another geodesic,
satisfying the properties stated in the proposition. We lift it to H and we
can assume that the lifting is a vertical line (or half-line, depending upon the
signature). We want to prove that this second vertical line is simply a translate
of the imaginary axis under a power of A, and therefore the projection of the
two lines will be the same geodesic in the orbifold. -

The vertical line that ends at o must have a point corresponding to
Pl (z, itself if the point is a puncture, a point inside the upper half plane
i_therwise), which will be the fixed point of some element B;i. Now, if we

‘remove on the orbifold the point corresponding to v; (if v = co, then we do




not have to remove anything, since punctures are not in the orbifold), we are
in a situation like the torsion free case, and we get that A and B, generate
the group I’ (see [Kra90]). Therefore A and B will be canonical generators for
some parameters. By the last proposition of the subsection 2.3.11, we have
that there is an integer n € Z such that AM?BA-™? = By. Our proof will be
complete is we show that n is integer.

Suppose AY/2BA~"/? is conjugate to B in the group I'. Then the element
Al/? belongs to the normalizer of T' in PSL(2, R) and induces an automorphism
of the quotient orbifold that fixes at least one puncture (the one represented
by A). Since A% does not belong to T', the induced automorphism is not the
identity, and therefore that a,utomorphism ha.s'..to .i'nterchange the other two
ramification points. This implies that B and AB are elliptic transformations
of the same order. Then it is easy to compute that AV2BAY? = (AB)7.
This would imply that B and (AB)~! are conjugate in the group T, which is
not true since they correspond to different branch points. Therefore zp is an
even integer and the geodesics are the same. ' O

2.5.4. Let us consider the case of a parabolic group whose quotient
orbifold, &, has a puncture. If P ¢ S is the puncture and P! is one of
the branch points, what we want is to find a geodesic ¢ joining P! to P.
Conjugating by a Mobius transformation we can assume that the group is
T(c0,2,2;00,0,1), whose region of discontinuity is C. Then a geodesié on §
will lift to a straight line from 0 to co. The problem is that there are infinitely
many such lines. To understand what extra conditions we have to impose on

to guarantee uniqueness, let us look at two such'lines. Take ¢, (s) = 4s and
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c2(s) = 715(1 + i)s, with s € [0, +00). Both lines have been parametrized by
the arc length. Now, the distance from 0 to 22 along ¢; is 2; the distance from
0 to 2 + 24 along ¢, is 2v/2. But since the mapping A(z) = z 4 2 belongs
to the group T'(co,2,2;00,0,1), the points 2 and 2 + 2¢ are equivalent. This
means that on the quotient orbifold S, the projection of ¢; is ‘shorter’ than
the projection of e;. This example suggest that the condition to guaranteé
uniqueness is that the geodesic has to minimize distances between any two

points on if.

Proposition 8 Let S be an orbifold of signature (0,3;00,2,2). Let P ¢ 8 be
the puncture, and let P! be one of the branched points. Then there ewfsts a
unique geodesic ¢ : [0,00) —= S, such that c(0) = P!, lim,_.c(s) = P. Fors
the arc length parametrization, c realizes the distance between any two points

on tl.

Proof.We should first note that we can take the group that has parameters
(00,0,1), and assume that P! lifts to 0. By our definition of geodesics, any
straight line joining zero and infinity will project onto a geodesic of the orbifold.
Suppose then that ¢ lifts to the line given by the equation y = mz, with m
real. The slope cannot be zero, because the real axis projects onto a closed
curve that connects the two ramification points, but it does not go through
the puncture. The point 2 + 2mi belongs to the line. Along it, the distance
. from the origin to that point is 2v/1 + m?. But this point is equivalent to 2ms,
Which is at distance 2|m] from the zero. Since 2|m| < 24/1 + m?2, this geodesic

is not distance minimizing. The only case left is the geodesic whose lift is the
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imaginary axis. It is trivial now to see that the imaginary axis projects to the
orbifold onto the geodesic that satisfies the required properties.

Suppose that we have another geodesic satisfying the required properties,
and consider its lift to € as in the proof of the previous proposition. We are
in same situation of 2.5.3, and the proofs applies verbatim to this case. O

2.5.5. We want to use the special coordinate around the puncture to
produce a coordinate patch on the orbifold. To fix ideas, let us consider
the case of a hyperbolic orbifold §. Assume that S is uniformized by the
group T'(co,vy,1;00,0,1). The choice of parameters is not an issue, since
the orbifolds of type (0,3) have no moduli, and our sta,-tement is related to
the geometry of S, not to the particular group. As before, let P & § be the
puncture corresponding to oo in the signature, and let P! be the ramification
point or puncture corresponding to v;. We have a special geodesic ¢ joining P
to P'. What we will do is to find a coordinate around P such that the geodesic
¢ is mapped into the positive real axis, and a neighborhood of P (punctured
disc) is mapped into a neighborhood of the origin in the punctured unit disc.
Let

p:H— S8

be the universal covering orbifold. Then the function defined by
f(Z) — 67rip—1(Z),z c S, -

maps the geodesic onto a segment of the real axis. More precisely, the image of

the geodesic is contained on the unit interval. This function can be extended

to a punctured disc around P,' and it will map that punctured disc into the
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unit disc. If we consider in this last set the Poincaré metric of curvature -1,
then f is an isometry. The germ of the holomorphic function defined by f is
uniquely determined by the fact that a portion of the geodesic ¢ is mapped
isometrically into the real axis in the punctured disc. We will call this germ
of functions a horocyclic coordinate, centered at P and relative to P'. The
proof of this uniqueness statement for the torsion free case can be found in

[Kra90], and it works in our case as well.

2.5.6. The case of ramification points is similar, and the formula is easy to
get. To understand it, all we have to do is understand what happens with the
punctures: they are realized as the fixed points of parabolic elements, which
are conjugate to translations; therefore to get something invariant under a
parabolic element, the most natural function is the exponential, since it is
invariant under translations. Similarly, the elliptic elements are conjugate to
euclidean rotations; the most natural functions invariant under rotations are
powers. So to get coordinates around the elliptic fixed points we should first
conjugate the element to a rotation that fixes the origin and co, and then
raise to the correct power. To fix ideas, let us consider the case of a hyperbolic
group with signature (0,3; 0o, vy, v,), where vy is finite. Consider the geodesic
¢ that joins the puncture P (corresponding to the oo in the signature) with
the point P!, of ramification value v;. As we did in the previous paragraph,
we can assume that the uniformizing group of S is I'(oo, v, 15;00,0,1). The

element of order v is
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- b 2 1
B = , gi = cos{m[v;), b= Ly
| Q@+ g2

g1+4q —¢

Its fixed point inside the upper half plane is 2 = , where py = sin(r/v).

_ip
q1+92

Consider the transformation

1 20 1 _EO

This function takes the upper half plane onto the unit disc, mapping the points
00,0, zg to 1, —1, 0 respectively. We also have that MBM~!(z) = e2™/" 7 The
coordinate is then given by

_ p_l(z) = Z0 1
) = (=2

As before, p represents the covering from the upper half plane onto the orbifold.
Let D denote the unit disc with the standard Poincaré metric -13_%"3. If we take
the quotient of D by the group of transformations < z — >z >, we get

an orbifold, say D,,, with covering mapping

D - D,

z > (=27

and in D,, we have the quotient metric

2
nlC'(n—l)/n(l — K]ﬂn) '
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Then the mapping f is an isometry from a neighborhood of P! into a neighbor-
hood of 0 in D,,. f maps a piece of the geodesic c into the real axis (contained
in D,,)-

To prove uniqueness, we suppose there are two coordinate mappings, say
f[:U; —» D, and g: Uy — D,,, defined in neighborhoods of the branch point
P!, and so that they map a piece of the geodesic ¢ into the positive real axis.

Form the function ¢ = go f~%

VD,

Then ¢ : U — V, where U = f(U;NU,;) and V = g(UiNUy) are neighborhoods
of 0 in D,,, and ¢ maps the positive real axis into itself. We also know that ¢
has a simple zero at that origin. Due to the fact that f and g are isometries
in the corresponding metrics, we get that ¢ is an isometry on the metric of
D,,. This means, in the distance on D,, induced by the above metric, we have
dist(p(z),e(y)) = dz’st(:c,y) for 0 < y < = < ¢, for some small e. We have the
explicit formula of the metric, so we compute and obtain

1+ p(e)/" L — ()" Lt a1 =yt

109(1 —p(z)V 1 + (P(y)lfn) = 09(1 —gl/n] 4 yl/'n)-

This implies

L+ () _ 1+
1 —g(a)/m (constant) T

for z real and small enough. Substituting z for 0 we get that the constant

should be 1 and therefore (z)'/* = z'/*, which gives p(z) = . This is
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equivalent to say that f = g in the overlap U; N Us.
The germ of holomorphic functions defined by [ is called a horocyclic
coordinate centered at P! and relative to P.

We now state the results of §2.5.5 and §2.5.6 in a proposition as follows:

Proposition 9 Let T(vy, vy, va; @, b, ) be a hyperbolic triangle group such that
either v, = 0o or vy = co. Let S be an orbifold uniformized by this group, and
suppose that 8 has the metric of constant curvature —1 that comes from its |
universal (branched) covering space. Let P' and P? be the points corresponding ‘
to vy and vy respectively. Let ¢ be the geodesic on S joining these two points.
Then there exists a local biholomorphism z, defined in a neighborhood N of
P, such that z(PY) = 0 and 2 maps isometrically the portion of ¢ inside N
into the positive real awis, with the metric of the punctured disc if ¥y = oo, or
the metric of D,, if v, < 0o. The germ of the biholomorphic function defined
by z s unique.
|
2.5.7. All these results can be extended to the case of compact orbifolds, ‘

but we will not include them here, since they do not have new ideas but the

computations become quite messy.

2.5.8. The parabolic case is handled in the same way. For the puncture |

we have that one possible coordinate is given by the function

f(z) = o,

For the elliptic fixed point that lifts to 0 we have that f(z) = (p71(2))* is

a good coordinate,
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2.6 Normalizers

In this section we will give formulae for the normalizers of some of the
above groups in PSL(2,R). T will denote a hyperbolic triangle group, with
parameters {(00,0,1). Since the group is non-elementary and Fuchsian, so is
N(T), its normalizer in PSL(2,R). Moreover, N(I')/T is isomorphic to the
conformal automorphisms group of the quotient orbifold. Any such automor-
phism should preserve the ramification values of the branch points, and it
extends to the punctures (removable singularities theorem for holomorphic

functions). This means that the above quotient of groups is isomorphic to :

(1) Ss, the permutation group of three letters, if the group is torsion free,

or it has signature (0,3;v,v,v), ¥ < 00;
(2) Z, if the signature has exactly two ramification values equal.
(3) the trivial group if the three ramification values are different.

The extra generators (that is, those transformation that together with I’
generate the group N(T)) are given by the following elements, for the case of

groups with parameters {00, 0,1):

(1) see [Kra90] for the torsion-free case; otherwise we get

—cos(2x/v) —ksin(2r/v)
A1/2 —

k~lsin(2n/v) —cos(2n/v)




cos(2m/v) —g sin(2r/v)
Bl/Z —

Bsin(2r/v) —cos(2m/v)

where ¢ = cos(x/v),p = sin{n/v) and k and b are given in Proposition 1

(subsection 2.3.7). The quotient group < AY2, BY? > /T is isomorphic to S.

(2)

ViTE —LE
(AB)'/* =

V2% 0
2

L -

in the case of signature (0, 3; 00, co, v);

i ]

(A2 =

0 -1

for the case of signature (0,3; 00, v, v); and

— cos(:‘;%) —k Siﬂ(ﬁ)
A1/2 — ,
k7lsin(g~) —cos(£)

for the case of signature (0,3; u,v,v), with g # v, 4 and v finite, and £ is
given in proposition 1 of subparagraph 2.3.7. -

(3) there is nothing to be shown.

Conjugating by a Mobius transformation one can get the expressions of

the normalizers of these groups for the case of any other parameters.




Chapter 3

Coordinates for the Teichmiiller spaces of

b-groups with torsion

3.1 Weighted graphs and deformation spaces

3.1.1. The main goal of this chapter is to produce coordinates for the
Teichmiiller spaces of orbifolds of finite hyperbolic type. To do it, we will
use the main philosophy of Maskit embedding: a surface of high genus can
be constructed from several ‘smaller’ (topologically simpler) surfaces whose
deformation spaces are one dimensional. A set of complex numbers will tell us
how to (;ombine the smaller surfaces to obtain the original ‘bigger’ one. These
complex numbers will serve as parameters (coordinates) for our Teichmiiller
spaces. Therefore, we first of all need to study the orbifolds of type (0,4) and
(1,1), which are the only ones with deformation spaces of dimension one. But
before that we will explain how to cub a ‘complicated’ orbifold into simpler
parts.

3.1.2. We start by recalling the definition of maximal partitions. Let §

6

3
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be an orbifold with signature (p,n;u4,...,¢,). Let 8 be the surface (possihly

with punctures) that results from removing from S all the ramification points.

Definition 8 A MAXIMAL PARTITION, C, on S is a set of 3p-3+n

simple unoriented closed curves in §' such that:

1.- no two curves in the partition are freely homotopically equivalent on
S’

2.- no curve in the partition is homotopically trivial on 8';

3.- no curve in the partition is contractible to one of the punctures of §',

The name of maximal comes from the fact that any set of curves satisfying

the above three conditions has at most 3p-3+n elements.

If we cut S along the curves of a maximal partition C we will get a set
of 2p-2+n spheres with ramification points and/or punctures and some discs
removed. An example of a maximal partition on an orbifold with signature
(2,2:7,4) is given in figure 3.1; the parts that result from cutting that orbifold

along the curves of the partition are shown in figure 3.2.

We can attach to these spheres punctured discs to get orbifolds of type
(0,3). To recover the original orbifold what one needs to do is the “inverse’ Op-
eration: start with a set of orbifolds of type (0,3), rerriove punctured discs and
glue along the boundary curves. A first idea that comes to one’s mind is that
gluing the curves involves two real parameters, a radius r (in a good coordi-
nate) of the removed punctured disc and a twisting angle ¢ (the measure of the

turning of one curve with respect to the other), and re* is a complex number.
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Figure 3.1: A maximal partition of an orbifold

This idea gives a set of coordinates for deformation spaces that could be called
the ‘complex Fenchel-Nielsen coordinates’,

3.1.3. We see that the above procedure involves a series of distinct math-
ematical ingredients that we need to control:

analytic aspects: the gluing is done in local coordinates by an identifica-

tion of the type zw =t (see below for further details);

topological/combinatorial aspects: how many parts and curves, and how

they are related. This is due to the fact that there are many homotopically
distinct partitions on one orbifold.

The analytic aspect will be controlled by a set of complex numbers that
we will called plumbing parameters; see below for details. The topological
information will be recorded in a weighted graph; that we define next. Let P
and n be two non-negative integers satisfying 2p—2+n > 0. Let v = 2p~24n

~and d = 3p — 3 + n. It is easy to see that then d > 0.

Definition 9 A (admissible) WEIGHTED GRAPH (or graph with weights)
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Figure 3.2: Parts of the previous orbifold

is a connected graph with v vertices and d + n edges, satisfying the following
conditions:

1.- edges join two different vertices, or a vertex to itself, or they just leave
a verter and do not end at another verter; edges of this last type are colled
phantom edges;

2.- three edges leave every vertex (an edge from a wvertex lo dtself counts
as two edges);

3.- phantom edges have assigned numbers belonging to the set W = {q €
Z/q > 2} U {oo}; these numbers are called weights;

fom if p1y...,pin is the collection of weights corresponding to phantom
edges, then 2p —2 4+ n — ?=1ﬁ;>0-. | | | -

5.- each half of a non-phantom edﬁe haé. dééigned a numbér in the set W;

the two numbers corresponding to the two halves of a non-phantom edge are

equal.

An example of an admissible graph is given in the figure 3.3.
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Figure 3.3: Admissible graph

3.1.4. We label the vertices on the graph with v;, and the gd_gé:s. v.v._ith
ej. Without loss of generality we assume that the numbering is done in _'q;_way
that the graph consisting on the first k edges, {e1,..., ez}, _a_,_n_d _thé__ vertices
they join is connected. We can then orient the edges as follows: if e; joins vy
to v, with & <[, then ¢; is positively oriented from v to .v;_. If & =1, then we

give a e; any orientation of the possible two.

In order to differentiate phanton edges fro_r'n;:f.,fie non-phantom ones, we
will draw a small empty circle at the end of the_ff i_ﬁh@'_{;tom edges, as it is done
in figure 3.3. i

3.1.5. Now we will show that there 1sa, correspondence betsween admis-
sible graphs and pairs (orbifold, maxima.l'bé.ftﬁidn), 1f '..Wé .coﬁsider this last
set only from a topological point of view. Frofn a graph we will construct an
orbifold with a maximal partition; but from an orbifold (with a maximal par-
tition) we can construct a set of different graphs, that Wiﬂ produce different

Teichmiiller spaces related to the orbifold.
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Given a pair (S,C), where S is an orbifold of finite conformal type with
hyperbolic signature o, and C is a maximal partition on &, we are going to
construct a series of admissible weighted graphs associated to that pair. We
start by cutting S along the curves of C; that is, we consider the disjoint
sets St,...,S2p—24n, such that U?‘:H”Sj = 8§ — {arfar € C}. Each §; is,
topologically, an orbifold of type (0,3). Consider now a curve of the partition,
say a;, which is the common boundary of two holes, say hl and h#, in the
spheres §;, and S;, respectively. Attached to each of these spheres a disc whose
center has ramification value j; € W (as usual, if the center has ramification
value equal to 0o, the disc is a punctured disc and the ‘missing’ point is NOT
in the orbifold). After this process, we get that each §; has been ‘completed’
to became an orbifold with signature (0,3; v}, v%, 7). Label the special points
of §; by PJ-l, Pj?, Pf. To each of these spheres, §7, we assign a vertex, v;, with
three edges, e}, €2, €3, that have weights v}, v}, v} respectively. The edges are
in one-to-one correspondence with the ramification points/punctures of the
sphere. See figure 3.4. The edges that correspond to ramification points of
the original orbifold are phantom edges, and they end in a empty circle. The
edges that correspond to the ‘extra’ ramification points (added after cutting
the original orbifold into parts) are non-phantom edges; or loosely speaking,
they are ‘half edges’.

Take a non-phantom edge, say ¢/ that starts at the vertex v;. This edge
comes from attaching a (possibly punctured) disc to the sphere &;. Such

disc has been added to the boundary of S; determined by certain curve of

the partition, say a;. Therefore there will be another non-phantom edge, ef,
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Figure 3.4: Parts of an orbifold with the special points labeled, before adding

ramification points

emanating from the vertex vy, that corresponds to the same partition curve q;.
If v¥ and v{ are the weights of ¢} and ¢f, we have that v¥ = v} by the above
construction. 7 can be equal to k, but in that case we will have p # ¢. We then
join the edges €} and e} to form one single edge, with weights equal to v} at
cach half. Proceeding in the same fashion with all the non-phantom edges we
get an admissible graph ¢, associated to the pair (§,C). This graph is NOT
unique, since we have added arbitrarily the weights of the non-phantom edges.
For example, the graph of figure 3.3 is a graph corresponding to the orbifold

of figure 3.1.

3.1.6. We now proceed in the inverse order, to get an orbifold from a
graph, as follows: consider an admissible graph, G, with vertices vy, ..., V95 24n
and edges e;,...,eap_3yom. lake one vertex, say v;. From it three edges
- emanate, e, €j,, €, 1 < j2 < Ja, with weights pj, pj,, py,, respectively.

Assign to the vertex v; a sphere §; with signature (0,3; 4, 5, 155} We
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label the special points of S; by P/, P? and P?

: 2, so they are in a one-to-one

correspondence with the edges e;,.

Take a non-phantom edge of ¢, say e, and suppose that it connects
the vertices v; and vg. On the sphere S; there is a ramification point P}
with ramification value equal to the weight of the half of e, that starts at vj.
Similarly, on S, we have a ramification point P}, corfesponding to e,,. The
ramification value of P is the same that the ramification value of PJ, since
both points correspond to the same non-phantom edge. j can be equal to k,
but in that case r # s. We then cut neighborhoods of P! and P} on §; and
S, respectively, and identify the boundaries of these neighborhoods, to obtain
in this way a new ‘bigger’ surface. After doing the. same operation with all
non-phantom edges we get a surface of genus p with n ramification points or
punctures. The ramification values are given by the weights of the phantom
edges.

Observe that two graphs with the same phantom weights induce the same
(topological) orbifold.

The analytic process of cutting and pasting around the ramification points
or punctures is controlled by a process called plumbing constructions that
we explain in the next subsection. ‘o

3.1.7. The cutting and paste done in subsection 3.1.6 involves only topo-
logical aspects; the plumbing constructions are the operations we need in order
to work at the level of complex analysis. Here we will follow the work of Irwin

Kra in [Kra90].

Let S; and S, be two orbifolds with signatures (0, 3; i, #1, v2) and

70



(0, 3; 4, v3, va) respectively. Considér on S; the horocyclic coordinate z cen-
tered at the point with ramification value g and relative to the point with
ramification value ;. Similarly, we take the on &; horocyclic coordinate w
centered at the point with ramification value g and relative to the point with
ramification value v3. Suppose ¢ is a complex number small enough so that
the closure of the sets {z € &;; |z| < \/H} and {z € &; lw| < \/m} are
contained in &; and S, respectively. Let 87 and &5 be the orbifolds with
the above (open) sets removed. Consider the quotient surface obtained by

identifying the boundaries:
S = (81 L’Sz)/ ~,

where z € 8§ and w € §; are equivalent, z ~ w, if and only if |z| = \/H = |w|
and zw = ¢ (here Ll means the disjoint union of sets). This process is called the
tame plumbing construction. The ‘tame’ part comes from the fact that
the boundary curves that we identify are given by horocircles (level curves of
horocyclic coordinates). We can do this construction along other curves, not
horocircles, to obtain the general plumbing construction. To see that the
resulting surface is a Riemann surface with signature (orbifold), we can do
the plumbing construction by identifying annuli (instead of curves}, and then
prove that the final orbifold is independent of the choice of annuli. This is
done in [Kra90]. Let us remark that the proof there is for the ase of surfaces
with no branch points, but it works as well for orbifolds because the process
of gluing takes place in open sets that do not contain ramification points.

If we have only one orbifold & with signature (0, 3; y, i, v), we can
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consider horocyclic coordinates around the two points with ramification valye
f- Suppose that the coordinates are called z and w. In order to make a plumb-
ing construction we consider the sets {z € S; |z| < \/H} and {z € 8; |w| <
\/H}, but this time we have to choose ¢ so that these two sets are disjoint.
Under these conditions we can make the plumbing identification as before, to
obtain an orbifold of signature (1, 1; »). This is again a tame construction; we
also have the general plumbing construction, as in the previous case.

These constructions can be extended with no problem to glue any two
orbifolds, not necessarily those of type (0,3).

3.1.8. Here we prove a lemma that tells us that the tame plumbing
constructions are possible as long as [¢| is small and the points we glue have
ramification value p = oo; that is, we do plumbing constructin removing
punctured disc. A similar lemma for points of finite ramification value will

appear elsewhere in the near future.

Lemma 3 Let § be an orbifold of signature (0,3;00,v1,1) and let z be a
horocyclic coordinate around the point corresponding to co. Then the image of

z contains an open disc of radius
r = (00, nuy) = e DT,
if the signature is hyperbolic, and of radius 1 if the signature is parabolic.

Proof.We can take a triangle group with the above signature and param-
eters (00,0,1). Let us first work out the hyperbolic case. We can take as

-fundamental domain of this group one of the three drawn in the figure 3.5.
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Figure 3.5: Fundamental domains for hyperbolic triangle groups

The left circle of the fundamental domain, whose center is in the real line,

is the isometric circle of the transformation

- -

—cos{w[1) b

cos(m /) + cos(nfvy) —cos(m/vy)

- -

Then the horizontal line Im(z) =

. Y 1
Its radius is equal to st o reosln o)

Py /Vl)iws(w 7 projects on the orbifold onto the circle of the desired radius,
and the part of the fundamen]:a.l domain above that line is our disc. To com-
plete the proof for this case we should remark that the right circle of the above
fundamental domains is the isometric circle of the transformation AB, and it
has the same radius that the left circle, so we obtain the same bound.

The parabolic case is proven in the same way. O

From this lemma we see that we always have room to perform a tame
plumbing construction between two orbifolds of type (0,3). For example, if

we have an orbifold with signature (0,3; 00, 1, ¥) and another with signature

73




(0,3; 00, 11, ¥2), then we can do a plumbing construction if we take ¢ of §3.1.7
to satisfy |t| < min(r(oo, v, v), (00, v3vs)). We can also do plumbing con-
struction between two orbifolds of more complicated topology, but then we
have to be more careful about the bounds for [¢[.

3.1.9. Given a weighted graph, G, we are going to construct a deformation
space associated to it in a way we now explain. Suppose that G has d non-
phantom edges. We know that to build the orbifold (with maximal partition)
associated to the graph G we have to perform d plumbing constructions, in a
way somehow controlled by the non-phantom edges. The set of all n-tuples of
complex numbers (t1,...,%4) so that it is possible to build an orbifold associ-
ated to G using them as plumbing parameters is called the DEFORMATION
space of the graph G, and it will be denoted by D{(G).

There is a point that needs to be made clear. If (1, ... ,ta) is a point of
D(G), then we can construct an orbifold with this n-tuple as plumbing param-
eters. But the plumbing operations require a choice of horocyclic coordinates
on the surfaces we are gluing. Our choice is as follows: suppose we want to glue
the surfaces S; and &) by cutting neighborhoods of the punctures Pl and Pj.
Then we take the horocyclic coordinate z in §; centered at P] and relative to
Pl +! (where r +1 is taken relative mod 3); and on the surface Sy we consider
the horocyclic coordinate w, centered at Py and relative to P,j*fl.. Using z and
w we make the corresponding plumbing construction (see [Kra90]).

3.1.10. In subsection §3.1.5 we have seen how to build a graph from an
orbifold with a maximal partition. One can see that there are two possible

operations that occur in that procesé, namely the union of two disjoint graphs



by merging one edge of each graph, or the union of two edges in a single
graph. We call these operations the AFP of two graphs or the HNN extension
of a graph, for the reason that we explain now. More details can be found in
[Kra90].

Suppose we are in the following situation: we have built a graph G from
an orbifold 8, and we are now to join that graph with another one, say G', that
correspond fo adding a new sphere, 8’ to §. The addition of these new graph
G', that consists on only one vertex and three edges, is called the AFP of the
graphs G and G'. At the level of b-groups we have that & (with its maximal
partition) is uniformized by a terminal regular b-group, say I The sphere
S’ is uniformized by a triangle group T”. Then, the union of the orbifolds &
and S is uniformized by the AFP of T' and ['. This is because joining the
orbifolds S and S’ across two ramification points/puncutures means that these
two points are given, in I' and I', by the same parabolic/ elliptic element. The
AFP construction can be generalized to any two disjoint graphs.

The same situation happens with the HNN extension of a graph: suppose
S is an orbifold that gives the graph G, and & 1s uniformized by the b-group
T. If we join two edges of G, at the level of groups we are making an HNN
extension of T' by some element, C. This is the intuitive idea, since join-
ing two edges corresponds to identifying two ramification points/punctures;
these special points are represented by two parabolic or elliptic elements, the
identification will be conjugating one parabolic/elliptic into the other by a
transformation C.

3.1.11. In the next section we will construct the deformation spaces of




terminal regular b-groups associated to graphs where the non-phantom edges
have weights equal to oc. The section 3 will deal with the construction of
groups associated to graphs of orbifolds with signature (0,4, oo, co, 00, 00},
but where the (unique) non-phantom edge has finite weight. More general

results will appear elsewhere in the near future.

3.2 Coordinates for deformation spaces

3.2.1. In this secfion we will study the one-dimensional Teichmiller
spaces (the deformation spaces of orbifolds of type (0,4) and (1,1)), and then
we will use Maskit embedding theorem to compute coordinates for the defor-
mation spaces of orbifolds of arbitrary finite hyperbolic type.

3.2.2. Let S be an orbifold with signature (0,4; v4, vo, ¥3,74). A maximal
partition on S consists on one curve, a, that divides S into two parts, &
and S;. Without loss of generality we can assume that the points on &; have
ramification values ¥, and v,. Let us orient a so that &; lies to its right. Let
us assume (for now) that neither of the signatures of & and &; are equal
to (0,3;00,2,2). The situation is pictured in the figure 3.6. We want to
reconstruct the orbifold & from the parts §; and S; by a plumbing operation;
the way this plumbing has to be done will be controlled _by_ a comple__x number
whose logarithm is a coordinate for the deformation space of S.

At the level of graphs, what we do is to take two graphs, each of them
with one vertex and three edges, and then we make the AFP of the two graphs

(§3.1.lﬁ) across one edge to obtain a bigger graph, as is shown in the figure
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V3 v2
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Figure 3.6: An orbifold of type (0,4) with a maximal partition.

3.7.

0J 2
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Figure 3.7: The AFP operation at the graph level. ,u = 00

Before starting the technical arguments, we need to say one more thing
about choosing generators for triangle groups. Suppose that § is a hyperbolic
orbifold with signature o, and with at least one puncture. Let a be a small
closed loop contractible to a puncture on &. Orient a such that the removed

point (puncture) lies to the left of a. Let F be a triangle group with signature




78

o. The region of discontinuity of this group, Q(F), consists of two discs, Dy
and D,. We need some way of choosing one of these two discs as the universal
covering space of §. To do so, lift @ to beach disc: @; C Dy and @, C Dy, both
invariant under the same parabolic element A Orient @; so that for any point
z in & C D; the triple (z, A(z), A%(z)) is positively oriented. Then we will
have that in one of the disc, the puncture we are considering lies to the right,
while in the other disc, it lies to the left; it is this latter disc the one we choose
to uniformize S.

3.2.3. Attaching a punctured disc to the boundary of S; we obtain an
orbifold of finite hyperbolic type with signature (0,3; co,vq,¥,). Since we are
interested in coordinates on the Teichmiiller space, we are free to conjugate by
Mébius transformations. This gives us the chance to choose the triangle group
['(c0, 11, ¥2; 00,0, 1) as the uniformizing group of 8. Its generators, (A, B) are

given in section 2.3, but we include them here for the sake of clarity:

-1 -2 -1 b
A= , B= ,
L 0 -1 G+q —q
1— 2
g; = cos(m/u;), b= -ql—fql;.

The element A corresponds to a small loop around a puncture. We will
cut a neighborhood of that puncture to make the plumbing construction. This
means that A is going to become accidental parabolic after applying Maskit
First Combination Theorem ([Mas88]), and it will correspond to the curve o

of the maximal partition of the figure 3.6.



3.2.4. Now consider the part S, that lies to the left of the curve a.
Again add one punctured disc to obtain a complete orbifold, uniformized by a
triangle group ['(co, vs, v4; d, €, f) where the parameters have to be determined.
Due to the orientation of the partition curve, one of the canonical generators
of this group, the one corresponding to the puncture used in the plumbing
construction, has to be A~1; see §3.2.2. This group can be obtained as follows:
the general triangle group with that signature has canonical generators A and
B, and parameters (00,0,1). Since we want A~! to be one of the generators,
we should change as well to B!, because A-1B-1 is parabolic while A™1B
is not. That will give parameters (00,0, —1). We want to conjugate (this is
the ONLY way to get another triangle group with the desired signature) the
group preserving the element A~!. Therefore, the conjugation should be made

by an element of the form

TO[ = )

where « is a complex number. We get that the generators of the group
T'(0o, v3,va; d, ¢, f) are

—~gs —alga +q1) —b* — (g3 + qu)
A™Y, Bl = ,

—(gs + q4) —qé + algs + q4)
L . )

q; = cos(m/y;), b* = Elgjﬁ- This gives that the group uniformizing S; (with a

punctured disc attached) is I'(co, v3, v45 00, @, & — 1).

Pl
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3.2.5. The group generated by the union of I'(oo, ¥1,12;00,0,1) and
I'(o0, va, v4;00, 0, —1), I'y =< A, B, B, >, is a terminal regular b-group with
signature (0,4; vy, ¥y, 113, v4) that uniformizes the orbifold & on its invariant
component, and two orbifold of signature (0, 3; 00, 11, 12) and (0, 3; 00, v3, 1y)
in the non-invariant components. This can be seen by applying Maskit First
Combination Theorem. For example, if o has big imaginary part (see theorerﬁ
below for a bound) one can use a horizontal line to apply the First Com-
bination Theorem. The same Combination Theorem tells us that 'y is the
AFP of the two triangle groups across the common subgroup generated by A:
[ = I'(0c0, 11, 12;00,0,1) % a5 (00, v3, 14500, 0, — 1). We also see that the
invariant component of I', is contained on the strip {z; 0 < Im(z) < Im(a)}.
a is a coordinate for the deformation space of the group (since if wé know o we
know the group é,nd iﬁs marking, and different markings determine different
a’s). We can express a as something more related to this new group: the
parameters for the triangle groups uniformizing S; and S, are, respectively,
(00,0,1) and (co,a,@ — 1). Then a = er(00,0,1,a), and this expression is
PSL(2,C)-conjugacy invariant.

In general, the orbifold S is uniformized by a group I' constructed as the
AFP of two triangle groups, say I' = I'(00, 11, 12; d, e, f)*, (00, v3, v4;d, €, ),
where J is a common subgroup generated by a parabolic element correspond-
ing to the curve of the partition. Then the point in the Teichmiller space
T(0,4; vy, v, v, v4) that corresponds to the group I is given by the cross ratio
cr{d, e, f,d"). We would like to remark here that once the first triangle group

I'(co, v, 14;d, e, f) is given, we have only one degree of freedom when choosing
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the parameters of the group I'(oo, 13, v4; d, €/, f'); this is so because the two tri-
angle groups must share one parabolic element, so the parameter d is common
to both groups, and once e’ is chosen, there is only one possible choice of f!
that makes that the groups share a parabolic element. This is quite natural,
since the Teichmiller spaces of orbifolds of type (0,4) have complex dimension
L.

Choose a = 2i; then the group T'y; is a terminal regular b-group unformiz-
ing an orbifold of signature (0, 4; 11, ¥4, v3, ¥4) in its invariant component (and
the correct number of orbifolds of type (0,3) in the non-invariant sets). The
space T(T'y;) is then isomorphic to the space T'(0,4; vy, va, va, v4). Lemma 3 of
the previous section gives us some estimate for the size of the space T(T3),

which are stated in the following result:

Theorem 3 « is a global coordinate, called horociclic coordinate, for T(T's;)

= T(0,4; v, va, 3, v4), and we have the following:
{af Im(a) > 1} C T (') C {a/Im{a) > 42},

where

1 n 1 ( 1 1
= = maxz , ,
nh+q@ Bta v g1+ g2 g3+ g4

hn
and ¢; = cos(m[v;).
Proof.If Im(e) is bigger than y;, we can choose fundamental domains for
['(o0, vy, vy;00,0,1) and I'(oco, v, v45 00, 0,00 — 1) like those in figure 3.5 (or

translated by T'a). Then we have that there is a horizontal segment in the

intersection of the fundamental domains that, under iterations by A, extends to
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a horizontal line that can be used to apply Maskit First Combination Theorem,

[Mas88].
For the second statment we need a general fact about precisely invariant
a b
sets. Let us assume that the transformation v = has real coefhicients,
c d

and ¢ > 0. Suppose k > 0 and let X be the set
X ={z/ Im(z) > k}.

Ifk < ﬁ =1, then y(X)NX # 0. The idea is that the isometric circle of
v intersect X, and therefore its image 7¥(X). To prove it, consider the circle
of center =¢ and radius 1. The point with the biggest imaginary part in this

circle is —% + £, Then this point is in X and for its image we get

d 1 —ad+ta+bec a 1
Wt Tt g,
¢ ¢ e c ¢

which is in X, as we claimed.

Returning to the proof of the theorem, we have that the lower half plane

has to be precisely invariant under I'(co, v, v2; 00,0, 1), and therefore we get

gatqgs "

that Im(a) > — And because the half-plane {z/Im(z) > Im(a)} is
precisely invariant under I'{oo, v3, v4; 00, &, & — 1), .v.s..fe ggt Im(a) > ﬁ?;, com-
pleting the proof. a S .. O

3.2.6. In [Kra88] it is shown that the trace of B, B is locally injective on

the deformation space we are studying. We see that this trace is equal to

2¢1g3 + b*{q1 + q2) + b(gz + q4) — o (g1 + g2)(gs + ¢4),




and since a has positive imaginary part, we get that the function ¢r(B,B) is
GLOBALLY injective on T(0,4; 11, v2, v3,v4). To see it, suppose that o and 8
satisfy

20143+ 0" (q1 + ¢2) + b{gs + q1) — oPlg+ 32)(gs + qu) =

= 2q1g3 + b*(q1 + @2) + b(gs + 1) — B*(q1 + @) (g3 + qu).
This implies
GE(fh + @2 )(g3 + q4) = a1 + @) (3 + q4),

but since we are assuming that & and S; do NOT have signature equal to
(0,3;00,2,2), we have that ¢; + g2 # 0 and g5 + ¢4 # 0. Therefore ao? = 2,
and the fact that both numbers have strictly positive imaginary part implies
that o = 3, as claimed.

3.2.7. The algebraic AFP construction of the group I', can be translated
to a geometric process at the level of orbifolds: amalgamation of the groups
I'(00, vy, 123 00,0,1) and I'(00, v3, v4; 00, @, @ — 1) is ‘equivalent’ to a plumbing
construction of the corresponding orbifolds 8; and 8;. T'(co, vy, ¥2;00,0,1) is
generated by the elements A and B. Let z be a horocyclic coordinate on the
orbifold determined by T'(oo, vy, 2;00,0,1), with z centered at the puncture
given by A and relative to the special point (either puncturé or r;'mfnjﬁca-
tion point) determined by B; then z = e™¢ for ( with positive imaginary
part, since we are considering the action of T'(co, vy, #5;00,0, 1) on the upper
half plane, due to the orientation of our partition curve. Similarly, consider
T'(o0, v3, v4; 00, @, a—1) and a horocyclic coordinate w centered to the puncture

(given by A) and relative to the special point with ramification value v3. Then
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we have w = ™(*~0 for ¢ with imaginary part satisfying Im(¢) < Im(a). The
identification zw gives a plumbing parameter equal to zw = €™ = ¢, Qbserve
that t is a coordinate for the deformation space of the graph associated to the
orbifold of the figure 3.6. That graph can be found in figure 3.7. Lemma 3 in

§3.1.8 and theorem 3 in subsection 3.2.5 provide the following result:

Theorem 4 The orbifold corresponding to the point a in T(0,4; 1, vy, v, vy)
is conformally equivalent to the orbifold constructed by plurmbing with param-

eter t as above. Moreover, we have that

0 < |t| <e™,

+ 1

with y, = aatgs”

1
g1t+qz

3.2.8. Consider now fhe case that, after cutting the orbifold § by the
curve g, one éf the parts has péﬁrabolic signature. Without loss of generality, we
are in the following situation: &, has signature (0, 3; co, v1, v2), with —3—;—}-}2 <1,
and &, has signature {0,3;00,2,2). We can proceed as in the previous case:

S, is uniformized by the group I'(o0, 14, ¥; 00,0, 1), whose generators are

L 0 -1 G1t+q¢ —G

l—q2

with ¢; = cos(n /i), b= 7.
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S, is uniformized by the group I'(c0,2,2; 00, a,a — 1), with generators

-1 2 —1 2«

0,-1 0 1

and « is a complex number.

The group generated by the AFP of these two triangle groups, I, .:
I'(oc, #1, 125 00,0, 1) *c a5 I'(00, 2, 2; 00, v, a — 1) uniformizes an orbifold of sig-
nature (0,4; v, 1,2, 2) in its invariant component and a sphere with signature
(0,3; 00,11, v2) in the non-invariant components. The part corresponding to
the sphere with signature {0,3;00,2,2) is ‘missed’. In general, a terminal
regular b-group that uniformizes an orbifold of signature (0,4;v1,74,2,2) is
constructed as the AFP of I'(oo, 11, v2;¢,d, €) and T'(co,2,2;¢,d’,€’) across a
common subgroup generated by a parabolic element that fixes the point c.
Then the coordinate for such group is given as a = er(c,d, e,d’). As in §3.2.5,

we have bounds for the size of the elements of the deformation space of I'y;:

Theorem 5 « is a global coordinate for T(I'y) = T(0,4;11,12,2,2), and we

have the following:
{o; Im{a) >0} C T(I'y) C {a; Im(a) > i},

where

1

= o+ g



86

3.2.9. The other orbifolds with one dimensional deformation spaces are
those of type (1,1), for which we have similar constructions: we start with an
orbifold S with (necessarily hyperbolic) signature (0,3; 0o, 0o, 1), we removed
punctured discs and make a boundary identification to obtain an orbifold X’
with signature (1, 1; #). To compute the coordinates for the deformation space,
let us consider a triangle group with signature (0, 3; co, 00, ») and parameters

(o0, 0,1), which we know is generated by the transformations:

0 —1 14q —1

q = cos(m/v). We want to ‘glue’ the punctures represented by A and B. This

is accomplished by finding a Mobius transformation C' such that

C<B>C'l=<A>.

But we have to be a little careful about this identification: A represents a

curve around one of the punctures of the orbifold uniformized by the group
I'(00, 00, v; 00,0, 1); similarly B corresponds to a curve around another punc-
ture of the same orbifold. Identification of the punctures has to be done pre-

serving the orientation of these two curves, which means that C' must satisfy



CB-'C-! = A. Then, if C =

This gives b =

c d

_ 2
1+¢?

—1

I+gq

-1

, we must have

L It

-1
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and we choose the positive square root, to get

L

1+g

14q
5 0

The group generated by A, B and C is a terminal regular b-group that

uniformizes an orbifold with signature (1,1;r) in the invariant component,

and an orbifold of signature (0,3; 00,00, ) in the non-invariant components.

This group is constructed as the HNN extension of I'(co, o0, #; 00,0, 1) by the

element C'. This can be seen by applying Maskit Second Combination Theo-

rem. The parameter T is a coordinate for the deformation space of the group.

This parameter can be obtained, in a general setting, as follows: if we want to

construct a terminal regular b-group uniformizing an orbifold with signature

(1,1;v), we have to start with a triangle grou?, say I'(co,00,v;d, e, f) and

add an element /. Then we have that the coordinate of this group in the

Teichmiiller space T'(1,1;v) is given as the cross ratio 1/% er{d, e, f,C(d)),

where g = cos(w/v).
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What the mapping C does geometrically is to send horocircles at 0 to
horocircles at oo (so we are cutting punctured discs around each puncture
and gluing the boundaries in a process similar to the case of orbifolds of type

(0,4)). More precisely, we have that

C{eflz — ril =r}) = 1o/ Tm(z) = | 7= () = =)

If these two circles are disjoint, Maskit theorem can be applied. Now, the

point with the biggest imaginary part in the first circle is 2r2. Therefore we

want (in order to have disjoint circles)

2 1 1+q, 1
_c 7 —_—
m(T) 1r‘\/1_*5-_q>2?*, or Im(r) > 5 (Tx/m

1+44¢
The minimum value of the last expression is 2. This gives the following result:

+ 21").

Theorem 6 7 is a global coordinate for T(1,1;v), and we have the following:
{r/Im(7) > 2} C T(1,1;v) C {r/Im(7) > 0}.

Proof.The only point is the first inclusion. This is due to the fact that the
lower half plane is precisely invariant under F, so for any point z with negative

imaginary part we should have

2 Im(z)

— —_— > 0,
14+¢q |2

Im(C(z)) = Ti—qu(ér)

giving the desired bound for 7. O
3.2.10. We have checked that C is completely determined by jts trace,

as it is proven in {Kra88].
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3.2.11. Asin the case of orbifolds of type {(0,4), our next éoal is to relate
this algebraic HNN extension to a plumbing construction. To do it, let us
star by considering the coordinate centered at the puncture corresponding to
A and relative to the puncture corresponding to B, where the action of the
tfiangle group is on the upﬁer half plane. That coordinate is z = e™*¢. For the
B-puncture we have

2 =2mi
w = eltegllta]

The identification we make is given by

This computation gives the following estimate for #:

Theorem 7 The orbifold corresponding to the point T in T(1,1;v) is confor-
mally equivalent to the orbifold constructed by plumbing with parameter t as

above. Moreover, we have that
0<|t<1.

As in the case of orbifolds of type (0,4), we have that the complex number
t of the above theorem is a coordinate for the deformation space of the graph
associated to the orbifold of signature (1,1;r) constructed in the previous
subsections.

3.2.12. Putting together the above results and the Maskit embedding
theorem (see chapter 1) we get coordinates for the general Teichmiiller spaces

of orbifolds of finite conformal type. The previous results will also give us
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coordinates (plumbing parameters) for the deformation spaces of weighted
graphs (see §3.1.9). We have already seen the way to proceed: given an orbifold
of finite hyperbolic type and a maximal partition on it, we use the curves of
the partition to obtain the modular parts of the orbifold; such modular parts

have one dimensional deformation spaces; Maskit embedding gives the desired

coordinates.

Theorem 8 Lel § be an orbifold of finite hyperbolic type with signature

o = (p,niviy...,¥,) and let C be a mazimal partition on S, uniformized
by the terminal regular b-group F.. Then there exists a set of (global) coor-
dinates, called horocyclic coordinates, for the Teichmiiller space T(I') =
T(p,nyve,. ..y 1), say

(@150 - aq), where d =3p — 3 +n, and a set of compler numbers,

(yi, .. ¥f,ys, . yd), that depends on the signature o and the partition C,

such that
(s aq) € € Im(es) > 4 V1 <i<d} C T(D)
and
T(T) C {{oy...,a0) € CHIm(e) > 4 V1 <i <d}.
Moreover, the surface corresponding to the point (ay,...,aq) is conformally

equivalent to a surface constructed by plumbing techniques with parameters
(t1y. .., ta) obtained by use of theorems in §3.2.6 and §3.2.9, depending whether

the corresponding operation at the graph level is an AFP or an HNN extension.

Proof.The triple (S,0,C) is uniformized by a terminal regular b-group I'

(81.2.5). In the first chapter we have explained how to obtained from & and C




the modular parts Ty, . .., T5,-34r and the modular subgroups Gy, ..., Gsp_5pn
We know that these groups are terminal regular b-groups with one dimensional
Teichmiller spaces. Therefore we can apply the theorems 3 (§3.2.5) and 5

(§3.2.9) to obtain coordinates (ay,...,0sp_34x). Maskit embedding theorem
3p—3+n
Ty~ I 7(G)
j=1
tells us that we can use this set of complex numbers as coordinates for T'(T")

The plumbing parameters t; are related to the coordinates (aq,...,aq)
by the formula t; = /1% where k; is a number that depends on the signature
of the modular part corresponding to «;.

The numbers y;— and yf- are part of the results of the theorems 3 and 5.
The plumbing parameters are obtained by application of theorems 4 (§3.2.7)
and 6 (§3.2.11). O

3.2.13 In this last part of this section we will explain in a more detailed
manner how to pass from a given group to coordinates of its deformation
(Teichmiiller ) space, and viceversa, how to construct a terminal regular b-
group from a point in a Teichmiller space.

Let us start by considering a terminal regular b-group, I, of hyperbolic
signature (p,n;u,...,v,). We want to compute the coordinates of this group
in T(I'). We should remark here that the horocyclic coordinates are not varia-
tional. In other sets of coordinates, one starts with a given group, say Fp, and
for any other group, F, quasiconformally equivalent to Iy, one computes the

coordinates in T'(Fy) by seeing how far the quasiconformal mapping is from

being conformal. This means that, as the identity is the mapping that takes Ky
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to itself, the starting group will be the always the origin of coordinates. One
needs then two groups to compute coordinates. In our case the coordinates
of a group depend on the modular subgroups, and how they are assembled
together to build the bigger group. It makes sense to compute the coordinates
of I' in T(T') without another group for ‘reference’.

After this introduction, let us consider the simply connected invariant
component A of I This group will uniformize an orbifold, § 2 A/T with
a maximal partition. Let 7; be one modular, and let D; be a component of
the set m~1(T}), where 7 : A — & is the natural projection. Let us look at
the stabilizer of D; in T', say I'; = Stab(D;,['). Then T'; is a terminal regular
b-group uniformizing an orbifold of type (0,4) or (1,1). In subsection §§3.2.5,
3.2.8 and 3.2.9 we have explained how to get the coordinate of groups of type
(0,4) or (1,1). Applying the techniques explained there we get the coordinate
c; corresponding to I';. Putting together all modular subgroups we get the
coordinates (ar,...,asp-34n) of I. The reader may ask what happens if we
take a different component of 7='(T}), say Dj. In that case, since 7(D;) = T} =
m(D7), we have that there is a deck transformation y € I' such that y(D,) =
Di. I T is the stabilizer of D} in T', we get 4I';y~! = I',. This equality means
that I'; and I'; are conjugate in PSL(2,C), so they are Teichmiiller equivalent.
This proves that the coordinate «; is independent of the component Dj, and
our technique is well defined. |

3.2.14. We now tackle the inverse problem, given a point (ay,...,a;) in
the deformation space of the terminal regular b-group I', we want to find a

group representing that point. We first consider the pair (orbifold, maximal
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partition} uniformized by ' and we construct a graph, G, from such pair.
In §3.1.5 we have explained how to make that construction, but there was
a degree of freedom in the choice of non-phantom weights. Here we put the
restriction that any non-phantom edge has weight equal to oo, since those are
the Teichmiller space we are considering in this work. The coordinates «; are
constructed from the graph, and they are in one-to-one correspondence with
the non-phantom edges. There are three types of non-phantom edges: (1)
those that disconnect the graph, (2) those that do not disconnect the graph
and join two distinct vertices and (3) those that join a vertex to itself. The
way we will proceed is by induction: suppose we have constructed a group
I'; corresponding to the point (¢, ..., a;) and we want to construct from I';
a group corresponding to the point {ay,.. .,aj,ajﬂ).. The coordinate a;yy
corresponds to the edge e;,,. We have three cases, depending on what type

of edge e;4, is.
CASE 1: ;41 disconnects the graph G.

Suppose that e;,; joins the vertex vy to v;, where k < [. This means that
the vertex vy, corresponds to some sphere with signature (0, 3; oo, 14, ¥3), where
the 0o comes from the weight of e;4(. This sphere is uniformized by a triangle
group I'(oco, 1, 12;¢,d, €) which is a subgroup of T';. The oo in the signature
corresponds to the vertex e;; and it is given by .Cér.t;iin parabolic element, say

Aj1. The vertex v is uniformized by a triangle group (oo, v, va; ¢, d'y €),

where the oo in its signature is given by the same parabolic element A;y,.

Then the group I';4, is constructed as the AFP of the two smaller groups;
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that is,

- T. A
FJ“H = FJ *cAjp1> F(OO7V31 Vg, C :d € )

Since A;jy, belongs to ['(co,vs, va; ¢, d',€'), we must have ¢ = c. Now, we
want that this new group I';;4 represent certain given point in a defromation
space. This means that the choice of parameters for our last triangle group
must satisfy er(c,d,e,d’) = a;jy1. This condition, together with the fact that
Aj 41 belongs to the triangle group, determines I'(o0, v3, v4; ¢, d', ) completely.

CASE 2: e;4, does not disconnect the graph ¢ but it joins two
distinct vertices

Suppose that v, and v, are the two vertices connected by e;;q1. These
vertices correspond to spheres uniformized by the triangle groups Fy =
= T'(o0, 14, ¢,d,e) and F, = [(oco, 13, vs;¢,d, ¢) respectively. These two
groups are subgroups of I';. Let A) and A; be the parabolic elements. corre-
sponding to the oo in the signature of £} and F; respectively (and with the
correct orientation requirements given in §3.2.2). Choose a Mdbius transfor-
mation € such that CA,C™! = 4, and aj41 = er(c,d,e,C(d’)). Then the

group [';4; will be the following HNN extension
Dipr =15 *<o> -

CASE 3: ¢;41 joins a vertex of G to itself

Suppose that the vertex is v;. This vertex will correspond to a sphere with
signature (0,3; o0, 00, ¥), uniformized by the triangle group I'(c0, o0, ¥; ¢, d, e),
which is a subgroup of I';. The group I';;; will be constructed by identifying

the parabolic elements of this triangle group. More precisely, let A and By be
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the parabolic generators of I'(00, 00, v ¢, d, €). Find a Mobius transformation

C such that CB;'C~' = A, and ﬂ/1+COS#(7T/V)C?“(C’d;@»O(d)) = aj1. Then

Lipr =y *ees

3.3 Elliptic Glueing

3.3.1. In this section we will study the deformation spaces of certain
Kleinian groups obtained by AFP’s across finite subgroups. These spaces fit in
the general theory as follows: if we consider variations of the complex structure
and the fundamental group of a Riemann surface we obtain the Teichmiiller
space of the surface. Forgetiing the homotopy part produces Riemann spaces;
that is, classes of biholomorphically equivalent conformal structures. But we
may also consider deformations of the complex structure and some subgroups
of the fundamental group. This process will give the type of deformation spaces
we will study here.

These spaces also appear as the Teichmiiller spaces of a Kleinian group
with a non-simply connected invariant component of its region of diséoﬁt.inuity
(these groups are known by the name of functmn étoﬁﬁs;_.seef .[:Ma.388])..
Deforming the group in that region is equwalenttodefornung i;.he complex
structure of the quotient orbifold, and only path."of the fundamental group, as

the non-simply connectivity of the covering implies a lost of some topological

information.
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These deformation spaces are not simply connected, but by results of
Lipman Bers, Bernard Maskit and Irwin Kra, we can identify their universal
covering spaces with the Teichmiiller spaces of the quotient surface. In this
part of this chapter we will also consider the problem of identifying the covering
group as certain subgroup of the mapping class group of the quotient surface.

3.3.2. After this general setting, let us explain in more detail what is the
particular problem we want to look at. Suppose we have two (hyperbolic) tri-
angle groups, Fy and £y, with signature (0, 3; 00,00, n), where 2 < n < co. We
will assume that the groups share an elliptic element, say C', corresponding to
the n of the signature. Then (under some additional hypothesis) we can form
the AFP of F} and F, to obtain a Kleinian group I' with an invariant compo-
nent A. This open set A is NOT simply connected. The quotieflt A/T is a
four times punctured sphere with a central distinguished curve, a, given by the
projection of some curve invariant under C. In the non-invariant components,
the group I' represents two surfaces with signature (0, 3; 00, 00,n) (similar to
the case of terminal regular b-groups of the previous section). We will find
coordinates for the deformation space of the group T', as well as the relation
with the deformation space of surfaces with signature {0, 4; oo, 00, 00, oo)

Figure 3.8 shows our AFP at the level of graphs.

Computations for more general AFP operations as well as the study of
HNN extensions will appear somewhere else in the future.

3.3.3. This algebraic operation between the groups F; and J; is trans-

lated to the language of orbifolds as follows: each of these two groups uni-

formizes an orbifold with signature (0,3;00,00,n), say & and S;. Consider
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Figure 3.8: Elliptic gluing at the graph level

on each &; the ramification point given by the n in the signature. Remove on
each orbifold a disc around that point, and make a boundary identification to
obtain a surface § with signature (0, 4; 0o, 00, 00, 00), and a partition given by
the boundary identification curve, a. This surface is uniformized by the group
I' = Fy#<c5 F2 (C is the common elliptic element) on its invariant component
A. But since this last set is not simply connected, we have that the covering
A — A/T is not the universal covering. The defining group of this covering
is the normal subgroup of the fundamental group of § generated by the n-th
power of a (that is, @ does not lift to a loop but ¢* does). The deformation
space of the group T is not the Teichmiiller space of S, because T' is not the

universal covering group of §.

3.3.4. So to start to study the problem as stated in §3.3.2, let us consider
a triangle group with signature (0,3; 00, 00,n). Our goal is to find coordinates

for deformation spaces; this allows us to conjugate by a Mobius transformation

(since we will remain in the same Teichmiiller class) and assume that our
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starting group is I'(oc, 00,n;00,0,1). This group has a presentation given by
three elements A, B, and C satisfying ABC = I, A and B are parabolic and
C™ = I (I is the identity). The matrices corresponding to those elements are

- . - - - -
-1 -2 -1 0 1 -2

1+q —1-2¢

! L _

where ¢ = cos(m/n). We want to work with the elliptic element C'; but com-

0 -1 \.lw}-q -1

putations are easier if we have that C' is of the form z — ™"z, To get that
formula for O all we need to do is conjugate by a Mobius transformation. Con-
sider the fixed points of C, which are zp = 1+ -1—%, and Zp, with p = sin(7/n).
Let M be a Mdbius transformation taking 2o to 0 and %o to oo. We still have
one more degree of freedom to determine M, and we use it to require that M
maps co to 1 (we have observed that the computations are simpler with this
choice). Then M is given by

Wy —Wozo

M= , wg = €™/

=q+ip.

Wo —2p

Observe that M is given as an element of_._PG L(2, C), not of PSL(2,C). Con-
| jugate T'{0o, 00,7;00,0,1) by M to obtain. S

Wy — WoZ
MT(co, 00,n; 00,0, M~ =T(c0,00,n; 1, w0, 9 o0

).

Wo — Zo

Denote this last group by Fj, to simplify notation and to agree with the
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notation of §3.3.2. Then F; is generated by

2wy AT
—1+ zo{wo—1) zp(wo—1)
A= MAM™! = ,
Zwg S 2uwp
Zo(wn—l) Z(]('Luo—l)
—1+ z0{149) —zowo{1+g)
wp—1 wo—1
B, = MBM™ = :
20!1+g! _1 . zojl-l—q!
awg (g —1) wo—1
—y 0
C,=MCM™ =
0 —wg!

3.3.5. We want to consider another group F;, with the same signature,
and to do an AFP of F; and F; across < €y > to obtain a group I[',, (7 is a
parameter to be determined) whose deformation space we want to study. To
find F, we have to conjugate F; by a transformation that preserves (commutes

with) €. Since n > 2, the only elements of PSL(2, C) that commute with
- .

are those of the forrh z— Az, Let D= - _be one of those elements,

with n = A%, Then

Wy — Wozg

Fy = D,FiD™' = T(00,00,n;0,7w0, 7

Wy — 2p
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is generated by

—-1 = 2wy Zwon 1 — z9(14q) zowg (1+4q)m
Z()(w(]—l) Zo(wD—l) wp—1 wg~1
Aﬂ = f B’] = 1
—zdwp 1 4 —2wo__ —zo(l4g),  _y 4 (i)
zg(wo—1)n zg(wp—1) wg {wp—1)n wy—1
C.,, = Cl.

3.3.6. We now want to explain what condition n should satisfy so we
can apply Maskit First Combination Theorem to obtain T, = F *eqs Fo.
The limit set of F; is S?, and a fundamental domain is given in the_ figure
3.8. F; behaves | F}, except that its fundamental _domain is modified by 5

(multiplied by its inodulus and twisted by its argument).

Figure 3.9: A fundamental domain for the group F;

The groups F; uniformize orbifolds S; with signature (0,3; 00, 00,n) that
are going to be glued after removing neighborhoods of the ramification points.

The process of gluing is going to produce a new surface, with signature



(0,4;00,00,00,00) and a central curve a. Let us assume that after the plumb-
ing of the two orbifolds S; and §; we have that S; lies to the right of «. Now,
a lifts to a circle centered at the origin (since the element corresponding to it
is the elliptic transformation Cy). We orient that circle by requiring that for
any point on it, z, the triple (z,C1(2),C%(%)) is positively oriented; observe
that this is possible since the order of Uy is not 2. Then the surface corre-
sponding to ‘fl is to the right of the circle that is the lift of ¢, while the one
corresponding to J; is to the left; this forces |n| < 1 (see subsection 3.2.2).

If the absolute value of n is small enough, we can apply Maskit First
Combination Theorem. Among the hypothesis of that theorem, we have the
existence of a simple closed curve W that divides the Riemann sphere into
two topological discs (§1.1.13). In our case we can take a circle centered at
the origin as W. Each of the groups F; acts on two circles; in the case of F,
the action we are interested on takes place in the circle {z; |2z| < 1}, while for
F2 we will consider the action on the disc {z; |2| > n}. After the application
of the Combination Theorem we get I'; = I'(0c0,00,n;1, wo, L2=H08) %

wo—20
(o0, 00, n; 7, nwo, nea-2e). This group I'y satisfies:

a) I', has an invariant component contained on the annulus {z/|p] < |z| <
1}. The quotient of that component by the group is a four times punctured
sphere; et

b) the group T, represents two _.s_lir.fa.(::es:_(')f sigf;at_ure (0,3; 00,00,n) on its
non-invariant components.

In order to estimate the size of those n for which we can apply Maskit

theorem, we consider the circle that joins the points 1 and wqy on the figure
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3.8. Its center is at the point

emif?n

= cos(w [2n)
and its radius is r = |1 — ¢o| = tan{x/2n). The closest point to the origin in

this circle has modulus given by

1 — sin(x/2n)
cos(w/[2n)

™3 (jeo] — )| =

The furthest point to the origin is at distance

1 + sin(r/2n)
cos(m [2n)

4

le™/# (leo] +7)] =

For the group JF, we have the same type of expressions, but multiplied by 7.
This means that the point in the boundary of a fundamental domain for 7,

with maximum absolute value is

1+ sin(r/2n)
cos(m[2n)

The Second Combination Theorem can be applied if the following inequality

is satisfied
| ]1 + sin(n/2n) 1 — sin(x/2n)
7 cos(m[2n) cos(m[2n)

which is equivalent to S
1 — sin(7/2n)

L+ sin(x/2n)"

Inl <
We also have is that the exterior of the unit disc is precisely invariant
under Fy in I';. This gives

1 + sin(r/2n)

<1,

Il —ostr f2m)




or equivalently

cos(m/2n)

Il < 1 + sin(r/2n)

Also the disc
{2/l2] < Inl}

is precisely invariant under I3 in the group, so |n} < %(/1%/2—)"1 But we have

1 — sin(r/2n) _ cos(m [2n)
cos(m[2n) 1 + sin(m/2n)

Let pg = %ﬁ% Then the group determined by this value T, satisfies

all above conditions. For its deformation space we have the following result:

Theorem 9 7 is a coordinate for the deformation space T(T',,). The following

inclusions are satisfied:

1 — sin(x/2n)
1 + sin(w/2n)

cos(m/2n)
1 + sin(n/2n)

{n; 0<nl <

JCT(T) C{m 0<n] < ).

3.3.7. Our next goal is to understand the AFP as a plumbing construc-
tion. For that purpose, we need special coordinates centered at the branch
points. For the group Jq, the function z = (" serves as such coordinate: it is
invariant under ¢ — Cy({) = w2(, and maps tHe Ip_o.ipt.s' 1,wp to 1,—1 respec-
tively. This expression is different fI‘OIZIi'Il. theone o.l.a:t.ia;iné&.i.l:l section 2.5 because
there the universal branched covering space was the upper half plane, while
here the covering space is the unit disc. A simple geodesic, on the orbifold,

from the branched point to the puncture represented by A, lifts to the unit
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interval, which is isometrically mapped, under the z coordinate, into the real

axis with the metric
2|dz|
n|z[* 11 — |2|*/2)’

the metric of the unit disc quotiented by a rotation of order n around the
origin, as one can naturally expect.

For the group JF; we need a similar coordinate, but in this case we are
interested on the action of the group on the set {z/|z]| > ||}, and we look at
the geodesics that joins the branch point given by the oo to the fixed point of
A~1. That coordinate will be w = (n/{)". We can construct the final orbifold
by identification of the coordinates z and w as in the plumbing construction
of the previous section . In this case we obtain zw = ¢ = . Estimates for
this plumbing parameter can be found by raising to the n-th power the results
of theorem 7 in subsection 3.3.6.

3.3.8. The above construction has given us a four times punctured sphere
S uniformized the group I' on the non-simply connected open set A. In that
surface we have a distinguished curve, a. Let ¢ denote the Dehn twist around
the curve a, as well as the corresponding element of the mapping class group
of S. We first state a result of Bers, Kra and Maskit that tells us what is the

universal covering space of T(I'y, ):
Theorem 10 ([Ber70],.[Maé71],.[.I.{I.'.a.72.l.3]).. Tﬁé:ﬁolo:morp.ﬁic universal co-

vering space of T(T,,) is the Teichmiiller space T(0,4).

Given that result, we can identify the covering group.
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Theorem 11 The subgroup of the mapping class group of S generated by ™

is the covering group of the mapping T(0,4) — T(I'y,)

Proof.We have the covering Ay — & = Ag/I'y,, where Ay is the invariant
component of the group I'y,. Let H be the defining subgroup of this covering.
Then H is the normal subgroup m (8) generated by the curve a™.

The covering group we are looking for, K, is a subgroup of the mapping
class group of §. This last group is the set of homeomorphisms of & modulo
homotopy. And we also have that the mapping class group of § is equivalent
to the group of automorphisms of 71(S) modulo inner conjugation. All this
is classical, see for example [Nag88]. In [Mas71] (see also [Ear91]) we have a

description of K; ¢ is in K if and only if it has a lifting @ to Ay,

Ag—E> A
wl lw
§——S§
satisfying ¢y(@)~! = v for all elements v of T'y,.

The mapping ¢ will have a lifting as above if the induced mapping on
the fundamental group of the surface S, ., preserves the group H, that is
o (H) = H. Since this last group is generated by the curve a®, we will
have that ¢,(a”) is conjugated to a” in 7y(S). Inner attomorphisms of the
fundamental group are identified with tr1v1a1mapp1ngs m homotopy, so we can
assume that ¢,{(a”) = a" (without changing cp as éiement of the mapping class
group), which is equivalent to say that o preserves the curve a. Since ¢, has

to commute with the parabolic elements of I'y, representing the punctures, we

must have that ¢ has to preserve the punctures. The curve a divides S into
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two parts as the one shown in the figure 3.9 below. Therefore we get that ¢

has to preserve each part.

Figure 3.10: A part of an orbifold

Thus we have reduced the problem to characterize the homeomorphisms
of § that preserve @ and each of the parts in which a divides the surface, and
such that a lifting to Ay, ¢ commutes with all the elements of the group I'y,.
From surface topology (see [Deh87]) we know that the self-mappings of the
manifold of the figure 3.9 that preserve the curve a are powers of the half Dehn
twist around a. Since we want also to preserve the punctures, we will have
that o is a power of the full Dehn twist, which we have denoted by ¢. Thus,
¢ = ¢*. Now, if we lift the mapping ¢ to Ay, an easy computation shows that
the action on T,, is conjugation by Ci. Therefore to preserve the punctures
we need to have ¢ (since C} = I) as claimed. O

3.3.9. We ﬁn.ish this section with a remark about horociclic coordinates

and plumgin parameters. Let I' be a terminal regular b-group of signature

(0,4; 00, 00, 00,00). The Teichmiiller space T'(I') can be used as a model for
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T(0,4; 00,00,00,00). Let a be a horociclic coordinate in this deformation
space. In [Kra90], Irwin Kra showed that the Dehn twist that we have denoted
by ¢ is given by @ — a + 2. The plumgin parameter corresponding to this
surfaces is given by ¢ = e™®. Now consider the group I';, of the above theorem.
Let n be coordinate for T(T,). The corresponding plumbing parameter is
given by the expression ™. One would like to have a relation between the
two horociclic coordinates. A possible formula is‘n = e™/" This expression

would be good in the sense that behaves well with respect to the plumbing

parameters. But this is only a conjecture that we have not been able to prove.
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Chapter 4

Patterson Isomorphisms

4.1 Patterson Isomorphisms Theorem

4.1.1 One of the most natural questions one may ask about Teichmiiller
spaces is under what circumstances are two of these spaces biholomorphically
equivalent. One answer was given by Bers and Greenberg, and it says that two
Fuchsian groups of the same type (p,n) have isomorphic Teichmiiller spaces,
independeéntly of their signatures. We will say more about this result in the
next chapter.

4.1.2. Another well known case is the equivalence between T(1,0) and
T(1,1), the Teichmiiller spaces of tori and tori with one puncture. This is
due to the fact that the group of automorphisms of the torus acts transitively.
More precisely, we have that the Teichmiiller ".si')a:t:::é'.'(.)'f"'the torus is the upper

half plane, where a peint T in H rep'r'é's'éﬁt's the torus

T, =C/{z+— z+n+mr;n,m.e Z}.

Puncture the torus at the point [29] (where the brackets mean the equivalence
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class by the action of the group of translations). Consider the mapping defined
on C by z s 2 — 2. This mapping induces an automorphisms on the torus 7.
We also have that f is homotopic to the identity and f(z5) = 0. This means
that the torus punctured at [zg] and the torus punctured at [0] are in the same
Teichmiiller class; see subsection 1.2.7. Therefore T(1,0) = T'(1,1). This is a
very special case that happens only on the torus, since for surfaces of higher
genus Hurtwiz theorem says that the group of conformal automorphisms is
finite.

4.1.3. If we exclude this case and the trivial ones, namely when the defor-
mation space is just one point (sphere with zero, one, two or three punctures),
then we have a result of Patterson that tells us that there are only three other

cases of isometric Teichmller spaces.

Theorem 12 ([Pat72}, [EK74]) The only biholomorphisms between two dis-
tinct Teichmiller spaces T(p,n) (with 2p — 2+ n > 0) occur precisely for the

Cases.

T(2,0) 2 T(0,6), T(1,2) = T(0,5), T(1,1)=T(0,4).

4.1.4. The above isomorphisms use the fact that all surfaces of genus
2 or 1 (with one or two punctures) are hyperelliptic. This means that they
admit a conformal mapping of order 2. In the case of surfaces of genus 2
we have that the hyperelliptic involution has 6 fixed points, the Weierstrass
points of the surface. If the surface has signature (1,2; 00, 00), then the invo-

lution interchanges the two punctures and fixes four other points. For surfaces

with signature (1,1;00) we have that the hyperelliptic involution fixes the
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puncture and three more points. Taking the quotient of the surfaces by the
corresponding involution we obtain orbifolds with signature (0,6;2,2,2,2,2,2},
(0,5;00,2,2,2,2) and {0,4;00,2,2,2) respectively; the correspondence between a
surface and the quotient orbifold gives the desired isomorphism at the level of

Teichmiiller spaces.

4.2 The Patterson Isomorphisms in the horocyclic co-

ordinates

4.2.1 As stated in the previous section, the surfaces with signatures (2, 0),
(1,2;00,00) and (1,1;00) admit an involution that gives rise to an isomor-
phism at the level of Teichmiiller spaces. In this section we will construct the
isomorphism explicitly in the coordinates of chapter 3. The idea is to find a
Mobius transformation that represents the hyperelliptic involution and com-
pute explicitly in some representation of a group uniformizing the surface. We
will work first the case (2,0), and from it we will obtain the the formulae for
the other isomorphisms.

4.2.2. In order to write down the main result of this chapter, we need
to consider some orbifolds and graphs. In the figure 4.1 we have three graphs
corresponding to three surfaces with signatures (2,0), (1,2;00) and (1,1;00).
Observe that the hyperelliptic involution is given by a rotation of 180 degrees
around a horizontal line that goes through the ‘middle’ of the surfaces. The
corresponding graphs associated to the quotient orbifolds are in figure 4.2.

Theorem 7 in section 3.2. gives a set of coordinates for the Teichmiller
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Figure 4.1: Graphs associated to hyperelliptic surfaces

spaces of the surfaces constructed from the graphs of figures 4.1 and 4.2. It it
in these particular sets of coordinates in which we will compute the Patterson

isomorphisms. The main result of this chapter is then as follows:

Theorem 13 The mapping
T T
(71,72, 73) = (El, 147,14+ 33)

gives an isomorphism between T(2,0) and T(0,6;2,2,2,2,2,2). If we make

3 = 0 or 1 = 1, = 0, then we obtain the isomorphisms T(1,2;00) &

7(0,5;00,2,2,2,2) and T(1,1;00) 2 T(0,4;00,2,2,2), respectively.

The proof will be as follows: first we will give a presentation for a terminal reg-
ular b-group I' uniformizing a surface of genus 2, we {hen compute the Mobius
transformation Aél % {hat represents the hypergllipt_i:;; i;:j.%rolution in the quotient
surface; we prove that the group generated by T’ %,ﬁd A;l ? say G, is a terminal

regular b-group uniformizing a surface with signature (0,6;2,2,2,2,2,2); the

next step is to give a presentation of a terminal regular b-group F following the
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Figure 4.2: Graphs associated to orbifolds

techniques of chapter 3; the last step will be to find a Mébius transformation

E such that EFE~! = G, and this gives the desired isomorphisms.

4.2.3. We start with a surface of genus 2, with no punctures, and a

maximal partition given by the curves a1, az and a3 in the figure 4.3.

Figure 4.3: A surface of genus 2.

This surface is uniformized by a terminal regular b-group, T', in its simply

connected invariant component A. I' has the following presentation:




=< Ay, Cy, Az, Cs; Ay, Ay =[C71Y, Ay], As are accidental parabolic,

[As, C ' o [A3Y, O3 = I >, where [A, B] = ABA"'B~', The elements A;
correspond to the curves a;, while C; correspond to ¢;. The presentation for
I' and the formulae for the above transformations have been computed by I.

Kra in [Kra90]. We will copy them here for the sake of completeness:

—1
Al =
0
—1 211 —7p)
A3 =
21'22
Cs=1

T3Ta + (2 - ‘Tg)‘?'2 -1

-2 1
JA2:

—2(1 —mp)?

—1 ‘+‘ 27'2(1 —_ Tz)

71, T2 and 73 are complex numbers.

4.2.4. The hyperelliptic involution is given by the transformation

A

/2 _

-1 2

b-group of signature (0,6;2,2,2,2,2,2):

-2

-3

'J"3‘I"é2 + 2(1 — ‘T3)T2 -+ Tqg — 2 —T3T9 + (3’?‘3 — 2)7’2 — 27'3 + 3

—T3T2_2(1 — T3)’T'2 -|- 2

It is not hard to see that this element conjugates the group I' into itself. But

we have to prove that the group generated by I' and A;/ % is terminal regular
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Proposition 10 The group G of Mobius transformations generated by I' and

Aéﬂ is a terminal regular b-group of signature (0,6;2,2,2,2,2,2).

Proof.The proof is in several steps: first we need to show that G is discrete and
geometrically finite; then we will prove that it has a simply connected invariant
component; the last part is to prove that outside the invariant component, ¢
represents orbifolds of type (0,3).

Step 1: G is Kleinian. This follows from the proposition V.E.10 in page
98 of [Mas88]. We also obtain that Q(G) = Q(T').

Step 2: G is geometrically finite. Again we have this result in Maskit’s
book, [Mas88], proposition VLE.6 in page 132.

Step 3: G has a simply connected invariant component. Let A be the
simply connected invariant component of the group I'. If Aél H(A) = U, where

U is a component of Q(T') = 2(G), then for all elements v € I' we have that

AV AT (U) = U. But AY?yA7Y? € T, so we have that U is invariant

under I', and therefore U = A. So both groups, G and I' have the same simply
connected invariant component. |

Since the element Aé/ ? is a lifting of the hyperelliptic involution, it is clear
that the surface A/G has signature (0,6;2,2,2,2,2,2).

Step 4: () — A)/G is a union of orbifolds of type (0,3). Let Qo be a
component of the set Q(G)—A. Consider its stabilizer in T, 'y = stab(§,T) =
{y € T;%(9%) = Q¢}. Then, since I is a terminal regular torsion free b-group,
the orbifold Q/T is a surface with signature (0,3; 00, 00, c0). If A;/Z(Qo) #

Qq, then the groups G and I' give the same quotient orbifold, Qo/T.
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If to the contrary, AY*(€p) = €, we then have Ay *ToA;"* = Ty, which
means that A;/ ? induces an automorphism on Qo/To. Since AM? belongs
to ', so does (A)/*)? = A;. And because A/” and A, commute, we have
that the automorphism induced by A;/ ? fixes one of the punctures of Qp/I.
Obviously that automorphism is not the idéntity (because A;’Q ¢ I'y), so it has

to interchange the other two punctures of £24/Ty; and it has order 2. Therefore
Qo/ < To, Ay” >=(Qe/To)/ < AY* >

is a surface with signature (0, 3; 00, 00,2) as we wanted to prove. 0

4.2.5. We have that G is a terminal regular b-group uniformizing a surface
of signature (0,6;2,2,2,2,2,2) in the invariant component A. A presentation
for this group is given by G =< A1, Az, C1, Cs, A;ﬂ; A1, A;n, Az are acciden-
tal parabolic, A;207Y, CLAY? Ay, ATTASY?, AV A,, C5AFY2, ATV OT AT

are elliptic elements of order 2 and the product of them is the identity > .

We will not need the matrices of all these transformation for our computa-
tion, so we write only those needed. They correspond to accidental parabolic

or branch points as shown in figure 4.4.

The formulae of these elements are the fo_llowir’_;g:._ Ay

' -1 247 -1 2 .
(ClAéfz) =1 3 Al-1 = ) A;/Z = 3

115




.1/2 .
Ay G

P!

w2
o

[ ]

-1

—272 1o QTZ(I — 73)

=1+ 27r — 1913 + 7'227'3 2—1g— 215 — 1'227'3 + 21973
C3A;Y =

21y + Ti73 1 =275 + 79713 — 7273

4.2.6. So far we have a group G uniformizing a surface of signature
(0,6;2,2,2,2,2,2). One possible way of finishing the proof of the theorem
(for the case of surfaces of genus 2) is by reading from the presentation of the
group G its coordinates in the deformation space 7(0,6;2,2,2,2,2,2). Another
possible approach is by finding a another terminal regular b-group F, with the
signature (0,6;2,2,2,2,2.2), but constructed following the techniques of chapter
3, and a Mdbius transformation F such that EFE~! = G. It is this last point

of view the one we will take.
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4.2.7. The group F uniformizes an orbifold as the one in figure 4.5,

Dy D,

Figure 4.5: A surface with signature (0,6;2,2,2,2,2,2)

The curves b; are represented by the accidental parabolics B;, whose for-

mulae are ) i _ ;
-1 -2 —1—« o
Bl = =B2 = y
0 -1 —1 —1+a
~1+28+ 2 —2(1+ ap)?
B3 =

232 —1-28— 2ap?

As it happened with the group G, we do not need to know the matrices

corresponding to all the elliptic elements, it suffices with the following two:

DIZE ,




]

1 —2aB 4 2ay+ 2787 —2(1 4+ af)(—af? + v + afy)p?

2y — 28 14208 — 20y — 29871

these two last elements are elliplic of order 2, and represent small curves
around the branch points as marked in the figure. «, # and v are three

complex numbers.

4.2.8 To find our transformation E we look at the figures 4.4 and 4.5. We
realize then that E should conjugate B, € F to A" € G. This is achieved if

E is of the form

Now, we must have EB;E~! = A;’z, which gives b= —1 — a.

The accidental parabolics corresponding to the third curve are By € F and
As € G. The transformation E has to conjugate the first of these two elements
into the inverse of the second element; that is, EB3 £~ = A3?, or equivalently
EB; = A;'E. For the elliptic transformations we have the following identities:
EDE~' = A;UzC{l and ED,E~' = C’aA;Uz. We should remark here that
all these equalities are identities between Mbius translormations; as equalities

in PSL(2,C) we are frec to multiply all entries of the matrices by a non-zero

constant.
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Let us start by considering the identity £D; = Az_l/szlE, which is

- - - — - - - -

-1

L - L - L -

It is easy to see that if the above identity is satisfied, then

Let us look now at EB; = A7'E, or

This gives

—1 + 27'2(1 — T2)

2
—27;

-1+ 28+ 2a8%1

232

2(1 — 7y)?

-1 - 272(]. - Tg)

(

—1+28+2a8* +25%
=21 + af)? + b(—1 — 28 — 2a8?)
—262

1428 + 2a8°

~2(1 + af)?

-1~ 28— 2af?

1 -+ 21’2(1 - Tg)

—b(—l — 21"2 -+ 27'22) —_ 2(1 — 7'2)2

2

—2720— 1 4 215(1 ~ 72)
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The third equation gives 8 = +7;. It is an easy computation to see that the

correct answer is
ﬂ = Tq.

Finally we have EDy = C3A;**E, which is

1 b —1—2aB+2ay + 29877 —2(1 + af)(—af’ + v + afy)F?
0 -1 2v — 28 14+ 208 — 20y — 29571
—1 421 —mmt Tits 2~ 73— 27y — Timy + 27Ty 1 b
27’2+7"22T3 1—2T2+T2T3—T22T3 0 —1
A 1L J

To solve this equality we need to consider only the elements in the first column
of both matrices. This is due to the facts the transformations D, and CgA;l/ 2

have zero trace and determinant equal to 1. The equations we need are

f
—1—2af+42ay+ 29471+ b2y —28) = —142r—mm+71in

20— 2y = 21y + 7313

\

The solution to these equations is

2

2

4.2.9. In [Kra90] it is proven that (71,7, 73) are complex coordinates

for the space 7(2,0). The coordinates for T(0, 6;2, 2,2; 2,2,2) in terms of the



numbers «, 3,7 are given by

4 = a, 22:1+ﬁ5 2321_1

B f

Then we have that the isomorphism between the above two deformation

spaces is given by

(b

T3
21 )'

]-+T271+ 9

(Tl, T2, T3) = (

4.2.10 Now we are in conditions to finish the proof of theorem 12. The
argument is as follows: to construct the surface of genus 2 with the partition
given in the figure 4.3. we have to follow these steps:

1.- start with a three times puncture sphere, Sy;

2.- glue two of the punctures, obtaining a surface Sy with signature
(1,1; 00); this involves the coordinate 7y;

3.- glue to the puncture of S; a three times punctured sphere to get a
surface S3 with signature (1,2; 0o, 00); we need here the coordinate 7;

4.- glue the two punctures of S; to obtain the surface of genus 2.

Then we see that after step 2 we have only one coordinate and a torus
with a puncture; and after step 3 we have two coordinates and a torus with
two punctures. Therefore, if we consider only the mapping involving the first
coordinate, that is

L S Dk
we have an isomorphism between T'(1,1;00) and T'(0,4;0,2,2,2). Similarly,

the mapping involving two coordinates,

T
(TI,TQ) — (51,1 -i" Tg)




provides the isomorphism T'(1,2; 00, 00) 2 T(0, 5; 00, 2, 2, 2, 2) completing the

proof of theorem 12.




Chapter 5

The Bers-Greenberg Isomorphism Theorem

5.1 Statement of the Main Result

5.1.1. In this chapter we will study the Bers-Greenberg Isomorphism
Theorem (see §4.1.1), which states that two deformation spaces of Fuchsian
groups of the same type are isomorphic, independently of the signatures. A
purely topological proof of this fact appeared in [Mar69]. Bers and Greenberg
provided a version (for Fuchsian groups) in [BGT1]; later, Irwin Kra gave a
much shorter demonstration using Teichmiiller’s theorem (see [EK74]). What
we want to do here is to relate the Bers-Greenberg theorem and the Maskit
coordinates for deformation spaces. We will show that, in the Maskit em-
bedding, the Bers-Greenberg isomorphism is a product map of isomorphisms
between one-dimensional Teichmiiller spaées. The prc_)of will combine the basic

properties of the Maskit embedding and the ideas of [EK74].

5.1.2. We know state the main result of this chapter. For the background

and the technical points, see sections §5.2, §5.3 and the first chapter.
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Let § be an orbifold with hyperbolic signature & = (p,n;11,...,1,), and
assume that at least one of the v; is finite. Let C be a maximal partition on
&. Assume that the triple (§,0,C) is uniformized by the regular terminal b-
group ['. Remove from § the ramification points; that is, consider the surface
Sp =8 — {z;/ z; is a ramification point with ramification value v; < 0o, 1 <
7 < n}. Assume that the regular terminal b-group I'y uniformizes the triple

(So, (p,m;00,...,90),C). The statement of our result is the following:

Theorem 14 Let

3p—-3+n 3p—3+n

T(Tq) — [[1 T(I}) and T(I') — 1_1 T(T%)

be the Maskit embeddings of T(T's) and T(I') determined by the above orbifolds

and partitions. Then there exist isomorphisms
R s T(Tg) — T(TY),
for 1 <3 <3p— 3+ n, such that the restriction
(A1, s Bap—aqnlome) : T(To) = T(T)
18 an isomorphism.

5.1.3. The rest of this chapter is organized as follows: in the next section
we introduce a more analytic approach to deformation theory. In §5.3 we
provide the proof of Bers-Greenberg Theorem that appears in [EK74], adapted
to the case of b-groups. Finally, in the last section we give the proof of the

main result.




5.2 Another way of looking at Teichmiiller spaces

5.2.1. Let I' be a Kleinian group with an simply connected invariant
component A, and suppose that A/T is an orbifold of type (p,n). The space
of (classes of) essentially bounded measurable functions g, suppbrted on A,
and satisfying (g o 7)1, = t, for all elements v € ', is denoted by L°°(I‘ A)

The unit ball in this space is denoted by M(T", A), and its elements are kno‘Wn

as Beltrami coefficients for the group I'. Without loss of generahty we_

can assume that the triple (0,1,00) is in the limit set of r. Given a Beltramli_-:-

coefficient p, we solve the equation wy = pw; under the cond1t1ons that w ﬁxesg-_l :

{0,1,00} pointwise. This gives a uniqiie’ solutmn w*“L WhICh is'a quaswonforma,l*_f

homeomorphism of € onto itself with dlla,tatlon ,u It s not difficult to check

(18 in M(I‘ A) if and only if w* oy o (w“) -1 ¢ PSL(2,C), for all elements

~4 of T'. Two Beltrami coeﬂicients #1 and o will be considered equivalent if

“l = w* oqo (w?)! for all ¥ € . The set of equivalence

wht o Yo (w,ul)
classes is the deformation or Teichmiiller space of the group I supported
on A, and it will be denoted by T(I', A). If T is a terminal regular b-group,

then this definition of Teichmiiller space is equivalent to the ones of chapter 1

(see [Gar87]).

The space L'(I', A} consists of (classes of) measurable functions f sup-

ported on A such that (f o+)(y')? = f, for all v in I, and with finite norm

/1] = /] 2)dz A d7| < +oo.
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There exist a natural pairing between (T, A) and L=(F, A) given By

(h=5 [ [, S@u@d 77,

which identifies the dual space of LY(I', A) with L>=(T", A). The holomorphic
functions in LYT', A) form the space of quadratic differentials, which is

denoted by Q(I', A). The above pairing identifies Q(I', A)* (where the * means
the dual space) with L(T', A)/Q(T", A)*, where

Q(FsA)l = {:u € LOO(F,A); (f?ru‘) =0,Yf ¢ Q(FaA)}

5.2.2. Let us assume that F' is a Fuchsian group acting on the upper half
plane H, and H/F is an orbifold of type (p,n). Then we have two results that

give the complex structure of the deformation spaces.

Theorem 15 (Bers [Ber66]) T(F,H) has a unique complez structure so that
the canonical projection = : M(F, H) — T(F,H) is holomorphic with local
holomorphic sections. The dimension of T(F, H) is 3p-3+n. The cotangent

space to T'(F,H) at n(0) can be identificd with the space of quadratic differen-
tials Q(F,H).

Theorem 16 (Bers [Ber70], Kra [Kra72b], Maskit [Mas71]) The space
T(T, A) is naturally isomorphic to T(F,H) for a Fuchsian F group such that
F[H is conformally equivalent to AT, as orbifolds.

5.2.3. A Teichmiiller differential is a Beltrami coefficient of the form

kl_iLI’ where p € Q(I,A) and 0 < k < 1.




Theorem 17 (Teichmiiller, [Ahl54], [Ber60]) In each class of Beltramsi
coefficients there is a unique Teichmiiller differential. T(T,A) is homeomor-

phic to the open unit ball of RSP—6+2n

5.3 The proof of the Bers-Greenberg Theorem using

terminal b-groups

5.3.1. Let S be an orbifold with hyperbolic signature o = (Pyns0n, .. vy),
and maximal partition C uniformized by the terminal regular b-group I'. The
deformation space of this group on its invariant component A will be denoted
by T'(T'). If we now assume that I is another group with invariant component
A" and that A’/T' has hyperbolic signature o = (p,n;00,...,00), th_en we
may consider as well the deformation space T'(I"). In this context we have the
Bers-Greenberg theorem,that says that the important fact is not the particu-
lar ramification numbers but the genus and the number of special points. We
remark that this theorem was stated for Fuchsian groups, but the results of

the previous section allow us to rewrite it in terms of b-groups.

Theorem 18 (Bers-Greenberg [BG71], [EK74]) The spaces T(T'} and

T(I") are biholomorphically equivalent.

5.3.2. Proof.The following proof appears in [EK74] in the Fuchsian
group setting, but we will reproduce it for terminal regular b-groups, since
1t also works in that case. Let us start by considering the orbifold & with

the hyperbolic signature o = (p,n;v1,...,v,) and the maximal partition C
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uniformized by the regular terminal b-group I' on its simply connected in-
variant set A. We will assume that at least one of the u}s is finite. Let
z;, 7 € {1,...,n}, denote the ramification points of the orbifold S. Let
S =S ~{x;; 1 £j < n, vj < oo}. Since C is also a maximal parti-
tion for S, we have another terminal regular b-group 'y uniformizing the
triple (8o, (p,n;00,...,00),C) on its invariant component A,. Consider the
set Ar = A — {fixed points of elliptic elements of I'}. Then Ap/I' 2 S,. Since
Ar is not simply connected, we have a holomorphic covering map, &, from Ay
onto Ar that makes the following diagram commutative (the mappings = and

7o are the natural projections):

Aq : Ar

RNV

The mapping h is defined, locally, as b = 7~ o 7.

Claim: % induces a group homomorphism y : I'; — I' defined by the
relation h oy = x(y) o h,Vy € Th.

To see this, suppose that v belongs to I'y; then mg 0 v = mp, which implies
that rohoy = mgoy = my == woh. This means that the functions & and hovy are
both Liftings of the function my, in the above diagram.. T hereforethere exists
a deck transformation x(y) € T, which satisfies thé.reht'io;:l_ h_;-'g'. 7:)((7) o h
as we claimed. =y | ##

It is clear from the topology involved in the above diagram that the group
homomorphism y takes the accidental parabolics of I'y onto those of I'. With

parabolics, which are not accidental, the situation is different: if a parabolic

1

8




corresponds to a loop around a puncture on Sy which was also a puncture
of &, then it will be mapped to a parabolic transformation of I'; but if the
parabolic corresponds to a loop around puncture on S, which is given by a
branch point in S, then the element will be mapped into an elliptic trans-
formation or the identity. From this one can obtain that the kernel of y is
the minimal normal subgroup of I'y containing the set {y™/ v corresponds to a
puncture on & that comes from a ramification point with ramification value
n}

Using this mapping we can define the following norm-preserving isomor-

phisms:
he 1 LY(T) — LYTY), R L®(Ty) — L>°(T),

given by

’
ha(f) = (f o B)(R'Y, (R*u)oh = e

One can check that A* induces a mapping between T'(I'y) and T(T') which
is holomorphic with respect to the natural complex structures of these two
spaces. By an abuse of notation, we will denote by A* the mapping between the
Teichmiiller spaces; we hope that it is clear from thqcontext which mapping
we are using. The mapping h, takes Q(T) onto Q(I‘O), a...nd.in this sense is the
co-derivative of h*. |

The proof of the Bers-Greenberg isomorphism theorem is completed by

observing that the mapping A* takes Teichmilller differentials to Teichmiiller

differentials, so A* is bijective. O
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5.4 Proof of the main result

5.4.1. In this section we will prove the main result of this chapter, theo-
rem 14. But first of all we will try to explain the main idea behind the proof.
We have a terminal regular b-group, I, of type (p,n) with some points of finite
ramification number, and we remove all of them to obtain a torsion free group,
I'y, of the same type. We have the commutative diagram with the universal
covering space of subsection 5.3.2. The first step is to decompose both groups
into modular subgroups, and to prove that there exist a correspondence be-
tween the modular subgroups of T'y and .those of I': we will prove that each
modular subgroup of the torsion free group I'y is mapped onto a modiﬂ_ar sub-
group of the group I'. Any deformation of the group 'y induces a deformation
of its modular subgroups, which can be pushed forward to a deformation of
the modular subgroups of I' by means of the above described correspondence.
The deformations of the modular subgroups induced by deformations of Ty are
conformal on fixed neighborhoods of certain punctures. We will see that any
deformation of a modular subgroup is equivalent to another of that specia,l
kind. This will give a mapping between the Teichmuller spaces of the modula,r
subgroups. A basic proposﬂ;]on about the Masklt embbedlng (proposﬂ;mn 11)
guarantees that, when we put all these 1som0rphlsms together they induce an

isomorphism from 7'(I'y) onto 7(T), completlng the prootf of our result.

5.4.2. Before starting the technical arguments, let’s recall our




commutative diagram:

Ay X Ar
So

Let Ty be one of the modular parts of Sy, and let #~1(Ty) = Uj;esD; be a

decomposition of the pre-image of Tp into connected components. Apply A~

and use the commutativity of the diagram to get

75 (To) = k™t o " H(Ty) = h™Y(Uses D)) = Usesh™H(D,).

J

On the other hand, we also have the decomposition into connected components
as follows:

WEI(TO) = UkeKAk-

Therefore Vk € K,3j € J such that h(4;) C D;.

5.4.3. Claim: h(A;) = D;.

Suppose we have Ay, and Ay, such that k(A ) C D;, h(A4,) C D;. Since
h is an open map and D; is an open connected set, our claim will be proven if
we can establish that the sets A(Ax, )} and h(Ay,) are either disjoint or equal.
So let us assume that there is a point y in the intersection of these two sets,
Yy € h(Ag, )N h(Ag,). This means that there are points, z; € Ay, and z; € Ay,
such that h(z;) = h(z;) = y. We then have To(z1) = wh(z,) = #(y) and
7o(xe) = wh(zy) = 7(y). This implies that there is a deck transformation
v € Ty such that y(z,) = z;. Therefore ¥y(A;) N A2z # #. But since 7 is a

homeomorphism, and 7gy = mp, we get

Urex Ax = 15 (To) = (mov ™)™ (To) = (75 (To)) = Y(Urex Ar) = Urery(Ar)-
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The sets . . are disjoint, so we must have YAk ) = Ak, We know that
hy(z) = h(e1) = h(z2) = 3, and hy(e)) = x(7)(h(z1)). This implies
X(Yy) = y. But y is in Dp, where the transformation x(v) € T has no
fixed points, unless it is the identity. So we conclude that x(7) = id, giving
h(Ak,) = ky(Ax,) = x(9)h(Ax,) = h(As,). And this proves the claim. #4

Choose one such pair of sets, D; and A, and rename Ap = A; for sim-

plicity. We have the following commutative diagram:

Aj\ | /Dj
To

Let I} = Stab(A;,To) and IV = Stab(D;,T). These groups are modular

subgroups of I'y and I' respectively. We want to prove that the homomorphism
x takes I') onto T7. We will do it in several steps, involving algebraic and

topological arguments.

5.4.4. Step 1: x(I'})) ¢ IV.

This step is obvious, since if ¥ € T% then v(A;) = A;, and therefore
X(N(D;) = x(7) 0 h(A;) = hoy(4A;) = h(4;) = D;. ##

Consider the following diagram:

Aj—5D; = h(4;)

A;TE—"D; /x(T), |
where 7, and T, are the natural projections, and p is defined by p(ri(z)) =

7o (h{z)).




5.4.5. Step 2: p is well defined.

If m(x) = m(y), then 3y € T such that Y(z) = y. Therefore h(y) =
h(y(z})) = x(7)(h(x)) which implies my(h(y)) = m3(k(2)), or p(mi(z)) =
p(mi(y))- ##

5.4.6. Step 3: p is a surjective mapping.

Let z € Dj. Then Jw € A; such that A(w) = z. This implies p(mi(w)) =
ma(h(w)) = my(2). ##

5.4.7. Step 4: p is one-to-one.

p(mi(2)) = p(mi(y)) means my(h(z)) = my(h(y)). Then Iy € T§ such
that A(y) = x(v)(h(z)) = k(y(z)) = ¥(y) = 3§ € H=covering group of
h={y € Tp/h oy = h} with 6(y(z)) = y.

hos=h= hob(A;) = h(A;) = D; = §(A;) is another A;. But the sets
{Ai} are disjoint, and we have that z,¥(z) and 6(y(z)) belong to A, which
implies 6(A4;) N A; # B and therefore §(A;) = A;. So we have that 6 is an

element of 7 N H.

From the equation (§ o y)(z) = y we obtain that m(z) = m(y), which
completes the argument of this step. HH
5.4.8. Step 5:  p is continuous with respect to the quotient topologies.

p is continuous if and only if po; is continuous. But this is obvious since

pom = myo h, which is the composition of two continuous functions.  ##




5.4.9. Step 6: p is open with respect to the quotient topologies.

Let U C A;/T) be an open set on the quotient topology. We know that
77 (U) = V is open in A;. And this last set is open in Ay (which is open in
the Riemann sphere). Since k is a covering map we get that A(V) is an open
set in Ap. Now we have that p(U) = my(h(V)) is open < w3 (ma(h(V))) is

open. But this set is

77 (ma(h(V))) = U x()(A(V)).

Since A(V') is an open set in the Riemann sphere, and x(7) is a homeomorphism
of C, the set x(7)(A(V)) is open (for all ¥ € T}3), so 73 (x3(R(V))) is open,

which proves that p is a open mapping. HH

5.4.10. So we conclude that A;/T7 = h(A;)/x(T'?), and remermber the
fact that h(A;) = D;,

i
Step T: x(I3) = I,
We have the following equalities: A;/T) = D, /T, AT = D, [x(T);

and we also know (I} C IV, Basic set theory gives us the desired conclusion.
0 g

#H#

5.4.11. So we have obtained that the map x takes modular subgroups of
I'y into modular subgroups of I'. This allows us to define a series of functions
hj, 1 < j < d, by the rule (hju) o h = u&. The domain of this function will
be the set:

T(T3, Ao) = {[4] € T(T3); supp(p) C Ao},
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and the target will be
T(1?,A) = {[u] € T(T); supp(p) C A},

Here the brackets denote the Teichmiiller class of the coefficient g. What we
would like to have is a mapping between the deformation spaces, and not these
(apparently proper) subsets. The following lemma states that these subsets

are really the whole deformation spaces.

Lemma 4 (Deformation Lemma) The space T(YY) is equal to

T(T9, Ao) = {pt € T(T7); supp() C Ao},

The idea behind the proof of this lemma is the following: the deformations
supported on Ag are those of the punctured torus or the four times punctured
sphere that are conformal on some fixed neighborhoods of the punctures. Te-
ichmiller space is the set of (quasiconformal) deformations of the complex
structure and the fundamental group of the surface. What we are considering
is deformations which are conformal on a (set of) puncture(s); but a punctured
disc carries only one possible complex structure and the fundament_a,l g_foﬁ_p_s
of surfaces with holes coincide with the fundamental g_ro_up.s. 0fsurfacesw1th
punctures. " e

Proof (of the lemma) [Mikhail Lyublch] Flrstof all, let us look at
the meaning of the space T(IV,A,). The.gi(jh}.'):'l"'j is & terminal regular b-
group, with invariant component A(T¥), such that the surface T = A(TH /T4

has signature (1,1;00) or (0,4;00,...,00). Since our proof is essentially the

same in both cases, we will assume that the surface is of type '(1,1). The




set Ag is also invariant under the group IV. We have Ay C A(T?) and the
quotient Ag/T7 is a torus with one hole. The difference A(TY) JT9 — Ay /T is a
punctured disc that we will denote by D. Therefore, if a Beltrami differential
is supported on Ag, the corresponding deformation of T' is conformal on D.
Therefore the lemma is equivalent to prove the following statement:

Let T be a torus with one puncture, and let D be a punctured disc around
the missing point. Let f : T — T" be a quasiconformal deformation of T. Then
[ is Teichmiiller equivalent to a quasiconformal deformation that is conformal
on D.

The inclusion T(I¥,Ag) C T(1Y) is trivial. To see the other inclusion,
consider a point in T(T7), say [1]. Choose a quasiconformal mapping repre-
senting that point, f : T — 7", and consider the punctured disc D. Let D'
denote f(D).

The punctured discs I and D' are conformally equivalent; let g : D — D’
be a biholc;morphism between the two punctured discs. Since the Teichmiiller

space of the punctured disc is trivial, we have a conformal mapping b : D' — D’

such that the following diagram is commutative up to homotopy:

Now let us look at the function h. We can extend it to the whole 7" so
that it is the identity outside a little bit bigger punctured disc V 2 D', an

smooth in the annulus V — D', Then it is clear that f and Ao f are homotopic.




This is not hard to see as follows: on 177 — V the function A is the identity,
therefore ho f = f. On the punctured disc V we have that the function h is
the identity on the boundary, and basic topology says that then & is homotopic
to the identity on the whole V. To see it, since this is a topological statement,
we can assume that V' is the unit disc D = {z € C; || < 1}, and A is the
identity in the boundary of the unit this, S*. The homotopy between A and

the identity funciion is given by

H: [0,]]x(DUSYy — Dust

(t,2) = (I —t4+tz) A((1 — )z + t&)

E
So ko f is homotopic ’co'f.

Thus we have deformed the function f to another function, h o f, in the
same Teichmiiller class, but such that this last function is homotopic to a
conformal mapping on D. But this last statement means that the Teichmiiller
class of h o f is trivial on D, that is, it is represented by the a Beltrami
differeﬁtial that is zero outside Ag, as we wanted to prove. O

5.4.12. The above proof shows that the result can be generalized as

follows:

Lemma 5 (Deformation Lemma) Suppose S is an orbifold with af least n
punctures. Let Uy,..., U, be punclured discs around the punctures of S, with
disjoint closures. Then any quasiconformal deformation of S is equivalent to

a quasiconformal deformation that is conformal on the sets Uy,..., U,.
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5.4.13. To recapitulate, we have the covering h that induces a homomor-
phism x between the modular subgroups, and a series of mappings between
T(T%, Ap) and T(I', A), called h;. By the previous deformation lemma, we
have that 4] is really defined between T(I'}) and T(I ). To complete the proof
of our main result we need one property of the Maskit embedding. But before
stating it, let us recall that in the coordinates of chapter 3, the one dimensional
deformation spaces are embedded in the upper half plane (§§3.2.5, 3.3.8 and

3.2.9). The statement of the proposition is the following:

Proposition 11 Let G be a terminal regular b-group uniformizing an orbifold
S of finite conformeal type with a mazimal partition C. Let Gi,...,Gy be (a
choice of) the modular subgroups of G, and let T(G) — Tt_, T(Gi) be the
Maskit embedding of T{G). Let o be in T(G1). Then there exist non-negative
numbers (s2,... s2) such that the sct {(a,zy,...,24) € HY In(z;) > si} is

contained in (the image of).T(g).

Proof.lt is easier to see the proof at the level of orbifolds. Consider the
orbifold of type (0,4) or (1,1) given by a. The pair (S,C) gives a.r'i algoi'ithm'
to construct orbifolds from points in T(G), by a serzes of plumblng processes '
Suppose we have built an orbifold correspondmg to the pomt (a zz, :,Zj)'
The next plumbing construction’ will’ use elther one or two punctures of this
last orbifold; it is clear that we can do such constructlon 1f we use horocircles
of very small radius. But these types of h0r0c1rcles“c0'rre'3pond to coordinates
with big imaginary part. . O

Observe that a trivial consequence of this proposition (that we will use) is




that given a and B in T(G), the corresponding sets obtained in the proposition,
{(z2,...,20) € HY Im(z;) > s} and {(z2,...,24) € H¥™Y; Im(z;) > sh}
have non-empty intersection. ‘

5.4.14. By the above work, we have that a set of 3p-34+n mappings
between one-dimensional deformation spaces, and we want to prove that the
tuple (h],..., R, _3,,), gives an isomorphism between T'(I'g) and 7(T"). Con-

sider now the following diagram:

h‘

T(To) ()

N I

L2 T(15) — T2 T(DY),

where 15 and ¢ are the Maskit embeddings, and in the lower horizontal arrow
we have the function (h],..., k%, _ ). 2* and the k] are defined by the same
equation, namely (h*u) o h = ,u%—:, where h 1s the covering map of §5.3.2. This
implies that the above diagram is commutative. All we need to complete the
proof of the main theorem is to see that each A} is injective and onto.

Injectivity: let us consider A}, and suppose o and f are two points in
T(T}) with h}{a) = h3(B). Then there exist open sets V, and Vp, with non-
empty intersection, given by the above proposition. Choose « in that inter-
section. We would get that (R],..., R4 s Moy 7) = (A1, ..., RS 500 (B.7),
which contradicts the injectivity of A* = (A],..., h3,_3,,).

Each A% is onto: take o in T(I'"), and find # such that (¢, 8') belongs to

T'(I'). Then there exists a point = («, §) € T(I'y) X H?i;%n T(T%) such that

h*(a, B) = (¢, B), giving hi(a) = o. This completes the proof of theorem

13. (W}
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We would like to finish this chapter with a question posed by Bernard
Maskit. We know that two Teichmiiller spaces of dimension one are simply
connected propei‘ subsets of the complex plane, and therefore conformally
equivalent by the Riemann Mapping Theorem. Can we use this Riemamnn

mappings at the one dimensional level to get a proof of the Bers-Geenberg

Theorem in higher dimensions?

140




Bibliography

[Ah154]

[Ah164]

[Bea83)

[Ber60]

[Ber66]

[Ber70]

L. V. Ablfors, On quasiconformal mappings, J. Analyse Math 3
{1953-1954), 1-58.

L. V. Ablfors, Finitely generated Kleinian groups, Amer. J. Math.
6 (1964), 413-429, and 87 (1965), 759.

A. Beardon, The Geomelry of Discrete Groups, Graduate Text in
Mathematics, vol. 91, Springer-Verlag, New York, Heidelberg and
Berlin, 1983.

L. Bers, Quasiconformal mappings and Teichmiiller theorem, Ana-

lytic Functions (R. Nevanlinna et al., ed.), Princeton Univ. Press, -

Princeton, NJ., 1960, pp. 53-79.

L. Bers, A non-standard mtegml equatwn wzth applications tb'qua-':f'_' s

siconformal mappmgs, Acta, Math'.: 116 (1966 :

L. Bers, Spaces of leemzan groups .Severa.l Complex' Varlables Ma,ry-' -

land 1970, Lecture Notes in Mathema.tlcs Vi _55__ Sprmger, Belhn

1970, pp. 9-34.

141




[BGT1]

[Deh87]

(Ear91]

[EK74]

[FK92)

[For51]

[Gar87]

[Gen'79)

L. Bers and L. Greenberg, Isomorphisms between Teichmiller spaces,
Advances in the Theory of Riemann surfaces, Ann. of Math. Studies

66, 1971, pp. 53-79.

M. Dehn, Papers on G"roup Theory and Topology, Springer-Verlag,
New York, Berlin and Heidelberg, 1987.

C. Farle, The group of biholomorphic self-mappings of Schottky
space, Ann. Acad. Sci. Fenn. Ser. A T Math. 16 (1991), no. 2, 399-
410.

C. Earle and I. Kra, On holomorphic mappings between Teichmiller

spaces, Contributions to Analysis, Academic Press, 1974, pp. 107-
124,

H. Farkas and I. Kra, Riemann Surfaces, 2nd ed., Graduate Text in
Mathematics, vol. 72, Springer-Verlag, New York, Heidelberg and
Berlin, 1992.

L. R. Ford, Automorphic Functwns Chelsea Pubhshlng""ompany;

New York, 1951.

F. P. Gardiner, Tezchmuller Thcory and Quadmtzc Dzﬁerentzals
John Wiley & Sons, New York, 1987

J. Gentilesco, Automeorphisms of the EiEforTridtio'ﬁ_- Sp'ac'é- of a Kleinian

group, Trans. Amer, Math. Soc. 248 (1979) 207-200.




[Kra72a] 1. Kra Automorphfc..foms and Kleinian groups, W. A. Benjamin,
Reading, MA 1972

[Kra72b] I. Kra, On spaces of I\lemmn groups, Comment. Math. Helv. 47
(1972), 53 69

[Kra88] I. Kra, Non- varmtmnal global coordinates for Teichmiller spaces,

Holomorp}nc functmm and Moduli I1, Math. Sci. Res. Inst. Publ,,
vol. 11, Spr_mger, 1988, pp. 221-249.

[Kra90] 1. Kra, Horbéjjélié"'é.o'ofdinates for Riemann surfaces and moduli
spaces. I: Teichmiiller and Riemann spaces of Kleinian groups,

J.Amer.Math.Soc. 3 {1990), 499-578.

[Mar69] A. Marden, On homotopic mappings of Riemann surface, Ann. of
Math. 90 (1969}, 1-8.

[Mas70] B. Maskit, On boundaries of Teichmiller spaces and on Kleinian

groups: II, Ann. of Math. 91 (1970), 607-639.

[Mas71] B. Maskit, Self-maps of Kleinian groups, Amer. J. Math. 93 (1971),
840-856.

[MasT4] B. Maskit, Moduli of marked Riemann surfaces, Bull. Amer. Math.
Soc. 80 (1974), T73-771.

B. Maskit, On the classification of Kleinian groups: I-Kq"eb.e'_” pups,
Acta Math. 135 (1975), 249-270. .




[Mas88]

[Mas92]

[Nag88]

[Pat72]

[Str82]

[Thu79]

B. Maskit, Kleinian Groups, Grundlehren der math.ér}.la:‘tis'_ché;n.\_,_\'l'_

senschaften, vol. 287, Springer-Verlag, Berlin, Heidelb.e'rg.; 1988 b

B. Maskit, On Klein’s Combination Theorem IV, Preprint (19'9'2').1,._
1-36. '

5. Nag, The Complex Analytic Theory of Teichmiller Spaces, John: B
Wiley & Sons, 1988.

D. B. Patterson, The Teichmiiller spaces are distinct, Proc. Amer.

Math. Soc. 35 (1972), 179-182, and 38 (1973), 668.

K. Strebel, Quadratic Differentials, Springer-Verlag, Berlin and New

York, 1982.

W. Thurston, The Geometry and Topology of Three-Manifolds,

Princeton University, Princeton, USA, 1979.




