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Abstract of the Dissertation
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by
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1993

The classical Dold-Thom theorem asserts that for every connected poly-
hedron X there is an isomorphism between the integral singular homology
of X and the homotopy groups of the free abelian topological group AG(X)
generated by the points of X. We show that an analogous result holds for
intersection homology. We introduce intersection homotopy groups of filtered
spaces and prove that for every startified polyhedron X the intersection homol-
ogy groups of X are isomorphic to the intersection homotopy groups of AG(X)
equipped with some finite filtration induced by a stratification of X. We also
show that there exist long exact sequences of intersection homotopy groups for

filtered pairs and filtered fibrations, and that the intersection homotopy groups
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of a pl stratification of a polyhedron X depend on the pl structure of X and
in certain cases only on the homeomorphism type of X. It is proved that
intersection homotopy groups can be thought of as a functor on the category

of polyhedra with morphisms - either pl allowable maps, or placid homotopy

classes of continuous placid maps.
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CHAPTER 1!

Introduction

The classical Dold-Thom Theorem asserts that for every connected polyhedron

X there is an isomorphism

(1 H,(X,Z) = 7 (AG(X))

between the integral singular homology of X and the homotopy groups of the
free abelian topological group AG(X) generated by the points of X [DT56].

The importance of the Dold-Thom Theorem comes not only from the fact that

it describes a relationship between homology and homotopy groups, but also
(and maybe foremost) because it served as an inspiration for such fundamental
results as the Spanier-Whitehead duality, the Almgren isomorphism (see the
next paragraph), and the Lawson suspension theorem for L-homology [Spa59,

FJA62, Law89, Fri9l].

The Almgren isomorphism is a natural generalization of the Dold-Thom

Theorem that stemmed from the following observation. For every polyhedron
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X the topological group AG(X) can be identify with the space of 0-cycles of X.
Thus, the Dold-Thom Theorem gives an explicit description of the homotopy
groups of the space of 0-cycles of a polyhedron X. It is natural to ask if a
similar result holds for higher dimensional cycles. An affirmative answer to
the above question, posed by H. Federer, was given by I'. Almgren in 1962

[FJA62]. He proved that for every euclidean polyhedron X, and k£ > r > 0,

there is an isomorphism
Hi (X, 7) = mp_(Z4.(X))
where Z,(X) is the space of integral Federer r-cycles with the weak topology.

The isomorphisms of Dold-Thom and Almgren served as motivation for
Blaine Lawson in his work on homotopy groups of spaces of algebraic cycles
[Law89]. Lawson’s results were generalized and extended by Eric Friedlander,
who introduced the notion of L-homology [Fri91]. L-homology assigns to an

arbitrary complex projective variety X the groups

de
L Ho(X) € w0 (2,(X))
where Z,(X) is the naive group completion of the union of Chow varieties
of the effective algebraic r-cycles of the variety X [Law89, Fri91]. From the

Dold-Thom Theorem and the fact that Z,(X) = AG(X) it follows that the

L-homology L,Hi(X) of an algebraic variety X specializes to the ordinary

2




homology Hi(X,7) of X for r = 0. On the other hand the groups L, H,.(X)
are sensitive to the algebraic structure of X. For example, for each r > 0, the
group L, H,, (X} is isomorphic to the group A,(X) of algebraic r-cycles on X,

modulo algebraic equivalence.

One of the most fundamental properties of ordinary and L-homology is the

existence of intersection pairings

(2) Hy(M) x Hi(M)— Hyy1-n(M)

(3) LTH}c(M) X LSH[(M)———)LT+s_n.Hk+[,2n(M)

where M in (2) is a pl manifold of dimension n and M in (3) is a complex quasi-
projective manifold of dimension n. The classical Poincare duality asserts that
the pairing (2) is non-degenerate over Q'. If M is a singular polyhedron of
dimension n, then usually the pairing (2) cannot be defined, and the groups
Hi,(M)®Q and Hom(H,_;(M) ® Q, Q) are not isomorphic. This is one of the
reasons for which ordinary homology is not the most suitable tool for studying
singular spaces {an another reason is that ordinary homology is a homotopy
invariant, and a homotopy equivalence may essentially change the singular

structure of a space).

In 1980 R. MacPherson and M. Goresky defined a natural generalization of

1Tt induces an isomorphism Hy(M) @ Q@ = Hom(H, (M) @ Q,Q).




B(k) < Bk +1) < () + 1.

ordinary homology called intersection homology [GM80]. Intersection homol-
ogy assigns to every stratified polyhedron? X a family {I;H.(X)} of graded
groups indexed by perversities®. It is eqﬁipped with a pairing of intersection
type and is not a homotopy type invariant. The groups Iz H.(X) are the ho-
mology groups of a complex of pl chains of X, whose intersections with strata
of X are controlled by the perversity # . Intersection homology specializes
to ordinary homology and cohomology. Actually, if X is a normal pseudo-

manifold of dimension n, then

H.(X) for p(k) =k — 2

LH(X)=
H(X) for p(k)=0.

The remarkable feature of intersection homology is the existence of Poincare
duality for singular spaces. There is also a Kinneth Theorem, a long exact
sequence of a pair, a Mayer-Vietoris Theorem, and many other properties
characteristic for homology theory.

2A stratified polyhedron is a pair (X, X) consisting of a polyhedron X and a filiration
¥: X=X'>X'>X’>.-2X"D90
of X by its subpolyhedra (called skeleta of X) satislying certain extra conditions (for details

see Chapter 2). In the sequel, by abuse of notation we will often write X when referring to

a filtered (pl stratified) space (X, X).

3A perversity is a function p : Z, —Z, with the property that for every & > 0 we have



If we think of L-homology as an extension of ordinary homology on the
category of projective algebraic varieties, then it is natural to ask if it is possible

to find an analogous extension for intersection homology.

The problem of finding an intersection version of L-homology is a gener-
alization of the old problem (as old as intersection homology) of finding an
intersection version of the groups A.(X) of algebraic r-cycles on X, mod-

ulo algebraic equivalence. The existence of such a theory would give us an

intersection theory for singular varieties, whose existence is still problematic.

By analogy with L-homology, the intersection I.-homology I3L, Hx(X) of a
variety X should specialize, for r = 0, to the intersection homology I;H(X)

of X, and the isomorphism

LHW(X,2) & Lo Hy(X)

should be an analogue of the Dold-Thom Theorem for intersection homology.
One of the main difficulties in establishing such an isomorphism was lack of a
good candidate for an intersection analogue of the right hand side of the Dold-
Thom isomorphism (1). In this thesis we introduce the notion of intersection

Jhomotopy groups and prove the following result.



THEOREM L.1. For every perversity p and every stratified connected polyhe-

dron X there is an isormorphism

LH(X,Z) = L, (AG(X)).

The definition of the right hand side of the above isomorphism is given

below.

Recall, that the homotopy groups of a topological space X are canonically
isomorphic with the simplicial homotopy groups of the simplicial set S{X)
of singular simplices of X. The following definition of intersection homotopy

groups was motivated by the above isomorphism.

We define the inlersection homotopy groups ;. (X) of a filtered space X
as the homotopy groups of a simplicial set [;5(X) of p-singular simplices of
X that can be described as follows. A continuous map ¢ from the standard
n-simplex A, into X is a p-singular simplez of X if for every skeleton XF
of X the inverse image o~ 1(X*) is contained in a subpolyhedron of A, of
dimension < n — k£ 4 p(k), and a similar condition holds for every face of o
(for more details see Chapter 2). The archetypes of our p-singular simplices

are H. King’s intersection singular simplices [Kin85].
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Immediately from the definition of intersection homotopy groups it follows

that for every filtered space X there is an isomorphism
L (X) 2 7 (X)

where p(k) = k. We will show that many fundamental properties of ordi-
nary homotopy groups have “intersection” analogues. For example, there is
an intersection Hurewicz Theorem and there exist long exact sequences of in-
tersection homotopy groups for filtered pairs and filtered fibrations. On the
other hand, contrary to homotopy invariance of ordinary homotopy groups,
the intersection homotopy groups of a stratified polyhedron X depend only
on the pl structure of X and in certain cases on the homeomorphism type of
X. We also prove that intersection homotopy groups can be thought of as
a functor on the category of polyhedra with morphisms - either pl allowable

maps, or placid homotopy classes of continuous placid maps.

The reason we define intersection homotopy groups in the context of finitely
filtered spaces (not just pl stratified ones) is that we want to define intersection
homotopy groups of AG(X) which is in general infinite dimensional and hence

does not carry any stratification structure.

If we identify the elements of AG(X) with functions of finite support from

X to Z, then the finite filtration AG(%) = {AG(X)*}, with respect to which

7




the intersection homotopy groups of AG(X) are computed, is defined so that
n : X—Z belongs to the skeleton AG(X)* of AG(X) whenever n(z) # 0 for

some element z of the skeleton X* of x.

Theorem 1.1 is proved by showing that the natural equivalence of homology
theories

@, Hi—7, 0 AG

extends to a natural equivalence of intersection homology theories

g, + IgH —— Izme 0 AG.

In order to make the last statement more precise we will describe in more

detail the transformations ¢, and Izp,.

The assignment X — AG(X) induces a functor AG from the category of
polyhedra and continuous maps to the category of free abelian topological
groups and continuous homomorphisms. There exists a simplicial counterpart
of this functor (that we will also denote by AG) that assigns to every simplicial
set S a free abelian simplicial group AG(S) [Spab9]. Let S(X) bé the simpli-
cial set of singular simplices of X. For every topological space X the simplicial
group AG(S(X)) can be identified with the complex of singular chains of X
and, under this identification, the singular homology groups H*(X , Z) corre-

spond to the simplicial homotopy groups m.( AG(S(X))) [May82]. On the other

8




hand, for every space X the homotopy groups of X are naturally isomorphic

to the simplicial homotopy groups of the complex S(X). In particular,
7 (AG(X)) =2 1 (S(AG(X))).
Using the above identifications ¢, can be rewritten in the form

0, = M) im0 AGo S—sm, 0 50 AG

where  is the natural transformation

(4) p: AGoS— 50 AG

o> ni o) =(s—= > n; ai(s)).

An intersection analogue
Ip : AG o I;S— 155 0 AG

of the transformation (4) is obtained by replacing S by a functor I;S with
values in p-singular simplicial complexes, and by extending AG to a finitely
filtered free abelian group functor, that assigns to every finitely filtered space

(X, %) the group AG(X) with the finite filtration AG(%).

From the definition of intersection homotopy groups and the fact that for
every stratified polyhedron X the homology of I;S(X) is isomorphic to the

intersection homology I;H.(X,Z) of X, the transformation Izp, induced by

9



(5) Ly, i 70 AG o [;S— 7, 0 I35 0 AG

r
can be rewritten in the form
Lip, : H.— L7, 0 AG.
Isp, is an isomorphism on the class of stratified polyhedra, because both /;H,

and Izr, o AG are intersection pl homology functors (see Chapter 3 for the

definition), and the transformation I;p, satisfies conditions of the uniqueness

theorem (Theorem IV.1) for intersection pl homology.




CHAPTER 1I
Stratified polyhedra

This chapter contains a brief discussion of basic properties of stratified spaces.
A filtered space (X, X) is a space X with a filtration
2 X=X, DXnu D DXoD X 1=0

of X by closed (at least when X is of finite dimension) subspaces of X. All
filtrations considered in this paper are finite, that is n < 0. The elements
X, of x will be called skeleta and the differences S, = X \ Xi—1 strata of the
filtration X. We will sometimes refer to the top dimensional stratum S,, as the
regular stratum and denote it by reg(X). In the sequel we will assume that
all filtrations have a non-empty regular stratum. The subscript index & of X,
will be called the formal dimension of X;. Very often it is more convenient
to index filtrations by formal codimension of skeleta. We follow a standard

convention where the skeleton X,,_, of X of formal codimension k is denoted

by X*.



If a space X is a polyhedron and a filiration X of X is given by subpolyhedra,

then the pair (X, %) is called a filtered polyhedron.

Let X be a polyhedron with a filtration X of length n. The open cone
Xx[0,1)/Xx0 ifX#9
o(X) =
{pt} if X =9
on X has a natural filtration ¢(X) with the skeleta,

(
e X*) for0<k<n

(e(X ))k = jthe vertex of the cone fork=n 41

B fork>n+1

Let X and Y be polyhedra with filtrations X = {X*} and 9 = {Y*} respec-
tively. A pl map f : XY is cofiltered with respect to X and 9 if for every
k > 0 one has X* D f~}(Y*). A cofiltered pl map f : (X, %)—=(Y,D) is a
filtered isomorphism of filtered spaces if f : X—Y is a pl homeomorphism

and for every k > 0 one has f(X*) = Y.

A locally cone-like filtration of a polyhedron X is a filtration X of X so that
for each point # € S; = Xi \ X1 there is a neighborhood U of z in Sy,
a compact filtered polyhedron (L, £), called a link of 2 in X, and a filtered
isomorphism of U x ¢(L) onto an open neighborhood of 2 in X, where U x ¢(L)

carries the product filiration with skeleta (U x ¢(L))* = U x (¢(L))*.

12



A pl stratification of a polyhedron X is a locally cone-like filtration of X
whose strata are pl manifolds (without boundary) [Sie72]. A stratified polyhe-
dron is a pair (X, X) consisting of a polyhedron X and a pl stratification X of
X. In the sequel, by abuse of notation we will often write X when referring

to a filtered (or pl stratified) space (X, X).

For every pl stratification X of a polyhedron X the natural filtration ¢(X) of
the cone ¢(X) is a pl stratification of ¢(X). Every triangulation of a polyhedron

X induces a pl stratification of X by its skeleta.

We say that a stratification ¥ of X coarsens another stratification %' of X
if evefy stratum of ¥ is a union of connected components of strata of ¥’. For
example, if K' is a subcomplex of a simplicial complex K, then the stratifi-
cation induced by K coarsens the stratification induced by K’. Thus, in a
sense, the operé,tion of coarsening of stratification is reverse to the subdivision

of triangulations.

The subdivision of triangulations is an ordering relation and divides the
class of all triangulations of a polyhedron into partially ordered subclasses
called pl structures of the polyhedron. Also, the coarsening .Of stratifications
is an ordering relation and it divides all stratifications of a stratified space into

partially ordered subclasses. There is an essential difference between these two



ordering relations. Contrary to the subdivision of simplicial complexes., the
coarsening of pl stratifications of a polyhedron X (With. a fixed pl structure)
has a terminal object. Tt is called the intrinsic pl stratification of X. Let It(X)
denote the k-dimensional skeleton of the intrinsic pl stratification 3(X) of X.

The intrinsic pl stratification of a polyhedron X is constructed as follows.

With every point z of a polyhedron X we associate an integer d(z, X) called
the intrinsic dimension of X at x that is defined as the greatest integer #

satisfying one of the following equivalent conditions:

(1) The link of & in X is a t-fold suspension. That is there exists a polyhe-
dron Y so that the link of z in X is the join of the (¢ — 1)-dimensional
sphere and Y.

(2) There exists an embedding f: Ry x ¢(WW)—X so that f(R, x ¢(W)) is
a neighborhood of z in X.

(3) There exists a triangulation of X so that « lies in the interior of a

simplex of dimension £.

For the proof of equivalence of the above three conditions see [Aki69]. The

intrinsic pl i-skeleton of X 1s

L(X) = {2 € X | d(z, X) < i}.

14



Part 3 of the definition of the intrinsic dimension implies that
LX) = Nt K:]) | (K, 1) is a triangulation of X'}

where K; is the ¢-dimensional skeleton of K. Thus [;(X) is a closed subpolyhe-
dron of X. Moreover, for every ¢ the difference I;(X)\ I;_1(X) is a pl manifold
of dimension ¢ [Aki69]. Hence, by the part 2 of the definition of the intrinsic

dimension, the filtration 3(X) = {L;(X)} is a pl stratification of X.

If ¢(N) is an open cone over a pl manifold N and X is a locally trivial

fibration over a pl-manifold M with fiber ¢(N), then

B for k < dim(M)
L(X)=1{ M for dim(M) < k < dim(X)

X for k = dim(X)

.

In particular, if M is a pl manifold of dimension n, then I,,(M) = M and

Ii(M) =0 for k < dim(M).




CHAPTER III

Intersection Homotopy Groups

In this chapter it will be shown that to every filtered space X one can assign
a Kan complex I;S({X) whose homology coincide with Goresky-MacPherson
intersection pl homology of X, when X is a stratified polyhedron. We define
the intersection homotopy groups I;m.(X) of X as the simplicial homotopy
groups of I;5(X). We introduce notions of filtered pairs and filtered fibra-
tions and show that for every filtered pair or fibration there exist long exact
sequences of intersection homotopy groups. It will be shown that the intersec-
tion homotopy groups of a stratified polyhedron X depend on the pl structure
of X and in some cases only on the homeomorphism type of X. Finally, we
will see that intersection homotopy groups can be thought of as a functor on
the category of polyhedra with morphisms either pl allowable maps, or placid

homotopy classes of continuous placid maps (see Section 2.2).

Our basic reference for homotopy theory of simplicial sets is [May82].




1. Intersection Homotopy Groups of Filtered Spaces

Let
Ay = {(to,t1, -, tx) € Repa |0 <1, < 1,3 8 =1}

be the standard k-simplex in Rpyq. A singular k-simplex of a topological space
X is a continuous map o : Ap,—X. Let Si(X) be the set of all singular k-

simplices of X. The graded set S(X) = [15:(X) becomes a simplicial set if

we define face operators

B,; . Sk(X)—>Sk_1(X), 0 S ) S k

850'(?50, P atk—l) = O'(Ifg, e ,t.,-ﬁl,(),ti, cae ;tk—l)
and degeneracy operators

8; : Sk(X)—-—>Sk+1(X), 0<e<k+1

S,;O'(to, e ,ik+1) = O'(to,. eyl F i, .. ,tk+1).

The simplicial set S(X) is called the singular complex of X.

A perversity is a function p : Z..—Z,. so that for every k£ > 0

p(k) < plk+1) < p(k) + 1.

17



Let X be a filtered space. A singular simplex o : Ay— X is p allowable with
respect to % if for every skeleton X° of X the subset 0~ (X*) is contained in

a subpolyhedron of Aj of dimension less than or equal to k — s + p(s).

A singular simplex o : Ag— X is of perversity p with respect to a filtration
% of X, or perversity p (rel %), if o and all its faces 0;, 0 9;, 0 --- 0 0;,(c) are p
allowable with respect to X. It is easy to see that if o is of perversity p (rel X),
then every degenerated simplex s; 0 sj, 0---035,(0) is of perversity p (rel X).
Hence, all perversity p (rel X) singular simplices of X constitute a simplicial
set I;5(X) that will be called perversity p singular complex of the filtered space
X. Sometimes, in order to specify a filtration X of X, with respect to which

the complex I;5(X) is computed, we will write I;5(X, %) for I;5(X).

If X is a stratified polyhedron, then the complex [;5(X) is an intersection

analogue of S(X). Actually, we have the following result.

THEOREM III.1. For every stratified polyhedron X the homology groups of
the complex I;S{X) are isomorphic to Goresky-MacPherson intersection pl

homology of X.

Theorem I11.1 can be proved in exactly the same way as an analogous state-

ment for King’s singular intersection homology [Kin85].

18




If f: X—>Y is a cofiltered map, then f induces a morphism
fo i IS (X)—=15(Y)

of simplicial sets. In particular, if an embedding z : A~ X is a cofiltered map,
then I;S(A) is a simplicial subset of I;5(X). A pair (X, A) is called a filtered
pair if the embedding map 2 : A— X is cofiltered. For example, if x € X, then
(X,z)} is a filtered pair if and only if « € reg(X). A triple (X, A, B) is called

a filtered triple if both pairs (X, A), (A, B) are filtered pairs.

The isomorphisms

IR

(X, ) 7{(S(X), S{z))

14

(X, A, z) Wk(S(X)'.'S(A)vg(:B))

motivate the following definition. The k-th perversity p intersection homotopy
group Iymp(X, A, z) of a filtered triple (X, A, z) is the simplicial homotopy
group of the simplicial triple (I;S(X), I;S(A), I;S(z)). In particular, if X = A,

then

L (X, 2) < mu(1:8(X), 1:5(2)).

In terms of perversity # singular simplices of X the group Izm(X, z) can be
described as follows. We say that two perversity p singular k—simplices g, 0y
of X are p-homotopic if there is a perversity p singular (k£ + 1)—simplex o

so that Oy = 09, 0kp10 = o1, and for all 0 < 2z < k the simplex J;¢ is the

19



constant map into z. The group Izm(X,z) consists of f-homotopy classes of
perversity p singular simplices o : Ap—X so that for every 0 < ¢ < k the

singular simplex ;0 maps Aj_y into the point z.

When working with different filtrations of a space it is convenient to specify
with respect to which filtration the intersection homotopy groups are com-
puted. In this situations the perversity j intersection homotopy groups of a

filtered space (X, %) will be denoted by Iy, (X, X).

Recall, that the simplicial homotopy groups of a simplicial set S are well
defined only if S satisfies the following Kan extension condition. For every
0 < ¢ < k and a simplicial map s : A[k,:]—.5 there is an extension of s to a
simplicial map A[k]—S, where A[k] is the standard simplicial k-simplex and

Alk, 1] is the simplicial subset of Alk] generated by the simplices
DoOky. oy 0i10k, Oiy10k, ..., Droy,
with o), being the non-degenerated k-simplex of A[k].

Thus, the definition of intersection homotopy groups makes sense if for every
filtered space X the complex I;5(X) satisfies the Kan extension condition. In
other words, one has to prove that if V(k,1) is the union of all but :** (k —1)-
dimensional faces of Ay and ¢ : V(k,i)—=X is a continuous map so that its

restriction to every simplex is a perversity p map, then ¢ extends to a perversity

20




p singular k-simplex. The required extension is obtained by the composition
of ¢ with the the radial projection r; : Ay—V(k,1) from the baricenter of the
it" face of Ag. The map & or; is a perversity p singular simplex because for
every subpolyhedron P of V(k,i) the inverse image r'(P) is of dimension

dimP +1.
Ezamples.

1. Let M be a pl manifold with the trivial filtration M = {# C M} and let

(X, %) be a filtered space. For every perversity p and a non-negative integer k

Limp(X X M) 2 Lim(X) x m(M)

where X x M is equipped with the product filtration

ExMOC X" XMCX"I'xMc---CX'xMcXxM.

2. Let X be a filtration of X of length n, then for every perversity p and a

non-negative integer k£
Lre(X) fork <n—p(n+1)

Lmi(c(X)) = .
0 for k> n—p(n+1).

3. Let X be a polyhedron of dimension n, with a finite set ¥ of isolated

singularities. For a stratification

%:XEXRDXH_1:)"'3X0:)X_1:@

21




of Xsothat X; =YX for0<i<n

.

(X \X) fork+1—n+pn)<0

Iﬁﬂ'k(X)

IR

Vim(mp (X \ B)—m (X)) fork+1—n+4p(n)=0

? for k+1—n+p(n) > 0.

Since every cofiltered map of filtered pairs f : (X, z)—(Y,y) induces a sim-
plicial map f; : [S(X)—I;S(Y), it induces also a homomorphism of corre-

sponding homotopy groups f. : imp(X, )= Lme(Y, y).

For every Kan triple (7T, 5,v) there is a long exact sequence of homotopy
groups

coo w8, v) (T v) = (1, S, v) =71 (S,v)—= - -

Hence, for every filtered triple (X, A,z) there is a long exact sequence of

intersection homotopy groups

oo = Lme(A, )= L (X, )= Lrp (X, A, @) Igmp g (A, 2)— -

Now we are going to define an intersection counterpart o:f. the notion of
Serre fibration. Our definition is motivated by the fact tha,t.a.m.:;)ﬁti.ﬁ.uous map
7% : E—B is a Serre fibration if and only if the induc.é.é.l' s.i'.rni).ii.'(:ial morphism
S(m) : S(E)—S(B) of singular complexes is a simplicial fibration. The above

equivalence follows directly from the definitions of Serre and simplicial fibra-

22




tions. Recall that a simplicial map 7 : T—S is a simplicial fibration if 7 is a

surjection and for every k£ > 0 and 0 < ¢ < k the extension problem

has a solution G.

A map 7 : E— B of filtered spaces will be called a filtered fibration if for
every perversity p it induces a simplicial fibration 5 : I;S(E)—I;:S(B). Equiv-
alently, 7 : £—B is a filtered fibration if for every p 1t induces a surjective |

map 75 : {;5(E)—I;S(B) and the following extension problem

[

Ak~ B

where V(k,7) is the geometric realization of Alk, ], and the maps &G and g are
of perversity p with respect to the filtrations of B and FE respectively, has a

solution G that is of perversity p with respect to the filtration of E.

Since a simplicial fibration of Kan complexes induces a long exact sequence

of homotopy groups, for every filtered fibration « : £— B there is a long exact
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sequence of intersection homotopy groups
o o (fib(mp) )= wk (B, €)= Imy (B, b)—mp—y (fib(mrg))— - - -
where fib(r;) represents the fiber of m; : I;S(E)—1L;5(B).

THEOREM II1.2. Let w : E—B be a filtered fibration so that for some b €

reg(B) the fiber F' = 7 1(b) s a filtered subspace of E. Then there exists a

long exact sequence of intersection homotopy groups

(6) o Lmp(F €)= Imi (B e)— Iy (B, b) — Iprg o1 (F e)— -+ -

The proof of Theorem II1.2 is exactly the same as the proof of the existence

of long exact sequences for Serre fibrations.

THEOREM II1.3. Let v : E— B be a locally trivial fibration with a fiber F' and
let E,B and F be filtered by ¢ = {E°},8 = {B°} and § = {F*} respectively,
so that for every b € B there is a neighborhood U of b in B and a trivielization

w: 7 HU)—=U x F so that for every s > 0 and U* =U N B*
(7) (I (YNEY)=U"x F U Ux F.

Then = is a filtered fibration. Moreover, if for some b € reg(B) the fiber

F =77Yb) is a filtered subspace of E, then the sequence (6) is exact.

A straightforward consequence of Theorem IIL3 is the following corollary.
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CoroLLARY 1IL4. If M is a pl manifold and (L) is a cone over a filtered
space L, then every locally trivial fibration = : F— M with fiber ¢( L) is a filtered
Jibration with respect to the trivial filtration of M and « filtration of € = {£°}
of E so that for every open subset U of M for which n='(U) is isomorphic to

U x ¢(L) the intersection E* Na~YU) is isomorphic to U x ¢(L)°.

Proof of Theorem I11.3. First note that for every perversity p (rel @) simplex
o : Ap—F there is a triangulation T of A, so that for every simplex A of T
there exists an open subset U of B so that o(A)} C #~}(U) and #=*(U) has a
trivialization satisfying the condition (7) . Moreover, the triangulation T’ can
be chosen so that the restriction o] is of perversity p (rel €). Every such tri-
angulation will be called triangulation of o transversal to €. The triangulation
T can be obtained from an arbitrary triangulation S of Ay by moving (using
induction on the dimension of skeleta of S) the skeleta of S into a general

position with a pl filtration {A*} of A so that o7 E*) C A”.

LEMMA 1115, Let 7w : E—B and ¢ : 7= (U)—=U x F' be as in Theorem 111.3.
Then a singular simplex o : Ay—m~*(U) is of perversity p (rel €} if and only
if the simplices wy 0 @ 0 0 and 7, 0 p 0 o are of perversity p with respect Lo

B and § respectively, where w1, : U x F—U,my : U x F'—=F are the standard

projections.




Proof. The proof follows from the sequence of equalities

gr“"l(,ﬂ.-—l(U) N Es) — ((P o 0)—1(90(7:_—1((]) 0 Es)) —
(pooa) (U x F U U x F*) =
(01,0’2)_1(US xF UUxF*)=

(00)7HU*) U (02) 7 (F)
where o; = m;opoofor:=12. O

The projection # will induce a map 75 : [;S(E)—I;S(B) if for an arbitrary
perversity p (rel €) simplex ¢ : Ay— K the composition # o ¢ is of perver-
sity p (rel B). Let T be a triangulation of o transversal to ¢. For every
A € T the restriction | is a perversity p (rel &) simplex that sends A into
some #~1{U/) that admits a trivialization satisfying the condition (7) of The-
orem II1.3. Hence, by Lemma IIL.5 the map 7 0 p 0 o|a is of perversity p
(rel ). Since this is true for every A € T, the map m op oo = mo o is of

perversity p (rel 98).

Now we will see that n; : I;S5(F)—I:S(B) is surjection. Let o € L;S(E).
Again, by referring to a triangulation of o transversal to B, we can reduce the
construction to the case when o is a perversity p (rel B) simplex that sends
Ay into some U so that the inverse image #~(U) admits a trivialization ¢

satisfying the condition (7) of Theorem II1.3. Let 7 be the constant k-simplex
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mapping A into a non-singular point of #. Then, by Lemma IIL5, ¢ 'o (o, 7)

is the required lifting of o to a perversity p (rel &) simplex of F.

Now we will show that every extension problem

V(k,z)g—:E
[ )
B

with G and g being of perversity p with respect to % and € respectively has a

e
{5

solution (7 that is of perversity p with respect to ¢.

Using again an appropriate triangulation T' of Ay one can reduce this prob-
lem to one in which the fibration = : £— B is trivial. Therefore we have to

consider the following extension problem

. V(k,i)—U x I
4
5 (8) f Ik
Ak U

Let r be a linear projection from the ¢ face of Ay onto V(k,%). Define
G = (G, myogor), where 7y : U x F—F is the projection on the second factor.
The map G makes the diagram (8) commute, so one has to only check that it
is of perversity p (rel ) i.e. that the inverse image G~'((U x F')?) is contained

in a subpolyhedron of A; of dimension less of equal to k — s + p(s). We have
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the following sequence of equalities

G YU % F)")=G U*x FUU x F*) = G™NU*) U (m0 gor)~Y(F*) =

GHUHUr Y ogl on {(F) =G YUY Ur o g (U x F*)

By the assumption, g is of perversity p. Hence, g~ (U x F*) is contained in a

subpolyhedron of V(k,7) of dimension < k—1 — s+ p(s). The retraction r has
the property that for an arbitrary subpolyhedron P of V(k,1) of dimension {
the inverse image r~*(P) is of dimension { + 1. Hence, r~t o g7 (IJ x F**) is
contained in a subpolyhedron of Aj of dimension < & — s+ p(s). Finally, G is
of perversity p and therefore G~1(I/¥) is contained in a subpolyhedron of A,

of dimension < k — s+ p(s). O

2. Intersection Homotopy Groups of Stratified Spaces

2.1. Invariance of Intersection Homotopy Groups. Goresky and MacPher-
son proved [GM83] (see also [Kin85]) that their intersection pl homology of a.
stratified polyhedron X depends only on the homeomorphism type of X. Tt
is natural to conjecture that the same is true for the intersection homotopy
groups. We will show that the intersection homotopy groups of a stratified
polyhedron X depend only on the pl structure of X and under certain extra

conditions they are homeomorphism invariants of X.
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The pl invariance of the intersection homotopy groups of a pl stratification

1s a consequence of the following theorem.

THEOREM IIL6. Let (X,X) be a stratified polyhedron and let 3(X) be the

intrinsic pl stratification of X. Then the nalural homomorphism
L (X, X) = L ( X, 5( X))

18 an isomorphism,

The proof of Theorem 111.6 is based on the following stratified general po-

sition theorem for pl maps and the filtered simplicial approximation theorem.

THEOREM ITL7 (STRATIFIED GENERAL POSITION FOR PL MAPS).
Let f: X—=Y be a pl map, B C A a pair of subpolyhedra of Y, and 9 a pl
stratification of Y. Then there exists a pl isotopy h of Y so that for every

stratum S' of 9 we have

COdimf_l(S:)f_l(A NS > codimg AN S*
where f: hio f. Moreover, if

codiqu(sz)f_l(B NSY > codimg BN 5,

then h can be chosen to fiz B.

In order to prove Theorem II1.7 move the image of f in every stratum S

of 9 to a general position with B (using McCrory’s stratified general position
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theorem for subpolyhedra). Then triangulate f and use the fact that every

linear epimorphism preserves the codimension of linear subspaces.

THEOREM 111.8 (FILTERED SIMPLICIAL APPROXIMATION THEOREM).
Let x = {X*} and 9 = {Y*} be pl filtrations of polyhedra X andY respectively
and let [ : (X,%)—(Y,9) be a continuous cofiltered map . Then there is a
simplicial approzimation g : K—L of f so that ¢g7'(L*) C K*® where K* and

L? are subcomplexes of K and L respectively so that |K°| = X* and |L*| = Y*.

Proof. Let K and L be triangulations of X and Y respectively, compatible

with the filtrations ¥ and 9. That is K and I have filtrations by subcomplexes
bcK"CcK*'c--CK'CcK'°=K
pciLcl™'c...cl'cl’=1L

so that |[K*| = X* and |L°| = Y for every s > 0. Note that for every s > 0

we have the following equalities

X\X*'= |J st(v), Y\Y'= |J stv)

veC(K*,K} veC(L* L)

where st(v) denotes the open star of the vertex v and
CK\K)y={Ae K :|AIN[K'| =0}

for any subcomplex K’ of K.

Since f is a cofiltered map, for every s > 0 we have an inclusion f(X\X?®) C
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Y \ Y. The standard baricentric subdivision argument assures the existence
of a subdivision (K, K}, K?,..., K}) of (K, K, K? ..., K™) so that for every
5 2 0 and v € C(Kj, Ky) there exists g(v) € C(L*,L) so that f(st(v)) C

st(g(v)).

Note that A € ¢7*(L*) is and only if for every vertex v of A the image g(v)
is in L°. From the construction of ¢ it follows that every A € ¢~ '(L®) has no

vertex in C(K}, K,). Therefore, ¢7'(L*) C K3. for every s > 0. O

Proof of Theorem 111.6. By the filtered simplicial approximation theorem,

we can assume that all perversity p singular simplices are pl maps.

Let X be a pl stratification of X. The proof is by an induction on the

dimension of skeleta S% of %.

Let o : A,— X be a singular simplex (that is a pl map) of perversity p with
respect to the intrinsic pl stratification 3(X) of X. Suppose, that o has been

already modified so that for every & > ¢ we have

codima, ()1 X*) < k — p(k).

By the stratified general position theorem for pl maps, there exists a pl
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isotopy A of X so that A fixes X+ and
dim&~ (XN S5 < dimé (S +dimX NS~ dim 5*
< n—j+p(F)+ (dim X —i) — (dim X — j)
< n—i+p(7)
where & = hy 0 o and S/ denotes the codimension j intrinsic stratum of 3(X).

From the definition of the intrinsic stratification it follows that 5’3{ c StuU

S=11J...U SO Therefore,

dim&™(S%) = (S, n(STUsSTtu---uSY)

IA

max dim Er”l(Xi NS4
0<i<i

(A

&%(n — i+ p(7))

< n—1+ pé).

From the definition of perversity it follows that

dim & H(X*) < n — i+ p(5).

Hence, every pl representative o : (A,, 0A,)— (X, zo) of Iym.(X,3(X)) is ho-
motopic to a pl map & that is of perversity p with respect to X. Since A fixes
the strata of 3(X), the homotopy o o h; between cand & is of perversity p with

respect to J(X).
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Thus we have proved that the map

is an epimorphism. The monomorphism is proved in a similar way. 0O

The conjecture on homeomorphism invariance of the intersection homotopy

groups of a pl stratification is supported by the following result.

THEOREM IIL9. If X is a stratified polyhedron X so that Iyw(X) = 0, then
the intersection homotopy groups Isx.(X) depend only on the homeomorphism

type of X.

Proof. Let 3*°P(X) denotes the coarsest cone-like stratification of X [Kin85].
Since 3*°P(X) coarsens every cone-like stratification X of X, the identity map
of X is a cofiltered map with respect to ¥ and 3*?(X). Hence, it induces a
simplicial map

i LS(X, %)~ LS(X,77( X))
and a homomorphism

it Ima(X, %)= Lym, (X, 3P (X)).

1t is easy to see that if I;x (X, %) = 0, then for every coarsening X’ of X we
have Izm (X, %) = 0. In particular, I;m;(X,7%?(X)) = 0. By the topological
invariance of the singular intersection homology and the Hurewicz theorem for

simplicial sets [May82], the homomorphism i, is an isomorphism. O
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An easy consequence of Theorem III.9 is the following result.

COROLLARY IIL10. If @ polyhedron X admits a pl stralification X so that
the fundamental group of the regular stratum of X is trivial, then for every.

cone-like stratification ¥’ that coarsens X there is an isomorphism
Lm (X, %)— L (X, ¥).

In particular, the intersection homotopy groups Izm.(X,X') depend only on the

homeomorphism type of X.

2.2. Functoriality of Intersection Homotopy Groups. A continuous
map [ : XY is called pl placid if there are pl stratifications X, P of X and

Y respectively so that f~1(Y*) ¢ X* for every k > 0.

LEMMA II1.11. The following conditions are equivalent

(1) f: X=Y is a pl placid map.

(2) There exists a pl stratification X = {X*} of X so that for every k> 0
one has fHI*(Y)) C X*.

(3) For every k > 0 the inverse image f~(I*(Y)) is contained in a sub-
polyhedron of X of codimension greater or equal to k..

(4) There exists a pl stratification 9 = {Y*} of Y so that for every k > 0
the inverse image f~'(Y*) is contained in a subpolyhedron of X of

codimension greater or equal to k.
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The proof of Lemma I11.11 is an easy exercise.

From the definition of intersection homotopy groups it follows that every
pl placid map f : X—Y induces a homomorphism fxy : Iim,(X)—Lm(Y).

Since for every pl stratification X of X the simplicial map

induces an isomorphism of homotopy groups, we define the pl intersection
homotopy groups I;w#(X) of a polyhedron X as ihe intersection homotopy

groups ;7. (X,3(X)). For every pl placid map f : X—Y a homomorphism
fir Ll (X)— L (Y)

is given by the composition
Lm(X,3(X)) —— Lmi(X, %) — Lm(Y,9) o I (Y, 3(Y)).
Y )«

(ix)3! fxy

It is easy to see that the homomorphism f, does not depend on the choice

of the pl stratifications of X and Y.

The composition of two pl placid maps is not necessary pl placid. Thus
polyhedra and pl placid maps do not form a category. There are basically
two approaches to cure this problem. We can either look for a subclass of pl
placid maps that is closed under the composition, or impose certain equivalence

relation on pl placid maps that will make their equivalence classes closed under
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the composition.

We say that a map f : X—=Y is pl allowable if for every k£ > 0 we have
FHI*(Y)) C I*(X). Tt is obvious from the definition of pl allowability that
every identity map is pl allowable and the class of pl allowable maps is closed
under the composition. It is also easy to see that if f : X—Y and ¢ : Y2
are pl allowable, then (go f). = g. o fx. Thus, pl intersection homotopy groups

constitute a functor on the class of polyhedra and pl allowable maps.-

Directly from the definition of intrinsic pl skeleta it follows that a map
f: XY is pl allowable if and only if for every y € Y and z € f~!(y) there is
an inequality ed(z, X) > cJ(y,Y), where ed(z, X) = dim(X) — d(z, X). Thus

pl allowability is a local property.

Eramples. 1. Let M be a pl manifold and X an arbitrary polyhedron. Every
map X—M is pl allowable, but f: M—X is pl allowable if and only if the

image f(M) is contained in the nonsingular locus of Y.

In the next example we will see that every normally nonsingular pl map

[FM81, Gor81] is pl allowable.

2. A pl embedding 7 : Y—X is pl allowable if for every & > 0 we have

*Y) > IMX)nY.




A pl embedding ¢ : Y — X is called normally nonsingular inclusion if Y has
an open neighborhood N in X and a retraction r : N—Y which is a pl vector
bundle over Y. Directly from the definition of the normally nonsingular pl em-
bedding it follows that I*(Y) = I*(X)NY. Hence every normally nonsingular

pl embedding is pl allowable.

A plfiber bundle p : £ B is normally nonsingular fiber bundleif its fiber is a
pl manifold. Since the fiber of a normally nonsingular fiber bundle p : £ B 1s
nonsingular we have p~'(I*(B)) = I*(E). Hence, every normally nonsingular

pl fiber bundle is pl allowable.

A normally nonsingular pl map is one that can be factored as a composition
of a normally nonsingular pl embedding followed by a normally nonsingular pl
fiber bundle. Since every normally nonsingular pl embedding and fiber bundle

is pl allowable the same is true for every normally nonsingular pl map.

Remark. PL allowable maps have its counterparts in other classes of strati-
fications. For example, we say that a map f : X-»Y of cone-like stratified
spaces is allowable if for every k > 0 we have f~1(If (V) C If, (X) where
It (X) is the codimension k skeleton of the coarsest cone-like stratification of

top

X. If intersection homotopy groups {on the class of cone-like stratifications)

are homeomorphism invariants, then they constitute a functor on the class of




cone-like stratified spaces and allowable maps.

The class of pl allowable maps forms a narrow subclass of pl placid maps.
Therefore, it is better to view pl intersection homotopy groups as a functor on

the class of pl placid maps, modulo certain equivalence relation.

We say that maps fo, fi : X—=Y are pl placid homotopic if fy and f; are
homotopic by a pl placid map. Let [f], denotes the pl placid homotopy class
of a pl placid map f and let [X, Y], be the set of pl placid homotopy classes

of pl placid maps from X to Y.

THEOREM I11.12. PL intersection homotopy groups constitute a functor on
the class P of polyhedra and pl placid homotopy clusses of pl placid continuous

maps.

Proof. First, we have to prove that P is a category. It will be shown the class
PP of polyhedra and pl placid homotopy classes of pl placid p/ maps con-
stitutes a category, and there is a bijective correspondence between pl placid
homotopy classes of pl plecid pl maps and pl placid homotopy of all (contin-
uous) pl placid maps. The last statement is a consequence of the following

lemma.

LEMMA IIL13. Let x = {X*} and 9 = {Y~} be pl filtralions of polyhedra X

and Y respectively and let . (X,X)—(Y,D) be a conlinuous cofiltered map.
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Then there exists a homotopy F of f to a cofiltered (with respect to X and )

pl map so that for every s > 0 there is an inclusion F~Y(Y*) C X* x I.

Proof. Let f and g be as in Theorem I11.8. We know that for every vertex v
of K, there is an inclusion f(st(v)) C st(g(v)). Hence, for every point z € X
there is a simplex of L that contains both f(z) and g(z). Therefore, for every

z € X the formula

Flo,t) =t g(2) + (L= 1) f(2)
determines a homotopy between f and g. Note, that (z,¢) € F~1(Y*) if and
only if t- g(z) + (1 — t) - f(z) € L* and this implies that both ¢(z) and f(z)
belong to a simplex of L®. Since f and g are cofiltered with respect to X and

9 the point (z,t) has to belong to X* x I. [

The bijection between P and PP will be used to define a composition pairing
on P with respect to which P and PP become an equivalent categories. Let
[X, Y], be the set of pl placid homotopy classes of pl placid pl maps between
X and Y, and let [f],, denotes the class of a pl map f : X—>Y in [X,Y],,.

The following lemma shows that PP is a category.
LEMMA II1.14. There exists a pairing
o:[X,Y),, XY, Z],,-—[X, Z],,

so that:

39




(1) o is associative.
(2) For every a € [X,Y],, we have a o [idx],, = a = [idy],, 0 .
B)Iffeae[X,Y], and g € B € [V, Z],, are 5o that the composition

go f is a pl placid pl map, then foa = [go flyp.

Proof. TFor any pair of placid pl maps f : X—=Y and ¢ : Y—=Z we will
construct a placid pl map f/' : X —Y so that the composition g o f/ is placid
and f'is pl placid homotopic to f. Then, it will be shown that the operation
(f,g) — go f" induces the required composition on pl placid homotopy classes

of placid pl maps.

The proof is based on the following consequence of the stratified general

position theorem for maps.

LEMMaA 115, If f: XY is a pl placid map, then for every stratification

9 of Y there is a pl isotopy h of Y so that for every skeleton Y* of 9)

codimy (hy o £)7'(YF) > k.

Proof. Let 9 be an arbitrary pl stratification of ¥. We will construct the

required isotopy be an induction on the dimension of skeleta of ).

Let B and A, from Theorem I11.7, be equal to Y** and Y* respectively,
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and suppose that we have already constructed A so that
codimg, o y-1st)(h1 0 F)7 (AN §') = codimg (AN §)
for all s > k. There exists a pl isotopy h of ¥ so that for every { > 0
COdim(hlof)w1(S:)(h1 o] f)_l(yk ﬂ Sl) 2 COdimsl (Yk M SI)

where f = hy o f and $ is a stratum of the intrinsic pl stratification of Y.

Since codimg(Y* N S*) > k — | we have
COdim(hlof)_j (Sf)(hl 0] f)—l(Yk m SI) 2 k —_ l
Since h fixes stratifications dim f=1(S") = dim(hy o £)~*(S') and

codimx (ko )71 (Y*N ) =

codime_l(Sl) + codim(hlof)_J(S,)(hl o f)_1(Yk n Sl) >+ (k- l) =k

Thus codimy(h 0 f)‘l(Yk) > k.

Repeating this process finite number of times we get a pl isotopy &~ of ¥
so that f' = hy o f is the required modification of f. Since every pl isotopy
preserves the intrinsic stratification of Y, the map A o (f x id) is pl placid.

Thus f/ is pl placid homotopic to f. OO

Let us define the composition of the pl placid homotopy classes of pl placid

pl maps « € [X,Y],y, B € 1Y, Z],, by the formula foa = [go f'],, where g €
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and f’is a pl map pl placid homotopic to f € a so that go f is pl placid. The

existence of such f’ follows from Lemma IIL.15.

If go,1 € @ € [X,Y],p, then we write go ~pp ¢1. In order to prove that the

composition is well defined we have to show that:

(1) If go~ppgs and fo, fi are modifications of f so that go o fo and g 0 fy
are pl placid, then go o forvppgn © fr.
(2} I forvppfi and f§, fi are deformations of fo and f, respectively so that

g o f§ and g o f] are pl placid, then g o fl~p,g0 fi.

Proof of (1). Let G be a pl placid homotopy between gy and g;. Applying
our modification process to f X id : X x [-Y x [ and G: Y x [—=Z we get
a pl placid map F' : X x [-Y =Y x [ so that Fyy; = f; for : = 0,1. The

composition G o F' is the required pl placid homotopy between ¢y o fo and

giofi. O

Proof of (2). Let F, Iy, F; be pl placid homotopies between f, and fi, fj and
fo, and f1 and f] respectively. Applying our modification process to FoUFUF

and g we get the required pl placid homotopy. 0O

The associativity and the property a o [idx], = a = [idy], o « follow di-

rectly from the definition of the composition operation. The last property of
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Lemma [1L.14 is a consequence of the property (2). [

This ends the proof of the fact that PP, and hence P, is a category. It
is easy to see that every two pl placid homotopic pl placid maps induce the
same homomorphism on intersection homotopy groups, and (foa). = f,. o a,

for « € [X,Y], and 8 € [Y,Z],. Hence, pl intersection homotopy groups

constitute a functor on P. [




CHAPTER 1V

Intersection PL Homology Theories

In this chapter we present a set of axioms of intersection pl homology theory.
They are intersection analogues of the Eilenberg-MacLane axioms modified
so that the functor Izx. o AG (defined in the next chapter) is an example of
intersection pl homology. A modification of King’s intersection homology char-
acterization theorem (see Theorem 10 in [Kin85]), gives a uniqueness theorem

for theories satisfying the above axioms.

A pair (X, A) of filtered polyhedra is called a closed pl filtered pairif A is a
closed subpolyhedron of X so that for every skeleton X* of X the intersection
AN X? is the skeleton of A of formal codimension k. A closed pl filtered
pair (X, A) is called a closed pl filtered NDR pair if there exist: an open

neighborhood U of A in X and a retraction r : U— A so that for every : > 0
r(UNSY) C Sy

where S% and S% are formal codimension ¢ strata of A and X respectively.
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If (X, A) is a closed pl filtered NDR pair, then A is called a closed pl fillered

NDR of X.

Let PLF be the category of closed pl filtered NDR pairs with morphisms
strata preserving pl homeomorphisms and compositions of embeddings A= X
of closed pl filtered neighborhood deformational retracts. Let G. be the cate-
gory of graded abelian groups. An intersection pl homology theory is a family
(indexed by perversities p) of covariant functors f;H, : PLF—G, and natural
transformations I;0y : I;Hy— I;Hy_1 o R, where R{X, A) = (A, ), satisfying

the following properties:

A1: For every filtered polyhedron X and an interior point b of A, the

inclusion map X x b— X x A,, induces an isomorphism
LHA(X xb—LH(X x A,)

where X x A, is equipped with the product filtration.
A2: (Eractness aziom) For every closed pl filtered NDR pair (X, A)

there is a long exact sequence

oo S LH(A) = L Hy (X)L (X, A) 23 LH,_((A)— - -

An inclusion j : (X, A)—(Y, B) of closed pl filtered NDR pairs is a filtered

excision map if j|x\4 is a filtration preserving pl homeomorphism.
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A3: (Erxcision aziom) Every filtered excision map j : (X, A)—(Y, B)

of closed pl filtered NDR pairs induces and isomorphism

L;H(X,A) — [;H(X,B).

A4: If X is a filtered polyhedron and Dy C Dy C - is a sequence of
closed pl filtered NDR subpolyhedra of X so that X = |J.D;, then the
natural map

lim I H (D;)— I H.(X)

is an isomorphism.

FEzamples.

1. The Goresky-MacPherson oriented pl intersection homology [GM80] is an
intersection pl homology theory. One can define an ordered pl intersection ho-
mology for pairs of polyhedra and prove, using Theorem IV.1, its isomorphism

with the oriented pl intersection theory.

2. The Goresky-MacPherson sheaf intersection cohomology with compact

support [GM83] is an intersection pl homology theory.

3. The singular intersection homology, due to C.H. King (see [Kin85]) is
also an example of intersection pl homology theory. King defines a perversity

P singular k-simplex of a filtered space X as a continuous map o : Ap—X so
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that o=(X?) is contained in a (k — s + p(s))-dimensional skeleton of Ay .

The following theorem is a modification of the characterization theorem for
intersection homology theories on the class of topologically cone-like stratified

spaces due to King (see Theorem 10 in [Kin85]).

THEOREM 1V.1. Let ¢ : ;H,—IzH. be a natural transformation of inter-

section pl homology theories so that

(1) (pt) : [;H,(pt)— L H.(pt) is an isomorphism.
(2) If X is a filtered compact polyhedron and p(X) : IH(X)—IpH,(X)
is an isomorphism, then p(c(X)) : LH(c(X))—=LH (c(X)) is an iso-

morphism as well.

Then (X)) + LH.(X)—IH.(X) is an isomorphism for any pl siratified eu-

clidean polyhedron X .

In the next chapter we will show that every filtration ¥ of a space X in-
duces a filtration AG(X) of AG(X). Thus to every filtered polyhedron X we

can assign a family of the intersection homotopy groups Iym.(AG(X), AG(%)).

Theorem 1.1 is a corollary of the following result.
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THEOREM IV.2. The functor Izm, 0 AG deﬁnes an intersection pl homology

theory and there is a natural transformation
Py - Iﬁ.H*——}IﬁTr* o] AG,
satisfying the conditions of Theorem IV.1.

Proof of Theorem IV.1. is a modification of the proof of Theorem 10 from

[Kin85].

Let I;H, be an intersection homology theory. The exactness and excision

axioms imply the following Mayer-Vietoris principle.

PROPOSITION IV.3. Let X be a filtered polyhedron and let A,B,AN B be

subpolyhedra of X with the filtrations induced from X. If X = AU B and the

pairs (X, B) and (A, AN B) are closed pl filtered NDR pairs, then there is an

exact Mayer-Vietoris sequence

o S LIAN B)— LH(A) ® LHe(B)—LHy(X )= LHi (AN B)— -

Let ¢ : I, H,—I;H. be a natural transformation from Theorem IV.1. First,
we will show that from any compact pl manifold M with the trivial stratifica-

tion the homomorphism ¢(M) is an isomorphism.

By the axiom Al and the fact that ¢(pt) is an isomorphism, for every n > 0
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the homomorphism p(A,) is an isomorphism. Using inductively the Mayer-
Vietoris principle we can show that for every n > 0 and n-dimensional sphere
Sy, the homomorphisms ¢(S,,) are isomorphisms. By the axiom Al, for every
n,m > 0 the homomorphism (S, X A,,) is an isomorphism. If M is a compact

pl manifold with a handle decomposition
HyUH,U---UH,
then for every ¢ € {1,2,...,k} the intersection
(HoU Hy U---U Hiy) 0 H;

is pl homeomorphic to S, x A,,. Hence, by the Mayer-Vietoris principle the

homomorphism (M) is an isomorphism.

In a similar way we can prove that if o(X) is an isomorphism, then for any

compact pl manifold M the homomorphism (M x X) is an isomorphism.

Let X be a stratified polyhedron. The following part of the proof is by
induction on the number of non-empty strata of X. A stratified polyhedron
with only one non-empty stratum is a pl manifold, and we have proved that

in this case Theorem IV.1 is true.

Let X be a stratified polyhedron with ¢ + 1 non-empty strata and let Y be
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the lowest dimensional non-empty stratum of X. Then we may write

X = (X\Y)U | 4

§=0

where each A; is a filtered subpolyhedron of X filtered isomorphic to M; x2(L;)
where M; is a compact pl manifold and L; is a stratified polyhedron with j or

less non-empty strata. Let

Da':(X\Y)UUAj

§=0

and let B; = A; N D;. It is easy to see that A; is a closed pl filtered NDR
of D; and B; (equipped with the filtrations induced from X). The homomor-
phism @(B;) is an isomorphism, because B; is filtered isomorphic to N x &(L;)
where N is a compact pl manifold and by inductive assumption ¢(¢(L;)) is an
isomorphism. Applying the Mayer-Vietoris principle to the pair D;, A; we see

that for every 7 > 0 the homomorphism (D,4q) is an isomorphism. Hence

by the axiom A4 the homomorphism ¢(X) is an isomorphism. [




CHAPTER V
Proof of the Intersection Dold-Thom Theorem

Let PL be the category of polyhedra with morphisms - continuous maps. The
naive group completion AG of the infinite symmetric product functor SP con-
stitutes a functor from PL to the category free abelian topological groups and
continuous homomorphisms [DT56]. In Section 1 it will be shown that AG
extends to a functor (that we will denote by the same symbol AG) from the
category PLF of closed pl filtered NDR pairs and strata preserving pl homeo-
morphisms and compositions of embeddings of closed pl filtered neighborhood
deformational retracts to the category of finitely filtered free abelian topolog-
ical groups and continuous cofiltered homomorphisms. Thus the composition

I;m, 0 AG is a functor from PLF to G,.

In Section 2 we will show that I;m. o AG is an intersection pl homology

theory and in Section 3 we will construct a natural transformation

@, IsH.— 17w, 0 AG
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that satisfies the conditions of Theorem IV.1..

1. L-filtrations

The g-th symmetric product SPI(X) of a space X is created from the ¢-
product X9 = X x --- x X (g factors) by identifying points which differ only
by the order of components. We denote by < zy,...,#, > the point of SPiX)

determined by {(z1,...,2,) € X9

For example, the g-th symmetric product SP(CP,) of the complex pro-
jective line CP, is homeomorphic to CP,. The homeomorphism is given by
assigning to an unordered g-tuple zy,2s,...,2, of points of CPy the unique
homotety class of a homogeneous polynomial of degree ¢ that vanishes at

21y %950 ,Zq.

If X is a polyhedron, then the disjoint union SP(X) = J[SP!(X) is a

g>0

topological abelian monoid with respect to the addition
def
LBy, Ty 38y 2 + <YL, Y2se s Yr =< T, T2y - T Y Y2 Yr > .

In particular

q
S I TN >::c1—|—:r:2+---—|~a:qzz:ri
=1

For example, S P(CP;) can be identified with the disjoint union of homotety
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classes of homogeneous polynomials of different degrees. The addition in
SP(CP;) corresponds, under the above identification, to the multiplication

of polynomials.

A group completion of a monoid M is a group M together with a monomor-
phism of monoids M — M satisfying the following universal property. For every
group (¢ and a monoid homomorphism @ : M— ' there exists a unique group

homomorphism & : M—G so that the diagram

commutes. If M is an abelian monoid with the cancellation law, then M can be
defined as the quotient of the product M x M with respect to the equivalence

relation that identifies (m,n) with (m',n’) if and only if m 4 n' = m’' +n.

For example, if M is the set of natural numbers, then its group completion
is the group of integers. If M is the monoid of vector bundles over X, then M

is the Grothendieck K-group of X.

In general, from the fact that M is a topological monoid does not follow that
M is a topological group, but for M = SP(X) with X being a polyhedron,
the group completion AG(X) is a topological group. For a generalization of

this statement see [LF).
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The elements of AG(X) can be represented in the form 3~ n;-z; where n; are
integers, only finite number of which is different from zero. It is convenient to
think of the elements of AG(X) as functions from X to Z. Actually, to every
formal sum s = 3 n; - #; one can assign a function n, : X—Z so that

ny{z) = E n;.

Ti=x

McCord showed in [McC69] that if X is a polyhedron, then the group B(Z, X)
of functions of finite support from X to Z can be equipped with a topology so

that the natural map
n: AG(X)-B(Z,X)
becomes an isomorphism of topological groups.

In the case of the complex projective line the group AG(CPy) can be iden-
tified with the space of homogeneous rational functions (of two variables over
C) modulo the equivalence relation that identifies two functions that differ

by a nonzero constant factor. The addition in AG(CIP;) is induced by the

multiplication of rational functions.

K X is a polyhedron, then AG(X) is a CW-complex (see Theorem 4.6 in
[DT56]). Actually, if X is a polyhedron, then for every ¢ > 0 the the ¢-

symmetric product SP?(X) is a polyhedron. The cells of AG(X) are images
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under the quotient map
n:SP(X) x SP(X)—AG(X)
of the interiors of simi)lexes of

SP(X)x SP(X)= ] SPYX) x SP"(X)

q,7>0 ;
\
whose all point are non-degenerated, where a point |

(< @], @h,. -, Ty >, < @, 25,0, @ >) € SPUX) x SP(X)

is degenerated if the sets {x},z},... 2} and {zf,%,..., 27} have a common

clement.

A continuous map f : X-+X’ induces a continuous homomorphism
f 1 AG(X)—AG(X")
defined by the formula
FO n - mi) =3 ().

Moreover, the homotopy type of AG(X) depends only on the homotopy type

of X.

Let X a polyhedron. If A is a closed subpolyhedron of X, then AG(A)
is a closed (normal) subgroup of AG(X) and we define AG(X, A) to be the

quotient group AG(X)/AG(A) with the quotient topology. If A = §, then
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AG(A) can be identified with the neutral element 0 of AG(X) and we put
AG(X,0) = AG(X). Let
7 AG(X)—AG(X, A)

be the quotient map. The image m(z) of an element & of AG(X) in AG(X, A)

will be denoted in the sequel by [z].

Let (X, A) be a closed pl filtered pair. A L-filtration
AG(x, %) = {AG(x2)*}

of AG(X,A) is defined in the following way. [ n; - z;] € AG(X%)* if there
exists a nondegenerate representative Y. m;-x; of [1.ng - 7] so that z; € X* for
some m; # 0. In other words, an element s of AG(X, A) belongs to AG(x20)F
if the induced by s function n, : X—7Z is non-zero on some element of X*.
By definition, the zero element 0 of AG(X, A) is in the regular stratum of
AG(X, A). Thus for every k > 0 if AG(x,2)* # 0, then the skeleton AG(x20)*

is not closed in AG(X, A).

Let f : (X, A)—(Y,B) be a continuous map of pairs of polyhedra. The

formula
P i aal) = omi- f(z)]
defines a continuous map

f i AG(X, A)—AG(Y, B).
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Note that if f is a cofiltered map, then f is cofiltered. Moreover, if f and g are
cofiltered maps of pairs of filtered polyhedra, then §o f= m . Thus AG is a
functor from PLF to the category of finitely filtered free abelian topological

groups and continuous cofiltered homomorphisms.

Let I;m.(AG(X, A)) denotes perversity p intersection homotopy groups of
the filtered pair ((AG(X], A),0), (AG(x,21),0}) where 0 denotes the neutral ele-
ment of AG(X, A) or the trivial filtration on 0. By definition, L. (AG(X, A))
is the group of p -homotopy classes of maps o : Ap—AGH(X, A) so that for
every 0 < 1 < k the simplex 9;0 maps Ag_; to 0, where AGo(X, A) is the con-
nected component of 0 in AG(X, A) that is the set of elements of AG(X, A)

of degree 0.

If f:(X,A)—(Y,B) is a cofiltered map, then f 1s cofiltered and hence it

induces a homomorphism

fu i LrAG(X, A))— I (AG(Y, B)).

Moreover, if f and g are cofiltered maps of pairs of filtered polyhedra, then

Goof.=(GoPHe=(g0f)e
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Thus the assignment

Ob(PLF) 3 (X,A) +— Lm(AG(X,A)) € Ob(G.)

Mor(PLF)> [ — [, € Mor(G.)

is a covariant functor form PLF into G..

2. Izm, 0 AG: An Intersection PL Homology Theory

In this section we will show that /;7,0 AG satisfies the axioms of intersection

pl homology theory.
The axiom Al is satisfied by the following lemma.

LEMMA V.1. Let X be a space with a filtration X and let X x A, be equipped
with the product fillration X X A,. Then for any interior point b of A, and

every perversity p the inclusion map X xb — X x A, induces an isomorphism

I (AG(X X b))—=Lm (AG(X x A,))

Proof. It is enough to show that every perversity p k-simplex

o A= AG(X x A,)

is p -homotopic to a simplex ¢ : Ap—AG(X X b).
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Let us embed A, into R,, so that & is send into the origin of R,, and let

ti,%2,. .., 1, be induced on A, coordinate system.

The map

H:AG(X x Ap) x [——AG(X x Ay)
H(Zn, : (:L‘i,f—;,;) , t) = Zni : (mia{i ) t)
is a homotopy between the identity map on AG(X x A,) and the retraction

AG(X x A,)—=AG(X x 0)
Zni Az, 1) o Zﬂi - (zi,0)
Immediately from the definition of H it follows that
H Y AG(x x A,)°) C AG(E x A,)° x L.

Hence, I is a perversity § map and the composition (o ><id)oﬁr is the required

P -homotopy between ¢ and ¢’. O
Essentially the same proof gives the following result.

LEMMA V.2. Let X be a space with a filtration X and let X xR, be equipped
with the product filtration X X R,. Then for every perversity p the inclusion

map X x 0 <+ X x R, induces an isomorphism

L (AG(X % 0))—I;m(AG(X x Ry))
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The proof of the exactness axiom for 7. 0 AG (see [DT56, LT]) is based on
the observation that for an arbitrary CW-complex X and its subcomplex A.
the projection 7 : AG(X)—AG(X)/AG(A) is a fibration (it is a locally trivial
fibration with fiber AG(A) ). Actually, if this is the case, then the long exact
sequence of homotopy groups of this fibration is the long exact sequence of the
pair (X, A) for the functor 7, o AG. The following result is the intersection

counterpart of the above observation.

THEOREM V.3. Let (X, A) be a closed pl filtered NDR pair. Then the projec-
tion 7 : AG(X)—AG(X, A) is a filtered fibration with respect to the filtrations
AG(%) and AG(x ) of AG(X) and AG(X,A) respectively. Moreover, the
fiber AG(A) of ™ over 0 is a filtered subspace of AG(X) and hence m induces

a long exact sequence of intersection homotopy groups.

The last statement of Theorem V.3 follows directly form the definition of AG

filtrations. The first part of Theorem V.3 is a consequence of Theorem II1.3

and the following lemma.

LEMMA V.4. Let (X, A) be a closed pl filtered NDR pair. Then there exists '_

an open covering U of AG(X, A) so that for every element U of U there ezists
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a trivialization homeomorphism ¢ : m7Y(U)—=U x AG(A) so that

(9) P () NAG(x)®) = U* x AG(A) U U x AG(20)*

where X is a filtration of X, 2 is the induced from X fillration of A, and

U =UnAG(x,%)°.

Proof. The following proof is a modification of the proof of Satz 5.4 from

(DT56].

Let G be a group and let H be its closed subgroup. Then the quotient map
m : G—G/H is a principal H-bundle if there exists an open neighborhood U

of [H] in G/H so that one of the following equivalent conditions holds.

(1) There exists a section s : U—G of 7.

(2) There exists an H-equivariant map o : 7~ *(U)—H.

If (X,A) is a closed pl pair, then AG(X) is a topological group, AG(A) is

its closed subgroup, and the projection
71 AG(X)—AG(X, A)

is a quotient map. Dold and Thom proved that there exists a local section of

7 and hence 7 is a principal AG(A)-fibration.

We will show that there exist: an open neighborhood U of 0 in AG(X, A)
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and a AG(A)-equivariant map
o: 7 HU)—=AG(A)
o that the the trivialization
¢ = (7,0) : 7 HU)—=U x AG(A)

satisfies the condition (9). Then we will see that U/ and o induce: an open

covering {U,} and a family of AG(A)-equivariant maps
0y T (Uy)— AG(A)
for which the trivialization ¢, = (7, 0,) satisfy the condition (9).

Let

AGHX) = p( 11 SP'(X) x SP7(X))

g+r<k

be the subset of AG(X) whose elements have at most & different from 0 com-
ponents. We set AG*(X, A) = m(AG*(X)). 1t is easy to see that a subset V'
of AG(X) (or AG(X, A)) is open if and only if for every & > 0 the intersection

V 0 AGE(X) (or V 1 AGH(X, A)) is open in AGH(X) (or AGH(X, A)). We

will construct: a family {U,} of open neighborhoods of 0 in AG¥(X, A) and a |

family {01} of AG(A)-equivariant maps

o 7 (Up)— AG(A)
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so that Uk+1|AGk(X,A) = U and o441y, = 0. Then we set U = kgon and

a |U.l: = O.

Let W be an open neighborhood of A in X for which there is a strata
preserving retraction r : W-—A. Then AG(W) is an open neighborhood of
AG(A) in AG(X) and hence for every k > 0 the intersection Wy, = AG(W) N
AG*(X) is open in AG*(X). The set Wy, consists of elements of AG(W) with

at most k different from 0 components. We will write them as follows

For every k > 0 the set U, = #(Wy) is open in AGk(X, A) and 771 (Uy) consists

of elements of AG(X) of the form

Do omicwi + Yomeg
3o il <k a;€EA
w;EW\A

Let us define o, by the formula

o Y micwi + Domiea)= D mier(w) + D mcg
ZIR,:]Sk a;cA Zlnalﬁk a; €A
w, EW\A wiEWAA

It is easy to see that it is a continuous AG(A}-equivariant map and moreover

for every k > 0 we have Uk+1|§73k(X,A) = Uy and op41|p, = 0.

We have to show that

(10) (7, 00)(m" (U) N AG(X)*) = (U})* x AG(A)UU x AG(2)°
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where (U3)* = U, N AG(%,9)°.

The intersection #~1(U;) N AG(%)* consists of the points

Z ng s w; Z TG Gy
3 Inil<k aj€A
w EW\A

so that:

1. w; € (W\ A)n X" for some n; # 0.
or

2. a; € AN X°® for some n; # 0.

In the first case #(z) € (Uy)’. In the second case ox(z) € AG(%)®, because

r satisfies the condition

r(WnSk)c S5,

Since for every pl stratification X of X the regular set of X is dense in X,
the regular set of AG(x,21) is also dense in AG(X,A) and hence every point
of AG(X, A) has a neighborhood of the form y + U where y €reg( AG(x21}).
Let § € o(X) be so that #(§) = y and ¥ does not have any components in A.

Then it is easy to see that the trivialization

@, = (r,o4) : W”l(y + ) (y + U) x AG(A)
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where o,(x) = o(z — §) satisfies the condition (9). O

The following lemama takes care for the axiom A3.

LEMMA V.5. A filtered excision map j : (X, A) — (Y, B) of filtered pairs
with filtrations (%,%) and (X,B) induces a filtered isomorphism of topological
groups

7 : AG(X,A)—AG(Y, B)

with respect to the filtrations AG(2%) and AG(2.8) of AG(X, A) and AG(Y, B)

respectively.

Proof. Lima-Filho ([LF]) proved that j is an isomorphism of the topological
groups. Note, that the filtration AG(%.%) induced by (X, %) is determined by
the filtration induced by ¥ on X \ A. In particular, if j : (X, A) — (¥, B) is a
filtered excision map, then J(AG(X2)*) = AG(9,B)* for every k. That is j is

a filtered isomorphism of topological groups. O

Izm, 0 AG satisfies the last A4 axiom, because if Sy C 51 C -+- is a sequence
of Kan subcomplexes of a Kan complex S so that S = [J5;, then for every

non-negative integer the natural map

lin ’H'k(S.i)M#ﬂ'k(S)

is an isomorphism.




3. Natural Transformation ¢, : I;H, — Izm, 0 AG.

We will show that there is a natural transformation
o, I H— T, 0 AG

of intersection pl homology theories satisfying the conditions of Theorem IV.1.

Let X be a polyhedron with a filtration X and let 3 nio: be a singular k-chain
of X. The assignment s - Y n0:(s) defines a map (3 nio;) : A= AG(X).
This map is continuous because AG(X) is a topological group. Hence we have
amap ¢ : AG(S(X))—S(AG(X)) where AG(S(X)) stands for the free abelian |

simplicial set generated by S(X). ¢ is a simplicial map because

Bi( (3 mios))(s) = (3 mioi)(6:(s)) = 2_mioi(8ils)) =
Y ni(8i0:)(s) = (D nil Bioi))(s)

In the same way one can prove that ¢ commutes with degeneracy operators.

Tt is easy to see that ¢ is a natural transformation between AGoS and SoAG

(the action of ¢ on morphisms is irrelevant for validity of Theorem IV.1). We

will see that ¢ restricts to a natural transformation from AGoI,;S into I;SoAG..

Consider a singular k-chain Y. no; of perversity p in (X,%). The _siﬂgula,r




simplex ¢ (3 n;0;) is of perversity p with respect to AG(%) because

(D nio) T (AG(x)) = {s € Ay | Tiso that oy(s) € X'} = | J(o:)H(XY)

and every simplex o; is of perversity p.

Since ¢ is a simplicial map and for every j the simplex d;0; is of perver-
sity p, the map 9;(¢(3nio;)) is of perversity p as well. We have proved that

w1 AG(L;S(X))—I;S(AG(X)) is a natural simplicial map. Hence, applying

simplicial homotopy groups functor, we get the required natural transforma-

tion @, 1 IjH.—Iym. 0 AG.

It is easy to see that ¢(pt) is an isomorphism. The second condition of

Theorem 1V.1 is satisfied by the following lemma.

LEMMA V.6. If X is a filtered space with a filtration of length n, then for

every perversity p and positive integer k there is an isomorphism

Imi(AG(X)) for bk <n—p(n+1)

Lim (AG(e( X)) =
0 for k> n —p(n+1)

Recall that if X is as in Lemma V.6, then there is an isomorphism
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LH(X) for k <n—p(n-+1)

LH(e(X)) &

0 for k > n—p(n+1)
Hence, if ¢, (X) : LH(X)—I;m.{AG(X)) is an isomorphism, then ¢, (c(X))

is an isomorphism.

Proof of Lemma V.6. Let X be a filtration of 1enigi;h n on X and let ¢(%) be
the induced filtration on the cone ¢(X). A simpl'e); 0' ':. A— AG(e( X)) is of
perversity p if o7 (AG(c(%))*) is of dimension < l—s—l— ﬁ(s) Recall that
AG(c(x))™! consists of those elements of AG(e(X)) v.vh(.)s:e.jlzi(;ndegenerated
representatives contain the vertex of ¢( X). Hence, if (k—]—l)'—.(n ;|—1)+13(n+1) <
0, then for every: I < k +1, a simplex o : A;—=AG(e(X)), and a point s € A,
the nondegenerated representative of the element o(s) does not contain the

vertex of ¢(X). That is o : A AG(e(X) \ (%)) = AG(X x R). Therefore, for

(k-++1)~ (n+1)+p(n+1) <0 one has an isomorphism
L (AG(e( X)) = Lm(AG(X x R))
and by Lemma V.2 the last group is isomorphic to Izm.(AG(X)).

Let now (k4+1)—(n+ 1)+ p(n + 1) > 0. We will see that every k-simplex
of perversity p is p-homotopic to the constant map map to 0. Let H be a

deformation of the identity map on ¢(X) to the retraction of ¢(X) onto ().
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H induces a map H : AG(¢(X)) x = AG(¢( X)) between the identity map on
AG(c(X)) and the projection of AG(¢(X)) onto 0. It is easy to see that s
of perversity p and the composition (¢ x:d)o H gives the required p-homotopy

between o and the constant map to 0. [J
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