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Abstract of Dissertation

Symplectic Embeddings of Balls
and the Mapping Problem

by

Lisa Mae Traynor

Doctor of Philosophy

mn

Mathematics

State University of New York
at Stony Brook

1992

The symplectic mapping problem is studied for open, infinite volume
subsets of (R*,wp). The spaces considered are symplectically convex and
are generalizations of the space underlying the symplectic camel problem.

Spaces are symplectically distinguished by using holomorphic techniques to

study symplectic embeddings of balls.
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Chapter 1

Overview

A symplectic manifold is a smooth, even dimensional manifold M*"

together with a closed, non-degenerate differential 2-form w. This means w

satisfies

dw =0, Wt =w A Aw #E O

R2™ with coordinates 1,11, .-, %n, ¥n has a standard symplectic form given

by

wD:dQ?l/\dy1+d$2/\dy2++dﬂ,n/\d‘yn

Any open subset U of R%" has a symplectic form induced by wo.

A symplectic diffeomorphism (or symplectomorphism) is a diffeomor-

phism between two symplectic manifolds

’l,b: (I\/fl,wl) e (A’IQ,U)Q)

such that ¥*wy = w;. Two symplectic manifolds are symplectically equiva-

lent, or symplectomorphic, if there exists a symplectic diffeomorphism be-

tween them. A basic problem in symplectic geometry is to understand

when two symplectic manifolds are symplectically equivalent. The symplectic

mapping problem is this equivalence question addressed to open subsets of




(R*™,wp) : When are two open, diffeomorphic subsets of R?™ symplectically

equivalent?

Since w{ is a volume form on R?*", two open subsets can be symplec-
tomorphic only if they have the same volume. However, having the same vol-
ume does not guarantee symplectic equivalence. For example, if D(r) C R?

is the open 2-dimensional disc of radius r, the polydiscs
D(Lyx D(1)  and  D(1/2) x D(2)

have the same volume. In fact, there exists‘ a volume-preserving diffeomor-
phism, i.e. a diffcomnorphism ¢ satisfying ¢*(wo A wp) = wo A wo, between
them. However in {G], Gromov proved that these polydiscs are not symplec-
tically equivalent. Using the theory of capacities, the mapping problem has

been studied for higher dimensional polydiscs and other open subsets of R%™,

(See [EkH1], [EkH2], [H1], [H2].) In the following chapters, holomorphic
techniques are applied to give new examples of open subsets of R* which are
equivalent with respect to volume preserving diffeomorphisms but are not
symplectically equivalent.

Holomorphic techniques were introduced into symplectic geometry by
Gromov in {G]. The theory uses the fact that any symplectic manifold M
can be viewed as an almost complex manifold where the almost complex
structure, J, satisfies certain “compatibility” conditions with the symplectic
structure. A J-holomorphic map of a surface into M is a natural generaliza-
tion of a holomorphic map and studying the images of such maps can lead to

a great deal of information about the underlying symplectic manifold. (See

(M4].)




In Chapter 2, J-holomorphic maps of the disc into R* are studied. A
key result which is used to prove many of the main results in Chapters 2
through 5 is a “sphere filling” theorem. Below is a paraphrase of this result.

For a precise statement see (2.3.1)

Sphere Filling Theorem. Given a 2-dimensional sphere S in R*, under
a “convexity” condition on the almost complex structure, there exists a 1-
parameter family of J-holomorphic discs whose boundaries foliate S and

whose union, F(J), is diffeomorphic to a 3-dimensional ball.

The filling technique is applied, in Chapter 3, to study the space of
symplectic embeddings of a closed ball into open subsets of R* whose bound-
aries contain 2-dimensional spheres and which are “symplectically convex.” In
particular, it is shown that for special open subsets, the space of embeddings
has more than one path component {Theorem 3.2.1) and a criterion is found
for determining when a given embedding is in a standard path component
(Theorem 3.3.3).

In the remaining chapters, the mapping problem is considered for open,
connected subsets which are the union of half spaces and open 3-dimensional
balls. The 3-dimensional balls can be thought of as “holes” and the results
of Chapter 3 are applied to study the obstruction formed by these holes.

In Chapter 4, spaces referred to as C' spaces are investigated. C(N) C

R* is defined as




C(\) = {y1 < 0}U {30 > 0} U {z? + 22 +y5 < I,y =0}

FiGure 1.1. C(1)

The first main result 1s:

Theorem 4.3.2 (McDuff and Traynor, [MT]). C(}) is symplectomor-
phic to C(p) if and only if A = p.

However it is possible to change the shape of C(A) N {y;1 = 0} without pro-

ducing a symplectically different space (Theorem 4.3.3).

The C spaces can be thought of as spaces having one wall which has

one hole. The C spaces are generalized, in Chapter 5, to W spaces which are

spaces with multiple one holed walls.

|
v o HE

Figure 1.2. W(1,2,3)




By studying symplectic embeddings of balls, spaces with different numbers

of holes or different numbers of holes of a given radius can be distinguished.

Theorem 5.2.6. If W(\y,...,\,) is symplectomorphic to Wity s fim)

then m = n and, more generally, for all r,
G A < = [ (ke e <},

In addition, “embedding trees” are constructed which distinguish some dif-
ferent orderings of the holes. However these trees do not distinguish other

orderings which are believed to correspond to non-symplectically equivalent

spaces.
Corollary 5.3.3. Neither W(1,2,3) nor W(1,3, 2) is symplectically equiva-
lent to W(2,1,3). More generally, if Ay <--- < \,, and ¢ is a permutation of
{1,...,n} so that o(1) ¢ {1,n} then W(Ay,... ) and W (Agqays -« Ao(ny)
are not symplectically equivalent.

In Chapter 6, C spaces are generalized to Z spaces which are spaces

having one multi-holed wall.

FIGURE 1.3. Z(1,2)




Recent results of Eliashberg and Hofer [EH1] suggest that changing the rela-
tive positions of the holes is perhaps important (Theorem 6.2.5). Again, by
studying symplectic embeddings of balls, it is possible to distinguish spaces
with different size holes (Theorem 6.3.6). A slight modification of particular
Z spaces produces spaces referred to as P® spaces which are symplectically

equivalent to the above mentioned W spaces (Theorem 6.4.2).




Chapter 2

Filling Spheres with J-holomorphic Discs

For R* with the standard symplectic structure wq, there exist almost

complex structures J on R* which are wq-compatible in the sense that
wo(v,Jv)>0forallv #0 and we(Jv, Jw) = wo(v, w)

(see [MS]). This first condition is often referred to as J being wo-tame and
the second as J being wq-calibrated. D C C will denote the closed unit disc
with complex structure 7. Then a J-holomorphic disc in (R*,wp) is the image

of a (C') map f: D — R* with J-linear derivative, : ;

df oi = J o df,

Where J is wy-compatible.

Given a 2-dimensional sphere S C R*, if there exists a l-parameter
.ainﬂy of J-holomorphic discs whose boundaries foliate S and whose union
orms a submanifold diffeomorphic to a 3-dimensional ball, there is said to
a filling, F(J), of . Notice that if § = {22 + 2} + 93 = 1,11 = 0},
{22 + 22 +y2 < L,y1 = 0}, each slice D, := BN {z, = ¢}, |¢] £ 1,

“holomorphic (Jo-holomorphic) disc. Thus there exists a filling for the



standard'a.lmost complex structure Jy. In general, a convexity condition
must be imposed on J to guarantee the existence of a filling. To describe
this condition, let J{2 be an oriented hypersurface in (R4, J), and, for each
z € 0Q, let & 5 be the maximal J-invariant subspace of the tangent space
,TE@Q' 99 is said to be J-convez if for one (and hence any) defining 1-form
a of £, daf{v, Jv) > 0 for all non-zero v € £,,y. Since £ = kera, it follows
that £ is a contact structure on 8Q. Eliashberg has proven, although not
published all details of his proof, that an embedded copy S of 5? in R* ha,s
a filling corresponding to an integrable, wo-tame J if S is contained in a
J-convex hypersurface, (see {E]). In other words, there exists a filling of S
by J-holomorphic discs if S can be extended to a hypersurface O such that
8Q is J-convex. Moreover, this convexity condition cannot be completely
removed since Eliashberg and Harlamov have constructed an example of an
embedded S? and a complex structure J for which there does not exist a
filling [E].

In this chapter, a filling result is proven for the case where S 1s a
“standard” 2-dimensional sphere and J, 8Q are “standard” near S. These
conditions are general enough for the applications in the remaining chapters.
In addition to showing the existence of a 1-parameter family of discs, it is
shown that the discs in the filling are disjoint and, away from the “poles” of
S, embedded. This will be important when studying symplectic embeddings
of balls in Chapter 3. |

A large portion of this chapter appears in IMT].




2.1 Set-Up

J will be the set of smooth, wp-compatible almost complex structures
on R*, Jy € J will denote the standard almost complex structure, and Q C
R*, © = {¢ < 1} will denote a region satisfying the following properties:
(1) m2 () =0;

(2) there exists a vector field 7, transverse to 982, satisfying
Lpwy = 2wo;

(3) there exists 3 > 0and 0 < h < 2 such that (2.1.1)
(@) @lgni<sy = hat + (2 - )yt + 27 +vi;
(b} on {|y1] < 8} N IQ,
1
n=gegrady

o
3:1:2

' d 0
Ihmga-l-(?—h)mayl + 7 + Y2

Oya '

For convenience, in this chapter it will be assumed that h = 1. However

all arguments easily generalize. Notice then that (3)(a) implies 5 = {z3 +

li

23 + v3 1,y1 = 0} C 9% and moreover that B = B(B) = {z! + y? +
z2 + 42 < 1,|y1| < B} € Q. Consider o = i(n)wp. Condition (2) implies

da = 2w,. Then since 7 is transverse, it follows that « is a contact form

on Q. Moreover, 8 is J-convex for any wg-tame J such that ker alpq is

“J-invariant. Let Cq be the (non-empty) open subset of J consisting of those

J which make 80 J-convex. Fix 0 < e <1 and let

JQ:{JECQ:J:JU on{cp>1—5}ﬂ{|y1§<,8}}.
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By (3)(b), on 8Q N {|y1] < B}, Jon € kerwglaq and thus Jq 18 non-empty.

Next, given § such that 1 ~¢ < § < 1, put
S5 = {(xlvoaSEZay?) €5 |331‘ < 5}

Then §; is diffeomorphic to an open annulus and, since the elements of Jq

are standard near S, for each J € Jq, Ss is a totally real surface sitting inside

a J-convex 9Q. (A submanifold M of the almost complex manifold (V, J)
is said to be totally real if TM N JTM = {0}. } Let D be the unit disc in

C with almost complex structure i and let A be the generator of 7o (R*, S5)

which is represented by

(D,8) — (R*, Ss)

(xay) — (0,0,$,y).

Notice that by the construction of Jq, for each ¢ such that 1 —¢ < le] < 1,

fulz,y) = (¢,0,/1— 2z, /1 — c?y)

is a J-holomorphic map representing A for all J € Jq. Denote the images

of these flat maps at height ¢ by D.. Finally, for J € Jo. a J-holomorphic

A-disc is defined to be the image of a J-holomorphic map
F1(D,8) — (R, 5s),

which represents A € mo(R*,S5) and is in the connected component of the
fat dises. Thus each J-holomorphic A-disc, Im f, may be joined to a flat

disc, D,, by a path Im f; of Ji-holomorphic A-discs, where J; € Jq.
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2.2 Properties of J-Holomorphic A-Discs

Technically, a J-holomorphic map of the disc, f, is only required to
have J-linear derivative on the closed disc. However, since the boundary of

the disc is sent to Ss, more can be said because of the following.

Lemma 2.2.1. For some neighborhood U of S5 in (R*, Jy) there is an anti-

holomorphic reflection o: U — U in Ss.

v1| < 1—4,23 +y3 =1}

Proof. Consider the cylinder C' = {(z1,0,22,y2):
There exists a neighborhood Uy of €' in C? and o;: U; — Uy an antiholo-
morphic reflection in € given by o1(z1,22) = (“z"f, -;i—z—) . Choosing U; suffi-
ciently small, let U be the image of U under the biholomorphism ¢(z1,22) =

(zl, V91— z%zz) and define c on U by o =woayoe™t. O

Thus, by the Schwarz reflection principle, f has a unique J-holomorphic
extension to a neighborhood of the closed disc.

The next proposition is well-known. A proof is included for complete-

ness.

Proposition 2.2.2. All interior points of a J-holomorphic A-disc are con-

tained in Int (.

Proof. Suppose there exists an f such that Int f is not contained in Int (2.
Since f, by definition, is in the connected component of the flat discs, there
exists a family f; of J;-holomorphic discs such that, for some ty, Im f; C 8,
for t < ty, and Im fi, is tangent to OQ at p = fi,(20). This can be broken

‘into two cases.
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(i) zo € Int D. The following is a reproduction of the proof from [M35, Lemma
2.4].
Recall 8€ = { = 1}. Let ¢, = kera(p)|aq, o = i(n)wo. If v € &, for

any J € Ja, Jv € £, and thus
. ker J*d(plag = kera|ag.

This implies there exist functions p > 0, A defined near 92 such that

T*dip(p) = pa(p) + Adp(p)

for all p € 0. Thus dJ*dy = pda on £, and so will be positive on all
J-complex lines which are sufficiently close to &, in T50%1.

Since fy, is J-holomorphic,
*d( 0 f1,) = (i) (dp 0 T) = (f1,)" (T dp).
By hypothesis, Im f;, is tangent to , and tims
d(i*d(p o fi,))(20) = fi,(dT*de)(20) = fi,(pde)(20)

and so d(i*d(y o fi,)) is a positive area form near zg € D. This implies that
the function ¢ o fy, is subharmonic is some neighborhood of zp and has a
maximum at zg. However this contradicts the maximum principle.

(i1) zo E dD. By construction J = Jy near p € S5, and 9 coincides with
5% near Ss. Let TES3 be the complex part of the tangent space to 0§ at p
and (TES3)J- its wy perpendicular. Then, if 7, is the orthogonal projection

of R* onto the complex line (T;,C 53)1, the composite 7, o fy, is holomorphic
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in a neighborhood of 8D in C. If it had a zero of infinite order at z,
it would be constant near 91, which would contradict the fact that f,
represents A. Thus it must have a zero of finite order at zp and, by hypothesis,
must have a zero of order at least two. Choosing a complex coordinate w
_near Z such that neighborhoods of z, in D are identified with the half-
discs {w € C: |w| < ¢,Re w > 0}, the map m, 0 ft, has the form w +—
aw® + higher order terms, for some &k > 2. Thus near z,, 7p 0 fi,(w) = aw®
which implies for & > 2 that sufficiently small neighborhoods V of z, in D
are mapped onto all of (TESE‘)‘L = . But this is impossible since Im f,, C 2

and 7, takes a neighborhood of p in Q into a half space in C. O

As in the above proof, let £ = ker a. Because S5 is totally real, 'S5 N ¢
is a real, orientable line field on Ss5. By the standardization of Q and J
near S, it is not hard to check that this line field is vertical, that its integral
curves are the restrictions to S5 of the great arcs on S through the poles

{(#1,0,0,0)}. Thus Proposition 2.2,2 implies

Corollary 2.2.3. f|sp is never vertical, i.e.

Tp(flop) # TpSs N1 E(p).

Further important properties of the discs will be derived by a “doubling
argument.” Let N = U U Int{ where U is as in Lemma 2.2.1. Let Ny, N; be

two copies of N and let U; be the copy of U in N;. Form the double

N; I N,

for p € Uy,
p~ a(p)

V:NIUO-NQZ
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One can check V is a manifold and further that
TpNi, f $ Ui

T,V = T,Ny O Ty N
(pyv) ~ (a(p),.v)’

PEU1

Consider

Jv(p) — { J(p), pe Nl

—J(p), p€ N2
Since o is anti-holomorphic and J is smooth, it follows that JV is a well-
defined, smooth almost complex structure on V.

Given a J —holomorphi.c map f: (D,@)‘—r (92, Ss), a JY-holomorphic
map fV: (§2,1) = (CU{cc},i) — (V,JY) can be constructed as follows. Let
f1, f2 be copies of f into Ny, Ny respectively and let r: C*U{oo} — C?*U{oo}
be the antiholomorphic reflection through S given by r(z) = 1/Z. Define
fV:CU{oo} = V by

‘Vz _ fl(z)a |Z|S1
i ()—{fzor(Z), 2> 1

It is not hard to verify that fY is a smooth, JY-holomorphic map of the

sphere.
Proposition 2.2.4. The J-holomorphic A-discs are embedded and disjoint.

Proof. Let f be a J-holomorphic map repreéenting A, and Z the image of
its double. It will be shown that Z is embedded and is disjoint from the
image Z' of the double of any other J-holomorphic 4-disc. Let D. be a flat
J-holomorphic A-disc and S, its double. Then Z and S, are homologous J v.
. holomorphic 2-spheres and S, is embedded. But it is shown in [M2, Theorem

1.3] that there is a homological criterion for a J-holomorphic 2-sphere C' to
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he embedded: namely, C is embedded iff its virtual genus g(C) is 0, where
#(C) =1+ 3C.C —e(C)). (Here c € H*(V;Z) is the first Chern class of
the complex vector bundle (TV, J).) Since g(Z) = g(S.) = 0, 1t follows that
7 is embedded. Further

Z.72'=8,.5, =0

But, by [M2, Theorem 1.1], every intersection point of Z with Z' contributes
positively to the algebraic intersection number Z . Z'. Hence Z and Z' are
disjoint. O

Corollary 2.2.5. For all J-holomorphic A maps f,

wy-area of f = wo € [0, 7). |
f(D) |

Proof. Since 0f C S C {y; =0} and f represents 4,

OS] wﬂm/ Todys <w. [
f(D) af

3 Filling the Sphere

In this section it is shown that the unit 2-sphere S in the hyperplane

1 = 0} has a J-filling F(J) for all J € Jo. More precisely:

2.3.1) Sphere Filling Theorem. For all J € Jq, there is a 1-parameter
nily of disjoint, J-holomorphic discs whose boundaries foliate S and whose

n, F(J), is diffeomorphic to the 3-dimensional ball B®.

that F(J) contains two degenerate discs at the poles (#1,0,0,0) of S.
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Only a sketch of the proof will be given since it follows by standard
Fredholm theory from the results of Section 2.2. The first step is to define

suitable Banach manifolds of almost complex structures and maps.

The results used in Proposition 2.2.4 require that J be smooth. There-

fore, the following procedure of Floer [F} will be used to construct a Banach
manifold N(J) C Jp contaning a given J, The tangent space TyJa to
Ja at J consists of the space C>(S5) of smooth sections j of the bundle
End (T, R*) sﬁch that 3J + Jj =0, (ja,B) + (a,78) = 0 (where {, ) is the
standard inner product), and j(z) = 0 on {p > 1 —¢&} N {|y1] < B} Let

£ = (€;)ien be any sequence of positive real numbers. Then

lille =D ex max|D%5(2)]
keN

is a norm on the linear space
CH(S5) = {5 € C*(S0) : [lille < oo}

Further, one can check C¥(S) is a Banach space. As Floer has shown [F,
Lemma 5.1], it is possible to choose & so that C%(Sy) is dense in T;Jq with
r{é’éﬁect to the L2-norm. Choose r > 0 small enough so that, for ||7|s < r, the
xponential map is injective. Let N'(J) = {j € C(S,) : |ljlle < r}. Then
(J ) is an open set of a Banach space and thus a Banach manifold. Define
J) to be the image of N'(J) under the exponential map diffeomorphism.
Fix s > 1 and let F = }—51,3 be the Sobolev space H*TY(D,d;R*, 55)
a.ll maps f: (D,d) — (R*, S5) whose (s + 1)** derivative is L? and which

present A € my(R*, Ss).
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For J1 € Jq, define
M=MNIY) = {(f,]) € Fx N(J1): 8,f = df + T odf oi =0}.

Proposition 2.3.2. M is a Banach submanifold of F x N(J1).

Proof. This can be proved locally using the procedure of McDuff [M1, §4].
There are two points to note. First observe that, because S5 is totally real,
the boundary conditions imposed on the maps are elliptic (see [BB]). Thus,
in the notation of [M1, §4], L; is still Fredholm a;nd Im d® is closed and of
finite dimension. The proof that 0 is a regular value of d®(;, sy goes through
as before, provided that Im f intersects the part of R* where the elements of
Jq are allowed to vary. However, one must also consider the possibility that
Im f is contained in the region {¢ > 1—e}N{|pn| < B} where Jis constrained
to equal Jp. But then the integrability tensor of J vanishes on Im f. Thus

L is just the usual J-operator and so is surjective, as required. O

It follows as in McDuff [M1, Proposition 4.2} that the projection map
Py =Py MN(J)) = N(JL)

is Fredholm. By the Sard-Smale Theorem, there is a subset of second category

N(J1)reg C N(J1) which consists of regular elements. For these J, the inverse

PIHT) = My(J, A, 6)

" a manifold. Let (Ja)rey be the union of all the N{(J)req,J € Ta. Since
is is an uncountable union, the set (Jq)reg need not be of second category.

owever, it i1s dense.
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Since the index of P4 s is determined by the symbol of the elliptic
operator L, one easily sees that it is independent of J € Jp, and so may
be calculated by considering a special J. Thus, suppose that J = Jy near
the unit ball B* C {y; = 0}. Then the flat maps f., for |¢] < 1 —~¢ are J-
holomorphic. Since the boundaries of these flat discs completely fill S5 and,
‘by Proposition 2.2.4, distinct discs must be disjoint, it follows that these
flat discs are the only J-holomorphic A-discs. Thus, there is a 4-parameter
family of flat J-holomorphic A-discs. (Note that three of these dimensions
correspond to the reparametrization group PSL(2,R).) Further, since J is
integrable near the image of each flat disc, Ly is the usual 0 operator and
it is easy to see that (f.,J) is a regular point for all ¢. It follows that J is
a regular value for P4 ;. Hence the index of P4, s is 4 and the following has

been shown:

Proposition 2.3.3. For all J in a dense set (Ja)reg of Ja, Mp(J, A,8) is a

smooth .4-manifold.

The next step is to compactify the manifolds M,(J;, 4,6). It is not
_enough simply to quotient out by the noncompact reparametrization group
G = PSL{2,R) of all biholomorphisms of the disc, because Ss is itself not
compact. To fix this, consider the closure S5 of S5. Let J_\:/IHP(J,A, 8) consist
of all J-holomorphic discs with image in (£, Ss).

emma 2.3.4. M,(J, 4,8) = M,(J,4,6)U(fs)c U (f-s)c, where (fs)c is
the G-orbit of the flat disc at height § and similarly for (f_s)c. |

*roof. The inclusion D is clear. Conversely, suppose there exists an f such

hat Im f is a non-flat A-disc which intersects one of the circles of S5\ Ss.
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By construction of Jq and definition of &, there are flat J-holomorphic discs
whose boundaries lie on these circles. Thus Im f must intersect one of these

flat discs. However this contradicts Proposition 2.2.4. O

Proposition 2.3.5. The space of unparametrized J-holomorphic A-discs,

M,(J,A,6)/G is diffeomorphic to a compact interval, for all J € Jq.

Proof. Suppose J € (JTa)reg- It is easy to see that in this case M,(J, 4,8)/G
is a 1-dimensional manifold with two boundary points given by [f1s]. There-
fore, it suffices to prove that it is compact and connected.

To see that this space is compact, double all the discs so that they i
become J Y -holomorphic AV -spheres. Construct a metric g% on V by piecing ) i
together g (v,w) = wy(v, JYw) on Ny and ga(v,w) = —wy(v, JYw) on Ny, |
and observe that, by Corollary 2.2.5, all the J V_holomorphic AY-spheres are
uniformly bounded in the associated H! Sobolev norm. Thus one can apply
the standard compaciness theorem for closed J-holomorphic spheres. (See,

for example, [M4, (2.4)].) Clearly, any limiting cusp-curve is the double of a

J-holomorphic “cusp-disc” in . The most general form for such a cusp-disc
is a connected union of J-holomorphic components, some of which are discs
and some of which are “bubbles” (i.e. J-holomorphic spheres). In the case
being considered, Corollary 2.2.3 implies that the boundary of the cusp-disc
- is transverse to the vertical, and so only one of its components can be a disc.
‘Further, there can be no bubbles since 72({2) = 0. Hence, the limit must
consist of a single disc. This proves compactness. (An alternative p-roof,

'\_ifhich does not use doubling, may be constructed by the methods of [O] or
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It follows that one connected component of Mp(J, A, ) is diffeomor-
phic to a compact interval. Since this component is non-empty and contains
the flat discs f.s, the boundaries of the discs in this component must fill out
the whole of S5. But distinct discs are disjoint. Therefore there can be ﬁo
other discs and —HP(J, A, §) is connected, as claimed.

Now consider an arbitrary J. The first claim is that there is a J-
holomorphic disc through each point of S5. This folloﬁs from the compact-
ness theorem, because it is true for regular J and because regular elements
are dense in Ju. Next observe that,if a is a \;ertical arc in S going from one
pole to the other, Corollary 2.2.3 implies that each disc intersects « exactly

once. The result now follows easily. U
(2.3.6) Proof of Theorem 2.3.1.
Let
My(J, A) = My(J,A,6)U{foov: 6 <|c| < 1,7 € G},
and let F(J) be the image of the evaluation map
ep(J): My(J, A) xg (D,8) — (R, S).

In the proof of Proposition 2.3.5., it was shown that 9F(J) = S. Since G
acts freely away from the degenerate discs at the poles, My(J,A,8)xq(D,d)
is a fiber bundle over the interval M,(J, 4,8)/G with fiber (D,8). Thus
M, (J, A) xg (D, 8), with its obvious smooth structure, is diffeormorphic to a
3-ball. By Proposition 2.2.4, ep(J) is injective and resiricts to an embedding
on each disc. The fact that it is a diffeomorphism onto its image F\(J) may

be proved by the argument in [M3, Lemma 3.5]. O
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Chapter 3
Symplectic Embeddings of Balls

Throughout this chapter, B(r) C (R*,wy) will denote the closed 4-

dimensional ball of radius r,
B(r)={ei +yi+ai+y; <7°}

Given a symplectic manifold (U, w), an embedding g: B(r) — U is symplectic
if g*w = wyp for all p € B(r). E(r,U) will denote the space of symplectic
embeddings of a ball of radius 7 into U.

By the non-degeneracy of a symplectic structure, it is easy to check
that the images of all elements in £(r, U) must have the same volume. How-
ever there exist regions in (R*,wy) which are diffeomorphic to aﬁd have the
same volume as B(r) but are not the symplectic image of any ball. This is a

consequence of the squeezing theorem.,

Squeezing Theorem (Gromov). Let D(R) C R? be the open disc of
radius R. If there exists a symplectic embedding g of B(r) into D(R) x R?

then r < R.

Gromov proved this theorem, in [G], using the theory of pseudo-

holomorphic curves. In this chapter, the filling results from the Chapter 2 will
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be used to further study symplectic embeddings of balls into open subsets of
R%. In particular, the filling technique will be used to study, 7o(E(r,U)), the
path components of £(r,U)). Recall that [f] = [g] € mp(E(r,U)) if and only
if f and g are symplectically isotopic. This means there exists a 1-parameter
family of symplectic embeddings ¢g;: B(r) — U such that g0 = f, g1 = ¢. An
inclusion, 1 € £(r,U), is an embedding such that z, = id.

For later coﬁparison, it is useful to point out t.hat all symplectic em-
beddings of a ball of radius r into R?* are symplectically isotopic. As proof,
given an arbitrary embedding g it suflices to construct a symplectic isotopy
between ¢ and an inclusion 7. By applying a translation, 1t is possible to

assume g(0) = 0. Consider

o)y G0 =0O) ooy

S a—t 3

g1-4(v) = }q:fflt
Then go = ¢, g1 = dg(0) &€ Sp(4), where Sp(4) is the symplectic linear group
of R%. Since Sp(4) is connected, there exists a path A in Sp(4), t € [1,2] so
that h; = dg(0), hy = 1.

3.1 Symplectic Convexity

A vector field  on (R?",wy) is said to be ezpanding if
Lywy = 2wq.
(Compare [EG, 1.2].) Recall that given a 2-dimensional sphere S Cr R*, one
hypothesis for the existence of a filling is that there exists a region , S C 0

and an expanding vector field n which is transverse to 9. Thus the following

class of open manifolds will be of interest.
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Definition 3.1.1. (Compare [EG, 1.7].) An open set U C (R*™,wp) is
symplectically convez if there exists a sequence of compact domains, {1,
such that

U = Uy Int Q4

and for all k, there exists an expanding vector field n; which is transverse to

.
The fadia,l vector field

SR -
n= 185’:1 ylayl 282)2 y28y2

on R* is expanding and thus any star convex subset of R? is symplectically

" symplectically convex

convex. The focus in this chapter will be on “specia
subsets; namely, subsets to which the filling technique of Chapter 2 can be

applied.

Definition 3.1.2. Let U C R* be an open subset whose boundary 8U con-

tains 2-dimensional spheres Sy,..., S, of the form
Si = {hi(z1 — a)? + (z2 = b)Y + (2 — ei)* = A}, y1 = di ),

for a;,b;,¢i,d;i € R, 0 < hy < 2. The spheres .5; are said to be fillable holes
of U if
U =Ulnt Qk

where (Q) is a sequence of regions satisfying conditions analogous to (2.1.1).

More specifically, (3} is replaced by
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(3") for all ¢, there exists §; and ¢; (depending on k) such that on

by
T — o) < —= + ¢ lys — di| < B;
N= TS e ,
|2y — bi| < Xi + €, ly2 — il < Ai+ &

Q= {hi(z1 — @) + (2 = hi)(yr — di)? + (22 — bi)* + (2 — ci)® < A}

and
d a d a
— b g e . (D b Y — _pN P W
Mk = hi(z1 Ctz)ax1 + (2 - hi)(n dz)ay1 + (22 61)63:2 + (2 cz)ay2

It is clear that given a manifold U with fillable holes, for any £x and
J € Ja,, there exists a filling F(J) = F* U F?U---UF" of the n spheres
S1yeeesSn-

Lemma 3.1.3. FP'0F/ =0 fori # ;.

Proof. If the discs D" € F" and D® € F* intersect, they must do so at a
point which is in the interior of each disc. But this is impossible by positivity

of intersections: see Proposition 2.2.4. []

The following lemma will be extremely useful. The argument 1s very

similar to those given in [G], [M4, (2.5.2})].

(3.1.4) Extension Lemma. Let U be an open set with fillable holes. Let
X be a subset of R* and E(X,r) = U,exB(r,z) where B(r,z) is the ball
of radius v centered at z. Suppose there exists an embedding g: X — U
which extends to a symplectic embedding g: E(X,r) — IntQ, C U. For all

J € Jq, which equal §.Jy on Img and all: such that A; <r,

Fing(x)=0.
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Proof. Suppose there exists a disc C in F{J) whose boundary lies on S; and
a point z € X such that CNg(z) # 8. Consider §, = §|g(s,r) and let ¢’
be the pull-back of the disc C by §,. It follows that C' is a .Jy-holomorphic
curve through the center of the ball B(z,r) with boundary on 8B(z,r). Thus
C"' is a minimal surface and, by the monotonicity theorem, must have area
> 7r? with respect to the standard metric. On the other hand, this area can
be calculated by integrating wy over €’ and hence is strictly bounded above

by the integral of wy over C. However, by Corollary 2.2.5, wo(C) < wAi. O

3.2 Embeddings in Different Path Components

The Extension Lemma (3.1.4) will first be applied to the case where
X is a point to show that there exist connected regions U of R* such that
E(r,U) has more than one path component.

If S; is a fillable hole of U then S; bounds a 3-dimensional ball denoted
by D;. The argument below is given by Eliashberg and Gromov in their proof
of the “Camel Lemma” ([EG, 3.4.B]).

Theorem 3.2.1. Let S; be a fillable hole in U of radius A; and suppose

U\D; = IU*. Ifr > \; and there exist inclusions % such that ImiE C U+,

then then i and i} are not symplectically isotopic.

Proof. Any isotopy ¢:,1 <t < 2 from i to i} is contained in a compact
subset of U and hence in IntQ = Int Q; for some k. Let J, € Jo be a

smooth family of almost complex structures chosen so that J; = (g:).Jo on
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Im g¢. Because each filling F'(J;) disconnects {2, the set

YV ={(tz):z€ F(J;),1 <t <2}

disconnects [1,2] x . Further, since (g:)«Jo = Jo when ¢ = 1,2, it is possible

to assume that Ji and Jo equal Jo near the 3-ball D;. Then F(J;) = D; when
¢ = 1,2 and so the points (1,41(0)) and (2, g2(0)) lie in distinct components
of ([1,2] x )\ Y. Therefore, the path (¢,9:(0)), 1 < ¢ < 2, must intersect
Y. In other words, for some ?, there is a J;-holomorphic A-disec C' through

¢:(0). However by the Extension Lemma (3.1.4), this is impossible. [

Example 3.2.2. Let |

) B(a) = {(z1 — a)? + v + 2} + v < 1JU{(z1 +a)® +yf 2 +y; <1}

here a is chosen so that D B(a) is connected. See Figure 3.2.3.

FIGURE 3.2.3.

the ideas in the proof of Proposition 4.1.1, it can be shown that 5 :=
_‘.(a.)'.ﬂ {y1 = 0} is a fillable hole of U of radius v/1 — a?. Thus Theorem
implies that inclusions ¢F¥: B(r) — DB(a) of the ball of radius r >

7 into cach half of DB {a) are not isotopic.
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Example 3.2.4. Let

H(a):= {yn <0}U {a} + (1 —a)* + 2} + 7 <1}

where a is chosen so that H is connected. Again using the ideas in the proof
of Proposition 4.1.1, § := O(H{a) N {y1 = 0}) is a fillable hole of radius
V1 = . Thus inclusions i¥: B(r) — H(a) of the ball of radius r = V1 — a?
into H(a) N {y: <0} and H(a)N {y; > 0} are not isotopic for r > /1 — aZ.
See Figure 3.2.5.

FiGurE 3.2.5.

3.3 Criterion for Standard Isotopy Class

In this section, the Extension Lemma (3.1.4) will be applied to the

case where X = B(r) for U which are “special” subsets with fillable holes.

Definition 3.3.1. Let U be open set with n fillable holes. Let Wi, § =
1,...,m be the boundary components of U which contain the fillable spheres.

Suppose there exists constants ci,...,cm, such that,

(1) Wic{y=¢h
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(2) (U\ Uj {y1 = ¢;}) = L7, Vi where Vj is symplectomorphic to R*.

Then U is said to have (m) flat boundaries.

Example 3.3.2. Let
C={y <0}u{n >0}u{zl+2;+y; <1y =0}

In the Chapter 4, it will be shown that C has a fillable hole and a flat
boundary.

Given an open set I/ with m flat boundaries, there exist symplectic
diffeomorphisms i*: R* — Vi, k = 0,...,m. Let % = iF|gny. If i is a
different symplectic parameterization of Vg, it is easy to check that [7; Kl =

] € mo(E(r 1)),
The remainder of this chapter is devoted to proving the following the-

heorem 3.3.3. Let U have fillable holes of radii A1, . . ., An and flat bound-
ies. Let Anax = max{\;}. If g: B(r) — U is an embedding which has an
tension to a symplectic embedding g': B(r + Amax) — U then g is sym-
ctically isotopic to i¥ for some k.

This theorem is a a slight generalization of the “Extendable Embed-

Lemma” from {MT]. The following results and proofs are completely

ogous to those given in Section 6 of [MT].
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Proposition 3.3.4. (Compare [MT], Proposition 6.2.}) Let U have n fillable
holes and m flat boundaries. Fix Q, J € Jo, and let F be the fillings of
the fillable spheres contained in {y1 = c¢;}. Then F(J) = UL F can be
e-perturbed so that each F° fits together with W' to form a 3-manifold Q

so that there is a symplectomorphism ¥ of R* which takes Q% to {y1 = ¢}

Before proving this proposition, it will be shown how, together with
Lemma 3.1.4, it proves Theorem 3.3.3. If an embedding g has an extension
to the ball of radius » 4 Ap.., Lemma 3.1.4 ifnplies g(B(r) n F* = B,
for all 4. Since £ may be chosen sufficiently small so that Q% N g(B(r)) =
0, this means g(B(r)) lies in a subset of U which is symplectomorphic to
R*. However, as mentioned in the beginning of this chapter, the space of
symplectic embeddingsof a ball into R* is connected. Hence g is isotopic to
i¥ as claimed.

In the course of proving Proposition 3.3.4, a “parameterized family of

fillings” will be used. Consider the following 2-spheres and 4-balls of radius

y:

S(y.s) = {2} + 23 +v3 =7y =},

Bly,s)=A{z} +(y1 —s)* +ai +u3 < 7'}
If an almost complex structure J is chosen such that J = Jg outside the 4-ball
B(u) = B(u,0) and choose ¥ > 2 so that B(u) C B(y,s) for —u < s < u
then, for each s, B(v,s) may play the roie of 2, and so it is possible to fill
S(v, s) with respect to J. Denote the filling by F*. By Proposition 2.2.2,
Frc B(~,r) for all r. Since B(y,r)N S(y,s) = & when r # s the proof of

Lemma 3.1.3 proves the following.
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Lemma 3.3.5. F" N F* = whenr #s.

Proof of Proposition 8.5.4. First the hypersurfaces @, ¢+ = 1,...,m are
constructed. Each Q¢ will be defined as the union of a 1-parameter family
of symplectic 2-manifolds, each of which consists of a disc in the filling F**
extended so as to join together with a flat 2-plane {z; = constant, y3 = ¢}
outside some large ball.

Let a® be a sequence of vertical arcs on. the fillable spheres in {y; =
¢i}. By Corollary 2.2.3, the discs in F' meet o once transversally. Let
Dg = Im fJ' be the disc in F'% which intersects this arc a® at z; = v.

Then

(f) wo = (£5)"(der A dys + dis A dya)

= (m 0 f5)"(dzr Adyr) + (mz 0 £7)(dwa A dyz),

where m; denotes the projection onto the (z;,y;)-plane. Both terms here are
> 0 near 3D since m; 0 f5' is Jg-holdmorphic near 8D. Moreover, the second
term is strictly positive, because the boundary of D¢ is transverse to the
vertical arcs. Thus, by flattening the y; coordinate of fi near 0D, the disc
D¢ can be peiturbed to a disc 13,6,‘ = Im ﬁf‘ which is infinitely tangent to
the hyperplane {y; = ¢;} along its boundary and which is still symplectically
embedded. Clearly, this perturbation can be done smoothly with respect to v
in such a way that all the discs 155' are disjoint. Note that this perturbation
does not alter the flat discs D& near the z;-poles of the spheres being filled.

Recall that by the definition of fillable holes, each sphere SJ‘?" C {y, =
¢;} being filled is the boundary of a 3-dimensional ball D', Let PJi be
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the portion of the flat plane {(z:,y1) = (v,¢;)} which lies outside uDy,
Le. PJi = {(v,¢ci,22,42) ¢ U;Dj’ }. Perturb each PJ* inside the hyperplane
{y1 = ¢;} to a 2-dimensional space ﬁj‘ which is still a graph over the (z4,y2)
plane and which joins smoothly with aﬁf,". Then L = ﬁﬁ‘ U ﬁf" is a
smoothly embedded 2-manifold which equals P outside a compact set. It
is symplectic since both WUlﬁs,’ and wg|;5:.- are positive. Again, it may be
assumed that the LS vary smoothly with resped to v, and that they coincide
with the flat planes {(z1,¥1) = (v, ¢;)} outside some compact subset X% of
the strip |z1] < const € R*.

Let Q% = U,L%. By construction, Q% is foliated by the symplectic
2-manifolds LS, Furthermore, by Lemma 3.1.3, it can be assumed that
QENQY =8, ¢; # c¢j. A symplectomorphism of R* is now constructed
which takes Q% to {y; = ¢i}, 1 =1,...,m.

Choose a J' which equals Jp outside some large 4-ball B() containing
the compact subset X = UX® defined above and such that the leaves of the
foliation of Q% are J'-holomorphic. With ¥ as in Lemma 3.3.5, let S(v,s)
be the 2-sphere in {y; = s} with filling F*. Note that the discs in B are
just the intersections of the leaves LZ' with the ball B(v,c¢;). By Lemma
3.3.5, the fillings Fs are mutually disjoint. Thus, by repeating the above
argument, the F* can be perturbed so they fit together with the hyperplanes
{y1 = s} to form a foliation of R* with leaves Q°, each of which is foliated by
symplectic 2-planes. Further, outside of a compact subset of R*, Q* coincides

with {y; = s} and is foliated by the planes {z; = constant}.
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Let £° be a non-vanishing vector field on Q° satisfying £* € kerwo|g-.
The integral curves of any such vector field form the characteristic foliation
of Q°. It is easy to check that the leaves of this foliation are transverse to
the symplectic leaves and agree with {y = s, (22,y2) = constant } outside a
large ball. Therefore, the characteristic flow ¢ on @° may be parametrized
smoothly in ¢, s so that it preserves the foliation of each (2° and has tangent
8—2—1 outside a compact set. Choose K > 0 so that the plane {z; = —-K,y1 =

s} is a symplectic leaf in Q* for all s. Then define ®: R* — R* by
®(p) = (—K +1,5,22,y2)

where p € Q° is the image of the point (=K, s,z2,y2) under the map ¢;.
This takes Q* to the hyperplane TI* = {y; = s}, for all s, but is not quite
symplectic. Thus to complete the proof of Proposition 3.3.4, it remains to

show

Lemma 3.3.6. There exists a diffcomorphism h of R* which is the identity

on Q%,i=1,...,m, and satisfles A*®*wy = wy.

Proof. Let £° be the vector field on Q° whose flow is #7. By construction,
¢, (&%) = a;fn' It follows that if ¢ = (z1,s, %2, y2) where z; < —K, then for
all t, ® o ¢¢(q) = 7 0 B(q) where 7(z1,v1, T2, ¥2) = {x1 + 1,1, T2,y2). Since
the restriction of wy to Q° is invariant under ¢7, ®*wolgs = wolge for all s.
It follows that the forms w, = r®*wy + (1 — r)w are non-degenerate on R*
when 0 < r < 1. Suppose there exists a 1-form § which vanishes at all points

of U, Q% and satisfies df = ®*wy — wy. Then if the vector field v, defined
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Hvp)wr + 8 =0

is integrable, the standard Moser method argument shows that the integral
hy of v, satisfles hjw, = wy (see [MS]). Since h, = id on % the desired
diffeomorphism is then given by hy.

Consider 8 = ®*(z1dy; +z2dys) — (z1dyy + z2dy2). Outside a compact

set K1,

@(37173!1,3?2&2) = ($1,y1,¢y1($2,y2))

where v, : R? — R? is independent of 21, and equals the identity outside a

compact set K, in the (yq, x4, y2)-space. It follows that outside K,
wr = dz; Ady; +dzo A dys +r(hy dyr A dza + by dyi A dys)

where |h1| and |h2] are bounded functions of y1,z2,y2. It is then easy to
check that given any bounded 1-form 3, the associated vector field v, defined
by the equation (v, )w, + 4 = 0 has bounded growth and is thus integrable.
The 3 constructed above is in fact bounded. However since it does not vanish
on Q%, 4 =1,...,m, the following modifications are made.

®*wolge = wo|ge: implies that F|ge is closed. From the description
of ® outside the compact set K, it is easy to check f|ge: is bounded. Thus
Blgei = df¢ where f¢ is a function on @°. These functions can simulta-
neously be extended to a function f on R* so that df is bounded. Then
g.=p- df is cohomologous to 3, is still bounded, and vanishes for all

vectors in TQ¢. Lastly 8’ is modified to a form 3" which equals zero at
y
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all points of Q%. To do this, first choose coordinates z%,y},z5,¥3 on R* so
that Q% = {y| = ¢;} and so that these are the standard coordinates on R*

outside a compact set. Suppose

B =" fide! + gidyl.

Then fi, f2 and ¢ vanish on U7, Q% by construction. Further, outside a
compact set, g1 = 7,[;1%’5 where 1, (22,y2) = (¢1,¢2). Hence ¢y is inde-
pendent of z; and has compact support with respect to the other variables.
Choose a function hA(y)) so that A(y]) = y] ~ ¢; near Q% for ¢ = 1,...,m.
Then d(g1k) is bounded and 8" = #' - d(g, h) satisfies all the desired prop-

erties. O

This completes the proof of Proposition 3.3.4. O
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Chapter 4

C Spaces

Consider R* with the standard symplectic structure wy. For A > 0, let

U()) be the following open subset of (R*,wp):
UA) = {y1 < 0}U{ys >0} U{zs #0,y1 =0} U{z: = y1 = 0,75 +y35 < A’} :
Alternately,

RNU(N) = {23 + 4§ 2 A% 21 =41 =0}

In [M6], McDuff proves that for all A, U()) is symplectomorphic to R%.
In this chapter, an open subset C{)) of U(A) will be examined. C(A)
is defined as
C(A) = {y1 <0}U {1 > 03 UH(A)
where H(A) := {(z1,0,22,y2): 2% + 23 + y2 < A} C {y1 = 0}. Asa

comparison to U(A),

R\C(\) = {2} + 22 +y5 > A%, y1 =0}
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H

FIGURE 4.0. (1)

C()) contains two half spaces, each symplectically equivalent to R*. For a
path 7: [0,1} — C()\) satisfying 4(0) € {y; < 0}, ¥(1) € {y1 > 0}, there
must exist a ¢t such that v(¢) is an element of the “hole” H({X). The space
C{1) was first introduced by Gromov. It is the space which underlies the
symplectic camel problem. (See Section 4.2, [A], [EG], [MT], [V].)

4.1 Convexity of C Spaces

It is easy to check that C({}) is star convex with respect to the origin
and thus C()) is symplectically convex (see Definition 3.1.1). In order to
apply the filling technique from Chapter 2, it is necessary to prove that the
exhausting regions can be chosen to be “standard” near H(A) (see (2.1.1)).

Recall the notion of fillable holes from Definition 3.1.2.
Proposition 4.1.1. dH () is a fillable hole of C( ).

Proof. The exhausting regions € will be constructed by centering large 4-

balls of radius k at (0, £k, 0,0) and smoothing the union via a “solid cylinder”
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which agrees with B*()) near {y; = 0}. More precisely, let

Bi(k) = {93% +{n1 F&)? + 23 +yi < kZ}

B(\) = {a? +yl+ 235 +y; <A}

FiGURE 4.1.2.

Notice that the radial vector field

i+ ad + J ad
??—1131a y1a xza + Yo

is transverse to 8B*(k)\{0} and 8B()). Thus it follows that 7 is transverse

to the non-smooth boundary o for
Qr = B~ (k) UB(\) U B (k).

It is possible to smooth Q on {lyl + %| < *1,5} to a region y with smooth

3_boundary so that 7 is transverse to 98 and Up Int @, = C(X). O
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4.2 Embedding Balls into the C Spaces

Let £(r,C(\)) be the space of symplectic embedddings of B(r}), the
closed ball of radius r in (R*,wg), into C()). For any strictly increasing
diffeomorphism f: R — R*, the diffeomorphism it: R* — {y1 > 0} given
by

Il

oy, 1,52, 12) = (‘f,(y—l), f(yl.)’ T2, yz)
is symplectic. A similar procedure can be done to construct a symplectic
diffeomorphism i~ : RY — {y1 < 0}. Then i¥ := i%| gy € E(r, C(X)). Notice
that given any 7, it i possible to construct the symplectic maps i so that
i% are inclusions, i.e. (¢F), = id, of the ball of radius r into C(A).

™

When r is small, meaning r < A, i} and i7 are in the same path
component of £(r,C{})). In fact, in this case it is possible to construct a
1-parameter family of inclusions 74: B(r) — C(A\), t € [0,1] so that 7y = ¢,
71 = ¢F. When r > J, it is easy to explicitly construct a 1-parameter
farnily of volume-preserving embeddings v.: B(r) — C(A), t € [0,1], so that
vo = 5, v; = i7. However, the situation is much different with respect

to symplectic diffeomorphisms. Using Proposition 4.1.1 in combination with

Theorem 3.2.1, immediately produces

::(4.2.1) Symplectic Camel. For allr > A, i¥ and 1] are in different path
‘components of E(r,C(})).

Remark §.2.2. Using the symplectic isotopy extension theorem (see [MS)),
he Symplectic Camel can alternately be stated as follows: Whenr 2 A, there

aOes not exist a symplectic isotopy, g: of C{A), t € (0,1], so that gi o1 = e
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As mentioned in Chapter 3, a proof of this result is sketched by Eliash-
berg and Gromov in [EG, 3.4.B]. It is interesting to note that Viterbo in V]
gives an alternate proof of the Symplectic Camel using generating functions.

If g : B(r) — C()) is a symplectic embedding so that
Vol(Imgn{y; > 0}) = Vol Imy,

then it is easy to see that Img C {y; > 0} and thus g is isotopic to ¢}'.

However it is interesting to note that

Theorem 4.2.3. For all , ¢ > 0, there exists a symplectic embedding
g : B(r) — C({X) such that

Vol (Img N {yy > 0}) > Vol(Img) —¢

v

and g Is isotopic to i .

L3

To prove this proposition, the following result, proved by McDuff and

Polterovich in [MP], will be applied.

(4.2.4) Sphere Packing Theorem. Given any compact symplectic man-
ifold M, for all € > 0 there exists r,k and a symplectic embedding g of k

disjoint balls of radius p into M,
g: Hlkzl Bl(p) - M’

so that Vol(M\Img) <e.

In addition, they have proved that for M = B(r), for all € and k, there exists
p and an embedding
2
g: 11§ Bi(p) — B(r)
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so that Vol(B(r)\Imyg) < e.
Before applying this theorem, it will be useful to have the following

lemma.

Lemma 4.2.5. Supposeg, h: 15, B(r;) — R?*" are symplectic embeddings.

Then there exists a symplectic isotopy ¥; of R*®, ¢t € [0,1] so that ¥ 0g = h.

Proof. Fixj,,1 =1,...,k to be disjoint inclusions of the ball of radius r; into
R2" and let g, := ¢|p(r). It suffices to show that there exists a symplectic
isotopy, ¥,, of R*™ so that ¥ o g,, = j,..

Suppose Img,,,1 = 1,...,k are sufficiently far apart in the sense that
there exist regions V;, symplectomorphic to R**, V;,NV;, = P fori # j, where
each V., contains the image of g,, and the image of a standard inclusion 4,,.
Then there exists an isotopy ¢¢ of R*®, ¢ € [0,2] so that ¢1 0 gr, = iy,
P20 gr. = Jriy t = 1,..., k. Thus to construct ¥,, first a symplectic isotopy
t; is comstructed so that for some ¢y > 0, Imyy, 0 9r, ¢ = 1,...,k are

sufficiently far apart.
nr, will denote the radial vector field on B(r;) C R** and p, =

gr: Janir; Will denote the induced vector fleld on Img,,. Let f* be the back-

L o1 (o) = ~pri(p).

It follows that for ¢ >0, ¢;'(Img,,) C Imgr,. Let O be the (integrable)
dial vector field on R?" centered at p ¢ Img and let x; be its low. Thus

¢ 1s a diffeomorphism of R®™ for all ¢. Notice that

E_p_r‘_wo = —2wy, Lawg = 2wyg.
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celt follows that jwy = c(#)wg, xtwo = g{%wo, for a non-vanishing function
¢ and thus ¥; = x, 0 ¢, is symplectic for all t. In addition, it is easy to check
that for some ¢, sufficiently large, Im1y, © g, must all be sufficiently far

apart and thus the argument in the above paragraph can be applied. O

Proof of Theorem 4.2.3. Apply the sphere packing to fill Im: with &2 balls
of radius p, p < A. By Lemma 4.2.5, it is possible to construct a sy}nplectic
isotopy of {y; < 0} which takes the i** ball to a standard inclusion centered at
(21,¥1,%2,Y2) = (0,—22X,0,0). By the symplectic isotopy extension theorem,
[MS], the symplectic isotopy defined by translating all these balls to the space

{y1 > 0} has an extension to C(A). O

The Symplectic Camel provides information about standard elements
i¥ € £(r, C()\)) but nothing about an arbitrary element of £(r, C(\)). Since
C(A) has a flat boundary (see Definition 3.3.1), Proposition 4.1.1 implies that

Theorem-3.3.3 can be applied to give

(4.2.6) Extendable Embeddings ((MT]). If ¢: B(r) — C(A) has a sym-
plectic extension to ¢': B(r+A) — C()), then g is symplectically isotopic to
ori, .

The hypothesis that g has an extension ¢’ is closely tied to a notion

of completeness for symplectic manifolds. Eliashberg and Gromov have ex-

plored this idea of completeness in [EG].

Definition 4.2.7. (Compare [EG, 1.8].) A symplectically convex manifold

is complete if it admits an integrable expanding vector field.
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It is easy to check that the radial vector field  on R*™ has an integrable
flow and thus R®*? is complete. The completeness of R*® guarantees that
all symplectic embeddings of a ball of radius r into R?*™ have extensions
to embeddings of balls of arbitrarily large radii. This is proved in [EG,

2.1.B]. Their proof, included below for completeness, proves the more general

statement.

Lemma 4.2.8. Suppose D C R*" is a star convex region and W is & com-

plete, convex symplectic 2n-dimensional manifold. Then every symplectic

embedding of D into W has an extension to R*",

Proof. Assume g: D — W is a symplectic embedding and 7 is the given
integrable, expanding vector fleld on W. Let 8;, defined on Imyg, _be the
iﬁage of the radial vector field under g,. Choose a compact subset K of W
so that Im g C Int K and let J3 be the restriction of 1 to the complement of
K.

Since 7 is expanding, w = dA for 2\ = 1(n)w. Since & is also expanding

and H'D = (), there exists a function f; on Img so that
1(0) o = 2A 4+ df;.

Extend f; to a function f on W which is identically 0 on the complement of
K. The non-degeneracy of w guarantees there exists a unique vector field 9
on W satisfying |

(Qw = 2X + df

and it is easy to see that J is an expanding vector field which extends &, 9.

Since, outside the compact set K, J agrees with the integrable vector field 0;,
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d is integrable. Let ¢, be the flow of this vector field and define ¢: R*" W

by ¥(tp) = ©:(g(p)), where p € 8D. 1t is easy to check that ¥ is symplectic

and extends ¢g. O
Proposition 4.2.9. C()\) is not complete.

Proof. Choose > A and let
BE(y,a) = {2} + (y1 Fa)’ + 23 + 45 <4’}

where 0 < @ < y is chosen so that the interior of DB(y,a) = B (y,a} U

B~(p,a) is connected and contained in C(}). See Figure 4.2.10. Suppose

B*(p,a) = Imjff. By the Symplectic Camel (4.2.1), jf are not symplecti-

cally isotopic.

FIGURE 4.2.10. DB{(u,a) C C(A)

Suppose C(\) is complete. Then since DB(y, a) is star convex, Lemma
4.2.8 implies there exists an embedding ¢ of R* into C'(}) so that DB(u,a) C
Img. However since g7' o ]ff are symplectically isofopic this then implies

that Jﬁ‘ must be in the same path component. # O
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There is no known example of a symplectic embedding g: B(r) — C(X)
which does not, have a symplectic extension to ¢': B(r+A) — C(X). However,
there do exist embeddings of star convex regions which do not have symplectic

X" extensions.

Lemma 4.2.11. There exist symplectic embeddings of convex regions I)
into C(A} which do not extend to symplectic embeddings of E(D,)\) :=

U.epB(z, \), where B(z,A) is the closed ball of radius A centered at z.

Proof. Choose s > A and let B¥(y,a) = Imji¥ and DB{y,a) be as in the
proof of Proposition 4.2.9. Suppose there exists a symplectic embedding
g: E(D,)\) — C(A). By Proposition 4.1.1, it is possible to construct a region
Q so that ¢g(E) C IntQ, choose J € Jq so that J = g«Jo on ImE, and
construct the filling F(J). By the Extension Lemma (3.1.4), it follows that
F(J)NnIm jf = ). However by Proposition 3.3.4, this would then imply that
Im jﬁ‘ are both contained in a region which is symplectically equivalent to

R* and thus j§ are symplectically isotopic. # O

The completeness of R®™ was used in proving that k symplectic em-
beddings of balls could be isotoped to standard positions. Although C(})
is no longer complete, the Extendable Embeddings can be used to prove a

similar result.

Lemma 4.2.12. Suppose g,h: 1I¥_, B(r;} — C(A) are symplectic embed-
dings which have symplectic extensions g',h': %, B(r; + A) — C(X). If
[9lBero) = [RlBro] € o (E(ri,C(N))), 3 = 1,...,k, then there exists a sym-

plectic isotopy ¥, of C()) so that 11 0 gip(r,) = hB(r)-
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Proof. Suppose {g|g(,,)] = [hlp(ro)] = fir.], s = s(i) € {+, -}, then it suffices
to construct a symplectic isotopy ¥y of C(X) so that ¥1 0 glp(r) = 5,

By Proposition 4.1.1, it is possible to choose £ so that Img¢g' C Q,
choose J € Jg so that J = (¢').Jp on Img' and construct a filling F(J).
By the Extension Lemma, (3.1.4), F(J) does not intersect Img. Proposition
3.3.4 implies that each g; lies in a region H~ or H+ which is symplectically
equivalent to R*. Thus it is possible to apply Lemma 4.2.5 and construct a
symplectic isotopy ¢,: U5, B(r;) — C’()\) so that wolp(r) = 9 Y1lBE) =
Jr; Where j,, are disjoint, standard inciusions of a ball of radius r; into H*.
By the symplectic isotopy extension theorem, @, extends to an isotopy, 3¢, of
C(A). Since j,, are inclusions, it is easy to construct an isotopy b, of C(A),

t €11,2] so that 9 0 j,, = i O

The Symplectic Camel says my(£(r, C())) has more than one element
when r > A. Next an example is given to show how fillings can be used to
study, to some extent, higher homotopy groups of &(r,C(A)). Let
71 (E(r,C(A)), +) be the fundamental group of £(r, C())) with basepoint it
Notice that for all r, elements of 71 {€(r + A, C(})),+) induce a subgroup &
of m1 (E(r, C(N), +)) by restriction.

Proposition 4.2.13. G ~ Z.

Proof. Assume the symplectic diffeomorphism ¢ : R* - {y1 > 0} is chosen
so that i} is an inclusion. Let Sp(4) be the symplectic linear group of R*. If
M € Sp(4), M, := it o M|p(, € £(r,C())) has an extension to M,,. Thus

it is easy to see that Z = m (Sp(4),+) C G.
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Suppose a € w1 (E(r,{y1 > 0}),+). Then a can be homotoped to a _ '
loop @ € m (E(r, {yx > 0}), +) such that a?(0) =} (0). As described in the
introduction, there is an isotopy of {y; > 0} which takes each embedding o

to the linear map da?(0). Thus it is easy to see that «° is homotopic to a

loop of linear embeddings and so m (E(r, {y1 > 0}),+) C Z. 1
Suppose € G. Choose §) so that Im~y, C ‘Int Q. It follows that i

there exists J € m(Ja) and a corresponding loop of fillings F(J;) such that

F(J) N Im~, = B, for all t. By Proposition 3.3.4, it follows that there exists

a homotopy between v and 3 € Trl(E(r, {y > 0}),+) and thus G CZ. O

4.3 C Spaces and the Mapping Problem

Recall that the space U()) introduced at the beginning of the chapter
is symplectically equivalent to R*. Since all symplectic embeddings of a ball
of radius 7 into R* are symplectically isotopic, the Symplectic Camel (4.2.1)
implies:

Theorem 4.3.1. For all A\, C(\) is not symplectically equivalent to R*.

Now the effect of changing the radius of the hole is investigated. First
notice that C()) and C(y} are equivalent with respect to volume preserving

diffeomorphisms since

poo Aopm
B(71, 91,22, Y2) = (Xxl,Fyl’sz’;\-y2>

is a volume preserving diffeomorphism of R* which sends C()) to C(u).

However,
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Theorem 4.3.2 (IMT}). C()\) is symplectomorphic to C‘_(,Lt) if and only if '

A=p.

Proof. Suppose ¥: C(A) — C() is a symplectomorphism with A < g, and r
is chosen so that A < r < p. By the Symplectic Camel (4.2.1), the embed-
dings i¥ are not symplectically isotopic and thus i 03 are not symplectically
isotopic. However since 1 o i have ¢ o iﬂ_ . as extensions to the ball of ra-
dius r 4+ p, the Extendable Emi)eddings (4.2.6) implies that both ¥ o4} and
1 04 must be symplectically isotopic to either ¢} or ¢ in £(r, C(p)). How-
ever since r < g, this implies that ¢ o4} and ¢ o must be symplectically

isotopic. # O

The fact that changing the radius of the hole produces symplectically
different spaces makes these C spaces seem very “rigid”. However, as the
following theorem shows, the rigidity is only in the {23, y2)-directions. More

precisely, let m: R* — R? be the projection to the (z3, y2)-plane. For D C R?,

area D 1= ‘/ dzg A dyg
D

Theorem 4.3.3. Let G()\) C {y1 = 0} be an open region diffeomorphic to
H(A) such that

(1) aream{G()\)) = aream(H(N));

(2) for all p € #(G(N)), =~ 1(p) N G(X) is a connected subset of R.
Then C'(A) = {y1 < 0} U {y1 > 0} U G(N) is symplectically equivalent to
C(N).

Proof. It is possible to assume G(\) C {|z1| < 1} by the following argument.
Suppose F(A), the hole in C”(}), satisfles (1) and (2) but F(A) € {|z.] <
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1}. The results of Greene and Shiohama, [GS], imply there exists an area
preserving embedding, o, of the (7, y; )-plane into itself which takes {y; = 0}
to {|z1] < 1,51 = 0} and which preserves the sets {y; < 0} and {y; > 0}.
Then ¢ = a x id is a symplectomorphism of C"()) to a space C'()) whose
hole G(A) C {|z1| < 1,y; = 0} satisfies the hypotheses (1) and (2).

Furthermore, by (1), there exists an area preserving diffeomorphism 3
of the (72, y2)-plane such that fon(G(A)) = n(H(A)). Thus by applying the
symplectomorphism 1 = id x 8, it is possible to assume 7(G())) = m(H())).

To construct a symplectomorphism between C'()) and C(}), let v be
a vector field of the form

5}

vi= K

(91131
where & is a non-vanishing function which is identically 1 outside a compact

set. Let ¢, be its flow. Choose K < 0 and consider

®(z1,y1,22,92) = (K +t,y1, 2, Y2)

where (zy,y;,22,y2) is the image of the point (K, 1, z2,y2) under the map
¢¢. By conditions (1), (2), and the facts that G(A), H(A\) C {|z1]| < 1,y = 0}
and m(G(A)) = w(H(A)), it is possible to construct the function & so that &
takes G'(A) to H(A) and so that ® is the identity outside a compact subset
of R*. |

As in the proof of Lemma 3.3.6, a Moser argument is now applied to
modify ® so it is symplectic. It is easy to explicitly check that the fofms
wr = r®*wy + (1 — r)wp are non-degenerate on R* when 0 < < 1. Suppose

there exists a 1-form § which vanishes at all points of {y; = 0} and satisfies
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df = ®*wp ~ wp. Then if § has compact support, it follows that the vector
field v, defined by
(vpjwr + 8 =0

is integrable, and the standard Moser method argument then shows that the
integral h, of v, satisfles hjw, = wy. Since h, =4d on {y; == 0} the desired
symplectomorphism between C'()\) and C{A) is then given by & = ® 0 4.

Consider 8' = ®*(z1dy; + wadys) — (z1dyy + z3dys). Then, by con-
struction of @,

5’ = fdy

where f has compact support and thus 8 = 8’ — d(fy;) has all the desired

properties. [

In particular, if G(A) is any of the following sets

(1) {(2) + (%) + (by)? < X,y = 0} (Ellipsoid);
(2) {2} +y% < A% |21] <1,y = 0} (Bounded Cylinder);
(3)  {z3+4+y2 < A%,y; =0} (Infinite Cylinder);

then C'(A) = {y1 < 0}U{m > 0}UG(A) is symplectically equivalent to C(A).

See Figure 4.3.4.
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™
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A

FIGURE 4.3.4. Alternate possible hole shapes.

It is clear that condition (1) in the above theorem is necessary. It is

not clear whether or not condition (2) is necessary. For example:

Question 4.3.5. For A > 1, let G(\) be the “dumbbell”
G(A) =U{(z; £1)* + 22 + 42 < \%,y; = 0}.

See Figure 4.3.6. Then is D(A) := {y1 < 0} U {y1 > 0} U G(A) symplectically
equivalent to C(A)7

FIGurr 4.3.6.

Another natural question, suggested by Lalonde, is whether or not a

“thicker” hole would correspond to a different space. More precisely,




Question 4.3.7.

If

TN = {zf + a3 +y5 < N |ul <1},

51

is U(A) := {y1 < ~1} U {y1 > 1} UT(A) symplectically equivalent to C(A)?

F1GURE 4.3.8. U(1)
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Chapter 5

W Spaces

In Chapter 4, the space C(X) which is the union of the two half-spaces
{y1 < 0}, {yz1 > 0} and the open 3-ball H(A) = {2? + 2% + y5 < A?,yn = 0}
was examined. C()) can be thought of as a subset of R* having one wall
which has one hole. As natural generalizations, spaces with multiple one-

holed walls, W spaces, will now be investigated. Given A1,..., A\, € RT,
W(Al,)\g,...,)\n) = {y1 < 1}UH1 U{l <1 <2}U"'UHHU{R <y1}

where H; = {223 + 22 + y2 < A}y, =1}

Ficure 5.0. W(L1,2,3)

H;, i =1,...,n, will be referred to as the “holes” of W(A1,...,A;)

and the hyperplanes {y; = 1} which contain these holes will be referred to as

the “walls” of W(Aq,..., A,).
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5.1 Non-important Specifications

The placements of the walls and holes in these W spaces have been
described very precisely but in fact do not need to be specified. To mves-
_tigate different positions of the walls, given kv < ko < -+ < kq, consider
W(A1(k1),- .., Au(kn)) which is analogous to W(Ay, ..., A,) except its walls

are centered at y; = ki, ..., kn.

Lemma 5.1.1. W(A1,..., ) and W(Ai(k1),..., An(ks)) are symplecti-

cally equivalent.

Proof. Since ky < - - < ky, there exists a smooth, strictly increasing function
g(y1) with image (—co, o) so that g(y1) agrees with y; —4+4k; near {y1 =1},

i =1,...,n. Then define f(x,,11) = :r:l/-[%"; and consider

B(z1,y1,22,v2) = (f(21,91), 9(31), =2, y2)-

® is a symplectic diffeomorphism of R* which descends to a map between

W, An) and W(A(k1), -, Aa(ka)). O

In the definition of W(\y,..., As), it was specified that the holes are
“aligned” in the sense that all the open 3-balls, H;, have centers at the
same (Z;, Tg, Yz )-coordinates. To investigate the different centerings of the
holes, given {(a;, b;, ¢;)}¥, consider W(Ai(a1,b1,¢1)y.. -5 An(@n, b, ¢n)) which
is analogous to W{(Ay,..., A,) except its it* hole of radius A; in {y; =i} 1s

centered at (z1,Z2,y2) = (@i, by, ¢:)-
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Lemma 5.1.2. Forany {(a:, b;,c;)}¥, W(\i, ..., An) is symplectomorphic to
W(Al(ala bl) Cl)a ey )\n(ana bna Cn))'

Proof. Choose 0 < ¢ < 1/2 and let p; = pi(11), ¢ = 1,...,n be a family of
smooth functions so that p; is identically 1 near y; = ¢ and identically 0 for

lyp —t| > e. Then consider

lI;(xlaylaa"?:y?) =
n dpz' dpi n n
Ty + Z aipi + biay—yz - Cid—y—wz » Y1, T2+ Zbim, y2 ¥ Zciﬂi .
1 ! 1 1 1

T is a symplectic diffeomorphism of R* which descends to a map between

WA, ..., An) and W(Ai{a1, b1, ¢1)s- s An(an, buycn)). O

Thus the notation W(\;,...,A,) is well chosen since the relative po-
sitions of the holes and of the walls is unimportant.

Lastly, notice that in passing from the C spaces to the W spaces, there
has been a slight modification in the shape of the hole. This will prove to
be an easier shape to work with when applying the filling technique. In fact,
this space is the same as the analogous space with spherical holes. More
generally, if 7: R* — R? is the projection to the (22, y2)-plane, the following

is true.
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Theorem 5.1.3. Let G; C {y1 =t} be an open region diffeomorphic to H;
so that

(1) areaw(G;) = areaw(H;);

(2) 7 Yp)N G, is a connected subset of R for all p € 7(G).

Then
W‘(z\l,/\z,---,}\n) = {y1 <1}UG1U{1<y1 <2}U---UGnU{n<y1}

is symplectically equivalent to W(A, Ay, ..., An).

Proof. By Lemma 5.1.2, it is possible to assume that m(H;) N w(H;)=9=
7(G;) N 7(Gy), i # 7. Then by (1), there must exist an area preserving
diffeomorphism 8 of the (3, y;)-plane so that o (Gy) = n(Hi), i =1,...,n.
The remainder of the proof easily follows using the method in the proof of

Theorem 4.3.3. O

5.2 Varying the Radii of the Holes

To examine the effect of varying the radii of the holes, it will be impor-
tant to have analogues of the Symplectic Camel (4.2.1) and the Extendable
Embeddings (4.2.6) for the W spaces. Thus it is important to know that
8H; are fillable holes in terms of Definition 3.1.2. In particular, it must
be shown that these W spaces are symplectically convex. Recall that this
means there exists a sequence of regions {x and expanding vector fields ny

transverse to 9§ so that WAy, ..., \,) = Ulnt Q, 0H; C Oy for all 1, k.
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Recall also that to apply the filling result from Chapter 2, 9%, n¢ should be
“standard” near 8H;. By the definition of H;, this means {4 should be a
“solid cylinder” near H; (see (2.2.1)). The C(A) from the previous chapter
is star convex and since the radial vector field is expanding, it is easy to
prove the C spaces are symplectically convex. To show W(Ay,...,A,) has
fillable holes, exhausting regions £2; will be constructed by piecing together
handles and convex regions. The associated expanding vector field ng will be
constructed by piecing together expanding vector fields which are transverse

to the handle and convex bodies.
Proposition 5.2.1. 8H1,...,0H, are fillable holes of W(A1,..., An).

Proof. Assumé the hole H; of radius A, is contained in {y; = 0} and the hole
H, of radius A, is contained in {y; = 2}. It will be shown how it is possible
to construct x N {0 < y; < 2}. Analogous procedures can be applied to
construct the remaining portions of 2.

Given k > 0, let
2 2 1
H_Hk—{Q:cl-l—:nz-l—yz M |y1]<—k}

and let
%, + g + d
bz, | 2Bzy | Oy

It then follows that, with respect to vy, H satisfies condition (3) of (2.1.1).

Vhp = 2:131

For functions ki(y1), k2{y1), ks(y1), let

C=Ck {klwl (yy — 1)% + k3 + k3ys <1},

a e} a
+(y1 )ayl -I-Sfﬁz-{_)“m—2 + Y2

Ve =217 ay2

S}
-0z
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It is clear that the functions k; can be chosen so that {0 < y1 < 2} C
UxCr and so that H U C can be smoothed to a region 2 = (I on N =

{|y1 - 71;| < 5}, for some 6.

FigurEg 5.2.2.

In the following, an expanding vector field 7 is constructed which is trans-
verse to 00, agrees with v, on H\H NN, and agrees with v, on C\C N N.

It is easy to check that v, and vy are transverse to both 8C NN and
H NN and thus can be assumed to be transverse to 9Q; N A. Choose
a smooth function p = px(y1) so that p is identically 1 on H\H N N and
identically 0 on C\C N A. By definition of A, it is possible to choose p so
that 42 < 0.

Let x, be the symplectic gradient of p; i(x,)wo = dp and notice that
i(?.)h - Uc)wg == df
where f = x;(y1 — 1). It is easy to check that

k= pop + (1 =p)ve+ fXp
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is expanding. It remains to check that ny is transverse to 0Qx NN, Since v,
and vy are both transversal to both H and 9C, it suffices to check that fx,
is transverse (or tangent) to H and 9C. Where dp # 0 (and thus where x,
does not vanish), f has the form f = —y?z;. Then by the specifications on

P
2 -
Xp = — L —— ——— ==
pr i 1dy1 £ iy 3

Thus it follows that 5y 1s transverse to Q. [

Notice that W{A1,...,A,) has flat boundaries. (See Definition 3.3.1.)
As in Section 3.3, fix i*: R* — W\ U H;, for k = 0,1,...n, as symplectic
parameterizations of the remaining spaces where the numbering is chosen so
that Im:*~1 U Hy UTm* is connected, k = 1,...,n. Let E(r, W(A1,...,An))
denote the space of symplectic embeddings of a closed ball of radius r into
W(A1, ..., A,) and let if = i¥|gy € E(r, W(A,..., A,)) where B(r) is the
closed ball of radius r.

FIGURE 5.2.3.

Theorems 3.2.1 and 3.3.3 imply
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(5.2.4) Symplectic Camel for W Spaces. ¥ and it represent different

elements of mo{E(r, W(A1,...,An))) when r > min{Akt1, Aes2,-. ., Aet.
(5.2.5) Extendable Embeddings in W Spaces. Let g be an embedding
of the closed ball of radius r into W{Ay,..., ) which has an extension to
a symplectic embedding ¢' of the closed ball of radius r + max{Ay,...,A,}
into W(As,..., ). Then g is symplectically isotopic to i¥ for some k €
{0,...,n}.

These results can then be used to prove

Theorem 5.2.6. If W{\,...,\,) is symplectomorphic to W{uy,...,Hm)

then m = n and, more generally, for all r,
|{j: Aj < r}I = I{k: pr < r}|

Proof. Supposet: W(A1,...,An) = W(p1,. .., #m) is asymplectomorphism

and there exists an r such that

Ci= (i N e} # [{k: pe <} = v

Assume, without loss of generality, that £ > v. By the choice of r and
the above Symplectic Camel, (5.2.4), {ii};;o represent £ 4+ 1 distinct path
components of £(r, W(A1,.-.,A,)). Thus {0 ii}?zg represent £+ 1 distinct
path components in E(r, W(u1, ..., pin}). However for each j, ¢ o i) extends
to the symplectic embedding ¥ o if;+#max of the ball of radius 7 + pmax,
where imax = max{sn,. . ., fim}. Thus (5.2.5) and (5.2.4) imply {0},

represent at most v+ 1 distinct path components. Thus £+ 1 < v+ 1 which

is a contradiction. O
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Corollary 5.2.7. If A\ < -~ < Ap and 1 < -+ < fim, then W(A1,.. ., Ap)

is symplectomorphic to W (1, ..., um) if and only if n =m and A; = p;.

5.3 Symplectic Embedding Trees

In Corollary 5.2.7, it was specified that Ay < -+ < A,. Now the
equivalence question is examined without this condition. First notice that
via a symplectomorphism of the form ¥ = id x §, where 8(z2,yz) is a ro-
tation in the (zq,yz)-plane, W(A1,...,A) is symplectically equivalent to
W (A1) -1 Aa(m)) for o(1) =n,0(2) =n—1,... ,o(n) = 1. To investigate
other permutations of the holes, “embedding trees” will be associated to each
W space.

Let Amax = max{Ai,..., Ap}. By the Symplectic Camel, {ik ] and
[i‘f\mx], j # k, are distinct elements of mp (S()\max,l'V(Al,...,)\n))). More
generally, (5.2.4) implies that for any j and k, [a’i’] is contained in an m+1
element subset Iy; of 7o (S(Aj, W(A1,...,2,))) where m is the number of A
which are less than or equal to X;. Suppose {Ai,....Ax} = {f1,..., e}
where 1y < pz < -+ < p4. Then a d-level tree can be associated to
W(A1,...,An) by placing m + 1 vertices on the 2t level where m is the
number of ); which are less than or equal to pe. In other words, each vertex
corresponds to an element of I,,. A vertex corresponding to [iﬁl] €1, is

then connected to a vertex corresponding to [zfi , +1] €I, if

[iiz+1|B(M)} = [Zﬁt] )
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FIGURE 5.3.1. Trees associated to W(1,2,3), W(1,3,2) and W(2,1,3)

are given by (a), (b), (¢) respectively.

Two trees Ty, T) are isomorphic if there is a level-preserving bijection
between the vertices of Ty and those of T3 which preserves the connections
between the levels. If there exists a symplectomorphism ¢: W — W, then by
the above Extendable Embeddings (5.2.5), ¥ induces a bijection between the
vertices of the lowest levels of the trees. This in turn determines a bijection

between the other levels of the trees. Thus,

Theorem 5.3.2. If two W spaces are symplectomorphic then their associ-

ated trees must be isomorphic.

As an easy consequence, it is immediate that
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Corollary 5.3.3. Neither W(1,2,3) nor W(1,3,2) is symplectically equiva-
lent to W(2,1,3). More generally, if \; < --- < \, and o is a permutation of
{1,...,n} so that o(1) ¢ {1,n} then W(Al,...,Ay) and W (AJ(I), e Aa(n))

are not symplectically equivalent.

Notice that the trees associated to W(1,2,3) and W(1, 3,2) are isomor-
phic and thus Theorem 5.3.2 does not imply that these spaces are symplec-
tically different. However, the trees indicate that a symplectomorphism be-
tween W(1,2,3) and W(1, 3,2} would be “wﬂdly behaved” near the end. To
describe this more precisely, Im 1%, Im ¢ © W(Ay,..., A,) will be called adja-
cent if there exists a path a(t), t € [0,1] such that (0) € Im ¥, a(1) € Im ¥,
and a passes through precisely one hole. [i], [i£] C mo(E(r, W(A1,...,An)))
will be called edjacent if Imi* and Imi¢ are adjacent. Notice that if there
is a symplectomorphism 1 between W(1,2,3) and W(1,3,2) then it must
take adjacent isotopy classes of mg (5(3, W(1, 2,3))) to non-adjacent isotopy

classes in mo(£(3,W(1,3,2))). This implies, for example,

Lemma 5.3.4. If there exists a symplectomorphism ¢: W(1,2,3) —
W(1,3,2) then ¢(H,) is not contained in a compact set X C R* Fur-

thermore,

Y(Hy) N K° # {y; = constant} N L'°,

where K¢ is the complement of K.

Proof. Suppose there exists a symplectomorphism ¢: 1W(1,2,3) — W(1,3,2)

so that ¥(H,) is contained in the interior of a compact set K. Assume
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R — W(1,2,3)\ U H; and j*: R* — W(1,3,2)\ U H; where Im:° =

{y1 <1} =Imj° By the embedding trees, it is easy to check that
v (i8] = 3], v lia] = [55]

Then there must exist a symplectomorphism ¥': W(1,2,3) — W(1,3,2) so
that o'( Hy) = ¥(H,), ¥'0i) = j3, ¥ 01} = j§ where Imj§ C W(1,3,2)NK*,
Im ;3 C W(1,3,2) N K°. It follows that Im j§ and Im j§ must be in separate
components of W(1,3,2)\¢/(H,). Notice that there exists a path v: [0,1} —
W(1,2,3)\H; such that v(0) € Tm13, v(1) € Im¢3. It then follows that 1 oy
is a path such that v’ o 4(0) € Im 32, ' 0 4(1) € Im 33, and %' o v does not
cross ¢'( H,). However, this is a contradiction.

Next suppose {H,) agrees with {y; = c} on K°. Then it is possible

to construct a symplectomorphism ¥’ so that
P oif =73, ®'oiz=j;, ¢'(Hz)={y1=c}
However, it is easy to check that this is impossible for any ¢. O

This gives support to the following conjecture.

Conjecture 5.3.5. If [zﬁ] and [zf.] are adjacent isotopy classes in W and
w: W — W is a symplectomorphism, then [¢ 0 i¥] and [4 o1¢] are adjacent

isotopy classes in W.
If this conjecture is true, it would imply the following.

Conjecture 5.3.6. W()\,...)\,) is symplectomorphic to W{uy,...pn) if

and only if \; = p; or A\; = pn—; for all 4.
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Chapter 6

Z Spaces

In the previous chapter, spaces with multiple 1-holed walls, W spaces,
were investigated. In this chapter, spaces with 1 multi-holed wall, Z spaces,
are examined. The focus will be on spaces consisting of the two half spaces
{y1 < 0}, {z1 > 0} and two open 3-dimensional holes Hy, Hz in {y1 = 0}.

Notice that these Z spaces have a fundamental group equal to Z.

——
[\

F1GURE 6.0. Z(1,2)
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6.1 Notation for the Z Spaces

Although the relative positions of the holes in the W spaces were
unimportant, the question is more subtle when both holes are contained in
the hyperplane {y; = 0}.

Let 7: R* — R? be the projection of R* to the (z4,y2)-plane. Let
Hanow( A1, A2) be the set of all pairs (H,, Hy) such that

Hy= {223 +2 4+ 42 <)}, 4 =0},

Hy = {2(z1— )’ + (22 = 0)* + (12 — ) < A}, 1 =0},

where Hy N Hy = 0 and 8 (x(H,)) N 8(r(H.)) is not a one point set. See

Figure 6.1.1.

FIGURE 6.1.1. Forbidden projections of H, and Ha.
Then given A1, Az € (0,00), fix @ € [0, max], max := 7 min{A?, A3}, and let
Z% A, M) = {{yl <0}U {y1 > 0}UH, U Hz}

where (Hy, Hy) € Hattow(A1, X2) and area(n(H,) Nw(Hy)) = a.




Proposition 6.1.2. Any two elements of Z%(A1,Ag) are symplectically

equivalent.

Thus the notation Z*(A;, A2) will be used to denote any element of the cor-
responding set. Z°%(\;, ;) can be thought of as a space with compl’eté.ly'.x-. .

non-aligned holes. The notation Z(A1, A\2) without any superscript will de-

note the space Z™* (A1, A;) with completely aligned holes.

Proof. Fix Ay, Ag, & and as temporary notation let Z, Z' denote the elements
of Z%(\1,\z) with the holes Hy, Hy of Z centered at (0,0,0) and (a,b,c)
and the holes H{, H} of Z' centered at {0,0,0) and (a',b’,¢'). It is possible
to assume a,a’ > 0 by applying the symplectomorphism ¢(z1,y1,%2,y2) =
(~zy, ~y1,22,y2) if necessary.

To construct a symplectomorphism between Z and Z', first notice
that by the definition of (H;, H2) and (H], H}), the results of Greene and
Shichama [GS] can be used to construct an area preserving diffeomorphism
8 of the (z2,y2)-plane so that 8 o n{H;) = 7(H}), i =1,2. Then ¢y =8 X d
is a symplectomorphism of Z into R*,

If area (w(H;) N w{H,)) =0, it is possible to construct 8 so that it is
the identity on H, = H! and so that it is a translation between H, and Hj.
Thus, in fact, % is a symplectomorphism between Z and Z'.

Similarly, if 0 < area (w{H;)Nw(H2)) < max, by the symmetrical
shapes of the projections, it is possible to choose & to be a rotation of the
(z4,y2)-plane. Thus again, ¥; is a symplectomorphism between Z and 7z

If area (n(H,) N w{H,)) = maXx, then 1, will distort the shapes of the

holes. However notice that ;(H;) are still diffeomorphic to H;, and for all
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p € m(s1(H:)), #~1(p) N 1 (H;) is connected. Thus since aa’ > 0, using the
proof of Theorem 4.3.3, it is possible to construct a symplectomorphism

of R* which takes ¥1(Z) to Z'. [

In addition, the following theorem shows that the actual shape of the

holes is often not important. The proof is similar to the above proof.

Theorem 6.1.3. Let G; C {y; = 0} be an open region diffeomorphic to H;
such that

(1) GinGy =¥

(2) there exists a diffeomorphism 8 of R® such that 8 o 7(G;) = Hi,

1 =1,2;

(3) area (m{G1)N7(Gy)) = a and arean(G;) = arean(H;),1=1,2;

(4) for eachi, m~Y(p) NG, is a connected subset of R for all p € 7(G}).
Then

Z% A1, A2) = {y1 < 0}U {y1 > 0} UG1 UG

is symplectically equivalent to Z%(Aq, A2).

6.2 Changing the Overlapping Parameter

For this section, A1, Ay are fixed and the notation Z% is used while
the dependence on the overlapping parameter « is investigated. This over-
lapping parameter is closely tied to symplectic boundary behavior in the

following way. Any hypersurface £ has an invariant foliation, the character-

istic foliation, associated to it. To define this foliation, choose any smooth,




non-vanishing vector field ¢, £(p) € kerwg|g(,). The integral curves cjf-ﬁ'n

such vector field form the characteristic foliation of ¥. Lx(p) will denot;e:' f_he_

leaf of the characteristic foliation through p. _
The boundary of Z% consists of the hyperplane {y; = 0} = R? minﬁé.:_'
two 3-balls, Hy, and the lines {(¢,0,¢,d),t € R} make up the characteristic.
folia.tio'n of {y1 = 0}. D4 will denote the discs on the boundaries of the
holes which are connected by the characteristic foliation of {y1 = 0}. More
precisely, by Proposition 6.1.2, it is possible to assume that the holes Hy, Ha,

denoted in the following by Hx, are centered at x; = t+a. Then let

D.=x"Yx(H)nw(Hy))N(OH-_N {z; = —a})

D.|_ = Tr_l(w (‘I'f__) N W(F.i_)) M (6H+ N {Il S a})

which implies

o = arean{D_) = arean(D4}.

See Figure 6.2.1. Notice that
D_={pedH_n{z; > ~a}: Liy,=0}(p) N IH,; # B}

Assume ¢ is chosen so that if p € D_, hy(p) € D, where h; is the flow of &.
Then let T C 8Z® be the portion of the boundary which contains the portion

of the characteristic flow which connects D € OH_ and Dy C 0Hy. In

other words,

T ={h(p): pe D_,t €[0,1]}. |




FIGURE 6.2.1.

Lemma 6.2.2. For a > f, there does not exist a symplectornorphism of
Z*UT into R* which sends Z to Z? and Dy C T into 8H!, where H) are

the holes of Z¥.

Proof. Suppose a > 3 and there exists a symplectomorphism ¢ : Z°UT — R*
so that 9(Z2%) = Z#,¢(D4) C H!.. If pand q are on the same characteristic
line in T, i.e. ¢ =p+(a,0,0,0), it is easy to check that 1(p) and ¥(q¢) must
be on the same characteristic line in (7). Since ¥(7T") C {y1 = 0}, this
implies that ¥(q) = ¥(p) + (5,0,0,0). Thus n(x»(D4)) = w(¥(D..)) and

f dCCQ A dyg = / Wy = / Wy = / d.”L'g /\dyg.
(Dt} Dy ¥{Dz) m(¥{ D))

However it then follows that

a = area (r((D_Y) N 1(p(D4))) < area (fr (?f“’_ ) N (TI‘;)) -y
which is a contradiction. [l

Thus the open sets Z%, Z# augmented with certain pieces of the

boundary become symplectically non-equivalent. It is still unknown whether




or not 2% and Z? are symplectically equivalent. However Z< and VA aﬁgf

mented with “less” of the boundary are still non-equivalent. In fact, the
obstruction formed by the characteristic flow on T' C {y1 = 0} can be “mea,;.:'
sured” by including other portions of the boundary. This can be shown
by using very recent results of Eliashberg and Hofer, namely their energy-
capacity inequality [EH1], [EH2]. To explain their result, it is necessary to
first introduce the following notions. For convenience, these notions will be
defined in the 4-dimensional case. Analogous definitions and results hold for
higher dimensions.

A hypersurface X C R* is said to be asymptotically flat if it 1s diffeo-

morphic to R* and there exists a compact subset K of R?* so that Z\K =

{y1 = O\K. Let D be the group of compactly supported symplectomor-
phisms of R*. Then the energy or symplectic width of ¥, e(%), is defined as
follows:

e(X) = ixéi;){2a(c+ —¢ ) Y(E) C{yr =0}V {z1 € (—a,a), y1 € (c"',c"')}}.

- ’;\ ' ;"f“\\
w""f (\'\ ;

FIGURE 6.2.3.
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Also for such asymptotically flat hypersurfaces, it is possible to intro-

duce the following notion of helonomy. For a > 0, let
Ff={o; =40,y =0} C T

For p € F, let Ly(p) be the leaf through p associated to the characteristic
foliation of . Then let Uz = {p : Lg(p) N Fi # B}.. The holonomy map
ox: Ug — R? is defined by ¢x(p) = Lg(p) N F. One can verify that
Us < R? is open and dense and that ¢y is area preserving and equal to the
identity outside a compact set.

See [EH1|, [EH2] for a higher dimensional analogue of the following

result.

(6.2.4) Energy-Capacity Inequality (Eliashberg — Hofer). Let X be
an asymptotically fat hypersurface in R* with holonomy ¢x: Us — R? and

energy e(T). If @ C R? is an open domain with @ C Uy and
arca{l > e{X)

then
ps ()N #0D.

Returning to the Z spaces, applying the above result gives some un-

derstanding of the effect of changing the overlapping parameter.




Theorem 6.2.5. Let S C 0Z° be diffeomorphic to a 2-sphere and assume
Dy are contained in the bounded component of 3Z%\S. Let Ny be neigh.b'qg-
hoods of Dy. in 3Z®. For « > j3, there does not exist a symplectomorphism
of Z* U N4 into R* which extends continuously to S and sends Z¢ to Z#

and Dy into OH4.

Proof. Suppose a > § and there exists a symplectomorphism ¥ of Z% U Ny
into R* which is defined and continuous on S and such that ¥(Z*) = Z% and
P(Dy) C OHY.

There exists a sequence of hypersurfaces T} in the domain of ¥ so that
SUNy CT;, lim; T; = {y; = 0}, and so that forallpe D_, Li(p)N Dy #
where £;(p) is the leaf through p of the characteristic flow associated to Tj;.
The following procedure can be used to construct such a sequence of Tj.
Using the method in the proof of Theorem 4.3.3, it is easy to check that
there exists a symplectomorphism g of R* such that g preserves {y; = 0},
9(D+) C {zy = Fa}, and n(g(Dy)) = 7(D). Let D = n(Dy) ==(D_) C
R? and construct 7: to be of the form T = {y1 = hi(z1,z2,y2)} where h; > 0,
hil(—a,ayxp = fi(z1), fi(—a) =0 = fi(a), and hils = 0. ’ﬁ then contains S
and agrees with {y; = 0} near g(D1). In addition, on {{(~a,a) x D}, the
characteristic flow of ﬁ, ﬁ;, can be parameterized so that

d~; J dfy 0
Zhi = .
¢ 6:31 + d:l?l 6y1

dt

Since f(a) = f(—a) =0, it follows that for all p € g(D_), L;(p)Ng(Dy) # .

(In fact, the holonomy map restricted to g(D_) is the identity.) In this way,

T; can be constructed so that T} := g_l(ﬁ-) will have the desired properties.
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Let T} = 1(T}). The characteristic flow on T can be parameterized

so that it is given by (hi)’ =t ohioy ™! where hi is the characteristic flow

on T;. Then points originating from ¢ (D_) arrive at (D) at ¢t = 1. Let

() = { (b)) (¢): p € ¥(D-), t€ [0, 1]}

To study the relative positions of ¥(D_) and ¥(D4), (T})¢ will be extended
to an asymptotically flat hypersurface, ¥;, whose holonomy can be studied
via the energy-capacity inequality.

Let T? denote the closure of the bounded component of T;\S and
then let (7%) = (T?) C T!. Then lim; (T})' < 82° U y(Hy). To sece
this, it is first easy to check that, since 1 is defined and continuous on the
2-dimensional sphere S and ¥(S) C (Tf’)', (T}’)’ converge. Suppose there
exists p € lim; (Ti”)’, p¢ 0Z°P Up(Hy). Thus p € Z8 and it follows that for
g:= %" (p), ¢ € Z%, q ¢ Hy. However it is easy to check that since v is a
diffeomorphism between Z% and Z%, ¢ must be in lim; TP and thus there is

?

a contradiction.

Since lim; (7%)" € 0Zf U y(Hy), it follows that lim; (T¢) C {y; =
0}. Thus (Tf¥) can be extended to an asymptotically flat hypersurface ¥,
lim; ¥; € {y; = 0}. In addition, since ¢ must send Ny N3Z* into {y; = 0},
it is possible to assume that the characteristic flow of ¥;, htz‘, satisfies for
p € Y(D-), hi¥(p) = (ki)' (p) when t € [0,1] and (k" (p)) has only a 52
component when t ¢ [0,1]. Let Q) = n(x»(D4)). As in the proof of Lemma

6.2.2,

a = arean(Di) = arean(y(Dy)) = area Q.




T4

By construction of ¥;, . = 0 C Us;; and the holonomy map ¢y, satisfies
er,(QL) = ¥, . Since lim; &; = {y1 =0}, e(Z;) — 0. It is easy to check that
¢s;]o,, does not depend on ¢ and thus (6.2.4) implies that ¢y, |or must be

the identity. Since
QN9 = (D) Nr(p(Dy) < v (Hy ) (),
it then follows tha.tl
a = area(}’ < area (Tl' (F;) ok (F;)) = area (m (H])N=(HY))) = B.

However a > . This contradiction completes our proof. [

Remark 6.2.6. This result is still in a preliminary stage. The hypothesis
requiring the extension to S seems to be ﬁecessary to apply the Energy-
Capacity Theorem for it is this condition which guarantees the “thinness”
of the image hypersurfaces. However, the hypothesis that neighborhoods of
Dy mﬁst be contained in the domain of the symplectic map can perhaps be
weakened or even eliminated.

Although these statements do not imply that Z* and Z# are symplec-

tically non-equivalent when a # 8, they give support to the following

Conjecture 6.2.7. Z%(Ay1, \;) is symplectically equivalent to Z#(\y, Ag) iff
a=f.
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6.3 Changing the Radii of the Holes

In this section, the effect of changing the radii of the holes in the com-
pletely aligned spaces, Z(A;, Az), is investigated. As before, analogues of the
symplectic camel and extendable embeddings results will be used to investi-
gate this question. To apply the theorems from Chapter 3, it is necessary to
construct a sequence of regions 0y, and expanding vector fields n; so that
Z%(A1,A2) = Ulnt Q, n is transverse to 9, and OQ, ni are standard
near 0H;.

Proposition 6.3.1, 8H,,0H, are fillable holes of Z( Ay, Az).

Proof. It is possible to assume the holes Hy of Z%(A.., A} ) are centered at
(21,%2,y2) = (~a,0,0) and {(a,0,0), @ > 2max{A_, A, }. In the following,
regions (U are constructed whose interiors exhaust Z(A_,A£)N{y1 = 0}. An
analogous procedure can be applied to construct regions €2} whose interiors
exhaust Z(A_, A+) N {y1 <0} and which smoothly patch together with (.

Given k& > 0, let

1
Hi:Hf:{Q(IJZ{ZG)2+$%+y%S/\?t, |y1|<?c-}
and let v, be the vector field on H* U H™ satisfying

d ad d
vp|nt = 2(z1 T a) 5o + z2 B2s + 0’

Let AT be a convex neighborhood of HE M {yl = %} Let C = Cx C {y1 > 0}

be a region such that CN{y; = £} C NE (2 :Fa)“ai_l is transverse or tangent
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to OC|ar¢, and (y1 — k)g% is transverse or tangent to 9C|{|,,|<1}- In addition,

if

d 0 17, 1%,
:t - ————— —
Ve —(1121 :Fa‘)awl +(y1 k)ayl +$2a$2 +y26y27

it is possible to construct € so that v} is transverse to 8C N {$1 > —% , U,

is transverse to 8C N {z1 < 11, and so that UxCr = {y1 > 0}.

FIGURE 6.3.2.

As a first step, it is shown that there exists an expanding vector field v, on
C which is transverse to 8C and so that on C 0 {z; > +}, ve = vf and on
CN{z < —%},ve=v;.
Let p = p(z1) be a decreasing function which is identically 1 when
71 < —% and identically 0 when z; > % Let x, satisfy i(x,)wo = dp. Notice
that
(v~ ~ v we = df

where f = 2a(y; — k). Then it is easy to check that

ve = pv; + (1= pv} + fx,




7T

is expanding. It remains to check that v, is transverse to C. Since v~ and
vT are both transversal to both CN {|z1| < +}, it suffices to check that fx,

is transverse (or tangent) to 8C N {|z1| < +}. By the specifications on p,

dp 5 2 8
=2 -k -] =4 — k)—
pr a(yl ) ( dml) B (?}1 k)ayl

and thus it follows that v, is transverse to 8C.

HTUC can be smoothed to a region £ = 2 on N'*. Next an expanding
vector fleld n is constructed which agrees with vy, on ’H:’:\('HﬁE n Ni) and
with v, on C\(C N N'¥). |

Since C N {y; = +} C N'E, by shrinking Ay if necessary, there exists
p" = p*(y1), a smooth, decreasing function, such that p* equals 1 on H\(HN
N'*) and which equals 0 on C\(CNA*). Let x4 satisfy i(x,» )wo = dp* and

let f be a function which agrees with (z; F a)(y; — k) on N'%. Then

me = p"op + (1= pMv, + fx

is expanding. Furthermore, since on N¥,

dpt o

ad
— &2 —_
dyy Oz, =6z Fa)

pr" :(:Eq:a')(yl _k) 89:1

it is easy to see that ¢ will be transverse to Q. O

Remark 6.9.8. Using the Lemma 6.4.3 from the next section, it is easy
to prove that OH; are fillable holes in the completely non-aligned space
Z%( A1, A2). It is easy to check that Z%()A;, A2) is symplectically convex for
0 < @ < max by using the method in the above proof except choosing the

vector fields vy, vE to vanish when z, = ¢, where (c,0) € w(Hy) N w(Hy).




However this procedure does not construct 7 which is stan&éir ized near the
holes. (See condition (3') from Definition 3.1.1.) Thus the"f§110W1ng.-reéﬁ1ts
do apply to Z° but not yet to Z%, 0 < o < max. .

Let i%¥: R* - Z(A1,A2) N {y1 € R¥} be symplectic diﬁ'é_tjmor hisms

and let iF = ii|B(r). Theorems 3.2.1 and 3.3.3 then imply

(6.3.4) Symplectic Camel for Z spaces. If r > rnax{)q,)\g},:ij"

and 1%

are not symplectically isotopic.

(6.3.5) Extendable Embeddings into Z spaces. Let g be an embeddmg
of the closed ball of radius r into Z(A1,A2) which has an extension to a

symplectic embedding
g': B(r + max{Ai, A\2}) = Z(A1, Aa2).

Then g¢ is symplectically isotopic to 1} or i,

Theorem 6.3.6. If {A\;,\y} # {g1, 12}, then Z(A;, ;) is not symplecto-

morphic to Z( 1, Ha).

Proof. Let Amin = min{A;, A2}, fmin = min{p1, 2} Amax = max{As, Az},
fimax = max{p1, o). |
First consider the case where Amin # fmin. SUppose there exists a
symplectomorphism ¥: Z(A1,A2) — Z(,u;,m) with Amin > fmin. There
exists a non-trivial loop =, 0 # [v] € m1(Z(A1, A2)) = Z, so that there exists
an inclusion of a ball of radius r, fimin < 7 < Amin around each point of . Let

T(~) be the union of all these balls and consider ¥(7'(v)) C Z(p1,42)- By

Proposition 6.3.1, there exists an Q, ¥(T'(v)) C IntQ and J € Jq satistying




J = ¥«(Jo) on Im4(T(¥)). By Lemma 3.1.4, it follows that F(J)ﬂgb(»y) =

where F(J) is the filling of the sphere of radius pimi,. However since F (J ):'

13 diffeomorphic to a closed 3 dimensional ball, this contradicts the fact that

07 [b(n)} € m(Z(p1, p2)).

Next consider the case where Ay, = fimin. SUppose ¥: Z(A1, Aa) —
Z(pa,142) 18 a symplectomorphism with Apax < Hmax - Choose Apax < 7 <
fmax- By (6.3.4), i¥: B(r) — Z%(\1, A2) are non-isotopic and thus ¢ (i¥)
must also be non-isotopic. However, 1(:F) have ¢(3r+p .) as extensions to
ball of radius 7 + pmax. (6.3.5) then implies that ¢(i£) must be isotopic to

i B(r) — Zﬁ(,ul,,ug) and thus to each other since r < pmax. # O

6.4 A Modified Completely Non-Aligned Space

Next, the completely non-aligned space Z°%(\,, \2) will be slightly mod-
ifled by introducing a “partition wall” of the form {z; = a/2} in the half space

{11 > 0}. More precisely, given A1, Az € (0,00) and a > 2max{A;, Az}, let
PU(Al,)\g) = {yl < O} U {yl > 0,21 > CL/Q} U {y1 >0, < (1./2} UH,UH,

where

Hy={22f+a3+y; <X, w1 =0},

Hy = {2(zy —a)? +(z2 = 0)* + (y2 —¢)* < A\, wn =0}.

See Figure 6.4.1.




FIGURE 6.4.1. P°(1,2)

By the proof of Proposition 6.1.2, this is a symplectically well-defined space.
Notice that, in contrast to Z°%( Ay, Az2), P(A1, A2) has a trivial fundamental

group.
Theorem 6.4.2. P°(\, \;) is symplectically equivalent to W{Ay1, Az).

Recall W(Ay, A;) was explored in Chapter 5. This theorem can be

easily proven using the following lemma.

Lemma 6.4.3. Assumeb > A;+X;. Choose e such that b—(A1+Xx2) > 2e > 0

and let
I-'L'1|<A1-f—€, —e<y1<0

lza| < AL+ € Jyz| < AL +e

|CE1—G|</\2+6, -£<y1<0
B =
|.’L‘2“b|<A2+6, [y2|</\2+e

Then there exists a symplectic diffeomorphism

U {y; <0} — {1 <y <0} so that

lIJlAzzd \I‘|B=(—$1+a,—1”yla$2792)'
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FIGUuRE 6.4.4.

Remark 6.4.5. Notice that the hypothesis b > A, -+ A2 implies that = (Z) N

’H‘(B) = .

Proof. There exists a symplectic diffeomorphism Yo: {yx < 0} — {~1 <
vy < 0} so that Yol{y>—¢} = id. Thus ¥o(A) = A, 1o( B) = B.

Let pr: R* — R? be the projection of R* to the (z1,y1)-plane. pr(A4)
and pr(B) are joined by the 2-cell ¢ = M+e<a <a—-Ay—¢ - <
y1 < 0}. See Figure 6.4.6. It is impossible to construct an area preserving
diffeomorphism g of the 2-dimensional region {—1 < y; < 0} which fixes
pr{A) and takes pr(B) into {—1 < 41 < —1 + ¢} for ¢ would necessarily take

the cell ¢' which has finite area to a region with infinite area.




FIGURE 6.4.86.

|z2| < A1 + €, A = A(y;). Then consider

LAY ah
f(yl’xZ) a /0 (5 53—) (s,z2) o

and let ¢1: {~1 <y, <0} — {—1 <y < 0} be given by

¢1($1,y1,$2,y2) = ($1 _h(yla'r?)) Y1, T2, Y2+ ihm— —

oh  Of
83?2 awg '

It is easy to check that ¢, is symplectic. Moreover, for |zy — bl < Az e, 1y is

the identity and for {za| < Ay +¢€, ¥1(z1,91,%2,¥2) = (¥1 — b, 41, %3, 92). The

above function A can be constructed so that pro;(4)Npro ¥1(B) = 0 and

so that the region C' C {—€ < y;} in the (2,3 )-plane bounded by proty(A)

and pr oty (B) has infinite area.
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Applying the results of Greene and Shiohama [GS], there exists an
area preserving diffeomorphism g such that g|,r(y, 8y = (=21 +a,—1 —v1),
9lpr(wiayy = (1 + h(b,y1),y1), for h as constructed above. 1, = g X id is a

symplectic diffeomorphism.

U = thy 09y 0y is the desired symplectomorphism. O

Remark 6.4.7. Notice that the hypothesis & > A; + A,, or more generally that
o (_/-I) N (_E) =}, is crucial to the definition of 1; in the above proof. If an
attempt is made to apply the above proof to that case m (A)Nx (B) # @, there
is an “area obstruction” as described prior to the construction of ¥;. The
author believes that this obstacle is extremely difficult to avoid. Yet at this
point in time, there appears to be no known invariants which could be used
to measure this “obstruction”. Notice that if there is no obstruction and an
analogue of Lemma 6.4.3 holds when 7 (A) N7 (B) # B, this, together with
the proof of Theorem 6.4.2, would imply that Z%(A;, A2) is sywplectically
equivalent to W(A;, A7) and thus to Z8(Aq, Ay) for all «,3. (Compare to

Section 6.2.)

Proof of Theorem 6.4.2. By the proof of Proposition 6.1.2, it is possible to

assume the holes Hy, Hy of P°(A(, \y) have centers at (z1, 2, y2) coordinates

(0,0,0) and (a, b,0) where b > A; + Ay and «a is chosen large enough so that

for A and B from the previous lemma, AN{z; = a/2} =0 = BN {x; = a/2}.




Then let A*, B* be extension of 4, B in {yy > 0}:

2l <A 4+e  0< iy <e
At =
|zo] <X 4e y2|l <AL te
|21 —al < As + ¢, 0<y; <e¢
Bt =

lﬂ?zw—b|<Ag+€, ,y2|</\2+€

Let ¥: {y1 < 0} — {~1 < y1 < 0} be the symplectomorphism
given by Lemma 6.4.3. It is easy to check that there exists a symplectic
diffeomorphism ¥° of {z; > a/2,y; > 0} U B* into {y; < —1} such that
PO ({z1 > a/2,41 > 0}) = {y1 < ~1} and ¥°|g+ = (=214, —1—y1,Z2,¥2)-
Similarly, there exists a symplectomorphism ¥2 of {z; < a/2,y; > 0} U A*
into {y; > 0} so that ¥2({z; < a/2,y1 > 0}) = {y1 > 0} and ¥|4+ = id.
Thus there exists a symplectomorphism ¥ defined by

¥, on {z;>a/2,y; >0 UBT
=< ¥' on {y1<0}UAUB
¥? on {z; <af2,y1 >0} UAT.

¥ descends to define a symplectic map between P°(A;, Az) and W(lg, A1)

which is symplectomorphic to W(A;, Ag). O
Coroliary 6.4.8. P\, ;) is symplectomorphic to P°(Aq, Ay).

For later comparisons, it will also be interesting to consider
RO(Ay, A2) = T(P°(A1, A2))
where T is a reflection in {y; = 0}:

T(r1,1,%2,y2) = (21, —¥1, T2, Y2)-
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FIGURE 6.4.9. R%(1,2) vs. P°(1,2)

Corollary 6.4.10. R°()\j, \3) is symplectomorphic to P21, A2).

Proof. Notice that via a rotation in the (21,1 )-plane, R°(A;, A2) is symplec-
tically equivalent to P%(Ay, A1) which, by Corollary 6.4.8, is symplectomor-
phic to PP(A1,A,). O

6.5 Multi-holed Z Spaces

'T'wo natural choices for generalizing the two holed space Z (A1, Ag) are
introduced in this section. Neither of these generalizations has been explored
to any large degree. However, these generalizations do raise somé interesting
new questions.

The first generalization of Z{\, Az) is to increase the number of holes

in the wall, keeping them all aligned. Given A;,..., A, € R*, let

FA, oo A) ={ya<0}U{yy >0}UH, U-.-UH,
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where Hi = {2(z1 —na)? + 2 + 42 < A%, y; = 0}, a > max{\;}. Note that e

the fundamental group of F(),,... An) is the free product of n copies of Z.

FIGURE 6.5.1. F(1,2,3)

It is easy to prove that OH; are fillable holes and thus there are the
natural analogues of the symplectic camel and extendable embeddings results

for these F' spaces. The arguments in the proof of Theorem 6.3.6 can be used

to prove

Theorem 6.5.2. If F(A(,...,)\,) is symplectomorphic to Fluy, .o pum) !

then n = m and for all v,

I{j: A < r}l = |{k i < r}|

By a symplectomorphism of the form é x id where 8 is a rotation in

the (21, y1)-plane, it is easy to see that F(1,2,3) is symplectically equivalent

to F'(3,2,1).




Question 6.5.3. Is F(1,2,3) symplectically equivalent to either F(2,1,3) gt

or F(1,3,2)?

In Chapter 5, the embedding trees were useful for distinguishing different
orderings of holes in the W spaces. It is easy to check that these embedding
trees give no insight to an answer for Question 6.5.3.

An alternate generalization to the Z{A1,A2) space is to consider a
multi-holed space with fundamental group Z. More precisely, let (r,8) be

polar coordinates on the (z),y; )-plane and define
‘ 2 2T

Z(A1y. 0 hn) = {D<t9<—n—}u---u{(m—l)—<f9<27r}uH1--»UH,1
n

where H; = {(r —7ro)% + 2% + y: < A\, 8= i%”}, ro > max{A;}. See Figure

6.5.4.

/

FIGURE 6.5.4. Z(1,2,3)

Using the proof of Proposition 6.3.1, it is easy to see that OH; are
fillable holes. Z(Aq,...,),) does not quite have flat boundaries according to
Definition 3.3.1. However the statement and proof of Proposition 3.3.4 can

easily be modified for these spaces. In this case, the fillings F* of H; can be

87
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g-perturbed to fit together with W' {9 = z%}} to form a 3 dimensional
manifold @' so that there is a symplectomorphism ¥ of R* which takes Q°
to {6 = z%;}r} The proof follows much as before. The following few points
should be noted. The “parameterized family of fillings” mentioned in the

| paragraph preceding Lemma 3.3.5 can be replaced in the following manner.
Consider the holomorphic map ¢: Rx (R/(27Z)) xR? — R2\{0} x R? defined
by |

¢($Iyy13223y2) = (611 cos Y, e Sinyls T2, yZ)’

Define T(v) = ¢(C(v)) where C(y) = {2? + 22 + ¢ < v*}. It is easy to check
that 9C(y) is Jo-convex. Then since ¢ is holomorphic, 9T () is Jy-convex,
Using the terminology of Section 2.1, T(A\) = {¢ < 1} can play the role of Q

and given £ > 0, define
Jn“—“{JEJ:J:Joon{cp>1~s}}.

Using the method of Chapter 2, it is easy to prove that $(v, s) 1= T(y)N{§ =
s} is a fillable for any J € Jq. Furthermore, as before, the fillings F* and 5
are disjoint when s # ¢. The map ¢ described preceding Lemma 3.3.5 should
be modified as follows. Choose § > 0 sufficiently small so that the plane
{r = 6,0 = s} is a symplectic leaf in Q*, for all s. Notice that for all points
(ro,t,%2,yz) with ry < 6, & will be the identity. Thus @ is a well-defined
map on R*.

Thus analogues of the symplectic camel and extendable erbeddings
results hold for these multi-holed Z spaces. The arguments in the proof of

Theorem 6.3.6 then prove




89

Theorem 6.5.5. If Z(\y,...,\,) is symplectomorphic to Z(p1,- .0y )

then m = n and, more generally, for all r,
[{5: A5 < v} = |{k: ux <}

Whereas the orderings of the holes in the W spaces were defined up
to reflection, the orderings of the holes in these Z spaces are defined up to a
cyclic permutation. Thus, for example, Z (1,2,1,2) is symplectomorphic to
Z(2,1,2,1). In contrast to the above I spaces, the embedding trees from
Section 5.3 can be used to distinguish some different orderings. In particular
Figure 6.5.6 gives the embedding tree for Z(1,1,2,2) in (a) and the embed-
ding tree for Z(1,2,1,2) in (b). Thus Z(1,1,2,2) and Z(1,2,1,2) are not

symplectically equivalent.

(a) ()

FIGURE 6.5.6. (a) Tree corresponding to Z(1,1,2,2); (b) Tree corre-

sponding to Z(1,2,1,2).




the map

\

/

It is easy to check that the embedding trees are isomorphic for Z(1,2,3) |

defined by T(x1,y1,29,92) = (21, 11, T2, —Y2 ) satisfies T*wy = —wy. Thus |
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and Z(1,3,2). In fact, these spaces are anti-symplectically equivalent since

T: Z(1,2,3) = Z(1,3,2) f

it is interesting to compare the next and final question with Corollary 6.4.6. !

Question 6.5.7. Are Z(1,2,3) and Z(1,3,2) symplectically equivalent?

/
- - | -
\

FiGURE 6.5.8. Z(1,2,3) vs. Z(1,3,2)
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