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Abstract of the Dissertation
Summability of Subsequences
by
Francisco J. Littecke
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1992

Let {a,;) be a summability matrix. Let {sp} be a sequence which is
summed by (a,j). That is, if

oo
tn=zanksk, n=1,2,...
k=1

SO
then nl-i—»moot” exists. If £ = 37 e,{,(t)Z“'k is the non-terminating dyadic
expansion of ¢ € (0,1), we let Ai(t) denote the index of the k1 in the
sequence €1(t),ea(t).... then the map ¢ — {3,\;:(15)} establishes a bijection

between (0,1) and the set of proper infinite subsequences of {sn}.

We investigate the question of the summability for almost all ¢t € (0,1)

of the sequences {s) i}, ¥ = 1,2,... by the matrix (ank), that is, the

problem of the summability of subsequences of a summable sequence.




A Francisco Jr.
- y Janet

a la vuelta
.

- de estos largos aflos invernales.
o
i

i -;/;”

R
.
,_




I

i

v

TABLE OF CONTENTS

Acknowledgements...... ... e vi
Introduction . . ... e e 1
(Generalities..... e, PP 3
The Simple Riesz Means..........ooooooiiiiii i 11
The Ngrlund Means.................. P 32
The Cesaro Means ... ..o iinii i i 58

Bibliography .. ..o 67




ACKNOWLEDGEMENTS

I want to thank the Department of Mathematics of the Facultad de
Ciencias at the Universidad de Chile for initiating me into Mathematics and

the Department of Mathematics of the State University of New York at

Stony Brock for allowing me to advance my knowledge in this discipline.

I thank my dissertation director Professor Peter Saisz for his infinite
patience and for sharing his knowledge with me. I also thank my wife and
son for enduring this long ordeal. Last, but in no way least, I want to thank
Joann Debis, Amy DelloRusso, Pat Gandorf, Lucille Meci, Stella Shivers,

and Barbara Wichard for all their help, support and encouragement in these

difficult times.




INTRODUCTION

A matrix A = (@) (n,k = 1,2,...) of real numbers determines a

transformation

m .
th= D GukSk, n=12,... (1)
k=1

Thesequence {sp} (n=1,2,...)is called A-summableto s if t, — s
as n -+ co. The transformation (1) is said to be regular if lim sp =s 1m-
plies that nl_l_)x%O tn = s, that is, nlﬁl_*n%o tn exists and equal s. The Silverman-
Toeplitz theorem ([5]) characterizes the regular matrices completely: the

matrix (an,;) is regular if and only if it satisfles the following three condi-

tions.
nli_)mooank=0, k=1,2,...
O
Jm 3 ang =1 ‘
k=1 |
s
sup ) [anz| < oo f
n2lp=} |
If {sn}, (n = 1,2,...) is a given sequence, then an infinite proper
subsequence nq < ng < --- determines a unique number t € (0,1), namely

xQ

t = 3. 27", The inverse correspondence is clear if we use non-terminating
k=1

dyadic expansions.

This problem originates in an effort to extend to regular matrices the

obvious fact that all the infinite subsequences of a convergent sequence are

also convergent to the same limit. However, a theorem of Buck {1] shows that
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we can not expect the same for regular matrices. He proved that a sequence
summable by a matrix A such that all of its infinite subsequences are also
summable by A must be convergent. With this limitation, any result of this
type is bound to be an “almost everywhere” result and will require some
conditions on the matrix and on the sequence. Undef these conditions, one

can attack the problem using probability theory.

We have used a consequence to the law of the iterated logarithm as
applied to the sequence of random variables {A\;}, (k= 1,2,...) plus other
conditions investigated by Klee and Saisz in a joint paper ({7]) to arrive at a
set of suflicient conditions that will ensure resuits which are, in turn, applied
to a class of Riesz means and to the Cesdro means of integral order to obtain
the summability of {SAk(t)}: (k=1,2,...) for almost all t € (0,1). In the
case of the Riesz means we have a condition on the mean (Theorem 2.1)

which doesn’t require the sequence {pn} to be monotone as it is assumed

in [6]. Also our conditions (1.7), (1.8), (1.7’) and (1.8") conform more to the

interplay between summability and probability theory than those in {6].




CHAPTER I. GENERALITIES

Definition 1. Let
t=0-eg1(¢)es(t)... (1.1)
be the non-terminating dyadic expansion of the number # € (0,1). For each
k=1,2,... andeach t € (0,1), let Ax(t) denote the index of the k" 1 in

the sequence (1.1).
Lemma 1. (Law of the Iterated Logarithm or LIL) Let P be Lebesgue

measure on (0,1}. Then

. Ap — 2k -
Pllimsup—22—2% _ _ 1) =1 1.2
e S VElogTog - 12

— ok :
A 1) =1 (1.3)

Plliminf—2b =28 _ _
koo 2+/kloglog k

Proof: See [3], p. 364 with

-1
Y =—=(A -2
1 ﬁ(l )
1
Y:-——/\—,\_—Z, kE>2
k \/i(k k-1 )

which are independent, identically distributed random variables ([9], p. 64).

As a consequence to LIT, we obtain that if we write
1Ag(2) - 2k]

C(t) = sup e |
(®) kzg\/klog;log

then C(f) < +co almost surely. In other words, for almost all £ € (0,1) we

have

IAp(t) — 2k < CyJkloglogk, k>3 (1.4)

3
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where C' is a constant that may depend on ¢, but it is otherwise independent

of k.

In what follows, we will frequently drop the ¢ in the notations but it
is to be understood that a fixed but arbitrary ¢ satisfying (1.4) has been
selected. The letters C,Cy,Cy,... will represent constants that may de-
pend on the fixed ¢, but that are independent of k. Sometimes we will
use the same letter to denote constants that are not necessarily equal in
different instances. For example (1.4) implies [‘%‘1 - kl < C+/kloglogk and
H%} — kl < Cvkloglogk, k> 3 almost surely. i

As further implications of the LIL we have

Lemma 2. 1) If 3<%k <n and A\; > 2n, then
n—[Cynloglogn] <k <n (1.5)
where C is independent of k,n. This certainly holds if [—%’5] >,

2) ¥ n>3, k>n and [4] <n, then

n+1<k<n+[Cynloglogn]. (1.6)

This obviously holds if Ay < 2n (C is again independent of k,n).

Proof: 1) First

AL AL
2 k 5 Ci/kloglogk
< Cy/nloglogn

S0 32& —Cy/nloglogn < k, and then

A
n — Cy/nloglogn < ?k — Cy/nloglogn < k.

»




Thus

n—Cy/nloglogn < k

‘
\
1
1
\

- and, a fortiori,

n —~{Cy/nloglogn] < k.

2) Now [2‘2’1] < n implies Ap < 2n-1. And since k < A; (always)

we get k£ < 2n4 1. On the other hand

Ap 1A
2k 2k < < k.
< |G| tlsnt+1<k

That is A < 2k, and we can write A = 2k — p; where

0 < pp <Cy/kloglogk.

o2 ]2 ]

2
B _ 15 1_ S Floaton b —
>k-—2 1>k 5 klogloghk —1

>k — g\/(Zn +1)loglog(2n+1)—~1  (k<2n+1)

> k—Ciynloglogn.

k<n+ Ciynloglogn.




lim Za

o ¢ nkS N (2) = s almost surely. Now

E OnkSAL(t) = OnlSA (1)
k=1

+ Z a I ]SAk(t)
+ nk — @ It .
];::2(03 k n,[_%u])m(t)

o)
And since a,1 — 0 by regularity, in order to have n&rgo L GnkSa,(t)

=3
almost surely whenever nli_)moo 2821 GnkSE = 8, it suffices to have both
oo}
. _ P
nl—gnoo Zzan,[%m]s“\"(t) =3 k’l.f)

almost surely

o

nli)néo E dnk — an [m] IS}\k(t) =1{
k=2 L2

(1.8)

almost surely

We will also consider the “continuous” matrix case, that is, the case of

a map

a:{1,2,3,...} x{(0,4+00) = R

sttch that the matrix (a,;) is regular (here a,y, stands for a(n, k). Similarly

for @ x ). In this case we obtain
)

nga, ksl\k t) = E a _ki_lsz\k(t)

+ g} (ﬂnk -a _A:L)) S2e(t)




@
and  lim kgl Gnk$), () = ¢ almost surely is implied by both

e}
s kgl an’.'lkéﬁls,\k(t) =g almost surely (1.7
and
o)
Am ; Onk = 8, 40 |3Ak(t)| =0 almost surely (1.8")
Theorem 1.1 Let sq,s9,... be a sequence of real numbers.

(e8]
1 If A= (a,;) is a regular matrix, Am 30 a [2]5k = 2s, and for
‘ TRp=n Tl2

every € > 0, we have
loss) oC 9 9 -1
> exps~e | > o [£]5% < +oo (1.9)
n=1 k=2 2

{Klee — Sztisz condition) .
Then, for almost all ¢ € (0,1),
w9}
nllrmookz;zan,[ikéﬂ]s)\k(t) =3. (1.10)

2) Now suppose A = (a,;) is regular and given by a map as explained -
. _ ‘ o0
above, If (%an’ ;2;_) is itself regular, nl_ipéo kE::l Uy b8k = 2s and for every

e>0,

oo 00 -1
S expi—e(y. a?l Es% < +4o0. (1.9")
n=1 k=1 *

Then, for almost all ¢ e (0,1),

o0}
B, 2 0 M0N0 = -
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Proof: 1) First we note that for each N = 2,3,... the matrix
(%Tan,[%]) ym=1,2,..., k=N,N +1,... is regular if (a,;) is. Now the
rest is a direct consequence of {7] because we obtain m jogog e, [4]5 jei(t) =

s almost surely. And this in turn implies (1.10) since
Ule) =1} = Da(®) [ k=1,2,...}.

2) In view of 1), this is now evident.

As we can deduct from this theorem, 1) yields condition (1.7) and 2)

condition (1.77).

O
Now in order to have nlLIréong%an,[%]sk = s {Thm. 1.1, 1)) or

O QO
nli{%oka %an,%sk = s (Thm. 1.1, 2)) whenever nli}rgOk;l ALy = &, we

need the concept of strength for summability methods.

Definition 2. 1) Let A = (an;), B = (by;) be regular methods. A

. . . - w - - * m
is stronger than B if nl_:t_*moo kgl bapsp = s implies nl_;)xgo kgl ppSkE = .

2} A is equivalent to B if A is stronger than B and B is stronger
o0 ) . . . oC
than A (in other words, lim kg_—:l apksy = ¢ if and only if L k§1 bupsy =

).

A most useful criterion is

Lemma 3. 1) If B~1 exists, then A4 is stronger than B if and only

if AB~1 is regular.

2) B A1 exists, then A is equivalent to convergence if and only if

AL is regular.




Proof: See [11], p. 12.

In view of Definition 2, we need (%an [&]) to be stronger than (a,;).
112

We then have the following result.
Theorem 1.2 1) Suppose (a,,;,) is a regular method and that {3n}

2

and the Klee-Szilisz condition (1.9) is satisfied, then

O
is a sequence with Am Y apgsp =s. If (%an [5_]) is stronger than (a,;)
T %=1 !

[ N
R 2 )0 =9

almost surely.

2) Now suppose that (a,;) is regular and given by a map. If (glan E )
’2

is regular and stronger than (a,;) and condition (1.9’) obtains, then

o0
n]i{%okz—:lan;kzt sAk(t) =9

almost surely.

To deal with conditions (1.8) and (1.8’) we will make use of condition

(1.4) which stems directly from Lemma 1 (LIL). Due to the /loglogk ex-

pression we only consider & > 3. This is not a loss of generality due to

regularity. (1.8) and (1.8") become, respectively,

o0

nﬁ—>m°°,§3 Gpk — an,[ﬁég] syl =0 (1.11)

o

nli{%o ’;3 Gnk — Gn,%@ iS)\k(t)I =0 (1.119)

_ both almost surely.
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' Assuming a growth condition on the sequence {3n} we will prove that

the “smoothness” condition (1.11) is true for a class of Riesz means while the
“smoothness” condition (1.11°) holds true for the logarithmic means and the
Cesaro methods of integral order, We will also give necessary and sufficient
conditions for (%aﬂ,[g]) and (%an’%) to be stronger than (a,;) in the

case of Riesz and Ngrlund means.
We conclude this chapter with one more definition and some remarks.

Definition 8. A = (a,;) is called triangular if g, = 0 when & > n,

n=12....

Lemma 4. If A is triangular, A=l exists if and only if an, # 0,

n=12....

Proof: Using that anﬁ # 0, the entries of the inverse may be calcu-
lated inductively. Conversely if A™1 = (b,;), then A1 is also triangular

and aﬂnbnn=l, 'n=1,2,... S50 ann%ov

Remarks: We will use %‘f This choice is motivated from the fact
that klim Mgkﬂ = 1 almost surely. This is a consequence of LIL {Lemma 1).
It can also be proved by using the Law of Large Numbers, But LIL-is more

precise, giving also the estimate (1.4) which in turn yi.elds Lemma 2 which

is crucial in Wh|at follows.
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CHAPTER II. THE SIMPLE RIESZ MEANS

Given a sequence {pn}, n = 1,2,3,... of positive real numbers, the
simple Riesz mean associated with this sequence, in symbols (R, py), is the

matrix defined by

f;—", 1<k<n
App =4 (2.1)
0, k>n

. ,
where P = 3 pg. It is known that (R,py) is regular iff nlirgc Pp = +4co
k=1 -

(18D)-

We also consider the continuous case, that is,

H2) o<rg
a(n,e) = F@y> 2=T=m (2.2)
a, T>n

where f:(0,4o00) —» R has f(k) >0, k=1,2,... and F(n) = Zn f(k)
k=1

Again (ap;) is regular iff Aim F(n) = too.

To find conditions for (%an [ﬁ]) or (%an .&) to be stronger than
e 19
(ank), we first need to find the inverse of (a,;) (which exists by Lemma 4,

. Ch. I). This inverse is

2y —
Pn k=n
ok = “ng , k=n-—1 (2.3)
0, otherwise
for the discrete case (2.1) and
E(n) =
o k=
at ={ F(n-1) — 2.3
nk HOREE A (%:5)

0, otherwise
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for the continuous case (2.2).

Next we demand that AB~! be regular where A is either (Qla n[k ])
L2
or (%an’ _;25) while B = (a,;) (by Lemma 3 of Ch. I). Before continuing we
n
observe that kz—:l afk =1,n=12,... in both (2.3) and (2.3").

The (n, k) entry of AB™L ig, by triangularity

[

E ot = ot \
2 2 "1 T2 X O] ii

or

[ RN

2n

F
.Zl an,%ajk .
Jj=

Since aﬁ # 0 onlyif j =k,k+1, the sum aboveis 0 if & >2n 4+ 2 and
k> 2n + 1, respectively. Therefore, AB~! = (cnp) is

(P k=
2p2Pﬂ !
p Prisa
p (18] [ <k<
Cnp = ¢ P\ " ) 2SkS20 (2.4)

Pn Pony _
2P2nj-1i’%a ! k= 2n +1

Lo, k>2n+2

and AB™! = (d,;), (continuous case),

F(k) (%) F(&Y
(ﬂ@“ﬂm@)’lfks%—l

2F(n)
dor =< f()F(2 _ 2.4/
0, k>2n-1

As we said in Theorem 1.1, (%an [ﬁ]) is regular if (a,;) is. This must
12

be assumed in the continuous case, but before going into that we have the

following, useful, Lemma

3



i3
Lemma 1. Suppose {an}, {bn} are sequences with b, > 0, n =

—CO

o0
1,2,..., lim %’1:!3 and 3 by = 4+oo. Then
» k=1

Proof: Consider the Riesz mean (R,b;). It is regular because

o0
— 0 - a _
kgl b = +co. Since nlg%oﬂ = £, then

) 1 2 ar
A ) b =L
by k=1 k

That is,

Now we have

Proposition 1. If (a,;) is a regular Riesz mean given by a map as

- in (2 2), then ( _}5) is regular iff the following two conditions hold:
7,5
1
-2

)

a) sup £=1 < 400 ¥
2l f(k)
k=1
£ 7 (-1)
b) nl-i——:»nclJo k=1” =1
2 f(k) |
k=1

[f f >0 then b) implies a) so, in that case, only b) needs proof.

Proof: We have that

E
[ %{%, 1<k<2n

0, k>2n41

k
ﬂ,'i
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where F(n) = 2 f(k). Since (a,y) is aregular Riesz mean, li_ri_n F(n) =
n—100
400 80 hm ga k—O kE=1,2,.... Next,

wi—ﬁf(%)

k:l

n
1
25 o

|7 (+-3)

2n1 .
k:}ia"'% 2F( 3 ijlf(kHZf( ——>
=l+k§1f(k—%)
2 2% (k)

and 11m E x = 1 iff b) holds.

n,2

Thus the Silverman-Toeplitz conditions are satisfied iff a) and b) hold.,
1

Corollary: If f >0 and nl_i_*r%oﬂf?z—n)l)‘ =1, then (ga ) is regular.

Proof: Only b) needs verification. Since %0 f(k) =+c0, f(k)>0

e (k—-)
T 5

f{(n-3

1
and lim Ho-z) 1, Lemma 1 implies lim =1, which is b).
I—CO f(n) N OO
Now we turn to the regularity conditions for AB™1.

Theorem 2.1. 1) (¢,) is regular iff the following three conditions

hold:
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a) suplefentl oo

Tllezn-]-lP
1
b) 2;!; P ]E 2k|pzk P2k+1f < oo
1 n : Pe—1, _ Pk
c) f;;% Fn k\.'L—}Z Pot—1 IPZk...l sz‘ < oo

2) (dnt) is regular iff the following three conditions hold (we implicitly

assume that (%an _l_:) is regular):
V3

b) sup F(n) E F(2k — l)l;(zkk 21)) f{g’% < 400

f(k+3)

< Fo00

)  sup m— n}il F(2k) [ J(k
n>2 () 4= F2R)

Proof: We only need to verify-the Silverman-Toeplitz conditions for

regularity. The first two always hold.
1) nh—>néo cpp = 0: For fixed & and n >% we obtain

Py (Pl P
nk = op
n \ Pk Pr+1

-0

as 1 — 0o because Pp — +co by the regularity of (R,py).

i) First Z a =11 1<7<2n-+1 and n=1,2,... because aﬁ%o

J
only1fk—y—1,;and1<}<2n+1 S0 Zaﬁ:kzaﬁzl.
1 =]
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Therefore,
2n+4-1 1 2n+1 2nd1
Z Cnk = 3 ' a, [.i]ﬂ':;-#;&G
k=1 k=1 j=2 %
1 2n+1 2n+1 4 1 2n+1
= — a i Z a-k = Z o l
2 j=2 n,[ ] k=1 ! 2 J=2 n,[z]

I
1=
g

I

5| s
|
o

|

bt

n
because P, = 3. Pj-
i=1

J:
2n41
i) sup 3, |epg] < -oo: Since fen 1) — 0 we require
n>1 k=1 |
2n-+1 2
o 1S p (P8 P] | paPonta

A:Z::2 lens] = 5 > P

np=2 1Pk Pkt1| ZP2ny1ln B

1 & Dk Pk N
=S py | P Pk B
2Pp gl Pk Pak+41 B
1 Pr—1 Pk Pnoniq |
sz— —
2Pﬂ Z P11 DPok 2P2n+1pn

to be bounded. This is obviously equivalent to the conclusion of the

theorem.
2) i) A dpp =0, k=1,2,... because . F(n) = +oo.

. . N1 S . .
i) As in 1) ii}, Zajk“11f1§j§2nso
k=1 .

as n — oo due to the assumed regularity of

ii1) This one is, verbatim, 1) iii).

Before continuing, we need the following well-known estimates:

*
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1) fO0<a<1,then

(1
2) log(n+1) < kz % <l+logn
=1

3) If a=0,then
na+1 n

S kasna+1
a+1 =1

The Riesz means associated with {n—l,;}, 0<a<1,and {n*}, a >0 are

all regular.

Theorem 2.2.
1) Suppose 0 < a < 1. If {s4} is (R,n—la,) -summable to s and for
constants #, v with 0 <8 <« % and v > 0 we have

|sn]
—— 2.
21;1‘)2 B log )7 < +o0 (2.5)

Then almost all subsequences of {s,} are (Rv?{%’?) -summable to s.

Suppose @ > 0. If {sp} is (R,n*)-summable to s and (2.4) obtains

for {sn}, then we get the same conclusion as in 1),

Proof:

First, we establish that

0L
k>0 kP (log k)Y

< o0 almost surely.

xte (0,1) satisfying (1.4) of Chapter I. Then, for k > 3

Ae(®)] < 2k + Cy/kloglog k.




= Sﬂ
Let Cj :;g —__J—’_nﬁ(logn)‘f' Then

s3] < CoAr () (log Mg (£))

< Co(2k + Cy/kloglog k)P (log(2k + C/klog log k)7

B
1
= Cpk? 2+c\/ﬁ%‘ﬁf log[k{2+C lo—glg-g—k

< C1kP(log Cak)? < C3kP(log k)7 .

Next, (% a‘n,[é‘»]) is stronger than (a,;): we only need to verify the require-

ments of Theorem 2.1

2) PnlPony1 n”%(2n + 1)1_0‘
Pant1Pn T (2n 4 1)7%nl-2(1 — o) -
(2 + 1) 1 < 3 N

l—a  1—w L

IA

If

1 & Pr Dk 1 (2k) - | po po

b) == 5 Py |2h - Pk _ |
) Fn ;f;l P2k P2k+1| nl @ ,?:1 1—a [(2E)y™™ (2k+1)@ |
21 1— 1ne | }
A ami=a 2 7 (2 “) |
T (1= a)nla Z T3 3
21 o o i J

Epi-a,
S A amt=a (1- a)nl o Z "2l-of
(Mean Value Theorem applied to t — t*)

o LA | o

= Y = Y
(1 —a)nl"ak_z__:lk“ “(1-a)

Pb-1 Pk
P2k—1 P2k

‘“ZPk1

_ Prit

Pn 2 Pok41 DP2k42
n—1 1—c — ¥ k 1 —_Y
< 1 Z(2k+1) k _(+)_
nlme —~  1_q (2k +2)~@

2




n-—

<

(1-a)22i-a

and (%an’[g_o Is stronger than (a,;).

2n+1

M

k=2
1

2yl

g
S oo

n

Cq
— n2=2a
m k=1

- Callogn)®
n2 —2a

Now --2<2ﬁ 2a<1 and

nl-2a+28

(

14logn,

202
202751

nl=20+25

n :
k=1

> R

1 n=l
—— 3 (2% + 1)1
(1 —a)nl-a Igl( t1)

Next, we verify the Klee-Sziisz condition for (

Z PR(s3, + 53441) »
Sk
k=1

+ (2% + 1)* (log(2k + 1))27)

Cp = sup
n>2

n
3 B2 (10p 05)27

1-2a+36

19

o
2i-ap

agl-® g n=ly
T (1-a)pl-e plee 2 ga
a3l—a

1

70 [%]) (see Thm. 1. 1)

~2e((2k)%8 (log 2k)27

[sn]
nB(logn)y

n

f<a<f+id

a:ﬁ-—{-%

1
2

a>f4+

B> a
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50
((zarogr, BSa<fti
J_._ikzﬂ—:zaﬂ%gg“ﬂ’ a=p+y
n2—2ak=1 - 2%?_{7#_11'??—1‘2?: a>,8-f—%
k#ﬂzg, 8>

In any event, since 0 < § < %, ¥ 2 0,and 0 < &« < 1, we obtain, for
suitable p > 0, ¢ > 0, and Cj, that

o0 P

E o? . S% < Cs(logn)

k=2 i nt
Cy
S
for some r > 0. Then, if ¢ > 0
o0 o0 5 2 -1 co en’
3 exp{ —¢ Lan (2% < exXp{ —— ¢ < 400 |
n=1 k=g 12 n=1 Cy - |

(Choose £ > -};, £ integer. Then exp {f—%} < %C;i . 1 .) Therefore, by
Theorem 1.2, we have that

o0
0 2 )0 =

rno

almost surely where (a,}) is the Riesz mean (R 1 ) , 0<a<t,

To finish the proof we must establish that
oo

nli{%o > (ang — an’[}_kz_(ﬂ])sa\};(t) =0

almost surely (cf. (1.8)). Fix ¢ satisfying (1.4) and for n > 3, define

Fo=<qk|3<k<n, -l-\—]‘j?(—t) <n

Gn=1k|3<k<n, 3%“—)

Elk>n, %(_t) <n
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Since (a,p) is triangular

Z(a £ A, ])SAk )= 2 (enp—a ’[Azf])sz\k(t)

k=3 kel
-+ Z BnkS) - G Tap(8] 5
i23, TN T 22 2 s
=X1+ 38— %3

say. We prove £; —» 0, i =1,2,3. For that we need

R N !
k] 3 .

\
C constant (with respect to k). Assume (2.6) for the moment, and let us |

complete the proof

1) Z1< X0 lank —a [ 2460 t}”'s).k(tl
=y
Cy 1 1 8 v
<=3 k:ﬁ;ﬂ T —'[r 2 :]cr k" (log k)
C Vieglogk g
= nl—o L ka+% k (1 k)7
Ci(logn)T+z 2 1
S T 2 :

and —%<ﬁ-—a—%<0 SO

20412 1
i, a> 4]
n
’Zkﬁ—a—%s 1+ logn, a:ﬁ—]—%
b=

271% a+f

1
i— 2a+22? a< ﬂ+§

Since 0 < 8 < % , We again obtain

Ciflogn)?
7] < C2C08n)




for suitable positive constants Cy, p, gandso 51 — 0 as n — oo,

i) By Lemma 2, Ch. I, we have

n—[Cy/nloglogn]<k<n if ke@,.

Now

B2l £ D7 lanzl sa, )]
kEG,

Co -
S n1 akez: k akﬁ(logk)7
<—C—’Q n B'I-nﬂlognﬁ 31
T n \n—Cynloglogn ke,
Ci(logn)?
nl“‘ﬁ
1+3
<Ol oy )

nI

< (14 [Cy/nloglogn])

ili) Again, by Lemma 2, Ch. I
n+1<k<n+{Cynloglogn].

If ke Hy

(Z3l< > la ,[Azt}l WOl

keH, .
<Y {——’\’““)] ¥ (log )7
n k€H, 2
Co 2¢ 8
< - —— k" (log k)7
- nl_a kEZ-Hn (k _ 2)0‘ ( Og )
< ?ja 3 E %P (log k)Y
" keH,
< (1:’_1& -n"*(n+[Cy/nloglog n])ﬁ(log(n + [{Cy/nloglogn]))”
n ° .

3,

22
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1
keH,
< ConP(logn)7[C/rlog log n]
- n
< Callogny1+3

= 1 — U,
712

This will complete the proof of this part once we establish (2.6): apply the

Mean Value Theorem to ¢ — t7%, getting r between %k and P%@] such
that
1 1 o A t)

—_ = koo |28\

ke [,\k i ]a ratl 2

r>k thenv--—f<k—1TI;ifr2[ﬁ’Q@-!],then r2[§]>§—12%,and

6&+1
+ -

"_’ﬂH
IA
?

In any case

Co 7 C’Q\/Ioglog
SW kloglogk a+2

2) I) Theorem 2.1 is satisfied: : |

2) pnPony < n®(2n + 1)a+1(a +1) : '|
PraiPa S (En D)7 et , |
1 |
=(a:-l-l)(%-’r- )33(a+1) |
n o
n
._1 ka P2f::+1
a+1 k*

> a*fl-l Z(Zk)a+1 (Qk)a (Zk + 1)a

3
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= n(x+1 Z ka+

= L?_j__l)z_aj__{ i potl _1_
na+l = 20 2k 11
(Oi+1)2a+1 n a+1 . 30£ 1
< netl = oa+l ok 41
3 1)
5%— Z E* < 3a(a+1)
1 Pk Pkl
— S Pyriq _
Fr ,gl * P2k+l P2k+2
- k 1 2k +1)*  (2k+2)
a_[_ 1 n= 1 2 o 1
= 2k + 1) H | —— ] ~—
notl Z( 1) (2k+1) 20
<af+1 3« ""‘12k at1 1
<t S
_ 3a(a+1) %
2a+1 o+l Z(zk +1)a
3a(a+1)
ST s (2n —1)%(n —1)
_ Baf{a+1) 5 1\ @ 1
- (2-5) (-5)
< 3a(cu+1).

- 2

I} The Klee-Sziisz condition is satisfied

2n+1 2n+1

$ gt < 00 3 ] e

2

Cy
e E k?a-f—?ﬁaog k)?"}’
k=2
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Ca(log(2n + 1))27(2n + 1)2+26+1
- nla+2
Cs(log n)27n2a+2ﬁ+1
n2a+2
_ Cs(logn)®r _ C4
T opl=2 Togpr

IA

where r > 0 (this is possible: 0 < 8 < gl) and then

o r
> expl —¢ Ea2 ks% < D exp —-—}<-{—c>o
iz ™l n=1 Cy
I) and 1) prove that
it Z O[22 SAut) = ¢

almost surely, where (ank) is the Riesz mean (R,n%)}, a > 0.

Next, with ¢ satisfying (1.4) and Fy,, Gn, Hp as on p. 20, we have

é(ank“an,[gzgg])s)\k(t)= )OREEE ID DRI

keF, keGy keH,
=31 +52- 23

and the analogue of (2.6) is

Ae(®)1” L \

B — — < Ck* 24 /loglogk k2> 3. (2.7)

i) 4] < > lang —a [A t]ISAk(z)]

chF

Ae®)]”
S +1 P e K (log k)7

ke Fy

<4 3 ioglogh £+ H(log k)"

keF,




2
5 N
atp—1
< no+l kZI RO+
=]

< Cy(log n)'f"‘% n@+A+3
- na+1

Cy(logn)¥+z

ii) [$o] <

<

n3=f

> langl I%(t)l
keG,

Cl

)T

keG
C’ln‘H’ﬁ(log n)¥
natl

31

keG,

(1 ¥
= -—1(—10%;)— -(1+[Cy/nloglogn})

Cy(logn)T+2./m Cz(logn)7+
1 -3 n2 .y

1 % a_ a1 |8
) |3!<k§Il [2]]|Ak(t)]

<
n

T

a+1 2 {/\k t)} Plog kY7

keH,

Cy
=37 2 (k+[C\/kloglogk])*kP(log k)7

keH,
Cy

i 2 k¥ (log k)Y
keH,

Cy
—i7 + (n + [Cy/nloglogn])*+F

- (log(n + [Cy/nloglogn])” >~ 1

k€H,

26




27

Csn®*th(logn)? ‘
< na-(i-l ) - [Cy/nloglogn]
Cy n@+h+3 (log n)7+%
<
- na+l
__ Cy(log n)7+':13

1
n2

— 0

This completes the proof of Theorem 2.2.
Unfortunately Theorem 2.2 does not apply to the Riesz mean (R,Hl) N
that is, the logarithmic means. The problem lies in the fact that (glan [k ]>
"2

is not stronger than (a,}) becase 1) b) of Theorem 2.1 does not hold:

1 & Pr Pk 1 B log(2k + 1)
B, & o 2 T logn 2= ( k
np=1 P2k P2k+41 +logn

_ (og(n +1)?
2(1 + logn)

which 1s unbounded.

In this case we consider the continuous analogue (2.2) with f(=) =51.

Then:

1
i) (%an k ) is regular: Since f > 0 and lim %ﬁl =1 the regularity
12 .

r——+oo

follows on account of the Corollary to Proposition 1.
2

1i) (%an k) is stronger than (a,;): The suprema on 2) b) and 2) ¢) in

Theorem 2.1 are zero and 2) a) is satisfied because

Ff(n)F(2n) < 2(1 + log 2n)
Ff(2n)F(n) = log(n+1)

which is bounded.
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Theorem 2.3. If {s,} is (R, %) -summable to s, and for constants

B,y with 0<8,y< 4

|sn]
—_ & 2.8
nsanP(lognyr ~ (@8)

Then almost all subsequences of {s,} are (R,Hl) -summable to 3.

Proof: We begin by verifying the Klee-Szisz condition for (%an

)

b o

o0 2n
E a2 ﬁ% = Z “;?1 H%
k=1 ? k=1 2
Co 2n k26 (log k)27

(log(n +1))* /7 &2
Co(log2n)?7 20 1
" (log(n +1))% (= k220

Ci{logn)?r 2% 1

(logn)2 kzz:l k2-28

< Cy(logn)?72

because 2—-26>1 (B < %) Thus,

o0 o0 -1

dYoexpy—e| > ai _&s%

n=1 k=1 ?
o0 1 22y

< EI exp —s-(—o%—— < +00
because 2 — 2y > 1 (’}’<%).
Quick Proof: exp{—c(logn)’} = ———. Hfr>1 and £ > 0 is
ne(logn)

fixed, but otherwise arbitrary, e(logn)™~! > 2 holds for sufficiently large

n. So

1 1
ellogny 1 <2
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(We may also use Cauchy condensation principle.)

To finish we need to establish that

oo
A g_:?’(ank - anlgg@)m(t) =0

almost surely. Define, as on p. 20
Fo={k|3<k<n, A\t <2n}

Gn=1{k|3<k<n, M >2n}

Hy={k|k>n, A\ <2n} (n = 3)
By Lemma 2, Ch. I

FeGn=n—[Cynloglogn] <k<n
ke Hy=>n+1<k<n+[Cynloglogn].

Again

(X) .

Yok —a n@lam= 2, ot 2o = D

k=3 172 ke F, ke, ke H,

=429 —X3g.
And to estimate ¥, we will need
. 1
1_ 2| Cyloglogh Es3, 2.9)

which is the analogue of (2.6) for « = 1 (and without [ ]). We omit its

simple proof based on the Mean Value Theorem.

i) 211 < D0 lank ~a_ ol syl
kEF, T2

< By YOEER aoguyy
log{n + 1) eyl kE

Collogm)?7 &1 (.31 B> 1)
logn =1 PN 2

Gy (1) i
(logn)a™"7 2 R

A




i) B2l < 27 lank| sa )]
ke n

< Co 5 kP (log k)Y
logn ked, k
Co nP (log n)Y >
logn n— [C\/m] kG,
Con? (logn)(1 + [Cy/nloglogn))
T logn(n — [Cy/nloglogn))
< Cmﬁ"’%(logn)’f"'%

nlogn

C1
n2~P(log n)%_'lr

i) 3] < 3 a_ 20l [83,0)]
ke H,

Co EP(log k)7
- Iognkef'{n Ap(t)
Co kP (log k)Y
s logn 2 k
keH,

< Cy  (n+[Cyv/nlog logn])ﬂ(log(n + [Cv/nlog logn

(Ag > k)

~logn

30

31

keH,

Co(n + [Cy/nloglogn n])ﬁ(log(n +[Cv/nloglogn]))T([Cy/nloglogn))

nlogn

- Cinfti(logn)1ti
. nlogn

¢y
n%‘ﬁ(log n)il'_'r

This completes the proof.
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Remarks: The growth condition (2.5) is motivated by the fact that
if {sp} is (R,?Tl‘,) -summsble (0 < & < 1) or (R,n?)-summable (a > 0),
then nli}moo .= 0,1e., {sn} cannot grow faster than n. If {sp} is (R,;}) - |
summable, then nI_i*moo;ﬂ%“ﬁ =0 and {s,} cannot grow faster than nlogn. |
These growth restrictionson {sp} stem from a more general fact: If { sn.} is’
(R, pn)-summable, and dim p%_; =1 (which is equivalent to lim B =0) ’
then nll{%oﬂ%fﬁ = 0. The proof is simple: Let

1 n

=

PrSp — i as n — o,

Then,

(the inverse) which implies

Pndn
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CHAPTER ITII. THE N@RLUND MEANS

Let {pn} be a sequence of nonnegative real numbers with pr > 0.
The Ngrlund mean (N, pn) associated with this sequence is the triangular

matrix

Pnoiil  1<k<n
m

0, k>n

Unk =

(3.1)

n
where Pp = 37 pr. It is known that (IV,ps) is regular iff lim fr =0
k:l N—00 4I'n

([5]). We again consider the continuous case

fn—z+1) 0< o <
a(n,z) = Fla) > T=%=0 (3.2)
0, z>n

where f: (0,+oo)-—r R has f(1) >0, f(k)>0, k=2,3,... and F(n) =

n
kgl f(k). This (a,;) is regular iff nli)rgo% =0.
We now tﬁrn to find the inverse. Let p(z) = io pj+1$j . This power
j=0

series has a reciprocal as a formal power series because p(O) =p; >0

00 .
Let g(z) = p(lm) = jz—:() gjz? . Therefore,

(*) ZI0dm—jPj41 = bmo

| m - s m=20,1,2,... (3.3)
(**) E;:Opm—3+1€b = 0m,0

where é, g is Kronecker’s Delta. Then (aﬁ) , the inverse of (a,z), is given

by

. qn—kPy, 15k<n
& =t
" o, k>n

*

N
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The verification of this is very simple:

If £>n, then
<O oC
Z anjaﬁ o= Z an#jajk =0

by triangularity.

If 1<k<n,then

o0 n n
A L Pn—j41
Z anjaly = ) anjag =3 = 5 G-kk
Pk T : n—k
=D 2. Pnjt10i-k =5 2 P(n—k)—j+1%j
Pr =k Pr i=0 (
Py

=5 on—k,0 = On_p,0 = Onp

by (4.2) (*#) with m =n — k. Similarly

O L] n

¥ g — # ooy = p, . Pik+l
Z Onjdjk = D Gnitik = 3 GnjPj - P,
j=1 j=k j=k

]
n n—k
=2 In—jPj-k+1 = b Un—k)—;3Pj+1 = On
j:k J:.O

o] . '
and, without fear of confusion, 3 gjz’ will denote the reciprocal series in

o

n J_O
the continuous case as well.

Now we pause to give some examples of Ngrlund means with their
corresponding inverses.

Examples: 1) - Fix a > 0 and put pp, = %&;‘—I“xﬁ) where T' is

Euler’s gamma function. Then (N,pp) is (C,a), the Cesiro means of

n L] - .
order a because Pyp = Y. pp = %4%%355 and 1t is regular because —}%’—: =
k=1 .

3




7F7a=T — 0. For the inverse matrix we have

Do TGt 51
p() %I‘(Q)I‘(j+1)]_(1mm)a’ |z| <1

34

o 0(s) = (=2 = BE)er, fol < 1, ad g5 = (1) -

(=1¥T(a+1)
Pla-j+1)T(+1)

2) Fix N =2,3,.... Define Pl =py = ---

il
"3
=

il

=
g3
o

k> N+1. Then

n, 1<n<N
an
N, n>N+1

o0
and kzl UppSp = ']%f(sn-—N—}-l +-tsy) forn> N,

This method is evidently regular. As to the inverse

N-—-1 .
pla)= ¥ pjp1a? =1+422+ - +2V¥1 and
=0

1 _ 1 11—z
p(a:) —1+a:2+---+a:N_1 1—gN

(v ] <0 0
:(lum)Za:NJzZmNJ—ZmNJ‘I'l

ql(w) =

for |z| < 1.
Thus

Wi =1, ay,=-1, J=0,1,2,...

N-1
and g = 0 for all others so certainly r;ﬂ gnJ+r =0, 7 =0,1,...

a

N~-1 Rt
implies EO gm4r =0, m=0,1,.... (Write m=NJ +35, 0<s< N-l e
r— PR

which . S ;:: o




Then

N~1 N1
2. Gmpr = 2. INTtrs
r=() r=0
s+N-—-1
= Z INT4r
r=0

s+N—1
= Z qNJ-[—r
r=N

s—1

5=1
= Z (qN(J+1)+r
r={

secutive of them.

- 1
It is, in general, — T
limsup pfZR+L
n—oq n+l

m
> Pm—j-%—l?j =1

3

2 dm—jPip1 =1
3=0 .

35

s+N-1

= Z INrr
r=s
s—1
“ Z qN.H—r

r=0

s—1 N-1
- ZOQNJ+1' Z qNJ+r = 0
r=

r={

51
= Z INItNgr — Z INgir
r=>0 r=0 _

- qNJ+r) =0 )

And the sum of N consecutive g;’sis 0 and so it is the sum of 2N con-

Now we investigate when is (%an'[ﬁ]) or (%an &) stronger than (a,,;)
HE )

where (a,;) is a Ngrlund mean. Before that, we need the following:
Lemma: 1) The radius of convergence of P(z) = io Pj+1:z:j 1s 1.
3=0

2) p(z) =(1—2)P(z) so the radius of cbnvergencé‘of plz) is > 1.

3y =0 m=0,1,2,...

lim §/P;rq=1.
Jiasnolo J+1

P, P 1 :
X 2 _ it2 — . 1
Proof: 1) —li_Pj+1 A 1“;‘4‘[2 -+ 1 as j - o0, so
3
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2) If [z} <1

(1-2)P(s) = (1 - ) f: Pjp1a?
X Fiae

|
|
|

0
=2 Pj1’ Z Pj +1$3+1
j=0 3=0

oo
= Py 4+ Z(Pj-i-l — Pj)x"
Jj=1

=pi+ ), P =3 pjae’ = p(z)
which implies the statement about the radius of convergence. Finally -

3) Recall that

g(z) = qu -

j=0

Thus, if z # 0 is sufficiently small (so that E ;] || converges)

0 m o0 . (%9 . ;
20 20 Pojrrgg 2™ = | 3 Pigad [ {3 g5a7
m=0 \j=0 =0 =0
P(z) 1
=P = =
(@)q(z) o) 1-o
00
=2 "
m=0) S
That is Y Pr—j+195 =1, m = 0,1,2,... and Z Qm-J-PJ+1 =1, m=__ o

0,1,2,..., as well.

Corollary: If (a %) is the inverse of the Ngrlund mean (ank) then-_-’.'f
Z a k'"“1 n=12,....
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Proof:
n # n
Z ank = Z qn——-—kPk
k=1 =1
n—1
= > Yno1)—tPrs1 =

Let us return to the strength part. The (n,k) entry of the product
(% [g]) (ank) iszerowhen k>2n+4+2. f 1<k <2n+ 1,
pie

(e} 1 1 2n+41 #
5 ok =5 3 et
o2 2, WY
(k V2 =max{k,2})
Pk 2n+1
=5 Z P 18119k
2Pﬂj:kv2 n [2]+

and the product is

i 1<EkE<L?2 1
Cpp = { Zn jz%vzp”_[‘:}]“q]*k’ Sk an T

0, k>2n+2

(3.5)

Likewise, the (n,k) entry of (%an !z) (afk) is zero when k> 2n+ 1
+2
and if 1 <k <2n, we have

2n

1 F(k)
2% = 2F(n) Zf( 1) di=k
and the product is

F(k! _ <k<
Gy = 4 2F(m) E f(n $+1)gjp, 1<k<on (55)
0, E>on41

for the continuous case.

Before continuing, we need to establish the conditions for the regulanty

of (% ) We have
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Proposition 1. If {a,;) is a regular Ngrlund mean given by a map

as in (3.2), then (%an, %) is regular iff the following three conditions are

satisfied;
1
3 nli_,ﬂgofr(an+§) _ 6
w f(k)
k=1
> 17 (k+3)]
R (SR

(Recall that f(1) >0, f(k)>0, k=2,3,...)
A

¢) lim =1,

"R AR
k=1

If f2>0,c¢)implies b) and then only a) and c) need to be proved.

Proof: We have

1 [fe=D g p <o
o, k>on+1

where F(n) = kél f(k). Observe that nli)rgo%(,’z—;)g =1 because

nli}moo%r,i(% = 0 (regularity of (a,;)) so m ﬂ}p%) = 1 for any fixed

i=0,1,2,...

a) If nl_i_)mOO%an’% =0 for k = 1,2,... then, in particular, for £ = 1 so

1
0] =2-§an’%.—+0 as n — co.

>
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If lim
. n

_f(n-(G+d)+1)
n:j+% - F(n)

_i(=i+d) _f(r-itd) ey

lim %a =0 for k=12,.
T—>r OO

Yy

b) é% zaj"}(-aéf n~-279+1
-——QFn)Zlf(n b+ D1+ 55 z": fn-ktd)
‘:1+2F1()§31f(“§)’
e
n>1 k...l < 40,

!TL 2!
M Fmy. = 0, pick k=2j+1, 7 =0,1,.... Then, for large n,

as n -+ co. Now pick k¥ = 25, 7 = 1,2,.... Then Elanﬁ _ %an'.-—.')' 0
) L : ;

as n — 0o because (an;) is regular. This proves that a) is equivalent to o
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Thus, a), b) and ¢) are éq.uiva,lent to the Silverman-Toeplitz conditions

for regularity.
Corollary. If f >0, f(k) > 0 for k = 1,2,.... lim f(n+3) _ .
oo n—co  f(n)

and kzl f(k) = +oco, then (%an g) is regular.
= 12

Proof: Only a) and c) need to be verified. Since the Ngrlund Mean

(N, f(n)) is assumed regular we have lim -2 — 0. then
e kEl f(k)

flets) Fnt+d) )
£rwm o S0 S s

—1:0=0

as n — oo, which proves a).

= 1 which

L f(k+)
As to ¢), Lemma 1 of Ch. II implies that lim &=
e E 5w
establishes ¢).

Theorem 3.1 1) (c,;) is regular iff

a) For each k = 1,2,3,... the sequence {a9j_& + Qj—k+1=1 18
(N,pn) summable to 0 (here we have defined ¢y == 0 when m < —1).

This holds in particular if 7 {g; + Q'j-l-l}fil converges to 0.

b) The following conditions are met:

: P
i) sup —2tl o 4 oo
n>1 Pp
1 n n l
ii) sup 5= >, Pop| 20 Pn—jy1(92j-2k + G2j—2k+1) < +oo
n2ldn gy i=k

3
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lnl

11 sup —— P
) n>13P 2 2k-+1

Pn—k+190 + Z Pr—j+1(99j-2k -1 + q9j_91) < oo
J=k+1

2) (dpt) is regular iff (we assume that (%an X ) is regular).
. ’2

a) Foreach k=1,2

yre e

2

. n .3
Am — F(n) Z Fln~7 4+ D)ggjy, +j221 f (n ~J+ *) 49j—k—1{ =0
(Here gm =0 if m < —1).

This holds in particular if, for each % = 1,2,..., {QQj_k}Jpzol is

(N, f(n))-summable to 0 and {923'—&—1}?_3_1 is (N, f (n + 51)) -summable

to 0. It certainly holds if lim gj =0.

j——>00

2n

b) supF( )ZF(k) S f ( —i—}-l)qj_k < +0co

i=k 2
Proof: 1) First we establish

2n+1
chkzl, n=12,...
k=1

i
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J 4 )
recall that 3 afp=11for y =1,2,..., and so
=1

2n+1

1 #
2oenk=3 3 3 ayak
k=1 k=1 j=kv2
2n-+1 2n+1 2n41

1 # 1 #

= - ai,1+—z Zala
2 = mElY = o B
1 2n+1 # 1 2n1 J "

=3 % TS 2o 4 > alh
2 5 mBI T o ) 20
1 2n41 ) # 1 2n—|;1

= - [# i Z a 2 = - an, 1
2 iz ”=[2] =1 J 2 izo [2]
n 1 n

= Yo=Y i =1
J=1 n j=1

n
because P = 3 Pj-
Jj=1
2n41

a) tn,1 = '2% jEQ Pn_[ ]+193 -1 = gp E Pp— _7—]—1((12]—» =+ ‘12_7) — 0

as n — oo iff {q9;_ 1+ @152, s (N, pn) summable to 0. |

ng 2n+1
“n2k = 55 _;;k Pr[i}41%—2 |
j= : : :
Py [\ "
=530 Pn—j+1925—928 + Z Pn--j+1’54’2;‘_2!c4|-1J-I
2K, | =
=k i=k
Py &

=%p. an—-]-f-l(qu 2k + 425-2k41)

P
= % Z Pn-3+1(9'23——2k + 25— 2k+1)

(sz.ﬂ if j<-1)

which tends to 0 as n — oo, iff {q2]~_2k + qgj_2k+1}ﬁ'_i1 is (N,pn)-

summable to 0.
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Finally (k > 1)
2n+1
Pk
Cn2k4+1 = 2P e Z Pn._

4195 ~28+1
N j=2k+1

Pok+1
2P, Z pn-—J-!-lQQJ 2%— 1+Epn—g+1993 %
- =

PE:’c 1
+ EPn—J-!—l(@g 2%-1+ gaj_9;) — 0
as n — oo iff {ggj_zk,_l-]—(_mj_gk}jzl is (N, pn)-summable to (.

b) Finally we need

2n+1

sup 3 eqn] < 40,
n2l gy

This is equivalent to: i)  sup len ont1] < +oo |
n>1 '

i) sup T fo, 94/ < +oo and
n>1k=1

n—1

i) sup ¢
) sup 2 1, n,2k+11

(H we merely wa,nt 2 lenk! to be bounded, we must add suplcn 1] < +oo.
n>1

But (c,z) regular 1mp11es this because ¢, 1 — 0.) Now

. P.
i) lcn2n+1l— S o

_ |
2F, (P1go=1)
|

n i
ii) pX lcn 2k| = o5 kZII Py, _;kpn—jﬂ(qzj—% + 92j_9k41) o

n—1 . 1 n—1
iit) 3 len opa] = 2P, ; Z Pyt
k=1 =

Z Pn—]-]-quJ 2k— 1+an—-j+IQ2j—~2k
J=k+1 =k

1 n-1

=3P, ZP2k+1 Pn—k+4190 + %:11’11—-—]4—1(9'23 Uy 1+9’23 %)
j=k+
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This completes the proof.

2n
2) First, nh_{%okgl dpp =1

2n
g__jldnk =53 2 a, 0%

as n — oo due to the assumed regularity of (gla ) (we have again used

k
11,'5

j
that kglaﬁ =1,j=1,2,...).

a) We have that lim d,; =0 foreach k=1,2,... iff
oo

nl—*OOF(n) Zf( %“) %k =0

for each £ =1,2,.... Now, since gj=0,if j < -1, we get

O LR e
Z; f(rn—j+ D)gg;—
+§:1f (n—j +%) 925 k—1

So nlirmoodnk =0, k=1,2,... is equivalent to

Y fln—j+ Dagjp + Zf(n—j-i-%) g2jt1]{ =0

I;
nirnolo F(n) 1 j=1

for k=1,2,....




is

ISEJCEVES FE\ PRIEE

n—0co LLJ = 0

PR (i +3)

Py

but since (§an k ) is regular Proposition 1) c) yields
2

lim #55—— =1, so the limit above is just

because F(n) = E flk). It hm n gj = 0 then the two conditions a,bove_E ;
obtain since both (N f(n)) and (N i (n + 1;)) are regular Ngrlund means
( (N, f (n + %)) due to the regularity of (glan ﬁ) )-

'2

b) This is just the Silverman-Toeplitz condition o | |

2n

sup Z ldpe] < +c0.
n>1 k=1

Conditions i), ii), iii) and 2) b) of this theorem are difficult tb verlfy

in practice because we must have complete knowledge of the qJ s Even in

simple cases, to find these coefficients is no simple matter: If pk —“'.E 3 then
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and we need ¢(z) = p—(lﬂ = log(:l;—l;) = EO gjzd .

Before considering our next theorem, we will need the following

Lemma 1.
a—1 a b b
—-b) > - > —
2) c—-1 (a )“(c c/] T \c—1 (a—9)
azb>c>1
B) 3 £—j+2m 2TT1+1 B mji—l > rd™
i=0 2m 27 +1 23
m=12..., L>m
) i”: L~7+2m+1 2m + 2 2m+ 2
C = 2m+1 27 +1 27
3m 41
> 1)(4™ —m —
2 2m+ 14" —~m—1)+ om + 1
m=0,1,2,..., £>m
Proof: a) (Z) = nil ( J ) S0
g
a by fjil k bijl k
¢ © —k:c—l c—1 k=c—1 \° 1
a—1 a—1 b
=2 kl 2 2 61 “le-1j@7?
k=b \°¢ k=b \€ €

because (cfl) increases as k does, ¢ fixed. Similarly

@) =@ = (He-v | g
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=5 (T EE)-0%0)

j=0
1 mofl— 3+ 2m\ (2m+ 2 by
_m+1;4::0 om 9j 41 )™= 2)
1 &[4+ m 2m+2(2.
‘m+1,§3 om  J\2j+1)H ™)

|t e [
(1) (L] e

o 5 (o) - (T Gt e - m
+2(m‘gil).

i<[%], then £—j+2m 2 L+j+m and m—2j >0 so

L—j+2m\ [L+j+m\_ (E+i+m)
)m( )..(an_l (m—25)20

7=0
2m + 2
-2
(2j+1 (m — 2j)
(%] :
1 €+3+m)(2m+2) )
. . -2
—2(m+1)J§)(2m—1 2 +1 )™ = %)
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B +1<5<m, then 454 m> L4 2m and 25— m > 0 and

£+7+4+m £—j4+2m £—742m
- > .
( 2m - ( 2m —1 )(2J m) 20

2(m511):z(m1+1 5 [Hzfmm)“(g_g; Zmﬂ

j=[3}H1
2m+2 .
ojgr JE -
1 m £—~j3+42m (2m+2)
>~} (2 —m)?
2m +1) jefmer\ 2m=1 J\2j 41
i (e+m) m (2m+2) -
> - > . (m —2j)*.
2(m+1) \2m—1 =Tl 27 +1
Thus
S= ! 51+ L S
T 2m+ )" T 3m )
1 L+m N\ /2m+2 2
> , m—2
2(m + 1) \2m — 1 j;, 2j+1) ™= %)
_ 1 {4+ m m
T 2m+ 1) \2m — 1>(m+1) :
1/ 2+m 1
= - 4 oy . m—_- m.
3\ 2m — 1 2 -2m 4 md
M-+ 2m+1) [ (2 2
0 =g (It (e -7
=0 m+ J + J

( )
_5’5 E—j+2m+1 2m -+ 1 _{2m+1
_j=0 2m +1 25 +1 275 -1

-+ 2m+1 2m + 1 2m +1
-5 (G- (3)

2m+1 25 +1

(-G

<

j:
-7 +2m+1

+ 2.
o 2m+1
=951+ 9y.




() - (

_(t+2m 41 I & fl-i+2m+1 2m+2
_( 2m + 1 )+m+lz( 2m +1 (m 23“)
1

(after Jm—j+1). So

S~E+2m+l‘+ 1 55 0—542m 41 ¢4 F 4+ m)
T emn 2(m +1) £ 2m 41 )

(ij- 2)(m % +1)

{4 2m 1 3 L—j+2m+1 __/£+j+m
\ 2m4a 2(m+13:1 2m +1 K2m+1
2m+ 2 |
( % )(m 27 +1) |
1 m £4j+m £—j4+2m+1
+2(m+1) 2, om+1 ) 2m + 1 J
i=[3l+1 |
2m+ 2 ‘i
l
_[f+2m 1 1 1 7 |
“( 2m 4 1 )f'z(m+1) S3+2(m+1) 5 |

vields £ — JH+2m+1>8454+m and m — 2 4+1>0

‘while [5”—]-}-153 S<m gives £+j+m > L—5+2m+1 and 2j—m—120...-...
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[Xf:] Kﬂ_éiﬁﬂ) - (EZJrnij)] (2n;+2)(m—23 +1)
ji (£+J +m) (2m +2) (m—2 417 (by ) again)
> (€+m+1) % (2m+2)(m 2 1 1)?

S ttjt+m —j+2m+1 2m + 2\, .
Sy . §+1[(2m+1) ( 29m + 1 ”( 25 )(3 ™m )

m o
=Y (6 j+2m+ 1) (2m + 2)(23- ~m -1 (a) once again)
+1

therefore

—
—

l\/

i=[%]
m
2(}3+m+1) 5 (2m+2)(m 2 4102,
2m T 2]
J=[2]+1
So , ety ot
+m m )
> o1
S3+S4__( 9 )_;:_:1( 2 )(m 25 +1)*
| _{f+m+1 .
“( 2m )(m+1)(4 2(m +1))
Z (2m1)(m + 1)(4™ — 2(m + 1)) .
Finally

§=51+52 (m+-21-)4m+52

_(m+2)4 +( 2m +1 )+2(Tn+1)+2(m+1)

(e Do () (5
= (2m + 1)47’.1 —(2m+1)(m+1) + (5:::__11)
3m—|—1)

=(zm+1)(4¢—mm1)+(2m+1
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(in particular any sum in either b)or ¢} is > 1).

Theorem 3.2. 1) (C,1) satisfies Theorem 3.1 1), but not (C,«),
a=2,3,....

2) Any method from example 2) above satisfies Theorem 3.11).

Proof: 1) (C,1) is the Riesz mean (R,pn) with pp =1 all n so
this comes from Theorem 2.2. For (C,a), a=2,3,... we prove that b) ii)

of Theorem 3.1 does not obtain. For that we show that
|

n
2 Pr—j+1(92j—2k + 02j_2k41)
j=k

is bounded below by 1 for n > [%t—l] and 1 <k < n-— {Q’Q;l} Now

pn = ("7 and g5 = (1(3) o

n
2 Pr—jr1(22j2k + 92j—2k41)

=k
a=1
__k+§] n—j+a—1 o _ o
- i o —1 27 —2k+1 25 — 2k

(because g9;_op 1 #0, 92;—ok F 0 if E<j<k+ {%“—1} while
k-{—[%_—l-] <nifn> [Qéﬂ] and 151’{:571—[32_—1}).

-1
_[Z”:] n—k—j4+a-1 ! _fa
= a—1 2/ +1 25

Now put m = [%_—1] and {=n — k. Then
2m+1, m=1,2,...

0o =

2m+2, m=0,1,2,...

while {=n—-%k > [952_—1] =m,ie, {L>m.




... We get:
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) a=2m+1, m=1,2,.
i £— 74+ 2m 2m 41 2m+1
iz 2m 2741 27
_i l—74+2m 2m 4+ 1 2m +1
2\ o 2 +1 2j
>1
By lemma 1 b).
i) a=2m+2, m=0,1,2,.... We get
i”: £—j+2m+1 2m + 2 2m + 2
iz 2m-+1 27 +1 27
h_f: L—j4+2m+1 2m + 2 2m 4+ 2
i=0 2m+1 25 +1 27
>1

by Lemma 1 c).

To finish this we have that,
of n),

Con®* <

for certain positive constants (independent

nta—1\
«a

< Cin®

n=1,2,... (directly or from the results in the next chapter).

Then, if n > [%]

1 n n
B 2o Por| 20 Pa-jr1(a2j-ok + 49j_2k41)
j=k

T op-1

2

I

n !

2 P—j+1(925 ok + 25 k1)

j=k
e+ |

2 Pnjr1(99j—ok + d2j_2p41)

j=t
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1 "E?l] 2% +a—1
(n—;-g—l) et P
k-g-[“—;—l.] n—j+4+a—1 o _ o
= a—1 25 — 2k 2j — 2k + 1
s I

201?1“ kgl Cp2%k
2egy "L C a— 17\ o+

"G 2, 2 (- [5)

which is unbounded.

Therefore for the Cesaro means (C,a) = (ang) with « = 2,3,...,

(%a,n [ﬁ]) is not stronger than (a,;).
"2
2) a) is trivially satisfled.
b) Prejp1 =1 n—N+1<5<n

Consider n sufficiently big. Then, since {Pn} is bounded, we only

consider
n |I'n |
DS Pr~j+1(92j—2k + 92j—2kt1)
k=1]7=k 7
n—N+1| n f
= D, |2 Pa—jrilaoj—or + @2j—0kt1)
k=1 |j=¢ .

n I

n
+ 2|20 Pejra(aaiok + 02— 9841)
k=n—N+21j=k

=21+X2,  say

n—-N+1 n f

1= ) Y. {g9j-9k + @j—2m41)| =0
k=1 |j=n—-N+1
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7t

because j:niZNH(qzj-zk + ¢2j-2%+1) is the sum of 2N consecutive a5 _’s

which is 0 (Example 2)).

0

n n
Ta= D D (avjak + 92j—2k+1)
k=n—N+2 |j=k

n

< X X2=2 Y (-t

k=n—-N+2j=k k=n—-N42
n
<2 3 (WN-1)=2-1)°
k=n—N-42

¢) Again, we only consider

n—1 n

> (k190 + 20 Pnjr1(92j_ok—1 + a0k
k=1 j=k+1

n—N

T
= D |[Pa-kr190+ D (995-2k—1 + a2_0p)
k=1 j=n—N+1

]

n—1

n |
+ 20 Pakr190+ Y, (99j-0k-1F aaj o)
2

k=n—N+1 j=k41

=N

n
21 reduces to 1 Pn—k+190 = 0 because n —k +1> N+ 1 and

k
1(9’2j—2k_.1 + qu_gk) = 0 as before and
_|..

n—1 ] n
IEQng ZN 1 1+ % 2] (N -1) 42N —1)2,
=n—N+ J=k+1

To complete the proof we need to check that {92j_1 + a9 ik +1}J€91 is

) -sumrmable to 0: for fixed &, choose any j > N — 1 +—]“7+—1. Then,

92—k T 92j-k+1>

7 V=1 1 V-1
¥ Zo Sjr = 3 }% (995—9r—k + 92j—2p—p11) =0,
r= : ==

»
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being the sum of 2NV consecutive g; ’s.

Nevertheless, these methods do not satisfy the Klee-Saisz condition in

a non-trivial way: we have, necessarily, that

n 5 5 9 2n+1 5 5
Z ik (s3g, + S9pt1) = Z an,[é]sk —0
k=1 k=2 2

n
as n — o0. So,if n > N, le; > ('9‘22k + s%k+1) -+ 0 which implies
k=n—-N4+1

both s9, — 0 and $9p41 — 0 so sy — 0. In which case the summability

of subsequences is trivial.

Remarks: Here we prove a growth restriction for Ngrlund means:

suppose that P, — +o0o and )o:O lgj| < 400, then {s,} (N, pn)-summable
7=0

implies nl_i_}ngo }35:: =0.

n
Proof: Put ¢, = % 2. Pn-k+15 — t as n — oco. Then s, =
" k=1

n

n n

L Gn—pPrtp s0 sp ~t = T Gn—k Pty — 1) because 3 ¢, 7P = 1,
k=1 k=1 k=1
n=12,.... If £ >0, thereis ky such that |t; —¢| <¢ if k> ky+ 1 and

o0
thereis k1 such that 3 lgj| < e. Then, if n > ko k; we get first
j=ky 41

7l ' n
20 Gk Pelr =) < S lan_p|Pelts — 1l
k=l 1 kekg-+1
n
S Pue 3 |gu_p] < CiPre
k:ku-l-l
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and
ko
> kPt — 1) < Z |tn | Pplty — t]
k=1 k=1
U
S CoPry Y gz
k=1
n—1
=CoPry > gl
j=n—kq
(e a]
S CaP, > lgjl
J=ki 41
< CoPp e

Thus n > kg + k1 implies

[sn — ¢

7. < Cie -f—C;; <(C1 + Co)e
and nll{%o]sﬂi = 0 since P, — +4co. In the case of (C,a), we have
Py ~n% > +oo and jg() |q;] :féo ](‘;)’ < 400 so {sp} (C,a)-summable
implies nli{%o P = 0.

Note that if g lgj| < +co, and {P,} is bounded, then {Pn} con-
verges because‘lt is nondecreasing. So, if P E Pn—k+15p — 1 we must‘
have ks —“P—— =0 and P, — Py > 0 so hm (.sn —t}) =0 and (N,p,)

is equivalent to convergence. Examples of this are furnished by pnp ="

0<r<1,then P, = 3%) which is bounded. And

pz) = Z Pyl = TZ(T:L')J

j=0
r 1
ST k<3S
80 (1(59):'117—5’3 andqe——,ql—- -1, ¢ =0, 7 > 2. And we obtain: if
. (l=rr® & s
A T g = (0<r<)

k=17
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Then lim sy, =s.
n—oo
In general, (N,ps) is equivalent to convergence iff

n
sup ) |¢,_; Pt < +oo
n2lp=1

Proof: If (N,pp) is equivalent to convergence, then its inverse is
regular (from Lemma 3, 2) of Ch. I). If the condition above holds, then
since f} n-pPr=1,n=1,2,... weneed lim ¢; = 0 in order to have a,

k=1

J—oo
regular inverse. But,if n > 1,

oon n-+1
;}IQJ'I = 21 |an—j+1]
j= j=
1 n+1
=B D ln—j+1|Py
j=1
1 n-t1 C

S w2 Bl < —
Pl;]nﬁ Jl 1

n X0 R
where C' = sup ¥ {¢p-4Fil,ie. 3 |g;] < +oo which forces lim ¢; = 0.
n>1k=1 j=0 :

J—e0

0
(Note that (N,pn) equivalent to convergence forces 3 lg;] < +o0.)
. i=0
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CHAPTER IV. THE CESARO MEANS

Definition: Let o be a positive integer. the Cesiro Mean of order

o, (C,a),is the triangular matrix

n— k+cr— )
(n-{-a-—-l) 1<k <n

0, k>n

Unk =

(4.1)

These methods are all regular (Example 1) Ch. 1), and we already
know that (%an’[%]) is not stronger than (a,;) = (C,a), a = 2,3,.
(Theorem 3.2).

Since the factorials can also be expressed through Euler’s Gamma Func-

tion, we define

Mlz+a-1)

falz) = T(e)T(z) (42)
on (0,+oc0) (here a > 1) and then aq: {1,2,...} x (0,+00) - R by
fagn—$+1[
'aa(n,:z:) — fati(n) 0<z<n (43)

0, ' r>n

because

n N 7 P(k'{“ﬂf_'l)__ ].1(?’1‘{"01)
> falk)= g_;l P(a)'(k) ~ T(a+ 1)I{n)

= fa+1(n).
We will proceed to prove that (%an ﬁ) is stronger than (a,;) = (C, a).
"2

Lemma 1. 1) For each 8 > 0 hm Jﬁ%%) = 1 and so, for any

a>0 and 8> 0

£ lEFB) _ T(z+p)
220 2PT(z) — ook 2T ()

a

0<i < +eco
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2) ¥ (app) = (C,a), & >0 then (%an _;E) is regular.
15
Proof: 1) Stirling’s Formula ([3]) yields
I'(z) = $a:—~~§-e—~:n+,u(x)v27r’ z >0

where TQ:}_+I < p(z) < 1%—$ . And then
L(z +4) _ (2+B)HF sems=Prut+0)

mﬁ]f‘(:c) B mﬁxw—%e—z+ﬂ(m)
p-} r
= (1 - E) : (1 + é) e~ P et (z+8)—p(z)
x z

which tends to 1 as ¢ ~ +co and so %’EI‘%?)) is bounded above and away
from zero on some interval [b,+00), b > 0. This completes the proof
because the function %ﬁf‘% is continuous and positive for z > (.

2) By 1), xﬂr_l{lm f"';fx(m) = I‘(al-i-l) for a > 0, so z—E?oo fag1(z) =

+oo and so

n—0oC

lim 3 fal(k) = fm foys(n) = 4oo.
: k=1 :
Obviously fo >0 on (0,+00) and

fo(nt+3) T(rta-}) rrm

fa(n)  I(a)T (n+§1) T(nta-1)
P(rnta—4) 1w

r(n+%) I'n+a—-1)

nta—1 Plntaty) 1)
n—i—a—% I‘(n—f—%—) I‘(n+a)
_2m+2a-2 P(n‘*'ﬂ"l‘ﬁl) - n%T(n)
S 2n+2a -1 (n+%—)aI‘(n—]—%) I'(n+ )
(n+3)° |

ne

— 1
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as n — oo.
Corollary o Proposition 1, Ch. III implies that (glan’ %> is‘ regular
where (a,;) = (C,a), > 0.
Now we prove:

Theorem 4.1. If (a,;) = (Cia), @ =1,2,8,..., then (glan ) is

stronger than (ay,;).
Proof: We verify the conditions of Theorem 3.1, 2):

q5 :(~1)j(33’) — 0 as § ~ 400 for any « > 0 because E ‘( ){ < o0,

a > 0. Next if

_Ikta) 20 T(n-f+a) . ./,
ke 2F(ﬂ+a)1‘(k)yr(a)r(n— ‘+1)( D’ |~k
() m rhi-d+a)
,,_2(n+a—1) Jg I‘(a)P (n—%—[—l)(

(33

(84

SN

~1)J—k

< k < 2n (we are using the notation of Theorem 3.1, 2y with f = f,,

and F'= f,.1) then d,; =0 if 1€k<2n—a, a=1,2,...

i) First, dyp=0if 1 <k < 2n —a, o =1,2,.... Suppose this is

true, and let us complete the proof. Then

(") & T(n-f+q)

dnk = 2(n+a—1) gk P(O:)I‘ (n _ % +1

o
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i 2n—a+1<k<2n,and 0 , otherwise. Therefore, if n > %}'—1

2n 2n
Z |dnkl = Z ]dnkl
k=1 k=2n—a+1
1 2n k4 a—1
= St O

2(n+§ 1) k=2n—at+1 \ &

) 3

Z” I’(n %-{—a) (—l)juk -ak

= D@ (n—4 +1)

Now, since a > 1, Lemma, 1 yields with C independent of n, 7, and k

D(n—4+a) §C(n—i)a—1 fh<j<om—1
(n—§+1) 2

—— : T(n—i+a) g a—1 .
and I'(«a) if § =2n so certainly I‘(n—%+1) <y (n %~]— 1) if
kE <j < 2n. The samelemma yields, with Cq, C3 positive and independent

of m

Thus, for Cy4 iﬂdependent of n, 7, k

2n 2n 2n : -1
_ Cy 3 & o
Dl S wy (n-den)T ()
k=1 k=2n—aq+1 i=k

Cy 2n N A a=12n-} o
< ) 22 B ln-S+1 Zj ;
=2n—a+l i=0
cy & 2n—a+1 \e-lazl/,
S;&k QZ k (n"—~§~—+1) ; ;
=2n—a+4l j=0
CPn—k<a-1)
< G P g,§(2n)aa = C52%
- nC! nCl!
k=2n—a4-1

and iii} holds for « =1,2,3,....
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To finish, we establish dj,; = 0 for 1 Sk <2n—o: define (Az)y =

Tm — Tyt . then

(ANg)m = g: (]D(—l)fme

J=0

=1,2,..., N=12,..., and ANz =90 iff {zm} is apolynomial of

degree at most N —1 in m. On the other hand, ﬂl%) H (m +7),
r=0

>0, N=1,2... and, since (J )#0 onlyif £ <j<k+a, weget

) (k+cx—-1) kta (n—%—l—o_f) of a )
dnk = 2(71.}.;, 1) Jzk P(Gf (n — % + 1)("’"1)] (j —k
when 1<k <2 —a, And so, if a > 3

(‘74""‘”1) kta a—2 .
dop = o .”‘)—15—’“ n—1+)
nk QP a-) (n+a--l) ch (J —k ( ) - 5 r |
(k-i—a 1) o a—2 .
+k
1)/ (n L r) :
2F(a)(n+a—) g ( >( ) rl;I() 2
_92
Now, for fixed n and a > 2, z;m = aﬁ (n —% +r) is a polynomial of
r=0

degree @ —1 in m so (A%), =0, k = 1,2,.... That is

a -
5 (‘”) (“1Yizs; =0
=0 \J

or

 + k
Z ( )( 1y H (nmj—_i_-m-i-r) =0.
Jj=0 =0 2

This proves that d,;, =0, 15k_<_2n—as, a=1,23,... for a=1,1it

can be verified directly).

Thus, if @ = 1,2,3,..., then (%a.n &) is stronger than (a,;). The
12
next step involves the Klee-Sziisz condition and the growth requirements on

the sequence.
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Theorem 4.2. Let a be a positive integer. If {sp} is (C,a)-
summable to s and

sn|

232 nf(log n)7

< 400 (4.4)

for some constants 8, v with 0 <A< % and v > 0, then almost all

subsequences of {s,} are (C, a)-summable to 3.

Proof: To begin with,

< 1<k <2n,

v fa

2

C independent of k, n. Then

2n Gl 2n
a? 45T < =23 k¥ (log k)2
k=1 2 " k=1
Co 9py1 2y _ Collogn)?y
< —n logn)”! = =220
=3 (logn) =28
Cs
nr
some r >0,
Therefore,
oo 2n ~1 o] en’
Y exp{ —c Zai&sz < > exp o [ <t
n=1 k=1 2 n=1 3

So the Klee-Szisz condition is satisfied.

Next, we complete the proof by showing that

o<
nli{%o]g(ank ~ %, ) = 0.

Define Fi,, Gn and H, as we did in Theorem 2.3. Then

ke lGp=n—[Cynloglogn]<k<n
keHpn=>n+1<k<n+[C/nloglogn]

3
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and .

> (0 = 0 NDNEID DRSS E —Z

k=3 ker, keG_n. keH o
S = %1+ Tg — 53
Now,

a”k:(n-l-i—)(a_l)lﬂ(n E+37), 1<k<n

and

"2

. 1 1 a1 A -
an:‘k“(n+a—1)(a_1)!g n-o ) 1< A <2n.
o j=1

Therefore, since (a— 1)!(n+3_1) 2 C1n®, € independent of n, we obtain

|ank"‘a | -

k) — Py (n—_Qk)' for k € Fp where Pu(t) =

H (t +3) (and Pi(t) =1). Now, on to the estimates:
J.._.

1Bl < 20 lapg —a_ 2ol sy, )l

- kEF,

Co Ap(t
ST [Pln= )= (n _ —%Q) 53,0
S% Py(n—k) - Py (n——-/\g—(t))’kﬁ(logk)"'

" ker,

Cs Ak
Se 2 [ | IPaOR og k)"

eF,

where £ is between n — & and n — 2‘2“1

Now, by its definition Py and P are both nondecreasing and positive

on [0,+c0) (at least when a > 2: a =1 was already treated in Ch. II).

Therefore, 0 < P.,(£) < Pl{(n) because £<n—%k or £ <n ——)‘5” and since
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P}, has degree o — 2 we further obtain Py(n) < Con®2, ¢, independent

of n, and thus,

' C
I < ;g_ 2 kloglog k bP(log k)Y
kEF,
Cy
< 3 > W/nlogn nﬁ(logn)'y

keF,

Cqy 3 1
< =3 -3 log ny1+

_ Cy(log n)7+51

: — 0
n2"

i) 2] < 37 an] [, )]
ke,

< LS 1Pan - BB (tog )7
L G,
GiFa(n) > #P(log k)7
n k€G,
<Y > kPlog k)7
" keG,
< ggnﬁ(log n)’ 31
n kG,

Co(logn)7
< '—i—i%)—(l +{C/nloglogn])

C’gn%(log n)'f"*'ilf _ C3(log n)ﬁ"%
nl-—8 -

<

- 0

IA

1
nz2

B8l 37 o, ainl syl
ked, 72

< G P, (n - "/\i(t—)) ] ¥ (log )7
keH,! . 2

n«

3
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59—2 > k'ﬂ(log k)Y
" kemH,

< Co(n + [Cy/nloglog n])ﬂ(log(n + [Cv/nloglogn]))? S 1
& _ keH,
C3nf(log n)’
< Z2 T AT
<= 2,

keH,

Cs(logn)Y
= —3-?%%- - [C'y/nloglogn]
Cyllogn)7+3
1

e

—

This completes the proof because
o8}
nll{%o k; an,)‘ 2 QSA"’(t) =3

was already established: {sp} satisfies Klee-Szisz condition for (%an, %)
and (%an,g) is stronger than (a,;).

Notes: Growth condition (3.5) is again motivated by the fact that
if {sn} is (C,o)-summable (« > 0), then im 7% = 0 (see previous
chapter). When {sn} is bounded and (C, a)-summable to s, then {sn} is
(C,1)-summable to s ([5] p 108, Thm. 55 and p. 154, Thm. 92}. Therefore,

Theorem 3.2 is most important when {s;} is unbounded.
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