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Abstract of the Dissertation
The Euler-Chow series for Toric Varieties
by
Enrique Javier Elizondo Huerta
Doctor of Philosophy
in
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1992

Let X be a smooth n-dimensional projective variety. Consider
the space Cj of all p-dimensional effective cycles on X with a given
homology class . We define the Fuler-Chow series E of X as
the element Y aem,,(x) X (C\) A € ZH. If we choose a basis A for
H,,(X,Z), E can be written as E = Tyern X (Ca)t* where m is
the rank of Ho,(X). We in: sduce a concept of rationality in Z¥
and prove that this does not depend of the basis A. It is shown
that if X is a smooth projective toric variety the Euler-Chow series
‘s rational and an explicit computation is given in terms of an ar-

bitrary basis [A. In particular, we compute the euler characteristic
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of Cy, for all A in H,, (X,Z). The idea behind the proof is to de-
fine the Equivariant Euler-Chow series Ep for X, using equivariant
cohomology instead of singular cohomology. Making use of proper-
ties of toric varieties, it is not complicate to compute explicity L.
Then, there is a map 7 from Z¥ to 277 induced by the projection
map 7 from H¥ (X,Z) to H* (X,Z) which sends E7 to E. The

computation for ¥ follows since Er and I are known.
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"Chapter 1

Introduction

Algebraic geometers have long been interested in the space of all effective
algebraic cycles on a given projective algebraic variety. It is well known that
each connected component of this space is itself a projective algebraic set which
is not in general irreducible. Many years have been devoted to understanding
the structure of this space. However, there are still many important and
fundamental questions which have not been answered. For instance, we do
not know the Betti numbers and in general the Euler characteristic of these
algebraic sets. In order to state our results we need to give a more precise

meaning to “the space of all effective algebraic cycles”.

Let X be a fixed n-dimensional variety contained in PV . For each pair
of integers p and d, with d > 1 and 0 < p < n, let G4 (X) be the set of all

finite formal sums
c = Z Ng Va

where n, is a positive integer, V, is an irreducible algebraic p-dimensional




variety of X and
deg(e) i Z ne deg (Vo) = d

where deg (V,) is the homological degree of V, as a subvariety of PN . Fach

space Cpa(X) has the structure of a projective algebraic set and is called

2 Chow variety. The inclusion map 1t : X «— PV induces a map .
Hy, (X, Z) — Hyp (PN, Z). For each homology class A in Hyp (X, Z) with
i. A = d[P?}, the space C, of all elements of Cpq(X) with homology class

), is a subvariety of Cpd (X) . We are interested in computing the Fuler

characteristic of Cy , for all A, and in looking for relations among them. The

case of X = PN was worked out in a paper by Blaine Lawson and Stephen

S, Yau. They prove the following equality

1 £\GH)
X (Ga(X) )t = (T—_t) '
d=0

We would like to state the problem for an arbitrary algebraic projective

variety, and solve it for the case of a smooth projective toric variety. The series

that we obtain is not in general a formal power series. We have to clarify, and

give to it, the meaning of being rational. Homology and cohomology are

considered without torsion.

Definition 1.0.1 . For each nonegative integer p, the Euler-Chow series

E? of X is the element
=Y x@)r € 7D,
X

where 7He XD s the set of all funclions from H,, (X,Z) to L.

]
!
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If we fix a basis {x,...z,} for H2, (X,Z) and if X is written in terms of the

basis as A = Y.rr, o;z;, then the Buler-Chow series takes the form
EP =3 x(C )™ ¢ 17,
)

‘where 1) = %L 42 Since we can have negative powers, EP is not neces-
sary a formal power series, so it does not make sense in general to ask if &P
1s rational. In the case of PV | the series runs over positive numbers, so it
is itself a formal power series, and it is rational. However, we will be able to
define a similar concept for E?. In order to do this, we observe that there is
a map p, from a subgroup of 'Z[[ts,. .. tmaT1,. .o Im]] tO 77", which sends
the series Sp = D natit - e (F)% Trto Sg= Y. ng g P
aENI™ pedm
where f; = a; —@;, and thesumng =3 ,n, 1is taken over the o’s with
the property f; = o; — @;. (‘:Ve have that S, is in the domain of p if, for
all i, B; = a; —@; with nhdéé '0, has a finite number of solutions on:,ﬁ} We

arrive to the following definition.

Definition 1.0.2 . An element E of 2722 (X0 is called rational if there is

a rational function Sy in the domain of p such that p(Sa) = K.

Here, we are just associating to the Euler-Chow series a rational function m
the variables {t1,...,tm}. We show that this definition does not depend on

the basis, in other words, rational is an intrinsic concept.

Theorem 1.0.1 . Let A and B be two integral basis of Hy, (X,Z) . An

element E of 272> (XD s rational with respect to the basis A if and only if it

is with respect to the basis B.



We recall that a Toric Variety X, is a normal variety that contains a torus
T as an open dense set, and the action of the torus on itself can be extended
to the whole variety. In order to study the Euler-Chow series for a smooth
projective toric variety we need to define the equivariant Euler-Chow series.

From now on, toric variety means smooth toric variety.

_Deﬁnition 1.0.3 . Let X be a toric variety, and let Hi' (X, Z) be the equiv-
ariant cohomology of X. The equivariant Euler-Chow series of X is the

element

By = 3 x((CMe)¢ € 27D
3

where ¢ € H¥ (X, 1) and (CT); is the space of all invariant effective cyles on

X, with equivariant cohomology class &.

Consider a basis A4 for H2 (X,7) which contains as elements, the cohomology
class of the closure of the orbits under the action of the torus 7' on X. The
equivariant Euler-Chow series is a rational function, and its expression with
respect to the basis A4 is
ool

5= 11(=)

where N is the number of orbits of dimension p. The map #, from the equiv-
ariant cohomology to the singular cohomology, induces a map [ from a subset
D, containing E%, of ZHT (X.2) o ZH? (XD From the definition of 7, it easy
to see that this map sends the equivariant Euler-Chow series EF. to the Fuler-

Chow series FEP. All these results, together with the important fact that C, is

compact, allow us to prove the following theorem.




heorem 1.0.2 . For any nonsingular projective torie variety X over C, {he
Fuler-Chow series is rational.  In fact, if (Oy,...,On) denotes all the orbits

_"df codimension 2p, and if B = {x1,..., 2.} is a basis for H* (X,Z). Then

ﬁ 1

BT = T

o \L - Thm &

where [0;] = Yiey ajiT; s the expression, in terms of the basis B, of the

cohomology class of the closure O; of the orbit O;.

An important remark that should be made here is that the matrix 4 = (a;)
is directly computable in terms of the fan of X. This allows us to compute
easily calculate many examples. We recover the results of B. Lawson and 5.S.
Yau. Chapter 2 contains the definition of the Euler-Chow series, the definition
of rationality for an element in ZZ", and the proof that this definition does
not depends on the basis.

Chapter 3 contains a review of Toric varieties. The most important result that
will be used later is the last theorem of the chapter. It is characterized by the
cohomology ring of a smooth projective toric variety.

Chapter 4 contains the main resultsof this work we find an explicit expression
for the equivariant Fuler-Chow which we use to compute the Euler-Chow for
a smooth projective toric variety. The appendix contains a letter from Emili
Bifet. He suggests how to reformulate, in an intrinsic way, the results con-
tained in this thesis. I consider the approach suggested for him very elegant.
Unfortunaly, this letter was written one week before the defense, and it was

very hard to rewrite everything in the terms suggested by him.




.Chapter 2

The Euler-Chow Series and the Space of

Cycles

2.1 Definitions and Properties

In this chapter we define the Euler-Chow series and state the problem

in which we are interested. At the end we discuss a few examples. All the
definitions and results are restricted to the complex numbers, unless otherwise
stated.

Throughout this chapter all homology and cohomology are considered
modulo torsion.

A subset X of PV is an algebraic set if there exists a finite number of
homogeneous polynomials in Cx,...,zn] such that X is the set of common
zeros of these polynomials. X is always provided with an embedding j : X —
PN,

X is called irreducible if it is not a non-trivial finite union of algebraic sets,

no one of of which contained in another. We define the Zariski topology on




PN by taking the open sets to be the complements of algebraic sets.

A projective algebraig variety is an irreducible algebraic set of PV
where its dimension is defined as that of a topological space. A subvariety Y
of X is a subset of X which is itself a projective algebraic variety. Let {X,j} be
an algebraic subset. The degree, deg(V), of an irreducible subvariety V C P*
of dimension p is the number of points in the intesection of V with a generic
(N-p)-dimensional linear subspace of PN and it is the same as the degree of

itsfundamental class in Hy, (PN, Z) = 7 (see [GHT78])

Definition 2.1.1 An effective p-cycle ¢ on X is a finite (formal) sum
¢ = S.n,V, where each n, is a nonegative integer and each V, is an irreducible
p-dimensional subvariety of X. We define the degree of any effective eycle
c = Yn,V, as deg(c) = Yn, deg(V,). From now on, we shall use the term

cycle for effective cycle.

For any algebraic set j : X < PN and integers p > 0,d > 0, we denote
by Cp.a(X) the space of all cycles of dimension p and degree d on X. We set
Coo(X) = {B} by convention. It is well known that C,4(X) is a projective
algebraic set of PN® and that C,4(X) is an algebraic subset of Cpa(PN) (see
[Sam55] ,[Sha74]). Let A be an element in Hy,(X, Z), and denote by Cy(X) the
set of all cycles on X whose homology class is A. Note that Cy(X) is contained
in Cpa(X) by the inclusion j : X — PV where j. A = d[P?]. Since any
a,lgebreiic set is the finite union of irreducible components (see [Har77]}, we have

Coa(X) = Ufilc;;,d(X), where C} ;(X) are its irreducible components. Suppose

(XN ;;"'d(X ) # §. Since any two cycles in C;;‘,’d are algebraically equivalent, (




:see [Ful84}) they represent the same element of homology, so C;;" (X)) C CA(X)
for some A. Therefore, CA\(X) = Uf;zlczfd(X) where {iy,...,%/} is a subset of

{1,....,m} with Cx\(X) N ;;‘,’d(X) # 9. We have proved the following lemma:

" Lemma 2.1.1 Let A be an element of H,, (X, Z), then Cy(X) is a projective

algebraic set.

As a consequence of this lemma we have that Cy(X) has a finite triangulation

(see for example [Hir75]).

2.2 The Euler-Chow Series

In this section we define the Euler-Chow series of X in dimension p, and
discuss some of its properties.

Let H be a free abelian group. We denote by Z¥  the set of all functions
from H to Z. We shall write the elements of Z7 as 3, .;f m(h)h where

m(h) € Z for each h in H. We are ready for the following definition.

Definition 2.2.1 Let p be a fized nonegative integer. The Euler-Chow se-
ries of X in dimension p is the element
FE?P = ZX (C,\) A€ ZHQP(X’Z)
)
where C\(X) is the space of all effective cycles on X with homology class A
and where x (CA(X)) is the Euler characteristic of Cy. If Cy s the emply set,

by convention its Euler characteristic is zero.




Let P = Z{ty,...,1,] be the ring of polynomials with coefficients in Z. Let S
' be the multiplicative set of all polynomials of P whose constant term is +1.
We denote by Pg the localisation of P with respect S. There is an injective
" morphism

Z[tla s 1t1‘}5 Lﬂ z[[tl’ Tt 7t7']}

from the localisation Ps to the ring of formal power series in the same variables,
given by the universal property of Ps. We call an element of Z[[ty,...,t.}] a
rational function if it is in the image of the morphism ¢.

Let H be a free abelian group and m its rank. Let A be an integral basis

of H. This gives us an isomorphism
F.7m -— H
and an isomorphism of groups
U, I — 7
We shall express any element of @ € Z*" in exponential notation as

a = Z o t”
agZm
where @, = a(a)and t¢ =11 1% for a = (a1, ... , ). Observe that the
elements of ZZ™ are not in general formal power series, therefore we can not
say, or ask, if they are rational functions. However, we will give a definition of
rational, and will prove it is an intrinsic concept.

Let t1,... tm;T1s. .., Im be variables and denote by R the ring of formal

power series Z[[ty, ... 4, f1; .. » b)) in these variables. We write each element



of R as

— -8
(B.8}eNzm

(5. B) = Braee o BusBar o Bo) and 18 = it T =TT

Let 0 = Y455 ng5 ## 7 and a = (ay,...,0m) be elements in R and N™,

_respectively. We write
N, = card {(8,B) € N*™ Ingz #0and a= B — B}

Let D be the set of all elements o € R with the property that the number

N, o is finite for all o in Z™. We have a map
p:DCR— 7

defined by

Y ongt?? B Y vat® (2.1)
ARENZ™ o

where

Vg = E ngg-

B-B=a
We arrive at the following definition.
Definition 2.2.2 Let A be a basis for H. We say that E in 77 is A-rational

if there is a rational function ¢ € D, such that p(a) = V4(F).

Observe that in this definition W4 : ZH ., 77" is the isomorphism defined
above in terms of the basis A. The next theorem shows that this definition is

intrinsic, in other words, it does not depend on the choice of basis.

10




‘Theorem 2.2.1 Let A and B be two integral bases for H. An element E of

7 is A-rational if and only if it is B-rational.

 Before we go on with the proof of the theorem, we give the following definition

" as a consequence of the theorem.

Definition 2.2.3 An element F of Z is rational if it is A-rational for some

é)asis A of H.

Proof of the theorem

The heart of the argument is to show that the following diagram commutes

RHOD L 7%

1 | @
RH>D X 17"

where & and @ are maps induced by the change of bases. We start with a

description of these two maps. For any a € Z, let
a* = max {a,0} and @ = max {~q,0} and a=at —a”.

Let A = (a;;) be the matrix representing the change of bases. Then A =
At — A~ where At = (af;) and A~ = (a;). The isomorphism A induces two

maps. The first map is the isomorphism of groups

o 77" — 7%

11




:_ given by
¢ Z ngt*| = Z N Al = Z NA-1(~) 7
o o ~

The second one is the isomorphism
P:R-—TR

defined at each generator t; and #; by

— mn a+. _a.. —_— L a.. _.a"“’.
S(t)=[¢" %" and @) =11 74" -
=1 i=1
To see that @ is an isomorphism one checks that for any two basis A and

B, we have $40®5 = ® 4 0 Oz, Observe that By the universal property of

localisation, the following diagram commutes.

Lltrs Ty By 2 R=Lllbyeestms iy Tl

L[ty b L1y Imls Fr R=Lltr, st iy sl
where Z[tyy .. ytm,t1y - bm)g 15 the localisation of the ring of polynomials
L[ty s tmy b1y - ,E,) with respect to the multiplicative set 5 which consists
of all polynomials with constant term 1 or 1. Consequently ® sends rational

functions into rational functions.

Next, we would like to prove that $(D) C D. Let o € D be an element
in the domain of . We write 0 as 0 = 255 755 t8 7°. By the definition of

D, for each a the number of solutions Ny 4 of

a=p—F with ng#0 (2.2)

12




is finite. From the definition of ® we obtain

$ (O’) = 6 Z— n,@-ﬁ tﬁ '{5 — Z ngg t(A+.B+=4_E) *{(A"',@+A+ﬁ)
88 4B

Observe that the system

§ = AYB+A B and T = A8+ ATH with (8,5) e N (23)

has a unique solution, since ¢ is an isomorphism. We write

6(0) = ¢ Z N5 8 ?_g' =
o 7
— E g t(A'*ﬁ-!-A“ﬁ) t(A_ﬁ'+A+E) — E Uz #57° = F.
el &5
Where
with (65) = (A*B+A°F, A8+ 4°P)

Usg = Tgp

We now prove that @ € D. In order to do that, we have to show that for any

4 € Z™, there is a finite number of solutions on (8, §) to the system
y=68~8 with u#0. (2.4)
However, any solution (8,6) to this sytem, we have
N=6-8=ATB+AB—AB-ATE = A(B—F) withng#0.
This is equivalent to the system

ANy) = ATTA(B-B) = B— B with ng#0. (2.5)

13



However, this is the system 2.2, which has a finite number N4-1(5),0 of solu-
tions. Then 2.4 has a finite number of solutions. Therefore, d(e)=7€D

and

p(B(0)) = p [T ugt?| = 3wyt (2.6)
55 , +ET™
where
wy = ), Mg
B-B=A=1(v)

Next, from the definition of p (see 2.1}, we have

p(o) = D vat®, wherewv, = > ngg-

aeZ™ a=p~B
Then,
¢ (p(O')) =¢ Z Ve "] = Z NA-—lh,) t* (27)
aed™ ~yeT™
with
Va-1(y) = Z Rgp -
A-1(v)=B-8

Finally, comparing 2.6 and 2.7 we obtain

2.3 Examples

I) The projective space P"(C).

Let [zo: ... @n41] be homogenous coordinates for P*(C).

14
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For each (p+1)-tuple of integers @ = (aq,...,q,) with 0 < g < oy < --+ <

o, < n, consider the coordinate {p+1)-plane
Crt = {z € C™ {2 = 0 if i # o for somej} C "'

and denote by
P CcpP”

the corresponding projective p-plane, Tt is not hard to see that any p-dimensional

\\mva&r}ant] cycle on P™ has the form
V =Y n.P% for nonegative integers fa.
In [LY87] it is proved that

x (Cpa) = card {(m4,...,m,) €Z" : m; > 0 and Som; =d} = (i,

where v = (3f1). Therefore,
oo 1N GHD
EF = Z X (Cpa) tt = (ﬁ) .
d=0 -
II) P* x P™,

Using the same method as in the last example, and the canonical decom-
position

Hop (X, Z) = 6 Hu(P") @ Hu(P™)
k+i=p
we obtain, for any integer p, and 0 < p < n+m
n+1)(m+1)

EF = H (1 - tk!l)_(k+1 141
k+1

1II)Zero cycles.

R L



16

Let X be a projective algebraic variety. We denole by SP?(X) the d-

.. be the Betti numbers of X.
(X) is the

fold symmetric product on X. Let bo, by, .

MacDonald proves (see Mac62]) that the k" Betti number of SP?

: . koad . .
coefficient of z” % 1M the power series expansion of

(14at) (1+ 23>
(L—t)ho (1 — )2 (1 — ot )b

and therefore the Euler-Poincaré characteristic of S Pi(X)is the coefficient of

. Finally we have
1

—————
(X)

p___m dryyY 3d =
E ?zzox(SP(A))t T
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Chapter 3

Toric Varieties

3.1 Strongly Convex Rational Polyhedral Cones

In this section we state some definitions and theorems without proof about

convex polyhedral cones, we refer the reader to ([Ful89], [0da88], [Oda91]).

We start with the following definition,

Definition 3.1.1 A subset ¢ C V of the vector space V is callled a convex

polyhedral cone if
0=ﬂ20V1+---+R20V3 = {T1V1+"'+TSVS|T;' eR,r; >0,V eV}
{Vi} (sometimes R>oV;) are called generators of o.

The dimension of ¢ is the dimension of the subspace Ro = o - (o) of V.

The first Lemma that we will need later is due to Carathéodory:

Lemma 3.1.1 (Carathéodory)

Let o be a convexr Polyhedral cone with generators Vi, ..., V, the any nonzero




18

Jector V in o can be written as V = Y iV, with 1 <dim o and {V,} is a

subset of linearly independent vectors of AR A

f"Let v* be the dual space with dual pairing denoted by

<,>:V*><V_—>H

The dual cone ¢* of o 18 the subset of V* defined by

a*:{ueV*l<u,v>§0 Yo Eo}

and it is easy to see that o* is also a convex polyhedral cone.
o is called Strictly Convex if it contains no vector subspace but {0},

o} = {0}. In fact, o i

A cone
in other words, if o + {~ s strictly convex if and only if

o* spans V*. For any cone @, the cone

ol =f{ueV|<uv >=0 Van}:a*ﬂ(——cr)*

is a vector space.

a face if there exists uo € V* such

Definition 3.1.2 A subset T of o is called

that

r=0o0uy.

7 itself 18 a convex polyhedral cone.

Definition 3.1.3 ¢ is simplicial if it 15 spanned by linearly independent gen-

erators.




Let N be a lattice, there is r such that N & 7 Let M = Hom{N,Z) be the

dual lattice with pairing
<> MxN— 7

Let Ng=N®z R (resp. Mr=M®z R) be the vector space over R generated
by N (resp. M ).

Definition 3.1.4 A strictly conver polyhedral cone is rational if it has gen-

erators Vi,..., V, with each V; in N

Everything said up to this point preserves rationality. From now on, a cone
7obional.
means a strictly convex polyhedral cone. The following proposition is one of

the main keys to construct toric varieties.

Proposition 3.1.1 Let ¢ be a cone in Ng. Then

(1) S, = MNo*={meM|<m,v>>0Vv € o} is an additive sub
semigroup, containing 0, of M. -

(2)S, is finitely generated as an additive semigroup, in othe words, there
exist my,...,m, € S, such that S, = Zsomy + ...+ Loy,

(3)S, generates M as a group, i.e. S, + (—=5,) = M.

(4)S, is saturated, i.e. cm€ S,; meM, c€ ZLyo = m€ 5.
Conversely, for any additive semigroup S of M satisfying the properties (1)
through (4), there exists a unique strongly convex rational polyhedral cone o in

Ng such that S = 5,.

We are going to prove only (2), which is known as Gordan’s lemma.

Proof of (2): Because of Carathéodory’s lemma, we can assume the cone o

19



: s generated by linearly independent vectors, u; € a*M. Now

K"—"{ZWUEIUST{SI}HM

is compact and discrete, so finite, and since any u € o*NM has the form
S (a; + i) u for a; € Z and r; € [0,1}, then K generates o*NM as semigroup.

The next lemma is the last one in this introductory section.

Lemma 3.1.2 If r is a face of ¢ and if Sy = 0™NM, the there is a u€ o*NM
with T =a N1t and

" AM = S, + Lyo(—1).

For a proof, see ([0da88], chapl.).

3.2 Affine Toric Varieties

Let C[5] be the commutative C-algebra determined by a semigroup S.
As a vector space, C[S] has a basis {x*]s € S} and multiplication given by
Y'x* = x**. If {s;} is a set of generafors for S, then {x®} is a set of
generators for C[S]. Now, consider Spec (C[S]), here, when we speak of a
point p of Spec (C[S]) we understand that p is a closed point. We recall that
any homomorphism A — B of C-algebras determines a morphism Spec (B) —
Spec (A) of varieties, in particular we have that closed points correspond to
C-algebra homomorphisms from A to €. And if X=Spec (A), for each element
x€ Spec (A), x#£0, the principal open subset X,=Spec (A4,) C X=Spec (A)
correépond to the localisa,tion homomorphism A+ Ag.

An important example is the torus:
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~ 7" determines 2n

g = Misa latbice. Choosing an isomorphism M

semigroup generators
+ 4 +
(E 10,050 (0,5 1 0y (0007 1).

Letting X1 = X“'O""’O}, so X7 = X(_1,0,...,0)_ and similarly for other basis

elements, we have

C[M] = ClXy, X7 5 X2 ;1,...,Xn,x,;1]

C[X]_, vy anX;n..-Xm

the ring of laurant polynomials in 1 variables. 50

Spec (CM]) = Crx - x € =(C) =T

of T' can be identify with a homomor-

gebraic torus. Any point
7n = Hom ,(M,C*) = N @z C*.

is an affine al

phism from M to C* as a group, i-e.

we denote this group by Tn. Furthemore, for 5 a semigroup, the points of

Spec (C[ST) correspond to semigroup homomorphisms from Sto C:

Spec (C[S]) = Hom (S, C)

ly convez polyhedral cone in a lattice

1S,). Then

Definition 3.2.1 Let o be a rational strict

N. Let S, be the semigrotp o N M and let Ay = C

U, = Spec(As) = Homsg(Sa, C)

is called the Affine Toric Variety determined by o



Example

:N =", {e1, - r€n} a basis for N.

o = Ryger + - + Rzolry k<mn

and

FOM=12s0e1+ T Z5oe) + Z&Ue’,‘;ﬂ 4 +-Z§\0€;.
A, = C[ml,...,mk,:ckﬂ,:n;}_i,...,mn,w;‘*] SO

UJ:Cx---xC*---xC*—;C’“x(é)“‘k

and [,is nonsingular. Let 7 be a face of o, then from the previous section we
have that there exists u € o*N M such that 7 =00 ut and M =071
u + Iyo(—u). Then each element of €[r*NM] has the form XV 7" = [ (" Y
for w € o*N M. Therefore A; -—*.(Ag)xu and we have that Ur = Spec (Ar) C
Spec (A;) = Us s a rational open subset.

The process of associating the toric variety U, with the pair (N,o) 15 &
contravariant functor since, fp: N — Nisa homomorphism of lattices that
maps o' C N' to o C N then dual ¢* : M — M?* maps 0" to ", determining
a homomorphisin A, = Axr and hence Uy — Us.

Finally, it is easy to see that we have an action of T over Us which
extends the action of Ty on itsell, given by multiplication. More precisely, 2
point t € Tn is represented by a map M — C* of groups, and x € U, by amap
S, — C of semigroups. The product t - X is the map of semigroup;s S, — €
given by s — t(s)x(s) and {he dual map on algebras ClS,] — ClS,] ® C{M]
is given by x* Y @x forse Se.

Now let us go to see some basic properties of affine varieties.
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proposition 3.2.1 An affine toric variety Us 1s nonsingular if and only if o

is genemted by part of a basis for the lattice N, in which case
U, = Ckx (C)F, k= dim(o).

Proof

) See example above.

=)} We can assume k=n. Let M be the maximal ideal in Ag generated by
all y* for u € S5 — {0}. Then MJM? is generated by all x* such that u
in S, — {0} and u is not the sum of two elements in S, - {0}. Let Pm be
the point in Us that correspond to M, then if U, is not singular at P,
the cotangent space M [ M?* 1s a-dimensional, then o* have 1 edges and the
minimal generators along these generate S,, but S, generates M as a group

so the dual o 1s generated by a paft of a basis for N, therefore Uu,=zcC” |
Proposition 3.2.2 U, is normal.

Proof

Let A, = Clo* N M], we have to show that A, isd integrally closed. Let
7y,...,Ty be the faces of codimension 1 of o. Then we have that B* = Ny 7
Therefore Ay = NAx is isomorphic to Clz1, T2 275 T 27t which is inte-

grally closed. So is A

3.3 'Toric Varieties and their Orbits

Definition 3.3.1 A Fan A is a set of cones o in N such that
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1) if 7 is a face of 0 € A then T € A,

2) ifo,0' € A then 0 N o' is a face of both, o and o'

We are going to consider only finite fans. For each o € A consider its
respective U,. We can glue all the I/, in the following way: take o and 7 in
A, then ¢ N 7 is a face of both ¢ and 7. Then U,n, is identified as an open
subvariety of U, and of U,. We glue U, and U, by identifying this common
subvariety U,n,. Furthermore, it is proven easily that the action of Ty is
compatible.

Now, suppose ¢ : N’ — N is a homomorphism of lattices and that & C N,
A’ ¢ N’ are two fans in N and N respectively. Assume that for each cone o’

in A’ there exists a cone o in A such that p(¢’) C o, then the dual
Z — homomorphism ¢* : M' — M
induces a semigroup homomorphism
oM Ny —=Mno*

which induces an equivariant morphism ¢, : U, — UJ,. We can glue equivari-
ant morphisms of this form for toric varieties and obtain a general equivariant

morphism. In other words:
Theorem 3.3.1 Via a covariant functor
(N,A) = X(A)and ¢ = o,

the category of fans together with maps of fans is equivalent to the category of

toric varieties over C together with equivariant morphisms.
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The main reason for .introducing fans is that the algebro-geometric prop-
erties of toric varieties can be interpreted (in a combinatorial way) using the

fan associated to them. The next two proposition are examples of this fact.

Proposition 3.8.1 The toric variety X(A) is nonsingular iff each o € A s

generated by elements of a basis of N.

We have already given a proof of this result for the affine case.

Proposition 3.3.2 X(A) is compact iff A is finite and complete, where com-

plete means that Np = Useao.

For a complete proof of these two facts see [Oda88], [Ful89].

ORBITS:
We would like to describe the orbits of X{A) under the action of Tyy. For each
T € A, let N, be the lattice generated by 7 (3 V.

Consider N(7) := N/N, and its dual M(7) = 7t N M. Define
0, := Ty, = Spec (C[M(r)]) = Hom (M(7),C*) = N(7) ®z C".

This is the torus associated to the lattice N,. Its dimension is n-k, where
n=dim A and k=dim 7. Observe that T acts transitively via the projection
Ty — Tn,, i.e. O; is an orbit,

Let us describe the closure V{7) of O,. Consider the following set A :=
{o € Alr < ¢}. For any o € A we denote the image of ¢ in N; by 7. The set

{F|r < o} forms a fan st(r) in N,. Set V(1) = X(st(7)); here O, corresponds
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'to the cone {0}=T in N,. This toric variety V(r) is covered by (U (7)}oeaimes
;_ and

U,(r) = Spec(C[T O M(1)})) = Spec(Cla™ N 0 M)

We have the projection map from o* MM to Clo™ N 4 M, both considered
as semigroups, the latter with the multiplication operation, this map sends
o N1t M to the identity and the complement goes to zero. This induces a
surjective map

Clo* N M]— Cle* N7t 0 M|

and this gives us a map
U,(1) = Spec (Cle™ N 4 1 M]) — bpec (Cle* N M) =Us.

In other words, we have a closed embedding from Us (r)to U/, foreach o > T.
Tt is easy to see that these maps are compatible on {Us (7)}oea,reo then we
have a closed emmbedding v(r) — X(8).

Finally, we have an ordering reversing correspondende from cones {r}in Ato

closure of orbits V() in A.

To finish this section, we state the relations among orbite O, orbit clo-

sures V(7), and the affine open sets Us.

Proposition 3.3.3 Let U, V() and O, as before, then
I) U, = <o Ur()

Ve = el
an 0. = V{r) = Upr V({7)



In particular, it says that X(A) is a disjoint union of the O,, which are the
orbits of T, and O, ¢ O = V(o) if an only if & is a face of 7.

sketch of the proof

Take @ € U,, in other words, ¢ € Hom, (s,,C). Using lemma 3.1.2, and
the fact that two elements of ¢* can not be in ¢~ (C*) unless both are in
©~1(C*) we can prove that the set {m € s,| o (m) € ¢~ (C*) is of the form
M no* N7t for a unique face T of o. In other words, for each ¢ € U,
@ 1(C*) = MnNo*Nrt and this means that ¢ corresponds to a point of
0, . This prove 1. For 3, if we go to N(7}, i.e. in V(7) we may assume 7 = 0,
we have T, = X(A) — Uspq0yV(0), now, intersecting with U(o) three follows

from one, and two follows from 3 using induction on dimension.

3.4 Cohomology

Let AP{X(A)) be the group of the formal finite Z-linear combinations
of closed irreducible subvarieties of X (A} of codimension p, modulo rational

equivalence. The intersection of cycles induces a product
AP(X(A)) x AYX(A)) — APH(X(A))
S0
AT(X(A)) = 8ZA(X(A))

is a graded ring of X (A).

For each closed irreducible subvariety we can associate to it its fundamental
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~ cohomology class and this map induces an additive homomorphism
AP(X(A)) — H? (X(A), 1)

which doubles the degrees.
Let A(J) be the set of J-dimensional cones in A, For each o € A(j) let us
denote by v(o) € A7 (X) the rational equivalence class of the irreducible cycle

V (¢) on X of codimension j. For distinct Dy, ..., D, in A1) we have

;

Di+--4+D, if D+--+D,€A

0 otherwise

\

Furthermore, each m € M determines a divisor that corresponds to the ratio-

nal function y,, which is rationally equivalent to zero
ST <m,m(Di) > v(D) =0 forall meM
i=1

Here, r is the number of invariant divisors in X (A) or equivalently, the cardi-
nallity of A(1). For each D; € A(1), we introduce the variable ¢; and consider
the polynomial ring S = Z[iy,...,%,] which is the symmetric algebra associ-

ated to the Z-module Ty Div{ X(A)) of Ty-invariant divisors on X({A)).

Let J be the ideal in S generated by
{tiy -+ ti, |ty # ti, if I#mand Dy+-+ D, ¢ A}
and let T be the eideal in S generated by

(3> <mm(Dy) > v(D:) | m e M}

=1

28



29

we have the following homomorphisms of graded rings

SII+J) — A" (X(A)) — H* (X(A), Z)
The main theorem of this section is due to Jurkiewicz and Danilov:

Theorem 3.4.1 Jurkiewicz-Danilov’s theorem.
Let X{A) be an n-dimensional compact toric variety then,
I)  If X(A) is nonsingular, the homomorphisms of graded rings described

above are in fact Isomorphisms
ST+ J) = AT (X(A)) = H™(X(4), Z).

II)  If A is simplicial, we can define the chow ring with coefficients in @ as,

A*(X(A)) ®z Q and again we get isomorphisms of Q-algebras
S/I+J)®z Q= A"(X(4)) ®2 Q@ — H(X(A),Z) ®2 Q

and again we refer to the reader to [DanT8] for the proof.
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Chapter 4

The Euler—Chow Series for Toric Varieties

4.1 General properties

Through this chapter toric variety means smooth projective toric vari-
ety, unless otherwise stated. Poincaré duality allow us to express the Luler-
Chow series in terms of the cohomology groups of the variety, i.e., we can
write

E=3 x(C)A A € H*(X,Z)
A
where C,, is the space of all effective cycles whose homology class is the Poincaré
dual of A.
Let X (A) be the toric variety associated to the fan A. Let m be the rank

of H*? (X,Z). We know that

m = ;(ﬂl)i"” () dni

where d,, is the number of cones of dimension k in A and n is the complex
dimension of X(A). The following lemma describes the invariant effective

cycles of X,



Lemma 4.1.1 Let X(A) be a nonsingular projective toric variety. Then any
irreducible subvariety V of X(A) which is invariant under the torus action
is the closure of an orbit. Therefore, any invariant cycle has the form ¢ =

3> n; O; where each n; is a nonnegative integer and each O; is the closure of

the orbit O,.

Proof Since the variety is compact, the fan A is finite. ence there are
a finite number of cones and, therefore a finite number of orbits.
Let V be an invariant irreducible subvariety of X (A}, then V is the closure of

the union of orbits. Since there are a finite number of them we must have that

where ©; is the closure of an orbit. Finally since V is irreducible, there must
be i such that V = O;,. |
Let CT and C, be the spaces of all effective invariant cycles and effective

cycles respectively, with homology class M. Tt is proved in [LY87] that

x () = x €. (4.1)
We end this section with the following important lemma,
Lemma 4.1.2 Let A be an element in H**(X,Z). Then Cy is a finite set.

Proof. Since any invariant effective cycle ¢ in €I has the form ¢ =
E,-Nzl 3,0, with 8; € N, we obtain that CT has a countable number of ele-
ments. By Lemma 2.1.1, C, is a projective algebraic variety, and since CT s

Zariski closed (see [Hum85], pag.59), we have that C] is finite. |
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4.2 The equivariant Euler-Chow series

In this section we introduce the equivariant cohomology and the equiv-
ariant Euler-Chow series. We show it is rational, and find a rational function
associated to it. We should start with the definition of equivariant cohomology.
We refer the reader to ([AB84], [Bif92]). For any topological group G the clas-
sifying space B(7 is the base of a certain principal G-bundle EG — B whose
total space is contractible. If G acts on a space X, we define Xg = £G xg X
as the associated bundle over BG with fiber X. The group G acts on EG
from the right, on X from the left, and X4 = EG xg X is constructed by
identifying (eg,x) with (e, gz), for all ¢ € G. The equivariant cohomology of
X is defined as

Hy (X) = H'(Xa).

Observe that the inclusion X — X gives an homomorphism
m: HA(X,Z) — H*{X,Z) (4.2)

Let @ be an irreducible invariant cycle in a smooth toric variety. Since

O C X is smooth, we have an equivariant Thom-Gysin sequence
H?**"0(@) — Hy (X) — Hp (X ~0) —
and we define [O]; as the image of 1 under
H3 (0) — HE™® (X).

Let {Dy,...,Dx} be the set of T-invariant divisors on X. To each D; we

associate the variable ¢; in the polynomial ring Z[t;,...,tx]. Let Z be the
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;deal generated by the (square free) monomials {t;l,...,ti,[im # ig,m F

nand Dy +-+Di & A}
It is proved in [BDPY0] that

b, tx)/T = He(X, T) (4.3)

The arguments given there also prove the following.

Proposition 4.2.1 For any T-orbit O in X, one has

O = I1 Dir

och;

Furthermore if O and O are distinct orbits, then

e,

Ol # [0

define the cohomology class for any effective invariant cycle

@iy Where O; # O; it P

It is natural to
3. We are ready

V=3 m; O; as Vip = 2 ™

for the following definition
ety, and let H¥?(X,Z)

PDefinition 4.2.1 Let X be a smooth projective toric vari

be the equivariant cohomology of X . Let us denote by Cg the space of all in-

n X whose equivariant cohomology class is £. The

variant effective cycles o

equivariant Euler-Chow series of X is the element
ZH?’ (X,2)

ET:EX (Cg‘)f €
£

where the sum is over § € H? (X, ).

Next, we compute Er fora certain basis.
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Theorem 4.2.1 Let X be a smooth projective toric variety of dimension 1.

Let {01,...,0N} be the set of all distinct orbits on X of codimension P Let

B = {yl,...,yT} be an integral basis for H%” (X,Z) such that ¥y = [Qilr for

i=1,2,...,N. Then with respect to this basis
N
Epr = —
E (1 —_ Si)

Proof
Two invariant cycles Vi = zm,-@',- and Vo = an_@.i represent the same
to n;. In other words

equivariant cohomology class if and only if m; 18 equal

¢ where m; > 0 for all ¢

1 if £ = (O]
x(Cg) =

0 otherwise,

and so
» 11—
Er = g™M..syt = —,
mekl ' i=1 (1 - 3‘5)
|

4.3 The Euler-Chow series

In this section we prove that the Euler-Chow series is rational. In order

to do that, we need to define a map I from Do C 7
us begin by giving & description of the domain of I. Let Dy be the subgroup
of ZHT (X whose elements Y.¢ N¢ - ¢ have the property that for any A €

|
\
HY (XD o 20D, Let
o number of &’s with n¢ # 0, and 7(§) = A, 1

\

H* (X, 1), there are only a finit
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where 7 is the homomorphism defined in equation 4.2. Now, we can define

the map I as follows.

PDefinition 4.3.1 Let

I:Ds C z”%p (X __, gH*(X.2)

be the map defined by

1 Sonet] = 2o ST ome) A
: x \r(e=>

The first interesting property of ] is given in the following proposition.

Proposition 4.3.1 Let Er and E be the Buler-Chow series for the equivariant
cohomology and for the ordinary cohomology respectively. Then

Er € Do and I{Er) = E.

hat Ep € Do. In the proof of 4.2.1, we found

Proof. We start proving t
contains the unique element £ =

that x (CT) # 0 if cT is the set which

sV n; [Oir. Since 7 (Oir) = [0,] we obtamn that

—

N
x (&) = Y [0l

i=1
By Lemma 4.1.2 we know that CT is finite. Therefore, there is a finite number

of £ such thab 7 (¢) = A The second pa y the

tt of the theorem is proved b

following equalities,
Y xehe) =2 X x(Ct) A= x(E)x =20 x(E)A
» z ) A

N Lro=r

eorem of this chapter.

We are ready for the main th
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Theorem 4.3.1 For any nonsingular projective toric variety X oOveET C, the

., On) denote all the orbits

FEuler-Chow seTies is rational.  In fact, if (O1,.-
.z} is a basis for H* (X,1). Then

of codimension P, and if A= {z;,-.

4 & 1
E = n 1 _ Hm ta:ji)
7

i=1 j=1

] = Simy @5t is the ecpression, in terms of the basis A, of the

where [@i

ology class of the closure O; of the orbit Oi.

cohom

Proof.
We start by choosing & basis B for HF(X) and by expressing the map { in

ms of the bases A and B. Let B = {y1,---
., N. It was proved 1n. theorem

ter ,Yr} be an integral basis for

H?P(X,1), such that y; = [Oilr, for = 1,..

4.2.1 that
N

Let
Iap: 77— v

be the map I with respect to the bases A and B. Consider the following

diagram

1@ | 1
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where @ is defined on each generator s; as
m a,+. —_
(D(Si) = H thl tj.h‘
=1

We recall that for any integer number « we defined a* = max {a,0} and
a~ = max {—a,0}. Before we prove that the diagram commutes, we take a
closer look at the number of effective invariant cycles in a given cohomology
class. Let A € H¥(X), and denote by v = (v1,-+»Ym) the coordinates of A
in terms of the basis A. Let ¢ = TN, 4,0; be an invariant effective cycle with

cohomology class [¢] = A. Then,

N N m
[c] == Z ﬂ,[@,] = }: Bs Z ATRCH
z 1 j=1
m N m
= Z(Zaﬁﬁe 333"2733:3
i=1 % =t
= A

Therefore, the number (Cy) of invariant cycles with cohomology class A is

equal to the number N of solutions to the system
Af =~ for geNY, (4.4)

But it was proved in Lemma 4.1.2 that this number is finite. Therefore, the

equality I{Er) = E proved in the last proposition becomes
q P

Lis(Br)= Lis( Y. ") = >, Nt" = L.

BenNt yEE™

Next, we show that ®([[Y, -1) € D. We have

i=1 1-s;




t o
=1 1 _ Hm a_’J;'fj]u

J=1%j

Moot o
= t.ﬂt.-’l
= (e

= 3 gate e
2
BENN

and we know that for each v € Z™ the number of solutions to

yvo= ATB— A8 = AB for BNV

is finite, and equal to N,. Therefore, ®([T/L, ljs,') =

Furthermore, we have that

= ZN’Y{Y = E.

Finally,

T tA TP €
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4.4 Examples
I) The projective space P"
Let X = P" be the complex projective space of dimension n. Let

{e1,... e} be the standard basis for R". Consider A = {e1,...,€n41} a seb
of generators of the fan A where ¢,41 = — 3.7, ¢;. We have the following
equality

HYX,Z) = Z[ty,... thya) /1

where | is the ideal generated by

@) SRR

and
n41
i) > ef(e)t; fori+1,...,nm+1,

j=t

where ef € (R)* is the element dual to e;.

However i¢) says that ¢, ~¢; forall ¢,7 =1,...,n 4+ 1. Therefore

H*(X,Z) = Z[t] /1"t




Consequently any two cones of dimension p represent the same element in

cohomology, and Theorem 4.3.1 implies, that

(nﬁl) 1 1 (n{;?l)

) - ()™ -

i=1 11 1 -1
where, as always, a € H* (X, Z). Note that the power ("}!) is different from
the power (71]) obtained in Example T, chapter II. This is because we work
with cohomology while in chapter 1T we worked with homology. If we would

consider cones of dimension n — p instead of cones of dimension p, then we

would get

1 \GE)
e S
(1 - t) E

since (1) = (311), we obtain the same answer as in Chapter IL
I1) p* x P™
Recall that X{A’) = X(A) x X(A'). Using the same notation as that in

1) we have that a set of generators of A x A’ is given by

{611 ooy EnyEpglyeee sy €ntm: en+m+1:en+m+2}
\ —_ — n+m .
With €ppmir = — 3oreq € and €pgmiz = — Soidmpy € and {e1, ..., epim} s

a basis for P* x P™, Then
H* (X, Z) = Z[tl,.. '7t‘n+m+2] /I

where 1 is the ideal generated by

n+m+2
1) {t1 o tatatmats Tatmtr o bagmiz, 1T 4}
i=1
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and
n+mt+2

i) S, elet; 1= L. ndm.

j=

From i) we obtain,
t; ~ .tn+m+1 if 1< 1 5 mn

The number of cones of dimension p is equal t0 Pk4i=p "t ™.

Denote by trs = ti S PR TRERA 71 Then
1 (n-tl)(mt-{J)

e
k+i=p - tk;f

where tx; = 54 o1 B
III) Blow up of P"

Let A be the fan associated to P We know by example 1 that A is
generated by {e1, -+ enp1} Where enpr = ~ 57 e and {en - en} 18 the
canonical basis for R". The fan A associated to the blow up P of the projective
space at the fixed point given by the cone Rte, + -+ Rte,et 18 generated
by {e1, -+ eny1yCniz} WheTE €ng2 = —€1- Denote by D; the 1-dimensional

cone Rte; and by s; its class in cohomology where
H (X, 1) =1 [31,...,5,,,4.2]/1
and 1is the ideal generated by
1) {80 St D;, +-- Dy is not in A}

and

nt2

i1) Zef(ej)sj- ;= 1,...,n.
=1




However #t) is equivalent to

”) Sz~ 8np and $1 ™ Sntl + Ent2

Note that a p-dimensional cone can not contain D, 4, and D;. The reason is
that D,y is generated by —e; and D, by ey, but by definition, a cone does
not contain a subspace of dimension greater than 0. We would like to find 2
basis for H*(P") and write any monomial of degree p in terms of it. Consider
the monomial s;, - -+ s;,. There are three possible situations:

1) si; is different from both sni2 and spys. In this situation we have from i%)
that s;, -« -3, = shyy.

2) Sp4z is equal to s;; for some, j = 1,...,p. Then from i1) we obtain that
I sflfl Spya-

3) 81 is equal to s;, forsome j = 1,...,p. Then from 1) we obtain s;, ---s;, =
(81 + Sna2) SEEL = P 4 Sni2 i\ which is the sum of 1) and 2).

We conclude that s, and Sn+23i:-11 form a basis for H® if p <n. fp=n
then s, = 0 and the only generator is Sny28071. Let us call s,4; by # and

.sn_l_gsﬂfl by #,. The Euler-Chow series for Pr is:

1 (3) 1 (,;21) 1 (,,21)
= () ) () v
1= 1 1~ 11t 1 — 1, ifpsn

n+2

1 A\
EP:(T:TQ) ifP:n.

IV) Hirzebruch surfaces

A set of generators for the fan A, in R?, that represents the Hirzebruch

surface X(A) is given by, {e1,...,e4} with {e1, e;} the standard basis for R?,

and e3 = —e, +aeq, o> 1 and ey = —e.




With the same notation as in last examples, we have,
H*(x(A)) = Z[ty,...,t4)/ T
where [ is generateded by
1) {tits, taty, tititi,, titataty @ 4 # iyfor j # 7'}
and
1) {t1 — 3, tg + ats — 4}

from i) we have the following conditions for the fi’s in H*(X)

(*) tl ~ t3 and tg ~ t4 '—ﬁ'.tg.

A basis for H*(z(A)) is given by {{0},ts,24,t4t1} (see [Dan78]). The Euler-

Chow series for each dimension is:

1) Codimension 2: There are four orbits (four cones of dimension 2}, and all

of them are equivalent in homology. From Theorem 4.3.1 we obtain

2 ;LJ4
E _(1—t

2) Codimension 1: Again, there are four orbits (four cones of dimension 1},

and the relation among them, in homology is given by (*). From Theorem

4.3.1 we obtain

= () () =
T\l -ty 1—t,/ \1—1t5%,

3) Codimension 0: The only orbit is the torus itself, from Theorem 4.3.1 we

have

"= (1)
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Appendix A

Letter from Emili Bifet

As [ mentioned before, Emili’s letter gives a sketch of how to reformulate,

defense, so it was hard to rewrite everything in the terms he had suggested.

|
1
|
in intrinsic form, the work done in this thesis. [ received it one week before the ]
Since Emili’s approach is very elegant, T decided it would be worth to add the

letier as an appendix.

August 1, 1992

Here follows what T hope is an intrinsic reformulation of Javier’s res ults (I have

not checked everything in full detail, but it seems to work.)

1. H (resp. Hr) denotes the 2p cohomology (vesp. equivariant cohomology)

group.

Dear Blaine and Javier,
|
i
|
|
\




9. C ¢ H (resp. Cr C Hr) denotes the sub-monoid of cohomology (resp.

equivariant cohomology) classes of effective (resp. invariant effective)

p-cycles.

3. 1+ Hy — H denotes the standard surjection.

4. 7 : Cp — Cis surjective with finite fibres (the Chow variety is projective

and there are countably many fixed points.)

5 +:Cpr x Cr — (r has finite fibres (Cr = NV, where N is the number

of p-orbits.)

6. The following diagram commutes:

(ris a homomorphism. )

7. +:C x ¢ — C has finite fibres (follows from 4, 5 and 6.)

8. A c Z¥ (resp. Ar C

(resp. Cr.)

717} denotes the functions with support in ¢
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10.

11.

12,

13.

14.

15.

16.

7.

A (resp. Ar) is a commutative ring ( from 7 and 5.)

I': Ar — A (defined by T{u){\) = Seen-1¢y) u(€) ) is a ring homomor-

phism.

E (resp. Er) denotes the Euler-Chow (resp. equivariant Euler-Chow)

invariant.
Er € Ay and I(ET) = F,

Define for each p-orbit @; an element f; € A (resp. fI € Ag) by:

1 fA=n-[O),n>0
filA) =
0 otherwise,
(resp.
1 ifé¢=n-[Or,n>0
THOE
0 otherwise. )
\

We also denote ey (resp. e¢) the characteristic function of {A} (resp.

{¢}.) Note in particular that 1 = eg.
I(fF) = fi and I(eg) = exe)-
w[Oilr = [O4].

Er = ngigN f? and (1 — 6[1-9-3}'1") . f‘T = 1.

E =Tlicicny fiand (1 ~e@,) - fi = 1 (apply 1 to 16.)
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18. Finally:

19. The ring A contains the monoid-ring Z[C] (= functions with finite sup-
port.) It is perhaps natural to say that an element of A is “rational”
provided it is the quotient of two elements of Z[C]. If one wants to

consider bases, one will perhaps have to use Gordan’s lemma and ...

20. Tt is tempting to especulate about the general case (with H being the
homology group and C the sub-monoid of homology classes of effective

cycles.) When is E € A rational in the above sense? Well ...

Sincerely,

Emili
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