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Abstract of the Dissertation
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and the geometry of ends

by
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Doctor of Philosophy
in
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1991

i

We study the geometric growth of ends of a complete noncompact Riemannian

manifold M™ whose Ricci curvature is nonnegative outside a compact set B, le.

Ricyr—p > 0. Our main tesult is the establishment of the following ball covering

property: for a fixed point py and 0 < p <1, By, (r) can be covered by a bounded

number of balls of radius pr; this bound, called the packing number, is independent

of r. As consequences, M has a bounded number of ends, the diameter growth of

ends is at most linear, and the topological growth of M is bounded by a polynomial

of degree n. We also discuss the application of the ball covering property in the study

of harmonic functions.
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Chapter 1. Introduction
In this dissertation we study the geometry of ends of complete, noncompact Rie-
mannian manifolds with nonnegative Ricci curvature outside a compact set, a problem

that has received increasing attention in recent years.

On a complete open Riemannian manifold with nonnegative Ricci curvature, the
volume comparison of Bishop and Gromov ([BC| and {GLP]) is a very powerful tool.
It can be used to show that the geometric growth of the ends of the manifold is well

controlled. Namely:

(a) The volume of the geodesic ball B,(r) is bounded above by C - r™, where n is the

dimension of the manifold and C is the volume of the unit ball in R™; (Bishop)

(b) The volume of B,(r) grows at least linearly; (Calabi, Yau)

(¢} There are a bounded number of ends; (Cheeger-Gromoll’s splitting theorem implies
that there are at most two ends)

(d) Every end has at most linear diameter growth ([AG));

(e) Therie is a Ball Covering Property, a simplified form of which is ([LT] }: for a fixed
point p and any large r, there are a bounded number of points py, ..., pr € 8B,(2r),

where the number % is independent of r, such that

0B,(2r) C CJ By (r).




Here (e) can be easily derived from the volume comparison, as demonstrated in
the next chapter. On the other hand, the ball covering property implies (c) and (d)
without any curvature conditions. (We will show this in chapter 4.)

When the global condition Ricyy > 0 is relaxed to Ricy_p > 0, where B is a
compact set, the same argument that was used to show Bishop-Gromov’s volume
comparison can also be used to show that (a) and (b) remain true, although the
constant C' now depends on the manifold; see for example [I.T2]. However, as we
shall see in the next chapter, the relative volume compalfison becomes so weak that it
does not yield the ball covering property as before. Thus, it is important to establish
the ball covering property, so that we still have control over the geometric growth of
the ends.

Our main result is the proof of the ball covering property in its general form for
|

complete Riemannian manifolds with nonnegative Ricci curvature outside a compact

set.

Theorem 1 Let M™ be a complete Riemannian manifold with nonnegative Ricei cur-
vature outside a compact set B, Assume that Ricg > (n — 1)H and B C B, (Dp).
Then for any p > 0, there exists N = N(n, HD}, p) > 0 such that for any r > 0, and

for any subset S satisfying S C B,,(r) , we can find py,...,py €8, k < N, with

U?:l By(p-r)D S




The topological constraints on a manifold which admits a metric with nonnegative
Ricci curvature are much weaker than that to admit a metric with nonnegative sec-
tional curvature. In [CG1], Cheeger and Gromoll proved that a compiete Riemannian
manifold M with nonnegative curvature is diffeomorphic to the normal bundle of its
soul, a compact totally geodesic submanifold. M. Gromov showed that the sum of
betti numbers of such a manifold has an a priori upper bound, One might be tempted
to try to extend these results to the case of nonnegative Ricci curvature. However,
the exarhples of Sha-Yang [SHI, 2] and Anderson-Kronheimer-LeBrun [AKL] show
that neither Cheeger-Gromoll’s Soul Theorem nor Gromov’s bound on betti numbers
holds in this case. Actually a complete manifold of nonnegative Ricci curvature can
have infinite topological type and infinite betti numbers.

Nevertheless, the existance of a metric of nonnegative Ricci curvature does put
some constraints on the topology of the manifold. J. Milnor ([Mi}) proved that if a
manifold M" admits a complete metric with nonnegative Ricci curvature, then any
finitely generated subgroup of m;(M) has polynomial growth of degree n. For the
betti numbers, Z. Shen ([Sh2]) proved that if M has nonnegative Ricci curvature and
has a lower bound on the sectional curvature, say K > —1, then the growth of betti

numbers is bounded by a polynomial of degree n, i.e.,

> bi{p,r) < Cn)(1 4 7)™, r > 0.

0<i<n




where b;(p,r) denotes the rank of i, : H(B,(r),R) — H;(M,R). This can be viewed
as giving a certain amount of control over the topological growth of M.
When Ricci curvature is nonnegative outside a compact set B, the result of Shen

can also be generalized. We have:

Theorem 2 Assume that M is a complete Riemannian manifold with nonnegative
Ricet curvature oulside a compact set B and sectional curvature Ky > —1. For fized

po € M, assume that B C B, (Dy). Then there is a constant C(n, Dy) such that

> bilpo,m) S Clm, D)1 +7), 1> 0.
0<ign -

The analytical motivation of our work is the study of the space of harmonic
functions. S.T. Yau proved in [Y1] that a positive harmonic function on a complete
manifold with nonnegative Ricci curvature must be a constant. If M has nonnegative
Ricci curvature outside a compact set, H. Donnelly ([Do]) showed that the space of
bounded harmonic functions has finite dimension. In their paper [LT1], P. Li and
L. Tam gave a complete description of the space of positive harmonic functions on
a complete noncompact Riemannian manifold with nonnegative sectional curvature
outside a compact set. The ball covering property, which they showed is true in
their case, plays a crucial role. They conjectured that their description of the space

of positive harmonic functions should continue to hold if one only assumes that the
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Ricci curvature is nonnegative outside a compact set. One of the difficulties was, as
they pointed out, that the ball covering property was not proved in this case.
Although we still can not prove their conjecture, our Theorem 1 combined with

the Harnack inequality ([LY]) yields the following:

Theorem 3 Let M be @ complete noncompact manifold with nonnegative Ricci cur-
vature outside a compact set. Assume that f(z) is a positive harmonic function
defined on an end E. Then either lim,_,, f(z) = 00 or lim,_, f(z) = a for some
constant a, provided that for anyr > 0, there exists R > r, such that the unbounded

component of £ — By (R) has a connected boundary.

Let us conclude this chapter by posing some problems.

1. Cheeger and Gromoll ([CG2]) proved that if a complete Riemannian manifold
M with nonnegative Ricci curvature contains a line 4, then M splits isometrically as
a product M1 X 4. One naturally asks if Ricci curvature is nonnegative outside
a compact set B, and if -y is a line that does not pass B, then is there a tubular
neighborhood Tj(-y) which splits isometrically as a product v x U*™'? The author
discussed this with G. Galloway and we are able to give an affirmative answer to

this question. The details will appear elsewhere. This leads us to ask whether the

following stronger version of the local splitting is true or not: if ¥ C M is a line and




in some e-tubular neighborhood T.(%), the Ricci curvature is nonnegative, then can
T.(y) split isometrically as a product?

2. Can we generalize the ball covering property to the case in which the Ricci

curvature is “asymptotically nonnegati\;e”? This concept is defined as follows. Let
A(r) be a non-increasing function such that
(I1) B2 rRA(r) dr < co.
We say that the lower bou\nd of Ricci curvature of M satisfies decay condition 1} if for
some p € M there is a A(r) = A, (r) satisfying (f;) and the Ricci curvature at any z
is bounded below by —A(d(p, z)). When k = 1, we say that the Riemannian manifold
M has asymptotically nonnegative Ricci curvature. There are two indications that
the ball covering property may still hold in this case: a) in the case that sectional
curvature is asymptotically nonnegative, U. Abresch ([Al, 2]) proved that the ball
covering property is true and that it is false for any weaker decay conditions on
sectional curvature; b) P. Li and L. Tam ([LT2]) showed that if the lower bound
of the Ricci curvature of M satisfies decay condition I,,_y, then M has a bounded
number of ends. Note that this condition on the Ricci curvature is stronger than
asymptotic nonnegativity when n > 2.

3. Let M?® be a three dimensional complete open Riemannian manifold whose

Ricci curvature is nonnegative outside a compact set. If for a fixed p € M, there a

constant C such that for every end E, Vol(E (N B,(r)) > C r®, then does M have finite




topological type? That is, is M topologically the interior of a compact manifold with
boundary? When M has nonnegative Ricci curvature globally, S. Zhu ([Z]) proved

that M is actually contractible. Qur conjecture seems to be a natural generalization

of Zhu's result.




Chapter 2. Volume Comparison

Let M be an n-dimensional Riemannian manifold. Let B,(r) denote the geodesic

ball of radius r at p € M. Put A,(R,r) := B,(R) — B,(r),(R >r > 0), V,(r) :=
vol(By(r)), and VP(R,r) = vol(A,(R,r)). We use V¥(r) to denote the volume of
a ball of radius » in the space form of constant curvature H of the same dimen-
sion. VI(R,r) := VH(R) — VH(r). Then we have the well known relative volume

comparisons (see [GLP], also see [GHL]).

Lemama 1 If on B,(R), Ric> (n— 1)H, and 0 < r < R, then

Vo(B)[Vo(r) < VE(R)/ VT (r), (1)
Vo(R,r)/Vo(R) < VI(R,r)[VA(R), and (2)
Vol By) [ Vi(r) < VIR, r) [V (7). (3)

Let us see how easily the ball covering property stated in Theorem 1 is induced
from the above lemma when M has nonnegative Ricci curvature globally.
For any r > 0 and any S C B, (r), take a maximal set of points {py, ey P} C S

such that dist(p;,p;) > pr, 1 # j. Then

U B, (ur) D 535




B ((w/2)"Y N\ B, (p/2)r) = 0, i #3.

Suppose B, ((1#/2)r) has the smallest volume among all B, ((¢/2)r). Since

U By (u/2)r) € Bou((2 + )r),

i=1

Lemma 1 (with H = 0) implies that

m < Vo (2 + p)r) Vo ((1/2)r) S V(2 + p)r) [ V(1/2)r) = (2+ p)" 2 ()"

When Ricy_p > 0, this argument fails because B,,((2+p)r) D B for r sufliciently
large.

There is also a version of the relative volume comparison for star-shaped sets,
which is our main tool in the proof of Theorem 1. A star-shaped set S, at p is a set
containing p such that whenever & € S, is not on the cut-locus of p, any point on the

minimal geodesic joining p and z is also in S,. We then have ([CGT] §4, Remark 4.1)

Lemma 2 Let S, be a star-shaped set and R > r > 0. Suppose Vol(S, N B,(r)) > 0.

if
Ric|(Sp(1Bp(R)) Z (n— 1)H , (4)

then

VOJ(Smep(R))/ VOI(SPHBP(T)) < VH(R)/ VH(T')- (5)




Remark 1. The above form of comparison first appears in [CGT] without exf)l.ik.:—. 5

itly mentioning the Ricci curvature condition (4) as we did here. To understand why
the proof of Lemma 1 (as given in [GLP] or [GHL] with more details) also implies
Lemma 2, it suffices to point out that the proof does not need M being complete; it
only needs M being a star-shaped set at p. {Note that for any R > 0, S, N B,(R) is

a star-shaped set at p.)

Remark 2. If M is a complete Riemannian manifold which has nonnegative
Ricci curvature outside a compact set, or more generally, if it has asymptotically
nonnegative Ricci curvature as defined in Chapter 1, it can be shown that for any

¢ € M, we have some relative volume comparison of the form
Vi(R)/Vy(r) SC-RYr",  0<r<R.

However the constant C' now depends on the integral f°rA,(r) dr, on disi(p,q), as
well as on the numerical order among R, r and dist(p,q). See for example {Ca] or
[I.T2] for more details. Hence the proof of the ball covering property in the case of
nonnegative Ricci curvature outside a compact set can not be carried out as in the

above case where the Ricci curvature is globally nonnegative.
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Chapter 3. Proof of the Theorems

We assume that all geodesics are parametrized by arc length.

Proof of Theorem 1.

If H > 0,ie Ricyy > 0, the Theorem is already known. So we assume that
H < 0. If we multiply the metric on M by /—H, then for the new metric, Rie > —1,
and B C By, (v/—H - Dy). This normalization does not affect the validity of the ball
covering property. Thus we put D = +/—H - Dy and work with the rescaled metric.

Let ¢ > 0 be given. We may assume that g < 2. Otherwise the theorem is trivial.

We divide S into the union of §; and S,, where
Si=SﬂBp0(}J,T/2), Sg_—_S—S].

If 57 is not empty, it can be covered by just one B,(ur) with pin S;. So we only have
to estimate the covering number for S,, which is contained in B, (r) — By, (ur/2).
Also, it suffices to count the number of balls of radius pr/4 needed to cover S,. Let
us denote t := p /4.
First, we assume that ¢+ > 2D. Note that for any ¢ € Sy, B,(tr) N B,,(2D) = 0.
Divide 0B,,(2D) into a bounded number of subsets {U1, ..., U, } such that Vz,y €
Us, dar(z,y) < 2D. This can be done as follows. Take a maximal set of points

{g1,-18m} C OB, (2D) such that dist(q, q) > D, a # b. Then

UB,.(D) D 0B, (2D);

Bo(D/2)(\Bou(D/2) =0, a#b.

11




Suppose By, (D/2) has the smallest volume among all B, (D/2). Since U7, B, (D /Z)C .

B,,(5D), relative volume comparison (Lemma 1) implies that
m < Ve, (5D)/V,,(D/[2) < VTI(5D)/VTH(D/2). (1)

Note that the right hand side of (1) depends only on n and D. We define

U = B, (D) ﬂaBpo(2D)>

b—1
Uy = By, (D)(0By(2D) — | Bo. (D),  b=2,..,m.
a=1

Denote

M, = {z : 3 a minimal geodesic ~:[0,A] —+ M, passing through =

with ¥(0) = py and A > r},

1.e. M, consists of all minimal geodesics emanating from py that are no shorter than
r. Hence M, D M — By, (r), and M, is star-shaped at p;.

We now divide M,p into m cones K, by:

K, :={z:3 a minimal geodesic v:[0,A] — M, passing through x

with y(0) =ps, A> 2D, and v(2D) € U,},

i.e. K, consists of all minimal geodesics emanating from py that intersect U,. Note

that by the triangle inequality, if

d(.‘:ﬂi,pg) > 2D, € K0 =1,2,

12




then any minimal geodesic connecting z; and z, will not pass through B, (D). Indeed,
let v; be a minimal geodesic from py to z; with v;(2D) € U,, ¢ = 1,2. Then the broken
geodesic from 7 to 11(2D) to 12(2D) to z; has length < d{x1,po) + d(z2,po) — 2D.
On the other hand, if a minimal geodesic connecting z; and z; intersects B, (D),
then it would have a length > d(z1,po) + d(z3, po) — 2D, which is a contradiction.
Now we estimate the covering number N.
On S, take a maximal set of points {py, ..., px} such that dist(p;, p;) > tr, i # 7.

Then

UBpi(tr) O Sx; (2)

Bps(tr/z) mej(tr/Q) =0, i 7£ J- (3)

To estimate the bound on k, we divide the balls B, (tr/2) into m families as follows:

for each ball B, (tr/2), look at Vol( B, (ir/2) N K,), @ = 1,...,m. Fix an a; such that

Vol( By, (tr/2) N K,,) is maximal. Then
Vol(Byi(tr/2) (1 Kup) > ;%voz(gp,.(tr/z)). (4)
We denote
By (tr/2) () Ka; = B,

or simply B, and place the ball B, (tr/2) in the a;—th family. Here the superscript

L stands for largest (in volume of intersection).

13




Now we estimate the number of balls in a cone K,. Suppose B;‘ has the smallest
volume among all ij:.’”’ in this cone. Since the center p may not be in K,, we need

the following:

Lemma 1 Assume that Ric|B,(R) > 0. There exists a § with 0 < § < 1, depending

only on n and m, such that whenever a subset W C B,(R) has

Vol(W) > 1/m - Vol(B,(R)) ,
then there exists ¢ € W such that dist(q,p) < 6R. Hence B,((1 — 6)R) C B,(R). 1[
|

Proof. If for any ¢ € W, dist(p,q) > 6R, then W C A,(R,6R). By Lemma 1, ‘

no__ §npn
Vo(R,6R)[V,(R) < RR#R =1-46"

Sol—6">1/m, ie §<(1—1/m)"/* Thus we can take
§=(1—1/(2m))/, (5)

This finishes the proof of Lemma 1,

Now we continue the proof of the theorem. By the above lemma and (4), there is

a point ¢ € BY such that
BA((1 - )tr/2) C Byfir/2). )

We construct a star-shaped set W, at ¢ as follows. y € W, if and only if there is a
point z belonging to either By((1 — §)tr/2) or one of B* in the cone K, and there

is a minimal geodesic 4 connecting ¢ and z which passes y. Note that

14




(a) This geodesic y will not pass through B, (D). To see this note that if z is in
one of BL*(tr/2), then both = and ¢ are in K, the claim follows from the remark
following the definition of K,; if = is in By((1 — §)ir/2) then the claim is immediate
by the triangle inequality.

R (b) The length of v is not bigger than tr/2 4+ r+ v+ tr/2 = (24 )r.

(c) B,((1 - 8)tr/2) Cc W, C M — B,,(D).

Hence we can apply Lemma 2 of Chapter 2. We have

Vol(W,)/Vy(1 — 6)ir/2) < VO((2 4 r)/VO((L - 8)ir/2) = 2°(2 + y~(1 — 6)~". (7)

On the other hand let N, be the number of balls in the a-th family. By (4) and

(6), |

Vol(Wy)/Vy((1 = 8)ir/2) = Yo Vol(B)/Vy(tr/2) > Nofm. (8) |

BP{;‘ €a—th family
So (7) and (8) imply N, < m -2*(2 4 {)*t™(1 — §)~™. Adding up the contributions i

from all m families, we have
E<mP2M(2+ )™ ™1 - §)™", (9)

where § is defined by (5). Since m depends only on n and D, the right hand side of
(9) is a function of n, D, and p. (Recall that ¢ = p/4).

If tr < 2D, that is pr < 8D, as in the proof of (1), we can bound & by

0<IB~a§}§D VT + )V (pr[2),
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which again depends only on g, n and D and not on r. Q.E.D.

Proof of Theorem 2.

When B = {), this theorem is proved by Z. Shen in [Sh2]. We follow his line of
argurent.

For X C'Y, let ;(X,Y) denotes the rank of i, : H;(X,R) — H;(Y,R).

Let B be a ball in M with radius r and for any p > 0, let pB denote the concentric
ball of radius pr. The following two lemmas are due to M. Gromov (c.f. [G], [A2]).

We state the versions adopted in [Sh2].

Lemma 2 [Let M™ be a complete manifold with sectional curvature Ky > —1. Then
there is a constant C(n) > 1 such that for any 0 < € < 1 and any bounded subset

XCM,

D b(X,UX) < (14 diampr(X)/e)" - C(n) HiamunX) (10)
0<i<n

where U, X denotes the e-neighborhood of X in M.

Lemma 3 Let M™ be a complete manifold and p € M. For any fized numbers r > 0
and 0 <ro < 77", let B} = By.(re), j =1,..., N, be a ball covering of B,(r) with

p; € By(r). For each j let Bf = "B, k=0,1,...,n+1. Then

20<i<n bi(By(r), By(r + 1)) <

S (e—DNt"sup{ > b(B},5Bf); 0<k<n,1<j< N}, (11)
0<i<n

16




where t is the smallest number such that each ball B;—" intersects at most { other balls

Br.

%

We observe the following fact which will be used repeatedly in our proof.

Lemma 4 Suppose A C B C C C D. From the sequence of compositions
H@(A,H) — Hz'(B, R) — }L‘(C,H) — Hi(D, H)
we see that b;(A, D) < (B, C).

Now we prove Theorem 2 as follows. By Lemma 2 and Lemma 4, 3C;(n) depend-

ing only on n such that for all balls B with radii r < 1,

> b(B,5B) < Ci(n). (12)

0<i<n

Thus by Lemma 3 and Lemma 4,

Z bi(By(r), M) < Z bi(By(r), By(r -+ 1))

0<i<n 0<i<n
< (e— NECy(n). (13)

where N and ¢ are defined in Lemma 3. Hence we are left to show that we can find
{Bp;(ra), § =1,..,N, 1o =771}, a covering of B,(r) with p; € B,(r) such that
t is bounded above by some T'(n, Dy) independent of r, and N is bounded by some
Ca(n, Do) - (1 4+ r)™.

In the proof of Theorem 1, replace pr by ro. Set S = B,(r), S; = B,(2D,), and

Sy =85 — 8. Let {B,{ro/2), § =1,...,N p; € By(r)} be a maximal set of disjoint

17




balls covering 5. The same argument used there shows that N is bounded by

V_l (4D0 + ’Pg)
V_1(0.5'P0)

S Gg(n,Dg) . ?"n, (14)

29n _T_On_r_o—n _ £sy-n
mi2n(2 4+ 12 (22 (1 - ) 4

for r sufficiently large, where m is bounded by (1) and § is defined in (5).

As for ¢, suppose that a B! intersects ¢ other balls B}, where B} = T"B,,(ro) as
defined in Lemma 3. If B,,(re/2) has the smallest volume among all the ¢t + 1 balls
By;(ro/2), then B,,(6/7) contains all other B, (ro/2) (recall that ro = 7-=1). The

argument as in Chapter 2 (with /' = —1) implies that

VST V)
S V) T VA (o)

Q.E.D.

We will prove Theorem 3 in the next chapter.
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Chapter 4. Applications

Let M be a complete open Riemannian manifold. The number of unbounded
components of M — B, (r) is a nondecreasing function of . If this number has an
upper bound, we say that M has finitely many ends and call the least upper bound
the number of ends of M. This number is independent of pg.

Our first application of the ball covering property is to give a very simple proof
of the following result, due to Cai ([Ca]) and Li-Tam ([LT2]) independently, that a
complete manifold with nonnegative Ricci curvature outside a compact set can only

have a bounded number of ends.

Corollary 1 Under the same assumption as in the theorem, the number of ends is

finite and bounded by some Ny = Ny(n, DIH) .

Proof. We let Ny = N(n, D:H,1/2) as in our Theorem 1. If the above claim is not
true, take r large enough so that in M — B, (r), there are more than Ny unbounded
components F;. 1t is apparent that balls of radius r with centers in different compo-
nents f; (YOB,,(2r) do not intersect. Thus we need more than N; balls of radius r
to cover 0B,,(2r). This contradicts the theorem. Q.E.D.

Note. In the original version of our paper [L] (submitted for publication in May
1990), we assumed an arbitrary lower bound on the sectional curvature in addition
to the assumption that Ricy.p > 0 and proved the ball covering property. As
a corollary M has a bounded number of ends in this case. At the AMS Summer

Institute on Differential Georﬁetry held in U.C.L.A., July 1990, P. Li announced that
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he and L. Tam had proved that a complete Riemannian manifold with nonnegative
Ricci curvature outside a compact set has finitely many ends without assuming a
lower bound on the sectional curvature ([.T2]). Their approach is analytic in nature.
A abouf the same time, M. Cai ([Ca]) independently proved this same result by
purely geometric means. (Ball covering is not treated in either of the aforementioned

works.)

There are several variations of the definition of “diameter growth”. See for exam-
ple, [AG], [C], [Shl] and [Sh2]. In [AQ] it is proved that if M™ has asymptotically
nonnegative Ricci curvature and a lower bound on the sectional curvature, and if the
diameter growth of M is o(r/™), then M has finite topological type. For this purpose,
all definitions mentioned above are equivalent. However, the diameter growth defined
in [C] and [Sh2] are always bounded above by 2r. This is not what we are interested
in. Our concern is to know how fast the intrinsic diameter of the geodesic sphere
grows. For example, in the space form M ™' of constant curvature 1, the intrinsic
diameter of 8By(r) grows exponentially (4sinh®(r/2) to be exact), whereas in R”, it
is linear (= #r).

Since in general, dB,(r) is not a submanifold, we measure its diameter in an
annulus of size proportional to r. The following definition is adapted from that in
[Sh1]. The definition given here is stronger (in the sense that the diameter is larger)
than any one of the four definitions mentioned above.

Definition 1 Let M be a complete noncompact Riemannian manifold and p € M
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a fixed point. For any connected component £ of the annulus A4,(2r, (3/4)r), and
any two points z,y € X9B,(r), let d.(z,y) = inf Length(4), where the infimum
is taken over all piecewise smooth curves ¢ from = to y in M — B,(1/2 r). Set
diam(X N9B,(r)) = sup,, d.(z,y), where z,y € ZNIB,(r). The diameter of ends

at r from p is defined to be
Diamy(r) := sup diam(E [ Y0B,(r)) ,
where the supremum is taken over all connected components ¥ of A,(2r, 3/4 r).}

Corollary 2 If a complete manifold M has nonnegative Ricci curvature outside a

compact set, then the diameter growth of ends is at most linear.

Proof. Let B,H, Dy as in Theorem 1. With notations as in the above definition,
apply Theorem 1 to § = X C B,(2r),u = 1/8. Cover ¥ by no more than N =
N{n, HD§,1/8) balls B; = By(r/4), i < N. For any two points z,y € ZN8B,(r),
since X is connected, we can find a subsequence of balls By, ,...,B;,, ¥ < N such
that z € B, B, N\ By, # §, y € B,,. Fix a z; € B;;B;,,,- By connecting
Ty Gy 215 Qipy 22, 2k-1, ¢, and y consecutively, we obtain a curve v which is in

M — B,(1/2 r) and which has length < 2k - r/4 < (N/2)r. Q.E.D.

An immediate consequence of Theorem 1 in the study of harmonic functions is

the following Proposition, which contains Theorem 3.

In [Sh1}, as well as in [AG], [C] and [Sh2), only unbounded connected components are considered.
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Proposition 1 Assume that Ricyr_p > 0, where B C By, (D) is a compact subset of
M. Let F be an unbounded component of M — By, (ro). Assume that f(z) is a positive
harmonic function defined on E. Then either lim,_ f(z) = 00 or Iimx,;oo flzg)=a
Jor some constant a, provided that one of the following three conditions on F holds:

(a) There is an Ry > 0, such that m(E — B,,(Ro)) = 0;

(6) ¥r > 0, 3R > r, such that the unbounded component of £ — By (R) has a
connected boundary;

(¢) There is a sequence of connected n—1 dimensional compact submanifolds S; C
Ii, such that (i) S; and S;yy bound @ connected compact region D; for j =1,2,3,...;
(i) for some large r, UD; D E — By(r) ; (i) dist(po,S;) — oo; and (iv) for some
>0,

Igggj{ dist(pg, z) / ar:ré{grj dist(pg,z) < C.

Proof. We follow the same line of argument as in the proof of Theorem 3.2 and 3.3
in [LT1].

Since (a) implies (b) (see [AG] Proposition 4.3 and its proof) which in turn im-
plies (c), let us assume that the end E satisfies condition (¢). The proposition is a

consequence of the following two lemmas.

Lemma 1 (Harnack inequality. See [Y], [LY], also see [LT1] Lemma 3.2 ) There is a
constant Cy, such that if f(z) is a posilive harmonic function on E and Ricg,zr) 2 0,

where B,(2r) C E, then

V@) () < CJr
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for any x € B,(r).

Lemma 2 There is a constant Cy > 0 independent of § such that for any harmonic

function f(x) defined on E and any large 7, we have

max f(z) < Cymin f(z).

TES; ZES;

Proof. Choose y,z € S; with

Iy) = max f,  f(z) = min f.

Let v be a curve in .S; connecting y and z. Denote r; = dist(po,S;). Theorem 1
implies that there are a bounded number of points ¥ = gy, ..., yx = 2, k < C4, on the

curve  such that

v C UB‘yi(l/4‘ T‘j)'

Now the Harnack inequality implies that

fW)/f(z) < CFF < 03,

This proves Lemma 2.

Now, Proposition 1 follows from the above Lemma. The argument is as in the
proof Theorem 3.3 of [LT1]. Namely, suppose that f(z) is not bounded on E. We
are going to show that

lim f(z) = oo,

=00




Since f(2) is not bounded, there is a sequence of points x;, lim dist(z;, py) = 0o, such

that lim f(z;) = co. Suppose z; € D;;, then

max f(z) > f(z;).

EED,'J.

By the maximum principle the maximum is either on Si;, in which case we denote
Y; = Sj;, or on Si;41, in which case we denote Lj = Si41. We write U; for the

domain bounded by 3; and ¥;,;. Then we have
min f(z) 2 1/C; max f(z) 2 1/C /().

Thus by the maximum principle mingey; f(z) > 1/Cymin{f(z;), f(z,;41)}. Therefore
Jitmy o f(2) = co.

Suppose that f(z) is bounded on E. Let

A=lim( inf )f)

P00 E— By, (r

0 < A < 0. For any € > 0, there exists a sequence of points z;, lim dist(x;, py) = co,

such that 4 — ¢ < flz;) < A+ e. Suppose Z; € D, By the maximum principle

minp, f is either on Si;, in which case we denote Xij = Sy, or on 8,44, in which case
2

we denote X; = i+1- We write U; for the domain bounded by ¥; and ¥;,,. Also,

there is a jg, such that

inf f>A—e¢

i>j Ui




Let ¢ = f — (A — €), which is a positive harmonic function on Uis s, Ui Lemma 2

implies that for sufficiently large 7,

maxg(z) < C» min g(z).
Hence
masx g(z) < Ca{min f — (A - )} < 2Cse.
max f < (2C; — e+ A.
TEXy

Since € is arbitrary, by the maximum principle again we have

lim ( sup ) < A
Imee Ui>j Ui

This shows that lim,_, f = A. Q.E.D.

Remark. It is proved in [AG] that if Ricas > 0 and if F is an end of M, then any
unbounded .component of - By, (R) has a connected boundary. Intuitively, we say
that £ “has no holes”. Since their proof uses the splitting theorem on the universal
covering of M, it does not apply to the case of nonnegative Ricci curvature outside a
. compact set. Thus it remains an interesting question whether an end % “has holes”

in our case. If the answer is no, then all three extra conditions in our proposition can

be dropped automatically.
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