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Abstract of the Dissertation
On Schottky Groups with Automorphisms
by
Rubén A. Hidalgo
Doctor of Philosophy
n
Mathematics

State University of New York at Stony Brook

1991

It is well known that every closed Riemann surface can be uni-
formized by Schottky groups. This fact, claimed by Felix Klein in
1883 19] and proven rigorously by Koebe much later [10], is known
in the literature as the retrosection theorem. Using the ideas of L.
Bers on quasi-conformal mappings, it is possible to obtain an easy
proof of this fact {3].

In this dissertation we are interested in a kind of retrosection
theorem with automorphisms. To be more precise, we consider a
closed Riemann surface S and a finite group of automorphisms H of

S. We look for some Schottky group G, with region of discontinuity

il



2, having the property that every element of H can be lifted as a
conformal automorphism of §2.

In [8] L. Keen solved this problem in the case that S is hyperel-
liptic and H is the group generated by the hyperelliptic involution.
She called such Schottky groups " Hyperelliptic Schottky groups”.
In [7] we solved this problem for the case of involutions. We called
such groups "I'— Hyperelliptic Schottky groups”. In the present
work we are interested in the general case, that is, when S and H
are arbitrary.

We obtain necessary conditions on the set of fixed points of the
non-trivial elements of H to find a Schottky group G as desired.
These conditions are trivially satisfied by groups acting fixed point
freely and by groups isomorphic to the group with two elements.

We show that these necessary conditions turn out to be also
sufficient in some cyclic cases. To be more precise, when each
element of the cyclic group has the same fixed point set.

It would be interesting to know il these necessary conditions are

also sufficient in the general case. This is still an open problem.
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0.- INTRODUCTION.

In the literature there are many characterizations of closed Riemann surfaces
with automorphisms, bﬁt in general they do not involve uniformization the-
ory. In uniformization theory we begin with a surface 5, a domain 2 con-
tained in the Riemann sphere as a regular (Galois) co‘;fering space of S, and
the corresponding group G of cover transformations given by fractional linear
transformations, such that the natural projection map 7 : & — /G =5 is
holomorphic. The pair (2, G) is called an uniformization of 5.

Schottky groups are in some sense the lowest planar covering of closed
Riemann surfaces. To be more precise, the uniformization (€2, G) is called a
Schottky uniformization if there is no non-trivial normal subgroup N of G such
that the quotient surface {2/N is planar. Schottky uniformizations are exactly
those uniformizations (£, G), where G is a Schottky group and { is the region
of discontinuity for the action of G on the Riemann sphere.

We are interested in finding uniformizations, via Schottky groups, which
reflect symmetries (conformal automorphisms) of closed Riemann surfaces. To
be more precise, let S be a closed Riemann surface and let H be a finite group
of automorphisms of S. We lock for a Schottky uniformization (£2, G) of S,
‘with 7 : Q) — /G = S as the natural projection induced by G, such that for

ach transformation h in H there exists an automorphisms t of € satisfying

In 1980 1. Keen [8] discussed this problem for a hyperelliptic Riemann

urface S where H is the group generated by the hyperelliptic involution on




S. A closed Riemann surface S is called hyperelliptic if it admits a conformal
involution with 2g-+2 fixed points (the hyperelliptic involution), where g is the
genus of S. In [6] and [7] we gave a similar discussion for closed Riemann sur-
faces which admit a general conformal involution. In general, if S is a closed
Riemann surface of genus ¢ > 2 and H is a finite group of conformal automor-
phisms of S, the problem of finding those Schottky groups which uniformize
S and reflect the action of H is still open. In this dissertation we obtain nec-
essary conditions, to be satisfied by the group H, to find a uniformization as
desired. We show that in general if H is cyclic, then our conditions turn out
to be sufficient.

In the first chapter, we give some basic definitions on Kleinian groups
and Riemann surfaces. In the second chapter, we study the fixed points of
elliptic transformations in geometrically finite Kleinian groups. We show that
for groups of this kind these fixed points satisfy a nice property called the
mixed elliptic fixed point property (M.I5.F.P.}). In the third chapter, we define
conformal automorphisms on Riemann surfaces and we recall some basics from
the theory of covering spaces. Next, we consider a closed Riemann surface S
and a finite group H of conformal automorphisms of S. Necessary conditions
on H, more precisely on the set of fixed points of the non-trivial elements of H,
are obtained in order to find a Schottky group G uniformizing S, as desired.
One corollary of our main result is that if H is a cyclic group, say generated
by f: 8 — 5, with the property that the number of fixed points of f is odd,
then we cannot lift the automorphism f to any Schottky covering of S. We

consider two classical examples in genus one, corresponding to surfaces having




an automorphism with fixed points of order four and six respectively. We
observe that in such cases the necessary conditions do not hold, That is not a
surprise , since if we look at the elementary groups which contain a Schottky
group of genus one, we see that every clliptic element of order different than
two has both fixed points in the limit set. In the last chapter, we prove our
main result.

Let us remark that, if the order of H is four, then it can be shown that the

necessary conditions are suflicient. The proof of this fact will appear elsewhere.




Chapter 1

PRELIMINARIES.

In this chapter, we outline some of the basic theory of Kleinian groups
we will need in this dissertation. Detailed discussion of this material can be
found in {2], [5] and [11].

C = CU{co} = CP; will denote the Riemann sphere. The group
of conformal automorphisms of € is the M&bius group, also called the
fractional linear group, and denoted by M. A Mobius transformation or

fractional linear transformation has the form

glz)=(az+Db)/(cz+d),

with a, b, ¢, d € C, and ad—bc=1.
Let us remark that a fractional linear transformation, which is not the
identity, has at most two fixed points. In fact, if z is a fixed point of a

transformation g as above, then z must satisfy the quadratic equation

cz?+(d-a)z-b=0.




We can identify the fractional linear transformation g as above with the

representative in PSL(2,C) of the matrix

Under the above identification, we obtain an isomorphism between M and

PSL(2,C). From now on, we will use freely this identification.

We can classify the fractional linear transformations as follows :

(i) g is loxodromic if it is conjugate to

with | A |> 1. Such a transformation has two fixed points.

(ii) If g is loxodromic, we call it hyperbolic if it is conjugate to

0 A1

with A real, and A > 1. A hyperbolic element keeps a circular disc invariant,
while a loxodromic non-hyperbolic transformation does not.

(iii) g is parabolic if it is conjugate to




Such a transformation has only one fixed point in C.

(iv) g is elliptic if it is conjugate to

with | A |= 1, A* # 1. Such a transformation has two fixed points in C.
Remark : Parabolic elements are the only fractional linear transformations
with only one fixed point in C.

Let G be a subgroup of M, we say that G is a Kleinian group, if the
following holds for some z € C:
(1) stabg(z) = {g € G : g(z) = z} is finite; and
(2) there exists a neighorhood U of z, such that g(U)=U, for all g € staba(z),
and g(UYNU = ¢, for all ¢ € G — stabg(z).
If G is a Kleinian group and z is as above, we say that G acts discon-
tinuously at z and that z is a regular point of G. The set of points of C at
which G acts discontinuously is called the regular set or region of disconti-
ngity of (. We denote this set by Q(G) or  if there is no danger of confusion.
_.__y:deﬁnition Q) is an open set of C. Its complement A(G) = C — Q@) is

alled the limit set of G.




If G is a Kleinian group, then its limit set has the following possibilities :

(i) AG) = ¢;

(ii) A(G) has only one point;

(iii) A(G) has only two points; or

(iv) A(G) is a perfect, nowhere dense sct in C.

A proof of the above fact can be found in chapter Il in [11]. If we are
in any of the cases (i), (ii) or (iii}, we say that G is an elementary group,
otherwise G is called a non-elementary group.

Let us observe that an elliptic transformation of infinite order is conjugate
to a rotation g(z) = €™z, where 0 is irrational. Thus, for every z in the
Riemann sphere we can find a subsequence of the sequence {¢"},.cz such that
g™ (z) converges to z. Such a point z cannot be a regular point of any group
G containing such a transformation. We conclude the following
Lemma : Let G be a Kleinian group. Then any elliptic element of G has
finite order.

Since loxodromic elements and parabolic elements have necessarily infinite
'_ order, the torsion part of any Kleinian group G corresponds exactly to the set
of elliptic elements of G.

'-_'Lemma : Let g and h be linear fractional transformations. Assume that g has
fwo fized points and h shares exactly one fixed point with g, say p. Thén the
commutator of g and h, [g,h] = ghg™'h™?, is a parabolic transformation with
fized point p.

.r'oof : Normalize g and h in such a way that the common fixed point p of

both transformations is co, and the other fixed point of g is 0. Under this

i
z
,




normalization the transformations g and h have the following form:

0 ¢t 0 1

where t is different from 0, 1 and —1, and a is non-zero.

The commutator [g,h] has the form

Since a is non-zero and #? is different from 1, the transformation [g,h] is
parabolic with occ as fixed point.g

If G and H are groups of fractional linear transformations satisfying the
conditions (1) and (2) below, we say that H is a finite normal extension of
G.
(1) G is a normal subgroup of H;
(2) G has finite index in H.

Lemma : If H is a finite normal extension of G, then H is a Kleinian
group if and only if G is a Kleinian group.

This is a consequence of the finiteness condition on the index of G in H.
If the group G is non-elementary, it also can be shown by using the condition

of normality. See [11] for a proof of this lemma.



In this dissertation, we are interested in some finite normal extensions of
a particular class of Kleinian groups called Schottky groups; these groups will

be defined latter.

About finite (normal) extensions I of Kleinian groups G, we have the

following facts:
(1) Q(H) = QG)-
(i) A(H) = AG).
(iii) If G has no parabolic elements, then H does not have any.

Facts (i) and (ii) are can be found in chapter I in [11]. The fact (iii) is
revelant to our study, so we show it here. Assume hin H is a parabolic element,
then h* and k™ must be in different classes in H/G if n # m; otherwise A7,

which is not the identity (so a parabolic element), must belong to G. This

| of h must now be in different classes, we see that G necessarily has infinite
index in 1L
Let G be a Kleinian group. By a fundamental domain for G we mean

an open set w of Q(G) such that
(i) no two points of w are equivalent under G,
every point of (@) is G-equivalent to at least one point of the closure of

ii) the relative boundary of w in (@), bw, consists of piecewise analytic arcs,

) or every side ¢ in éw, there exists a side ¢’ in éw and an element g € G

- contradicts the fact that G has no parabolic elements. Since different powers -
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Proposition : Every Kleinian group G has a fundemental domain.

See [5] for a proof of this proposition.

A Riemann surface S is a complex manifold of dimension one. More
precisely, S is a Hausdorff topological space such that for every point p in
S there exists an open neighboorhod U and a homeomorphism z : I — A,
A = {z € C:| z |< 1}, with the property that if (U,z) and (V,w) are two such
pairs as defined above then wz=!: 2(UNV) - w(UNV) and
2wt w(UNV) — 2(UNV) are analytic mappings.

In this discussion, we will consider only connected Riemann surfaces. Ex-
amples of Riemann surfaces are :

(1) the Riemann sphere, C;

(ii) the lcomplex plane, C;

(i) the unit disc, A;

(iv} the regular region of any Kleinian group Q(G), and the quotient Q(G)/C
(G may have elliptic elements) are a set of Riemann surfaces;

(v) any closed orientable surface of genus g. In this case, except for g=0, we
may have different Riemann surface structures on each topological type.

For g > 1, let Cy,C', k = 1,...,9, be 2g Jordan curves on the Riemann
“sphere, € = C{oo}, such that they are mutually disjoint and bound a 2g-
connected domain. Call D the common exterior of all the curves, and suppose
'hga,t for each k there exists a fractional linear transformation A, with the
oi__lowiﬁg properties.

AR(CL)=C"), ;

) Aj maps the exterior of C}, onto the interior of C'.



The transformations {A; : ¢ = 1,..., g} generate a subgroup G of Mobius
transformations, necessarily Kleinian, and D is a fundamental domain for G,
called a standard fundamental domain for G. This group is called a Schot-
tky group of genus g. Observe that necessarily the transformations A; are
loxodromic. G is a free group on g generators and all its elements, except by
the identity, are loxodromic [12]. These properties define in fact the Schottky
groups of genus g, for g > 1. For our purposses, we define the Schottky group
of genus zero to be the group with the identity as its only element, that is the
trivial group.

Theorem [12] : Let G be a Kleinian group. G is a Schottky group if and only
if G is purely lozodromic, finitely generated and free.

Theorem [4] : If G is a Schottky group, then corresponding to any set of free
generators there exists ¢ fundamental domain D, as above, whose boundary
curves are identified by the given generators.

If G is a Schottky group and Ay,..., A, form a set of free generators, we
say that G = (A4, ..., Ay) is a marked Schottky group, and that the set of
transformations Aj,..., A, is a marking of G.

Let us remark that if G is a Schottky group of genus g, then Q(G)/G
is a clésed Riemann surface of genus g. Moreover, if Ay,..., A; form a set
of free generators for G, and D is a standard fundamental domain for these
generators with boundary curves Cy, C'y, k=1,...,g, then these loops projects to
a set of g disjoint homologically independent simple loops on 5. Reciprocally,
the retrosection theorem [3] says us that we can reverse this situation. A

simple closed curve on a Riemann surface is a one to one continuous function,

11




f: 8" — S, from the unit circle to the Riemann surface in question.
Retrosection theorem : Fvery closed Riemann surface S of genus g can
be represented as Q(G) /G, G being a Scholtky group of genus g with region
of discontinuity Q(G). More precisely, given a set of g disjoint, homologically
independent, simple closed curves ¥1,...,75 on S, one can choose G, and g
generators Aq,..., Ay of G, so that there is a standard fundamental domain D
for G, bounded by curves Cy, Cf..., Cy, G} with AL{C;) = Cl, such that ~; is
in the free homotopy class of the image of C; under UG) — UG)/G. The
marked Schottky group G =< Ay, ..., Ay > 1s determined by (S, 71,...,7;) except
for replacing Ai,..., Ay by BAPB™,..., BA}B™', where B is a fractional
linear transformation and n; € {—1,1}.

. Remark : This theorem was first stated by Felix Klein in 1883 [9] and proved
rigorously by Koebe [10] much later. See page 30 in [7] for a proof. Let us
réma,rk that an easy proof of this theorem can be done using Bers ideas on
'Quasi—conformal mappings [3].

Since Schottky groups have no parabolic elements, no finite normal ex-
énsion of such a group can have parabolic elements. Finite normal extensions
f Schottky groups belong to a nice class of Kleinian groups called geomet-
ically finite Kleinian groups.

There exist several (equivalent) definitions of geometrically finite Kleinian
roups and they can be found in chapter VI in [1 1].

‘Let us remark that fractional linear transformations act naturally as
o_métries on the hyperbolic 3-space H* = {(z,1) € C x R : ¢t > 0}, with

‘hyperbolic metric ds® = (| dz |* +di?}/t%.

12




If G is any Kleinian group, then we can define fundamental domain for
the action of G on H3. For an exact definition of that, we refer to the chapter
IV in [11]. If such a fundamental domain is a convex hyperbolic polyhedron,
we call it a convex hyperbolic fundamental polyhedron for G. Geometrically
finite Kleinian groups correspond exactly to those Kleinian groups that have
a convex hyperbolic fundamental polyhedron with a finite number of sides.
Geometrically finite Kleinian groups are in fact finitely generated as abstract
groups as consequence of Poincare’s theorem (chapter IV in [11]), but the

converse is not necessarily true.

13



Chapter 2

ELLIPTIC ELEMENTS IN

GEOMETRICALLY FINITE KLEINIAN

GROUPS.

In this second chapter, we study the set of fixed points of elliptic elements
of geometrically finite Kleinian groups. Reference for this part is chapter VIin
[11]. Let us remark that in a Kleinian group the two fixed points of an elliptic
element can be located either in the region of discontinuity or in the limit set
or in both regions as can be seen from the following examples :

(1) Let G be generated by A(z)=z+1 and B(z)=—=z. In this case any elliptic
element of G is in fact conjugate in G to B. One of the fixed points of B, oo,
is fixed by the parabolic element A, so is a limit point. The other fixed point,
0, is a regular point of G.

| (2) Let G be generated by A(z)=2z and B(z)=—2. Here both fixed points of
B are fixed by the loxodromic element B, so both are limit points of G.

(3) Let G be generated by A(z)=z+1, B(z)=z/(z+1), and C(z)=—z. Both

14
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fixed points of B are fixed by a parabolic element, so both are limit points.
This case is essentially very different from the case (2).

(4) Let G be generated by A(z)=—z. In this case, both fixed points of A are
regular points of G.

Let us remark at this point that much more complicated examples than
the above ones can be constructed using the Klein-Maskit combination theo-
rems [11].

We define a nice property for Kleinian groups relating the set of fixed
points of its elliptic elements and we show that geometrically finite Kleinian
groups satify such a property.

We say that a Kleinian group G satisfies the mixed elliptic fixed point
property (M.E.F.P.) if, for any elliptic element h of G with x and y as fixed
points, one of the following conditions hold:

(1) x and y are regular points of G, or

(2) there exists a loxodromic element g in G with x and y as fixed points, or
(3) there is a parabolic element p in G sharing a common fixed point with h,
say x, and either y is a regular point of G, or there exists another parabolic
element ¢ in G with fixed point y.

The main result of this chapter is the following,.

Theorem 1: Let G be a geometrically finite Kleinian group. Then G satisfies
the M.LL.F.P. property.
Proof:

If G is torsion free, then there is nothing to check. Let us assume G has

torsion. Let he( be any elliptic element with fixed points x and y.




case (1): x and y are regular points of G, in which case we are done.

case (2): x or y is a limit point.

Without loss of generality we can assume that y is a limit point. Let jeG
be a primitive elliptic element fixing y.

i) Either j(x)=x, or there is a parabolic element in G with y as fixed

claim: (
point.
(i1) If g(y)=y, g in G, then either g is conjugate to a power of j in G, or g
is a loxodromic element with x and y as fixed points, or there is a parabolic
element fixing y.

proof of claim: (i) If j(x)#x, then the commutator [5,h] = jhi 'h~tis a
parabolic element in G with y as fixed point.

(i) Let g in G be such that g(y)=y. Assume y is not a fixed point of any
| arabolic element of G. The only possibility for g is to be elliptic or loxodromic.
By our assumption on y, we obtain that necessarily g(x)=x; otherwise [g,}] will
e a parabolic element of G fixing the point y. At this point, g is either a power
5 j, or a loxodromic element with x and y as fixed points. This ends the proof
‘our claim.

From now on, we assume y 1s not a parabolic fixed point. Let L be the

odesic in H® with x and y as end points. We have that j acts as the identity

be a convex fundamental polyhedron for G. Since y is a limit point,

is not a parabolic fixed point, y must be a point of approximation for

16




By the observation above, we can find a sequence of points y, €L, converging
to y, all of them non-equivalent points by G, and a sequence g, €G, all of them

different, such that g,(y.) = zn € P, where P denotes the Euclidean closure

of P.
Let us consider a subsequence such that z, converges, say to z, gn(y) converges,

say to u, and g,(z) converges, say to t. In this way, the points u and t are

limit points for the group G.

Since z, € P, then z€ P. We have two possibilities for z, that is, z is a
regular point, or z is a parabolic fixed point. See page 128 in [11]. It is clear
that the z, are elliptic fixed points, in fact z,=gn 397 (25). This implies that
.. must be in some edge of P. Since P has only a finite number of edges, we
¢an assume all z, are on the same edge of P. Let M be the geodesic in H3
containing this edge. In particular, z must belong to the closure of M.

laim: z is a regular point of G.

proof of claim: Since z belongs to the boundary of the polyhedron P, then
ther z is a regular point or z is a parabolic fixed point. If we assume z to be a
abolic fixed point, then the stabilizer of zin G, stab,(, is a BEuclidean group
- Since all points in H? are regular points for the group G and z belongs to
geodesic M, then z must be one of the end points of M. The discreteness
G implies the existence of a horoball H contained in H® which is precisely
riant under stab, G in G. In particular, z belongs to the boundary of H.
'géodesic M must intersect H and such an intersection is an arc of geodesic
:I]:.C end point being z. Since the sequence of points z, are in M and they

nverging to z, we can assume without lost of generality that all 2, arein

17




this intersection. The linear transformations g,jg, 1 have z, as fixed points, so
9uig (H) N H # ¢. By the definition of H, we must have gnjg(H) = H and
gﬁjg; 1(z} = z. The additional condition that g,jg; 1{z,) = z, implies that
gnjgt(w) = w, for all w in the geodesic M. In particular, gn{L) = M. Let us
consider the linear transformations h, = gng;}-l. These transformations have
fixed points the end points of M, in particular 2. The transformation A, is not
the identity on M, so this must be loxodromic. This contradicts the fact that
7 is a parabolic fixed point and that G is a discrete group. So we must have z
as a regular point of G. This ends the proof of our claim.

Let us consider the geodesics I, = g,(L) through z,, and having end points
gn(z) and g,(y). Since we have supposed gn{z) and ¢,(y) to converge to t and
u, respectively, then L, converges either to a point or to the geodesic with end
points u and t. If L, converges to a point, we necessarily have u=t=z. This is

contradiction to the fact that z is a regular point and u = t is a limit point

The other possibility is that L, converges to a geodesic v, with end points u
d t. In this case, since the end points of y are limit points and z is known
e a regular point we must have z in (] HB.

neighborhood of z contains z,, for n sufficiently large. Since z is a regular
int, there exists a neighborhood of z which is precisely invariant by the
”énts of G that fixes z, which is known to be finite. We can then assume
out lost of generality that g,j7g, Y(z)=2, and g,jg;" = h. In other words,
'_)j(g;llgn)“’l = j. Since gnjgy" (2n) = Zn, gnig, (2)=2, and z, # z for

then g,jg;(w) = w, for all w in . In particular, gnJg,1(t) = t and

18




gnigy ' (u) = u. It follows that {g,(x), ¢.(y) } = { t, u }. The facts that

t # u and g,(x) converges to t imply that that g,(x) = t and g,(y) = u, for n
sufficiently large. We may assurme it holds for every n. The last observation
implies that g;'g.(x) = x and ¢;;'¢.(y) = y, for all n, m.

The transformations g;'g, also keep L invariant, and for n # m this
transformation cannot be the identity on L. This implies that g, is a loxo-

dromic with x and y as fixed points. p

Before we finish this chapter, let us say that we can also show that any
function group F satisfies the M.E.F.P. property if F does not have a degenerate
subgroup with torsion, see [11] for definitions. The proof of this fact will appear

elsewhere.
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Chapter 3

CONFORMAL AUTOMORPHISMS OF

RIEMANN SURFACES.

In this chapter we recall some facts from covering spaces theory and we
introduce some necessary notations to introduce our main problem. We obtain
necessary conditions to answer this problem. At the end of this chapter we
‘state our main theorem which says that our necessary conditions are also

ufficient ‘in some cyclic cases. The proof of this result will be given in the

We need some definitions and notations before introducing our problem.
et S be a Riemann surface and f : S — 5 be a homeomorphism which is
analytic (then the inverse is automatically analytic). We call f a conformal
r holomorphic or analytic) automorphism of S. For a continuous map
S — S to be analytic we mean that for each point p in S there exist
_i_en neighboorhods U and V of p and {(p) respectively, {{U) C V, and local
srdinates z : U — A, w: V — A, where A denotes the unit disc

C :| z |< 1}, and such that wfz"" : A — A is analytic in the usual




Observe that composition of conformal automorphisms is again a con-
ormal automorphism. A group of conformal automorphisms of a Riemann
rface S will be a set of conformal automorphisms of S closed under the op-
_éxtion of composition of maps. See chapter 5 of [5] for more details in the

heory of conformal automorphisms of Riemann surfaces.

In the rest of this discussion we will be interested in closed Riemann
rfaces. A nice result due to Hurwilz says that if the genus of S is greater
'.._'a.n or equal to two, then the total group of conformal automorphisms of 5
's:iﬁ_nite of order at most 84(g—1). See page 242 in [5). If the genus is either
or 1, then the groups of automorphisms is infinite. In fact, for the genus

ro case, it is a three complex dimensional Lie group, and for the genus one

se, it is a finite extension of a one complex dimensional compact abelian Lie

. From now on, we will consider closed Riemann surfaces S of genus greater
qual to one and finite groups H of automorphisms of 5. By Hurwitz’ result,
e condition of finiteness is only a restriction in the genus one case.

. We are interested in studying the following question concerning conformal
morphisms and Schottky groups. |

)) Given S and H as above; can we find a Schottky group G,
férmizing S, such that every element of H can be lifted to a
formal automorphism of Q(G), the regular region of G 7

The genus zero case can be easily obtained since there is only one Schottky

up of genus zero, this being just the identity group. So, in this case we are
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dealing only with the finite groups of automorphisms of the Riemann sphere,
which clearly are finite normal extension of the identity group.

It is known that every conformal automorphism of the regular region of a
Schottky group is the restriction of a fractional linear transformation, that is,
an element of M. See page 241 in [2].

Before we say anything about our problem, let us recall some basics from
covering theory.

Definition : Let 7 : § — S be a continuous map between topological spaces.
We say that « is a covering map if for each point p in § there exists an open
neighboorhod U of p, such that the inverse image by = of U, 771(U), is the
disjoint union of open sets V;, where the restriction maps 7 : V, — U are
homeomorphisms. The topological space § is called a covering space of S.
Definition : Let 7: 5 — S bea covering., We say that this is regular if there
exists a freely acting group G of homeomorphisms of § , called the covering
group, satisfying the following property:

(i) if x, y are points in S, then 7(x) = n(y) if and only if there exists gin G
such that g(x) = y; or equivalently

(ii) m7g = =, for all g in G, and G acts transitively on the fibers 7 (z), for all
x in S. |

Let us remark at this point that there exist coverings which are not reg-
ular.

Lemma : Ifn:8 — S isa covering, and S s a Riemann surface, then §
has a unique structure as Riemann surface that makes 7 : § — § an analytic

map.
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Proof : Since the map = is locally a homeomorphism, we can lift the Riemann
surface structure on S to S. In fact, if x is in § and y=n(x), then we consider
an open neighborhood V of x and an open neighborhood U of y, such that
7 : V. — U is a homeomorphism. Since S is a Riemann surface, we have a
local chart (W,z), yeWCU. Let us consider for x the local chart

(=Y (W)NV, z7). Now it is easy to check that in this way S has a Riemann
surface structure making = analytic. The unicity follows from the fact that if
S has two such structures, then the identity map I of § satisfies 71 = 7. Since
7 is locally bi-analytic, the map I turn out to be also bi-analytic. So, both
structures are the same.g

Lemma :ff = ; S Sisa regular analytic covering between Riemann surfaces
with covering group G, then G is a group of conformal automorphisms of S.
Proof : If gis in G, then 7g = 7. Since 7 is locally bi-analytic, g is analytic.q
Definition : Let 7, : S — S be covering maps, k=1,2. Assume f: S5, — S,
is a homeomorphism. We say that a homeomorphism f : 8 = S, is a lifting
of fif wof = .

Lemma :In the above definition, if the coverings are analytic coverings be-
tween Riemann surfaces and f is an analytic homeomorphism, then any lifting
h of f must be also analytic.

Proof : Since 7, is locally analytic and moh = fy, the map h is also analytic.q
Lemma :Let v : § — S be a regular covering with covering group G. Let
J 8§ —= 8 be a homeomorphism. Assume there ezists a homeomorphism

f:8— 8 which is a lifting of f. Then

1) Every lifting of f has the form gf, where ¢ is in G, and every transforma-
Y g
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tion of the above form is in fact a lifting off.l

(2) If yy, y» are preimages of ¢ and f(z) respectively, then there exists exactly
one lifting h of f such that hiy,) = y,.

(3) If f has a fized point, then any lifting b of f with fized points has the same
order as f.

Proof :

(1) If t is another lifting of f, then f~*t is a lifting of the identity map on S.
So, f~'t = g belongs to G. On the other hand, if g is in G, then clearly gf is
a lifting of the map f.

(2) Since f(y;) is also a lifting of f(x), then we can find g in G such that g f(y,)
= y5. The transformation h = gf is also a lifting of by the second part of
(1). To get unicity, assume we have two liftings of f, say h and t, satisfying the
hypotheses. Then h~'t is a lifting of the identity, so belongs to G, and it fixes
a point in §. This only can happen if A1t is the identity, or equivalently, if
t = h.

(3) Let h be a lifting of f having a fixed point, say p. If we denote by q the
projection of p to S, then q is a fixed point of f. In fact, since h is a lifting of f
we have that q==(p)=n(h(p)) = f(x(p))=1(q). If we denote by n the order of
f, then A™ is a lifting of the identity. It follows that 2™ belongs to G. The fact
that G acts fixed point freely implies that A™ is the identity. If m denotes the
order of h, then the last assertion implies that m divides n. In the other hand,
the identity map 2™ is a lifting of f™, which implies that f™ is the identity.

In this case n divides m. As consequence n = m, that is, the order of f and h

are the same.g




Proposition : Let 7 : § — S be a planar regular covering between Riemann
surfaces with covering group G < M. Assume G has no parabolic elements and
it satisfies the M.E.F.P. property. If f : S — S is a conformal automorphism
of S of finite order, say n, which can be lifted to a conformal automorphism
h:8— S, then the following hold.
(1) If f acts fized point freely, then either
(1.1) h is an elliptic element of order n and there exists g in G lozodromic
commuting with h, or
(1.2) h is lozodromic and h", the composition of h n-times, belongs to G.
(2) If f has a fized point z on S and y in S is a lifting of &, then there exists a
unique lifting ¢ of f with y as fived point, and such a lifting is elliptic of order
n.
Proof : (1) The liftings of f can only be elliptic or loxodromic. In fact, if
there exists a lifting of f which is parabolic, say r, then r® is a lifting of the
identity, so it must belong to the group G. Since r" is also parabolic, this con-
tradicts the fact that G has no parabolic points. If such a lifting is loxodromic
we are done. Let us assume that a lilting, say t, is elliptic. Since f has no
fixed points, then the fixed points of t must belong to the limit set of G. The
M.E.F.P. property and the fact that G has no parabolics imply the existence
of a loxodromic g in G commuting with t.
(2) If x is a fixed point of f and y is a lifting of x, then part (2) of the last
lemma above implies the desired result.g

Now, let us come back to our problem. Let us assume we can answer (Q)

affirmatively for H, that is, there exists a Schottky group G, uniformizing S,
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such that every element of H can be lifted to a conformal automorphism of
the region of discontinuity of G. Let i be the group generated by G and the
liftings of the elements of H. Since H is finite, & is a finite normal extension
of Q. It follows that G is a geometrically finite function group. Theorem 1,
in chapter 2, implies that ( satisfies the mixed elliptic fixed point property.
Moreover, since G does not have parabolic elements, then neither does (7. As
consequence, only (1) and (2) in the definition of the M.E.F.P. property can
happen for G.

Remark : The above results on covering maps gives us the following about
the liftings of elements of H to G.

(1) If h is an element of H of order n acting without fixed points, then any
lifting % in & of h must have one of the following properties:

(1.a) h is elliptic of order n and there exists a loxodromic element gin G
commuting with %; or

(L.b) % is a loxodromic element with A" belonging to G-{id}.

(2) If h is an element of H of order n acting with fixed points, then we can
find a lifting % in G of the transformation h which is elliptic of order n with
both fixed points in Q(G)= Q(G). Such lifting is unique if we fix a lifting of
one fixed point of h as fixed point of £.

We need some definitions to write necessary conditions for (Q) to be answered
affirmatively.

Definition : Let p, q&€S be fixed points of non-trivial elements in H. We will

say that p and q are paired, or that they form a pair (p,q), if there

exists h € G — {i¢d} of finite order with fixed points x and y projecting to p
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and q respectively.
Definition : For peS, the stabilizer of p with respect to H is the group
Hpp)={h € H: h(p) =p}

Tor the next definition, we need a classical result. Let h€H and p€S be

as before such that h(p)=p. We can find a local coordinate system (U, ¢) such
that ¢(p) = 0 and doho¢~1(2) = e'®z, for all z € (U). Moreover, we can
assume ¢(U) = A, where A denotes the unit disc in the complex plane C.
Lemma :The angle o = a(h, p) is well defined up to o« multiple of 27, inde-
pendent of the local coordinate and a(h*,p) = ka(hk,p).
Proof : We only need to check the independence from the local chart. Let
(U,R) and (V,T) be local charts such that p belongs to U and V, R(p) = T(p)
= 0, and R(U) = T(V) = A. Then RhAR™'(z) = ¢"*z and ThT VY (w) = ew,
since RhR~! and ThT-! are conformal automorphisms of the unit disc A fix-
ing the origin (Schwarz’s lemma). Let us consider t(q) = TR™(g) = "¢, then
¢z = RhR™'(z) = RT-\TAT'TR™(z) = t"*ThT'1(2) = e Mele™(z) =
e’®(z). This equation implies e/ = ¥ and then a — § = 2K, for some K.g

Definition : (The rotation number) Let h€H and p€S be such that

h(p)=p. We normalize @ by assuming that —7 < o < 7. We will call

= a(h,p) the rotation number of h at p.

finition : Let h be a conformal automorphism of a Riemann surface S. We

denote by N(h) the number of fixed points of h.

The following results are obtained under the assumption that we can

wer (Q) affirmatively,

oposition 1 : Let pcS be fired by some element h in H-{id}. Then there
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exists a unique point g€ S— {p} which is paired to p. Moreover, if t€ S—{p,q}
is fired by some non-trivial element of H, then t cannot be paired either to p
or ¢. In particular, if b in H-{id} has a fired point, then it must have an even
number of fized points.

Proof of Proposition 1 : Let h be an element of H and let p be a fixed
point of h, that is, h(p}=p. Let x be a point in the regular region ((G)) of
G projecting to p. We can find a lifting (of the same order as h) & in @ of h
such that A(x)=x.

Let y be the other fixed point of %, then the M.E.F.P. property implies
that y is a regular point for the group @, hence for the group G. If we show
that y project on S to a point different {rom p, say g, then p and q are paired in
the above sense. Assume y projects onto p, then there exists g in G satisfying
g(x)=y. The commutator [k,ghg™!] will be parabolic if g(y)#x. Since 7 has
no parabolic elements, this is not the case. This implies that g(y)=x, and
in particular g?=1. The last is a contradiction to the fact that G has no
elliptic elements. To prove the second statement of proposition 1, we assume
te S — {p, ¢} is fixed by some element in H-{¢d} and it is paired to p. Then
there exists j in G — {id} of finite order with fixed points u and v such that u
projects onto p and v projects onto t. Since p and q are paired, there exists
h in @ — {id} of finite order with fixed points x and y such that x projects
to p and y projects to q. The condition that x and u project onto the same
point p means that there exists g in G such that g(u)=x. Let us consider

k = gjg~' € G. Then k is of finite order and non-trivial element of G — {ed}

with fixed points x and g(v) projecting to p and t respectively. Since t is




different from q, g(v) is also different from y. Now we form the commutator
[k,fz]: khk~1h=! which must be parabolic and we get a contradiction to the
fact that ¢ has no parabolic elements. g

Proposition 2 : Assume that p and ¢ are paired under H, Then

(1) H(p) = H(y), and

(2) alh,p) = — alh,q), for all h € H(p) — {1} = H(q) — {1}, if h has
order bigger than two, where 1 denotes the identity of H.

Proof of Proposition 2 : Assume that p and q are paired under H, that is,
there exists & in & of finite order with fixed points x and v projecting to p
and ( respectively.

By one of the lemmas in page 23, we have that for every t in H(p) there
is one and only one transformation # in & which is a lifting of t and fixes x.
Let z be the other fixed point of £, which is also in the regular region of G by
the M.E.F.P. property.

Claim : z=y.
Proof of claim : If z#£y, then the commutator [Z,fz] in & is parabolic. But &
cannot have parabolic elements, so z=y as we required.

We have shown that t also belongs to H(q), and by symmetry we get
H(p)=H(q). Also we have shown that for every t in H(p)=H(q) there exists
a lifting { of finite order (the same as t) with-x and y as fixed points. In
particular o{f,x)=—a(f,y). But a(f,x)=a(t,p) and o(i,y)=a(t,q) .o

The above two propositions give us the following necessary conditions, on

our group II, to find a Schottky group G as desired. The set of fixed points

of the non-trivial elements of H can be paired in the following way :
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(1) if (p,q) is such a pair, then p # g, H(p) = H(q) and

a(h,p) = —a(h,q) for all h € H of order greater than two;

(2) if (p,q) and (r,s) are two such pairs, then either {p,q} = {r,t},
or {p,q} N{r,t} = ¢.

Proposition 3 : Assume p and q are paired under H. If there exists h in H
such that h(p)=q, then h is an involution, that is, h? = 1. In particular, if H
has no elements of order 2, then any pair (p,q) will project onto two different
points on the quotient Riemann surface obtained by the action of H on S.
Proof of Proposition 3 : Let us assume there exists a pair (p,q) and an
element h in H such that h(p)=q. Let § € G be an elliptic element with fixed
points x and y projecting on S to p and q respectively. Since there exists h in
H with h(p)=q, then there exists a unique lifting & € & such that h(z) = y.
Let us consider § and % o § 0 h~1; both elliptic elements of the same order with
y as a common fixed point. Since G has no parabolic elements, they must also
have x as a common fixed point, that is, h(y) = z. This means that 4% =
and h # id. Since G has no elliptic elements, & cannot belong to G. We can
see that h induces h as an involution in S and permuting the points p and q
as we require.g

Remark : If H is a cyclic group, then each pair (under 1) of points p and
q is formed by non H-equivalent points. In fact, since p and q are paired
under H, there exist an elliptic element % in ¢ with fixed points x and y, such
that n(x)=p and 7(y)=q. Denote by h the element of H such that #h = hr.

Assume there exists t in H such that t(p)=q, then we can find  in G which

is a lifting of t, i.e, 7t .= tm, such that #(x)=y. Since @ has no parabolic
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elements, #(y)=x, so {2 = 1 and ¢ = 1. The transformations f, h satisfy
the equation #hf = &1, In fact, normalize such that x=0 and y=co. Under

this normalization h(Z) = ¢*Z and {(Z ) = R/Z, for some non-zero complex

number R. In this case, 1hi(Z) = ¢ 7 = h=\(Z). But now { and project
to t and h respectively, and the above relation says that t has order two and
that th has order two. Since we have assumed t to permute the two fixed
points of h, then every non-trivial power of h is different from t., that is, we

get the Dihedral group Dy, where n is the order of h, as a subgroup of H. In

particular, H cannot be cyclic.

The next two propositions, whose proofs are not given here, will not be

used in what follows, but we put them here as matter of interest. If F is a

subgroup of the group H, we will denote by [H:F} the index of F in H.

Proposition 4 : If H has no elements of order 2, then for every he H—{id}

we have

N(h) = 2[H :< h >]n(h), where n(h) is a non-negative integer.
Proposition 5 : If I has elements of order 2, then for every he H—{id} we

have

N(h) = [H :< b >](2ny(h) + na(h)), where ni(h) and ns(h) are non-negative
integers, and ny(h) denotes the number of pairs (p,q) with H(p) = H{q) =

< h > and such that there exists some gcH, ¢ = 1 and a(r)=q.

Let H be a cyclic group of order o{f), say H=< f >, where o(f) is the

order of f. Assume that every fixed point of any non-trivial power of f is also

" a fixed point of f; then the necessary conditions founded above, which will be

called the condition (A), can be written as follow.
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(A1)} f has an even number of fixed points. Denote by N(f) = 2n(f),
for some non-negative integer n(f), the number of fixed points of f;
(A2) The fixed points of the automorphism f can be paired in the
following sense; if (p,q) is such a pair, then p # q and |
a(p) = —a(f,a) if off) # 2; and i
{(A.3) If (p,q) and (r,t) are paired as in (A.2), then either : 3
{psa} = {r.t}, or {p,a} N{r,t} = 4. -
|
|

As result of this condition we obtain the following
Corollary 2 : Let S be a closed Riemann surface, and let f : S — S be a
conformal automorphism of finite order. Assume that [ has an odd number of B

fized points. Then there exist no Schottky group G, uniformizing S, such that

[ can be lifted to a conformal automorphism of the regular region of G.
Example : The following shows an example of a closed Riemann surface of
genus three, non-hyperelliptic, with an automorphism of order three with five

fixed points.

Let us consider the non-singular e irreducible quartic

X4+ Y 4 XV3 4 aX?Y2 4 bX3Y 4+ 23X + Z3Y =0,

. for suitables complex numbers a and b. This quartic is a closed Riemann

surface of genus three, non-hypereliptic, admiting the automorphism of order

three h induced by the linear transformation




10 0
k=191 o>
0 0 w

where w? +w+41=0. It is easy to check that this automorphism has in fact

only five fixed points.
(Q1) Is condition (A) sufficient?

The following will answer (Q1) in the case when H is a cyclic group with
the property that the set of fixed points of all non-trivial elements of H are
the same.,

Theorem 2 : Let S be a closed Riemann surface of genus g > 0, and

f:8 — 8 be a conformal automorplism of finite order, say o(f). Assume
that every fized point of an element f* is also a fized point of f, for all

ke {l,..,o(f) —1}. Then condition (A) is necessary and sufficient to find a
Schottky group G, uniformizing S, such that the automorphism f can be lifted
to a conformal automorphism of the region of discontinuity (regular region ) of
G, (G).

Since any involution trivially satisfies the hypotheses of theorem 2, we
obtain the following.

Corollary 3 : Let S be a closed Riemann surface of genus ¢ > 0, and

f:1 8 = 5 be a conformal involution. Then there ezists a Schottky group

G, uniformizing S, such that [ can be lifted to a conformal automorphism of
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the region of discontinuity of G, Q(G).
Remark : In the particular case when S is hyperelliptic and f is the hyper-

elliptic involution, corollary 3 was proven by L. Keen [8]; the general case first

appeared in [6].

The proof of theorem 2 appears in the next chapter. Before we go on, let
us look at two examples in genus one. In genus one Riemann surfaces, tori,
there are only two classes of conformally different tori with an automorphism
having fixed points. These tori are given by the quotient of the complex plane
C by the group G4, generated by the parabolic transformations A(z)=z+1
and B(z)=z+, and the group G,, generated by the parabolic transformations
A(z)=2+1 and B(z)=z+p, where p = 1/2+44v/3/2. In the first case, Ty = C/Gy
has an automorphism j of order four having two fixed points, where j%is an
involution with four fixed points. It is easy to see that the rotation number
of j at both fixed points is the same; figure 3.1 shows the action of 7 at its
fixed points when we lift it to the universal covering of Ty, In particular the
necessary conditions to find a Schottky group G of genus one uniformizing
Ty such that j can be lifted to a conformal automorphism of (G) are not
satisfied by H =< j >~ 7/47.

In the second case, Ty = C/Gy has an automorphism ¢ of order six having
only one fixed point. There are three points in 7% which are permuted between
them by ¢ and another two points which are permuted between them by t.
Figure 3.2 shows the action of ¢ when we lift to the universal covering of T5.

Again, the necessary conditions are violated by H =< # > Z/6Z.
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Figure 3.1: The rotation of j at the fixed points.
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Figure 3.2: The action of ¢ at the universal covering.




If we look at the elementary Kleinian groups with exactly two limit points
[11], we can see that it is impossible to find a finite extension of a Schottky
group of genus one with an elliptic transformation of order greater than two
having a fixed point as regular point of a such group. Let us also remark that
any torus T admits involutions with 4 fixed points. These involutions satisfy
trivially the (A) condition. Since these involutions act on the fundamental
group Iy (T) 2 Z @ Z as the transformation (n,m) — (—n,—m), it is easy to
see that they lift to any covering of T. Tn particular, to every Schottky covering
of T.

Let us remark also that if a subgroup of conformal automorphisms H of a
closed Riemann surface S has order 4, and H satisfies the necessary conditions
above, then we can find a Schottky group G with region of discontinuity @, and
a finite extension H of G where G is a normal subgroup of index four of i, and
for every h in H there exists A € i with #h = Th, where 7 : Q@ — Q/G = §
denotes the natural holomorphic covering induced by G on 2. The proof of
this fact will appear elsewhere. The general case is still an open problem.

We can also generalize this problem for more general uniformizations
(A, F) of closed Riemann surfaces, but in this case it is easy to show that
our necessary conditions are not in general sufficient. This problem in this

generality will be discussed elsewhere.

36




Chapter 4

THE PROOF OF THE MAIN THEOREM.

In this last chapter, we prove theorem 2 as a consequence of two lemmas.
Those lemmas describe the topological action of any conformal automorphism

satisfying our necessary conditions.

Let 5 be a closed Riemann surface of genus ¢ > 0, and let f:8—=58
be a finite order conformal automorphism of the surface S. Let us denote by
o(f) the order of this transformation. Assume that every fixed point of the
transformation f* is also a fixed point of {, for all & € {1,..,0(f) —1}. We
make the following definitions.

(i) S is the quotient Riemann surface obtained by the action of < f >on S ;
(ii) N(f) is the number of fixed points of f;
(iii) v is the genus of S; and
(iv) m:S— S is the natural holomorphic projection induced by f on S.
In this case, we can re-write condition (A) as:

(A1) f has an even number of fixed points, that is, N(f) = 2n(f), for some

non-negative integer n(f);




(A2) The fixed points of the automorphism f can be paired in the following
sense; if (p,q) is such a pair, then p # q and a(f,p) = —a(f,q) if o(f) 5 2; and
(A.3) If (p,q) and (r,t) are paired as in (A.2), then either {p,q} = {r,t}, or
{p.a} N{r,t} = ¢.

The Riemann-Hurwitz formula [5] gives us the following relation between
the genera of the surfaces S and 5, the number of fixed points of f and the

orderof I :

g = o(f)y + (a(f) — 1)(o(f) - 1).

The proof of theorem 2 will be obtained as consequence of the following two
lemmas.
Lemma 1 : Assume f is fized point free.
(a) For some (non-dividing) simple closed curve n on S, 7~(n) consists of
o(f) disjoint non-dividing simple closed curves which divide S into o(f) parts.
(b) The canonical projection, w, maps each part topologically onto § — n and
each part is bounded by exactly two of the o(f) loops in (a).
(¢) Some element g identifies the two boundary components simultaneously for
each part, where < [ >=< g >.

Observe that in the fixed point free case, the Riemann-Hurwitz formula
says that
g=o(f)(y — 1)+1. The proof of this lemma, when o(f) is prime, was done by
Accola in [1]. For the general case it was proved by R. Ruedy in [13]. Figure
4.1 shows lemma 1 in the case o(f)=4, y=1 and ¢ = f.

The following lemma is a generalization of lemma 2 in [13]. The proof
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Figure 4.1: o(f)=4,y=1 and g = f.

ollows in the same way and it will be done after we show how to obtain the
theorem 2 from the above two lemmas.

emma 2 : Assume n(f)# 0.

a) The branch values p1,..., Pan(s) O 8 of m:5— 8, can be arranged in such
ay that there are n(f) disjoint simple paths n; joining py;_1 and py;,
1,...,n(f), whose preimages divide S into off) parts.

T maps each part topologically onto S—Uni:i=1,...,n(f)} and each
is bounded by exactly n(f) disjoint simple closed loops, each one containing
tly two fired points of f.

e fized points of f divide these loops into two halves and some generator

f >, say f% (depending on o(f,p2;)), maps one half of the curve onto




Figure 4.2: o(f)=2, y=1 and n(f)=1.

Figure 4.2 shows lemma 2 in the case o(f)=2, y=1 and n(f)=1. Before we

prove it, let us see how we obtain theorem 2 by using the above two lemmas.
Fixed Point Free Case (n(f)=0).

mma 1 implies that S may be obtained by pasting together o(f) spheres,
h__with two holes and v — 1 = (g — 1)/o(f) handles, where some non-trivial
ower of f, say g = f*, permutes these surfaces with boundary in a cyclic
‘mapping each one of them into an adjacent one. See figure 4.3, for the
v=2, o(f)=4, g = f.

. _us consider a set of 2y loops a,,f,, 7 = 1,...,7, on .5', satisfying:

=13

Nos=¢ = fiNG;, if i #5;
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Figure 4.3: y=2, o(f)=4, g = [.

3) a; N consists of one point; and
1) their homological classes form a canonical basis for the homology of 5.
See figure 4.4 in the case y=2, o(f)=4, ¢ = [.

Let us consider the lifting under = of the loops «, and 3,, r = 1,...,7.

_us denote by &; the lifting of the loop ay, by 6.4, s=1,...,0(f}), the liftings

a, for r=2,...,7 and by 7,,, s=1,...,0(f), the liftings of 5, for r=2,...,y. See

e 4.5 in the case v=2, o(f)=4, ¢ = f.

In this way we obtain a set of simple loops on S satislying the following

=¢,ifr #l, ort #s;
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o Figure 4.5: Lifting to S of a special canonical homology basis in 5 in the case

7=2, o(f)=4, g = f.




gure 4.6: A special canonical homology basis in S in the case v=2, o(f)=4,

f.

) 8: N5 is a point;

) 61 N = &, it r=2,...,0(f);

SNy = ¢, if r # 1, or 8 #

) 6.6 Ny,s, 18 @ point; and

) the loops 61, 6,5, 71,1, Wr,s5 s=1,...,0(f), r=2,...,7, form a canonical homology
sis on the surface S.

See figure 4.6 in the case 7=2, o(f)=4, 9= 1.

.. Observe that the loop 6 is invariant under f, and for each r=2,...,v, the

0,5, 5=1,...,0(f), are permuted cyclically by the automorphism f. Theg (g
gy = Lyeiuy )

(B)(y—=1) + 1) loops 61, Or,ss s=1,...,0(f}, r=2,...;7, on S are homologically

pendent and, as a set of loops, it is f-invariant. The §— loops define a
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G (up to eqlliva,len(;e), uniformizing the surface S, such that

automorphism f can be lifted as a conformal automorphism, say

of discontinuity of (3. [y can be seen that F can be chosen in

there exist a set of generators for G invariant under the action

lsely, there eXiSt A]_, A?‘,t) T = 2, seny fy and t — 1’ __,,O(f), linea,l‘

}_formatiorls, which form 5 set of generators for G, such that :

= Dyl ,r = 23-";7; t= 13"'?0(f) —1; and
o 1 :Bl OBT,]OB;},T':Q,...,'}’.

8 in the case 1=2, o(f)=4, g = f.




Figure 4.7: A Schottky group G uniformizing the surface S defined by the §—

loops in the case y=2, o(f)=4, ¢ = f.
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Figure 4.8: A Schottky group K uniformizing the surface S defined by the n—

loops in the case '7-r=2, o(f)=4, g = f.
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Figure 4.9: 4 = 2, and n(f)=2
Fixed Point Case (n(f)# 0). |
Lemma 2 implies that S can be obtained by pasting together o(f) spheres with

n(f) holes and v handles each as follows: |

let 5 and 7;, i=1,..,n(f), be as in lemma 2. Cut along all the paths 7; to ob-

tain a new surface, say §*, with boundary nf Uny, for j=1,..n(f). See figure
4.9 in the case v = 2 and n(f) = 2. Now we procede to assign to each path |'
1; an element o; in the permutation group of o(f) elements as follow. Let
tj be such that 0 <| a(f, py;) |<| a(f*,p2;) |, all k=1,...,0(f) — L. Then o;
corresponds to the cyclic rotation determined by o;(1) = t;. Let us consider

o(f) copies of the surface $*. Let us denote these copies by I, s = L,...,o(f). 1.:5

Glue these o(f) copies in the following way:

identify each point in 7} of , to the appropriate point in n; of Boy(s), for all §j and s,
so that these two identiﬁed points correspond to the same point on §. See

figure 4.10 in the case that ¥ = 0, n(f) = 1, o(f) = 4 and oy is the permutation

corresponding to a rotation of angle 27 /4.

The new surface obtained above gives us a topological model of both the




Figure 4.10: ¥ = 0, n(f) = 1, o(f) = 4 and o, is the permutation corresponding

to a rotation of angle 27 /4.

surface S and the action of f on S,

To obtain a set of g disjoint homologically independent and f-invariant
simple loops on § (again as a set of loops), we procede in the following way.
Consider on § a set of 7v disjoint (homologically independent) simple loops,
disjoint from the paths 7j,allj. Callthema,, r=1,..., 7. Now, let us consider
disjoint simple loops 4, I =1, .y n(f), also disjoint from the a-loops and such
that £ is free homotopic in § — WUn;j:j=1, o n(f)}, to the boundary curve

M. See figure 4.11, for the case v = 2 and n{f)=2,

Let a,; be the liftings of @, and f; . be the liftings of B, where k,
m=1,.,0(f);r=1,.,y = 1,...;n(f}. Then by lemma 2, up to rename,
we have that
(1) flerk) = arppr , k modulo o(f), r=1,..,7,

(2) f(Bim) = Brmsr , m modulo o(f), I1=1,...,n(f),
(3) Bro(s) is homologous to - E,OTSQI Bim.

(4) {ar, Bim}, where k = Losolf)ir=1,.,7 1= L.,n(f)—-1;
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Figure 4.11: v = 2, and n(f)=2

m = 1,..,0(f) — 1, are g simple loops homologically independent on §. See

figure 4.12 in the case that o(f)=y=n({)=2 and g=5.

The family of simple loops, given in (4), will define a Schottky group
G, unifc;rnljzing S, such that f can be lifted to a conformal automorphism,
F, of its region of discontinuity. As in the fixed point free case, we can find
a set of generators for G, invariant under coﬁjugation by F in the following
sense. There exists linear fractional transformations Argy, Bim k=1, ...,0(f);
r=L.,yl=1.,0(f)—1; m= Ly...;o{f} — 1, forming a set of generators
for G such that;:
(1) FoArpo F™' = A ryy , k modulo olf); r=1,..,7.
(2) FoBimoF'=Bi, m= Lgo(f)~=251=1,..,n(f) - 1.
B3) FoBp-ro P =T B 1=1,.,n(f) 1.

To prove lemma 2, we will need the following.
Lemma 3 : Let S be a closed Riemann surface, and let f : § — S e
any conformal automorphism of order o(f)=pq, where p is prime and = 2.

Assume f satisfies the condition (A) and that every fived point of f* is also




Figure 4,12: o(f)=y=n(f)=2, g=5

fized by f, for all k = L.,o(f)~1.

Let So=S/< f? > be the q't;otient Riemann surface obtained by the action of
flonS, andletr: 5 — So be the natural projection induced by < f9>. Then
[ induces an automorphism 9:5 — Sy, of order o(g)=q, and

<YSEf> [ < 1>, such that:

() {z€So:g(z)=2}={zesS,: 9*(x) = 2} = the projection by = to Sy of
the set of fized points of f, forallk =1, ol f)—1; and

(b) g satisfies the condition (A).

Proof :

To see the first equality in part (a), observe that the contention

{:EESO:g(a:)::x}Q_{mESo:gk(ac)zm}




52

is trivial. Now let us

prove the other contention. [f Zo Is a fixed point of the

transformation g*, then the preimage by 7 of Zy is the set
2, f1(2), fa), ..., fE-Di(e)},

If x is a fixed point

where x is a point in § such that n(z) = z,.

of f, then zq is a fixed point of g. If we assume x not a

fixed point of f, then x cannot be a fixed point of any non-trivial power of f by

hypotheses. In any case F*¥x) e 7! (xy), that is, fHx) = J*'(x) for some s,

1 <s<p—1. This means that F*7%(x) = x. The above observation implies

hat sq—k is congruent to 0 modulo pq, But 0 < 1 <gq

. To show the other equality,
1} So

let us observe that the fixed points of project
to fixed points of g. We only need to show that they are in fact all of

hem. Let g, & So be fixed by g, and let xe§ be such that 7(z) = xg. The

image by 7 of Ty is the set {z, fi(2), T¥(x), ..., fl-

Ve(a)). I f(x)=x, we
#x. Since we are supposing g(z)=
ave f(;(;) c {3;, fq(m.), f2q($) , __.,f(;v'—l)q(m)}_

:r) = f*(z), some 1 <k<p

e done. Let ug suppose f(x) T, We must

In this case, we obtain that

— 1, but this is equivalent to 3 — fFY().

ntradiction. We ohserve that if x and y are paired by f, then 7(z) and 7(y)
Iso paired by g. Part (b) follows from the above.q

Proof of lemma 2 : Let Po € 8§ be a point which does not belong to the

where X denotes the set of points on & corresponding to the projections,

of the set of fixed pointsoffon 8. On § there exists a family of (oriented)




simple loops through pg, which have no other points in common, disjoint from

the set X and whose homotopy classes define a canonical basis for homology

on the surface §. The complement of these curves is simply connected, Next,

we show that we can modify this system of loops, without destroymg any of

the properties above, such that the following hold:

Claim : Fach of the above loops lifts to a loop on S.

Proof of claim : To do it, we use induction on the decomp031t10n of the

integer o(f) in prime factors. Let us write the order of f as o(f)=I1¥, pt, Where

p; 1s prime, and N> 1.
(1) case N=1.

In this case o(f)=p, wher

e p is prime. Let us consider Uy By 7 =1, Yy

simple loops as above. We have the following possibilities, for r {1} FER

(a) a» and B, both lift to loops.
(b) o, lifts to a loop and g, lifts to a path.
(c) ey lifts to a path and B lifts to a loop.
(d) a, and B, both lift to paths.

In case (a), we are done. In case (d),

the case (b)

we can replace our loops to satisfy

as follow. If g, €S is a lifting of py, then @, and By lift to paths

starting at gy and ending at ¥ (B) and at T (po) respectively. Since off)

1s prime, we can find ¢ such that A lifts to a path starting at g, and endin
p ; T g

at f*(py). Let us replace our loops «, and B- by simple loops ay and B

respectively, where o* is homotopic to a7 and B* is homotopic to 4,.

case (c), we replace our loops a, and g, by simple loops o and A respectively,

where o} is homotopic to B! and 8* is homotopic to a,.




As observed above » We only need to solve the cage (b). Let us consider

@ and § as in (b), that is, a and B are (oriented) simple loops through Do, &

lifts to a loop and B Iifts to o path. Fix any s, 1 < g < off), and let g, be

as before. Then, 3 lifts to a path starting at g, and ending at fk(p”g), some

1 < %k < o(f). Since o(f) is prime, there exists t such that g* lifts from g,

and ends at f*(5;). We replace our loops « and B by simple loops homotopic

to af and g respectively. We can assume, as above, « lifts to a path starting

at po ending at f*(5) and A lifts to & path starting at g, ending at f*(z).

We replace « and g again by simple loops homotopic to o and Ba=f where

R is such that oF lifts from Po and ends at F¥(Bo) (o(f) is prime). Now, we

can suppose « lifts to a path starting at p; and ending at f*(,) and g lifts

to a loop. Change o and B to 871 and o respectively. At this point we can

assume « lifts to a loop and A lifts to a path from g, and ending at fo(z,).
Let us suppose, we have %, Bi, @, B;, i # §, such that @; and a; both

lift to loops and B; and B; both lift to paths starting at the same point and
ending at the same point. Then we change them by simple loops homotopic
to oyay, B, a; and ,6’;,6’37"1 respectively, see figure 4.13.

Now, we can assume all loops a,., 8, r = L,y s=2 w37, lift to loops
on S,

Let pe § be the projection, by 7, of some of the fixed points of . Tet 7
be a (oriented) simple loop on & through py, disjoint from all other loops with
the exception of py, freely homotopic in §—X to a small simple loop around p-

¢ can choose the integer s, 1 < s < off)

way that Bin (or pip~1)

, in the above argument in such a

is homotopic to a simple loop on 3, say &, which lifts




Figure 4.13:

to a loop on S. Replace £, by any simple loop homotopic to §. Now, all loops

a and B will lift to loops on S as required, and we are done in the case N=1.

(2) Assume we can do it for N — 1 and let us prove we can do it for
N. Let f be a conformal automorphism of S, satisfying (A1), (A2), (A3) and
such that the fixed points of any non-trivial power of f are also fixed points
of f. Let off) be of the form: o(f)=I]"_, p,. Let q=IT"= p. and p=py, then
o{f)=pq, where p is prime and ¢>2. Consider the cyclic subgroup generated
by f9, < f? >, and let S] be the quotient Riemann surface obtained by the
action of < f? > on S. Let 7, : § — 5, be the natural projection induced by
f9. By lemma 3, f induces an automorphism g, of order o(g)=q, satisfiying
the conditions of lemma 2. Let S, be the quotient Riemann surface obtained
by the action of g on S;. Let 1 : §; — §, be the natural projection given by
such action. Then we have that Sy =S /< f>=8 and 7 = Ty 0 Ty, See figure

4.14,

Let g; be the genus of S;, ¢ = 1,2. By induction hypotheses, we can find

a set of simple closed curves «,, 8,, r = 1, ..+yY, through py € §,—X, which




— S f > S
l |
I‘ :
17 ]S‘ Y — ,Sn T
m, ,
y )
—> S5 idg, — S, ¢«

Figure 4.14:

have no other points in common, whose homology classes form a canonical
‘basis for the homology of S; and such that each of them lift to a loop on 5.
Let o, be the liftings of a, and let 8., be the liftings of B, on Sy, such that
&, and B, have non zero intersection numbelﬂ Let us orient them such that
this intersection number is +1. We have the following possibilities for fixed r:
) @1 and B, both lift to loops on S.

(b) oyt lift to a loop on S and . lift to a path on S.

...;_.ar,k and S, both lift to paths on S.

case (a), we are done. In case (b), we procede to change 8, without changing
of the previous properties except that By will lift to a loop on'S. Consider

mall loop o around p; €X and a simple path § connecting py to o, disjoint

ﬂ:a,ll other curves with the exception of py. Take the loop B:(bab7 a1y,
'ﬁéure 4.15 for the case s = 2. This loop will lift to a loop on $ for some
We replace 3, by a simple loop homotopic to Br(bo6~taz1)%, In case

consider the loops «, and a!f,. Then, for some t=ts, al* B, will lift to
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Figure 4.15: The loop B (6067 a1y
a loop on S, and we are in case (b).

This finishes the argument, and we have a set of & and 3 loops as required

m our claim.

Now we finish the proof of lemnma, 2. Let T' be a set of loops as in the claim

above. We label the branch points as p,, ¢,, r =1, -»n(f) in such way that Pr

and ¢, are the projections of paired fixed points. Choose disjoint simple arcs,

6 i [-1,1] - (S'—P) U{po}, with the property that 6,(—1) = p,, 5.(0) =

proand 6.(1) = ¢, r = L...,n(f). Since the complement of U:.fl) 5. UT is

simply connected, we can find on it o(f) continuous branches of 71, These

branches have a continuous extension fo I" since the liftings of all the loops

in I are simple loops. We also can extend them continuously to 6, | [-1,0]

(the restriction of 4, to [-1,0]), but we cannot extend them, continuosly, to

6, [ [0,1}. If 7y is a branch of 7=, then (5 — )6, | [0, 1]) is a fundamental

domain, for the action of the cyclic group generated by f, bounded by two




images of w1 (U4, | [0,1]). Since | o(f,p,) |= 2wk, [o(f), some
kr =1,..,0(f) — 1, we can find tr € {1,...,0(f) — 1}, such that
| o(ffp,) |= 2w fo(f). It follows that f* maps one of these two images of

71(6, | [0,1]) onto the other, for all r = 1,..,n(f). This ends the proof of

lemma 2.4

We end this work with the following conjecture.

Conjecture. Let S be g closed Riemann surface of genus g > 0, and f: 85— 8

be a conformal automorphism of finite order, say o(f). Then the condition (4)
is necessary and sufficient to find q Schottky group G, uniformizing S, such

that f can be lifted to o conformal automorphism of the region of discontinuity
of G, (G).
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