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Abstract of the Dissertation
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by
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1991

W first present that the conservation of the absolute vorticity for perfect
fluids in rotating frames can be obtained by using the Lie-Poisson equation.
Then we show the existence and uniqueness of the solution for the quasi-
geostrophic flow which is given by the equation 8;As p+ Jlp, Ag p+ By = 0.

Finally, we put quasi-geostrophic flow into a Hamiltonian formulation to get

conserved quantities.
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Chapter 1

Introduction

The purpose of this dissertation is to study the quasi-geostrophic flow on
a rotating sphere which models the oceanic motion. The main results are to
show that theré exists a unique solution to the initial value problem defining
this flow and to give a Hamiltonian formulation for it.

Chapter 2 is devoted to the geometric description of the fluids. Tn section
2.1, we give the Lagrangian description. Arnold [1] discovered that the motion
of a perfect fluid on a region M C R” can be understood as a geodesic In an
infinite dimensional manifold which is D, the group of volume-preserving dif-
feomorphisms of M. For M compact, Ebin and Marsden [3] studied the func-

tional analytic detail of the manifold and group structure. They also showed

the existence and uniqueness of solutions. Section 2.2 gives the equations of




motion in both inertial and rotating frames.

In section 2.3, we give the Hamiltonian description which is based on the
dual of the Lie algebra G* of this group D,. For M simply connected, G* is
identified with the space of vorticities. The Poisson structure on G¥ together
with the Hamiltonian function yields the Lie-Poisson equation which is equiva-
lent to the traditional vorticity equation. The conservation of vorticity follows
from the fact that the solution of the Lie-Poisson equation is transported along
the fluid motion.

When the frames rotate with possibly variable angular velocity, we show
the absolute vorticity is conserved (Theorem 1). The Coriolis force changes
the Poisson structure as can be seen through the momentum shift.

Chapter 3 is for the quasi-geostrophic flow. Section 3.1 gives the funda-
mental assumptions and to give the equation controlling the quasi-geostrophic
flow. Geostrophic means that the motions are significantly influenced by the
rotation Qf the earth. We also include the gravity as an external force. For
a fluid particle moving with speed U to travel the distance L, for rotation
to be important, we assume that L/U > Q7' where ) = 7.3 x 10551
is the speed of the angular velocity of the rotation. For instance, the Gulf

Stream has L = O(100km) and U/ = O(100cm/s). Under the condition

O(%) = O(35) < 1 where r is the radius of the earth, we derive the equation

T




for the quasi-geostrophic flow (3.18) which is now an equation for the pressure
function.

Section 3.2 is to show that the equation in section 3.1 has a unique so-
lution in H* for all s > 5 with the smooth initial condition p, satisfying
%";—"zconstant on the boundary (Theorem 2). The key ingredient in the proof
is the contraction mapping theorem.

In section 3.3, we use the Poisson bracket in rotating frames to give a
Hamiltonian formulation for the quasi-geostrophic flow (Theorem 3). The
Hamiltonian function is given by the energy function for this flow. Analogous

to the conservation of vorticity described in Theorem 1, the conserved quantity

for the quasi-geostrophic flow can be found. Because of the two dimensional

character of this flow, it actually has infinitely many conserved quantities.




Chapter 2

The Manifold Structure and

Fluid Equations

2.1 Diffeomorphism Groups

Let M be a region in R™ filled with fluid. The configuration space of
a perfect (incompressible, inviscid, homogeneous) fluid on M is the group.'of
volume preserving diffeomorphisms of M. This was first discussed by Arnold
[1]. The motion of the fluid can be described by a curve 5(t) in the group, with
n(0) = identity. Then n(t)(x) is the position of a fluid particle at time ¢, which

is at # when ¢t = 0. In traditional fluid mechanics, z is called the Lagrange

coordinate (or body coordinate) and 5(t)(z) is called the Euler coordinate (or




space coordinate) of the particle.

The manifold structure of the group of diffeomorphisms of M is shown by
Ebin and Marsden [3]. Here we present some of the results. In the following, M
and N are compact Riemannian manifolds without boundary. All the results
can be generalized to OM # 0.

Let ¥ — M be a vector bundle over M. For s an positive integer, we get
a Banach space H(F) of sections of E whose derivatives up to order s are L?
in local charts. We have
Sobolev Embedding Theorem For k > 0,dimM =n,s > T+ k, where s,p
as above, then the inclusion H(E) C C*(E) is continuous.

Define H:(M,N) to be all maps from M to N such that, using local

coordinates, the derivatives up to order s are LP. Then
Proposition 1 H:(M,N) is a Banach manifold.

Proof: Given any Riemannian metric on N and its associated exponential map
exp : I'N — N, there is a natural way to construct local charts for H;(M, N).
For f € Hy(M,N), T;H(M,N) = {g € H(M,TN)|rog = f} is a Banach

space, where 7 : TIN — N is the canonical projection. Define

O: T HM,N) — H:(M,N)

g — expog.




Let U be the neighborhood of zero in T H2(M,N), we need to show @ is
indeed a local chart on U.

First of all, @ is one-to-one by choosing U such that for all g € U, |g(z)| <
the injectivity radius of exp at f(x). Next, we show {®,U} is compatible.
Suppose @ : U — H(M,N) is a neighborhood of f and ¥ : V — H(M,N)
is a neighborhood of g, we need to show ¥~! 0 ® is a diffeomorphism on
UHB(U) N B(V)).

Define Exzp: TN — N x N by (p,v) — (p,exp,(v)), where ezp, : T,N —
N. Then we have Dyezp, : ToT,N — T,N and DygyBap : TpoTN —
ToN x TN are identity maps. Hence, Exp is a local diffeomorphism near the
zero section of T'N.

Let b = ®(a) = U(b), where a € U,b € V. Since h(z) = expla(z)) =
eap(b(2)), we have Eep(a(@) = ((2),h(x)) and Bap(b(e)) = (g(a), h(z).

Therefore,

b(z) = T (®(a(z))
= Eazp(g(z), h{z))

= Eap~(g(2), ®(a(2))).

Hence D(¥~! o ®)(a) - w = DEzp~(g,®(a)) - D®(a) - w. This proves the

compatibility. 0




Definition 1 D} = {n € Hy(M, M)inp™' € Hy)(M, M)}

For s > 2 41, D; is an open submanifold of I3{M, M) and it is a topo-
b

logical group. The right multiplication

R,: D, — D;

{ — oy
is C* for n € D;. The left multiplication

L,:D; — ’D;;

?

¢ — nof

| sClifnp € D;“. The inverse map D, — D, 7 — 77! is continuous.

The Lie algebra 134D; = HS (M,TM) is the space of H; vector fields on
M. Let D, = ﬂs>% D; using the topology as the limit of topology of Dy,
D, is called the ILB (inverse limit Banach) Lie group. See Omori [8]. When

2,D = D, is called ILH (inverse limit Hilbert) Lie group. For rest of the

discussion, we assume p = 2.




and @ means an orthogonal direct sum with respect to the H° metric, i.e.

(o, B)o = /M ah«p.

Also, KerA is finite dimensional and may be identified with the &** cohomol-

ogy group of M.

Definition 2 D} = {n € D’|y"(p) = p}, where p is the volume form on M.
Proposition 2 Fors > 2 4 1,D; is a closed submanifold of D*.

Proof: Define & : D**1 — [u]* by n = 5*(p), where [u]* = {u + df|VS €
H*Y(A"™1)}. Hodge decomposition implies [u]® is a closed affine subspace of

 H*(A"). We will show ® is a submersion. For s > 2, we have
T,0: T,D — H3(A")

v g (Lyog-1pt),
here £ is the Lie derivative. S0 Ty®(v) = Lopp = deyp. The map v — t,p
n isomorphism since p is nondegenerate. This shows T;a®(v) is surjective
1ce the tangent space to [p]® at any point is d(H**'(A"7?)). Also, T,®
urjective since R, and #* are isomorphisms. Therefore Di=&"1(1) is a

bmanifold. (

8 is a closed ILH sﬁbgroup of D? and its Lie algebra consists of divergence




free vector fields X since Lxp = (divX)y = 0. Hodge decomposition also

determines that T;yD° = Ty D5 @ grad H*t1(AY).

2.2 FEquation of Motion

We will derive the Fuler equation for the perfect flow on a compact manifold.

Definition 3 A weak Riemannian structure on @ Banach manifold £ is a
smooth section of the bundle of continuous, positive definite, symmetric bilin-

ear forms on £.

Note: Weak structure means that it may not define the topology on the tangent

spaces TpE to £ at { € €.
Definition 4 For s > L + 1, define a bilinear form on T, D* by
KV, W >= fM < V(z), W(2) >y #{2),

where <, >, is the Riemannian metric on M, and i is the volume form induced

by the metric on M.

Proposition 3 The action of D on D by right multiplication preserves the

Riemannian structure.
Proof: Given X,Y € 1:D%,9 € D3,

K Xon,Yon» = fM<X0n($)»Y°W($) > ¢onfay (%)

|
i
|
|
|
|
!
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= [ <X(@),Y(2) > nla)
- XY S,
The second equality is by change of variables and 7*(u) = p. O

Restricting <> to D;, gives a weak Riemannian metric on Dy,
Now we will use this metric to derive the equation of a perfect flow on M.

We have the variational principle,
T
Ds)smso f Ldt =0,
0.

where L is the Lagrangian of the dynamical system. In our case, the La-
grangian is the kinetic energy defined by the Riemannian metric (assume the
density is 1). So

L:TD: - R

L(n(8),5(t)) = 2/ < i(@®)(@),1(1)(z) >npw) da.
The variation of n is 1,() = 7(¢) + sw(t), where div(w(t) o n(¢)" 1) = 0

and w(T") = w(0) = 0. The variational principle implies

Oloco [ 5 [ <@ (D(@) >0 dods
= Ol [ 3 / < (8)(w) st (2)(2),7E) (@) + (D)) ) dadl

- f / <)z )(a:) >n(t)(a:)'*"§Dw(t)($)< B(0)(2), 1) (@) >y)(x) dadt
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= [ < i) + T @), v ) >y dds
where T is the Christoffel symbol of the metric on M.
- fM/OT < (1) + Ta(n() o n(t) (=), w(t) 0 n(t) 7 (2) > dida.

Therefore, (7i(¢) -+ I'p{t)q(t)) o n(t)~* = —grad p, where p is a function on M

by the Hodge decomposition énd T is the Christoffel symbol of the connection

V on D, induced by the metric on M.
Lemma 1 (i -+ I'jj) o™t = 8,V + (V - V)V where j(t)(z) = V(n(t)()).
Proof: We have 7j(t) = V(t) o 7(t). Thus

(fi+Tgp)on™ = fon™ +ITVV
= oV +DV-V+TVV

Il
e

div V
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Ebin and Marsden [3] that the Euler equation may be transformed to a spray
on the group Dy, Thus the existence and uniqueness for short time sohitions
to the Euler equations follow from showing the spray is smooth.

In the following, we will ignore the analytical treatment of the infinjte

dimensional manifolds involved. We derive the Fuler equation on M in rotating

frames.

Let SO(3) act on M C R? such that Vg € SO(3),¢(M) C M and m, be

a curve in SO(3) generating a vector field Z,.

Zy(my(z)) = -;—tmt(a:)

Let SO(3) act on D, by left composition,
SO(3) X Dy = Dy, (m, na(t)(z)) > m(na(t)(x)).

On rotating frames, the position of the fluid particle z at time ¢ is 1a(t)(z)
which has the true position (w.r.t. inertial frames) m(na(t)(z)). Therefore,

the velocity vector of the fluid particle in inertial frames is

[maCra)@D] =Ty () e i(t)(@) + Zulma(t)(2)).

The Lagrangian function w.r.t. rotating frames is

LR(nR(t), 1r(t))

3 o))
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= 3 S Ta(t)(a) e 1alD(@) + Zilma(a(t)(2))Pda
=3 fM ia(®)@) + T (1) (@ymi - Zulmalna(t)(2))) P

= 5 [ n0)@) + i 2 @) o

where |z =< 2,2 >.

For M = R?, we write m} Zi(na(t)(z)) = Qt) X na(t)(z) where (1) is the

angular velocity of the rotation. Then

=3 [ 1in(t)(z) + 0(t) x na(t)(e) .

The variation of 55 is 7,(t,s) = 54(t) + sw(t), where div(w(t) o ny(t)™1) = 0

and w(T') = w(0) = 0. The variational principle gives

les:o fOT _;_ /ﬂ;j |7}R(-¢,5)(;g) + Q(t) X Wn(t)(m)|2dmdt
= -/, foT < die(t)(z) + Q) X na(t)(2) +20(t) X 1a(t)(2) +

Q) x (1) x na(t)(2)),w(t)(2) > dide
Since div{w(t) o nr(t)~!) = 0, we have
i o e~ (2) + 20 X (0 72+ QA x e+ 0 x (2 x z) = —grad p(t,z),

for some function p on M which is called the pressure. Let Ve =1ron,?, then

3 Vr(z) + (Ve - V)Va(z) 420 x Va(z) + 2 x 2+ Q x (0 x z) = —grad p(l,z).
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Note: 20(¢) x Vg is called the Coriolis forcei Tt is orthogonal to (t) and Vp.
Q(t) x z is called the Euler force; it is due to the non-uniformity of the rotation
and (%) X (Q(¢) x 2) is called the centrifugal force; it lies in the plane spanned
by (t) and x. see Batchelor [2).

We notice that Q(1) x (Q(t) x x) = jgrad |Qt) x 2|2, 1Q() x z[? is called

the centrifugal potential. We now can write the Euler equations for a perfect

fluid on R? in rotating frames as follows,

OVr(2)+(Var V)VR(2)+20% Va(z)+Qxz = —grad (p(t,z)+1|0xa]2)

div Vr(z) = 0.
2.3 The Poisson Structure

2.3.1 The Lie-Poisson Equation

The previous section gives the Lagrangian formulation of the fluid mo-
tion. Now we will give the Hamiltonian formulation following Marsden and

Weinstein [7].

Definition 5§ A Poisson manifold P is a manifold together with a Lie algebra

structure { , } on the space C*(P) of smooth real-valued functions on P such

that {f, g} is a derivation in each argument.
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Let G be a Lie group with its Lie algebra G. The dual space §* carries a
Poisson structure as follows: For 4 € g*, and F,G € C*(G*), we define

{FGHw = [0, 29

where - is the pairing between ¢ and G* while [, ]is the standard (right) Lie
bracket on G and % € § is defined for v € G*,

d oF
?i—tF(u + t0)|ip = v - S

Since this formula for the bracket on G* is due to Lie (5], we will call
this the Lie-Poisson bracket. The bracket {, } is the one induced on ¢* by
identifying C*(G*) with the right invariant functions on 7*(,

For P a Poisson manifold, the Hamiltonian system on P corresponding to
a function H: P — R is that given by the real-valued function on P evolving
by the rule F' = {#, H}.

For the case of a perfect fluid on M, the configuration space is D, and the
phase space is 7*D,,. The Lie algebra X, = 1Dy ={v: M — TM|div(v) =

0}. For v € X,, we associate a 1-form v" by the L? pairing. i.e.

b = .
()= [ (v,
The dual of Lie algebra A can be identified as the space of 1-forms modulo

exact 1-forms since fy df - v =0 if div(v) = 0. i.e. Ar={lp]l lp] = p+df, f €

C*(M),p € N(M)}
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The Hamiltonian function H : X » — I is given by

H() = S A1,

where the metric |- | =<, > o is induced by the metric on G.

In traditional fluid mechanics, for v the velocity vector and & = ¥ x v the

vorticity, the Euler equation implies the vorticity equation:
O+ vV~ Vo =0.

Proposition 4 The Lie-Poisson equation on A is equivalent to the vorticity

equation.

6H

Proof: For ;S-[—p—] =w,

oF oH
8[p]” 6lp]
= [ bl i
= [l ehde

or

= J 0 Lo

= - [ (ol e

{FHY([p) = [d]-] ]

where (, ) denotes vector-covector pairing,.

Therefore, { ¥, H}([p]) = —DF[p] - £,[p]. This implies




17

Let 2-form w = d[p] and take the exterior derivative of the above equation, we
have
(at + ﬁ,,)w = (.

b

We notice @ = #w and ¢,w = (& X v)", s0

Low = diyw + t,dw

Note: For M simply connected, we can identify [p] with d[p] and X} with the

space of vorticities.
Corollary 1 Conservation of vorticity.

Proof: The solution to the Lie-Poisson equation d,w+ Lyw = 0 with the initial
condition w(0) is w(t) = (y71)*({)w(0), where n(t) is the flow for v(t). So
the vorticity is transported by the flow which is equivalent to the Kelvin’s
circulation theorem. It states that the velocity circulation around a closed

"fluid” contour is constant in time. Le.

constant = %v cde = /curlv -dA.
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This implies curl v is constant along the fluid. O

Note: The corollary has another interesting interpretation, The adjoint action

of D, on X, is
D.xX, — X,
(1,0) — Adyw=Dpovon,
The coadjoint action of D, on Xy s
Dy x Xy — Ay

(m[e]) = Ad;lp] =n*[p].

We verify the above formula for the coadjoint action as follows. Suppose

Adylp] = B, then

Blw) = [o]- Adyw

= /M<[p],Dnovon‘1>dm

[, < @0 ollon,w> de

= < n*[p],w > dz.
M

The coadjoint orbit of [] is {y*[p]| 7 € D,}. So the corollary is equivalent to

the fact that the vorticity stays on the coadjoint orbit.
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2.3.2 The Momentum Shift

Now we will show the conservation of absolute vorticity in rotating frames

and the momentum shift.

Theorem 1 Absolute vorticity is conserved.

Proof: Given the Lagrangian in rotating frames, we perform the Legendre

transformation

MBLR_ . b
[pR]_ anR ““( R—f-a) *

where oo = myZ, o 1. Since div(v + @) = 0, so [py] is identified as the 1-form

corresponding to the absolute velocity vector field w.r.t. rotating frames. The

Hamiltonian function w.r.t. rotating frames is

Hg(nz, [pz]) = [pr] 7 —Ln
= <lpah[pal = @ > - lollP

= ZloalP- < (ol >

It is easy to see that Hp is invariant under the right composition by 11z, so we

can define Hp on G* as

Hi(pal) = 5lloall~ < [pulso? >

We can now write down the Lie-Poisson equation using Hp as before.
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For DI g = [pp] — & = v}, we have ::[HR = vg. Therefore, if we write
Ar

wr = d[pg], we have (8, + £, )wr = 0. This shows the absolute vorticity wy is

conserved. 0

For M = R?, the corresponding vorticity equation is the following:

Let 0p =V X Vr, and V x (Vi + Q(t) x @) = &y, + 284(t) so that
Oy(©n +20(1)) + Vi - V(Gpn + 20(8)) — (&g -+ 20(t)) - VVe =10

The conservation of absolute vorticity implies that the conserved quantity is
Wr + 292(2).
We now examine how the Lagrangian and Hamiltonian functions to be

changed when the frames are changed. We have
. 1.
L) = Ll
. 1. . g
La(ie, 1) = Slhin + af”.

Therefore Lg = L. Perform the Legendre transformation,

(o]




The corresponding Hamiltonians are
1 2
Hnl) = Sll,
1
He(nm (osl) = Slell’~ < lps],0* > .

Hence, Hr = H— <« lprls >

This explains that the Lagrangian is invariant under coordinate change

due to the rotation and the Hamiltonian is not. This is why the Hamiltonian
formulation for the rotating frames has to be derived from the Lagrangian
together with the Legendre transformation. The Hamiltonian is not covariant

because of the Poisson structure. We will see this explicitly by performing a

momentum shift.
Definition 6 The momentum shift of lpal is defined as pr = [pp] — o .
We get a new Hamiltonian as a function of Pr,

Halfn) = 5(15el? - [of?).

Note that the term Lla|? is just the centrifugal potential.

Write the Poisson structure in terms of On

(F,GY () = (ﬁn+a)-{g£,%] (2.1)
- {F,e}(ﬁw-[g—;,gg]. (2.2)

Note: The extra term o corresponds to the Coriolis force.




When ) is time-independent, Hamilton’s equation is

() = {6, HY(r).

This corresponds to the vorticity equation (V) by letting &, = dpg. In general,
the momentum shift is time-dependent and the Hamilton’s equation is no
longer as above. We will see how the equation should be altered.

Suppose ®; : P — P is a time-dependent map and
Lo.(p) = Yi(0u(0)
di t(P = t( thp)).
Assume for each t, ®, is a Poisson map, i.e.
{FO@hGO (Pt} = {F,G} (¢] ¢t) VF,G 6 OOO(P).

Then & F(®,(p)) = {F, H}®:(2)) + ViF(0.(3))

In our case, ®:([ps]) = [pr] — o and Y; = & is the Euler force.
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Chapt er 3

Quasi-Geostrophic Flow on a

Rotating Sphere

3.1 Equation of the Flow

We now consider a model of a thin layer of inhomogeneous fluid on a

rotating sphere which describes the oceanic motion. The equations of motion

consist of conservation of mass

S
I
“CD
<
=y
I
uCD

(3.1)

on the fluid
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d 9 . :
where prialr + (¥- V), ¥ is the velocity vector, ¢ is the density function, p

ig the pressure function and 7 is the gravitational acceleration pointing down-
ward. The well posedness of the inhomogeneous flow can be proved using the
previous discussion. See Marsden [6].

The spherical coordinatesrof the position of fluid particles are r,¢,d which
are the distance from the center of sphere, the latitude and the longitude. We
consider the motion on a sphere of radius ro. We further suppose that the

motion occurs in a mid-latitude region, distant from the equator, around some

central latitude ¢,. Define

z = Ur,sing,

v = (e—@,)r,

We now give a standard type of scaling analysis to describe a particu-
lar kind of motion by making assumptions on the relative size of quantities
nvolved.

Let L be the horizontal (tangent to the sphere) scale constant, D be the
ertical ( normal to the sphere) scale constant, and I/ be the horizontal velocity

cale constant.

To scale the dynamical variables 7 — (u,v,w), o, p, (Note u,v,w are the
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velocity in the eastward, northward and vertical direction.) we introduce the

new variables,

u=U, @=L f, =20sing,
v=Ud, y=1Lj &6=D/L,
w=6Uw, z=Dz, t=(L/U)L
Then r = r,(1 4+ §2L/r,).
To scale g, p, we observe that if ¥ is very small, then the pressure will be
only slighl.; disturbed from the value it would have in the absence of motion.

That is, if we let =0 in (3.2), we get

2 e

We define p,,p, as the global averaging of p and g at each level of 2. We can
now write
P = ps(z) + 13(3:: yyz:\t)

g = Qs(z) + @(m,y,z,t).

P, ¢ are the variations of p, ¢ away from p,, 0,. We are interested in the motion

such that the horizontal pressure gradient has the same order as the Coriolis

force. From (3.2), we have




Similarly the vertical pressure gradient has the same order as 29. Thls implies

that
0. fUL
Therefore,
p = ps(2)+o,fULp
0 = o,(2)(1 + cFg)
where
2r2
€= v = fo'L )
Jol gD

Geostrophic Approximation: e = O(L/r,) < 1
The setting is of particular interest in oceanography. For the eddies that

have been observed in western Atlantic,
D = O(4km),U = O(5cm/s), L = O(100km), f, = O(107*s™1).

So

e=0(5x107°), F = 0(2 x 107%),6 = O(4 x 1072).

We now write (3.2) in spherical coordinates as follows:

du ww uv i 1 dp
—_— _—— — t — = ————
= + . oty 2Q) cos v + 2 sin pw o s 29 (3.3)
dv  vw u? 1 op
- + el —co -+ 28 cos pu o 9 (3.4)
d 2,2
L E Y 0singy = - 192 _ (3.5)

E_mur—— e or




d

dt

O, w0 w0 o
O reospdd  rdp dr’

We write (3.3) in terms of i, %, @, §,  as follows:

Ulda  sU_ . U2
i Tuw—Tuvcot
U ro8in g, 9p
1+eFp rsing 0%

p — Ut20cos p + SUD20 sin

(3.6)

where

L Tesine, O

—
~

rsine 0%

T O

vr@g]

d
9z’

+ w

Dividing (3.6) by U f,, skipping the notation ~ , We get

U du &L L cos ¢ sin rosing, Op 1
(5 + —uw ~ Zuv cot @) — v——L | gL = :
JLVar T T uvce #) Y eos ©, +6wcos ©, rsing Jdrl 4 elp
(3.7)
Similarly, from (3.4), (3.5) we have
U dv 6L L, cos @ rodp 1
e ~u? cot —F = TP .
foL(dt+ va+Tu ° (’0)+ucos<po rdyl+cFp (3.8)
dw €6 sin ¢ 1 9(po,)
1 22" He2 2y — Ty _ = Y\PEs) .
(14 eFg)(eé FTa (u® +v?) 5ucosgoo) 2. 05 (3.9)
Also from (3.1). V- % =0 gives
ow _D roOv L rosinp, du ‘
G T gy T rete e =0, (8.10)
de .
i 0 gives
de w do, _ |
eth +(1+ EFQ)& 5 = 0. (3.11) |
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Now u, v,w, p, ¢ satisly (3.7), (3.8), (3.9), (3.10), (3.11). So they are func-
L
tions of z,y, z,t and ¢, -J}—L, ;—,F, 6. We now expand u, v, W, p, ¢ in term of e,

Thus

() () ()

Uy

v Vo v
w | =] w, | te| w |+
p Po P1

\ ¢ ) % | \ o1

. 19
_where (u;,vi,w;,p;, 0;) are functions of z,y,2,¢t. We now assume __a_é’s =
; g, 0z

_O(e). See Pedlosky [9]. The O(1) term of (3.7), (3.8), (3.9) give

_ Op,
Yo = dz
R/
Q - 8y

_ Op,
% = —5—

du, du, Ou, L Op1 Ly ap,
— v — U, = —— t .
3t + u, Oz + v ay v — v ?"oéytan Yo o er, cot e, S (3 12)
: v, v, dv, L dpy
0 o o & == :
5 +u 5 +v _3y +uy -+ u roey an, e (3.13)
Ow,  Ovy, Oy L L Ou,
— v cotp, — b, =2 = 0 (3,
Oz + Jy + or roc " Po roe” P05 0(3.14)

ov, Ou,

. Differentiating (3.12) w.r.t. & and differentiating (3.13)




w.rt. y, we get

B, 0L |0

gt T he Ty
. L 6p Ly 82}70 8ul
= — ?"o tan, + e cot e + cot v, B2y -

Using (3.14), we obtain

850 850 afo . Bwl
o "Gy Ty T =,
where 8 = -L—tﬂ‘i
To€
The O(€?) term in (3.11) implies
dt‘?o un ags _
dt + o, 0z 0
dyp,
df: - 'U)lg =0
where % = Bat + Uy a@ + v, ;} and S(z) = - Flgs %i“’ Therefore
_1d,p,
T

Now (3.15) gives

J d 0 0,1
(_é—t‘l'uo'&;"!‘ )(€0+lgy"ﬁ5_(sgo))g0

which is

O 0 0p. 0, 0%, Op, . 0, 10p
(5t~ 3y 0: * Bm oy (32m+32y+3(5

=)+ By) =

This is called the quasi-geostrophic flow. See Pedlosky [9].

(3.15)

(3.16)

(3.17)
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We denote by Ag and J[-, -] the following operators

Asf = 048 4.0

Jla, b = amaayb—ayac’?xb.

Then (3.17) is equivalent to

9(As p) + Jp,As p+ By = 0. (3.18)

Although z,y are in principle simply new longitude and latitude coordi-
nates, they are introduced so that for small Lfr, and D/r, they will be the
Cartesian coordinates. We now give the boundary condition for the (3.18).
For simplicity, we will restrict the region to M = R?*/Z? x [0,1]. This
means that we consider solutions which are periodic in the horizontal direc-
tion. The boundary is M = {(z,; %) € M|z =0,z =1} = ['y UT where

Iy = R*/Z? x {i}. The boundary condition is w;, = 0 at M. Tt follows from

(3.16) that
g _9p0 dpd

-G B2y

1( p
S50t 8yox Gmay

8z
This implies
Z (t ((t,2,y,2)) = 9% (Owy, z) at OM

where ((t,2,y, z) is the flow of (-2 o 337’0)

0 05 ?
Note that if -L;—’ii) = & = constant at M (That means ¢, = ¢; =
z

. . 0
constant at I';), then the boundary condition is B—E(t, Z,Y, %) = Cp.
z




3.2 Solution of the Flow

In this section, we will consider the initial value problem for the equation

]

9:(As p) + Jp, As p+ By] = 0, p(0) = p,. (3.19)

Theorem 2 For T small, $(z) > 0,p, € C~(M),d,p, = cp at OM and s > 5,

(3.19) has a unique solution in C°([0,T], H*) with [, p = 0.

We want to solve (3.19) in the following way. For given functions q(t), we

consider the equation

O(As p) -+ Jg, As p+ By] = 0, p(0) = p,.

(3.20)

If (3.20) has a solution p, we get a mapping ¢ — p = ®{(g). Then we look
for a fixed point of ®, which will be a solution of (3.19). We shall use the
contraction mapping theorem to show the existence of the fixed point.

We first solve for ¢? satisfying the equation

8" + (v7 - V)g" = —Bol, ¢7(0) = ¢, (3.21)

where v? = (v{,v],v%) = (—9,q, 0,4, 0), ¢, = Ag po.

We will need the regularity theorem for H*® vector fields.

Regularity Theorem Let M be a compact manifold (with boundry OM ) and

s 25 +2 (n=dimM). IfV is an H* vector field on M (parallel to aM), the
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flow n, of V' with 5, = identity is a C* curve in D", If V is a divergence free

vector field, then n; is in D,

Proof: See Ebin and Marsden [3]. 0
For ¢ € H*,v? € H*™' v7 is parallel to M and div v? = 0. It follows

from the regularity theorem, if s —1 > g +2, then the flow 7,7 of 7 is in Dyt

In the following, we will omit the q in the superscript.

Taking the time derivative of the equation

1
qsont:qbowﬂjovzomds,

we get
dpon+Véon, dm = —Puvson
which is equal to
Od+ (v- V)¢ = —fFu,.

Therefore the solution to (3.21) is

40 = (b= B [ vaom ds)oni”, (3.22) ~

For S{z) > 0, the Neumann problem

Agf = antM

95

5, = Gallyi=0,1 ‘F

1
has a solution if and only if / ¢=1 =~ / l(:0. See Treves [10].
M r, S Lo S
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We now can write ®(q) = AG'(47). The operator A3' is well defined

because

[o#=fotmnf foomiom fpom [ 2 [ Lo

and the uniqueness can be determined by requiring f ®(q) = 0.
M

We now assume 7' > 0, R > 0, ol < Rlle,)l , < Randfixs=5.
HE (om0

Definition 7 E = {g € C*([0, T, #2)| 4(0) = po, [la(8)]}.. < }.

Proposition 5 For T small, ® maps E into itself.

We begin with some estimates on n and p;t.
Lemma 2 If f,¢:[0,T] — R continuous and nonnegative, For A > 0,

FO <A+ [ Fs)ge)ds.

Then f(t) < Aexpﬂg(s)ds.

Proof: Assume A > 0, let h(1) = A + I f(s)g(s)ds for ¢ € [0,7]. Then A > 0
and dih = f(t)g(t) < h(t)g(t). Integration gives h(t) < Aexpfotg(s)ds. For

A =0, replace A by € > 0 for all € > 0, then f = 0. a

Definition 8 Let f:[0,T) — X be continuous, where X is a Banach space.

Jefine

1l = supieppmll 705
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In the following, v = v where ¢ € E and n = n? is the flow of v?. we will use
K() to denote an arbitrary constant which depends on the quantities inside

the parenthesis.
Lemma 3 HDnljcl < K(T, ”U”cz,m)'
Proof: Since d,p = v o9, we obtain
0Dy = Dvoy- Dy. (3.23)
Using Dy = /Ot 9:D1 ds + identity, we get
1D0llr < [ 10D1)cuds +1 < [ [ Dolon Dl s 11
Applying Lemma 2, we get
1Pnlc. < exp(lDol,, ).

For D%y, we have

3D =D%onp- (Dn)*+ Dvoy. Dy

(3.24) gives

I
1D%llco < TUD*0l o, | ORI, , + [ 1 Dollool| Dl

Thus from Lemma 2

1D*nllce < ID?0)lco, MDY, . exp(l| Do),

).

Lo o)
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Lemma 4 ||Dy]|_, < K(T, ol . )-

Proof: We will estimate || Dy||,. and | D%nl| zo» the higher derivative can be

followed by the same method. From (3.23), we have

300Dl = [ Dy-a.0y = [ Dy-(Dvoy- Dy) < o] Dl "

50 G|l Dyl < []DUIICo,mIIDn|IHO. Therefore

107]| 4o < exp([Dv)l o T Dy,

[P

feo)

From (3.24), .

1
50D, = /MDzn-atD% |
= fMﬂzn-(Dzvon-(Dn)“rDvon'Dzn) ‘

S D%y | DAl D% o + Do), [ D)2,

WD nlle < ND%0l o, M\ DRI2, . + 1D0]| o, | D],

1091150 D]l ..,
100} g0,

Pply Lemma 3 to the term || Dy co,o and using Sobolev Embedding Theo-

D%l 0 < (exp(||Dv]|o,., T) — 1)

we can get the required estimate. 0

ma 5 [[Dy,, < K(|Dy]l.,).
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Proof: We have Dp= = (Dy)™* o 5=, where (D7) is the inverse of the
matrix Dy. Because Jacobian(n) = 1, we have Dy~ = Q(Dn) oy~ with Q a
quadratic polynomial. This implies || Dy o <K | Dn|f%, for some constant
K.

The estimate for the higher derivatives can be obtained by repeating the
differentiation. In general, D*y! = 2(@Qi(Dn)- (D™g)™ - (D™p)™)on~, where
&); are polynomials and m+m; + n - n; = s. 0

We continue to estimate the terms in (3.22). We first notice that by

differentiating n~! o y = identity, we have |

dm—7on+Dnton. - dm=0.

This implies that

O~ = —(Dyon-Om)oy™ = —Dn= . v.

Now

t T
(/0 vyons dshont = (g~ n,)y 0t = (identity — p), = (/O Dngt v,

We define f = B(fiv, 01, ds) o n;*. 1t is easy to prove the following two

lemmas by the product rule and the chain rule.

Lemma 6 (f||_, < [8|TK || Dy

Ha,oo “U“HS,OO "

.Lemrna T lgoon™| . < “*?-(JDHHJC(”DW‘"I [ 2)-




We can now complete the proof of the Proposition 5. For ¢ € E, we have
B(q) = AF'd = A (g, 0™t — f).

By the regularity of the solution of Neumann problem, see Treves [10], we

get
”(D(Q)Hgs <K(S)ligoon™ — f”H3 + ”cp”H%(BM)),

We can apply Lemma 4, 5, 6, 7 to estimate ||¢, o y7*|| , and lf]l ;s » we obtain

”(p(‘.Z)”HE. < ,C(lﬂfa S, T, ”cp”H"E(BM)’ ”'U”H,L’m, |I¢o“Hs)'

Since ol o, < Nall,, < Band [1g], < B, we have |9(q)]],, < R T is

ufficiently small.
Proposition 6 ®: ¥ — F is a contraction map w.r.t H”HZ N

Note that (E , Il ;= .. ) is & complete metric space. From a lemma of Kato [4]
ich states that for &/ > s > 0, if lpall . <1 Vn and |[p, — pool 7o — 0 as

< 1.

— 00 then ||p| ot =

- In the following, for ¢ = 1,2,¢ € E,v; = (—0,q, 02¢:,0) and 7; are the
w ol v; and f; = (ffvi o ds)yon™.

We begin with some lemmas.

ma 8 7, — all0 < T, 100 o)l = 0l
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Proof:

%Btll?h - ’72”?,0 = _/M(_Wl“"“ﬂz)'at(ﬂl_"ﬂz) S e = Ml o 19 (0, — M)l o~ (3.26)

Also

”at(ni - 772)“H° = ”U1 Ofh — U, 0772”30

”v]on]—wvlom—l—(vlﬁ—vz)o%

[P

lv, 0 — vy 07?2”140 + ”(”1 — ;)0 7]2||Ho

Dol ol = 7all o + [l = a7

So, from (3.26)

Bl = mall e < NP0l co ol = Mall o + o0 -~ 0o o -

Therefore, by Lemma 2, we have

11 = ]| 7o,

— ol go < (XP({| D01 o oo T) — 1) =,
I = ol < (xP(L D0 o, T) = 15

mma 9 [[Dy, — Dl . < K(T, HDlem'w, ”DUz”cl,oo)”Ul =l

sof: We use (3.23) to estimate O;,( D, — D).

10Dy — D2 0

| Dv, oy - Dy — Dv, o, - D,

[P

”D'U1 oM (Dnl - D’?z)|m + ”(D’U1 o _D’Uﬁo?h) Dﬁz

[
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- The first term < || Dw, ||, || Dy, — D1l o The second term equals to

”(DUI on, ~Dv, o 7?2) - D + (D'Ul - DU?-) 01, - D,

[
< || Dv, ”c1 [l — 7?2”30”1)772”00 + Do, — D’U:z“Ho”D??z

llco-

We apply Lemma, 8 for ||, — n, | ;o to obtain

1900 — D)o < 1Dl oo, 109 = D] o + Koo, — Vll a o

where K depends on || Dv, | P ”DU2“01,00' Thus

$ 00

”’U] - ,U2“H1,m

10m — Digal| e < (exp(| Dvsl] o, T) — RN .

erma 10 o — 77 | po < K(T, 0ill o o losl] o lor = wall,

roof: Apply (3.25) to estimate ||0;(n* — 1y N wo which is equal to

(D) o Nt ve — (D)ot 2| 7o

WD) 0 mt - (0~ vl + 1((Dm) 7 0 17 — (D) 0 157) - ..

He_ first term < D) o llos — v, |70 The second term

| I{(Dm)enst = (Dn)2ens) - vyl e + (D)7 = (D) Ye? -,

NDm) e = (Dn) e ellvllo + 1(D7) = (D)=l

1wl o Moo llolini® = 07 o + QD) — QD7) g 2] -




The second term in above < 1DQ|l .|| Dy, — D |l e 102 o

We can apply the Lemma 9 to 1D — Dn,l| 0. We now obtain
Ol = n7 o < Kllos — o)y + Kl — 3.

where K = K(T, ||v, ||, o 12l s . ). We then use the usual method to get the

result. O

Lemma 11 |If, - £l .. <I8ITK(T, (1PN [ [y | AR R

Proof: We have

”fl - f2”ﬂ° = 'ﬁI”(Jg ¥ 0 771 d3)2 © ?71_1 - (f(;s v, 0 U d‘s)? o ni’_]“HO
Bl v om ds)zon* — (fv, o ds)y oy,

+”(f0tvl om —v,omn, dS)Z o U;IHHO)'

The first term < f¢ ||o, a7 = 957%|| o The second term equals

“fg(vx - Uz)z om+uv0 Th — 0201, dS”HO

< L1 =l ol = e

Then we apply lemma 8 and 10.

We now complete the proot of the Proposition 6. We have

[®(q,) - ‘I’(%)”Hz,m

= 85" (b on = fi = goong + F)ll,.
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< K)o 0n7 = o 007 oo + 1A = Folloa)

< KEYNDPoll goroo 10 ~ 17 | 0,0 -+ 1 = Follro.oa)-

Applying lemma 10 and 11, we have

|®(q,) —- (I)(q2)”32po < Ko, - ”2”H1,m
< Ko — ol
where K([8], 8, T, [ ¢oll .o _sloall 0 oo 102l s ) is less than 1 if 7' is sufficiently
small,
It follows from the contraction mapping theorem that ® has a fixed point

in £ which is automatically a unique solution of (3.19). We still need to show

that the solution is in H* for all s.
Proposition 7 For the same T', the solution is in H* for all s > 5.

Proof: Let ps, be the fixed point of ®. Then

T
Poo = AF ((As po) o™ — /9(/0 vy o1, ds)on;), (3.27)

where 7, is the flow of vP=.
We have shown p,, € H?, so vP~ ¢ H* and M, m: " € HY. Therefore from
(3.27), As poo € H*, this implies p,, € HS. We can repeat the argument to

get po, € H’ for all s > 5, 0
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3.3 Hamiltonian Formulation

We now put (3.18) in a Hamiltonian form for a Poisson bracket. We

assume p € C'°(M),0,p = ¢, at OM, Jrp=0,i=0,1.
Using the Poisson structure defined in (2.1), we have for A € 0% (M),

(ROh6) = [ (8 p+ - 71723 2)

6G
*ép

We further define the Hamiltonian I = 1 f,,(9,p)? + (Oyp)* 4 £(8.p)*

§F
for all F, & such tha.t € Im(Ag).

which is the usual expression for the energy in the situation modeled by (3.18).
Theorem 3 (3.18) is equivalent to F = {F, '}y when A\ = By,

Proof: We first calculate %E as follows. For h = 6p,
P

d
EI#OH(P + th)

1
- /M Ocpduh + ypOyh + 0.p0,

1 ! . 1
_ 2 2 il . _ 1yl it
./M(am p+9,p+ az(Sazp)) h+ ;:0:( 1) /I‘; Shazp
/ —hd,p = f = constant ]F; k=0,

R} = = [ (Bspt 0)-J185 52,0585 )




_6F
ol SCSPERF N

_6F
- —/MASE-J[p,Agp-r»)\].

On the other hand,

oF

F = DF.p= o

§F L 1, 6F 1 5F
— =1-_ : 1yl L o S ~ [ S Bl
[ a3 Gy A5+ (1) | 5005 5 " FOBAT

All the boundary integrals in above vanish except the first term. This follows

from that at I';, 3,p = ¢; = 0 and fp‘_ p = 0. Therefore
*As p+ Jp,As p+ Al =0. (3.28)

For A = By, this is equivalent to (3.18). O
The conservation of H is now an immediate consequence of the Hamilto-
nian formulation.
Analogous to the well known conservation of integrals of functions of the
vorticity in the two dimensional perlect flow, we have the conservation of a

functional of the form
| #(asptn)
M

where p evolves according to the (3.28) and ¥ : R ~» R is a smooth function.

For instance, taking () = (* gives the conservation of Ag p+ Xin H° norm.,
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