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Abstract of the Dissertation

On a Class of 4-dimensional Minimum
Energy Metrics and Hyperbolic Geometry

by
Jongsu Kim
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1991

A general problem in Differential Geometry is that how we
can understand the topology of a 4-manifold'in terms of ‘optimal’,
‘canonical’ or ‘best’ metrics. It is not easy to define what these are,
but such ‘best’ metrics should be the ones easily perceivable to us,
for instance it should have much symmetry or satisfies meaningful
equations.

We consider minimum energy or critical metrics of two natural
energy functionals in a natural moduli space of metrics; a scale

invariant energy fpp|#,|*dvol, and the conformally invariant en-

ergy fu |W,|*dvol,, where R is the curvature tensor and W is the




conformal Weyl tensor of a metric g. We hope that these critical

metrics provides many ‘best’ metrics. Recent major developments
in the study of the critical metrics motivated the works in this

dissertation,

We start by discussing the Kahler critical metrics of two func-
tionals. We then focus on ‘self-dual’ metrics which give minimum
energies of the above functionals. We construct explicit hyperbolic
ansatz self-dual metrics with semi-free conformal S action on con-
nected sums of some conformally flat metrics with some number
of CP¥s. The whole process depends on a study of hyperbolic
geometry and Kleinian groups.

We observe that, from the explicitness of the metrics, we can
read off the scalar curvature behavior without difficulty. Qur con-
struction includes all nonnegative scalar curved sell-dual metrics
with semi-free action. We also discuss a problem concerning scalar
curvatures on the moduli space of self-dual conformal structures.

We also discuss examples in the context of minimum energy

metrics of the above functionals.
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Chapter 1

Introduction

1.1 Motivation

The goal of this dissertation is to study some special classes of Rieman-
nian metrics which have been considerably explored recently. In Riemannian
geometry, it has been an interesting question to find ‘optimal’ or ‘best’ met-
rics on smooth manifolds. Although it is not clear how to define such metrics,
they should be the ones we may get familiar with easily, so that they provide
a ‘language’, in terms of which we understand the manifolds topologically or
geometrically. This idea has been successful in lower dimensions.

For convenience, the author would like to use the term ‘best’ metrics in
this dissertation.,

Constant curvature metrics can certainly be called ‘best’ metrics.

In dimension two, any metric on a closed oriented surface can be con-

formally deformed to another metric of constant curvature by Uniformization

theory for Riemann surfaces.




In dimension three, it gets more complicated. The existence of a constant
curvature metric on a simply connected n-manifold with » > 3 implies that
the manifold is isometric to either a sphere S", an Euclidean space R or a
hyperbolic space H" so that it is diffecomorphic to S™ or R”. So not every
3-manifold admit an Einstein metric, e.g. $? x S doesn’t admit one because
its universal covering space is not diffeomorphic to a sphere or an Euclidean

space.

However, the Thurston geometrization conjecture [35] has been highly
successful with many positive results already. The conjecture says that there
is a canonical decomposition of the interior of every compact 3-manifold and
that each manifold piece in the decomposition has one of only eight special

geometries.

In the next dimension four, it may be hard to get such a strong geometriza-
tion program as Thurston’s, and this remains as largely unexplored. However
at least we may well hope to get much information on the the topology of

4-manifolds by studying ‘best’ metrics or special geometries,

So far, several categories of ‘best’ metrics, in a sense, have been found.
Among them, let’s consider the Einstein metrics briefly. Here (M, g) is Einstein
if g has constant ricci curvature i.e. the ricci tensor r such that r = Ag for a
constant A. Einstein metric may certainly be called a ‘best’ metric, and there
has been a huge literature [4]. We know existence of some Einstein metrics as

well as some obstruction theories to existence, including the Hitchin-Thorpe

Inequality {4];




2x(Euler characteristic) > 3|signature|.

For example, mCP? the connected sum of m copies of CP?, the complex
projective plane for m > 5 can’t admit Einstein metrics.

We also have the moduli space theory by Koiso and other people [4]. Yet,
in a sense, a number of basic questions have not been answered, for instance
are there many manifolds admitting an Einstein metric?

The technical difficulty involved in the study of Einstein metrics and the
obstruction above are probably telling us that Einstein metrics are too re-
strictive to cover many topological manifolds. Tt is a very interesting question

whether every manifold has a ‘best’ metric in a sense.

In this dissertation we are going to study minimal or critical energy met-
rics of energy functionals on the hope that these may become a better ‘lan-
guage’ to understand 4-dimensional manifolds. A number of recent major
developments motivated this study. Noting that Einstein metrics are the crit-
ical points of the total scalar curvature functional, we define other natural
Riemannian functionals and study their critical points. Consider two func-
tionals;

R(g) = Jm |Ry|*dvoly and W(g) = fyq [W,|*dvol, on M.

Then Einstein metrics again are critical points of each functional. We
will see a strong tie of these functionals with the topology of compact oriented
4-manifolds in the next section. Then the critical points or, more strongly, the

extremal metrics of these functionals are interesting, because they minimize

natural energies. Large classes of known interesting riemannian metrics are the




critical points of the functionals. More interestingly, we may hope that there

exists a critical or extremal metric on every manifold. There arise naturally
(anti)-self-dual metrics which give critical or extremal points of the above

functionals.
The critical or minimal points of W(g) = fur [W,|*dvol, is particularly
analogous to the Yang-Mills or (anti)-self-dual, respectively, connections in

gauge theory.

We would like to describe the developments after a short break in the

next section to explain several basic notions.

1.2 Basic notions

For a Riemannian manifold (M, g), the curvature tensor R of the Rie-
mannian metric ¢ satisfies g(R(x, y)z, w) = g(R(z,w)z,y) for tangent vectors
z,Y, z, w at each point in M. So R can be considered as an element of S*ATM),
where $%(-) is the symmetric tensor product and A2M is the space of 2-forms

in M or as a self adjoint endomorphism of A2M.
In 4-dimensional oriented Riemannian manifold, the Hodge star operator
* on A’M has the property that #2 = identity and so A2M = ANMoAM,
here A2 M is the +1 eigenspace of * called the space of self-dual 2-forms and
AZ M is the —1 eigenspace of # called that of anti-self-dual 2-forms.

For the next description of the curvature tensor, refer to [4]. We may express

R e S*(A2M @ A2 M) as a matrix;




S+ W Z

AN i
Also we may write R as follows;
R= s ldti(r—Sg)og+ W+ W~ (1.1)
12’ 2" T ’ '

where s is the scalar curvature, r is the ricci curvature, Z = r — 4g is
the trace free Ricci tensor, ko k is the Kulkarni-Nomizu product of symmetric

2-tensors h and k defined by;
(hok)(z,y,2,t) = h(z,2)k(y, 1)+ h(y, )k(z, z) - h(z, t)k(y, 2) — h(y, 2)k(=, 1),

and WT and W~ are called respectively the self-dual and anti-self-dual Weyl
curvature tensor.

W = Wt 4+ W~ called the Weyl curvature tensor of the metric, is the
conformally invariant part of the full curvature tensor in a natural sense. In
fact, as a (3,1) tensor, Wi = W for a new conformal metric ¢, = f%¢ and it
is true that W = 0 if and only if it is a locally conformally flat metric i.e. for
each point p of M, there exist a neighborhood U, and a positive function f on

Uypsuch that f2g is flat on U,.

Definition: A Riemannian metric ¢ on an oriented manifold is called

self-dual and anti-self-dual if and only if W~ = 0 and W = 0 respectively. ¢

1s called half conformally flat if it is either self-dual or anti self-dual.




Basic examples are S* with the standard metric and CP? with Fubini-

Study metric.

Note that (anti)-self-duality is a conformally invariant property, and that
if we switch the orientation of the manifold, then self-dual metric becomes

anti-self-dual and vice versa.

In dimension four, R(g) = fr |Ry|*dvol, is a scale invariant energy func-
tional of a metric g in the sense that R(g) = R(cg) with ¢ any positive number,
and W(g) = fum |W,|*dvol, is a conformally invariant energy functional in the
sense that W(g) = W(fg¢) with f any positive function defined on M. Both of
them has at least one strong connection with the topology of a 4-dimensional
oriented compact manifold via the Genéralized (Gauss-Bonnet formula for the

Euler characteristic;

2

1 2 2,5 Lo
X(M) = o [ (WLl + W_ P+ 2 = 2|ZP)duol, (L2)

and the formula for the signature;

1 .
1272

(M) = T [ (W ]? = [W_[P)dvol, = by b, (1.3)

where b, is the dimension of the space of self-dual harmonic 2-forms and

b. is that of anti-self-dual harmonic 2-forms. In the above notation,

2

_ 2 2 5 l 2
R(g) = [ (Wi + W[+ 2 4212 P)dool, (1.4)




W(g)= [ (W[ + |W_[)dvol,. (1.5)

1.3 Critical metrics

Let 7 be one of the R and W functionals. We may define its gradient at

a metric g to be the element gradF, in S?M such that
d
Elt:of(g + th) =< grad Fy, h >,

for every h in S?M. We can compute the gradient in each functional [4]

+
H

8

gradR, = 876W + 2

Z+ W r. (1.6)

gradW, = —26P6W — 2 W r. (1.7)

Here & is the divergence of a (4,0) tensor and 67 is the formal adjoint of
dP which takes the exterior differential of a syminetric 2-tensor viewed as a

one form with values in the tangent bundle,
doh(z,y, 2) = D.h(y,z) — Dyh(z, 2).

And W 7i; = g Ry The gradW is called the Bach tensor. The following is
easy to observe.

Remark 1.3.1:




i) Einstein metrics, i.e. Z = 0, are absolute minima of R from (1.2) and
(1.4).

ii) Half conformally flat and zero scalar curved metrics are also absolute
minima of R from (1.2), (1.3) and (1.4).

iii) Half conformally flat metrics are absolute minima of W from (1.3) and
(1.5).

iv) Next, any metrics locally conformal to an Einstein metric are smooth

critical points of the W-functional. In fact, for an Einstein metric, by the

differential Bianchi identity

_ Lo s
W = —=dP(r~ ) = 0

so we get zero Bach tensor, which is a conformally invariant condition.

(1.2) and (1.3) give the Hitchin-Thorpe inequality 2x > 3|7| for Einstein
metrics, which is the only known obstruction to the existence of an Einstein
metric. (1.3) gives 7 > 0 for self-dual metrics and 7 < 0 for anti-self-dual
metrics. From (1.1) and (1.2) again, if s = 0 and half conformally flat, then

2y < 3[7".

In the light of these inequalities, we may ask the following natural ques-

tions.

Quetions:

A. Does every smooth (oriented) 4-manifold admit Einstein or half con-

formally flat zero scalar curvature metrics?




B. Does every smooth (oriented) 4-manifold admit half conformally flat

metrics?
C. Does every smooth (oriented) 4-manifold admit R-critical metrics?

D. Does every smooth (oriented) 4-manifold admit W-critical metrics?

We may find above questions all the more interesting if we compare them
to the corresponding ones in Yang-Mills theory. The conformally invariant W-
energy critical and extremal metrics are analogous to Yang-Mills connections

and instantons respectively.

While the Hitchin-Thorpe inequality is not known to be the necessary
and sufficient condition to the existence of Einstein metrics, zero scalar half
conformally flat metrics are known te have more restriction [23]. On question

A, it is known that not every 4-manifold has Einstein or half conformally flat

zero scalar curvature metrics.

Concerning Question B, not every four manifold admits such metrics.
For example, the product of two spheres $2 x 52 or the connected sum P2§P?
of the complex projective plane P? and the complex projective plane with
reverse orientation P? both have signature zero, so if they admit self-dual or
anti-self-dual metrics, then W = 0. But by Kuiper theorem which states that
any simply connected W = 0 compact manifold is conformally equivalent (so
diffeomorphic) to sphere, so neither 2 x §2 nor P2§P? admit such absolute

minimum WW-energy.

Question C is very interesting but little is known.




Question D is rather a conjecture now. There have been considerable
interests on this conjecture recently and a partial positive result has been

announced [24].

In the course of approaching the above questions, we have some under-
standing in the Kéhler manifold category.

First, Kahler W-energy extremal metrics are characterized. The follow-
ing has been proved by Flaherty, for the first time, in physics literature and
Gauduchon [13] in mathematics literature, and reproved by others in different

arguments [8, 16, 20].

Theorem 1.3.1 A Kdhler metric on a complez surface has zero scalar curva-

ture if and only if it is anti-self-dual with respect to the complex orientalion.

Sketch of proof: For one approach we may refer to the Derdzinisky
paper [8] to derive the key formula W, = sA for a Kahler metric on a complex
surface where A is a paralell tensor. Then the theorem follows. Computation

is done in the terminology of the local basis of self-dual and anti-self-dual

2-forms. q.e.d.

Theorem 1.3.2 ([8]) Any compact self-dual Kihler manifold of real four

dimension is locally symmetric,

Sketch of proof: From W, = sA, W = W, = sA is parallel if s is a

constant. So VW = 0. ds = 0 implies ér = 0. Set a tensor T = nkw;-“. Since

10




g is Kahler, V/Ti; = (Virig)w! = 0 We get Vr = 0. So, VR = 0 i.e. ¢ is

locally symmetric. If s is not a constant, then Vs is a nontrivial holomorphic
vector field with zeros on M and gives a strong restriction on the possible
compex surface type for M. Moreover the signature 7 > 0 implies that M is
biholomorphic to P? and g is Einstein and so scalar curvature is constant. So,

the scalar curvature is always a constant. This is a contradiction.

q.e.d.

Next, Kédhler W-energy critical metrics are characterized.

Proposition 1.3.1 ([8]) A Kahler manifold (M, g,w) in real dimension four

is W-critical if and only if s™%g, defined where s # 0, is Finstein,

We note that Kahler R-critical metrics can be characterized, based on

Derdziniski [8] argument.

Proposition 1.8.2 A4 Kdhler manifold (M, g,w) in real dimension four is R-

critical if and only if it is Kdhler Finstein or Kéhler zero scalar curvature.

Proof: Any Kihler R-critical metric in real dimension four has constant
scalar curvature and satisfies the following Euler Lagrange equation of the R
functional;

SPEW + §Z+ Wr=0.

Let’s assume that s is not zero. By Bianchi identity, W = —1dPr. The

argument in the proof of Theorem 1.3.2 shows Vr = 0, so §W = 0. By writing




formula (1) for W in local coordinates, we can compute

6w;k(6D6W + 'EZ-!- I/f/f‘)kj =0
= 6wik(§Z+ W )i

.sw.ngf + w,-k(él.sr;-“ - 12rkprpj +(3|r ——32)53’9).

By direct matrix computation,
: s
dsrk — 12r%Pr, 4 (3] 7 |2 —5%)6} = —2s(r — Zg;“ = —237).
Now we get 0 = ~2sZw + swZ = —swZ. Since s is a nonzero constant, we

get Z =0, i.e. gis Einstein.

Converse is a direct consequence of theorem 1.3.1, remark 1.3.1 and the

fact that if s = 0, W-critical condition is equivalent to R-critical from (5) and

(6)-

In an effort to generalize above, we may ask ;
Questions:
i) Can we classify Ilermitian R-critical or W-critical metrics?

ii) Does there exist a half conformally flat scalar curvature zero which is

not conformal to Kihler metrics?

12




1.4 Self-dual metrics

Above theorem 1.3.1 and theorem 1.3.2 provide some (anti)-self-dual met-
rics examples; there exist Calabi-Yau Kihler ricci flat metrics and also Yau
classified Kéhler scalar curvature zero metrics [37]. C. Boyer [6] generalized
these results to hermitian case and C. LeBrun [20] classified the homeomor-

phism types of simply connected nonnegatively scalar curved self-dual metrics.

So far at this point, we have only a few known restricted classes of ex-
amples, so it has been an extremely interesting question to construct more
examples, in paticular ones which are not conformal to symmetric spaces and
zero-scalar-Kahler metrics.

One interesting result, which motivated many important subsequent re-
sults, was established by Y.S. Poon. Before we state this result, we would
like to explain the interaction between so called the twistor theory in three

dimensional complex manifolds and the self-dual gravity.

Detour through Twistor Theory [28]:

Roger Penrose has constructed the twistor space. It is defined to be
Z = S(A™ M), the unit sphere bundle of anti-self-dual two forms on M , with
a naturally defined almost complex structure. This is a fiber bundle over M
with two dimensional sphere as fiber. The almost complex structure can be
described as follows. A unit anti-self-dual 2-form w at = € M becomes a

complex structure J,) on the tangent space T, M via Jo(v) = Sw(v, e;)e;

where v € T, M and e;, ¢ = 1,2,3,4 is an orthonormal basis of T,M. Let

13




be the projection map 7 — M. We have the splitting of the tangent bundle
TZ 2 TF @ »*TM using the Levi-Civita connection on M , here TF is the
tangent bundle along the fibre. At a point z = w = Ju(@) € Z, define a complex
structure on T, Z by taking J; on #*TM and the standard complex structure on
T'F. From this description, it is easy to sce that the almost complex structure
is conformally invariant in the sense that (M, ¢) and (M, f 2g) with f a positive
function both give rise to an isomorphic almost complex structure.

Then, a fundamental theorem by Penrose and Atiyah-Hitchin-Singer [3]
states that for an oriented Riemannian manifold (M, g), the almost complex
structure on the associated twistor space Zy is integrable if and only if (M, g)
is self-dual, i.e. W_ = 0. Moreover the Penrose Transform further gives one-
to-one correspondence between holomorphic objects on Z and the solutions of
interesting field equations on M. So the study of self-dual geometry can be

translated into the terms of 3-dimensional complex geometry.

One application of this theory is that holomorphic deformations of twistor

spaces may produce self-dual spaces.

Notation: For a natural number n and a manifold M, nM would mean

the connected sum M§M...§M of n copies of M.

P? with the Fubini-Study metric is, in a sense, the simplest closed manifold
with a nonflat self-dual metric which is not conformally flat. Naturally we can
ask whether 2P? can have self-dual metrics. This has been the first step of the

program to construct new self-dual metrics. Using the twistor correspondence,




Theorem 1.4.1 (Poon [29]) There ezist one dimensional family of self-dual

conformal metrics on PP2. They admit positive scalar curvaturse.

By R. Schoen [30}, each conformal structure on a compact manifold has a
constant scalar curvature with unique sign. Poon’s result naturally led to the

question on nP?. Again using holomorphic deformations,

Theorem 1.4.2 (S. Donaldson, R. Friedman [9]) There exist self-dual

conformal metrics on nP? for every natural number n and NEsfnP? for N > 0

andn > 2N +1.

Independently of above, using a completely different argument of nonlin-

ear elliptic PDE estimates, Andre Floer proved;

Theorem 1.4.3 (A. Floer [11]) There ezist self-dual conformal metrics on

nP? for every natural number n.

Floer and Donaldson theorems show the existence of half conformally
flat metrics in interesting ways, but it’s hard, by its nature, to read out how
the Riemannian metrics behave. If we hope to analyze and classify the W-
energy extrema or W-critical metrics in the Riemannian geometry context,
we need more detailed information on the metrics, As we get more and more
constructions of self-dual metrics, it has become an interesting question to
classify them in certain ways. For instance, some prototype questions might

be as follows;




1). Classify self-dual or W-critical metrics with positive or nonnegative
sectional curvature.

2). Classify self-dual or W-critical metrics with positive or nonnegative
ricci curvature, -

3). Classify sell-dual or W-critical metrics with positive or nonnegative
scalar curvature.

4). Does there exist a negative scalar curved self-dual metric on P2?

Self-dual metrics are conformally best metrics in some sense, so it’ll be
interesting to find any topological finiteness or other topological implications.

We have partial results on ricci curvature and scalar curvature cases;

Theorem 1.4.4 (LeB_run) Let M be a connected simply connected compact
self-dual {-manifold with nonnegative scalar curvature. Then M is one of the
following

i) conformally isometric to S*

i) conformally isometric to a ricci-flat K8 surface with reverse orienta-
lion.

i) homeomorphic to mP? form > 0

w) diffeomorphic to mP2P? for m > 9

Let Ay < ... < A4 be the eigenvalues of the ricci tensor. In the statement of
next theorem, the pinching condition below is equivalent to the nonnegativity

of the so called ricci operator [12]. Here nonnegative ricci operator implies

nonnegative ricci curvature.

16
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Theorem 1.4.5 (Gauduchon [13]) Let (M, g) be a compact self-dual

4-manifold of positive scalar curvature with the following pinching condition
Az + A < 2(A + Ag).

then,

either i) (M, g) is locally isometric lo the product S* x S3,

or it) M is simply connected, homeomorphic to mP? with 0 < m < 3.

It is necessary to have much information involving the curvature of self-

dual metrics. In this respect, the next result.is particularly interesting. .

Theorem 1.4.6 (Le Brun [21, 22]) There exist ezplicit hyperbolic
ansatz self-dual conformal metrics on nP?, I(S® x SV)nP? for every natural

number [ and n , and 5% x S'_q]jr.n,IF"2 for natural number n > 2.

In the above, hyperbolic ansatz means the hyprebolic analogues of the
Gibbons-Hawking metrics. The metric is described as g = f2(Vh + V1w
where h is a hyperbolic metric on (possibly incomplete) manifold N, V a pos-

itive function on N, w a connection on a S bundle over N.

One of the main works in this dissertation is concerned with construct-
ing such hyperbolic ansatz metrics, generalizing theorem 1.4.8. That can be

described as below.

R. Schoen and S.T. Yau studied a large class of conformally flat man-

ifolds of general dimension, whose developing maps are injective (conformal




immersion). For example, any complete conformally flat manifold with non-
negative scalar curvature has an injective developing map. These manifolds

are quotients of domains in S" by Kleinian groups.

Meanwhile, there is an explicit description of 4-dimen~sional conformally
flat manifolds with S' conformal action on quotients of domains in S by
Kleinian groups by Peter Braam; these conformally flat manifolds are the
conformal compactification X of 51 x N, where N is a noncompact hyperbolic

J-manifold. For details, refer to section 3.2.

Note that by the Thurston Uniformization Theorem, most irreducible ho-
motopically atoroidal compact 3-manifolds N with nonempty boundary 8N
have such hyperbolic structures in the interior. This means that the confor-

mally compactified manifolds constitute a large class of manifolds.

In the following we again let X be the conformal compactification of
S x N, such that T' is a no cusp, geometrically finite Kleinian group and
N = H3/T is a noncompact hyperbolic 3-maﬁifold, which is topologically
the interior of a compact 3-manifold N with 3N being the union of compact

riemann surfaces (let’s call these boundary surfaces).

Then we can show;

Theorem 1.4.7 There exist explicit hyperbolic ansatz self dual metrics on

XtmP? for all sufficiently large natural number m, if there is at most one tor-

sion free element which cannot be generated by boundary surfaces in o,(N, 7).

18




The sign of scalar curvature has been a useful tool to study the conformally
flat metrics [32], which is related to the Hausdorff dimension (to be defined in
section 2.1) of a natural geometrical set. In our case we can get such relation
by exploiting the explicitness of the metric and also computing the curvature
tensor; the relation between scalar curvature on constructed manifolds above

and Hausdorff dimension of the limit set of the Kleinian group is as follows:

Theorem 1.4.8 Suppose that T is any group as in Theorem 1.4.7. If the sign
of 1 - Hausdorff dimension(A(T")) is +, 0 or —,

then there erists a representative metric of scalar curvature positive, zero
or negative respectively, in the self dual conformal structure on X{mP?, con-

structed in theorem 1.4.7.

Theorem 1.4.7 and 1.4.8 together construct a number of explicit self-dual
metrics and describe their scalar curvatures. This construction exhausts all
self-dual metrics of nonnegative scalar curvature with semi-free circle action.
A Semi-free action means its isotropy group is either the whole group or the

identity subgroup.

There has been a conjecture [18] that if the signature 7(X) # 0, for X a
self-dual manifold, then the Yamabe invariant doesn’t change sign on smooth
points of any connected component of the moduli space of self-dual conformal

structures with trivial conformal isometry group.

However, from theorem 1.4.8, we can prove the following;
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Theorem 1.4.9 There exists a continuous family of self-dual metrics on a
connected component of the moduli space of self-dual conformal structures on
1(S® x SY)fmP? for some | and arbitrary m > 1, but which change the sign of

the scalar curvatures.

Klein-Maskit combination theorem of Kleinian group theory is a useful

tool to get specific examples. We explain and discuss examples in section 4.1.

1.5 More recent developments and questions

For the rest of this chapter, we would like to describe other developments

and also discuss problems.

Motivated by above existence theorems of Poon-Donaldson-Friedman-
Floer and also by the Taubes existence theorem of self-dual connections in
Yang-Mills theory [33], there has been an existence question of (anti)-self-dual
metrics in general context.

In fact, the following has been a conjecture for a while.

Theorem 1.5.1 (Taubes [34]) For any smooth, compact, oriented 4-manifold

M, MinP? for sufficiently large n, admits o self-dual metric.

It was solved by deep elliptic estimates generalizing Floer techinques.
Remark: This has a corollary that every finitely presentable group is the

ndamental group of a complex 3-manifold by the twistor theory.

20




21

The following theorems give sufficient conditions for a self-dua) manifold

to arise by the hyperbolic ansatz.

Theorem 1.5.2 (LeBrun [23]) Let (M,g) be a compact half conformally
flat {-manifold with a semi-free conformal S* action. Suppose one of the fol-
lowing holds;

i) M has positive definite intersection form.

#) (M, g) is not conformally flat and has non-negative scalar curvature.

Then, (M,g) arises via the hyperbolic ansatz described above, with a hy-

perbolic manifold N and a finite collection of points ¢, ....,qn in N.

This theorem covers only a part of hyperbolic ansatz constructions; e.g.

the metrics on 2(5? x 5,)§3P?* do not belong to i) or ii) of the above theorem.

Open Problems:
There are interesting questions in the field. Let’s list a few;
Question 1) Can we find a topological invariant mg such that MfmP?

for any m > myg admits self-dual metrics?

Question 2) Does there exist positive ricci curved self-dual metrics on
2P%? The author conjectures this is true.

If yes, how about on mP? for any m > 0?7 Confer to theorem 1.4.7.

D.G. Yang and J.P. Sha [36] constructed positive Ricci metrics on mP?
for any m > 0. Question 2) tests whether self-dual conformal structures can

hold as much positivity of ricci curvature as any other conformal structures.
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Question 3) Construct R-critical and W-critical metrics and classify

them.

Question 4) Comparing with a convergence of Einstein metric case [1],
we can ask the following; if we have a sequence of self-dual metrics ¢; of
constant scalar curvature under some bound on geometries, e.g. volume or

scalar curvature on M, does a subsequence converge in some category?

In the rest of the dissertation, we give the proofs of the theorem 1.4.7,
1.4.8 and 1.4.9, and give more details of examples.

When we prove theorem 1.4.7, we have to face the problem of constructing
nontrivial S* bundles over N — {a finite number of points}.

This reduces the main problem to veryfing the integrality of a certain
second cohomology class, which is done in Chapter 2.

Chapter 3 describes how to construct the manidfolds and metrics.

Chapter 4 discusses the scalar curvature of the self-dual metrics and proves

theorem 1.4.8 and 1.4.9.




Chapter 2

Hyperbolic Geometry

2.1 Hyperbolic Geometry

We will denote I' to be a discrete subgroup of the isometry group
PSL(2,C) = SL(2,C)/{£1} of the hyperbolic space H*. There are two stan-
dard models for H>.

The first one is the unit ball B® centered at the origin in R® equipped with
the metric g = iy (dzd + dad + dj) with ||z|[2 = 23 + 23 + 22,

The second one is the upper half space RS = {(zy, 23, #3)|z3 > 0} in R3

with the metric g = -w-%(dmf + de3 + dzl).

We are going to to explain several terms now. Readers may refer to
[26, 31] as good references. A discrete subgroup T' of PSL(2, C) extends to
act on dH® ~ S? by conformal transformations. The limit set of r, A, is
the set of all points z € 9H® = S$% such that there exist a sequence {r;} CT

and a point y € H® with r; -y — z. The region of discontinuity Q(T") is




5% — A(T'), where I' acts broperly discontinuously. T is Kleinian if T acts
properly discontinuously on a nonempty open set  C 52. T is geometrically
finite if there is a finitely sided fundamental polyhedron for T action on H2.
I' has a cusp if there is a parabolic element i.e. an element having only one
fixed point in S%. A lozodromic element is an element having exactly two fixed
points in H? U S2. The conver hull of a set A in H? ~ S? is the intersection
of all the closed half spaces in H® whose boundary in S? contains A. T is
convex cocompact if the action of I on the convex hull C(A(T)) has a compact

fundamental domain.

We will be mainly interested in hyperbolic quotient manifolds. The fol-
lowing description of noncompact hyperbolic manifolds is due to [7, 27]. Let
N be an oriented, irreducible, homotopically atoroidal, compact 3-manifold
with its interior N and nonempty boundary dN. Homotopically atoroidal
means that every map from 72 to N has a nontrivial kernel on the level of
fundamental groups. For simplicity, to avoid cusps, assume that either N
has no torus component or N = D? x S, Then by the Thurston Uniformiza-
tion Theorem, N = N — 9N ﬁas a complete, geometrically finite, hyperbolic
structure. This means that N can be realized as a quotient of H® by a purely
loxodromic, geometrically finite, Kleinian group I' without cusp. Conversely, if
I' is such group, then N = H?/T is the interior of a compact, smooth manifold
N=0MH- A(T'))/T which has its boundary 8N = Q(I")/T" being the union of

a finite number of compact Riemann surfaces without boundary.

Also, we would like to introduce some results on Hausdorff dimension of
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the limit set of hyperbolic actions.

For an infinite discrete group I' of hyperbolic motions in H3, a positive

real number s and z,y € H3, define

gS(‘”ay) = z !

7 esp(zay)’

here p(z, ay) is the hyperbolic distance between x and ay.

Let s¢ be the number of orbit points in B,(k + 1)/ B, (k — 2) k> 1, where

B,(r) is the ball of radius r with center at x. Then if we define
§d=1 ! 1
= T ok

the above series g, converges for s > & and diverges for s < 6. We can sec
easily that § depends only on I'. This §(T) is called the critical exponent of

the group I

For a set X in a metric space, define the r’-Hausdorf measure of X to be

Hy(z) = %i_x}%i%f Sor!
Iril<e

where infimum is over all coverings C of X by countably many small balls of
radii r; < e. _

The Hausdorff dimension of X, denoted by D(X), is defined to be the
number & such that Hz(X) = oo for § < & and Hs(X) = 0 for 6§ > 6.
Hausdorff dimension is a natural geometric criterion to analyze the discrete

groups.

Then, we have the theorems of D. Sullivan [31];




Theorem 2.1.1 For a convex cocompact group T,
D(A(T)) = &(T).

Theorem 2.1.2 For a convex cocompact group, there are constants ¢ and ¢

so that n., the number of orbit points in the ball of radius r, satisfies ceb” <

n, < Ce,

This estimate will be essential in next sections. For definition of groups

below, confer [26].

Theorem 2.1.3 For Kleinian conver cocompact groups, 1 < DAM) < 2

except that I' is Schottky, Fuchsian (or extended Fuchsian).

Remark 2.1.1: The convex cocompact condition is equivalent to the
condition that the fundamental domain has finitely many sides and doesn’t
meet the limit set. Therefore any Kleinian, geometrically finite, without cusp
group 1s convex cocompact. Note that for Schottky group, 0 < D < 2 [5] and
for (extended) Fuchsian group, 0 < D < 1.

2.2 Green’s Functions on Hyperbolic 3-space

In this section we are concerned with establishing a Green’s funtion on a

hyperbolic manifold. We will see that Green’s functions can be constructed
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in rather general context, due to D. Sullivan’s work on discrete hyperbolic

motions.

Let po be a fixed point in H?* and I'py be the orbit of p, with respect to T

action. Note that Go(p) = 5 with pa(p) = distance(apy, p) satisfies

A'Ha Ga(P) = ——6

9 po

i.e. G, is a positive Green function. Then,

Lemma 2.2.1 Let T be a Kleinian , geometrically finite group without cusp.
Then

V(p) =1+ 3 Ga(p)

acIl

is a smooth function on H*> — {T'py}.

Proof of Lemmma 2.2.1: First we want to show that V — 1 is a continuous
function. For a point p € H3— {T'py}, set B} be the open ball of radius € (may
be assumed to be small) centered at p in H? — {I'py} with its closure also in

—{Tpo}. By Remark 2.1.1, I is convex cocompact and so by the theorems
of section 2.1, the critical exponent satisfies that 6(I') = D(A(T")) < 2. Let S

be the finite set {a € T' | distypa(apy,y) < 1 for some y € Bg}. Then on B,

Z G ZS BZPa(P) + Z

el

1 ad 2??,,-.}_1
- cé;&' e2pa(p} _ 1 + TZ; e2(r-1)

’s ezpa

1 918 (r+1)

S gg ezpa(P) —1 +

2r—1 !
= XY




here n,, is the number of orbit points of py in B;‘H. RHS uniformly converges
on Bf, 50 3 aer G is a continuous function on B;, and so on H®*—{T'py}. Now
V is a smooth function on H® — {I'py} by elliptic regularity. Furthermore it is
not hard to show that V —1 is a distribution on A2 i.e. is a continuous linear
functional: D — R where D is the space of smooth functions with compact

support. Then A(V —1) = -2z ¥, 6,. q.e.d.

Now we are going to show that this smooth function extends smoothly to
the boundary. Let’s take the upper half space model for the hyperbolic space,
ie. R = {(z,y,2) | z > 0} with the metric h = MM;M and consider V
as a function defined on R} — {T'po}. Here OH® ~ {z = 0} U {cc}. A(T") is
empty only if I' is the trivial group < e >. So we may assume that A(T) is

nonempty and that, by rotation, co € A(T).

Proposition 2.2.1 V is smooth up to the boundary {z = 0} —A(T") i.e. FH3—
A(T).

Let’s prove the following technical lemma first:

Lemma 2.2.2 Let T be as in Lemma 2.2.1.

Fiz a point py in H?. For small¢, let B, be an Buclidean closed half ball of
radius € in H*U{OH> — A(T")}, centered at a fized point (a,b,0) € IH®— A(T)
such that Bio. NA(T') = ¢. We may assume that Bio. doesn’t contain any point

in the orbit I'py. Set zo = distys(apo,(a,b,1)). Then ,

n

In(e? - 2) _(n+1

Jta = C(n,¢) (2.1)
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n--1

distance from apg to

Pe

For convenience, set

Then we have

29

on B, for any element « of I'. Here n is any natural number such that 1 >

> _D_(%(HI and C(n,€) is a real number depending only on n and e.

Proof of Lemma 2.2.2: Set apo = (da,ba,¢a). Recall that the hyperbolic

(z,y,2) is given by;

disty, (eepo, (2, v, 7))
(.’L‘ — aa)z + (y - ba)2 + 22 + Cg
2ze,

cosh™!|

]-

ra((2,9,2)) = (£ — aa)* + (y — ba)? + 2% + 2.

"o

2zc,

r
S 6.00: S -
ZCyy

everywhere for every @ € I'. Now for (z,y,2) € B, and setting A = In(e? -

Z’)— n—?—l o)
A > InZ=— Ty — 10?2
e n+1l
o n . .
> I]la - s 1{d23t?'£3(ap09 (maya ]-)) + dZStHS (((I, bal)r (mayal))}
—In2
2 —_h 2 2
> nle__" ln{(m o)’ + (¥ — ba) —i~1+ca}
Coy +1 Co
_ 1 -1 1+€2 .
n+1cosh ( 3 )—In2
1 Br+l n 14+€
1 . — - —
A1 T e et ) m 2
the above,
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which is the square of the Euclidean distance from (x,y,0) to apy. B, > 55 On

B for some positive large number M independent of & by assumption. So,

Bt S 1 1
(Bat-1Drea = (M +1) /M
Now
1 1 n 2 4 ¢
A > 1 — h™'{(——) -2

~ (n+1) n{(M—{—l)"«/M} n—i—lcos ( 2 J=In

= C
on B, for all & € T, q.e.d.

Proof of Proposition 2.2.1: First exponentiating (2.1) and then squar-

ing and taking reciprocals, we get

1 1
2. T S 2 o
2,200 — 02y ?
aerz el a€l’ 62 e(n-l-i) o

on B, centered at (a, b,0). |
For convenience, set b= -;1—1 We introduce m, to be the number of orbit

points in the ball of radius r, centered at (a,8,1). Then by theorem 2.1.2,

1 m, 1
o%‘ 6259:,;., S g 625(7‘—1) + 01;0 626:5'0, - Z 26(7‘ 1) ;ﬂ 626':17&

where I'o is a finite set; I' = {a € T | 2, = disty(apo, (a,b,1)) < 1}. Since
26 = 225 > 6= D(A(T')), RHS converges for any such n.
So this implies that % Laer Zro—g also uniformly converges on B.. By

this local uniform convergence, % Yaer ;;i-_—l is a continuous function , say

fyon H3U {OH® — A(T)}. Now

V=142f=14+Y"

2p —
aen € —1




satisfies AV = 0 and identically equal to 1 along {z = 0} — A(T"). So by

elliptic regularity for degenerate ellitic differential operators of characteristic
type [15, 22], V and f is smooth up to {z = 0} — A(T). This finishes the proof

of Proposition 2.2.1.

2.3 Construction of principal circle bundles

Suppose I' is a geometrically finite, Kleinian group without cusp such
that H3/T is a noncompact hyperbolic manifold. Set No = H?/T, then as
described in the beginning of section 2.1, Ny is the topological interior of a
compact smooth manifold N, with the boundary dN, consisting of a finite

number of closed Riemann surfaces.

Let’s pick out a finite number of points py,py, ..., p; from M2 such that
n(p:) are all distinct for the projection « : H3 — H3/T. We want to construct
a S principal fiber bundle over N = (H® — {Tp; D/T. Let

{ ! '

V:1+ZGw(m) = 1+ZZGQW

J=1 J=1 o€l
on M, where G, = ?;%_—1 is the Green’s function in section 2.2. V is a smooth
function on N by Lerﬁma, 2.2.1. We are going to show that the == *dV is
an integral class as an element of H*(N,R) so that there exists a S principal
bundle over N with connection w such that dw = == % dV by Chern-Weyl
theorem. Let’s restrict on I' such that N, = H3/T' has either only torsion

elements or those elements generated by boundary surfaces in Hy(Ny, 7)) =~




Hy(N,, Z). Here a boundary surface means an element of H,y(Ny, Z) isotopic
to a compact Riemannian surface in &N,.

We will prove the integerality of the 2-form above for such class of hyper-
bolic 3-manifolds. After this is done, we will extend the integrality to the case
where there is a torsion free element which can’t be generated by boundary

surfaces,

Proposition 2.3.1 Assume that Hy(No, Z) has either only torsion elements
or those elements generated by boundary surfaces. If Ny has k boundary sur-
faces, then for some choice of | points with | > k, py, pa,...,py in H2, [ * dV]

is an integral class in H*(N,R).

We are going to split the proof of proposition 2.3.1 into two lemmas below.
What we have to show is that for a nontrivial homology class [S] € Hy(N,Z)

with its representative compact surface S,

/i*dVez.
s 27

If [5] is a torsion element, then there is nothing to do. If [S] is represented by
small sphere centered at some p;, then we will see easily below that the inte-
gration value is an integer. Now assume that S is homologous to a boundary
surface § © ON. By tubular neigborhood argument we have a diffeomor-
phism between a neighborhood U of S and § x [0,1], with § = § x {1} and
S =38 x{0}

In section 2.2, we proved that for p; € H3, G,rpj is smooth up to the

boundary with G’,rpj = 7' f,, with Jpo; smooth. Also easily we can see, by
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writing down terms, that *dG,rpj = *d(2*f,,) can be extended to be a smooth

2-form up to the boundary. So,

fizrav - zf-zf~<2)

J aeI‘
= — *d(7,..
JZ- 2T ~/Uuer.§ooz—1 b3

Let’s consider ! = k case first. Let S1, 589, ..., 8% be the k boundary sur-

faces. Then dH° — A(I') is partitioned into k open sets 01,8,...,9Q, with
Sy = QT
We define a map @ : (H*)¥ — R* by

(I)(plap% "1pk) = (mla T2y ey IEk)

with z; = 2k, L [ %dG,,.

Note that

) Under the assumption on I', Lebesgue measure of A(T'} in 5% ~ GH3 is zero

A(T), fo*dG, is equal to (3') {Lebesgue measure (with

pect to the unit tangent sphere at p) of the set of oriented hyperbolic

codesics through p which hit £ at infinity}, of [22].

i1). There is a consevation property from i) and ii) that for each p in H3,

ko1
;ﬁ,[l‘*de___

se ii) and iii) will be exploited fully later.
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® actually maps into a (k — 1) dimensional simplex
k
AR~ {(z1, 29, ..,2;) € RF | a; < 0,z = —k)}

i=1
We claim that ® is a smooth map. We have to show that for each i, = Jo, *dG,
is smooth as a function of p in H3. If we set Gp = 2%f, as before, then
Jo, *dG, = Jo, 2fpdzdy. k =1 is a trivial case. For & = 2, we may assume
that  is bounded in the upper half space model with its coordinate (z,y,2) by
the conservation property iii). Recall that f,(q) = f (p,q), which is smooth on
{H® x H® — diagonal}, can be extended smoothly upto {H* x (OH® — A(I"))}.
Therefore, f, 2f,dzdy is a smooth function of p in H3.

Now we need more subtle result;

Lemma 2.3.1 ® can be extended smoothly to

{H*U (812 — A(T))}* —» Ab-2

Proof of Lemma 2.3.1: From above argument and symmetry of G(p,q) =
Gp(q), we deduce that G(p, q) is smooth on {H? x H? —rdiagonal} U {(oH> -
A(T')) x H3} U {H® x (OH° — A(T))}. The case & = 1 is trivial so assume
k > 2. ii) implies that ® can be extended continuously up to the boundary
UL, Q; = 01 — A(D).

3 Jo, #dG, equals zero if p € {UL,19:} -, and —1 if p € Q; by conser-
vation property iii). It will be enough to show only that fﬂj *dG, is smooth
as a function of p upto N; with 5 #J. Let’sset 5 =2and i = 1. We are going

to use again the upper half space model with (X,5,2) coordinates with z > 0,
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for hyperbolic space, and may assume that (2 is bounded in 2 = 0, because

by symmetricity we may assume that oo € .

Set F(p) = fo, *dG, = fo, 2f,(-)dzdy for P € H? (Recall that G, = 22,
). We claim that f,(-) = f(p,+) is smooth on (M3 U ) X (HPUQy). Set
p = (z,9,2). Here p = dist(p,q = (#1,41,21)). Then we can compute, from

the hyperbolic distance formula,

1 %
Gp(mry:z) = egp__l:zzfp

_ l{ (#— 21" + (y — 1) + 22 2 1
2 =20+ (y — 1) + 22 + 22)2 — dota?
Set L = (z — z1)% + (y—wp)?+22+ #2. Then

2

2z (2.2)
\/L2 — 42228 - {L 4 /L? — 422,2) -

Denomenator equals zero only when (z,y,

fo=

z) = (1,91, z1). |
.

S0 fo(®1, 41, 21) = flz,y, 2,21, Y1,71) is smooth on (H3U€),) x (H3U ). .

5o the claim is shown and this means that F(p)is smooth on H3USY,. Therefore

® can be extended smoothly. q.e.d.

Note that B(p1,y P2, - 8,) = (=1,=1,..,~1) if Pi, € ;. Now consider
curves Cy(t) : [0, ]

— HPU K, , with ¢ small, starting at p; with Ci(0) =
4%(0) being an inward normal vector. Set

Fi(t) = fn *dGoj (1),

then #3;(0) = ~4;;. Let’s observe the following property that #;(¢) is decreas-

ing for ¢ # j and Increasing for i = j as t increases near zero, because of




the conservation property and nonpositivity of integrals. So we may hope to
get some configurations of points in neighborhoods of the points py,, pa_, .., i,
such that the configurations give an integral values for ®. Qur strategy is as
follows. We want to get k points p; e H3 ¢ = 1,2,.., k with each p; close to Q;
such that ®(py, p,, wPE) = (=1,~1,.., —1). Note that this choice of {p:} gives
the integrality of = xdV.

Considering the above increasing (or decreasing) property, it will be nat.
ural to apply the maximal rank theorem to @ at (p,_, P2,9 -y Pk, )- But we have

to overcome some technical difficulties.

So, for @ : {H® U (K AT — Ak-1 get Pi, = (a;,b;,0) and
Ci(t) = (P1os P2,y -y Ci(2), -+ Pk,) With C; 1s in i-th entry. And set vi = 8,(C{(0)).

If a set of vectors {w1,ws,..,w,} in a vector space W spans W as lin-
ear combinations of w; with positive (nonnegative) coefficients, then we shall
simply say that the vectors positively ( nonnegatively, respectively) span W.

Define Ci(t) = (a,, b;,t) with ¢ = 22, where (2,9, 2) are the upper half

space coordinates. And define ; as above. Then

(I)((plu:p%a vy Ori(t): -:pko)) = (‘?515 ¢27 ¥ ¢'k)

with
1 1
gﬁj(t) = -2; ;/ﬂj *de‘,U + ‘2';_“ Lj *dGG‘-(t).
So,

v = B.(C(0)) = (¢1(0), $4(0), .., $4(0)),
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with
; d
2779?5;;(0) == Elt:ofQ~ 2fgi(-)d:cdy,

If we set R = (2 — ;)2 + (y — b;)? + 22, then from the formula (2.3), (for j 1)

we can compute

1
—dzd
ﬂij vy

I

27¢;(0)

1
- /n,- (e—ay + (P <0

here above integration is negative because (}; has the opposite orientation to

(dz,dy). So the entries of v; = Q*(é’:(O)) = (vi1, vz, .., vzt ) has sign v; > 0

and v; < 0 for ¢ # 7, and ;921 v = 0.

These v; have the property as follows:

Lemma 2.3.2 vy, v,,..,v; nonnegatively spans T(_l,_l’_,_l)A’“_l { let’s denote

this simply by T ) and there exist positive numbers ¢y, ¢y, ., ¢, such that

k
Z Cv; = 0.
i=1

Proof of Lemma 2.3.2: First we will see that V1,V2,.,Vp_1 are linearly
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independent. Using the entry matrix for v,

it is an easy exercise to see that we can apply row reduction (k-2) times to

remove entries v;; with ¢ > j until we get the matrix of the sign

50 vy, vy, .., Vs

nations form a (k—l) dimensional convex cone,

cone because vy, > 0. If V1,

M1 (U] ren Mz

Vo1 (257 vaen U

U2y 00y Vp—1;

[ \

\'Uk—l,l Vg-1,2 +Wne 'Uk—l,k)

( )

+ - - - - -
0 + — ~ o — —
00 + — .. — -

\

0000....—1—-—)

1 are linearly independent and their nonnegative linear combi-

And v is clearly not in the

Vg, .., U does not nonnegatively span whole T




which is to be identified with {er+ 204 +ap = 0} , then there exists (k-2)
dimensional subspace W in T such that vy, vy, .., v; are all on one component
of ' — W and so, ther exist a nonzero vector v in T such that o - o > 0,

Setting v = (ay, ay, .., ax) with 3%, a; = 0, we have, for cach i,

k
e = Zv;jaj = Zv,;jaj + Vi g

j=1 J#i

= Zvijaj — Zv;ja,' = E(v;jaj - ’Ug'jaf)
it J#i J#i

= Zv,-j(aj - (J,,') _>_ 0
7#

Since v;; < 0 for 4 # 7, this implies that v is zero vector. This gives a
contradiction. So, vy, ,, .., v nonnegatively span T and the last statement of
the lemma is also true because —vy I8 clearly in the cone from above argument.

This finshes the proof of Lemma, 2.3.2.

Proof of Proposition 2.3.1: Now we apply the maximal rank theorem and
get a continuous curve ¥(¢) in {H3 U (OH® — A(T'))}* such that (1) € (H3)*
and @ = (-1,-1, ., —1)_ on . This proves the case I = k. We have to prove

I > k case. We define the map ¢ similarly to (2.2);

®: {HU(OH® - ATNY — {(z, wZ) €E R* | 2 < O,Xk:mi = —I}. (2.3)

=1
Lemma 2.3.1 can be carried out in the same way, so we only have to
prove Lemma, 2.3.2. Given vy, =1 Uk—1, Uk, Vg1, -, 07 in T, from v; = Q*(C’g(O)),
then reorder them V115 V125 -y Y1ty 5 V21, V23, o0y Vgl oo, Ykl Vk2, -5 Ukt 5 80 that v,

is induced from the curve starting off p; € ; as in the above. Next set w; =
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2 s Vistiy, here a;, with 1 < 5 < k1< s <1 are any positive numbers. Then
we can easily check that the vectors w; has the property of Lemma 2.3.2. So we
conclude that there exist a, @z, -, > 0 such that 2 q;0; = 0. By the same
argument as above, there exist at least a curve satisfying & = (4, —1,., —1})
on it.

Therefore, for I > k, we get configurations of points p, P2, Py in H3
such that [3- * dV] is an integral class in H ‘M, R).

Finally, note that we can get the integrality of our cohomolgy element in

the presence of any extra torsion elements. q.e.d.

As a consequence of Proposition 2.3.1, there exists a §? principal fiber

bundle P over (H? — {P;T}j=12,4)/T with a connection form w such that
dw = *dV,

The rest of this section is devoted to the discussion on how to get the
integrality in the presence of torsion free interior homology elements i.e. the
elements which is not in the span of the homeology elements represented by
boundary surfaces. In some sense this is similar to the previous case, but since
we can see a different phenomena here and also we are alming to get integrality

over general noncompact hyperbolic 3-manifolds eventually, we are going to

spare a space for discussing it.

Take a torsion free generator [S] of Hy(No, Z) with a compact surface
representative S. Again in this section we assume that No = H3/T has k

boundary surfaces 51, S?, .., S* as before. Assume that the torsion free part of

40




Ha(No, Z) is generated by [S] only. In addition to Phs in (24), we also define

1

(BS(plyph")pl) = Ei_l"/S*dV

1
= o /F’S(*de1 + .+ xdG).

@y is then defined on {(H?—T. SYUT)}. Since ® in (2.4) has the maximal
rank along Uy x U, x .. x Ui, where U; is an open set in some iy, U N
(I)“I(—ll,—lg,..,—lk) with natural numbers l; + I, + .. +h=1is (31- k +
1)-dimensional submanifold of 2/ -Which 15 a neighborhood of Uy x U, x .. x U,
mm {H2U Q). For convenience, we may suppose I{ to be MUxVax..xV
where V; is diffeomorphic to U; x [0,1).

Note that we may consider ®s to be smooth on , because S is at least
smooth almost everywhere, the integand *d(y,; is smooth on the appropriate
domain and in upper half space coordinates I" - § can be taken to be sitting in
compact neighborhood. Define ¥ = 24/ 1 O =t by, — 1) — {(p1, p2,..11) |
somé P € U}, Let’s restrict PsonV: &g :V — Rt . Since g is
a priori a nonconstant map, ddg # 0 at some point p € Y (actually we
could just corapute it as in the proof of proposition 2.3.1). So d®s # 0 on
a neighborhood 2, of p in V, and so for some rational number Z cligl(ﬁ)
is a (3] - k)-dimensional submanifold of Up. From this we can deduce that
we can choose as many points as possible (here we need any multiple of m
points) from @gl(ﬁ). The only thing we have to worry about is two points
@ = (Piy; Pigy oy pi,) i=1,2 with P1, = pa, for some s in {1,2,..,1}, but when
@1 18 chosen first, this does not give restriction to the choice of next one cry

because first choice doesn’t reduce the dimension of the data space.

41




42

Now we strengthened the Proposition 2.3.1. Recall the notation Ny =
H3T,

Proposition 2.3.2 Assume that Hy(Ny, Z) has at most one lorsion free el-
ement which can not be generated by boundary surfaces. Then there exist a
natural number my such that Jor anym > my there exist M-points py, pa, ..., P,
in H3, for which [3: *dV] is an integral class in H*(N,R).

So there exists a S! bundle over NV,




Chapter 3

Construction of Compact Self-Dual Manifolds

3.1 Hyperbolic ansatz metrics

In [14], Gibbons and Hawking found the ansatz for complete noncompact
(strongly) self-dual metrics (i.e. Kahler ricci flat metrics) with circle actions |
which were later called A, gravitational instantons. In short, it generates such

metrics in terms of solutions of Laplacian’s on R?, the Euclidean space. In

[21], Le Brun developed hyperbolic ansatz for Kahler scalar flat metrics with
circle actions. One strong point of this hyperbolic ansatz metrics is that it is
conformally compactifiable so that they produce compact self-dual metrics.

The following describes the basic structure of the hyerbolic ansatz self-

dual metrics. For convenience, we are going to use the upper half space model
with (z,y, z)-coordinates for H® as in section 2.1. Recall that Kihler metrics

of zero scalar are conformally anti-self-dual by theorem 1.2.1.

Proposition 3.1.1 (C. LeBrun [21})
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Let 'V be any positive solution of the Laplace-Beltrams equation
AV =90

on a region ¥V C H* of hyperbolic J-space, and assume that the cohomology
class of%*dV i8 integral, where x is the Hodge star operator of H3. Then if

w is a connection form for a circle bundle whose curvature is *dV, then
l9] = [VA+ V7
is half conformally flat. Moreover, the metric
g=24(Vh + V1lw?)

is Kdhler, with scalar curvature zero.

For reader’s convenience, we are going to sketch the proof in [21].

Sketch of Proof:
First change coordinates by 2¢ = 2% to get; h = @%‘Eéﬁ + %i:—z for the
upper half space {(z,y, q)|q > 0} in R%. For convenience, set V = 2qw. Then

applying the Laplacian of h,
AV = 4¢*(wy, + Wyy + V) = 0.

Set ¢ = V(dz® + dy®) +w- dg® + ~ . w?. Define an almost complex structure J

on M by dg — % *w, dz — dy. Then using the relation

*dV = dw = wdy A dg + wydg A dz + Vydz A dy,
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we can show that wdg + iw and dx + idy form a closed differential ideal. So
J is infegrable and ¢ is hermitian w.r.t. J. The associated 2-form of g is
2 =dgAw+ Vde Ady. Then it is easy to see that df} = 0, so g is a Kahler
metric. We may choose a local holomorphic basis of (1,0)-forms explicilty
including dx + ¢dy in which we compute the ricci form p and verify that the

scalar curvature is zero. q.e.d.

3.2 Construction of compact self dual mani-

folds

In section 2.3, we constructed a " principal fiber bundle
i P — (M~ Ujmr g, {pT})/T

with a connection form w such that dw = *dV. We aim to get a compact (anti)-
self-dual metric on the conformal compactification of P as a representative of
the conformal structure [V A +V~1w? on P. We will be able to get a conformal
factor function f of the form ?%, where f, is a positive function on H3 U
{01 — A(T)}, such that f(Vh + V~1w?) is a well defined smooth metric on

the compactification of P,

Next argument follows LeBrun [21, 22]. We can get a smooth com-
pactification of P by adding a finite number of points and boundary sur-

faces {S;}ix1,., which are to be identified with the ideal surfaces at infinity
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{0H? ~ A(T)}/T, as follows. Note that the case where we add zero point is a
special case and this is described in [28].

For each point p € Uj—y3.4{[T'p;]} C H3/T, choose a small sphere S

*»dV
T

5~ = —1. Then #~1(B — p) is diffeomorphic to R* —

around p. Then [q
{origin} = S° x R* for a sufficiently small open ball B in H?/T around the
.point .

In section 2.3, we showed that #*dV can be extended smoothly and vanishes
along the boundary {9H® — A(T')}/T. Therefore near the boundary, = is
diffeomorphically conjugate to the map from R* = {(z,y,r, 8)} where (r, ) is
considered to be the polar coordinates. to {(z,y,r}|r > 0} C R® such that
(@,9,7,0) = (z,y,7).

So we can get a smooth extension map of 7 (also denote by T):

M = PU{[T'p]};U{S}: — ({H*—{[Tp;]};}/T)U{[Tp;]}; U {0H> — A(T)/T).

The S* action on P exiends to M such that {[I'p;]}; and {5:}; become the fixed
poins of the extended S action. This comactification is in fact a conformal
compactification, namely that a metric representative of the above conformal
structure extends over M. In fact, for given T' and p; € H3, ¢, = 2(Vh +
V~1w?) gives a metric on P U {@p;}aer, where P is the universal covering of
P and apj is the one point inverse image of ap; under the obvious projection
map, and g, is asymptotically flat near 9H® — A(T') and can be extended
conformally over M = P U {a; }aer U OH® — A(T). See [21] for details.

M=M /T is now a compact manifold equipped with the local conformal

structure induced from g,. So using partitions of unity over M, we get a
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global metric g on M which is pointwise conformal to the metric VA + V1?2
defined on the quotient P = P/T. Note that this metric g should be of the
form f—i‘;(Vh + V~1w?) for some positive function £, such that + is invariant
under T'. Therefore we completed the construction of compact (anti)-self-dual
metrics.

Now let’s analyze the toiaology of M. Let X be the conformal compacti-
fication of 51 x N.

Consider 7~!(v) of a curve 4 from a point [I'p;] to a boundary surface
in {OH? ~ A(T")}/T such that 7=!(v) is topologically S?. We can show that
771 (7) has self intersection number —1, by considering the intersection number
of #~1() with 7=1(4), where 7 is a nearby arc from [['p;] to the same boundary
surface which intersects v only.at the point [I'p;].

If we reverse the orientation, then the self-intersection number of 77 1(v)
is 1 and a neighborhood of #~!(7) is diffeomorphic to CP? — ball. Now with
this reversed orientation we get self-dual metrics on a connected sum lM =
X{mCPZ,

Now we can summarize above;

Theorem 3.2.1 Suppose that I is a no cusp, geometrically finite, Kleinian
group such that N = H*/T is a noncompact hyperbolic I-manifold. If there
is at most one torsion free element which cannot be generated by boundary
surfaces in Hy(N,Z), then, there exist (anti)-self-dual metrics on X§mCP?

for all sufficiently large natural number m.

It will be interesting to find any topological meaning of the smallest um-
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ber mg such that X§mCP? admits self-dual metrics for any natural number
M 2 myg or to find any topological invariant my with the same property. For

this purpose, we state the following which is a consequence of proposition 2.3.1.

Proposition 3.2.1 Let T be as in theorem 3.2.1. Moreover, if there is no tor-
sion free element in Hy,(N, Z) except the ones generated by boundary surfaces,
then for any natural number m bigger than or equal to the number of boundary

surfaces in N, Mo$mCP? admits self dual metrics.

Author believes that theorem 3.2.1 should be true in the general case of
arbitrary number of interior second homology elements. Above argument pro-
duces an interesting picture, namely that it shows that in order to get self dual
metrics on connected sum of a conformally flat metric with sufficiently many

CP?s, how we should increase the number of attaching CP%s to overcome

nontrivial topologies.
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Chapter 4

Geometry of the Self-Dual Manifolds and

Examples

4.1 Geometry of the constructed manifolds

Recall that any compact riemannian manifold admits, by conformal de-
formation, a metric of constant scalar curvature [30] and the sign of its scalar
curvature is uniquely determined by the conformal structure. We call the

metric is of type +, 0, — if it admits a conformal metric of scalar curvabure

positive, zero, negative respectively. In [32], Schoen and Yau showed that for

. @ quotient manifold of $* — A by conformal transformations, it is of type +, 0,

—if and only if 1 —~ D(A(T)) is +, 0, — respectively. Since our construction is

based on such quotient manifolds description, we may hope to get analogous

statement for our self dual metrics. Indeed, by curvature computation and

some argument we could get;

Theorem 4.1.1 Suppose that T' is any group as in Theorem 3.2.1,




If 1 — D(A(D)) is +, 0,—, respectively,
then there exists a representative metric of scalar curvature positive, zero,
negative, respectively, in the self dual conformal structure on MgimCP? in

theorem 3.2.1.

Remark 4.1.1: If we succeed to get self dual metrics on connected sum
of conformal compactification of H?/T" x S! for general I' with many CP?'s by
similar argument as shown in Theorem 3.2.1, then theorem 4.1.1 is also true

for this general case.

Proof: Here we consider the self-dual metrics g of the form ¢ = F2(Vh +
V~1w?) as constructed in section 2.3 on the underlying differentiable manifold

for fixed T'. Let’s use (z,y, z) coordinates in the upper half space model again.

If we compute the scalar curvature of the above metric in some routine way,

we get ;

V-1
R(g) = T;E{'{F—ZFz-zQ(Fm‘i'Fyy‘f'Fzz)}' (4'1)

Note that the sign of scalar curvature depends only on F and its derivatives.
Conformally flat case is a épecial case of these, where V =1,

Suppose that D(A(I')) < 1. The other cases that D(A(I)) > 1 or
D(A(T')) = 1 will be handled in similar way. We have to show that there
exists a function F on M such that R(g) is positive, for the metric ¢ =
F2(Vh 4+ V~'w?) on M. First note that Schoen-Yau [32] result says that if

V =1, we can choose a smooth function, say Fy positive except along z = 0,

such that (4.1) is positive. The important thing is that we can choose F} as
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S'-invariant. In fact, set g, = FE(h + dt?), then from the formula involving
conformal Laplacian, we get

¢FT - R(g1) = (d*dFy — 1F)) > 0. except along z = 0. Set ' =
2= Jor Fi(z,y, z,)dt the average function over S? fibers which is §! invariant.
If we define g, = F*(h + di?), then

1 1

EFS-R(QQ) = d*dﬁ‘—gﬁ'
1oy 1
= o[ dFy — = Fy)dt
171,
- ﬂfsigﬁ'l - R(g1)dt > 0,

except along z = 0. So R(g,) is of type +. This F' is the function we were
looking for; ¢ = F2(Vh 4+ V=1w?2) is a well defined metric on the manifold
by the nature of the construction, namely that, g can be extended smoothly
to {[I'p;]}; and also to the boundary surfaces because of the $! invariance.

q.e.d.

Now we would like to describe specific examples and discuss a theorem on
the scalar curvature and the moduli space of self-dual conformal structures.

Let’s start with the basic example.

Example 4.1.1: 5* with standard metric : No points taken out and
' = {e}. Then, the fixed surface is 52 ~ IH> . We start with

7:P=H>x 8" — H°

which is the trivial S bundle, and extend to

7 {HPx STIUS? = {81 — S U S = §* — HPUOH®




And this can be understood at metric level; with f, =1,V =1,

2 -1, 2
g = -ﬁ(Vh+V w)

= 2

2 2 2
dx -l—dy2 +dz +di?)

= dz® + dy* + d2® + 22442,

Considering (z,t) as polar coordinates, g is the Euclidean metric and so
conformally compactifiable to 5%, using the conformal factor function arising
from the stereographic projection, if we add the boundary surface, S? in this

case, at infinity.

Example 4.1.2: Conformally flat metrics [7]: No points taken out and
T general (ie. H3/T is a noncompact hyperbolic 3 manifold with a no cusp,
geometrically finite Kleinian group). The fixed surfaces are (OH® — A(T))/T.
In this case, we don’t need to worry about integrality because we can take
trivial S bundle. Peter Braam described conformally flat metrics on Mr, the

compactification of these trivial bundle.

Example 4.1.3: Self-dual metrics on ICP? [21] : The fixed surface is
5% = OH3. Integrality is trivial in this case because I' = {e}. We take out !

points pq,...,p; from H3. This is an mteresting family of self dual metrics, cf

Chapter 1.

Example 4.1.4: Kéhler metrics metrics with zero scalar curvature (so

anti-self-dualjon §2% x Sgﬁlaﬁ with { > 2 [22]. Here 5% x S, may be replaced by

some ruled surfaces over S,. Here we take a fuchsian group I' such that H2/T

52
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is a compact Rieman surface of genus g > 2. Some specific conformal factor
function and complex structure are described to construct the first explicit

nontrivial compact scalar zero Kihler metrics on blown ups of ruled surfaces.

Before next exampless, we need to introduce the Klein-Maskit combi-
nation theorems of Kleinian group theory and the boundary connected sum
construction of new examples of hyperbolic 3-manifolds. [7, 26, 27]

Definition: Assume that I’ 0,11 are Kleinian groups such that N; = H3/T;
are noncompact hyperbolic 3 manifolds with nonempty boundaries as in sec-
tion 2.1. For a pair of points z; € IN;, take open half ball K; centered at z;.

Then the boundary connected sum of Ny and N, NI, is defined to be
{H3/1; — K} U, {H3/T, — K>}

wher p is an isometry : 9K, — OK,. The first combination theorem says
that under same hypothesis as above, the boundary connected sum, say N, is
isometric to H3/T with T being a Kleinian éroup which, in PSL(2,C), is the
free product of T'y and ¢TI~ for some g € PSL(2,C).

In conformally flat metrics case, P. Braam observed:

Proposition 4.1.1 If ' is the Kleinian group corresponding to a boundary
connected sum of H*/T'y and H3/T;, then T is a Kleinian group such that My
(cf: Example 4.1.2) is the S*-equivariant conformal connected sum of My, and

Mr, at points in the fived surfaces.

This is true because 7~!(K;) for the map

T PU{S;} — H3/T: U {(dH° — A(T))/T3}
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are balls around the points z; in the fixed surfaces and we are identifying

7 1(K1) and 7~1(K,) by S equivariant conformal maps.

Remark 4.1.2: If the conformally flat manifolds My, and Mr, in Propo-
sition 4.1.1 is replaced by self dual metrics in our construction , then the
Proposition is not true because these two self dual metrics on My, are not

conformally equivalent with different potential functions Vr,.

Now we are going to use Proposition 4.1.1. The boundary connected sum
of two manifolds N; = H3/T'; with k; (i = 1,2) boundaries cannot create extra
H, interior homology elements and the number of boundary surfaces for N, §V,
is k1 + k3 — 1. By Proposition 4.1.1 and Theorem 3.2.1, we get sell dual metrics
on connected sum of Mr, §Mr, with CP?’s if each Mr CP? admits self dual
metric by the theorem 3.2.1. This helps to get explicit self dual metrics on a

number of topological manifolds. We can take for instance;

Example 4.1.5: Self dual metrics on k(% x S1)jm(S? x SOHCP? for
k>0and !> m+1.

Here are some remarks on the geometry of Example 4.1.5.

Remark 4.1.3: The self-dual metrics on (5% x 8" )fmCP? form a larger
class than those in theorem 1.4.6 and have any sign of metrics from theorem
4.1.1 and the fact that there exist Schottky groups of any Hausdorff dimension

between 0 and 2 [7, 32]. Particularly, there exist self-dual, zero scalar curvature

(R-minimum) non-hermitian metrics.
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Remark 4.1.4: k(S® x §")fm(S? x S,)§ICP? for m > I +1 have self-dual

metrics with negative scalar curvature if either m > 2 or k,m > 1.

Remark 4.1.5: By the theorem 1.5.2, and [7], the construction in this
thesis exhausts all self-dual metrics of nonnegative scalar curvature witha semi-
free circle action. A Semi-free action means its isotropy group is either the

whole group or the identity subgroup.

Example 4.1.6 Given a hyperbolic 3-manifold as in theorem 3.2.1, we can
show that N = N #(.5%/T"), where T is a finite group acting freely and properly
discontinously on $°, also satisfies the conditions of the theorem 3.2.1. Let’s

say N = H3/T. There exist self-dual metrics on M;fmCP2,

A. King and Kotschick [18] studied the moduli space M* of self-dual

conformal structures with trivial conformal isometry groups and

conjectured that if the signature 7(X) # 0, for X a self-dual manifold,
then the Yamabe invariant doesn’t change sign on smooth points of any con-

nected component of M*.

However from theorem 4.1.1, we can prove;

Theorem 4.1.2 There exists ¢ continuous family of self-dual metrics on a
connected component of the moduli space of self-dual structures on I(8* x

SYEMCP? for any m > 1, and Jor some 1 > 2, which changes the sign of

the scalar curvature.
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Proof 4.1.2: We are going to use the notations in [18). We basically
follows that of theorem 3.9 in the paper. We now have, from Remark 4.1.3,
self-dual metrics of scalar curvature zero on (5% x SYYfmCP? for any m > 1,
and for some [ > 2. Let’s denote any such metric by g. Then since g can’t be
ricei flat by Hithin-Thorpe inequality, this forces dimH 3 = dimf[gz. The rest

now follows in similar way to [18]. So we get a 1-parameter family of self-dual

metrics with changing sign of the scalar curvatures. q.e.d

36




Bibliography

[1] M. Anderson, “Ricci Curvature Bounds and Einstein Metrics on Compact

Manifolds”, Journal of A.M.S. vol 2, No. 3 (1989) 455-490.

[2] M. Anderson, P. Kronheimer, and C.Lebrun, “Ricci-flat Kahler metrics

of Infinite Topological type”, Comm. Math, Phys., to appear.

[3] M. Atiyah, N. Hitchin, and I. Singer, “Self-Duality in Four- Dimensional

Riemannian Geometry”, Proc. R. Soc. Lond. A 362 (1978) 425-461.
[4] A. Besse, Finstein Manifolds, pp. 390-393. Springer-Verlag, 1986

[5] A.F. Beardon, “The Hausdorff dimension of singular sets of properly dis-
continuous groups”, Amer. J. Math. , 88 (1966) 722-736.

[6] C.P. Boyer, “Conformal Duality and Compact Complex Surfaces”, Math.
Ann. 274, 517-526 (1986).

[7] P. Braam, “A Kaluza-Klein Approach To Hyperbolic Three Manifolds”,

L’Enseignement Mathématique, t. 34 (1988), p. 275-311.

[8] A. Derdzinski, “Self-Dual Kahler Manifolds and Einstein Manifolds of
Dimension Four”, Comp. Math. 49 (1983) 405-433.

57




58

[9] S.K. Donaldson and R. Friedman, “Connected Sums of Self-Dual Mani-
folds and Deformations of Singular Spaces,” Nonlinearity 2, (1989) 197-
239.

[10] H. Federer, “Geometric Measure Theory”, Springer (1969) “Grund lehren
... Series” Band 153.

[11] A. Floer, “Self-Dual Conformal Structures on /CP?", J. Diff. Geometry,
vol 33, No 2, 551-574, March 1991.

[12] P. Gauduchon, “Structures De Weyl Et Theoremes D’annulation Sur Une

Variete Conforme Autoduale”, 1990 preprint.

[13] P. Gauduchon, “Surfaces Kahlériennes dont la Courbure Vérifie Certaines
Conditions de Positivité,” in Géometrie Riemannienne en Dimen-
sion 4. Séminaire A. Besse, 1978/1979, (Bérard-Bergery, Berger, and
Houzel, eds.), CEDIC/Fernand Nathan, 1981.

[14] G. Gibbons and S.W. Hawking, “Gravitational Multi-Instantons”, Phys.
Lett. 78B (1978) 430-432.

[15] C.R. Graham, “Dirichlet Problem for the Bergermann Laplacian II7,
Communications in PDE. 8 (1983) 563-641.

[16] M. Itoh, “Self-Duality of Kihler Surfaces”, Compositio Math, 51, 265-273
(1984).

[17] J.S. Kim, “A Generalized Construction of Self-Dual Metrics by Hyperbolic

Manifolds”, 1990 preprint.




18]

[19]

[20]

[21]

22]

e A B

89

A.D. King and D. Kotschick, “The Deformation Theory of Anti-Self-Dual

Conformal Structures”, 1991 preprint.

N. Kuiper, “On conformally flat manifolds in the large”, Ann. Math. 52,
478-490 (1950)

C. LeBrun, “On the Topology of Self-Dual 4-Manifolds”, Proc. A.M.S. 98
(1986) 637-640.

C. LeBrun, “Explicit Self-Dual Metrics on CPy# .- -#CP,”, J. Differen-
tial Geometry, 34 223-253 (1991).

C. LeBrun, “Scalar-Flat Kihler Metrics on Blown-Up Ruled Surfaces”, J.
reine u. angew. Math. 420 (1991), 161-177..

C. LeBrun, “Self-Dual Manifolds and Hyperbolic Geometry”, 1991

preprint.
C. LeBrun and G. Tian, Private Communication.

A. Lichnerowicz, “Isométries et Transformations Analytiques

d’une Variété Kahlérienne Compacte”, Bull. Soc. Math. France 87 (1959)
427-437.

B. Maskit, Kleinian Groups, Grundlehren der Mathematischen Wis-

senschaften, Springer, 1987

J. W. Morgan, “On Thurston’s Uniformization Theorem For Three Di-

mensional Manifolds”, Chapter 5 in Proceedings of the Smith Conjecture




60

Symposium, Columbia University 1979, ed. J. Morgan and H. Bass, Aca-
demic Press, 1984.

[28] Roger Penrose, “Nonlinear Gravitons and Curved Twistor Theory”, Gen-

eral Relativity and Gravitation, vol.7, N0.1 (1976), pp31-52.

[29] Y.S. Poon, “Compact Self-Dual Manifolds with Positive Scalar Curva-
ture,” J. Differential Geometry 24 (1986) 97-132.

[30] R. Schoen, “Conformal Deformation of a Riemanmian Metric to Constant

?? Scalar Curvatures”, Journal of Differential Geometry 20 (1984) 479-495.

[31] D. Sullivan, “The Density At Infinity Of A Discrete Group Of Hyperbol-
icMotions”, IHES Publications Mathématiques, vol.50

[32] R. Schoen and S.T. Yau, “Conformally Flat Manifolds, Kleinian Groups
and Scalar Curvature”, Invent. Math. 92, 47-71 (1988).

[33] C.H. Taubes, “Self-Dual Connections on Non-Self-Dual 4-Manifolds”, J.
Differential Geometry 17 (1982) 139-170.

[34] C.H. Taubes, “Existence of Anti-SEH-Dual Metrics”, preprint 1991.

[35] W.P. Thurston, “Three Dimensional Manifolds, Kleinian Groups and Hy-
perbolic Geometry”, Bull of A.M.S. vol.6, Number 3. May 1982.

[36] J.P. Sha and D.G. Yang, “Positive Ricci Curvature on Compact Simply
Connected 4-Manifolds”, preprint 1990.




S ————— ey e T A DT

61

[37] 8.T. Yau, “On The Curvature Of Compact Hermitian Manifolds”, Inven-

tiones math. 25, 213-239 (1974).




