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Abstract of the Dissertation

Mixing Elements into Kleinian Groups
by
James Wyatt Anderson
Doctor of Philosophy
n
Mathematics
State University of New York at Stony Brook

1991

We consider the question of creating Kleinian groups by ad-
joining elements to groups which are known to be Kleinian; alter-
natively, we consider the question of how subgfoups of a Kleinian
group with intersecting limit sets can interact. Specifically, we de-
velop necessary conditions for the group {G, M) to be Kleinian,
where (@ is an analytically finite Kleinian group and M is any
M&bius transformation of infinite order which has a fixed point in
A(G), the limit set of G. Our main result has two parts, depending

on the type of M. Iif M is loxodromic, then some (positive) power

of M must lie in G, if M is parabolic, then either some (positive)




power of M lies in G or thereis a doubly cusped parabolic element
of G which has the same fixed point as M.

We prove these results first in the case that A(G) is connected;
we make use of a classical result on the Poincaré metric on (G
to estimate the area of the quotient ((G)/G. We then make use of
standard techniques in Kleinian group theory to extend the results

to the more general case.
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Chapter 1

Definitions and History

We begin by stating the definitions needed in this work and by discussing

results of othel authors which have a bearing on the results proven herem

A Mébius transformation of the Riemann sphere CisamapT: C —C
of the form T'(z) = ‘;:_'_d, where a,b,c,d € C and ad — be = 1; the group
M of Mébius transformations is exactly the group of orientation preserving

conformal homeomorphisms of C. M acts triply transitively on C; that is,
given two triples (z1, 22, z3) and {wy, Wy, ws) of distinct points of C, there is
a unique element T' € M such that T(z;) = w; for 1 < j < 3. For each T € M,
let fix(T) denote the set of fixed points of T in M.

Every nontrivial element T of M has either 1 or 2 fixed points. If T
has a single fixed point, then T is conjugate (in M) to the transformation
P(z) = z+1; such a T is parabolic. If T has 2 fixed points, then T' is
conjugate (in M) to the transformation S(z) = Az for some nonzero complex

number A # 1. If |A] =1, then T is elliptic; otherwise, T is loxodromic. A

is the multiplier of the transformation T,




Let T(z) = ‘:—jf—f}- be a Mbius transformation which does not fix co; that

is, ¢ # 0. The circle I+ = {z € C: |z + ¢| = l_lci} is the isometric circle of
T. The name comes from the fact that diamg(IT) = diamg(T(IT)), where
diampg denotes Euclidean diameter. This fact follows immediately from the
observation that Iy is the set of points at which |T"(2)| = 1. Two properties
of isometric circles we shall need are that T(Ir) = It and that T maps the
exterior of Iy onto the interior of Iz—t [4].

Let G be a subgroup of M. Say that (! acts discontinuously at a point
2 € € if there exists a neighborhood U of z so that g(UYNU # § for only-
finitely many ¢ € G. Define the ordinar& set QG) of G to be the set of
points of VTC- at which G acts discontinuously.

Throughout this paper, the term Kleinian group is reservé& for those
subgroups G of M which have a nonerﬁpty ordinary set. It should be noted
that every Kleinian group is a discrete subgroup of M.

Let A(G) be the complement of QUG) in C. A(G), the limit set of G,is a
closed set which contains 0, 1,2, or uncountably many points. If A(G) is finite,
(! is elementary: if A(G) is infinite, G is nonelementary. A(G) contains
the fixed points of all elements of infinite order in G.

A point of approximaﬁon of G is, loosely, a limit point of G which
behaves like a fixed point of a loxodromic element of G. More precisely, z is
a point of approximation of G if there is a sequence {gn} of distinct elements
of G so that, fbr every compact set K C C — {z}, there is a constant x > 0

so that the spherical distance ds(gm (@), gm(2)) = 6k for all z € K.

Let X C € be any set. The stabilizer subgroup of X in the Kleinian




group G is defined as stabg(X) = {geG:g(X)=X} T Aisa (connected)

component of Q(G), define Ga = staba(A).

For a subgroup H of G, X is said to be precisely invariant under H in
G if h(X) = X for all h € H and if A(X)N X is empty for all & € G- H.

An element g of the Kleinian group G is primitive if no root of ¢ lies in
G that is, there does not exist an clement h € G with h™ = g for some m > 1.

Let z € A(G) be any point. Say that @ is a doubly cusped parabolic
fixed point of G if there exists a primitive parabolic Pz € G fixing z and if
there exist two open circular discs (or half planes) B; and B; in (@) so that
B, U B, is precisely invariant under stabg(z) in G. f zis a doubly c_usped
parabolic fixed point, then either stabg(z) = (Fy) or stabg(z) = {Pu €), where
¢ is an elliptic element of order 2 fixing . We say that a parabolic element P
of G is a doubly cusped parabolic if fiz(P) is a doubly cusped parabolic

fixed point of G.

We say that a point z € A(G) is a rank 2 parabolic fixed point if
stabg(x) contains a L & Z subgroﬁp of finite index. This Z & Z subgroup is

necessarily purely parabolic, with every element fixing =.

One of the major tools used in this work is the natural metric on {{G),
where G is a nonelementary Kleinian group; this is the Poincaré metric.
The Poincaré metric is the unique, complete metric of constant curvature -1
on Q(G) which is invariant under the action of G. For completeness’ sake,

we give here a brief description "of the Poincaré metric on Q(G) and of some

of its properties. For ease of notation, assume that co € A((); then, every




component of Q(G) is a plane domain. Let z denote the standard complex
coordinate on C; then, |dz| is the line element of the standard Euclidean
metric on C. We will define the Poincaré metric in terms of |dz}.

Let A be a component of Q{G); G is nonelementary, so §A contains more
than 2 points and A then has the upper half plane H? of C as its universal
covering. Moreover, Ga acts on A by conformal homeomorphisms, and this
action lifts to an action of a subgroup H C PSLz(R) on H2. There is a
complete metric on H? which has constant curvature —1 and is invariant under
the action of PSLy(R); the liqe element of this metricis ds = ﬂ%. Projecting
to A, we obtain a metric on A which is invariant under Ga.

Since any two coverings of A by H? differ by composition by an element
of PSL,(R), the Poincaré metric on A is independent of any particular choice
of covering. |

The Poincaré metric is conformally equivalent to the standard metric
on Q(@); this follows from the fact that measuring angles at a point using
the Poincaré metric and the standard Euclidean metric give the same result.
Therefore, we can write the line element of the Poincaré metric as p(2)ldz|;
p(z) is a real valued function on Q{(G), called the Poincaré distortion.

TFor a set D C QG), let area,(D) denote the area of D calculated in
the Poincaré metric on (G); area,(D) = [p p*(z)dA, where dA is the Eu-
clidean area element. We also define areag(D) to be the Euclidean area of D;

‘areag(D) = [pdA. |
Let 7 : Q(G) = QG)/G be the standard projection. The Poincaré

metric in invariant under the action of G and so descends to a metric on the

R




quotient Q(G)/G. Tor a subset D® of Q(G)/G, we also let area,(D®) denote
the Poincaré area of D® on the quotient {G)/G. It will be clear from the
context whether we are calculating the area of a subset of Q(G) or whether
we are calculating the area of a subset of the quotient Q(G)/G.

If area,(Q(G)/G) is finite, G is said to be analytically finite. By con-
vention, elementary groups are also considered to be analytically finite.

We will need the following observation. Let D C Q(G) be an open set

which is precisely invariant under the identity in G. Then,
area,(D) < area,(QG)/G).

Analytic finiteness is the weakest condition one can place on a Kleinian
group and still have some uniformity of behavior. Two other conditions which
Kleinian groups can be asked to satisfy are that G be finitely generated and
that G be geometrically finite. Every finitely generated Kleinian group is
analytically finite; this is Ahlfors’ ﬁnitenesé theorem [7}. Stronger s;till than
finitely generated is that a Kleinian group be gedmetrically finite; this is the
condition that the group have a finite sided fundamental polyhedron for its
action on H?3.

At this point, we add the assumption that A(G) is connected; coupled
with our earlier assumption that co € A(G), this is equivalent to saying that
every component of Q(G) is a simply connected plane domain. On Q(G),

let §(z) denote the Euclidean distance to A(G), and let p(z) be the Poincaré

distortion. It is a well known consequence of the Koebe %—theorém that

1

250y = )




for all z € Q(G) (see, for example, {3]).

The results in this work belong to a family of results which contain nec-
essary conditions for subgroups of M to be discrete or Kleinian. Possibly the
first result of this type is the observation that, in any discrete subgroup of M,
parabolic and loxodromic elements cannot share fixed points [9]. Beardon and

Maskit generalize this observation with the following theorem.

Theorem (Beardon and Maskit [2]) Let G be a discrete subgroup of M.
No point of A(G) can be both a parabolic fized point of G and e point of

approzimation of (.

The following theorem of Susskind is a corollary of a stronger result which
plays a crucial role in his characterization of intersections of pairs of geomet-

rically finite subgroups of a discrete subgroup of M.

Theorem (Susskind [13]) Let K be a discrete subgroup of M, let G be
any subgroup of K, and let L be a loxodromic element of K fizing a point of

approzimation of G. Then L™ € G for some n > 0.

Necessary conditions in a different vein are the inequalities of Jgrgensen
[6], Tan [14], and Gehring and Martin [5]. These results quantify the intuitive
notion that there are universal lower bounds on how close elements of a discrete
subgroup of M can be to one another.

None of the work yet cited has made use of any assumption stronger than

discreteness. As we shall see later, there is a major difference between groups

S




which are merely discrete and groups which are Kleinian. One result which

requires the assumption the groups be Kleinian is the following theorem of

Maslkit.

Theorem (Maskit [10]) Let K be a Kleinian group and let A C Q(K)
be any component whose quotient A/ K, is analylically finite. Let k be any
element of K which has a fized point in 0A = A(K ). If k is lozodromic, then
k™ € Kp for somen > 0. If k is parabolic, then there is ¢ parabolic h € Ka

with fiz(k) = fiz(h).

When discussing necessary conditions, it is natural to also consider the
question of sufficient conditions. This is a much more difficult question. To
date, the only general sufficient conditions for a subgroup of M to be Kleinian

are Poincaré’s polyhedron theorem [11] and the combination theorems of Klein

and Maskit [9].




Chapter 2

Statement of Results

The work in this paper deals with the problem of analyzing how pairs of
subgroups of a Kleinian group can interact. We analyze the case in which one
of the subgroups is analytically finite, the other subgroup is infinite cyclic, and
the subgroups have intersecting limit sets.

Another way of viewing the work in this paper is to say that we wish
to develop necessary conditions for the group (G, M} to be Kleinian, where
G is an analytically finite Kleinian group and M is an infinite order Mobius
transformation fixing a point of A(G).

To this end, we prove the following two theorems.

Main Theorem (Loxodromic Case) Let K be a Kleinian group and let
G be an analytically finite subgroup of K. Suppose there exists a loxodromic
element L of K which has a fized point in A(G). Then, L™ € G for some

positive mteger n.

Main Theorem (Parabolic Case) Let K be a Kleinian group and let




G be an analylbically finite subgroup of K. Suppose there ezists a parabolic

element P of K whose fived point lies in A(G). Then, either P™ € G for some

positive integer n or fiz(P) is « doubly cusped parabolic fized point of G.
As corollaries of these results, we have the following.

Corollary Let K be a Kleinian group and let G be an analytically finite
subgroup of K. Suppose that © € A(K) is a rank 2 parabolic fived point. If

z € AG), then ¢ is either a rank 2 parabolic fized point of G or a doubly

cusped parabolic fived point of G.

Corollary Let K be a Kleinian group and let G be a nonelementary an-
1 alytically finite subgroup. Suppose that there is an element k € K of inﬁﬁite
order with H(A(G)) C A(G). Then, K(A(G)) = A(G) and k™ € G for some

n > Q,




Chapter 3

Adding Loxodromic Elements -

In this chapter, we prove the loxodromic case of the main theorem under
the additional assumption that the group G has connected limit set. We prove
this result by contradiction. That is, we assume that no-(nonzero) power of
L lies in ¢ and then construct an open subset D of (G} which is precisely
invariant under the identity in G and which has infinite Poincaré area. This

contradicts the analytic finiteness of G.

We will need the following lemma in the construction of such a set.

Lemma (The Invariance Lemma) Let K be a Kleinian group and let
G be a subgroup of K. Assume there ewists an element M € K of infinite
order so that no (nonzero) power of M lies in G. Let D C Q(K) be any set
which 1s precisely invariant under the identity in K. Then, A = ,eg M"(D)
is precisely invariant under the identity in G.

Proof Assume that there’exists an element g € G so that g(A) N A is

nonempty. Then, g(M"(D)) N M'(D) is nonempty for some integers n and [;

10




the precise invariance of D under the identity in K then forces g(M™(D)) =
MY(D). Therefore, M~ - g+ M*(D) = D, which forces M-t g M" to be the
identity. Consequently, g = M -n_ Gince no nonzero power of M lies in G, it

must be that { = n and g is the identity. D

We are now ready to complete the proof of the loxodromic case of the

main theorem in the special case that G has a connected limit set.

Lemma (Loxodromic Special Case) Let K be a Kleinian group and
let G be an analytically finite subgroup of K with connected limil set. Suppose
there exists a lozodromic element L of K which has a fized point in A(G).

Then, L™ € G for some positive inleger n.

Proof First, we show that G cannot be elementary. G cannot be finite,
since A{@) is assumed to be nonempty. Were G to contain a purely parabolic
subgroup of finite index, then (G, L} would be a discrete subgroup of M in
which a parabolic and a loxodromic transformation share a fixed point; this
cannot occur. (G cannot contain a loxodromic eyclic subgroup of finite index, as
A(G) is assumed to be connected. By the classification of elementary Kleinian

groups, these are the only possibilities. Therefore, GG is nonelementary.

Assume that no (nonzero) power of L lies in G. Let o be a fixed point
of L contained in A(G). After normalization (that is, after we conjugate K

by an appropriate element of M), we can assume that L(z) = Az, 0 = 09,

and 1 € A(G).- We assume that 1 € A(G) because we have no information on

11
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whether 0, the other fixed point of L, is a point of Q(G) or of A(G); we fix
1 € A(G) solely to make the following calculation concrete.

If necessary, replace L by L™! so that || > 1. Since co € A(@) and A(G)
is connected, every component of {2() is a simply connected plane domain.

Choose zp € §}(K) and € > 0 so that B = B,(z0), the Euclidean disc
of radius € about zy, is precisely invariant under the identity in K; define
B,, = L"™(B). Let p be the Poincaré distortion on (}(G) and let é be the
Euclidean distance to A(G); since 1 € A(G), §(z) < |z —1].

By the invariance lemma, |, ez Bw is precisely invariant under the iden--

tity in G the B,, are disjoint, so

area,(G)/G) = Z area,(B

E f Z)dA mi.::o me 62%”)

m=0
Choose an integer mg so that B, lies outsxde the unit circle for m > me.

Then, §(z) < |z — 1] < |z| + 1 < 2|2 for any z € By, with m > my, and so

r 1 0 L
4 JBy 6%(2) T 16 JB. |2]?

At this point, we claim that fg L;llgdA is a positive constant independent

of m. To see this, note that

i 1
—dA = | ——=((L™)"dA
/Bm |z|2dA ]}; le(Z)P((L ) dA),
where (L™)* is the standard pull-back of £™.

Since dA = %dz A dz, we have that

1
2

(I7)(gdz A d7) = 52d(L™(2)) A D7) =

(\mdz) A (A" dZ) = [AP™dA.




i3

Thus,

1 1 1 i
———lA:]—-_-—-— YA A = E——— YL = —dA.
fomEtA= JopEpErmaa = [ g

Therefore, area,(2(G}/G) is infinite, a contradiction. 0




Chapter 4

Adding Parabolic Elements

In this chapter, we prove the parabolic case of the main theorem under
the additional assumption that the group G has connected limit set. Again
we use proof by contradiction. We assume that no (nonzero) power of P lies
in G and we show that either fiz(P) is a doubly cusped parabolic fixed point
of G or there is an open set D C Q(G) which is precisely invariant under the
identity in G' and which has infinite Poincaré area. The analytic finiteness of
G then forces the former. For technical reasons, however, we are required to
make a much more delicate choice of D than in the loxodromic case. We also

need to make much less crude use of the estimate of p(2) on Q(G).

The following two lemmas are area calculations which we will make re-

peated use of in the argument to follow,

Lemma (The Disc Lemma) Let G be a nonelementary Kleinian group
with connected limit set. If there exists an open circular disc D C Q@)

such that some point & € A(G) lies on the boundary of D and D is precisely

14




invariant under the identity in G, then area,(QU(G)/G) is infinite.

Proof Normalize &+ so that @ = 0 and so that oo € A(G); since 0 €
A(G), 6(z) < |z|. We wish to estimate the Poincaré area of D. Let p(2) be the
Poincaré distortion on (G} and let §(z) be the Euclidean distance to A{G).

Since A(G) is connected and contains co, we have the inequality

1
257 = p(z).

Note that for some choice of angles 0 < §; < 0, < 2% and 0 < r, the
wedge shaped region W = {z € C: 8, < arg(z) < 4, |z] < r} is contained in
D (see figure 1).

The precise invariance of W under the identity in G yields that

1 1 1 1
N> WY = 2 - 2~ 1,2 )
area,(YG)/A) = area,(W) pr (z)dA > 1 Jw 02) A> 1w IzlgdA

Changing to polar coordinates, one see that this last integral is infinite,. 0O

Figure 1

15




Lemma (The Area Lemuma) Let G be a nonelementary Kleinian group

with connected limit set and oo € A(G). Let {D;}jes be a countable collection
of pairwise disjoint open sets in Q(G) such that D = U;eg D; is precisely
invariant under the identity in G. [f there are positive constents ¢ and e
such that §(z) < ¢ for all z € D and areag(D;) 2 e for each 7 € J, then
area,(QUG)/G) is infinite.

Proof The proof is an area calculation. Since D is precisely invariant

under the identity in G,

area,,(ﬂ(G’)/G’) > area,(D) =) _ area,(D;).
jed

Using the estimates on 6(z) and areag(D;), we have

, . : dA areag(D;) e
V=] pz)dA> f > i >
area,(1;) jD,- pz)dA 2 p; 48%(z) 4c? = 4¢?
for each j. Therefore, area,(Q(G)/G) is infinite. a

Before going on to the next lemma, it is necessary to develop a bit of
notation, Given 7 € C with I'm(r) > 0, let C§ be the closed region in C
bounded by the parallelogram with vertices 0, 1, 7, and 1 + 7. For integers n
and m, let C™ = C§ + n + mr. The bricks C7* decompose the complex plane
into an infinite checkerboard. We call this the checkerboard corresponding
to 7.

For a nonempty closed subset A of C and a brick C of this infinite checker-
board, define d4(C) to be the minimum number of moves a (chess) king must

make to get from €' to a brick containing a point of A; call d4 the king

distance for the set A. Let §,(z) denote the Euclidean distance from z to A.




For a brick ¢ in our checkerhoard and a point z € (', we have that
6a(z) < (da{C) + 1){;, where [, is the length of the longer diagonal of CJ.
Also, the value of d4 can jump at most 1 each time we move from a brick to
any of the eight bricks around it; in other words, if B and C are contiguous

bricks in this checkerboard, then |d4(B) — d4(C)] < 1.

We are now ready to complete the proof of the parabolic case of the main

theorem in the special case that G has a connected limit set.

Lemma (Parabolic Special Case) Let K be a Kleinian group and let
G be an analytically finite subgroup of K with connected limit set. Suppose
there exists a parabolic element P of K whose fized point lies in A(G). If no
(nonzero) power of P lies in G, there exists a doubly cusped parabolic Q € G
with fiz(Q) = fia(P).

Proof First, we take care of the case that G is elementary. ¢ cannot
be a finite group, since A(G) is assumed to be nonempty. G cannot contain
a loxodromic cyclic subgroup of finite index, since A(G) is assumed to be

connected.

If G contains a purely parabolic subgroup of finite index, then A(G) con-
sists of a single point z; since fiz(P) € A(G), (G, P} is a Kleinian group
whose limit set consists solely of the point . Coupling the assumption that
no (nonzero) power of P lies in ¢ with the fact that Kleinian groups can-

not contain Z ¢ Z @ Z subgroups, we find that the purely parabolic subgroup

of G has rank 1. The generator ) of the purely parabolic subgroup of G is

17




then a doubly cusped parabolic element which has the same fixed poiﬁt as
P. This completes the elementary case. Hereafter, we can assume that G is
nonelementary.

Normalize K so that P(rz) = z + 1; choose z; € §}(K) and € > 0 so that
the Buclidean disc B = B.(z) is precisely invariant under the identity in K.
For ease of calculation, conjugate K by a translation so that 2 = (1 +19).
Let p be the Poincaré distortion on (G} and let § be the Euclidean distance
to A(G). Decompose the plane into the checkerboard corresponding to ¢ and

let d = da(q). Let B, = P"(B), and notice that B, C CY (see figure 2).

Figure 2

The first step is to show that there must exist a parabolic element ¢} of
G with fiz(P) = fiz(Q); assume not. The first case to consider is that no

element of G — {1} fixes co. Every element g € G'— {1} then has a well defined

isometric circle, whose center g=1(c0) lies in A(G). For g € G — {1}, let 7,

18




be the radius of the isometric circle of ¢. K is a Kleinian group containing
P(z) = z4+ 1,50 ry < 1forall g € G- {1}; this is a consequence of the
Shimizu-Leutbecher lemma [9]). Every element of G — {1} maps the exterior
of its isometric circle onto the interior of the isometric circle of its inverse;
therefore, the common exterior of the isometric circles of all elements of G—{1}
is precisely invariant under the identity in G. Therefore, the set {§(z) > 1} is
precisely invariant under the identity in G.

Let V(n) = Unez CF; V(n) is the closed strip between the vertical lines
{Re(z) = n} and {Re(z) = n + 1}. Consider the V(n) with n > 0; either
finitely many of these strips contain points of A(G) or infinitely many contain
points of A(G).

If only ﬁﬁitely many of the V(n) contain points of A(@), let V(no) be the
rightmost such. A(G) is then contained in the half plane {Re(z) < ng + 1}.
Thus, the half plane {Re(z) > no + 3} is contained in the set {6{(z) > 1} and
so is precisely invariant under the identity in G. The disc lemma then implies
that area,((G)/G) is inﬁn-ite.

In the case that infinitely many of the V(n) contain points of A(G), we
would like to be able to exert some control. What we are going to do is to
find an open set in each of these V{n) so that the union of these open sets
is precisely invariant under the identity in G and the Poincaré area of these
open sets is bounded away from 0. This will imply that the Poincaré area of
the union of these open sets is infinite.

However, it will suffice to find such open sets in an infinite subset of these

V(n); if we take any infinite subset of these open sets mentioned above, the

19




union of the subsets will still be precisely invariant under the identity in G
and will still have infinite Poincaré area.

Therefore, we need only work with a subsequence of these V{(n). By
passing to an appropriate subsequence of these V(n), we can assume that
d(C?) behaves in one of two ways.

If we can find a subsequence on which d(C?) remains bounded, we can

refine it to a subsequence on which d(C?) is constant. Otherwise, d(CQ) even-

tually wanders off to infinity as n — oo; in this case, we can refine the subse-

quence so that d(CY) — co monotonically as n — oo.

Having found such a subsequence, renumber the strips V(n) in the fol-
lowing way. Ignore all the strips V(n} which are not part of the subsequence
we have just constructed, and number the strips in this subsequence consectu-
tively; that is, as V(1), V(2),...,V(n}, ... We renumber in this way solely to
make the following piece of the argument easier to follow. Without this renum-
bering, we could proceed only with an unnecessary proliferation of subscripts
and subsubscripts, which we would like to avoid.

First, consider the case that d{C?) remains constant as n — oco. That is,
d(C2) = ¢ for n > 0. Using our earlier estimate, we then have that §(z) <
(c+ 1)V2 for all z € U, P*(B). Since areag(P*(B)) is constant for n > 0,
the area lernma implies that area,(Q(G)/G) is infinite.

Next, consider the case that d(C?) — oo monotonically as n — co. For
each n, let C;”{ﬁ) be the brick in the strip V(n) so that C™(™ contains a point

of A(G) and is closest to the brick C? (see figure 3). Note that every brick in

V(n) strictly between Cmn) and CY is contained wholly in Q(G).
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Since CT™ contains a point of A(G), d(C™™)) = ¢ for all n. d(C°) — oo
monotonically as n — oo, so d{C?) > 5 for n sufficiently large. Stepping verti-
cally from C™(*) to C™~1 on down to C?, d decreases at most 1 during each
step. Therefore, for each n sufficiently large, we can find a brick C?™ in V(n),
strictly between C7™ and C?, so that d(CP™) = 4. §(2) is then uniformly
bounded as z ranges over all C?(®) with n sufficiently large. areag(int(C2())
is constant, so the area lemma implies that area,(2(G)/G) is infinite.

To recap, under the assumption that no element of G — {1} fixes oo,
| area,(Q(G)/G) is infinite. The analytic finiteness of G then forces there to
exist an nontrivial element Q) of G with fiz(Q) = fiz(P) = co. ) cannot
be loxodromic, since loxodromic and parabolic elements of a Kleinian group
cannot share a fixed point.

Assume that @ is elliptic; without loss of generality, @(0) = 0 as well. @ is
then a Euclidean isometry and so preserves both {§(z) > 1} and A(G). As be-
fore, we can assume that either d(CY) is constant or d(C?) — oo monotonically
as i — 00. |

In the case that d(C?) is constant, area,(YG)/G) is infinite. To see this,
note that, since d(C?°) is constant, we have a uniform bound on §(2) as 2
ranges over D = [ J°°  P*{B). The invariance lemma gives that D is precisely
invariant under the identity in . The Euclidean area of P"(B) is constant,
so the area lemma yields that areq,(C) is infinite.

It is only in the case that d(CT) — oo as n — oo that the presence of an

elliptic fixing oo causes us to be more cautious.

Proceed with the choosing of bricks CP(*) exactly as in the case that no
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element of G - {1} fixes co. Let ¢ = |2, CP™), and note that the only
elements g of G which can satisfy ¢(C) N C # @ are powers of Q. To see this,
recall that the only elements of (¢ which can fix oo are powers of (). Therefore,
if ¢ € G is not a power of ), then C lies outside the isometric circles of both
g and g1 (by construction) and so g{C')NC = §.

If we can find an infinite subsequence of the Cﬁ(”) whose union is precisely
invariant under the identity in (Q), then this union will also be precisely
invariant under the identity in all of G.

By the normalization on @, () preserves every disc centered at the origin.
Moreover; each such disc can intersect only finitely many of the C2(™. Start
off by choosing an open disc Dy centered at the origin which contains Cg(").
Since Do can intersect only finitely many of the CP™, we can choose Cﬁg”‘)
outside Dg.

() preserves Dy, so Gg“” U C’}jf"‘) is precisely invariant under the identity
in (@). This implies that C} © Crm) is precisely invariant under the identity
in (.

Now, choose an open disc [y centered at the origin which contains C@“" U
C,’*’:S’"‘l) and choose C2") outside D;. Proceeding in this fashion, we construct a
subsequence Cﬂgn"' ) of the Cr so that ¢ = U, C’Ef-nj )i precisely invariant
under the identity in G. The area lemma gives that area,(C’), and hence
area,(2(G)/G), is infinite,

Therefore, the element @ € G fixing co must be parabolic; without loss

of generality, assume that ¢ is primitive. All that remains to prove is that

@ is doubly cusped; assume not. Since we're given that no nonzero power of
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P lies in (5, the maximal purely parabolic subgroup of stabg{co) has rank 1.
Therefore, either stabg(co) = (@) or stabg{co) = (@, €), where e is an elliptic
of order 2 fixing oo.

Q(z) = z+ 7 for some 7 with nonzero imaginary part; if necessary, replace
@ by Q! so that im(r) > 0. Choose 2z, € Q(K) and ¢ > 0 so that the
Euclidean disc B = B(z) is precisely invariant under the identity in Kj;
without loss of generality, we can take z, = %(1 + 7).

Decompose the complex plane into the checkerboard corresponding to
and consider the slices V(n) = U,z C*. Let B, = P*(B), and notice that
B, c CP. Either finitely many of the V(n) contain points of A(G) or infinitely
many of the V/(n) contain points of A(G).

In the latter case, we can assume that infinitely many of the V{n) with
n > 0 contain a point of A(G). If V(n) is a strip containing a point of A(G),
then the brick C7 contains a point of A(G); all we need do is find some point
of A(G) in V(n) and translate it along V(r) to C? using an appropriate power
of Q. Let D = Uz P*(B). 6(z) is uniformly bounded as z ranges over D and
the Euclidean arca of P"(B) is constant. Therefore, the area lemma implies
that area,(D) is infinite.

In the former case, we show that @) is a doubly cusped parabolic. Let
V(lo) be the leftmost strip containing a point of A(G), V(ro) the rightmost
strip containing a point of A(G), and define D to be the union of the open
regions to the left of V{ly — 1) and to the right of V(rq + 1) (see figure 4).
If stabg(oo) = (@, ¢), then replace D by D N e(D). Regardless of whether

stabg(co) = (@) or stabg(oo) = (@, e}, D is the union of two circular discs.
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D is invariant under stabg(co) by construction. To see that D is precisely
invariant under stabg(oco) in G, note that D lies in the region {§(z) > 1} and
so D lies outside the isometric circle of any element of G ~ stabg(co).

Having chased through all possibilities, the only allowable possibility un-
der the assumptions that no (nonzero) power of P lies in G and that G is

analytically finite is that (¢ contains a doubly cusped parabolic element @Q

with fiz(Q) = fiz(P). O
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Chapter 5

The Reduction Step

The purpose of this chapter is to complete the proofs of the two cases of
the main theorem. In order to accomplish this, we need some way of reducing
the general situation to the special situation in which the group G has a

connected limit set. To this end, we prove the following lemma.

Lemma (The Decomposition Lemma) Let G be an analytically finite
Kleinian group. There exist finitely many subgroups Gy,...,G, of G so that
each (i is analylically finite with connected limit set, each point of A(G) is
either the translate of a point of some A(G,) or s a point of approzimation of
G, each parabolic P € G is conjugate to a parabolic element of some G;, and

P is doubly cusped in G if and only if its conjugate is doubly cusped in G;.

In order to prove this lemma, we will need to invoke the machinary of
the planarity theorem and the combination theorems. The planarity theorem

gives us topological information about the action of a Kleinian group on its

ordinary set, and the combination theorems allow us to decompose the group




into simpler groups using this topological information. We begin with the

planarity theorem.

Theorem (Planarity Theorem) (9] Let p : A — S be a regular covering
of the topologically finite Riemann surface S, where A is planar. Then there
is a finite set {w! } of disjoint loops on S, where each w), is the power of a
simple geodesic loop, so that p: A — § is the highest reqular covering of S for

which the loops {wl.} all lift to loops.

In order to exploit the existence of such a set of loops, we need to use
some sort of combination theorem. Before we state the theorem, we need to

define our terms. The definitions are adapted from those in {12].

We say that a Jordan curve v in € is a swirl for G if 4 lies in Q(G)
and if « is precisely invariant under a finite cyclic subgroup J{7) of G. One
important fact about a swirl o is that the spherical diameters of any sequence
of distinct translates of o go to 0 [12].

Let & be a collection of swirls. A panel for ¥ is a equivalence class of
points of C — £, where two points are equivalent if they are separated by no
swirl in %,

We say that T is a system of swirls for G if ¥ is a G invariant collection

of swirls so that ©/G consists of finitely many curves, if no two swirls in X

cross (they are allowed to touch), and if for every swirl ¢ on the boundary

of two inequivalent panels P, and P, there is an element g; € stabg(F;) with

gi(o) #o,i=1,2.




Let ¥ be any system of swirls for the Kleinian group G. We will need
information about the points of C which belong to no swirl and to no panel.

To this end, we prove the following proposition.

Proposition 1 Let ¥ be a system of swirls for the Kleinian group G.
Then, a point of C either belongs to a swirl in & or a panel for ¥, or is a point
of approximation of G.

Proof Let @ € C be a point which belongs to neither a swirl nor a
panel. There must then exist a sequence {0y} C X such that the o,, nest
about z; that is, the spherical diameter diamg(o,,) of o, goes to 0 as m goes
to oo and o,,4 separates o, lrom @ (see figure 5). Since X /G contains only
finitely many curves, we can assume that o, = gm(0o) for elements g, € G

and a fixed swirl og € X.

figure 5

We wish to show that 2 i3 a point of approximation of (. Recall that
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a point of approximation of & is a point z € € so that there is a sequence

{gm} C G of distinct elements of G so that ds(gm(z),gm(2)) > bk > 0 for
each compact set £ C € — {x} and each z € K.

Let K be any compact subset of € — {z}. Since diams(0,,) goes to 0 as
m goes to oo, oy, separates K from z for m > mg.

Each point. g (z) lies in A(G) and A(G) is closed, so every accumulation

point of the ¢-'(z) also lies in A(G). Since oo C Q(G), we have that
¢ = inf{dists(g;(z},00) : m > 0} > 0.

Since oy, separates K from x for m > mpg, oo separates g;'(K) from
gl (z) for m > my; hence, dists(g, (z), g (K)) > € for m > mg.
Let o = min{dists(g; (), g7 (K)) : m < mg}. Since z ¢ K, a > 0.

Setting § = min{a,¢), we see that z is a point of approximation of G.

We will also need to know how the limit points of G are related to the limit

points of the panel stabilizers. To this end, we prove the following proposition.

Proposition 2 Let ¥ be « system of swirls for the Kleinian group G. Let
X be a panel for 5. If 2 € A(G)N X, then z € A(stabe(X)).

Proof We first consider the possiblity that  is an interior point of X.
Since A(G) is perfect {i. e., every point of A(G) is an accumulation point) and

loxodromic fixed points are dense in A((), we can find loxodromic elements

L,, of G which fix points 2, (respectively) so that the z,, converge to z.
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Since z is an interior point of X, it must be that z,, is an interior point of
X for m sufliciently large. Then, L,,{X} = X for all m sufficiently large. z.,
then belongs to A(stabg (X)) for m sufficiently large, and so z € A(stabg(X)).
If @ is not an interior point of X, there is a sequence o, of swirls which
lies on the boundary of X and which converge to & (see figure 6). Since L/G
is finite, we can assume that o, = g¢,(0o) for some fixed switl og on the

boundary of X and elements ¢, € G.

O 9. o
T “ o

7<

r

Figure 6

If g,,(X) = X for infinitely many of the g, then x € A(stabg(X)).

If not, then ¢,,(X) # X for all but finitely many m. By removing finitely
many terms from the sequence, we can assume that g, {X) # X for all m. Let
Y be the panel which lies across op from X. We then have that g,(Y) = X

for all m.

In this case, 97 g (Y} = Y for all m. Since the gr;-,,(O'[)) converge to z as




m — 00, the g7 "¢ (o) converge to g7 (z). Therefore, g7 (z) € A(stabg(Y)) =
A(stabg(gy*(X))). Thus, @ € gi(A(stabg(Y))) = A(stabg(X)). =

We now state the combination theorem. The version we use here can be

found in [12].

Theorem (Combination Theorem) [12] Suppose there is a nonempty
system of swirls for the Kleinian group G. Then, G is analytically finite if and
only if each panel stabilizer is enalytically finite, and every parabolic element

of G belongs to some panel stabilizer.
We are now ready to prove the decomposition lemma.

Lemma (The Decomposition Lemma) Let G be an analytically finite
Kleinian group. There exist finitely many subgroups Gy, ...,G, of G so that
each G; is analytically finite with connected limit set, each point of A(G) is
either the translate of a point of some A(G;) or is a point of approzimation of
G, and each parabolic P € G is conjugate to a parabolic element of some G,
and P is doubly cusped in G if and only if its conjugate is doubly cusped in
Gj.

Proof We call the subgroups ; the factors of G.

'The quotient (G)/G is the union of finitely many surfaces Si,...,5,,

where each S; has finite genus and finitely many punctures. Let A; be a

component of () which covers S;.
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By the planarity theorem, there are finitely many disjoint simple geodesic
loops {wfn}gfi)l on S; and integers of, so that = : A; — 5; is the highest
regular covering for which all the (w? ) = (wfn)"‘iﬂ lift to loops. Therefore, the
set

S={(wl) :m=1,...,n();i=1,...,4}

is a maximal set of loops on Q(()/G, each of which lifts to a loop on Q(G).
Furthermore, the set S is empty only in the case that G has connected limit
set.

For each j and cach m, choose 2 lift 44 of (wi ) in A, and define

F:{')'fn:m:l,...,n(j);j:1,....,q}.

The planarity theorem imposes a set of conditions on the (w?, ) which translate
into the following conditions on the 47 .

Since the 44, project to loops on £2(G)/G which are powers of simple loops,
each «/, is precisely invariant under a finite cyclic group J7, of order o, in G.
Therefore, each 47, is a swirl for G. |

The v, project to disjoint loops, so the orbits of 43, and 47, m # n, under
G are disjoint. Obviously, the orbits of 47, and +¥, 7 # k, under G are disjoint,

| In order to show that the set G(I') is a system of swirls for G, we only need
now show that the panel condition is met. Each panel covers a component of
S;— U:;(i)l (wl,) for some j, so the panel stabilizers are infinite. Let 0 € G(TI')
be a swirl on the boundaries of panels X; and X;. The stabilizer J(o) of

o is finite, so there must exist elements g, € stabg(Pr) so that gi(o) # o.

Therefore, G(I') is a system of swirls for G.




Let Xi,..., X, be a complete set of inequivalent panels for the system
G(I), and let G = staba(X;).

We need to show that each of the G7; has connected limit set. This is a
consequence of the planarity theorem. The set I’ is a maximal set of loops
in Q(G) in which each loop separates A{G) and the elements of T' project to
homologically distinct loops on Q({)/G. If some G; has disconnected limit
set, we would be able to use the planarity theorem to enlarge the set I'; this
cannot be done,

We are now ready to track the points of A(G). Let @ € A(G) be any
point. One of two things can happen. It might be that there is a panel X so
that z € X. Invoking proposition 2, we see that z € A(stabg(X)), and so z is
the translate of a point of some A(G}).

Suppose that @ belongs to no panel. Then, there is a sequence of swirls
in G(T') nesting about z. Invoking the proposition 1, we see that z is a point
of approximation of G.

The last thing we need to do is to track the parabolic elements. The
combination theorem tells us that every parabolic in (7 stabilizes some panel;
this immediately implies that every parabolic P € G is conjugate to a parabolic
element of some G;.

We only need to show that, if a parabolic element of some panel stabilizer
is doubly cusped, then that parabolic is doubly cusped in . This follows
immediately from the fact the each swirl in G(I') is contained in Q(G). We

can shrink the cusped regions of the parabolic until they miss all the swirls

in G(T'). The panel stabilizers only interact at the swirl stabilizers, since the
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panels are precisely invariant under the panel stabilizers; so, the parabolic re-

mains doubly cusped in the entire group G. _ 0O

We are now ready to complete the proofs of the two cases of the main

theorem.

Main Theorem (Loxodromic Case) Let K be a Kleinian group and let

G be an analytically finite subgroup of K. Suppose there exists a lozodromic-

element L of K which has o fized point in A(G). Then, L* € G for some

positive integer n.

Proof Let 2 be a fixed point of I which is contained in AG). If
Tg is a point of approximation of &, then L* € @ for some positive inte-
ger n by Susskind’s theorem [13]. Otherwise, there exists a factor H of G
and an element ¢ € G so that wg € g(A(H)) = A(gHg='). By the lemma
for the loxodromic special case, there then exists a positive integer n so that

L*e gHg ! C @, O

Main Theorem (Parabolic Case) Let K be a Kleinian group and let
G be an andalytically finite subgroup of K. Suppose there exists a parabolic
element P of K which has o fived point in A(G). Then, either P* € G for
some positive integer n or fix(P) is a doubly cusped parabolic fized point of

G.

Proof Let &, be the fixed point of P. By the Beardon-Maskit theorem
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[2], zo cannot be a point of approximation of (.

By the decomposition lemma, there is a factor H of (@ and an element
g € Gso that @y € g(A(H)) = A(gHg™'). The lemma for the parabolic special
case immediately implies that either P* € g Hg™! for some n > 0 or fiz(P) is
a doubly cusped parabolic fixed point of gHg™!. In the latter case, we use the

decomposition lemma again to see that fiz(P) is a doubly cusped parabolic

fixed point of G. a
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Chapter 6

Corollaries

In this chapter, we state and prove two corollaries to the two cases of the

main theorem:.

As an immediate corollary to the parabolic case of the main theorem, we

have the following,

Corollary Let IU be « Kleinian group and let G be an analytically finite
subgroup of K. Suppose that x € A(K) is a rank 2 parabolic fized point. If
z € AG), then = is either a rank 2 parabolic fized point or a doubly cusped

parabolic fized point of G.

Proof Since « is a rank 2 parabolic fixed point of K, stabg(z) contains
a rank 2 parabolic subgroup (P, Q). By the parabolic case of the main theo-
rem, either both some power of P lies in ¢ and some power of @ lies in G, or

stabg(x) is a doubly cusped parabolic subgroup of G. ]
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As a second corollary to the main theorem, we have the following result

about limits sets of Kleinian groups.

Corollary Let K be a Kleinian group and let G be a nonelementary an-
alytically finite subgroup. Suppose that there is an element k € K of infinite
order with L(A(G)) C A(G). Then, k(A(G)) = A(G) and k™ € G for some

n > 0.

Proof  Since k(A(G)) C A(Q), we have that £*(A(G)) € A(G) for all

n > 0.

fiz(k) C A(K); if not, then some sufficiently high power k™ of & would.
satisfy A™{A(G)) N A(Q) = 0.

If & is loxodromic, then the loxodromic case of the main theorem imme-
diately implies that some positive power of k belongs to G.

I k& is parabolic, then either £” € G for some n > 0 or there is a doubly
cusped parabolic element @ € G with fiz(Q) = fiz(k). The latter case cannot
occur; if there were a doubly cusped parabolic Q € G with fiz(Q) = fiz(k),
then A™(A(G)) N A(G) = { fia(k)} for |m] sufficiently large. This is easist to

see if we normalize so that Q(z) = =+ 1; then, k(z) = 247, where Im(r) # 0,

and A(G) C {|Im(z)| < ¢} for some constant ¢ > 0. m)
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Chapter 7

Discussion of Results

This chapter begins with a discussion of the conclusions of both cases
of the main theorem. We wish to show that these conclusions are the best
possible, We do this by presenting examples of Kleinian groups and Mébius
transformations which satisfy the hypotheses of the main theorem and which
illustrate each of the possible conclusions.

We will also discuss the hypotheses of both cases of the main theorem.
Here, what we wish to show is that a weakening of any of the hypotheses
remaves any possibility of having uniform control over how the element being

added behaves,

7.1 Conclusions

In this section, we consider the conclusions of both cases of the main
theorem and show that none of them are superfluous and that none of them

can be weakened. We do this by constructing examples.
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We start with the loxodromic case. The loxodromic case of the main
theorem states that some positive power of L lies in G, In order to show that
this statement cannot be wealkened, we need to construct an analytically finite
Kleinian group G and a loxodromic Mdbius transformation L so that I, has a
fixed point in A{(), the group A = (@, L) is Kleinian, and L is itself not an
element of .

Let K be a purely loxodromic, free, finitely generated Kleinian group. By
a theorem of Maskit [8], any such a group is a Schottky group. Let {ky, ..., k,}
(p > 1) be a minimal set of generators of K, and define G = (k2, k,,...,k,).
(7 is finitely generated, hence analytically finite. Since ( is free, k; is not an
element of (7, even though (G, k) is Kleinian.

The example in the parabolic case has a similar flavor. In this case,
however, we need two examples. First, we need to construct an analytically
finite Kleinian group G and a parabolic Mdbius transformation P so that P
has its fixed point in A(G), the group K = (G, P} is Kieinian, and P is itself
not an element of G.

Let P(z) =z + 1 and Q(z) = 357. The group F = (P, Q) is Kleinian,
as it is a subgroup of PSLy(Z). Moreover, I is a free group; this follows
immediately from the observation that every discrete subgroup of PSL,(R)
is the fundamental group of a surface S, where S is either open (and so has
free fundamental group) or is closed of genus at least 2 (in which case, its
fundamental group has at least 4 generators).

Define ¢ = (P*,Q). G is finitely generated, hence analytically finite.

Moreover, ¢ is free, so' P is not an clement of &,. Finally, F' = (G, P) is
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Kleinian.

To illustrate the second couclusion, we need to construct an analytically
finite Kleinian group & and a parabolic Mdbius transformation P so that P
has its fixed point in A(G), the group K = (G, P) is Kleinian, and fiz(P) is
a doubly cusped parabolic fixed point of G.

For this, let ' be as given in the previous paragraph, and note that oo is
a doubly cusped parabolic fixed point of F. - Let R(z) = z + 107. Using either
the combination theorems or Poincaré’s polyhedron theorem, it is easy to see
that the group £ = (£, R} is Kleinian.

Therefore, we have that, in some sense, the conclusions of both cases of

the main theorem are as strong as can be.

7.2 Hypotheses

In this section, we consider the hypotheses of the main theorem. There
are two hypotheses that we will examine. The first is that the group G be
analytically finite. The second is that the group K be Kleinian.

What we will show is this section is that, if we weaken either of these
hypotheses, we are no longer able to make any non-trivial uniform statement
about how the element M behaves with respect to the group G.

The first hypothesis we will consider is that G is analytically finite. Here,
we need to construct an analytically infinite Kleinian group G and an infinite

order Mébius transformation M which has a fixed point in A(G) so that the

group K = (G, M) is Kleinian, but no {nonzero) power of M lies in G. We
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will construct an example in which A/ can be chosen to be either loxodromic
or parabolic.

Let K he a nonelementary, analytically finite, free Kleinian group which
contains parabolic elements, and let 3 be any element of & which has infinite
order. Let ¢ € K bhe any element of infinite order which is not conjugate to

any power of M, and let N,, be the normal closure of (M™,g) in K.

Define G = (2. Niu. @ is a normal subgroup of K containing g, which
implies that A(G) = A(K"). Moreover, (G contains no (nonzero) power of M.
This implies that G is an inﬁnite index subgroup of K. The calculation of
areas of fundamental domains shows that an infinite index, normal subgoup of
an analytically finite Kleinian group is analytically infinite, so G is analytically
infinite.

A(G) = A(K), so A(G) contains the fixed point set of M. Since (G, M)
is a subgroup of K, it is Kleinian, even though no (nonzero) power of M lies
in (. Note that this is independent of whether M is parabolic or loxodromic.

Therefore, the hypothesis that ¢ be analytically finite is necessary to force

any uniformity of behavior on M.

The next hypothesis is that the group K must be Kleinian as opposed
to merely discrete. Here, we will present an example due to Peter Waterman
(oral communication).

The example has the following form. We construct an analytically fi-

nite Kleinian group & and a loxodromic Mébius transformation L so that no

(nonzero) power of L lies in G and the group K = (G, L} is discrete but not
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Kleinian.
Let L(z) = 2z. Let S = {z € C: |z —2| = 1}. Choose a finitely generated
Fuchsian group of the first kind [ fixing S so that the complement of some

fundamental domain D for [ lies in the annulus A = {1 < |2| < 2} (see figure

7.

\
)

|

Figure 7

Let X = AN D. X has two connected components. X lies inside S and

X, lies outside S,

wf
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Let ,, be an infinitely generated Schottky group which fills out X, for
m = 1,2; such a group is constructed in chapter 8 of [9].

Deline
G = ((UneZLnFL_n) U (UnezL”[{]L_n) U (Unez_{Q}LnHDLHn)).

G is a Kleinian group, by Poincaré’s polyhedron theorem [11]. Moreover,
QUGG = Xof I, so (G is analytically finite.

Poincaré’s theorem also yields that K = (G, L} is discrete but not Klein-
ian.

It is easy to modify the above example so that the element L is parabolic.
In this case, we take L{z) = = + 1, and we replace the annulus A with the
vertical strip V = {0 < Re(z) < 1}. The rest of the construction is unchanged.

Waterman’s example also answers the following question. Let G' be an
analytically finite Kleinian group, let M be an infinite order Mobius trans-

formation fixing a point of A(G), where K = (G, M) is discrete. Need K be

Kleinian? As we have just seen, the answer to this question is no.
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