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Abstract of the Dissertation

The Space of Super Light Rays

for Complex Conformal Spacetimes
by
Andrew Patrick McHugh

Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1991

After defining a superéogformal structure on a 4}4 N supermanifold, its space of
super light rays is constructed and shown to have a natural supercontact structure,
We next construct, for a 5[2N supercontact manifold, its space of normal quadrics.
This proves to be a 4[4 N superconformal manifold. We next show that every space
of null geodesics has an extension to a 5[2/N supercontact manifold for N < 4, and
thus every fou.r dimensional complex conformal manifold has an extension to a 44N
superconformal manifold for N < 4. After the equivalence of the N = 3 supersym-
metric Yang-Mills equations and integrability along superlight rays is shown, a 1-1
correspondance between solutions to the N = 3 SSYM equations and certain ﬁector

bundles over the N = 3 space of superlight rays is established.
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Chapter 1

Introduction

1.1 Background

In 1978 Witten[é4] showed that there is a one to one correspondence be-
tween solutions to the N = 3 Suﬁersymmetric Yang-Mills (SSYM) eéuations
on complex Minkowski .spa,_c,\e a,ndr certain holomorphic vector bundles over a
siaeciﬁc supermanifold, the ;space of super light rays. This result is in the spirit
of Roger Penrose’s Twistor theory: Analysis on one space is replaced by com-
plex geometry on another, albeit in this case a superspace. This dissertation
is an extension of this result to complex conformal spacetimes with general
curvature.

The original Ward Correspondernice was produced by Richard Ward[21] in

1977, relating instantons on a self-dual complex conformal spacetime to certain

vector bundles over its twistor space. (Self-duality refers to a restriction on the

curvature of the spa,cétime which actually ensures the existence of a twistor

space.) This result led to a completé classification of instantons on 54, since




the corresponding vector bundles over its twistor space, CP3, could be studied
using techniques from algebraic geometry.

Shortly after, Isenberg,Yasskin and Green[8], and also independently,
Witten[24], produced a Generalized Ward Correspondence for the full Yang-
Mills equation on Minkowski space. Solutions here correspond to certain vector
bundles on the third infinitesimal neighborhood of the space of null geodesics
embédded in CP3 x CPj3. Finally, in 1986, LeBrun[12] extended this result to

“self-dual” complex conformal spacetimes.

1.2 Supermanifolds

Let us recall £he definitions of superalgebras and supermanifolds. A su-
peralgebra or Zp-gradeéd commutative algebra is an algebra in which every
element can be written as:a sum of an even ele_ment and an odd element.
Even elements commute with all elements in the algebra and odd elements
anticommute with odd elements.

A differentiable superrnanﬁfold is a pair (X, A) where X is a differentiable
manifold and A is a sheaf on X of Zz-graded commutative algebras over R
which is locally isomorphic to the sheaf A%e(C°°)®™. Let N be the sheaf of
nilpotents of A. We also require that globally A/N = C*. N/N? is then a

locally free sheaf of C*™-modules.

The coordinate neighborhoods for a differentiable supermanifold (X, A) are

By definition dpen sets I/ which are coordinate neighborhoods of X and are




such that Aly & Ao (C®)¥"|y. Let s',s%...,5™ be linearly independent

sections of (C=(U))%™. Then sections of A(U) have the form:
F=3fis
;

where f; = fi(z!,2%,...,2") € C®(U)and s’ = si1s2...4% J =. (zl < iy <
2. <4p). The z!,...,2™ and s!,...,s™ are respectively referred to as even
aﬁd odd éoordinates. The Zg-grading on A is represented locally by: f is even
if ‘
=3 f1s”

|Ieven .

and f is odd if
f=3 fish.

|F|odd

Note that a change of coordinates is required to preserve the Zg-grading.

A complex superméjnifold is a pair (X, A) where X is a complex manifold
and A is a sheaf of Zz—gradéd algebras over C which is locally isomorphic to
Ao OP". We also require that globally A/N & @ and that N/N? is a locally

free sheaf of O-modules. Locally,sections of A on a coordinate neighborhood

U will have the form:

| 9= ZI:ng
where g = gr(2',2%,...,2") € O(U) and 5',...,5™ are linearly independent
sections of _C’)@m. The z',...,2" and 5',...,7™ are referred to respectively

as the even and odd complex coordinates. The Zz-gra&ing on A is represented

locally by: ¢ is even if
g= > gm’

[Hleven




and g is odd if

g= 3 gm'.

|T|odd

Note that a change of coordinates is required to preserve the Z-grading.
One defines supér vector bundles as locally free sheaves of A-modules and
the supertangent bundle as the sheaf of derivations of superfunctions over C.
The supertan.gent bundle is then a supervéctor bundle. One may extend many
of the ideas of diﬂereﬁtial geometry, suchi as differential forms, and the Frobe-

nius theorem, to supergeometry. (Again we refer the reader to Kostant[10].)




- Chapter 2

A Newlander-Nirenberg Theorem for

 Supermanifolds

2.1 Almost Complex Structures

In this chapter we prox{é an analog of the Newlander-Nirenberg Theorem
'for supermanifoldé. This work was originally published in McHugh[16]. The
classicall Newlander-Nirenberg Theorem[17] states the conditions under which
an almost comple};t structure on a manifold gives rise to a complex structure:
We give a definition of an almost complex structure of a differentiable super-
manifold and conditions under which this gives rise to a complex structure.
"'The proof applies the classical Newlander-Nirenberg Theorem on the under-
lying manifold. We then build up the result onto the odd coordinates using a
well-known lemma on the holomorphic structure of vector bundles and finally

a finite iterative procedure. .

Let (X, A) be a differentiable supermanifold of dimension (2n, 2m). Define




an almost complex structure on (X, A) as an even automorphism

J: Der(A, A) — Der(A, A)

of sheaves of A-modules such that J? = —id. Here Der(A, A) is the sheaf of

n o1

graded derivations of A into A. Let 2!,...,2%,s%,...,s™ be local coordinates

for (X,A) on U C X. Let

0 ., 0
O = dze zJ@;z:“‘
and
a .. 0
%= " Ve

Then 6,, 0,, o, @j is a local basis for

Der(A(U), A(U)) ® C = Der(Ac(U), Ac(U))
where Ac(U) = A(U)® C.. Consider,

LU, A) = Homagw)(Der(Ac(U), Ac(V)), Ac(U))

‘and a basis 6*,8%,¢7, ¢/ dual to O,,0,,®;,®;. Sections of Q(U, A) are re- ’
ferred to as super 1-forms. One also has super p-forms Q& (U, A) qnd covariani i
differentiation d : QL (U, A) — QR (U, A). We refer the reader to Kostant[10]. |
Henceforth 0&(U, A) is abreviated as Q1.

An almost complex structure, J, on a differentiable supermanifold is said
to be integrable if one can find local complex superfunctions, z* = z + iy“

and nf = 87 +it?, such that z*, y*, s/, # are a local coordinate system and such

that
a 9 8 8. 9 .0 8

= aya!‘](aya) -

— —_ (_:______.

d
dewd) ~5e= 7 557) = g5




2.2 An Analog of the Newlander-Nirenberg

Theorem

We now present a supersymmetric version of the Newlander-Nirenberg

theorem.

Theorem 2.2.1 An almost complex structure, J, on e differentiable super-

manifold is integrable if and only if
d9* = 0 mod 6°, ¢*

and

d¢’ = 0 mod 8°, ¢*.

As one di.rection is friviq,l, we need only show this to be a sufficient coﬁdi—
tion. Notice that J gives ris;alto a J* on super 1-forms and that §*, ¢’ span the
+i-eigenspace of J*. We seek complex superfunctions 2%, %’ such that dz*and
dn? are in the span of 8¢ and ¢* and such that dz*,dz*, dp?, di’ span Q.

Consider the 1-forms rd(0*) € Q¢c(U) where rd : QG(U, A) — QL(U) is
induced by the quotient map rd : Ac(U) — Ac(U)/N¢ = C*(U). (rd is for
“reduced”.). They satisfy the conditions of the classical Newlander-Nirenberg
Theorem.(See Chern{6].) -Thus we obtain local holomorphic coordinates z%on
U. One can find linear combinations of the 8%, =1,...,n, % which form a;

new basis for the +i-eigenspace of J* and are such that

8% = dz® mod NQ',




where N is the nilpotent of A{(U). We also have
¢ =ds' +i)_ ds* fl mod NQ, fi € C* @ C.

k
Let

7= st -I—z'zskfg.

%

Then

¢’ = dp’ mod NQ'.
We proceed to refine our 2* and 57 ,considering higher and higher terms of
nilpotency and taking linear combinations in the span of 8% and 5’ when
necessary. We ﬁrét refine our choice of 8% and @' with respect to the coefficients

‘of dz* and dn’ by the following inductive procedure:

Fix a positive integer p. Suppose that
0% = dz* + > _dZPAG + > dn* By + > dZPCy + > di* Dy (2.1)
g Sk f; k
¢ =dy + 5 dPEL+ Y dn*F] 4+ Y dEPGL + Y ditH - (2.2)
8 k B k
is a basis for the +i-eigenspace of J* such that A,‘@",B,f,Ej,F,f € N? and
CE, D,f,—Gj,H;i € N. Then there is a new basis for the +i-eigenspace of J*

given by
0" = 0°' — 75 09" A% — T, ¢*' By

=dz* + Zﬁ:dzﬂAg’ + Zk:dn"B;:’ + Zﬁ:dzﬁcg’ + Xk:dﬁ"Dg’ (2.3)
" = ¢ — L0 07} — T, ¢*F}

=df + 3 dPEY 4+ St F + Y dGE + Y dit Hi
B ko B k




Where AQI?BE!':EJ.’)F]{’ c Np{l and Ca!, DI?’1 graHIi’ € N. Siﬁce ]Vm'{'I =1
one obtains,after applying the procedure a finite number of times, a basis for

the +i-eigenspace of J* in the form:
gam dz™ + ngﬁcaﬂ + ZdnkDa” (25)

$ = a3 dPG + S diHL (2.6)
. 8 A
for some Cg", Dy", g",H;i” € N.

We now work with 0" and ¢/” as a basis for our +i-eigenspace of J* and
hence drop the use of the double primes.
. The real and imaginary parts of z* and ¢ form a local real coordinate

system for U; in particular

.0
d= —+Z a_'

Now if

0% = dz* + Zdn n'b }:dnjnlc"} mod NZ0!

IR ' . ' |
then the condition:

d0* = 0 mod 67, ¢*

requires that

dii'if' e = d(ip'ii'yes. - :5

(Here we have used dz? , di*, 08, ¢F as generators for 1*.) If we set

2 = 2~ +Znn’b"’+2nn

Il oad




then
0 = dz* — Y i’ ¢'6% mod N?Q!
Il
Thus,set ' | ‘
e =9 4 zﬁjqblb;?} = dz* mod N?Q. (2.7}
il
Now

& =dn’ + Zdiﬁnkfék + Zd?ﬁﬁkgfék mod N?Q'.
Bk 8.k

The condition d¢/ = 0 mod 67, ¢* requires g";k =0 for-all 3,7,k and thus

& =dy’ + Zdéﬁnkfgk mod N2,
Bk

We are now ready to proceed with the next step in our proof. Namely let

us show that N/N? is a sheaf of sections of a holomorphic vector bundle. We

first prove a lemma.
Lemma 2.2.1 The ff,k abotve,satisfy the equation:

afi.  of} . . _
58 " ae ~ Slalm = fafw) =0 (28)

Proof. We use the condition d¢’ = 0 mod 0%, ¢*. Write
¢ =dnp + Zd%ﬁnkfék + Zdﬁ’glj mod N3¢,
B,k I
where g‘f € N2. Remembering that dz°, dip, 0, ¢* can be used as generators of
", consider the terms of d¢? involving dz® Adz”. The sum of these terms must
be zero, and in particular must be zero mod N*Q2!. Now,in the expression

dg? = 37 d2® Ndif ff + 3 dznaffy + 3o dif'g] mod N*Q!
B,k Bk 1

10




only the first two summations shall have terms with dz* A dz° when they are
written in terms of the generators dz¥,dy’, 0%, ¢'. Recall that dz” = 6° mod

N'Q! and dy* = ¢F — ¥, dz%0' f5 mod N2Q!. Making this replacement one

obtains:

dp? = Y55 d7° A (85 — Loy d2°0' FE) £
=3 aafﬂk o fﬁk 20!
+Zdz AZB + dz )77 +Zdn /\dg,modNﬂ

where we have used 8%7F = 'dz°p* mod N2, Since d¢¥ = 0 mod 0o¢*

we have:

fﬁk

> dz? A dzn¥( Zfﬁlf;k

Biak

Since dz° A dz* = —dz* A dz° one obtains:

0fis  0f < u :
73'2% - :aj;—gk - Z(férfik - fitf,ék) =0. QED
- !

Let us proceed to show that (X, A) has an underlying holomorphic vector

bundle. |

Lemma 2.2.2 (iven p € X, there is a neighborhood of p,U", and functions
k

h% on U" such that Z—;;’; = ¥ fLihf for each j k,a anrd such that the matriz

h¥ has full rank everywhere on U, (See also Atiyah[1].)

Proof. Let z% w* be classical complex coordinates on U x C™ where I/
is chosen as a coordinate neighborhood of p on which our fl; are defined.

Consider the vector fields

11




12

Notice that Re(Z,), Im(Zo;), Re(W;), Im(W;) form a basis for T(U x C™) at
each point in U.

Define an almost complex structure J on U x cm by:
J(ReZ,) = —Im(Z,),J(ImZ,) = ReZ,

J(ReW;) = —ImW;,J(ImW;) = ReW;

The condition that J is integrable is that [W;, W], [W;, Za], [Za, Zp) are in the
span of Wy, Z,. We have [W, W] = [W;, Z,] = 0. When we calculate [Z,, Zp]
making use of equation 2.8 and the fact that fi. is independent of @, we
obtain [Z,, Zg] = 0. By the classical Newlander-Nirenberg Theorem, there are
holomorphic coordinates v?,g = 1,...,n 4 m on some neighborhood of {p, 0},
UxVClUxC™ We can form a. new holomorphic coordinate system out of
z',...,2" and a choice of m of the v?’s which we may take to be v*,...,v™.

We have Wj(v?) = 0 i.e. v? can be written as a power series in w of the form:
T = Rz, 2) + 3 hi(z, 2)w’ + o (w)?).
' 3

From Z,(v?) = 0 we have

which implies that

In order for dz* and dv’ to be linearly independent at (p,0),the matrix hi

must be nonsingular in a neighborhood of p. QED.
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Return to our supermanifold to see that

Ehfqu = thdn + thdz 7' mod N3Q!
i ' | '

dred

= thdﬁj + Zd?“%n' mod N?Q)!
i :

= Y d(hiy’) E@"—n mod N?Q!.
- ‘

Thus set
thgﬁj 4 Zeaahk
and
= Z h‘j’fn«?
i
We then have:
¢ = dp*’' mod N2QL.
Also rewrite our previous‘:equation 2.7 09 = d:;J“' mod N1, We take 2%/, 5"
as local coordinates on our sﬁﬁérmanifold (X, A) and hence write them without
the primes.
We now show that N/N? is a sheal of sections of a holomorphic vec-
tor bundle. Consider a change of odd coordinates on the intersection of two
coordinate. neighborhoods, U/ DIU D

A =3 "bn* + 3 ci* mod N2
' k k

‘Since dif = ¢/ mod N2V where ¢’ is in the +i-eigenspace of J* and thus in

the span of ¢* and 6%, we must have

Zd"




This produces g:i_% =0,a=1,...,n and c,’c = 0.
Thus 4 = 5=}, bln* where b, is a matrix of holomorphic functions, and we

conclude that N/N? is a sheaf of sections of a holomorphic vector bundle.

Now consider terms of higher nilpotency.

Lemma 2.2.3 Fiz [ > 2. Assume there are I-forms, 0%, ¢%, in the +i-

eigenspace of J*, and supercoordinate functions, z%,7m7, such that
§° = dz* mod N'Q?
# = dp’ mod N'Q',

Then there are 1-forms 9“',_&" in the +i-eigenspace of J* and super coordinate

functions z*',n?" such that

0% = dz* mod NI

2

#' = dp’’ mod NHIQ!

Proof. Consider the case in which [ is even. The case in which { is odd is
exactly similiar with only minor changes. Make appropriate changes in 6%, ¢

similiar to those made above in equations 2.1-2.6 so that
0% = dz* + 3 dZPES + 3 di* F
8 k

and .
¢ =dp + 3 d7PGL + Y dit I
8 &

where B3, Fg,G%, Hi € N'.

14
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Expand #*, ¢’ in local coordinates to the next order of nilpotency:

0 = d=*+ Z d7y Ibo’
Bl|=t

+ ) g+ Y dEfypnldg, ; mod NHIQ!
BilI=l B1+J|=i

¥ = d+ Y difyled,

E,I|=t

> dﬁkﬁff,f,l—i- Z dﬁanﬁJgf;‘I‘J mod N'H1Q!
ki I=1 k| I+J|=

Now df* =0 mod Hﬁ , ¢ and d¢’ = 0 mod 67, ¢* requires g1 = cl,6 = f;”:,[ =
gkIJ—DfOT all o ﬁ I J,],.l., Thus
)
0% = ™ + Z dgﬁnfbg,l II’lOd NH»]QI
ﬁslII=l

and

P =dp + Y dif*n'e] ;.
kT|=t :

The lowest order terms in p of d@= containing dzf A dz¥ are

1085
Yo df adzy' SEL |1 =1
B 0z
This sum must be zero for each I and each a since d8* = 0 mod 08,44, This

gives local -closed 1-forms >a déﬁbg’ ;- By the Dolbeault Lemma, there are

.complex functions A¢ such that
Ohg =" Bdz"b5
Let 2 = 2% + ¥y b’ and

| ohe
00 =0+ 3 0= — 3 (~1)"*¢*hgum’

BIj=1 92° EI=1-1
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where ¢r; is 0 or 1 depending only on [ and k. Then
0~ = dz*' mod N1,
Let ni' =/ 4+ 2ok I ﬁk_’?lei,f and
=+ > (—1)”"*?5*?7'“7716‘}’;,1,.--
Lk |=1-1
Then
¢’ = dn'’ mod NHIQL.

Since N*™+1 = (, a finite number of applications of this lemma produces
‘supercoordina.te functions z* and 5 such that dz* and dn’ are a basis for the
+z-eigenspace of the almost complex structure, J*. End of Proof.

The above proof may be modified to give a proof of the Frobenius Theorem
for supermanifolds. As'in the classical case, the two theorems, Frobenius and
Newlander-Nirenberg, are related. We refer the reader to Manin[15] pp.205-
206 for the Frobenius Theorem on supermanifolds. It was previously studied
in the work of Shander[20].

A. Weintrob[23] has also given a proof of the Newlander-Nirenberg theo-

rem on supermanifolds.




Chapter 3

Supercdnformal Manifolds

3.1 Superconformal Structures

A superconformal structure on a 4|4N supermanifold is defined by the

existence of supervector bundles Si‘a, 3'“, E% and the exact sequence
0 —i‘T,MaaT,.M—» TM — ToM — 0
Wh-ere we have isomorphisrﬁs
TM=~S,®F TM2S QFE, TM2S5,®5._.

TiM and T, M are required to be integrable distributions and the Frobenius

form

d:TMQTM — ToM

where

X RY)=I[X,Y] mod (1M & T, M)
is required to coincide via the above isomorphisms with the convolution:

S+®E®E*®S_ —?S_}.@S_..




The Frobenius form is then said to be nondegénera,te. (These are the only
curvature conditions necessary to construct the space of super light rays.)

We refer the reader to Manin[15] pp.277-78 for the definition of an N = 1-
superconformal structure for which the above definintion for any & is a simple
generalization. The N = 1 definition is based on the work of Ogievetskii and
Sokachev[18].

Since T1M and T, M are integrable distributions we may deﬁne
M, = (M, 4, Ker(T, M))

and

M, = (M,q, Ker(T,M).

We then have the double fibration M — M, .. The local coordinates z%, f*

and a:f% 9;" on M; and M, respectively pullback to functions on M. Define the

functions
a a
a __ L + T,
2
and
a [
H® = Iy — &,
2z

Take x“,ﬁ“i,ﬁj‘ as local coordinates on M. Note that the functions H® are

nilpotent since (#7)ra = (22)yq = z%,;. Also define the functions

a . ,aH -1 ach
Xopi =il —imm )" Lo
and
a . .aH -1 GBHC
ng = —2[(_[ + 2—6;) ]

c ,3 -
80

18




L , : b o
The derivations g.; = 525 + X!z and ¢}, = 525 + X1’ 5% then form a local
- 94

basis for T}M and T, M respectively and the 1-forms
W* = de® ~ dBFIXg, — dOE X

form a local basis for QM. (See Manin[15], p.281)

The space of superlight vectors, ¥, is defined as a submanifold of QLM

S={ve MW Mv=s,Qs_ s, € Si,s_ €S}

. coordinates on (0 M where a local section of ' M over M is given by £,w°.
On QY'M, £,w° is a canonical 1-form. d({féw“) is called the standard pre-
symplectic form on Q3 M. We proceed with a pre-symplectic reduction on

O3 M to construct our space of superlight rays for MMV,

3.2 The Kernel of the Pre-symplectic Form

Denote the isomorphism T)M 2 S, ® E by

Sz ® €5 = Goj sk,

the isomorphism 7T, M = S_ ® E* by

- . Iy k
sz @€ = if%

and the isomorphism ToM = S, ® S_ by

- 9
- _ b
S:@Sd - ha&@.

(Here, ' denotes removal of the zero section.) Let (z, 0% ,Gf,{a) be local

19




The condition that the Frobenius form coincides with convolution via these

isomorphisms is that:

d
[gajq,sz,fiiq,'é] = K4 5—6 mod (T1M & T.M)

aaa
l.e.
gL Rk b0 = go578)
where

x 0
(95i> 951 = @55~ mod (TIM ® T M)

It is a straight forward calculation, using the deﬁmtlons of goi and X¢,, to

show that
[ - C 6
904, 45e] = (95 X5: + 35 6105 =‘0°
Similiarly,we have
(g, ] = ( 'Ix?f+qix?i)—a~—0
q(:nq‘g = 4 B B e g T T

The calculation is straight forward using the definitions of X & and ng .

The pre-symplectic form d¢, A w® + &, A dw® is then

A0 Aw® + €0 A (0% A dXE; + dof A dX )

| PR : 5
= e, A" = £ad0% A g0} p =B

—£ad6P A daf(qﬁjx_gk +45Xg)

—£ad0” A A8 (qs; X% + g X5;) — £ad05 A doy (g X5k + Xy,

20




The last two terms are zero and the fourth is ~—dl§i"3J A dﬂﬁ fD“k «fa. So we have

altogether for the pre-symplectic form:

c ’3-7

' , axe. .
d(¢,w") = dE, Aw® — dB%i A wagcwfj? — o A Wi

Pull this form back to ¥ = {hgd(fahzﬁfbe“ﬁe“ﬁ = 0} (where ¢ = ¢ =0
and € = —¢'® = 1 and similiarly for-€), so as to find the kernel of the
pre-symplectic form restricted to ¥.

Let Dot = gfqex and D} = fliq]. Also Tet G = ht.. We claim that
the vector fields |

0X5
Q1 = € Cup(Dar = gflk <" 5ga - afa)

and )
. Ax '3
ol I8 il
Q( =¢ #C#&(Df'; - f&jfc Az 5§a)

are in the kernel of d(£,w®).
We have d(£.w0" ) (@1, -)

Gk 3Xﬁk aX’Bk

Bk
= GU#C.U# Jo1Ge Gzt w® —e oucﬂﬂgal agc

+e““cwgf‘°¢;;k£adeﬁ

= wauug (I)Ziikha MﬁC'Y'PdB?

= EauCM#gaqu)ﬁpk F f_l"«"h lvwg,wdﬂ‘ﬁ
= bl OIS (] = €4y Coydt]

Since (,; = n,v; for some spinor fields 5, and v, and €"*,n, = 0, the last

expression is 0. We have a similiar calculation for Q'.

— % A 0SSk €, .
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We must show that Q; and @' are tangent to the space of superlight

vectors, ¥, i.e. that

on .

QUG e) =

QuCuiupe ey =

= EMangff((Qﬁkhi})gdcw

oK &
€ Curgot (asr — €

8Xs, 8
Bz

9X5,
‘SC a

QUCilupe”e®) =0

d¢,

k o
R ) el

)(h z,lfbﬁw‘_fi“})

+6GKang£f((qﬁkhi;l)§dCuy fc a ﬁ;k ha Cuy)ﬁ,uueuu

au0X

= UnCﬁﬁ(go(qﬁkhuu - gal Sz ﬁ&)cﬂﬁgdeuueﬁb'

To show this ig Zeré, consider the quantity

We claim that R¢

Rd

Bianchi identity:

(We do not sum over 1)

gk d.
elvy = Yol Qﬁkhy

olvy —

,Gka Bk

k‘ ) m Z mn
0 = (g5  aprs 90 @oms Fog?)] + 1,

Fi]
= [gffq,akahifg;;] + o dt, 0ot (aongl Vaym)] + (0 & ¥)

k
= (¢PFqmh?, —

gal a a hgl'/ +g£l (qﬁkgul )g,u,

IP n
anp

lalhd

~RY, ., and thus R, , = R%e,, This follows from the

192 a0k 627 Gy

16 n k
O Gy [ 0 0% gan]]

6X"'
garhi,—2
a a

k i my pl
fz (Q‘ﬁk_gzz )f uiq’ffzm)@'

d
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+{o & v) mod ()M & T, M)

Mt gmdn _ —lalpd ‘ .
But [ @5, = g7.>'h%, so we obtain

' g
d d
0= (Ralvi; + Rulaf/)al_d :

Thus Rﬁ =_—Rd

{vi vieo

Now Qi((iupe™ e™)
i L) k - aw
= QfmcnkRglu&Cﬂﬁcewﬁwgb - 260“(&:’6951 (qﬂkgx‘rlm)g—ynlzalhgéguﬁﬁwfwgb
) « . - k — L
= 267" Cui Ry €ou € € (s — 267 Cuicgf (qng ™) 97 Cas Cue™ €7

g ' ) N
= 2" RN, 0u6s — 267 Carglf (qprgi ) 972 movimuup e e = 0

spinor fields n,, and v; .

There is a similiar result for Q' and hence 1Q, Ql] is also tangent to ¥. In
addition, [Q;, @] is in the kérnel of d(£,w®)]x since the kernal of a closed 2-form
is closed under Lie brackets. We claim that the set {Q,Q1, P = T4[Qk, Q%))
forms a basis for ker(d(¢.w®)}s) and thus that this kernel has rank 12N,

Now

rank(ker(d(6*)ls) < rank(ker({d(€xe®)lx}oe)
where {d({.w*)},q is the reduction composed with d(€.w")ls and takes sections
of TY to sections of (%),q. |

We have

{d(ats")bra = déa A dz® + d0% A 60035 ¢,

= d¢, Adz® + D** A Dép,u,

since €"n.n, = v v, = 0'and where we have written Cur = Mxvi for some
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where D** and D¢ are dual to Dy and D% . Now

(T8)a = (LoX)ra ® (7*TIM @ 7* Ty M) yg

where 7 is the natural projection to M and our bilinear form is actually a
direct sum of two bilinear forms, the two terms just written above. The first
term has kernel of rank 1, while the second has kernel of rank 2N. Thus
rank(ker(d(¢,w*)[z)) < 1|2N. Since

J 9
(9, Qe = (hg)rar— + Auge #0

for some quantity Aa,v we have that this rank is actually equal to 112N,
Ker(d({aw*)|z) is then a distribution. It is also an integrable distribution
since, as stated before the kerne] of a closed 2-form is closed under Lie brack-
ets. The space of superlight rays will be constructed from the leaf space of
this distribution. It wiil therefore be useful to inquire into this in the following

section.

3.3 A Lemma on Leaf Spaces for Superman-

ifolds

Let DP9 he ap integrable distribution on a complex supermanifold,

Y™™, The reduction of D splits into an even and an odd part:
Drg = Drao ® Dra -

Dr4o is an integrable distribution on Y,;. Assume that the leaf space of D,4q

is a complex manifold, X?,, and thus that we have a holomorphic map p,; :
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Y.q — X,q whose fibres are the leaves of D,z0. We wish to examine some
sufficient conditions under which p,4 extends to a map, p, onto some complex
supermanifold, X, such that the fibres of p are the leaves of D.

Let B = pq.(kerD), the push down of the sheaf of superfunctions on
Y, which are annihilated by D. Of course, p_] B = kerD. We will show that
under appropriate conditions, X = (X,q4,B) is the complex superrﬁanifold that
we seek and thus that the canonical identification p}B = kerD defines our
map p between supermanifolds.

We need to show that B is isomorphic locally to /\'C’)j‘fri'd. It is sufficient
therefore to assume X,q is a contractable Stein domain and thus that Y has
a covering by Frobenius charts, {U,}, such that the even coordinates satisfy

Tord = Lgrd- We wish to show on tﬁls Y that p 13 18 globally isomorphic to
AtprF O . This will give the local splitting of B on X.

We first observe that onY, p;/B and A" OF

ra 2re already locally iso-

morphic. Indeed, this is clear if one restricts themselves to a Frobenius chart
where .we have local coordinates z%, 87, y°, ¢* such that D is spanned by %
and %;;. Any change of coordinates on an overlap of two Frobenius charts
is an automorphism of A*p;} O%? Thasa Zz—gra.ded algebra, which leaves fixed
prd Ox,.4 C N p7 OF" . (Note that we have a coveﬁng sich that :vg rd = Theq-)
Let A denote the sheaf of all such automorphisms. p -} B is then given by an ele-
ment, 7, of the point set H(Y,4, 4). We wish to examine the structure of p} B
order by order. Let Nil denote here the subsheafl of nilpotents of A*p}} OXM
Let A\ denote the sheaf of automorphisms of (A pra OF2 )/ (Nil)7+! which

preserve p- ] Ox,,. We have A = A and a natural map AW — A for [ > j.
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We have the exact sequences for j > 1,
0 — 9 — AW, 46— ¢

The structures of CY) has been given by Batchelor[2]. (See also Eastwood and |

LeBrun[5].) They are
€0 = AN = GL(g, 57 Ox,.)
CY = Der(p7}Ox,) ® /\jp:;OE?fd for j- even,

and

CY) = Hom{p;{ X,d:/\ p:d]o ) for j odd #1.

Let (1) be the image of 7 under the natural map
HI(Y;d, A) — Hl( rdy (1)) = Hl(y;‘d7GL(q: pr Oer))

This represents a vector bundle on ¥;4 and one can check that it is also given
by ((TY),.dl/calDrdl)*. We assume for noﬁv that this is a trivial bundle, i.é.
71y = L

We now apply the machinery in Eastwood and LeBrun[5] of non-abelian
sheaf cohomolgy to each of the exact sequences written before so as to examine
the structure of p,'.“dlB order by order. This structure is given by, assuming

inductively that the preceding order gave trvially structure, i.e. TG-1) = 1,
' (Y4, Der(p30x, JON 1 O%) for § even,

and

H' (Y0, Hom(p7} O, N 07t O21) for § odd, #1.
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These sheaves are inverse images of vector bundles over X,,. By a theorem
of Buchdahl[3|, these groups a.reA zero if we assume H'(p;;(z),C) =0 for all
z € Xpq.

We had assumed before that the.vector bundle coming from the first
“order structure was trivial. Let us justify this. One can check that the vector
bundle, E, on Y,4 given by 7(;) when restricted to leaves is equipped with a
flat connection. This is because sections of p,]Ox , are constant on leaves.
Assuming that the leaves are simply connected eliminates any holonomy and

thus E is the trivial bundle when restricted to a leaf.

Restrict now to a trivializing Frobenius chart, U,, on Y;q where E = U, x
C?. Let (2% % u’) be ]6ca1 coordinates for E|y, with (z* = 0,3° = 0) € U,.
Let W C X,; be a neighborhood such that 0 € W and W C p,4(U,). For all
.w“' € W and uo € C9 there is a unique global section, V(z®,y*), of E|p:;(xa),
with V,(z®,0) = up. This global section is actually constant when restricted
to a le@f. Thus V,(z%,1%) = up and we see that V(z®, y?) is analytic in z*.
(Recall that all of our transition furictions for E are analytic in z°.) Hence V'
is a gioba.l holomorphic section of E| o (W) Choosing ¢ linearly independent
uf; will give ¢ linearly independent holomorphic sections V7 of E] =l (W) which
we conclude is trivial.

We thus obtain that p B is globally isomorphic to /\'p;'dlo% , over W,

Lemma 3.3.1 Let D be an integrable distribution on a complex supermani-
fold, Y. Assume that the leaves of D,y are simply connected and that the

leaf space of D,qq is a complex manifold, X,d. The leaf space of D is then a
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complex supermanifold, X.

3.4 The Space of Super Light Rays

We now proceed, almost verbatim, along the lines of LeBrun[11}, to define
the space of superlight rays and to show it hés a natural contact structure.
Let ¢ = d({,w*)[z. We suppose that the foliation of the distribution ker(¢)
satisfies the conditions necessary for its leaf space to be a complex superfnan-
ifold. (We, for example, can assuﬁe that the null geodesics of the l'éduced

- conformal spacetime are simply connected and thus apply lemma 3.3.1.) Let
p: L -+ F denote projection; then there is a 2-form ¢ € I'(Q2F) such that
p*$ = ¢. This is true since for v € ker(¢), Lyg = vUdé+d(vU @) = 0. (Here,
LI denotes contraction.) Also d¢ = 0 sincle p*dé = dp = 0 and p being a pro-
jection, p* : M F — Q% is injective. Note that since rank(Ug) = rank(L¢),
¢ :TF — T*Fis an isom;)rphism. (detgsr #0, jk=1,...,6+2N)

There is a C.,-action on QM given by scalar multiplication (CCA=

sheaf of superfunctions)

my . (wavgajﬂg.??‘fa) = (3;“,90‘3‘;,9?’]56&)
We have m}¢ = td, so for v € kerd,
pUmpv=mi¢Uv=tgUv=0

my. is clearly injective, so mykerg = ker¢ and leaves are taken unto leaves

by m;.




We can then define A = F /C. to be our space of superlight rays. Define
L = F x C/C,; we have then F = L* — {zero section}. F has a standard
C,-invariant vector field X along the fibers. We define ourrcontact form 6 €
T(Q'(L)) by A0 = X Ui ¢ where A : F — A and m(X U d) = tX U §. We

have for ¢ a local section of ' — A an identification of # with a*(X U @).
7 (XU A (do"(X U ™) = o"(X U § A d(X UGy

= o (X UG A (Lyd)*N) = o(X L ()N

since .
Lxd = 5 (Do = §
X¢_dt(e¢)t:0“ .
But

$A3+N(X1a ‘e aX6+N) % 0

for any local basis X1,..., X, n of T'F, so X LI @™HN £ 0 and X is transverse
to the image of o so that o*(X LU ¢3+N) £ Thus § A (d6)+N £ 0 and 0 is

a cont.acf 1-form on N.
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Chapter 4

The Space of Normal Quadrics

4.1 Some Rigidity Lemmas

In this section we prove several lemmas that will be very useful when
we start to deform normal quadrics. These lemmas are well known in the

literature on deformation theory. See, for example, Burns{4] p.138.

Let £ 5 P bea holomorp.hic vector bundle over a complex Iﬁanifold.
We wish to examine the obstruction to lifting a vector field v € I'(TP) on P
to a véctor_ tield vg on £, which preserves the vector bundle structure. More
specifically O(€*) C Og, so that one mayllike to require ve(O(E¥)) C O(£*)

l.e. that vg preserves linear functionals on £.

Let {U,} be an open cover of P which is both trivializing for £ and

coordinate patching for P. On U,, v is written v, = A“a-ég—a. We may take this

as a local lift of v to the neighborhood U, x C C & where (p2,el) are local

coordinates on £. On the intersection of two of these open sets, U, N Uy x C,




3]

we have

0
ap2

Uy = Ag(pg{)
and
d
b b
vs = Ap(vp)5 T -
. B\Fg ap%
We write the change of coordinates for v Since ef = gk ;(p)el, we have

k k
365 N 3g,@aj ej

dops  Ops ¢
39,§a' ay { byl I
= W(pa)gam(f’ﬁ)eﬁ' :
Hernice -
bob af, e by=ZBed eyl
Ve = A0 gpr + Aalp)anlra) gy, W)

SINCE Puly = Pulp -

We see that
i 0
Vo — Vg = Cgpeb—r
f o ﬁ@ef;
and that Ciﬁ,; actually represents an element of H'(£®E*). If this cohomology
element vanishes, (i.e. Ci,@k = Cf,k - Cf;k) then we can easily subtract from v,

the obvious amount, (C!ﬁj), to obtain a global section, ve, of TE with p,ve = v.

Lemma 4.1.1 Let £ — X xU be a vector bundle, where U is an open polydisk
in C" and X is a compact compler manifold. Let E, = E|xx{u) and assume
HY(X,E., ® E; ) =0 for a given ug. There then exists a neighborhood of ug,

U', such that E, & E,, for all w € U'. In other words, E|y» & pr*E,, where

pr is the projection X x U 5 X,




Proof. By the semicontinuity principle we note that H! (X, E, ® EX) =0 for
all % in some neighborhood, U’, of uy. Hence, by the Leray Spectral Sequence,

H' (&l ® £*yr) = 0. For u; € U’ we may join u; to up by a flow generated

f2)

5-a Where the u®

by a nonvanishing vector field v. (We take v in fact to be A®
are coordinates on U/’ such that ug is at the origin and the coordinates of our
fixed u; are u$ = A® which are (;onstant.) Thié vector field is also a nonzero
vector field on X x U / . By the lemma al;ove, we obtain a vector field, vg, on

E|yr. Locally, on a coordinate neighborhood, U, x W, x C™,

a 3
ve = A'm— + ACE (u®, 2¥)e

%,

"5"6'} .

The integral curve of this vector field, passing through the point (0, z, ef;) at
time £ = 0 is:

u®(t) = A%
&"(t) = =
(1) = cap(a® [ CLL(An,a5)dn)ek
This solution is analytic in the variables A* and if we write
& (1) = Bi(4%, 1),

it is clear that Bi(A® = 0,t = 1,2%) = Ij. Thus, det(Bi(A® ¢ = 1,2)) # 0 for
any uf = A® in some open set, U}, arouﬁd ud = 0. Thus Bj(us,t =1,2%) is an
isomorphiém between E, ,» and Ey,z¢ . This isomorphism is defined over an
open set U, x W, which contains (ug,2o). Since X is compact we may cover

X x{uo} with a finite number of such U, x W,. We take the intersection of all
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the U s, which we call U ", to form new coordinate ﬁeighborhoods, U x W,,
on which our isomorphisms, Bi , are defined. Furthermore, the functions, Bi,
agree on overlaps since they are defined by the flow of a global vector field on
E. Thus Bj(u?, z¥) gives global vector bundle isomorphism from E,, to E,,
for each uy € U”. |

The above theorem may also be shown in a particular supersymmetric

case.
Lemma 4.1.2 Let £S5 X xU be a super vector bundle over a supermanifold.

We assume here that U is a super polydisk in Crla, e U= (U,d,/\'ogfd)

where U%% is a polydisk in C™. We also assume that X is purely even (no odd

coordinates) and that X X U = (X x Upa, A= NO2Ly ). Let B, = E|xxu

and assume H'(X,E,, ® EZ ) = 0. There then exisls a (super)neighborhood

of wo, U' C U such that E|yn = pr*E,, where pr is the projection X xU &

To prove this, first apply lemma 4.1.1 to & = X xU,q. Since € = pr*E,,
for U small enough, and H'(X, E,, ® E%) = 0 we have HY(E,4 ® €4) = 0.
Now consider the machinery of Griffiths obstructions éiven by Eastwood and
LeBrun [2] . These are the obstructions to extending &|xyp,, to all of X x U.
Also, if such an extension exists, one may also measure its possible uniqueness.
It is the second question which we are of course interested in. The ma.chinerj
proceeds as follows.

On X x U,q4 there is the following exact sequence of sheaves:

0= (N O™ ® My, ¥ GL(r, A/(Nil)*Y)  GL(r, AJ(NilY}) - 0,
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where M,y, may be taken to be C™°. Isomorphism classes of super vector
bundles are given by H'(GL(r,A)). The associated exact sequence of first

cohomology for the above exact seqgence of sheaves is
HY (N O™)" @ €40 £12) - H'(GL(r, A/(Nil)*)) — H'(GL(r, A).

- The uniqueness of extension at each level of nilpotency is thus given by
2. :
HY 0% @ &4 ® E). But as stated before, H'(E,4 ® £7,) = 0 so that all

the obstructions to uniqueness vanish.

4.2 Deforming Submanifolds of Supermani-

folds

In this section we show how a rigid classical submanifold X7I° of a éuper—
manifold Y™™ may be deformed through a family of submanifolds each with
the same normal bundle as X™P°. This argument is a simplified version of Le-
Brun’s work[14] which deforms a (not necessarily -rigid) classical submanifold

of a complex supermanifold. The more general work of deforming submanifolds
X'l in Y™ has been done by Weintrob[22].

Let X C Y be a compact complex submanifold of a complex manifol_d,
and let (¥,.4) be a complex supermanifold. Let 7 C A be the nilradical (i.e.
the ideal of‘ nilpotents) and let E be the bundle on Y defined implicitly Ey
O(E") = I/T* . The normal bundle v of X C (Y,.A) is by definition the
graded bundle » = v @ 14, where vy = (T'Y|x)/TX, and 1, = E|x .
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- Theorem 4.2.1 (LeBrun) Suppose that

HY(X,0(TX)) = H'(X,0()) = H}(X,0(r ® v*)) = 0.

Then there is a “complete, locally trivial, analytic famﬂy of submanifolds near -

X, biholomorphic to X and with normal bundle v.” whose tangent space at
X is H(X,0(v)). More precisely, there is a complex supermanifold (W,B)
of complex bidimension (h°(X, O(10))|R°(X,O(11))), a submersive proper epi-

morphism

7 (5,C) — (W, B)

which is a fibering of complex supermanifolds, and a map of complex super-

manifolds

g (S5,C) - (Y, A)
which is an embedding of 71 (1) = X into Y with normal bundle v, = v for all
t € W, such that X = p(x~'(z)) for some € W and such that the induced
maps

T.W — H°(X,0(w))

and

F, — H(X,0(n))

are tsomorphisms. Thus we assert the existence of a manifold Z = (Z,B) of
bidimension (R°(TY/TX)|h°(E)), a supermanifold F = (F,C) of bidimension
(R"(TY/TX) + r|h%(E)), where r = dim X, and a mapping diagram
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such that for some basepoint 2o € Z one has X = f,q07}(20). F is a fibre

bundle over Z, with fibres X, such that the fibres embed into Y under B with

(a4

normal bundle v, = v for all t € Z. Moreover, this family is universal in the
sense that any diagram
B
N\
Y Z

is induced by a map Z, — Z in some neighborhood of the base point.

Proof. We begin by noticing that H*(X,TY/TX) = 0 by hypothesis, so we

may apply Kodaira’s theorem[9]. This gives us a reduced family

F
b a
"
Y VA

Since H'(X,TX) = 0 by hypothesis and the statement is local, let us assume
F = X x Z where Z is a polydisk in C*'(), Since H}(X,v®v*) = 0, we have

Hl(X,V[,@u;) = Hl(X,VI @u)=0



Thus, by lemmad.1.1 of the previous section, 8*E & pr*yy and B*TY/TX =
- priu (ie. the image of a fiber X X {z} in Y has normal bundle », )

Let £* — Z be the vector bundle given by
O(E") = a(O(b E)) = 0F*¢)

by the Kunneth formula. Let B = O(A°E) and C = O(A"a*E). The natural

pull back map
-1 ® i * AT A * . ®R(11).
O\ E) = O(a* N Ey = \"O2

then defines a map o : ' — Z, where F = (#,C)and Z = (Z,B). We now
need to define amap 8: F — Y ie. a homomorphism #*: 5714 = C . We
build this in the following inductive way: let A/ C C be the nilradical, and let

Cl™ = C/A™F1, We then have the exact sequence of algebra”homomorphisms:

0 — Home (5™ A, A"(N/N?)) — Hom(b™' 4, Clm)

— Hom(b' A4,c™1) 5 ¢

But
Homg (b A, \"(N/N?) = O E @ \"a'E) = Op(bE) & A" O )

and H'(O(VE ® /\f"a*];?') = HY(Op(pr*v) ® /\m(’);‘:("‘)) =0 by the Kunneth
formula and the assumption H HO®n)) = 0. Hence every homomorphism
extends. Finally, by lemma 4.1.2 of the previous section, 8*(TY)/TX = prey

80 that we indeed do have a family of normal submanifolds.

Compieteness of the family follows from the exact same argument as given

by Kodaira[9] pp.158-160 bu_i]ding. the map Z; — Z by higher and higher
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Thus T'Q C Dlg.

If we define D = D|g/T'Q then we have the exact sequence
0-D—>N-—>Ljg—0
The exact sequence definining D,
0-TQ—-D|lg—-D—0

can be reWritten as
0 — 02, 0) é 0(0,2) — Dlg
- 01,0007 e 00,1)& T & O(1, —1j ®O(=1,1) = 0
We can éheck that HY(Q,TQ ® D*) = 0 and therefore this exact sequence
splits: D]|g 2 TQ & D.

Rewrite the first exact sequence, restricted to @ as
0—>TQEBD-—+TJ\[|Q—>L]Q—>0
or
0-TQTQ&n®n ®nd v, — TNl — Lig =0

where TQ, = 0(2,0), TQ, = 0(0,2), . = O(1,-1}, ; = O(-1,1), v =

O(L,0)® T, and v, = O(0,1) ® T*. Consider
Oxlo: N(TQ® D) — Lig

where @ = [ , ]/D is the Frobenius form of D C TN. Locélly; Oy = di

and is thus of full rank everywhere since 8 A (8)*2+" # ¢ anywhere, We have

oule € HQ,(0°QB Qe D" & \'D) ® Lig)
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powers of the odd variables of Z; . Note that we need not be concerned about

convergence since this is a power series in nilpotent variables which thus ter-

minates. QED

4.3 Deforming Normal Quadrics

Now proceed in the opposite direction of the prévious chapter, namely
to construct a supercénformal manifold from its space of superlight rays. We

have the following:

Theorem 4.3.1 If N3N s q supermanifold with contact structure, then the
space of “normal quadrics”, that is quadrics, Q, = P, x P4, embedded with

normal buﬁdle

b

0(0,)0T" @ 01,0007 @ TPsjp® O(-1,-1)

is @ supeﬁnam'fold MAIN with superconformal structure. (Here, TV denotes

the N-dimensional trivial bundle.)

Proof of Theorem Let the contact structure of A" be given by the line bundle

valued 1-form, 6. Let D be the kernal of 0. There is an exact sequence,
0—-D>STN L0

where L is the contact line bundle. I when restricted to a “normal quadric”

_is the O(1,1) line bundle.

The contact form is normal to each normal quadric since

70 € HO@Q,04(1)) = I*(Q, (O(=2,0) & O(0,~2)) ® O(1,1)) = 0
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=H(QQQ® LIQ)6 HQ,2'Q® D" ® Lig) ® H(Q, \'D" ® L|g)

=  HYO(-2, —éj ® 0(1‘;1)')' .-
OH{(0(~2,0) 9 0(0,-2))
®(O(1,—i)@0( 1,1)® O(-1 ,0) ® T* & OO, —'1")'."5;6:5:1*_)_"@_0(1.,1)})

OHN'D" ® Lig)

= H(0(-2,0) @ 0(1,-1) ® 0(1_, 1)) ® H°(O(8, —2) ® O(—1, 1) @ 0(11))

HY(O(1,-1) ® O(=1,1) ® O(1, 1)) S |
H°(0(1,-1) 8 O(~1,0) © T* ® O(1,1)) | |

HY(O(-1,1)® 0(0,~1) ® T ® O(1, 1)) | RRS R |

e D b @

HY(O(-1,00 T ® 00, -1) ® T* ® O(1,1)).

Thus

ylo = Plr00y, + q’,['ﬂQ@m + @Im@m
+(I’lm®w + q)[nrt&w + q’iw@w .

The first two terms are each nowhere zero, otherwise ® ~lg would not have
full rank everywhere. The ®,,g,, must have full rank everywhere, otherwise

. we may take o € ker(®|,,q, : v — vy @ Llg), with o # 0. Then o U®|, g, =
o U ®ly # 0 and ¢ — (0 U ®|, g, )¢ is in the kernel of dylo. (Here q €
I'(Q, 1) is such that ®xr|o(g) = 1 for some local trivialization of n} @ Lo .)

This contradicts @ w having full rank everywhere




Also note that

HY(Q,0(-1,0) 0 T*® O(-1,0) 9 T* ® O(1,1)) = 0

_and

HY(Q,00,-1) 8T 8 00, ~1) ® T ® O(1,1)) = 0.

Hence (I)l/\z”! = ¢|A2“r =0.

Now consider the long exact sequence
0 — HY(Q,P) — H(@,N) — H*(Q, Lla)

— H'(Q,D) — HY(Q,N) — H'(Q,Llg) — ---

Since

HY(Q, Llg) = HY(Q,0(1,1)) =0
and : ‘ :
o I

1(Q, D) = H(Q,0(1,-1) & O(~1,1) 3 0(1,0) ® T & 0(0,1) @ 17) = 0

we can conclude that H'(Q,N)=0.
We show also that H'(@Q,N @ N ) =0. This follows by considering the

exact sequences on ) :

0PN > NN - L@N" —0

0DPRL* DN -DRD*—=0

0~+L®L*——>L®N*—+L®D*——>O
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and the parts of the zllssocia,ted long exact sequences:
H'(D®N*)—> H(N®N*) —» H(L® N*)
H(P®L')— H(D® Ny - H(D® 2
HY(L®L)— H(L®N*) - HY(LQ D).

Using
D=0(1,-1)8 O(-1,1)  0(1,0) T ® 0(0, 1) ® T*

and L 2 O(1,1) on @, we can conclude that
HY (D ® L"‘) =H(DQD)=H'(LQL)=H(L®D)=0
and thus
HY D@Ny=H(LQN*)=0.

This finally gives H'(N @ N*) = 0. We also note here that

1'(Q,TQ) = 1'(Q,0(2,0) 0.0(0,2) = 0.

By the deformation theory examined in the first section of this chapter, the
space of normal quadrics is then a supermanifold, M, with TMg = H°(Q, N),
and dim(7T'M) = dim(H°(@, N)) = 4]4N. We also have the total space of this

family of quadrics, F®N and the diagram:

F

p

7 N
N M
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where the dimensions of the fibres of p and 7 are respectively 1|2N and 2. The

fibres are also transverse to each other. F'is then a P, x P, fibration over M.

raph(p,m
Now F’ il )N X M. We thus have the exact sequence

0 TF — pTN @7*TM — N — 0.

Let TQ = TF/M = ker(n, : TF — x*TM). We then have, since the fibres

of p and 7 are transverse to each other, that TQ C p*TA and hence
0=TQ 5 p*TN - N — 0

where N = p*TN /TQ.
We also have

0—p*D = p*TN - p*L = 0.

Let U be a small enough polydisk in M so that we have

P U)E (P x P XU ]

With such an identification we have the projection s . L
pr:PleleﬁPle;.

Using lemma 4.1.2, we can then write
N 2prO(1,0)9T @ prO(0,1) ® T*lea pr*TP;|q,«p, xP; » - |

TQ = pr*0(2,0) & pr*O(0,2)

and p*L.E pr*O(1,1).




As béfore, we have p"0|rq = 0 and thus T'Q — p*D. This giveé
0—=D—>N-—p*L—10
where D = p*D/TQ . Using lemma 4.1.2, we will also have
D2 pr'(0(1,0) 8T  0(0,1) ® T* © O(1, 1) & O(—L, 1)

Note that we also have that the exact segence deﬁﬁing D splits so that
D TQ ® D. (From the above one may define gy = pr*O(1,-1), 7, =
prrO(—1,1), v =prO(,0)Q1T, and v, = pr*0(0,1) @ T* with of course
D=mdndrndv..)

We have from the exact sequence
0—D—N—=pL—>0.
and writing @ = Py x Py, the léng exact sequence
0 — HQ x U, pr*(0(1,0) 8 1)) & H(Q x U, pr*(0(0, 1) @ T*))
— H(x~Y(U),N) — H(Q x U, pr*(O(1,1))
— HY(Q x U, pr(0(1,0) ® T)) @ H'(Q x U, pr*(0(0,1) @ T*)) — ...

Applying the Kunneth formula and the fact that U is a polydisk, the last two

terms written are zero. Hence there is the exact sequence of sheaves over M,
02 S, @EPS_ @ -TM - 5,05 -0
where

S+(U) = H(@ x U,pr*(0(1,0)), S_(U) = H(Q x U,pr*(0)),

i
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and E(U) = HQ x U,pr*(T)). Writing TM = S, @ E, T,M = S_ ® E*,

and ToM = S, ® S_, this exact sequence is
O-—).T;MG}).T,M-—»TM—»TOM—}U.-
The Frobenius form @ : /\Q(T;M ® T, M) — ToM is defined by
Ou(X,Y) = [X,YI/TM @ .M

for X e I(TYM) and Y € T'(T, M) . We wish to show

@M!/\QT‘M = (I)MlAQTrM = O
and that ©] NP TMeToM corresponds to the convolution

S;@ERQRFE' Q5. - 5,95.,

in order to show that M has a superconformal structure induced from A,
We have
0= TQ—TF™ 7" TM — 0
1 s 1 px
0 TQ% TN BN 50
The map p, actually provides an isomorphism between p~'TM (U x Q)
and H°(U x @, N) for U a small enough open set in M. We may also assume

that F' = Ux(Q and thus that TF = TQ®TM. We have p,[X,Y] = [p. X, p.Y]
for X,Y € T(p~'TM). Thus

[T,M, T;M] mod M & T, M
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corresponds to

[vr + TQ, v+ TQ] mod D.
This is just p*® N’l(w+Té)®(u;+TQ) which we've already calculated to be zero.
We ca.ﬁ conclude that
[T;M,fl}M] CTMpT\M.
Now consider [T;M,T;M] mod T;M. Under p, this corresponds to
2 + TR+ TQ|mod v TQ.

This represents a section of

HOWU x QN (1 @ T*Q) © (@ e © 14)).

Since

> 5 O(1,0) @ T, TQ = pr*O(2,0) & pr*©(0,2)

v,

-

and
'D/(Vl ® TQ) = pT*O(I, _1) @pr*@(~1, 1) @PT*(U, 1) @ T*v |

we have that this Cohomblogy group is zero. TiM is thus an integrable distlri—
bution. Similiarly, T M is integrable.

Also note that if X € I(TiM),X # 0 then under the correspondence
| | givén by pu, |
Pulnior (X, 8) = 1" @ulou (X,0) #0
and similiarly for Y € T(T. M).

Thus

Burlrmer € HY(Q x U,0(=1,00 @ T ® O(0,—1) @ T* ® O(1,1))
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= HYQ xU,T®T")

with full rank and by the definitions of S, S_ and E, we see that @y acts via

the contraction map

S, QE®E*®S. -5, ®5_.




Chapter 5

Extending Conformal Structures

5.1 Thickenings and Poisson Structures

We present in this section the definition of thickenings of complex mani-
folds given in Eastwood and LeBrun[5]). We will also present the definition of
a Poisson thlickening g;ven in LeBrun[13]. |

Let X be a complex manifold. A thickening of order m, X(m), of X is a
ringed space, (X, O(m-'.)) , where O,y is ra sheaf of C-algebras, locally isomor-
phic to O(t)/t™*1, and which satisfies O(my/Nil = O, where Nil denotes the

‘ subshea,f of nilpotents in O(n). The tangent bﬁndle of X(m) may be defined
as the sheaf
T Xmy = Derc(Om); Opm))
and the cotangent bundle may be defined as the sheaf

QIX(m) = Hom(TX(m), O(m)) .

Now let X be a complex contact manifold. Let L be its contact line

bundle. The total space of L — 0y, has the structure of a Poisson manifold ie.
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it is equipped with a global bivector field 7 given locally by

] ] 3 a d
T = t[(t'a—t +Epj55;)/\ 6_(]0 + anj A apj],

where ¢ is the fiber coordinate on L and the other coordinates are contact

coordinates lifted from X. 7 defines a Poisson bracket on L,
L}: 050

given by {f,9} = 7(df,dg).
Let 7 C O denote the ideal of functions vanishing on X =0, C L. We

have

{Tk,TI} C n]'k-H i

If we define O, = O/T™*, then {,} gives O,, the structure of a sheaf of
nilpotent Lie algebras. Moreover, since .C is contained in the center (with
respect to {, }) of O, O /C becomes a sheaf Am41 of nilpotent Lie algebras.
We define
Um = exp Ap
thereby obtaining a sheaf of nilpotent Lie groﬁps. Now there is a natural
injective map |
| Opr/C = Der(0,)

given by f = {f,-} and this realizes 4,, as a nilpotent subalgebra of Der(0,,).
Therefore G,, is a nilpotent subgroup of Aut(0,,).

Isomorphism classes of thiékenings of X are precisely given by elements of
H'(Aut(0,,)). We have therefore the following definition of a Poisson thick-

ening :
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A thickening of X of order m is said to be a Poisson thickening if its isomor-

phism class is in the image of

HY(X,G) = HY(X, Aut(0,,)).

5.2 “Superfying” Ambitwistors

We now show thét every space of null geodesics can be imbedded in a
supermanifold of dimension 5[2m, for m < 4. Let A® be a space of null
geodesics for some spacetime M*. LeBrun[13] has shown that A has an ex-
tension to a. Poisson thiékening, N of order m for m < 4. If the Bach
tensor of M* vanishes, then A has an extension to a Poisson thickening of
order m = 5. If the Eastwood-Dighton tensor of M* vanishes thén N has an
extension.to a Poisson thickening of order m = 6. | |

LeBrun also constructs a supermanifold A" from A, Let us recall
this construction. It is (‘p.ﬁlﬁrof LeBrun|[13]) :

Let Opny(1,1) be the “divisor line bundle” of A/ C ™). The line bundle
| Omy(1,1) has a canonical section o vanishing along A. Let Oy (0,1) and
O(m)(i,{)) be extensions of Ly to MM and let T be a complex vector space

of dimension m. Then
Oy (1, 1) @ \'IT ® Oy (—1,0) ® T* ® Opry (0, —1)] @ Oy (1, 1)
has a canonical section & = ¢ + id where

ide TQOT* C N'(TaT.
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A thickening of X of order m is said to be a Poisson thickening if its isomor-

phism class is in the image of

HY(X,G,) - HY{(X, Aut(0,,)).

5.2 “Superfying” Ambitwistors

We now show th;'xt every space of null geodesics can be imbedded in a
supermanifold of dimension 5[2m, for m < 4. Let N® be a space of null
geodesics for some spacetime M*. LeBrun[13] has shown that A" has an ex-.
tension to a. Poisson thiékening, N of order m for m < 4. If the Bach
tensor of M* vanishes, then A has an extension to a Poisson thickening of
order m = 5. If the Eastwood-Dighton tensor of M* vanishes then N has an
extension to a Poisson thickening of order m =6. \

LeBrun also constructs a supermanifold A*?™ from A™. Let us recall
this construction. It is (p.ﬁ_ﬁlof LeBrun{13]) :

Let Otmy(1,1) be the “divisor line bundle” of A C M. The line bundle

| Om)(1,1) has a canonical section o vanishing along M. Let Oy,y(0,1) and
O(m)(1,0) be extensions of Ly to A™), and let T be a complex vector space

of dimension m. Then
Omy(1,1) @ AT ® Opmy(=1,0) © T* & Oy (0, =1)] @ Oy (1,1)
has a canonical section & = ¢ + td where

ideT@T c N'(TaT.



& generates an even ideal J in AT @ Opmy(-1,0) @ T* @ Om)(0,-1)], i.e.
for every local trivialization of Owmy(1,1), & gives a section of this bundle

and changing trivialization just multiplies this section by an element of Oy .
~ Thus

N = (N, AT ® Oy(=1,0) @ T* © Oy (0, ~1)}/7)
is a well defined Z,-graded complex ringed space. Moreover MM is » complex
supermanifold - i.e. it is locally isomorphic to O(A*C*™). The nilpotents of
Ogm) have become the nilpotents of AN (T @T!

5.3 The Contact Structure of Ly

We shall first show that a contact structure exists on the total space of
the liné bundle Lfl—(m) , and then we will be able to show in the next seét-ion,
how this “descends” to our supermanifold A/512m.

We may locally 1ift a set of Darboux coordinates, ¢’, p;, on N to a set
ol coordinates ¢’,p;,t on Nimy. Let fop be such that exp(r U dfo,,g) is the
change of coordinates on Nim) between two open sets U, and U,g Here 7 is

the exelissic form given by

0] a d J J
= (e + Do DN ag t T M ol

We have on a coordinate neighborhood, Ug, the 1-form

0p = dg§ + psdg}.

Consider how this changes under a coordinate transformation, i.e.

exp(r U dfous)*0a.
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If we write Xog & 7 U dfag then
exp(T Udfap) s = exp(Lx,,)0 -
We have (dropping the use of the subscripts a and )
£x9=d(Xu9)+Xud9
= d(X U (d¢° + pyda’)) + X U (dp; A dg')
=d(X¢° +ijqj) + X Udp; A dg’
= d(Xq") + Xq'dp; + p;d(X¢’) — X(¢')dp; + X (p;)de’

= d(X¢°) + p;d(X ) + X (p;)dg’

_ 20 af af, ., of of
_d(t 3 +t 6 )+ d( 8 )+(taqj_t_76 o)dq
3f ar, ., of of of f 3f
adt+td( at)“a dp; -I—tajdq tpjaodq +t60 00
Thus
af af
| £X8_—tﬁﬂ+td(f+ta ).
We have then:
Claim 5.3.1 exp(Cx)0
N-1 k-1
Exk 0+ (3 X)) (EXH (f+t-a—i))modtN+1.
k=0 k=0 k=

| exp(r Udf) 0 = (%ewp(X)(t))ﬂ + exp(X)(t)d(F;) mod N+

where

N]in 3f
7l f+t8t)

k=1




Note that if f© has homogenelty zero in ¢ then -L + tai(*@) =0.

To prove the claim, we shall first prove by induction

1 Xk(t) dXig
LY0=-XV(0)o+
X L ktj=n-1 R (-7 + 1!

where g = f+t%{.‘
Proof This statement is clearly true for N = 1. Assume true for N. We

have

1

LYY = Lx(LN6) = ( Lx™wmo + XN )9+%XN(t)£X9

!

XFH(1) dXig XH(£) dX*
T e e AP
kiion-1 K G+ 1) ijon—1 K (G +1)

= 5" 00 X004 X”(t)( (et + )
+ ; Nt N‘ 4t N
-'f-I-JZ=N ((k_l)!(J“i"l)! k! i ) i
. kiEDGEN
XN
g N
O
1 NI - N! o
= S XN()0 + XV (t)dg + - : + N xk(axig
t Y ng ((k—l)!(Hl)! | X
k,j#£0J#EN
+dXNg + NXV(t)dg

= EXN“(t)B + XV (t)dg + tdXV g + NXV(t)dg+

k+3+1 k :
(= )NIX*(#)dX g
kﬂ.z:N k!(]-l—l)!) ®)
k. j#0,0#N

= %XN'”(t)B +tdXNg + (N + 1)XN(t)dyg
+ E MXk(t)de

k4j=N ‘U( +1)
kg#05#N




XN+1 £)0 + zj (N“ Dk (1)d X,
k+_7—N ]')

"This completes our inductipn proof. We thus see that ZQ‘;O %ﬁ’)‘(ﬁ =

1 Xk(¢ ) Xi(t) dX'g
0+ [
; t Kl Hg_lk! s+ 1) )
expX (1), NIV xi(3) ‘Xmg
S el ST N —
+§, DD I T

{

= E??—(t)ﬁ + expX (t)dF, mod tN .

Hence on an overlap of two open sets U, N Ug, we have (59_)0,1; =

4
a = T er, * =td of -
0 emea,g(t)(eme ;9) 9.6 t f‘*‘ Jéi

Thus 6(tdF,;) = td(6F) = 0. We see that
(6F4 Japy mod 7 =

a constant on triple overlaps. We considér the‘part of this equation with zero
homogeneity in . This constant must be cohomologous to an integer, since
the lefthand side is now (6 f4)agy Where exp(fiag) are the transition functions
of the line bundle L . We conclude that ezp(F,4p) form transition functions
for a line bundle over JV(m-1) which is an extention of L, . There is already a
unique extension, Limy4 of Ly over M) which gives a umque extension over
Nin-1y - (Recall that L, is just notation for (0,1).) Thus we may extend
emp(.’ﬂ_@) to be transition functions for L(m); .

Let {0 Lfm)+} denote the zero section of Limy4 - One may now check that

the twisted one form on Lj,,, — {0 L(th} , given locally by 6 —ts;'ds,. , where
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sy is the “coordinate along the fiber”, givgs a contact structure on L{,,, -

{0z; ,} with the contact line bundle being the pull back of Ofy)(1,1) from

J\f(m) . Henceforth we write ﬁi(m) for Lfm) +—10 L(*m)+} )

5.4 The Supercontact Structure

We now show how the contact structure constructed in the previous sec-

tion will “descend” to our supermanifold A*#™. Consider the superthickening

L3 mym) = (Lo AN (Opmy(=1,0) @ T ® T* @ Oy (0, -1)).
. Choose m linearly independent

Recall that Ogm)(0,—1) & Opmy on L, -

sections

¢ € T(Ol(ml)(la 0)® Owmy(~-1,000T) C I’(O(m).[m](l-, 0))
and m linearly independént sect.ions dual to the above

ei € I(Om)(0,1) ® Opm)(0, —1) @ T7) C T(Omypmy (0, 1)) -

Note that
Otmpim{0, 1) = Ofrmym)

on L (uypmy S0 that e'de; makes sense as a global section of
Ot (1,1) ® QLY (o -

Let s, be the coordinate along the fiber of £}, and s_ a local section

of Opy(—1,0). Also let ¢' = s_e' and ¢; = sye; be the odd coordinates on
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LY (mym] » Since LY o 18 split, 8 — is7 ds, is a well defined twisted 1-form

on it. We have then
0 —ts7'dsy + le(s_ei)d(s;ls+éi)
=0 —tds]'ds; + sZ' ¢ d(s7 )
=0 - ?s_T_l dsy — sZ'sThpids, + sTlgts T di;
=0 tsfds.{. - 3:13;1 qbi:,b;s;lds_,. + sjlsllqﬁidi/),- .

When pulled back to L3, = {t + sZ's7'¢"); = 0} this is 6 + sTTs7 ¢~ de;

and thus descends to an Opp(1,1) valued contact 1-form on Ay .

5.5 Extending Conformal Structures

A complex conformal spacetime is said to be civilized if its space of null
geodesics forms a complex manifold. Tt is said to be reflexive if it is the space

of normal quadrics for its space of null geodesics.

Cofoilary 5.5.1 Let M* be a complex conformal manifold. Assume M is
civilized and reflexive. M then has an exlension to a complex superconfdrmal
manifold MU4™ m < 4; if the Bach tensor vénishes M has an extension to a
superconformal mamfold; M0 if the Fastwood-Dighton tensor vanishes, M
has an extension to a suﬁerconformal manifold, M4,

In general, if the ambitwistor s;bace, N3 has a Poisson thz'ckem'ﬁg of order

m, then M* may extended to a superconformal manifold M44™,




Proof Let A be the ambitwistor space of M. By our assumptions for each

m and our previous results, A® has an extension to a supercontact manifold

No™ . Since M is reflexive, it is the reduced space of the space M4M™ of

normal quadrics in A%, M4 by its construction is a superconformal.

manifold.
(Note: For m < 4, there were no special assumptions, beyond civility and

reflexivity, on our spacetime M*.)




Chapter 6

N =3 SSYM Equations and Ihtegrability

6.1 Integrability along Super Light Rays

Recall that a superconformal structure is partly given by the exact se-

quence:

0—>S+(.8)E695'_®E*ﬁil’1M-+S+®S_-—>O.
Choose a l.ocal-splitting of this exact sequence so that
TM == S+V®S'_EBS+®E69S_®E*.
We assume that our connection is given (loca,llsz) by
d+ A= d+ (Ao WairWh)

Integrability of this connection along superlight rays is by definition the
vanishing of the curvature of this connection when it is restricted to a su-
perlight ray. This implies that the curvature has a special form. Consider the

(local) decomposition of Q*M as

M2 NS eEYe N(STeBE) e N\ (S;eS)




05,0505 QF

are of the form

where the 7 anduﬁ ,_'ﬁfé.’ﬁ_xe: secti nsof 54 and S_, (except for scaling), and

the ¢' and e; are.éécfions;_'of"ﬁE.'o,nd;-_E;" that are allowed to vary freely. The

vanishing of the curvatureﬂFAB n:the superllght ray implies for exarnple that

FAB(n @ ¢ 0P @ eJ) '— {] ; 1_e_ :FAB has no component in @25'* ® ©E*, and
similiarly for other components

We thus obtain
Fape N'S; e N'nE o N'S: @ N'rE o 'St ® %5 @ \S™ @ 0257
oN\'S @S 0 e NS ®SLaE.
Thus

Fap = Wijean + W"jéc-,g + fag€an + Jap€sp + Xai€ap + 'Xf;,ﬁg,,é :

_'(This notation now coincides with Harnad et al.[7])
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6.2 Exterior Derivatives and Connections

We shall now define (at least locally) a certain operator on {¥PM ; it is an
“exterior derivative”, A, that is similiar to the regular exterior derivative, d,
but such that A2 # 0 in general. The N = 3 SSYM equations will be written

“in terms of components of A. A actually comes from the nonintegrability of
TMeT.M.

Once again, consider a local splitting of the exact sequence
0= QM- BM - QUMOOUM -0

so that
OMM=UMOUM UM

The Frobenius form @ : QM — QM @ QLM is then well defined (locally) as
a map from QéM to Q2M. Define A : QM — Q*M by

A=d—9.

On O'M @ QM define A : QIM @ QLM — Q2 to be A = d. Also define
Af = df for superfunctions f . |
Now extend A to all of 2°M by the Leibnitz rule:

Alwr Aws) = (Aw) Awy + (—1)Fwy A Aw,.

We may consider connections on vector bundles coming from this “exterior

differentiation”, D : T(E @ M) — I'(E ® Q**' M) where

D(clJr ® w) -'—-'D(a) Aw+o@Aw)



|

for o € I'(E) and w € I(Q°M).

LetAm-=7r;oA,AﬂzmoAandAa&:WgoA.

Proposition 6.2.1 [A,;, Al] = —@WhAﬁﬁ.

adet

Consider ® as an operator on *M by ® =0 on QM and QJM, ¢f =0
for f € T(A), a superfunction, and extend to all of 2°M by the Leibnitz rule.
From this, it is clear that d = A + @ on all of Q*M and that ®* = 0 Since

d? = 0 we have (A + @)% = 0 and thus
A= —0A — AD

or

(Aaa + Agi + AL = —0A — AD.

Let x4 € T(*M), |A| = p, where A is a multi-index, and elements of A are

indices of the form (ad), (ai), and (é) . Consider both sides of
(Aas + Aai + ALYkp = —(BA + AdD)ry

and the terms in each which have values in QM - QM - QM. We also
assume that ® corresponds to convolution so that @Z}i = 6}526;7 and thus

ATy
Am(tI)ﬁﬁi) = {). Hence
Aa,‘A“; + AJ Apilka = —‘I’ZZJ:A k4 + Naa®ra — Ana®ria
[+ 1YY

_ YA
= —-¢ A.NK,A.

: i
For.a connection (Agg,wai,w}) define

Dcxd = Acxdr + Aad
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Qai = Agi + wag
Qh=al+ui,
For v?, a section of our vector bundle, we have Fuv® =
(4 + (Ani> wai, wh)) (d + (Aps wpr, wj) v
= ((Dass Qai, Q3) + 922 (Dpgv + Quiv® + Q")
= [Dois Dgpl® + [Das, Quilo* + [Dai, @io*
Qo Qailo® + Q4 Qv |
$Quir Q20" + 98U D0
If the éonnection is integrable along superlight rays, we obtain
Qs Qos] = Wiseap, [, Q%] = Wﬁ%fa

[Das Qo1 = XaiCapr [Dacor Q4] = X%, €a | o

and

[Qm'a Qfe] = —‘I’ggf:pﬁﬂ

Note that the last equation is true, at first, for only sections of % and not

sections of £ ® "M but by the previous calculation it can be extended to
EQQ'M:

By the above

903(05) + 45 (we) + g k] = ~@7B A,

and thus

[Auj + waj, A% 4+ wh] = ~O7D . — WA, — wai AL +wa i AE + WEA,;




Yk
= __(I)W Dy

ok
on all of £ @ (1*M. Here we assume that the Frobenius form corresponds to
convolution and Dad,Qa;,Qf& are written with respect to such a baéis. The
- above equation is just |
[Quir Q4] = —6! Daa

Using the Bianchi identities one may define A, and A4 by
QaiWir = €ijrAa

and

. e
QBPV‘? = ﬁijk)\c'x .

6.3 The Euler Operator

We deﬁﬁe, only locally, the Euler operator by

LD d éxa
D=0 + % a7

Recall that
Qui = 1A + Wi
and
Qi = gAd +uj.
To describe D in terms of Qo; and Q%, we shall need the following:

Lemma 6.3.1 There are coordinates x°,6'*, 0% such that ¢ = If:f mod

(Nil)? and g = I¥® mod (Nil)?.
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Proof. First form new functions

i = gPi(x1,0,,0)
and
i = g(2.,0.,0).
More specifically, since af = z* + 1 H*,
Goi(e,0,0,) = gal(z +1H,,,0)
— ¢(z,6;,0) + i—gfg(wa, 6;,0)H* — ;aazg Y (LR

The above sum is finite since H* is nilpotent. Define §‘£ similiarly. Clearly .‘

g% = 0 and gugiy; = 0.

Now note that 0% = §19> and 9"9 = g;'(jﬂff are well defined odd coordi-
nates such that d6"* and dé;'é spann O} M and Qi M respecfively. (Recall that
Q.M are defined as quotient bundles.)

Since
46" = d(§%)ex + % d6* = ¢71de> mod (Nil)? - silM FOIM,
we have
0% = & @ o mod (Nil) - Q'M .
TH § is the isomorphism from ©} M with basis d0'®7 to S @ E* with basis s§® ¢

then it is clear that

3% = 1% mod (N3l)*.

Similiarly
i = o mod (Nil)?.




Using the coordinates §'*' and 9:‘” from p‘i_)ing the use

of the primes, we can now write the Ehléﬁ; ope
D= 0% D+ OFAL + UA 4 4

+0° Ty + 05T,

where U4 € (Nil)? and V*, VS € (Nil). The
“Christoffel symbols” of A,; and A%). Also define -

D = 0" A + 02N},
Note that if we impose on a connection the transverse ga,t.i:ge'(':_'(')_ﬂ_c_'ijjn_o
0% wy; + wa; =0,

then

D =0 Qui + 07Q} .
nilpotency and is, of course, independent of any particular connection. ~

6.4 Equivalence of Data

We wish to show the equivalence of the following three types of data: (see
Harnad et al.[7] or Schnider and Wells[19]) We will be working thoughout this
section over a neighborhood of M for which we have a choice of supercoordi-

nates and a trivialization of our vector bund}e.




i) (Integrability along super light ray-s):_: ..

The superconnection (Aqg, Wi, w ) subJect to the
[Qm',lQ;@j] + [Qﬁi: chi] =0
[@5, Q%) + 104, Q) =

[Qui, Q4] = =6/ Dus

and the following “transverse” gauge condition:
0™ we + 0Ll = 0.

Note that the first two constramts are equivalent to [QM,QEJ]I_IIEQBW
[Q% QJ] = ¢43W*¥ for some superfields W;; and W, We have thu's“'.a',lr:
shown that a connectlon with curvature vanishing a]ong superhght rays satl
fies these constraints. Likewise the constraints tmply, via the Bianchi 1dent1ty,
that the curvature F has the form written before for integability along su;
perlight rays. |

We also note that the “transverse” gauage condition may always be validly
apphed i.e. given a connection, we may always find a second connection gauge
equivalent to it which satisfies this condition.
ii) (The superfield equations)

The superefields {Aa4, A, A, Xy Xia, We, W' 3 (Where W;: = ¢ W?* and

=k W), subject to the superfield equations written below, with the rd
droi)ped. In addition, there is a certain set of relations, called the 'ﬁ-recuréions,

which are defined in terms of D.



The D-recursions
ﬁvvjk = k0 Ay + 9_?‘)(1:& — 08 x4
ﬁWﬂ'k = €"F05 Ny + 070k — 0*yd
‘f)A&ﬁ = ——eaﬁﬁiﬁxm + E&BH?X; ,

Dxia = 20" DpaWy; + 207 f,5 + 207 e [WF, Wy - 595*5&5[14/“, Wi,

DXL = ngDaﬁWﬂ + thﬂfaﬁ + 293'(360,@[%]0, Wik} — 591ﬁ6a;3[wk1, Wkl] s
Ao 1 . . v
D)\a = -Q-Htﬁﬁﬁa[mj;, Wkl]EJH + G?szkDa‘éijk )

'15/\0'1 = %Q?Gdﬁ'[wt‘j? WH]EJ'H + Hiaﬁ,;jkDdeij y
A i 4 } i i
Dfap = 507 [egy DaciXip + €anDpexig) + 07 [Daixts + Dosxi]

n 1 . . . ; 1 ;
Dfdf,é = EG?EQﬁ[éﬁﬁDadX% + EdﬁDQBXﬁ] + 59 ”[anx.ig + D’YﬁXid‘] .

iii) (The (reduced) field equations)
The component fields {Ardad'; Ard s Ardd:X:I-derd iy Wrd;': W:d} subject

to the (reduced) field equations:

af

¢ Drdor,éATdﬁ + [eri,é} :d] = 03
€ Dygairap + g Weai) =0,
faﬁDrda,éX":dﬂ- + [eri;s"s W4 k]eijk - [j\rdﬁ’a W:d] =0,

fdﬁDrdaerdjﬁ + [Xida? erd]ei.’fk - [/\rda’ Wrdj] =0 ?

faﬁfdﬁDrdadDrdﬁBWrdi + 2{[[ :da Wrdj]= Wrdi] - [[W:da Wrdi]! Wﬂij}}




68

+€éﬁ{_x’”did: Mgl = %C‘jkeaﬂ{Xidm Xrap} =0,
faﬁﬁ&ébrdadDrdﬁﬁerd + .2{[[Wrdia Wjd]? W;d] = [Wrai, W, Wfd]}
+6°"'3{X“:da, /\rdﬁ} - %Cijkﬁdﬁ{xrdid, Xrdki) = 07
€D, yopfrans + € Dransfrasp + {XFany Xoarp} + {Aran, g g}
+Wie, D,y sWoai] + [Wrd;'} D,y Wil =0.

Proof. Obviously, ii}) = iii) is just trivially applying reduction. The proof of
i) = ii) follows thrbugh just as it is done in Harnad et al.[7]. We repeat their
afgument here.

We first have the superfield curvature tensors fop and f,, defined by

[Dad,Dﬁﬁ] = d,éfaﬁ + Eofﬁféep'? '

Using the constraint equations and the Bianchi identity, we obtain superfields,

Aas Ads X;, X satisfying

GoiWir = €ijida, o (6.1)
QLW = ek ), - (6.2)
[Quir Doy] = €apxiy s _ | (6.3)
(@) D] = e  (64)
and also the equations -
QWi = e 8ixe,  QuWi=8xi-8x,  (65)

QaiXja = 2D.aWy, Lxi = 2D WY (6.6)




D = 261055+ 26 W Wol - ZeopllWH Wi, (6.7
Qpixt = 25ffaﬁ_+ Qfaﬁ[thijj —%6a55f[kaWk"]: (6.8)
Quifos = 566 Daiiis + o Dpsxcs. (69
Qrvifsp = ";'[D»y&x,-g-%D,,ﬁXia], | ' (6.10)
Qifus = 3¢ legs Doy + ess Do, (6.11)
Qifos = 1Duixs + Dyt (6.12)

Applying Qi and Qﬂx to equations 6.1 and 6.2 gives

Qm")\,@ = fijkDangk ; | (6.13)
Qoidp = %eaﬁ[%', Wia]ef™ (6.14)
QN = %ed;a[W"j,W’“’]eju,' (6.15)
Qi = Dy Wy, . | (6.16)

Applying

| Dus = 5(Qui} + QQu)
to )\ﬁa)\,éaX'é:Xj,é and using equations 6.1- 6.16 gives the first four superfield
equations. Apply Qp; to the second superfield equation, Qf, to the first super-
field equation, and @Q,; to the third superfield equation, to give respectively
the last three superfield equations. | |

Apply D= 6 Qs ,+ 03Q% to VV,-J',W“,Xtﬁ,xé,)\a,/\d,faﬁ,fég and use

equations 6.1- 6.16 to yield the D-recursions. We note that we have

[Aﬁia Aac’v] - [Atﬂ, Aad] =10.




(This follows from A? = ~A® —.&A or from a local calculation where the
“Christoffel symbols™ of Ag; and A,ié respectively cause cancellation of [gai, Oua]

and [g}, Oas] -) Thus [D, Do) = DAqg - This then gives

DAus = Bsix,:dﬁlﬁa + G?Xix%a-
Applying D to Qm- = Agi + woi and Q% = Al + wi gives us
(1 + D)was = 2eag0® Wi + 20§ Aas
and
(1 + ’ﬁ)w; = 2c&ﬁ-9fwﬁ + 20 Ans .

In proving iii) = ii) we must first take the D-recursions as defining
Adds Aas Aé> Xos Xia, Wi, W' inductively on their nilpotency. We note that this
is possible since D = D 4 T where T strictly increases nilpotency and is

independent of the connection. Next we are trying to show that
G=0,

given that G,y = 0 where G is the left-hand side of one of the superfield

equations. It is actually a system of equations

k
G=10
: k
where € (Nil)*.
Assufne 8}‘=é’= =n(—;’1= 0 where &s Gra. Now
n n f‘l_\
D G=n G=(DG) .




Also

T

——

. Sﬂr . . Sﬂ N <n . <n . . <n
(PC)= 0Qui G +07Q} G +U A0 T 4V, & yvini &

+05Ty & +05T e

<n , . o n
where (7 is (7 for some | < n, 1.e. zero, and (7 is just ¢¢. Thus

E ) n

P p— P —ee,
(DG):(G“’QQ;G—I-Q?Q;G) .

The D-recursions of Harnad et al.[2] are valid as D-recursions by just replacing

D everywhere with D. We can use the D-recursions in exactly the same manner

as Harnad et al.[7] use the D-recursions, to show recursively that if G is the

left-hand side of one of the N = 3 SS5YM field equations then

n /'-’L "'-.2"“‘
n G=(DG)=(DG)= 0.
This completes iii) = ii) .
Now turn to the proof of 11) = i)

. Similiary as in Harnad et al.[7] we have

assuming i) (integrability along supelight rays): ‘

(1 -+ ﬁ)wm- = QEGﬂﬁ)ﬂjmj + 29?.{40,& |

and

(1+ D)ol = 2¢,,Wi; + 26 A, |

One can thus use this to define recursively

n n

A+ D)o =203 Wy + 205 4,3 + Toom




where T = D — D. Note that T as an operator, strictly increases the nilpo-

tency since

T=UPAy+ VoA + VAL + 07T + 00T
where UP? ¢ (Nil)2, VP, Vf; € (NVil)® and Ty, Fg locally are just matrices or

zera, Thus L
n /_"'A‘—"‘
o — !
Twei=T()_ wai)
I<n

One can similiarly define )}, recursively.

We will want to prove equations 6.1- 6.16, just as is done in Harnad et
al.[7], which in turn imply the constraint equations for integrability of the
connection along superlight rays. As is done there, apply (1 + D) to both

sides of the equation we are trying to prove, G = 0, and use induction on the

nilpotency.

0 .
We have =0 for equations 6.1- 6.16, using the D-recursions. Assume

é: 0for ! <n. Then

n n

=

( +b)@:f1 +D+T)G

n

N

N — i ! N
=1+ D)G+ T3 @)
l<n

n

e,
=(1+D)G .

One can use the D-recursions in exactl;y the same way that Harnad et al.[7]. use

the D-recursions to show that this last expression is zero for G = 0 being one

of the equations 6.1- 6.16. To show that these equations imply the constaint




equations we apply 2+ D and a recursive argument on the nilpotency to both
sides of each of the constraint equations. We refer the reader to [7], p.619

where Harnad et al. show, as an example, that -

n

2+ D){Qui> Q] — 2epWiy)

n

=(2 + D)({Quir Qaj} — 2easWir)= 0,

using equations 6.1- 6.16. This completes the proof of ii) = i) and thus
completes our proof of the equivalence of the three sets of data.

We note that i) & iii) tel]é us that the data of the reduced fields deter-
mines a unique superconnection (up to gauge equivalence). For if we had two
superconnections corresponding to the same set of reduced fields we could _then
find for each a superconnection which is gauge equivalent and which satisfies
the “transverse” gauge condition in a common fixed choice of super coordi-
nates. These two connections would then have to be equal to each other by.

the equivalence of data proven above.




Chapter 7

Vector Bundles and SSYM fields

It is now a well established procedure to show the equivalence of N =3

superconnections integrable along superlight rays and vetor bundles over the

space of superlight rays which vanish on normal QUa,drics. The reader may

refer to Manin{15] or Schnider and Wells[19]. Recall the double fibration:

F

]

SN
Ns]e M4[12_

We present here the argument of Manin[15], pp.73-74, to construct from a
connection on M*P? -which is integrable along superlight rays, a vector bundle
on M 51 which is Itl“ivia_il on normal quadrics.

Assume the fibres of p, i.e. the superlight rays of M, are _connected.
Let (Eum, V) be a vector bundle with connection l(.)n M, which is integrable

long superlight rays and which has zero monodromy along these fibres. Let
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TFIN = ker(p.) and let Vg;u be the composition
T Ep ' 7 Ep ® 1M P QVFIN

where res is the restriction to TF/N. Define £ = ker(Vyyr). Since Viyy
| has no curvature or monodromy and the fibres of p are connected, we hﬁve
that Ex = p.EL is a locally free sheaf of Ay-modules on A. Furthermoi-.e,:_._':t'}ii.is. .
sheaf will be trivial when restricted to normal quadrics. L
Now let ENrbe a vector bundle over A” which is trivial overn mal
quadrics. Let & = p*(Ey). Since & is trivial on the fibres of 7r, we: hay

Er = Ap®a,,& for some sheaf &, which we can identify With_'s' g

monodromy along any null geodesic. A connection on &y cin be define

a straightforward generalization of the Sparling-Ward ‘spl_i.t'{;i g outlin

time M* with no monodromy on any null line I,

and




b) Super vector bundles over the space of superlight rays N°1®, which are trivial

over normal embedded P, x P, .

We may now piece together the local versions of this theorem to produce
a global version in the manner & la LeBrun[12] p.1059. We first cover our
spacetime with convex neighborhoods for which the theorem already holds.
The theorem will also be true on their overlaps.

Over the image of each of these in the space of super light rays we ob-
tain, via the correspondance a super vector bundle, On an overlap we have
uniqueness up to isomorphism and fhus an autormorphism of the supervector-
bundle over it. On the reduced level this automorphism is the identity. But
the identity has only a unique extension over our overlap. Thus we may piece
togethér uniquely the super véctor bundles over the images to obtain a unique
super vector bundle over the entire space of super light rays which is trivial

over normal quadrics.
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