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In this thesis we use Clifford cohomology with coefficients in holomor-
phic vector bundles to prove a wide range of vanishing theorems for com-
pact Kahler manifolds. These include vanishing theorems on holomorphic
sections, vanishing theorems of higer dimensional cohomology groups for
“semi-negative” line bundles and vanishing theorems for fractional powers
of the canonical line bundle. In particular we apply the Clifford cohomology
theory to hypersurfaces of complex projective space to study the differential

geometry and complex structure of these manifolds.
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Chapter 1

1.1 Introduction

In recent years mathematicians have found many applications of spin geom-
etry and Clifford algebra structures to various aspects of geometry, topology
and analysis. One basic case of this is the paper of M. L. Michelsohn [§],
who applied these ideas to the study of complex Kahler geometry. In her
paper she replaced the bundle of complex exterior forms on a manifold X
with the complexified Clifford bundle CI(X) = CI(X) @r C. She showed
that this admits a pretty decomposition
CiiX)= p cr(x)

o+ laisn
where the n is the complex dimension of X and that there is a first order
operator D with the propefty that D: I'CIP? — TCIFTH! and D2 = 0.

In fact, D? = 0 is a suflicient condition for X being Kahler. Each complex
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is elliptic and therefore one finds that X has finite dimensional cohomology
groups HY!(X), when X is compact. The construction carries over to
Cl{X)® W, where W is any holomorphic vector bundle over X. Thus one
obtains cohomology groups HY( X, W) Note that the (p, ¢) .decomposition
of Cl(X) does not directly correspond to the Dolbeault decomposition (r, ).
However there is an isomorphism between the Clifford cohomology and

Dolbeault cohomology groups:
g X, W) = Hp (X, 67(W))

Therefore the Clifford cohomology groups are independent of the Kahler
metric on X.

In this thesis, we shall extensively apply Clifford cohomology theory
to investigate the relationship between the differential geometry and the
complex structure of Kahler manifolds. The Clifford cohomology enters into
Ké&hler geometry in a natural and very interesting way. Indeed it provides
an alternate calculus for studying the properties of Kihler manifolds.

We shall recapture a number of classical results. These include vanish-
ing theorems on holomorphic sections and vanishing theorems of Kodaira,
Nakano, Vesentini, Girbau and Gigante, i.e., vanishing of higher dimen-
sional cohomology groups for “semi-negative” line bundles. However we
shall show how the Clifford bundle approach greatly simplifies the proofs
and gives a transparent unification of all the fundamental elliptic complexes
in Kahler geometry. Everything will follow from a single formula which ap-

plies to any holomorphic vector bundle.

We shall also recover most of the results of Michelsohn [8]. We use con-




3

sistently the Clifford cohomology groups with coefficients in a holomorphic
vector bundle. We also make use of the observation that the subspace CIP?
with |p[ + |¢] = n has a basis in which each element has a “nice” algebraic
property. This enables us to relax the curvature condition in Theorem 7.15
[8] to a weaker one.

Finally, we shall apply the Clifford cohomology to study the differential
geometry, complex structure and topological properties of complex hyper-

surfaces of complex projective space CP™1. One of the main theorems is

Theorem 3.4.3: Let M be a complex hypersurface imbedded in CP*+?
with the induced metric and assume c¢i(M) is even. If the eigenvalues of

the second fundamental form of M satisfy

2

~n+6
N onRTO
7T 4(5n — 1)

for all 7, then for n > 5, degree (M) < [=£2],
In particular, we have the following rigidity results.

Corollary 3.4.5: Suppose that M is as in Theorem 3.4.3 . If the

eigenvalues of the second fundamental form of M satisfy

13-
A< m whenn=25
6
or /\32- < 7 when nn = 7

for all j, then M has degree 1,i.e. M is the complex projective space CP”".




Corollary 3.4.6: Suppose that M as in Theorem 3.4.3 . If the eigen-

values of the second fundamental form of M satisfy

9
)\J < 55 when nn =6
or )\? < % when n =8
24
or )\J <79 when n = 10

for all 7, then M is an algebraic manifold with degree 2, i.e. M is the
complex hypersphere Qn.(C). |

The dissertation is organized as follows. In Chapter 1 we review the
Clifford cohomology theory on Kahler manifolds. In Chapter 2 we first
give a specific description of the subspaces of CI2? with |p| + |¢] = =,
then we establish a series of vanishing theorems for Clifford cohomology
groups. In the last Chapter we apply the Clifford cohomology to spin
complex hypersurfaces of CP™*! to study the differential geometry of these

submanifolds.

1.2 Basic concepts

1.2.1 Clifford algebra

We begin by recalling the concept of a Clifford algebra. For more details

the reader is referred to the paper [1].

Let V be a vector space with a quadratic form Q. Consider the tensor




algebra

=0

V)= &V

and let I denote the ideal in T(V') generated by elements of the form v®@v +
Q(v)-1for v € V. Then the quotient Cly(V) = T(V)/I is defined to be the

Clifford algebra of V' with quadratic form (). For this paper, we consider

V =R Q(v) =< v,v > where < -,- > is the standard inner product

on R™. Let ¢, -+, e, be any orthonormal basis for R™. Then Clg(V) is

generated as an algebra with unit by ey, -+, e, subject to the relations

€€y -l—ej e = —2553'

for 1 < 7,7 < n. We denote this algebra by C1,. These algebras sat-

isfy the periodicity relation Cl, s = C{, ®p Clsg. We also consider the

complexification of the algebras Cly, i.e. Cl, = Cla, ®n C which satisfy
Cl,. 12 = Cl,, ®c Cl,. The first eight are given by the following table.

n 2 3 4 ) 6 7 8
ci, H |HeH|HE?) |cw |RE) | RE) oRE) | R(16)
cl, C1(2) C(4) c(8) C(16)

1.2.2 Clifford cohomology groups HI(X)

Our exposition here follows closely the paper by Michelsohn [8].

a. (p,q) decompaosition of CI(X)

Let X be a compact Kahler manifold of complex dimension n. Consider

the tangent bundle T(X) of X as a real 2n-dimensional vector bundle.




We then form the bundle Cl,,(X) of real Clifford algebras and take its
complexification Cl,(X) = Cl,(X)®@r C

At each point z € X, the linear map 7, : T,(X) — T,(X), which is
the complex structure of X and is parallel in the canonical Riemannian
connection, extends naturally to Cly,(X), and therefore to CL,(X),, as
a deri\}a,tion. For any x € X, we can choose an orthonormal basis of
the form: ey, J,e1, " €n, Jo€n. In terms of these we define a new basis
€1, "y €ns €1, * 5 & Of T(X) @g C by setting

1 .
¢ = 5(ej — 1J0¢s)

1
¢ = (e +iTse;) (1.1)

for § = 1,---n. These elements have the property that J,(¢;) = ie;,

J.(€;) = ~1€;. For convenience we sct

j:ljo

i
then J(¢;) = €;, J.(¢§;) = —€. In the algebra Cl,, all pairs of elements
from (1.1) anti-commute except for those of type e;,€ which satisfy the
relations
€€ +€ ¢ =-—1
In particular
€-€=¢- ¢ =20

where - means Clifford multiplication. Therefore the elements of the form

€167 = €;, * - €;,&;, -+ &,, where I, J range over all strictly ascending multi-

indices from {1, - --n}, form an additive basis for Cl,(X). By the derivation




property of 7
F(eres) = (| = | Deres = (r  s)eres
where ||, |J| denote the lengths of the multi-indices I' and J.

Now we can define three natural operators £ £ and H on the bundle

Cl,.(X) as follows. For any ¢ € CI(X),

Llp)=—~2F €6 9§
E(‘P) = —E?=1 € P €

H=IL,L]

These operators are independent of the choice of basis €1, €,, €, €.

The operators £, £, H define a representation of &!(2,C) on CL,(X).

Therefore we can define the subspaces
CLAX) = {v € Cl(X) | Hy = g9, T¢ = py}
We get a decomposition

CL(X) = P CBI(X)
4
For a given p, —n < p < n, only certain of the bundles CI?4(X) can be
non-zero. In fact CI"¥(X) is non-zero only if |p| + [¢| <nand p+¢+n =

0(mod 2). Hence the bundles appear only for values of (p, ¢) marked in the

“diamond” pictured on the page 13.




b. Differential operators D, D

We now define differential operators on sections of the Clifford bundle as

follows

D= z Ej . ng
=1

D=>"g-V,
=1

where V denotes the Riemannian connection. These operators are indepen-
dent of the choice of the €;’s. The following theorem defines the Clifford
cohomology groups on X.

Theorem [8]: The operators D and D are formal adjoints of one
another. They satisfy D? = 0 = D?. Furthermore, the complex A
rcr1(x) & rorex) B rert (X)) — is elliptic. Hence there
are defined finite dimensional Clifford cohomology groups

HY(X) =kerD/ImDNTCIP(X)

Remark: More generally, if W is a holomorphic hermitian bundle
over X, fve introduce the canonical hermitian connection on W, the tensor
product connection on CI(X, W), and then define D and D as above on
I'CI(X,W). In this case the theorem still holds. Thus we have Clifford

cohomology groups with coeflicients in W.
HZA(X, W) = kerD/Im(D) N TCIPH(X, W)

which satisfy a fundamental duality theorem.




c. Hodge theory for the Clifford cohomology

From the standard elliptic theory, we introduce the Laplacian

and consider the space of harmonic (p, ¢}-elements.
HPM(X, W) = ker(A) .ﬂ ICI4(X,w)
Then there is an orthogonal decomposition
I'CIP(X, W) = HP(X,W)® ImD @ ImD
which holds also for the space of L? sections. This gives an isomorphism
HP(X, W)y~ HM(X, W)

Therefore for any [¢] € HYY(X, W), there is a harmonic representative ¢
ie. AP =0 and ¢ € [p]. With the construction we have, we can prove
the Va,ﬁishing of certain Clifford cohomology groups under some curvature
assumptions by using the Bochner technique {5].

Fixz e X qnd choose local frames ¢;,- -, €,,&, "+, &, as before such
that (Ve;), = (VE;), =0 i.e. choose local normal coordinates at z.

Consider that

DD+DD =) {6 & Ve + &€ Vi)

ik
= Z{GJ' €k vfj,qc - (ejgk + 6j|k)vﬁk:€j}
1k

= Z{EJ * €t REj,ek - vaj’gj}
ik i




10

where 37, = E_?,k:l? Ryw = Vyw — Vwy is the curvature of the connec-

tion and Vyw = Vv Vw —vvﬂ’ is the invariant second covariant derivative.

We define operators on I'C1(X, W) by

We have the following Weitzenbock type formula.
Proposition [8]:

PD4+DD=V*V+R=V'V+ R
E

The importance of the fg)rmula derives from the following.

Proposition [8]: The operators V*V and V*V are non-negative, ellip-
tic, formally self-adjoint differential operators. The zero-order operators R
and R are self-adjoint.

Remark: Since the connection on I'Cl{X), defined by the connection

on the tangent bundle T(X), acts as a derivation, i.e.
V(U -V)=(VTU)-V 4+ U-(VTV)

where V7 denotes the connection on T(X). So does the curvature tensor,

i.e.

R(U - V)=(RTU)-V 4+ U -(RTV)
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where RT denotes the curvature tensor on T(X). Similarly, the connection

on I'CI(X, W) acts as a derivation, i.e.
V(o ®-w) =Viouwt+teco VVw

where V¥ VW denote the connections on CI{X) and W respectively. So
does the curvature tensor on I'Cl( X, W), i.e.

R(a@w)=R¢!a®w+a®RWw

where R and R" denote the curvature tensors of Cl{X) and W respec-

tively.




Chapter 2

In this chapter we shall show the Clifford bundle intimately reflects the
properties of the Kéhler manifold. Because the rich algebraic structure
which is presented using Clifford multiplication on CI(X) depends on the
Riemannian metric, this bundle carries more information than A*(X) for
studying the Riemannian structure of the manifolds. The Clifford for-
malism is extremely effective in relating the differential geometry and the
complex structure of a Kéhler manifold. One sees precisely the role of Ricei
tensor in the formulas for ClL,. One sees that it is the holomorphic square
root of the canonical line bundle on X which reveals the profound relations
between scalar curvature and A —genus of X. One also sees that the Clif-
ford formalism indeed offers unified, systematic and comprehensive proofs

for a wide variety of vanishing theorems.

2.1 The subspaces CI2Y(X) with [p| + |q| =n

First let us give a specific description for the subspaces CE(X) of CI,
with |p[ + |g| = n.

12
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Proposition 2.1.1 In the local coordinates at z chosen as before, the
elements {€1 - €, &, -+ &}, where iy < -+ <iq, i; € {1,---n},1 <j <y,
form a basis for CI*9(X). In fact we have the following “diamond” [8].

)
{ei1 crr € €ttt gn} € Cl;'“+q,q n {61 €€y gi.q} € Cl:—q,q
* .
- 2 - :
|
i o
—n —n+2 neg w P
® -
. L]
L] L]
{€1-- Eneiy v} € Cl »tee _n (& Ee e} € CITITY

Proof: Let P, be the set of primitive elements in Cl,,. From the propo-

sition 2.10 [8], we know that:

Pn: @ P.,:’s s> 0

Jr|+s<n

Pn = {En ‘ Pn»—l} @D {Pﬂ.-"-l : gn} 3, {EnPﬂ.—lgn}
@{ﬁn(enPn_lén) — 2Enen Pt} (2.1) |




14
where z = s+ 1. If o € P, then

€n P € Prt-l-l’s

go . En 6 P;'"“I,S

- 1
EnPEn € P?:’s"'

En(en P En) — ZEnenp € PIT (2.2)
More precisely, from (2.1) (2.2) above we have:

Pps = (e PI"} @ (P70} @ {en - PIA &)

In particular, if p=n—gq, tie. ,p+q¢g=mn
P;J.—q,q = {En ' n—_l ,9} @ {ngll—q,q ) En} @ {en * P::—_lq,q_l ‘ gn}
B{Ln(en - PLP™ &) — (¢ +2)8, - € - Potf?t}
But
Pl — 4 gince n+l—g+g=n+l>n-—1

Pf:f'ﬁl:qﬂ, since n—~¢gt+t¢g+l=n+l>n-1

P" 1 - {E pr-g -I.q}

Ble, - Pryiml el 2y (1<¢<n—1)  (2.3)

Pﬂf‘o = {e, - P;f_f’o}, since P,?L_ll =¢ (¢g=0) (2.4)

Pt ={en P &), since P{"=¢ (¢g=n)  (25)
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The proof of the proposition (2.1.1) follows easily from the following two

lemmas.

Lemma 2.1.2

Proof: By induction on the dimension n.
n=1 dime Pl =1 = dimc P =1 =

So lemma (2.1.2) holds.

Suppose claim holds for n — 1, i.e. we have

n—1
dime P 1 — 0<g<n-—1

q

Case 1: 1<¢g<n-—1,from (2.3)

dime Pl = dimcpé’:l)ﬁ,q + dimﬂpﬂ_—ll—(q—l),q—l

(n—l n—1
_I_
\ ¢ q—1

1

\ ¢
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Case 2: ¢ = 0, from (2.4)

-1
dim P = dim P70 = " SN
0
Case 3: ¢ =n, from (2.5)
n—1 n
dimePY” = dimo PeY = ==
n—1 n

Q.E.D of (2.1.2)
Lemma 2.1.3 Any ¢ =€+ -€,€6;, - &, belongs o Pp=94,

Proof: Recall
Lo =— i €RiPER
k=1
Since e e =0s0 Lo =0 le. @ is a primitive element. It is very
easy to see J¢ = n — ¢, so we only need to show that Hep = qp. Using the
formula
Hp - E) =H(p) €+ &
where £ € TO!, T =T @ T°1,
By induction on q.

If g=0thenp =¢---¢, and it is obvious that H(y) = 0, and the claim
holds.

Assume o = €1+ €, &, -+ &,_, and He = (¢ — 1)p.
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Show that ¢ =€, -+ €, - &, --- &, _, &, satisfies H(p) = qep.

H(lp) = H(Gl e Ené}l L éiq—1 Eiq)
== H(E]_ - Engil PR Eiq—l) . Eiq + €1 eﬂgil PRV E‘iq—lgiq

=(g-De+e=qp

QE.D.of (2.1.3)

Since

Pr-nt — e
Thus

dimeCI— =

L V)

n
and the set {e; - €,6, -+ &, } has independent elements of CI_ "7,

q
50 {e1++ - €,&, -+ &,} form a basis for CI7_ 7.

Using the same arguments we have the description of the subspaces
CI%? with [p| + |¢| = n in the “diamond”.
Q.E.D.

2.2 Vanishing theorem for I “Y(X, W)

C

Note that Hy *(X, W) ~ H} (X, 6" 9(W*)) [8], where W* denotes the

dual vector bundle of W. The results proved in this section recapture a
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number of known vanishing theorem for holomorphic sections on X, see
for example [4], [5], [8]. But the method employed here makes the proof

extremely simple.

Definition 2.2.1 Let W be any holomorphic hermitian vector bundle over

X. Define the mean curvature transformation of W by

RY . (X, W) — I(X, W)

w
w — Z Rejlgj'w
f

Note that B is independent of the hermitian basis chosen to define it.
We prove the following formula. If ¢ € TCI"™*(X, W), in the chosen

local normal coordinates at z € X, let

(pzel...en.eil...eiq®w

Proposition 2.2.2

(DD + DD)p = V'V (2.6)
. 1, &
= V'V + 5( > Ric;)p
J=g+1
Fer ey Gy E, ® ZREKij (2.7)
i

where Ric;; denotes the eigenvalue of the Ricei tensor on T(X).
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Note that Michelsohn has proved the same formulas by using the bundle
of modules over CI(X) when W is trivial [8].

Let us prove a lemma first.

Lemma 2.2.3

€545

R=R+) R
i

Proof: Recall in local normal coordinates
R = ZE:,; CEp - jo,ek
.k
= Zek CE€j ng,fj
kg
=) (—€er — 65 )Ry e,
k.3
= Z €jecRe; o + Z Rz
ik J

= R + Zch,Ej
7

Q.E.D.

Proof of (2.2.2)
Recall R, R act as a derivation. Claim Ry = 0. Use the fact ¢;-¢; =0

R(p = ZEJ . ekREJ',Ek(eln St Eﬁ . E‘iq ® 'I.U)
ik

= ZEJ ' ek(Réj,Eke]_, e E?’L) . g’l s 'ézq ® ur
3k
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G ey (B B 0)
Ik

1
:-Q—ZR;CJ.EJ--EJ--el---ena‘-l---a,-q®w+0
3

0

From the lemma, we have

R=R+) R,z since R=0
J
R(P = ZRE_,',EJ;(P
j

= ZRﬁj,EJ‘(ely CerEp €y v 'Eiq & ’U))
J

1.3 . .. _ _
= "2-(2 RZCj — ZR%C,'J-)(,Q €1 c€n€py €, ® ZREngw
=1 =1 i
1, & . - _
= 5( D Rici)p+ e €8 & ® ZRE;,_,gjw
i

i=g+1

Q.E.D.

We are now in a position to prove the following vanishing theorem of

Bochner type. Applying (2.2.2) to W = X x C” we have

Theorem 2.2.4 If X i3 a compact Kahler manifold with dimeX = n, and
fized an integer g, 0 < g <n—1. If the cigenvalues Ricy, -+, Ric, of the

Rices tensor satisfy the inequality

Rie;, +oet Ric, >0 forall 4 <0 <y

at each point of x, then H (X)) =0, 0<g¢g<n-—1
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Note that since there is an isomorphism between Clifford and Dolbeault
cohomology groups, under the assumption, this theorem proves that X ad-
mits no nonzero holomorphic (n — ¢)—form. This theorem is proved in this

form in [4].

Theorem 2.2.5 Let X be a compact Kihler manifold with non-negative

Ricci tensor and positive scalar curvature, then
H "X, K)=0 Vg

where K* denotes the anti-canonical line bundle of X i.e. K* = A"T.

Proof: Applying (2.2.2) to W = K*, compute R" in local normal
coordinates. If W € T'(X, K*) then

W=aegA---Ae, a€C

and RY acts as a derivation.

n

1 . .
ER::-,,EJ-(GQ Ao A én) = E(Z chj)ael A A €n

J =1

—rae/\ A€
—4 1 i1

where r = 2377, Ric; is the scalar curvature of X.
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Theorem 2.2.6 X as above. Let W be a holomorphic vector bundle on
X. If RY is positive definite, then

HYMMX,W)=0

Proof: Let ¢ = n in the (2.2.2) then

M
&
e

LP:El...ﬁn.El...
By (2.6)+(2.%) we have

€5,€5

2DD+DDYp = (V'V+ V' V)p+ ey & & ® I RE w0
i

Q.E.D.

Now applying (2.2.2) to E = T™ then

T _ U - T
6= Ruicey,
J

We obtain following corollary.

Corollary 2.2.7 Let X be a compact Kdhler manifold with negative defi-
nite Ricci tensor then
HY(X,T*)=0

where T* denotes the cotangent bundle of X.
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Note that corollary 2.2.7 proves that X admits no nonzero holomorphic
vector field under the curvature assumption. In this form the theorem is

proved in [5].

If we apply (222) to E = @1 =T ® --- @ T, it then yields the follow-

. P
ing

Corollary 2.2.8 If X is a compact Kihler manifold with positive Ricci

tensor, then

HY(X,@'T)=0 p>0

Corollary [8] Let X be a compact Kahler manifold with ¢,(X) = 0,

then any harmonic form is parallel.
This is because X can carry a Ricci flat metric in this case and let W
be any trival bundle, the formula (2.2.2) becomes
2A¢ = (V*V + V*V)p

2.3 Vanishing theorem for H;" /(X L)

In this section we shall give alternate proofs for a series of vanishing theo-

rems for holomorphic line bundles, see for exarmple [4], [5], [8]. More specific
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references are given in the individual theorems. Clifford formalism makes

the proof simple and gives delicate results.

Let L be a holomorphic hermitian line bundle over X. The curvature
RE of L is a closed real (1,1)form on X. If {¢;,€} are local hermitian
frames chosen as before, the matrix (Ré <) is hermitian symmetric. If this
matrix is positive definite (resp. negative definite) at each point of X, then
L is called a positive (resp. negative) hermitian line bundle.

First we show the following formula. If ¢ € T'Cl™"*%4(X, L), in the

chosen local normal coordinates at z € X,

(P:Ei}“'e‘iq'_gl"‘gn®l

Proposition 2.3.1

o q
(DD +DD)p = V'V + (3 \;)p (2.8)
j=1
- L
=V'Ve+ > (Echij ~ Ay ) (2.9)
J=g+1

where {A;} 1 < 7 < n are the cigenvalues for RY, ie. since RF
18 hermitian symmeiric, we may choose local hermitian frames such that

RE . =\

€54€x

Note that Michelsohn has proved the similar formulas by using the bun-
dle of modules over Cl(X) in her paper {8].
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Before we prove (2.3.1) we show the following lemma. |

Lemma 2.3.2

)\jé"jeje,-l ‘e 'qugl <€y

_Aigfil"'eiqé-l"'gn zfj:'” q-l—],SlSn

Proof:

Case 1: if g =1 1<k<q

)\jgjﬁjﬁil €€ €y

= :l:AikEikE,'kEil e einI e En

=0 sinceej-¢; =0

Case 2: ifyg=u g+1<I<n
AjEjGjEil St €€ €y
= — A6 & +1)e, €6 6 |
= _)‘igfi;aiieﬁ e Eiqgl e E.n e Ahei& e Eiqgl e En
= —Aj€ €& & since €€ =0and¢; & = —E €, J FFk
Q.E.D.

Proof of (2.3.1)

Since

Re; v €, & E,Q1) = R (e, - €€ ) @€ .-vez-q'a---a,,@RLl
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So first we compute that
Rc’(fil €y Bt En)
= zﬁgfkRe ek(eﬁ €, EL gn)
= zﬁgﬁk(RE py "'Eiq) CE

+ E €;€p€sy * - (RE; 2 €17 " €n)

- T _ - _
=2, Zﬁj VER Nt Eip g t€R Eigyy Gy < Bz 6,83 > & &y
kB =1
1... _
+ 2:——2—}33.%«5:r €5 €y tr € &t Ey
Sk
1 . _ -
= E*—QR%CJ'EJ- €€y €, 1 & by Lemma 2.3.2
5k '
1 T
=3 Z Ric;, ve €. &€,
1=q+1
Note that

- T —
Zejeke‘i] e Eia—l : €ﬂ3 ' eia-]-l te Eiq < RCJ',EkEia) 6}3 >
kg

|
= Z( 1 ejekeﬁe"l et 6'£o:--1 : 6’-‘-.0:-]»1 te < RE 1€k Eia’ ﬁ > i
\

— a—1 £ . 2 e . . P €
- E(_l) eJ Eﬁeketl 6“&—1 e’a+1 E"‘-q < REJ Eﬁ 61&7 €k =
Bk

= Z(_l)a_l(_l)éjekeﬁeil Tt €igy  €igyy € < Re & Sia €5 >

== D ke Eigy €€y i < B g €y 6 >

=0

Rd(ﬁij ‘e eiq . El e Eﬂ)
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Now we can calculate

R(6i1"'5£q'€1"‘gn®l)

I _ o I,
= (Rle, 6 ) @14y oeiy &1y @ RV
_Ze"EE""E'g"'E ®RL l
— 3 F A= ig%1 n R

1k
:_E/\jfj‘gj'Eil"‘eiqgl"'gn(gl |
J
=2 Ai(EGe+ e, o€, E B @1
i
n
—_—ZAjngj'eil"'eiq'El"'gn®l+Z)\j'eil"'eiqgl"'gn®l
7 :

=1

k13 ko)
=(= D Ay € e @I Y Ne, € E 6 ®
F=g+1 j=1

g
= Z)\ijﬁil €€ E @
=

R(eil---eiq-c?lon?n@l)

:R(eﬁ"'ﬁiq‘El"‘gn@’l)_Zch,Ej@il"'Eiq'él‘“gn@l
3

q

=D ME e G I+
j=1

1 =g+l

1

QRE'C,'}. - Z)\j)ql Tt €t €y ® 1
i=1

n 1 .
= Z —ch;j—A;j)eil---eiq-él-’-én@)l

=g+l

2
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Recall that we say X is spin, if the first Chern class ¢;(X) = 0 (mod
2). Now let X be a compact Kéhler manifold, then X is spin if and only if
the canonical line bundle K has a square root. (i.e. a complex line bundle
L such that L @ L ~ K) [4]. We denote such L by K3.

Applying (2.3.1) to L, = K*3, then R{fﬁ = 1Ric;6;) in local normal

coordinates, i.e. A\; = 1Ric;, 1< j < n.

We get
2(DD + DD)
=(V'V+V'V)+ i (lR' . —LRi -)+§31R' -
= p: 2 LC;; 7 1Ci; 2.7 1G5,
J=q+1 i=1
=(V'V+VV)+ 3 iRz‘cj
i=1

=(V'V+ V) 42
where r is the scalar curvature of X.

We then have the following theorem [7] for compact Kéhler manifolds.

Theorem 2.3.3 Let X be a spin manifold, if X carries a metric with

positive scalar curvature, then

H"(X K*)=0 Yy

Let X be a Kahler manifold with ¢)(X) = ke, k € Zt, where o €
H*(X;Z) is indivisible. We consider the line bundle L ~ K* @K% ~ K%
over X in (2.3.1),p € Z.
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Then
—k ]{:
RET o Ricibin
le,
-k
Aj = — P Ric;
We have
(DD + DD)yp
g
=V*Ve+> Ay
.?':1
=V*'Vp + -——(Z Rici, )y (2.10)
(DD + DD)y
L 1 2 ‘ n
=V'Ve+z > Ric,— > Ay
2 j=g+1 Jeg41
. n ' p— A
= V'V + ~ _Z Ricy, +W Z Ric;,
1=q+1 J=q+l
= T4 2T k( 3 Ricy) (2.11)
i=g+1

We are able to prove the following theorem, which will improve the the-
orem 7.15 of Michelsohn [8] by relaxing the condition of Ric > 0 to Ric > 0
(not all 0).

Theorem 2.3.4 X as above. If X admits o non-negative Ricci Kahler

metric and positive scalar curvature, then

H V99X Ky =0 Vg




wherever |p| < k and p+ k is even.

Proof: (2.10)4+(2.11) we get

2(DD + DD)yp
= (V*V 4+ V*V)p
k=p & 5 k +p
"""_(ZRwi,-)SO-i- ——( E chh)ap
4k
= j=g+1

Note that
k>p <=k—p>0
Ip] < k <=
k<-p <k+p>0
Case 1: pr>0then-—22k—‘ﬂ

4k
We have

2ADD + DD)yp
> (V'Y 4 V") + L2 E Ric;)e

= (V'Y 4 V" V) + LSkPW

Case 2: If p < 0, then &2 < &2

We have

2(DD + DD)y
2 (V'V 4 V'V +E (Z Ric)

i=1

&

= (V*V 4+ V*V

SL“”

30
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Consequently
HM(X K5 )=0 Vg

Q.E.D.

From (2.10) we have

. q
(DD + DD)p = V'Vip + %ﬁf(z Ricy,)¢
j=1

Let ¢ = n, we obtain

Corollary 2.3.5 X as above.

If the scalar curvature r > 0, then
HOX, K5Y=0 fork>p
Ifr <0, then

HY(X,K5)=0 fork<p

From (2.11) we have

_ = kL Z .
(DD +DD)p =V'Vp + %“( Z Rici; )y
J=g+1

Let ¢ = 0, we obtain
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Corollary 2.3.6 Ifr > 0, then
H;”’O(X,KPE__:):O forp>—k
If r <0 then

Hc_,n’O(X, K 2_kk) =0 forp< -k

These are just the corollaries in [8].

Now applying (2.3.1) to L ~ K*3 ®@ L and |

RL ,\5

€51k 2

We get

2(DD + DD)yp

1 n
= (VYT g i 4 53N, - PR
+

o 1
> (V'V 4+ V) + = 5P -2-Z|f\sl

= (V*V+ V*V)p + %(2 - i D)

i=1

This gives the theorem of Michelsohn [8].

Theorem 2.3.7 Let X be a compact Kihler manifold equipped with o spin

structure and L be o hermitian line bundle over X. If the scalar curvature
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r satisfies the tnequality

r

7> Dl [
at each point, then

H" "X, K ®L)=0 Vg

We shall prove the following theorem under a weaker assumption. Both
the vanishing theorem of Kodaira and the vanishing theorem of Vesentini

are special cases of it.

Theorem 2.3.8 Let L be a holomorphic line bundle and fized an integer

¢, 1 < ¢ < n. If the eigenvalues Ay, ---, A, of R" satisfy the inequality
)\i1+"'+/\iq>0 1 < e Ky

at each point of X, where Rf;,gk = A;8;i then

H7"MYX,L)=0 1<q¢<n

Proof of the theorem is an immediate consequence of (2.3.1). Recall we

have a formula

(DD +DD)p = (V'V)p + (3 My )¢

i=1
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Corollary 2.3.9 Let L be a holomorphic line bundle, if Aj > 0 for all 3,
then

H" ™(X,L)=0=Hy (X, [*) Vg>1

This is just the vanishing theorem of Kodaira [5] for a negative line

bundle,

Corollary 2.83.10 Let L be a holomorphic line bundle, if Ay > Ay--- 2 -
An 20 and Ay, -, AL > 0, then

HI" "X, L) =0=Hg X, I*) Vg>n—k+1

This is just the vanishing theorem of Vesentini [5].
Remark: To construct the Clifford cohomology we have been using the

left Clifford multiplication. The analagous construction also holds by using

right Clifford multiplication.

In the latter case, we define
D=3 (Vee) ¢
2

D*p = Z(vcﬁo) ‘€
j
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Since CP# - ¢ C CP**™ and CIP? - € C CIP'*| where ¢ € T*° and
£ € T we have

ok - * * -
= Crtett I gpae B gppttet

Thus within the diamond we get the scheme:

\ D D* |
D* D
Let
A=DD+ DD

A* = D*D* + D*D*

Lemma 2.3.11 The operator A* — A acts as a derivation on I'CIX,W).




Proof: In the chosen local normal coordinates

- Z(Rfkfj‘f’) B vajv?j(fo
j
Ap = Zek €i(Reyz,00) — Z VeV
(A" — A)‘P = Z(Rﬁk;ﬁjcp) €t €5 — ng ’ Ej(Rek,e’j(P) - EREJ',EJ’W
ik J

Q.E.D.
If o = ¢ ® w where 0 € TCI(X),w € (X, wW).

(A*—A)go-——(A:[ Ag)o @ w — Za € - € ®RekE

5k
~2.% ¢ 0®R) w—0@R" w

EJC

We know that kernelA = kernelA* on I'(CI(X)) [8], then

(A*—A)cpz—-Zcr & & ®RY _w

€k, cj

—Zek € - 0®RZZE —-J®Rgf,gjw (2.12)

We see later that the formula (2.12) which appears so natural in the

analysis of Kéhler manifolds will play the same role as the N akano’s in-

equality.

Lemma 2.3.12 Let L be o negative line bundle over X. There 1s a Kahler

metric on X such that

Rl = —C%y

€74€k

where C? 13 o positive function on X.
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Proof: Let g{-, -) be the Kahler metric on X such that g{e;, &) = 16
and RY

i = —Aj 6k, Aj >0, 1<) <n. Define a new Kéhler metric
on X.

Choose a new basis.

_ 1 ~ _

e € = L . = .=

(&, &) = 2027:R€j.1€k since Jé&, = —iéy,
1 1

207 Vs

=4 b
2V
1
== 5 jk
2
Rl = R,
J 1tk \/_A:'\/X; J1%k
— C2
\/_A_J‘\/X; iVik
= ‘""Czé\jk

Q.E.D.
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By considering A* — A, the proof of the famous Nakano vanishing the-

orem becomes straightforward.

Theorem 2.3.13 If L is o negative line bundle over a compact Kihler
manifold X, then

HY(X,L)=0 Vg<0

Proof: We consider ¢ € I'CIP?(X, L), such that Dy = Dy = 0 <—>
Ap = 0. Without losing generality, we assume ¢ = o @ I, and apply (2.12)
to W = L we have

Aty = (A" Ay

= -S05-¢®R:

€k yC5

gk
— > @-o@RL 1-0c®Y RE._I (2.13)
5k i
By (2.3.10) we can assume Rf;.,gk = ~C%5;,

A*‘PWZO%"%'Ej®l+202€j-qo—®la®l—;—02ng®l

3 J
=C*o > €G-+ &ej-otnia)@l
i j

Since A* is non-negative, we see that ¢ = 0 for ¢ < 0
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Note that this is basically the proof in Michelsohn’s paper [8], but the
presentation is more transparent,

We use the following notation. To each (possibly empty) subset I =
{i1,--+,%,} € {1,--+,n} with complementary subset {i, ;- -,1,}, we as-

sociate wy = w;, «- - w; W;, ., -+ W;, where w; = —¢;€;,W; = —¢€;¢; and we

n

l‘r—s,r-}-s—n
(0

denote |I| = r. We set m, = }j;=, w1. Suppose o belongs to C
then from the proposition 6.4 [8], o can be written as ¢ = m, - 5+ 7, =

Yolll=r\Jj=s WI - 1 - Wy, Where 7 € Cl,,.
I3

Now we assume L be any holomorphic line bundle and R,

o®le Cl*" ™" & [ then the formula {2.13) becomes

= Ajbjk, p =

A*cp:—ZO’AJ"Ej'€j®l“z/\jgj'Eja_@l_z)\ja®l
j i J

== 00X & R+ Y Aego Rl
i J

= 2 (Zn: )\jk—i)/\ik)wrmwml (2.14)

|Tt=r,|J|=5 k=s+1 k=1
If L has the property such that Ay < Xy <2+, <A, <0, Aq,e0-, A, <0,

we know that [5], we can choose a new Kahler metric on X such that

RL

Ej" 1%k

and B < --- < B, with r + s < k, we have

= N6jr. {Al} satisfies the inequality for any indices oy < -++ < &

(Aifgl +'.-+)\bn—s)"_()\,0t1 ++A’0{1~) < 0 (2'15)

Suppose p € CE*® L, 1.e. p:r—s,qzr-}-s—norr:ﬂ'igﬂ,s:

2P r4s=n+4g<korg<—(n—k)then (2.15) holds. We already

know A*e is non-negative. Thus combining (2.14) (2.15), we retrieved the
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following vanishing theorem of Gigante and Girbau.

Theorem 2.3.14 If X is Kihler and c1(L) <0 with rank ci(L) = k, then
HY'X,L)=0 forq<—(n—k).




Chapter 3

In this chapter, as another application of Clifford cohomology, we sh.al.l :e}.c.—
amine the differential geometry, complex structure and topological proper-
ties of a spin complex hypersurface M of complex projective space CP”"‘1
In this case K3 ® T and its dual K*3 ® T are the holomorphic \.f_e;c'{'.,or
bundles we will investigate. We discuss the results concerning the ré.l.a;tion
between the second fundamental forxﬁ and complex structure of M by prov-
ing vanishing theorems for the bundle K*2 @ T*. In the case of an algebraic
hypersurface we can also compute the Euler characteristic x(M,K% @ 7).
Together with x(M, K I® T') we prove more delicate results.

3.1 Curvature tensor of complex hypersur-

faces of CP"™!

If CP™" is the n+1-dimensional complex projective space with the Fubini—

Study metric of constant holomorphic sectional curvature 1, then the cur-
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vature tensor R is given by

< RxyW,Z >= %{<X,Z ><Y, W >
—< X, W ><Y,Z >
+ <X, JZ ><Y,JW >
—< X, JW><Y,JZ >
2 <X, JY >< Z,JW >} (3.1)

where X,Y,Z and W are any vector fields of CP™* and < “y+ > denotes
the Kahler metric on CP"1!,

Now let M be an n-dimensional complex manifold which is a complex
hypersurface of CP™**!. Suppose that M is equipped with the induced
metric from CP"*!, By the equation of Gauss [10], the curvature tensor of

M is given by
< RYyW,Z >=< RxyW,Z > +{< AX,Z >< AY,W >

—<AX, W >< AY,Z > + < JAX, Z >< JAY, W >
—- < JAX, W >< JAY, Z >} (3.2)

where R, RM denote the curvature tensors of CP™! and M respectively,
and A is a tensor field of type (1,1), which is associated with the second
fundamental form IT of M.
Recall: Let M be a submanifold of M. The second fundamental form
i3 defined by
I{X,Y)=VxY - VxY

where V,V are the covariant differentiations of M and M respectively.
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Let us express the relation between A and 1T in local coordinates at any
z € M, when the complex codimension of M is 1.

Let ey, --en, Jer, -+, Je,, £, J€ be an orthonormal basis of T,M in a
neighborhood U(x) of @, where ¢, J€ are the unit normal tangent vectors

of M. Since < £,§ >=1in U(z), so < Vxt, & >=0. We define 4 by

Vxt=—AX +(SX)7E o (33)

ie. AX is the orthogonal projection of Vx¢ on TM.
H(X,Y) = VxY — VyY = h(X,Y)¢ + K(X,Y)J¢ - (34)

where 2(X,Y), k(X,Y) are symmetric tensors. From (3.3), we see
< VxtY >=— < AX,Y >

But e
VLY >= =< ViVE>=-h(X,Y) by (34)

Thus we have

X, Y)=< AX,Y >

In a similar way
BX,Y) =< JAX,Y >
It is easy to see A is symmetric with respect to < -, - >, and AJ = —JA.
From a theorem of linear algebra [10] we know that there exists an orthonor- ’

mal basis {ey,---e,, Jeq, -, Je,} such that the matrix of A is diagonal of




the form

i.e.
| Ae; = Aje;
o (3.5)
Ade; = —A;Je;
We extend 4 to a complex linear transformation of TM ®g C. From (3.5)
we have
Ae; = \jE
T (3.6)

We extend < -, >, to a complex symmetric bilinear form on TM ®r C.

We have
< €5, € >= 0
ok (3.7)
< €5, €6 >= %5;,’]:
From (8.2), (3.6), (3.7) we obtain the formula for the curvature tensor of

M in local coordinates as
< REj,GkEH & >
1 1
= _§(5pk§lj + 6p15jlc) + 'é‘/\jAk§jp5k! (38)

Recall: Let e1,Je1, e, Je, be orthonormal basis at « € M. The

Ricci tensor is defined as

Ric(X, Y) = Z < Rej,XY, e; > —J—Z < Rjej,xy, JEJ' >

J=1 i=1
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If M is a complex hypersurface of CP™, from (3.2)

Rie(X,Y) = <X, Y >-2<AX)Y >

n+1
2
Thus we have a formula of Ricci tensor in {e;, €&}

Ric(e;, &) = 0
Ric(e;, &) = (25 — AN6i

(3.9)

and a formula of scalar curvature

r=23) Ric;=n(n+1)--4) ! (3.10)
J=1 g=1

3.2 The vanishing theorems for spin com-
plex hypersurfaces of CP"+t1

When we consider the tensor product bundle K% ® 1™, the formula (2.3.1)
becomes useful in the study of the differential geometry of complex hyper-

surfaces of CP™, In this case we have
DD + DD) = V*V+K7*Y—7+§+RT* +R™ (3.11)

where r is the scalar curvature of M , I is the cotangent bundle of M.
Now we calculate the curvature terms RZ" and B7" in the chosen local

normal coordinates. For any ¢ € PCI™ (M, K*3 @ 1),

p=> a®q
{




where o € ICIT (M, K*%), g € D(X,T*), 1€ {1,...n}

RT‘(p = RT*(Z o1 ®E)
{

= Y R (aiwe)
i
= DD €& & 01 ® Ry, 8
1 J.hk=1
= 22 Z €+ € - 01®<Rej,ekq,ep>ep
! ;,v,kp—l
= "Z Z € " €k 01 @ (Oudp; + Si1pbin )2,
I 4kp=1
- Z Z €€ -0 D }\J')\k(%](skpgp
I dkp=1
1 id B 1 n ~ ~
= Z;ZIEP.EI-O‘[®EP+E;Zlej.ej-o—légel
= =
_ZZE('EP'O’;@)\]APEP
I p=1
1 n
= ZXI:X;Ep'EI'UI@)E ZZ)\[/\ € € - 0‘1®€p+ Z
= I p=1 -

We have the formula for RT*Cp

ZZGP & 0®RE, —sz\p\ €€ 01 QE, —I—tiZ:EJ '

! p=1 [ p=1 r—l
RTyp = RT*(ZJ,@;E,)

Z Z €J L JI®REJ skfl

i 7k=1

I

= 2y E €€k 0 @ <R, p 8,6 > 8,

I Gkp=1




1 n
_ __4_2 Y & ek 01 ® (86 61,851)E,
—~

In a similar way, we have the formula for R .

! p=1

o 1 n 18, i
R = P IPILEALLTESIPY My et 01DE+7 > & €jip (3.13)
I p=1 =1 AR

Note that from lemma 2.5 [§]

(i 58+ 3 ~E65)e = (n— 20)p - (3.14)

=1

When ¢ € PCI™™4( M), by (3.12), (3.13) and (3.14), the formula (3.11)

becomes

2DD + DD)yp

N r 1
=(VIVHV'V)p+ 2o+ 2(n—20)0

1 n T
-I-ZZZEP'EI-O’[@EP—ZZAIAPEI'Ep-(}r[@Ep

[ p=1 i p=1

1 n n y _
—ZZZEI'Ep'0‘1®Ep+22)\;)\p€p'61‘0[®6p (315)
{

p=1 I p=1
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where r =n(n +1) —4 37 A% or

2(DD + DD)yp

o 3 I
= (VT LSS,

+= ZZep &0y Q€ — ZZA[APGI'EP-D‘;@:E;

p-*l i p—-l _ B
—= Z Ze; € 01 Q€ + Z Z MApEp - € - 0y ® ep - (3.16)
! p=1 p=1

Remark

1. The hermitian inner product on Cl, is defined by setting :

(o) =<@,p>  forp, e Cl,

where < -,- > denotes the C-bilinear extension of the real i inner product

on Cly, to Cl, = Cl;, @5 C. The < +,- > on Cl, has the property that for

any unit vector e € R*®,

<ep, e >=< @, >
It follows that for any v € C** C CI,.
< v, th >= — < 0 > on Cl,

Consequently
(U991¢) = —(90:?77.5) (3‘17)

where “" denotes the complex conjugation.

2. We have the following identity.

Tell®=llee I* -+ & |I* (3.18)
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Since ;& + &e; = —1  j € {1,---n}

lell® = (%)
= (&0, ¢) — (Eiejip, )
= (&, &)+ (ejp,€50)  from (3.17)
= l&e '+l e II”
3. The hermitian inner product on Cl, ® W is defined as

(o1 ® wy,00 Q@ we) = (01702)‘:[ . (whwz)w

where o; € Cl,,w; € W and (+,-)%, (-, )"V are the hermitian inner products

on Cl,, W respectively.

In particular if ¢ € Cl, @ T* and ¢ = ¥, 07 ® €, in chosen local coordi-

nates, we have following formulas which will be needed later.

e I

(XI:O—I ® El) Zo'p ® Ep)
= Z(Uh%)(a:gp) |
ILp ‘
1 3 |
= 5212” o |
2l ¢ | = ;Il o || (3.19)

If o € Cl,,® L, L is any holomorphic line bundle, then ¢ = ¢ ®[. Since

we can choose local coordinates such that [ is a unit vector so

lelP=1ol’ (3.20)




4. Let V be a vector space and V] -

the inequality.

Since

First we are going to compute the formulas for some terms in (3.16).

A

(A

12Vl

i=1

“=" holds iff {V;} are linearly dependent and R

i

{
<1V
=1

Vil

%Z(nvn HIT )
VI I 1
ARDINEAP

D_Nvie

i=1

1 n
(_ZZZEI € -U;@gp,zaa@) Eaf)
I p=1

1 _
= '_g Z(fl " Ey O'l;o'o:)
foe

1
= g Z((EQEI + 6&,[3)‘71; acx)
lee

for ¢ # j.

50

-+ V) be any [ vectors of V. We have
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1 1

= —8— Z((—:O,E[CT[,O'Q) + '8_ Z ” g ”2
lLa {

— _% g(aa;, €ala) -+ %H Ak
1 - g2 1

=Y an [ + 3 o | (3.21)
8" 4 4

In a similar way

( ZE@E: 1@ &, Y 00 DE) = ——II Zem I° (3.22)

p=1
( ZZ)‘M € Cp- al@ep?ZJa@’GQ)
Lop=l S
= -*5” Z)\IGIO'[ ” + 5 Z)\?” o7 ”2 (323) .
! 1 : Sl
X AN a1 Q6 Eaa ® ) = —"II Z)\ge;m [ -(3 24)_;;:._-___-:,___:.
I p=1 R

Then from (3.21), (3.22), (3.23), (3.24), the formula (3.16) has the forrn e

n’+3n—4q ||2 e

2Ap,p) = (V*Ve+ V'V, p) + 2 S I
- —;VIWII ——HZerzII G
IS xem gl I+ meu (325)"
Let M = V™d) = {[Zo++ Zpy] € CP Y P(Zy+ - Zpyy) = 0}, where

P (Zy -+ Zuy4) is a homogeneous polynomial of degree d, such that
VP(Zo:++Zpy1) # 0. We call M a non singular complex hypersurface of
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degree d of CP™', We Luow that ¢,(V™(d)) = (n 4 2 — d)yw, where w is
the canonical generator of I 2(Vrd), 7).

V™(d) is spin <= n - d is even,

CP” is a submanifold of CP™+ with degree 1. CP" i5 spin iff n is odd.
CP" can carry an induced metric with X; = 0 for all J- The formula (3.25)

becomes

. - n’+3n —4q + 2 1 _ 2
20p,0) = (V*'Vi + V"V, ) + sl P~ 5l e |
)

. S n®+43n+2-4g —4n
> (V*'Vi + V¥, ) + . e |”

. = e n®—n+2-—4
= (Ve Vi) 4 220 e

Let 0<g<n—1

ABp4) 2 (V'Y 4 T, (2D =8y

We have the following vanishing theorem for cpr,

Theorem 3.2.1 For n >5
H(;R*FQ.Q(CPW.,I(*% ® T*) =0 fOT‘ 0 < g<n-—1
Thus

XE3QT) = dim,H (Cp», b ®T)
= dim Hy"(CP™, K*} @ T




and

H™(CP? K3 T")=0 g

Recall the definition of Euler characteristic of the holomo Hi
bundle W [10]
x(W) = Z( —1)dim H35 (X, W)

g=0

Now we consider another special case

=0

M =0u(C) = {[Z- Zupi] € CP™ 3 72 ; 0}

is spin iff n is even. In thig case we know that ); = 1 for all.-_z 10
formula (3.25) becomes .
n® + 3n — 4q

3 .”.-?D I

AApip) = (V'Vip+ V'V, 0) +
= glel g San |

- e+ 2 +1n o’

—2n —1—4 .4q

2 (VVet V)4 el (326)

Using the fact

I e+ Do | < @ X0 o0 )+l o ) =‘@’H o1 | = 2nlf g




Plugging ¢ < n — 1 into (3.26) we have

208, 0) 2 (V'Vp + V'V, ) + (-

Therefore we obtain the following vanishing cohomoIogj.' the

Theorem 3.2.2 Forn > 6
H™(Qu(C), K @T") =0  for0<g<n
Thus

X OT) = dimHp(Qu(C), K 9 T)

= dim Hy(Qu(C), K @ T%)

and

H"(Qu(C), K5 @T) =0 0<q¢<2

H™(Qy(C),K* @ T*) = 0

Now we estimate (3.25) for the general case, i.e. We"a's"éuﬁi' X

An > 0, not all \; are equal.

2(80,0) > (V'Vo+ V'V, o)
n? 24 net,
+ el K4 et P L

0= P Xl e I (3.27)
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Case 1: If A} < £ then (3.27) becomes

N s n®—n42_—4 n—1
2Ap,0) > (V*Vop+ V"V, o) + ( L e

8 8
. - n’~2n4+3—4
= (V'Vp +V*Vp, ) + 3 e

Suppose 0 < g < n 1

. S n? —6n+4 7
2A¢,0) > (V*Vp + YV, 0) + I

- (3.28)

Case 2: If Ay > ?]i then (3.27) becomes

. - nf—n+2-4¢ n-1
A80:0) > (VVp+ T Vip,p) o (T2 DLy e

ISl - 2n0 - Dy P

. o n®-8n--2—4
= (V'Vo+ V*Vp, ) + L)

8
e (3.29)

Then (3.28) and (3.29) give the following vanishing theorem.

Theorem 3.2.3 Let M be g spin complex b

duced metric.

ypersurface of CP™ 1 with in-

If the eigenvalues of the second fundamental form of M
satisfy

2
2 _N°—n+6
/\J-<

—_— iy
SqEnoq)  Jorad

then forn > 5

H" (MK @T)Y =0 for0 < g<n—1




XEP@T) = dim A3 (M, K} o T)

= dimAY (M, K" @ T")

3.3 Euler characteristic of the holomorphic

vector bundle K% QT

3.3.1 Chern character, Todd class and Riemann—Roch—

Hirzebruch Theorem

The reader who needs more details may consult, for example [3], [11]. Let
W be a complex (differential) vector bundle over M, where r = rank W

and M is a defferentiable manifold of real dimension m. Let
o(W)=1+e(W)+ -+ c (W) |

be the total Chern class of W which is an element of the cohomology ring o
I*(M, C). The multiplication in this ring is induced by the exterior prod- |
uct of differential forms. One can use the de Rham groups as a representa-
tion of cohomology. We introduce a formal factorization

r

(W) =1[1+=)

i=1
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where z; € H*(M,C). In fact ¢;(W) are the element:a,r'y symmetric func-

tions of the (z1,---2,). Then any formal power series iy zy- -z, which is

symmetric in (zy,---2,) is also a power series in el(W), - cT(W) There-

fore we define formal power series in the Chern classes of W as follows.

r

T(W) =] —=

— T
i=1 e

ch(W) = ée‘“

where T(W) is called the Todd class of W and ch(W) is called Chern
character of W.

Now we recall some functorial properties of the Chern classes, Chern

character and Todd class.

Suppose that W and W' are differentiable C-vector bundles over a
differentiable manifold X. Then

1)If¢:Y ~— X is a differentiable mapping where Y is a differentiable
@

manifold, then
A" (W)) = p*(c(W)) |
Consequently |
T(¢"(W)) = ¢*(T(W)) |
ch(p™(W)) = " (ch(W))
where ¢*(W) is the pull back vector bundle and p*(c(W)), p*(7 ( W), e*(ch(W))

are the pull back of the cohomology classes (W), T(W),ch(W) respec-
tively.

(2)
(W W')=c(W)- (W)




Consequently

T(WaoW") =T(W)- T(Wf.)____
h(W & W) = ch(W) + chW' - (3.32)

ch(W @ W') = ch(W) - ch W - (339)

where the product “.” and the addition “+” are in the de._R,_:li_ia;m_go}_ig.ﬁi:plogy
ring H*(X, C). g -
(8) If W™ is the dual vector bundle to W then

ci(W*) = (1) ¢;(W)
In particular if W = L is a complex line bundle
(L) = ~ex(T)

Thus

chl = ()

chL* = ¢~a(D)

Recall the definition of Euler characteristic of the hold;ﬁbrbﬁié.':{,écfér
bundle W SR

(W) = X(M, W) = 3_(~1)dim Hp%(M, W) -
= S
Note that dim Hpd (M, W) depend only on the complex structures of M

and W. However, it is a remarkable fact that x(W) can be expressed in

terms of topological invariants of the vector bundle W and of the complex
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manifold M itself. This is the well-known Riemann-Roch theorem of Hirze-
bruch. We will use it when we compute x(V"*(d), Kt ® .

Theorem (Riemann—Roch-—Hirzebruch)-

Let M be a compact complex manifold and let W be a holomorphlc

vector bundle over M., Then
X(W) = {ch(W) - T(T(M))}[M]

where T(T(M )) is the Todd class of the tangent bundle of M; ch(W) is
the Chern character of W,

3.3.2  The formulas for x(VMd), K3 @ T) |
First let us compute ch(TCP™h), T(TCP™). Using the equatioﬁ [9]
n+2

tion bundle of CP**1,

Proposition 3.3.1 We have the following formulas for P+,
1. ¢(TCP™") = (1 4 w)n+?

2. ch(TCP““) =(n+ 2)e¥ 1

5. T(TCP™!) = (= )nt2

TCP™)@e' L& - & L=@rL - (334)

where ¢! means trival line bundle of CP™! L means the hyperplane sec—__":._' TR



where w is the generator of e;(L).

Proof:
1. From (3.30), (3.34)

o(TCP™Y) . ofe)) = (o(L)y™?

Il

(1 +w)™? since e(e) :
2. From (3.32), (3.34)

ch(TCP™ ) 4 ch(e) = (n 4 2)chL also ch(e’)..:._:_'._ 1,¢ch
3. From (3.31), (3.34)

T(TCP™)-T(s") = (T()**

Note that T(L) = —(X)

1—e—c1{L) = l—gmw

Let j : V™{(d) — CP™' i5 holomorphic 1mbed i n_
restriction of the tangent bundle of CP™ gover V_” )
F(TCP™). We get an equation on V*(d) [6].

TV eLrt=T (3.35)

where L? = L ® - .. @ I restricted to Vr(d).
d




Proposition 3.3.2 We have the following fo}-mu_l__a
1. h(T(VH(d) = j*((n +2)e" — 1 — edw)

2. T(T(V™(d))) = j* (=g - 1555°2)

Proof:
1. By (3.32), (3.35)

h(T(V™(d))) + §*(chL)* = eh(T

(ChL)d = (D) edw

M(T) = ch(j*TCP™1)
= j*(ch(TCP™))
= j"((n+2)e* =1

follows from proposition (3.3.1)
2. By (3.31), (3.35)

T(EV"(@) - (T () = T(D)

T(L) = - all) _ - dw

—eall) T L—gdu

Since ¢ (L?) = dw T(T) = j*(T(TCPani).:):'.i
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Proposition 3.3.3 Let K be the canonical fine bundle over V*(d). If

V™(d) is spin, i.e. n-+d is even, we have

ch(K%) = = T

Proof: Since

K=K} g K} |

then chK = éhK?% - chK% = (ch, K7)2, We know that
chKl = 1K) = c—a(Vr@) _ ~(nt2-d)j*w

This gives (3.3.3). Q.E.D.

Theorem 3.3.4

2V, KT @ T(V>™(2t))




6t

i\ 2ttt

S (0m+2)

(=0:-':_'_§ o

o
2041 )

m .

3 (@m +2)

{=0 \
2m + 2
2041

6m+6
2041

&
2t -2
20141
[ o

(2m -+ 2)

~ . g

NE

—
Il
o

NE

.._.
I
=]

3t—1-1

m—1

(2m—|—2
KZI-I—I

3m—-1-1

m —

( om +4

(m+1-1)
2041

Im+2-—1
m—
2t + 2
204+1
t—2-1

t—1

m — 1

m —{
t—1-1
m — |
J3t—1-1

m—

when ¥ < ﬂ%tl

when _~t_m3 L <t <m.

when t = m.

whent:nﬂ.@—'!—_'l




Theorem 3.3.5

0

=0 \ 2]
-
> (2m +3)
=0

22m+2x(v2m+1(2t + 1)’1{% ®

m+1 6t 4 3




C(V™(d))) d
dw (,’%J_)n-i-z 2sinh 2 w "
— ¢ )(sinh w2y HV™(d)]

(3

& d
dwy__ 227 nh — CPn-H
L )(Sinh L;)n+22‘9m v 5 wil ]

oy ()"

Toinn @iz 2sinh o 3.36
3 (Smh%)nHQsmh 5 W ( : 3)

wie, f(w) =52, L2%* and w1 [CP™]

_C.), p < n+ 1 Thus by applying the: .

analytic functions, i
_ fn-i-l(o)
 (n4 1)

1 Hz .,
—=—dZ
271'3- ]Zl:g Z‘ﬂ+2

of f(Z). We denote'm_z"fj_y:_'Z:"-

$2) = ((n +2)e0sh Z =1 conh dZ)(— L )"+ (2sin

ST




fo(Z) =((n+ 2)sink Z — sinh dZ)( )”+2(23mh Z)

For dimensional reasons, in fact we have

for n = 2m

1 z
X(V*™(2t), K% @ T(V*™(2t)) = Dy /I Zis j,;gﬁ)g dz

for n=2m-1

Z)
2m+1 1 2m+1 1)) = f2(
X(V (24 1), K3 @ T(V (24 4 1)) = = /m_a S ldz

The calculation of o i J1zj=e %dZ

L,

i Jzjme ZImH2
1 1 (2m 4 2)cosh Z sinh t2
T 9mmil -2_?5/[ [=e (stnh %)2’”“

1 f sinh tZ

R —_—
| Z|=¢ (Sinh §)2m+2

dz

dz

2w
1 /’ cosh 2tZ sinh tZ
|Z|=¢ (smh _-22_)2m-§—2

Z}

27

du = %dZ
1 fi(Z)
d
o z

2wy |=e Zm+2

U

2zm41 Loy
1 2sinh 2tu
g /!ul=?r (sinh u)2m+2
1 2cosh 4tu sinh 2tu
2 /,u|-'n (sinh u)m+2

1 1 / (2m + 2)2cosh 2u sinh 2tud
fuj=n

(sinh u)2m+2

du}

271

Using the identities

2sinh x cosh y = sinh (z +y) + sinh (z —y)




sinh (—z) = —sinh z

Ly La,

2m je £ 22

1 1 (2m + 2)[sinh (2t + 2)u + sinh (2t — 2)u]
N 22_’“"5{% /|u]—_~n (sinh y)2m+2

1 sinh 6tu
2w /]u]m; (sinh u)?m+2
1 / sinh 2tu

271 Jyujen (sinh u)m+2

du

du}
The calculation reduces to computing the integral

lf sinh 2pu du

57?; Jul=e (S@nh U)2m+2

1 ] bl 2p (sinh w)* 1 (cosh u)»~2-1

~ oms lel=e 129 \ 21 +1 (sinh w)m? .
p—1 2 \
= —1-/ Z P W"“m—1+l(1 + W)p_l_ldw
27”.’: {w]:n I—0 21 _|_ 1 ) )
- _l—f > 2 W—m—iﬂpil p—1 _1 i
23 Jjwl=y (= 20+1 ] k=0 k
__1_/ P—lszzlfl 9 ol 1 :
L= = k
? —i-1 i
) Dy P p .
= 20+ 1 m— 1
° otherwlse

"Note that W = sinh? u.

In a similar way one can compute 3 fizi=2 73%(,;)5612

du




3.4 Some applications

We already knew that Clifford cohorﬁo_log
defined by the Kahler metric, reflect the .c_omp. o

while x(W) is a topological invariant. Th istn gives a nat-

ural way to study relations among the comp

‘Riemannian

geometry and the topological propertie's-o'fl th The '_followings

are some results in thig vein.

Theorem 3.4.1 Let M be the complex p%‘o;e_c odd. Then

forn>35

H;”+q’q(CP”,I{*% ® T*)
and |

H‘;n+q:9(CPn’ I{*% ® T*) — S
dim, H.

Theorem 3.4.2 For n > 6, n even,

Hc—[-'rl.+q,§'(Qn(C), I{*%
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and

0 =0,1,2
Erc—ln+q,q(Q4(C), K*3 ® T™) q ’
dim HY +1 = dim H;"®

—n wl . 0 =0
B (@u(o) ko= {° 1= N
dim H 7 =dimH;"

Finally the theorems (3.2.3), (3.3.4) and (3.3.5) give the followmg the— :

orem,

Theorem 3.4.3 Let M be g complez b

ypersurface imbedded in CP’""""1 wzth_: L
the induced metric and assume ¢\ (M) is even. If the ezgenml'u,es of the..' =

second fundamental form of M satisfy

2
2 N°—n+4+6

L

NS 1)

Jor all j, then for n > 5, degree (M) < [22],

This follows from the following lemma, which can be proved by elemen—

tary estimates in the theorems (3.3.4) and (3.3.5).

Lemina 3.4.4 Jf V*(d) be o spin manifold, then for n > 5

0 0 < d < 2t2
x(V*(d),K: @ T) = ’
<0 22 <g<y




In particular, when M has complex dj

for all j, then M has degree 1, i.e. M is thé_' om

In the situation when M has complex dimensio

we get the estimate on the eigenvalues of the s

M which guarantees M has degree 2.

Corollary 3.4.6 Suppose that M is as in theore

of the second fundamental form of M mti.ﬁfy




for all j then M is an algebraic
complex hypersphere Q,(C).
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