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Bounding topology by Ricei curvature

in dimension three
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Shun-hui Zhu
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n
Mathematics
State University of New York at Stony Brook

1990

A general problem in the study of the relations between curvature and
topology lies in understanding which results concerning sectional curvature
continue to hold for Riceci curvature. Recently, J. Sha and D. Yang gave
examples which show that certain results such as Gromov’s estimate on the
Betti numbers and Cheeger-Gromoll’s Soul Theorem, can not be generalized

to the case of Ricei curvature. In this dissertation, we prove several positive

i




results in this direction.

Our main result is related to the finiteness theorems of Cheeger and
Grove-Petersen. These results say that the class of manifolds with a bound
on sectional curvature (an absolute value bound in the former and a lower
bound in the latter case), an upper bound on the diameter and a lower
bound on the volume contains only finitely many diffeomorphism types.
We tried to replace the lower bound on sectional curvature by a lower
bound on Ricci curvature, and succeeded in proving a finiteness theorem in
dimension three. In the mean time, we also prove a result in the open case
for manifolds with nonnegative Ricci curvature. This serves as the local

model for the class considered above.
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Chapter 1

Introduction

The goal of this dissertation is to establish some results which relate the
topology of a Riemannian manifold to its Ricei curvature, a general problem

of considerable current interest.

The past thirty years have witnessed very considerable achievments in
the realm of Riemannian geometry. Omne of the central lines of develop-
ment has centered around the attempt to generalize the 1-Pinched Sphere
Theorem. In particular, much of the work was about sectional curvature.
In contrast, the progress in the study of Ricci curvature is a more recent
event. Let us now briefly review the development relevent to our study and

postpone stating our results until the end of this introduction.




The 1-Pinched Sphere Theorem [Ra][K1][Be] says if the sectional curva-
- ture of a manifold satisfies $ < Kps < 1, then the manifold is homeomorphic
to a sphere. Here a model space is needed. W. Ambrose [Am| made the
first attempt to generalize this to a comparison theorem between arbitary

two manifolds.

In his thesis [Chl] (1967), J. Cheeger took a step further and proved

the celebrated theorem now known as Cheeger’s Finiteness Theorem.

Theorem (J. Cheeger[Ch2], S. Peters[Pel]) There are only finitely

many diffeomorphism types in the class of n-dimensional Riemannian man-.

ifolds satisfying
| K(M)|< A%, Diam(M)< D, Vol(M)>V,

where K(M) is the sectional curvature, Diam{M), the diameter, and
Vol(M), the volume of M.

This indicates that, with a bound on sectional curvature, the diffeomor-
phism type of a manifold is controlled by its size, namely, a restriction on
how big the manifold can be (by diameter) and how small it can get (by
volume). ‘The crucial idea of the proof is to show that under the given
assumptions there is a lower bound on the injectivity radius, and hence a

control on the local topology.

Twenty years later K. Grove, P. Petersen and J. Wu got essentially




the same finiteness conclusion without assuming an upper bound on the

sectional curvature. We will state their theorem later.

In the time between these two results, there were two developments

directly related to Cheeger’s Finiteness Theorem.

The first of these is a metric version of the theorem now called Cheeger-
Gromov Compactness Theorem [GLP] [GW] [Pe2]. Roughly speaking it
states that the bounds control not only the topology but also the metric
of Riemannian manifolds. To obtain a statement which is optimally sharp,

one must use harmonic coordinates instead of geodesic normal coordinates.

The second is the remarkable result of M. Gromov, estimating Betti

numbers by sectional curvature and diameter.

Theorem (M. Gromov [Gr]) For the class of n-dimensional Riemannian

manifolds satisfying

K(M)>—A®,  Diam(M)< D
there is a constant C = C(n, A, D), such that

| Y b(M,F) ¢,

where F 1s an arbitary coeficient field and b; is the i-th Betti number.

The lens spaces with constant curvature and the family of 7-dimensional

examples of S. Aloff and N. Wallach [AW] show that a lower bound on sec-
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tional curvature and upper bound on diameter do not imply finiteness of
hofnotopy types. Thus Gromov’s result is the best possible, given his hy-
potheses. The principal technique employed in the proof was introduced
by K.Grove and K. Shiochama in their proof of the Generalized Sphere The-
orem [GS]. It involves a generalization of the isotopy lemma from Morse
theory to (not everywhere smooth) distance functions on Riemannian man-
ifolds. This is used in conjunction with Toponogov’s Theorem on geodesic

triangles.

Prior to the work of Grove-Shiohama, Morse theory, as applied to Rie-
mannian geometry, had mainly been used in the study of variations of
geodesics. Here the function is the length function, defined on the loop
space. The distance function, however, is defined on a manifold itself and,

through its Hessian, is directly related to the curvature.

After Gromov’s work, several striking applications of this generalized
Morse theory appeared. One of these (which was alluded to above) is the

following,

Theorem (Grove-Petersen-Wu [GP] [GPW]) There are only finitely
many homotopy types in the class of n-dimensional Riemannian manifolds
satisfying

Ky > =A%, Diam(M) < D, Vol(M)> V.

And if n # 3,4, the class contains only finitely many diffeomorphism types.




By comparison with Gromov’s result, one sees that a lower bound on
the volume is exactly the data needed to make the transition from bound-
ing Betti numbers to bounding homotopy types. The remarkable feature of
the theorem of Grove-Petersen-Wu is that for their class, there is no bound
on the injectivity radius. This is illustrated by the exmples of cones with
rounded tips. Roughly speaking, they showed that this example illustrates
the worst that can happen. Thus instead of an apriori bound on the injectiv-

ity radius they got a bound on the so-called geometric contractibility radius

(for the definition see Chapter 2). This amount of control on the local

topology is enough to imply the finiteness of homotopy types.

In the three theorems cited above, Toponogov’s Theorem was an es-
sential tool (although E. Heintze and H. Karcher were eventually able to
reprove Cheeger’s estimate on the length of closed geodesics using only lo-
cal geodesic variations). The Morse Theory of distance functions plays an
indispensable role in the later two theorems, and the implementation of
this theory relies heavily on Toponogov’s Theorem. This powerful global
theorem holds only for sectional curvature, there is no satisfactory gener-
alization known for other curvatures, in particular, for Ricci curvature. As

a consequence, the following question is extremely challenging.

Question. Do the above three theorems hold if the bound on sectional

curvature i3 replaced by that on Ricei curvature?

'To be more precise, what can we say about the following three classes




of manifolds?

I ={M"|Ric(M)> -H? Diam(M)< D}
I ={M"|RicM)> ~H?, Diam(M)< D, Vol(M)>V}
II = {M" | M open, Ric(M) >0, Vol(Bp(r)) = cr"}

Class ITT is closely related to class II. Essentially it serves as a local
model for manifolds in class II. To see this, simply scale the metrics in class
II by an arbitary large constant, then the curvature has a lower bound
arbitary close to zero, the limit situation is the case of nonegative Ricci
curvature. The volume growth condition follows from standard comparison
theorem ( see Lemma 2.2 in Chapter 2), and notice that it is invariant

under scaling.

The only tools presently at our disposal for the study of Ricci curva-
ture are the Bishop-Gromov volume comparison theorem and the Laplacian
comparison theorem. So far these theorems have yielded scant information
about the behavior of geodesics, whereas, in the case of sectional curvature,
controlling the behavior of geodesics is typically a powerful step towards

controlling topology.

The difference between Ricci curvature and sectional curvature was first
convincingly demonstrated by the ingenious examples of J. P. Sha and D.G.
Yang. They used the techniques of a semi-local surgery and warping. Later,

by a different method, M. Anderson got a related family of examples. Let




us state it as the following.

Theorem (Sha-Yang [SY1] [SY2], Anderson [An]) For any n, there

are metrics on §7_,S% x 5%, satisfying

Ric>0,  Diam<1.

These examples show that Gromov’s result does not generalize to Rical

curvature.

We mention in passing that there are other instances of the success
of warping techniques in constructing metrics of positive Ricci curvature;
see the works of J. Nash [Na], L. Berard-Bergery [Bb] and G. Wei [Wel].
Apart from families of examples constructed by algebraic geometric means
(Gromoll-Meyer [GM], Anderson [An]), and by use of Riemannian sub-
mersions, warping is the only method which has proved successful in this
context. In fact the use of Riemannian submersions is the only way known

of constructing metrics with nonnegative sectional curvature.

By gluing together two copies of T(S?) with a slightly deformed Eguchi-

Hanson metric, M. Anderson [An] also showed the following,.

Theorem (M. Anderson [An]) There are metrics on S? x S* satisfying

Ric>0, Diam<5, Vol> %




and with arbitery short closed geodesics.

This implies that a control of local topology in the form of a lower injec-
tivity radius or geometric contractbility radius bound no longer holds for
class II. As for class III, which tells us what to expect for the local structure
of a manifold in class IT, we have the examples of Eguchi-Hanson metric
on T(S5?), and the gravitational multi-instantons of Gibbons-Hawking and
Hitchin. These are complete open Ricci flat manifolds whose metrics are
asympototically locally Euclidean (ALE), namely, the metrics approach
that of a cone over lens spaces near infinity. They show that the manifolds
in class IT locally can be as complicated as these ALE spaces. But let us
notice that these examples are of finite topological type. And the metrics
on f3.,5% x §? in the previous theorem have volume roughly %+, and hence
no lower bound when n — co. Let us also mention that using an infinite
version of the gravitational instantons, Anderson-Kronheimer-Lebrun con-
structed four dimensional Ricci flat manifolds of infinite topological type
[AKL]. but these examples have volume growth on the order of ri—. We

thus have the following conjecture.
Conjecture. The class II contains only finitely many homotopy (or dif-
feomorphism ) types, and any manifold in class IIT has finite topological

type.

The first result that supports this conjecture is the following,




Theorem (M. Anderson [An]) There are only finitely many possibilities

for the fundamental groups of the manifolds in Class IT.

This shows the bounds in class IT control the fundamental groups. The
proof of this theorem uses a volume comparison argument to get a bound
on the length of geodesic loops whose homotopy class is nontrivial to a high
enough order. Then one applies a general theorem of M. Gromov [GLP]
concerning the realization of generators and relations for the fundamental

groups by loops (which have length comparable to the diameter).

With regard to homotopy types, let us notice that all the above ex-
amples, which demonstrate difficulties for proving the conjecture, are in

dimensions four and higher.

Let us now consider dimesion three. Being an average of sectional cur-
vature, Ricci curvature provides stronger constraint in lower dimensions
than higher ones. In dimension 3, Ricci curvature is particularly strong, In-
deed, in dimension 3, the Weyl conformal curvature tensor always vanishes.
Hence the full curvature tensor can be recovered from Ricci curvature(this
shows that a bound on |Ric| in dimension three implies a bound on |Kp|,
thus the nontrivial case is with only a lower bound on Ricei cuvature). This
algebraic point allowed R. Hamilton to obtain via the “Ricci flow” method

the spectacular result that a three manifold with positive Ricei curvature

necessarily admits a metric with constant positive sectional curvature [Ha).
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We mention that from the view point of geometry, Ricei curvature enters
the variation formula for minimal hypersurfaces. Schoen and Yau [SCY]
used the theory of minimal surfaces to prove that any open three manifold

with positive Ricci curvature is diffeomorphic to R,

Thus we might summarize the above paragraphs by saying that Ricci
curvature is known to yield information about the fundamental groups and
about minimal hypersurfaces. However, in dimension three, in order to
control topology, essentially we have only these two cases to worry about.
This suggests that a finiteness theorem for class I in dimension three might

hold. Our main result confirms this.

Theorem 1.1 There are only finitely many homotopy types for the class
of three manifolds satisfying

Ric> ~H? Diam < D, Vol >V,

A closely related result is contained in the following noncompact (or

local) version of Theorem 1.1, for the class IIT,

Theorem 1.2 Let M3 is o complete open three manifold satisfying

Ric >0, Vol(By(r)) = er®.

~ Then M is contractible.
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It is appropriate to note that the classification of complete open three
manifolds with nonnegative Ricci is not yet finished. Let us point out
that with an additional assumption on the sectional curvature, Anderson—
Rodriguez [AR] and W. Shi [Sh] did give a classification. This kind of
additional assumption on sectional curvature in studying Ricci curvature
is also present in the works of Abrecsh—Gromoll [AG] and Z. Shen [Sn].
Roughly, for open manifolds, Ricei curvature yields the subharmonicity of
Busemann functions and related estimates on distance functions, But to
control the topology through the Morse theory of distance functions alluded
to above, Toponogov’s Theorem has to be used, and hence an assumption
on the sectional curvature. These and other similar results in pure Rie-
mahnian geometry ( apart from the Cheeger-Gromoll Splitting theorem,
Gromov’s precompactness theorem and the recent result of M. Anderson
concerning compactness under Ricci curvature bounds ) again illustrate the _
difficulty of dealing with Ricci curvature in the absence of other hypotheses

on curvature. This is what makes Theorem 1.2 interesting.

In the rest of the dissertation, we give the proofs of the two results

mentioned above.
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Chapter 2

A finiteness theorem 1n

dimension three

In this chapter, we prove Theorem 1.1 and Theorem 1.2. For the sake of
clarity, we will first prove Theorem 1.2 . Qur idea of the proof follows that
of Schoen-Yau [SCY], except that in the case of the fundamental group, we
will use a volume comparison argument instead of minimal surfaces. This
argument has been used by M. Anderson in [An]. The proof of Theorem
1.1 runs along similar lines. But in this case, since we do not have the
Cheeger-Gromoll Splitting Theorem and since essentially we are working
©on a noncomplete manifold, some technical difficulties have to be addressed.

For the sake of exposition, in the first section, we give the proof of a topo-
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logical lemma. This lemma will be needed in the proof of Proposition 2.1.

2.1 A topological lemma

In this section, we prove the following topological concerning fundamental
groups of three dimensional manifolds. A basic reference on this subject is

the book by J. Hempel [He].

Lemma 2.1 Let M C int(N) be two compact orientable three maﬁifolds
with nonempty boundary. If wo(M) — m(N) is trivial, then m(M) is

torsion free.

Proof. Let M = %, M; be a prime decomposition of M. Since
(M) = m(My) * w1 (M) * -+ - % m(My), a free product, we can as-
sume that M itself is prime. Without loss of generality, we can assume
m(M) # {e}. we first prove that 7;(M) is infinite. In fact, if we de-
note by M the manifold by capping off all _two—spheres in M by three
balls, then we claim that M is not closed. If it were, then OM would
only consist of two-spheres. Since my(M) — wo(N) is trivial, each S? in
OM separates N. Moreover, at least one component of N — 52 is com-
pact and simply connected. In fact, if neither component were compact,

it would follow from Poincaré duality that each such S$? is nontrivial in
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m3(N). If none of the compact components were simply connected, lifting
to the universal covering space, duality would again imply that each such
S? is nontrivial in 72(N) . Hence we have that each S? in M bounds
a homotopy three ball in N. If one of such $? bounds a three ball con-
taining M, then M is simply connected. This is a contradiction. So all
2-spheres in OM boﬁnd in the exterior. By adding these homotopy three
balls to M, we get a closed three manifold embedded in a three manifold
with nonempty boundary. This is impossible. So M is not closed. By tak-
ing the double of M , we obtain a closed three manifold M Us iz M. Hence,
0 = x(M Uy M) = x(M) + x(M) — x(8M). So x(M) = Lx(8}) < o.
On the other hand, x(M) = 1 — b(M) + by(M) — b5(M), where b; is the
i-th Betti number. Since M is not closed, we have bs(M) = 0. There-
fore bl(H ) =21+ bg(ﬂ )} 2 1. By Mayer-Vitoris sequence, we obtain
by (M) = by (M) > 1. So m(M) is infinite.

By the method of contradiction , we now prove #1(M) is torsion free.
If not, let G be a finite subgroup of = (M), and let M, be a covering space
of M such that p.(m(M;)) = G. Using the same notation as before, we
have wl(ﬁl)' = G. Let M, be the universal covering space of ﬂl. Then
Wg(ﬂl) = 0 since M, is prime and orientable. We claim M; is closed.
Otherwise, by the Hurewicz theorem, H;(M;) = Hi(M,) =0 for i > 2.
Hence H;(G) = 0 for ¢ > 2. This is not possible since G is finite. Therefore
M, is closed. Hence M, is compact and its boundary consists of two spheres.
It then follows that M; % M is a finite covering. So my (M) is finite. This
Q.E.D

is a contradiction. Thus m;(M) is torsion free.




2.2 Proof of the open case

In this section we give the proof of Theorem 1.2. Our argument follows
closely that of Schoen-Yau [SCY]. The strategy is to prove that m (M) =
mo(M) = 0. Since M is open and of dimesion three, thus Hi(M) = 0, for
all K > 3. By the Hurewicz Theorem, we have m(M) =0forall k > 1.
Hence M is contractible by the Whitehead Theorem.

Let us first prove (M) = 0. If wy(M) # 0, then mo{ M) # 0, where M
is the universal covering space of M, the Sphere Theorem in three dimen-
sional topology says that there exists an embedded S? in M which is not
homotopically trivial. If M\ $? were connected, we could take a loop in M
intersecting S? at exactly one point. This loop could not be null-homotopic.
This would contrdict m(M) = {e}. Thus S? divides M into two connected
components. By Van Kampen’s theorem, each component is simply con-
nected. If one of these were compact, then since $? is an trivial element
in H, of the compact set, thus by the Hurewicz theorem it 1s trivial in my.
This is a contradiction. Therefore, S? divides M into two noncompact com-
ponents, now the Cheeger-Gromoll Splitting Theorem ([CG]) implies that
M is a product of a line and a compact two manifold . Let T,(%) be the
r tubular neighbourhood of T of radius r. then Vol(T, (X)) = r - Vol(Z).
It is easy to see that the volume growth condition in Theorem 1.2 is sat-
isfied for any point. We can thus assume p € X. Then it follows that
Vol(By(r)) £ Vol(T,—piam(zy (X)) = Vol(R) - (r — Diam(X)) < r?, for r big
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enough. This contradicts our assumption on the volume growth. Hence

(M) = 0.

Since dim(M) = 3 and M is open, thus Hi (M) =0 for k > 3. By the
Hurewicz theorem, all higher homotopy groups of M vanish. Therefore M
is a K(m, 1) space, and H'(m,(M)) = H{(M) = 0, for i > 3. Since infinitely
many cohomology groups of a finite cyclic group are nonzero, hence (M)

1s torsion free,

We now prove that m;(M) is trivial. By passing to a covering space of
M, we may assume 71(M) = Z. By using a volume comparison argument
like the one in [An] we will show this is impossible. Fix a point p € M
and § € M, such that m(f) = p, where 7 is the covering map. Let ¢
be a geodesic loop at p representing a generator for 71(M,p) and F be a
fundamental domain of M containing $. Then it is obvious that

N ~ -
UIPFNBI6) < BIN - 1(0) 1),
where L({o) is the length of o. Notice that 7 is volume preserving when

restricted to F. Then using Vol([o](F) (N F) = 0, we obtain,

N -Vol(By(r)) = N-Vol(F(\B¥(r)
= Va(Ulel (PN B (1)

Vol(BY(N - L(o) + 1))
gﬂ-(N -L(o) +r)? (since Ric > 0).

IA

IA




Choosing N > [22], and r > N - L(0), we have

4 c
e 3 —p3
Vol(B,(r)) < =V (2r)’ < 2':' }

This is a contradiction. Thus, (M) = {e}. Therefore all homotopy groups
of M vanish. We hence conclude that M is contractible by the Whitehead

theorem. -

Q.E.D

2.3 Proof of the finiteness theorem

Let us denote by M(n) the class of n-dimensional manifolds satisfying the
bounds: Ric > —(n — 1)H, Diam < D, Vol > V. As pointed out in |
the introduction, the crucial step towards a finiteness theorem is to get a
control of the local topology. For the class M(3), this takes the form of a
lower bound on the geometric contractibility radius. By the examples of
Sha-Yang and Anderson [An|, such a bound does not exist for M(n) when

n>J.

We first define the geometric contractibility radius (of relative size R).

Cr(M) = piéiﬂi/}sup{r | By(r) is contractible in B,(R - r)}.




18

~ The crucial step in proving Theorem 1.1 is the following proposition.

Proposition 2.1 There exist constants R,ro depending only on H, D)V,
such that
CR(M ) > 7o

for any M € M(3).

We begin the proof with a few lemmas. These lemmas hold for all
dimensions. The restriction to dimsension three is only needed at the end

of the proof.

Lemma 2.2 There ezist constants Cy, Cy and d depending only onn, H, D,
V, such that, for any M € M(n), p € M, we have,

Cir™ < Vol(B,(r)) < Cpr®, 0<r<D,

and

Diam,(M) > d.

where Diamy,(M) = sup{d(p,q) | ¢ € M}.

Proof. By the Bishop volume comparison theorem,

Vol(B,(r)) < Vol(B(r))

- (=)

< Cr", 0K r <D,
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. n—1
where Cy = SUPo<r<p an o (szHVhHHt) dt.

Similarly, by the Bishop-Gromov relative volume comparison theorem,

we obtain,
Vol (B(r))

Vol(By(r)) 2 VolH(B(D))

- Vol(B,(D))

> vamawy b ()

2 Clrﬂa

: T  sin n—1
where Cy = WTI%'('B)—) -infoc,<p ;1;; 7 (—\’}%E) dt.

For the diamter, since
V S Vol(M) < Cy(Diam, (M),
hence
. V.
Diam, (M) > (=)».
C,
Q.ED

Lemma 2.3 There exist constants Ry(n, H, D, V), ri{n, H,D, V) such that
for any M™ € M(n,H,D,V),p€ M and s < ry, B,(R; - s)\ By(s) has at

most one component whose intersection with OB,(Ry - 3/3) is nonempty.

Proof. We prove this by contradiction. Let €} and C, be two such com-

ponents. We can assume without loss of generality that

Vol(Ci (| By(R- 3/3)) < Vol(Co (| Bp(R - 5/3)).
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Thus,

Vol(By(R - /3)\ By(s)) < 2Vol(B,(R- 5/3)\ (Ci [\ By(R - 5/3))).

Take Q1 € C1NOB,(R - 5/3). Since every minimal geodesic v with (1) €
By(R-3/3)\ By(s) satisfies I < 2R-s, and v(t) € By(s) for some ¢ satisfying
%R-s—s StS%R's-i-s. Thus,

By(GR- I\ (G NBGR  9) € Tinus3nal(@0)

where T, ., is the annulus of radius r1 and r;. The triangle inequality

implies,
Tinacsimore(@1) C By(3s).
Therefére,
Vol(By(R-5/3)\ By(s)) _ o VOUBy(R-5/3)\ (C1 N By(R - 5/3)))

Vol(B,(3s)) - Vol(B,(3s))
< Vol(Typ,s2p.(Q1))
- Vol(T%R.s_s,éR.s.i.s(Ql))
. VOI?R‘
Vol ?R-s—s,éR-s-}-s

< Gs(n,H,D) R,

s—s,%R-s

where we have denoted by Volg 2 the volume of an annulus of radius 1

and r; in the space of constant curvature —(n—1)H. Together with Lemma
2.2, the above implies,

Ci (R/3)" — C;y
Cy- 3

<C5-R.

This is impossible if we choose R(n, H, D, V') big enough. In the proof, we

also need that s- R < d. Thus s < RLZ =r. Q.E.D
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Lemma 2.4 There are constants Ry, 7y and N depending only on n,H,D,
V, such that for any M € M(n),p € M,r <1y, if I: By(r) — By(R- 1),
then any subgroup G of L(m1(By(r))) satisfies,

order(G) < N.

In particular, there is no element of infinite order in L(m(B,(r))) whenever

T'STQ.

Proof. This is basicly the same as in [An] or as in the proof of Theorem 1.2.
But let us point out that we are working with a metric ball, which is not
complete. Hence its universal covering space with the pulled back metric-
is also not complete. Since we need to use the Bishop volume estimate for
geodesic balls, we have to show it is still valid in this case. This turns out to
be fairly easy in our situation since we are working with a relative version.
Namely, although B:(;“) is not complete, in the universal covering space of
s bigger ball By(Ry - 1), By(Nr) (N << Ry } is a usual metric ball, and
hence Bishop’s volume estimate still holds. We will address the problem in

the proof.

It is a well known fact that we can choose a set of generators {[o:]} for
L{m1(By(r))), such that length(o;) < 2r and thereis a bound on the number
of generators [We2], say k(n,D,V,H). Let V be the universal covering
space of B,(R -r) with the pulled back metric. Pick p € V, such that
n(p) = p. let F be a fundamental domain of the covering with p € F.
Denote U(m) = {element of G of word length < m}. It is easy to see
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that fU(m) > m unless U(m) = @. ( This is because fU(m + 1) > $U(m)
unless U(m) = G). Let mo = [(2)". &1+ 1. Consider,

B= |J g(F) T (By(2mgr))).

g€U(mo)

Take any point z € B, and a curve v from z to p. Then 7(v) is a curve from
m(z) € B,(2mor) to p. Let o be a minimal geodesic in the homotopy class of
() keeping the end points fixed. Then length(o) < m, -sup; {length(o;)} +
Mo - < Imgr. If we choose Ry = 6my, then o is a smooth geodesic. Lift o
to V, we get. a smooth geodesic from § to z. What we have proved is that
any point in B can be joined to P by a smooth geodesic of length < 3mygr.

It thus follows from the proof of Bishop volume comparison theorem that;,
Vol(B) < Vol (3myr).
If order(G) > §U(my), then,

moVol( By(2mar)) < §U(mo)Vol(F(x~Y(B,(r)))
= Vol(B) < Vol (3myr).
Therefore,

VOZ (3m0r)
<
o = Vol(B,(2mqr))’

Let ro = énDTo' Then for any r < 72, we have 3mor < D. It thus follows

from Lemma 2.2 that

Cg(3m(]?')n _( )n 02
- C’1(2m07')“ Cl'

This contradicts the choice of mo. Thus order(G) < §U(mg) < k™o = N.

Q.E.D
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Lemma 2.5 Let K be a compact Riemannian manifold and K a k—fold

covering of I with the pulled back metric. Then

Diam(K) < 2k - Diam(K).

Proof. We denote by I the group of deck transformations, I’ = k. Fix
a point p € K, and 5 € K such that 7(p) = p. Let F' be the Dirichlet

fundamental domain of the covering, that is,
F={z €K |d(z,p) < d(vz,p),for any e r}.

We first show that for any z € F, d(z,p) < Diam(K). Indeed, let ¢ be
a minimal geodesic from 7 to z, with o(l) = z. Then 7o is a curve
from p to m(z) with length(r 0 o) = length(o) = 1. If I > Diawn(K), there
exists a curve a from p to w(z) with length §, < Diam(K) < I Lift o
to K with a(0) = 5. Then dla(li),p) < i < I But m(a(ly)) = n(z), so
a(h) = vz for some v € I'. This contradicts the definition of F. Hence
d(z,p) < Diam(K). .

Now for any two points # and y in K , let v be a curve connecting them.
K is the union of k Dirichlet fundamental domains with centers at 7~1(p).
Since GF has measure zero, we can choose the curve v such that it has
the property that yNOF has no accumulation points. Thus yIF is a
finite set. Therefore for each fundamental domain F, we can pick the point

where v first enters F' and the point where Y last leaves F', say at y(t)

and y(fz). We can replace the segment ([t;, 4,]) by a curve from ¥{t1) to
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p and then from p to 4(¢;). The previous paragraph shows that we can
choose this curve to have length < 2Diam(K ), Continue this process we
get a curve from & to y which intersects each fundamental domain only
once and insidé each fundamental domain it has length at most 2Diam(K ).

Thus, d(z,y) < 2k - Diam(K). Therefore Diam(X) < 2k - Diam(K).

QED

Remark. In the statement of Lemnma 2.5, we assumed that X is a Rieman-
nian manifold. From the proof we see that the same statement holds for a
‘much larger class of objects. In particular, it holds for compact (smooth)

metric balls By(r) C (M,g). In the proof of Proposition 2.1, we will use

lemma 2.5 in this form.

Proof of Proposition 2.1.

For any M € M(3),p € M, consider the inclusion T : Bp(r) — By(R-7).
The precise value of R will be determined in the proof. Just as in the proof

of Theorem 1.2, we first show that I induces trivial maps on Ty and on .

For this part, we have to distinguish between the orientable case and
the nonorientable case. The arguments are along the same line with some
difference in details. Let us briefly summarize it here. What we will actually
show is that either my(B,(r)) = 0 or a nontrivial element in my(B,(r)),

which is represented by an embedded S? or RP? according to orientability,
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divides B,(R - r) into two parts, one part is compact and simply conneted.
Thus, for the orientable case, this implies that I is trivial on #3. For the
nonorientable case, this implies that m2(B,(r)) = 0. Either case implies
71(B,(r)) is torsion free (the orientable case follows from Lemma 2.1 and
the nonorientable case follows from group homology). Then the conclusion

that I is trivial on m; follows immediately from Lemma 2.4.
In what follows, we first treat the orientable case.

If I is not trivial on g, by the sphere theorem in three dimensional
topology, there is an (smoothly) embedded S? in B,(r), representing a
nontrivial homotopy class in B,(R - r). There are three possibilities we

have to consider.

Case 1. §? does not separate B,(R-r). From standard three dimesional
topologjr (Lemma 3.8 in [He|), we have the decomposition B,(R - r} =
Vi§V,, where V) is a two sphere bundle over S*. Hence there is an element
[o] € w1(V}) of infinity order and o is contained in B,(R - r). Since B,(R?-
r} = V1§V; for some manifold V3, o is also an element of infinite order in
B,(R?*-r). This is impossible by Lemma 2.4. For this case we require that
R?.-r <df2,R> R,;,R-r < ry, where ry, R;, d are the constants in Lemma
2.2 and 2.4,

Case 2. 5% separates B,(R-r) into two components, both of them have

nontrivial intersection with dB,(R - r). This is impossible by Lemma 2.3,
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For this to work we require that R > 3R;,r < Ty, where R;,r, are the

constants in Lemma 2.3.

Case 3. S5 separates B,(R - r) into two connected components, one
of them, M,, has nontrivial intersection with OB,(R - 1), he other, M,, is
compact with (M;) = §%. Hence B,(R-r) = M;{M,. Let us note that
M; can not be simply connected. Otherwise the $? would be contractible,
contradicting our assumption. Hence m(M;) is nontrivial and, because
of the connected sum decomposition, the inclusion into m(B,(R - r)) is
injective. Since the bigger ball B,(R?-r) is also a connected sum of M, and
another manifold, we conclude that m (My) is also injectively included in
T1(By(R?-r)). Notice that My C B,(R-r) (this is why we have to consider
the bigger ball B,(R?-r)). By Lemma 2.4, the order of m;{M,) is bounded
by N. Consider the covering space K of B,(R?-r) as follows. First take
the universal covering space M, of M,, then giue By(R? - r)\ M; to each
lifting of S%, denote the resulting space as K. Thus the deck transformation
group of this covering is 71(Mj3). It is obvious from this description that M,
seperates K into [mi(M;z) components. Now by Lemma 2.5(see the remark
after it), Diam(T') < 2N - Diam(M;) < 2N - 2Rr. This is again impossible
according to Lemma 2.3. For this part we need R > 4N, R > Ry Rr<ry
and R?.r < d/2.

Thus, we have proved that if I: B,(r) — B,(R-r), then I, is trivial on

7y whenever R > max{3R,, R;,4N} and r < min{r,, 4.,
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We now 'show that I, is trivial on 7,. This is now very easy. In fact,
consider the inclusions B,(r) C B,(R-r) C B,(R?-r). From the previous
paragraph, if we choose r smaller, say r < min{3, &, E%g}, then the second
inclusion By(R-r) C B,(R?-r) satisfies the condition above , hence this
inclusion induces a trivial map on 5. It now follows from Lemma 2.1 that
m(By(R - r)) is torsion free. Thus, if I, : By(r) — By(R - r) were not
trivial on my, there would be an element of 7, (By(r)) which is nontrivial
in m1(B,(R - r)), hence is necessarily of infinite order in m(B,(R - 7)) since
the later is torsion free. This is impossible by Lemma 2.4. Therefore I, is

trivial on 7.

We have thus proved that for the orientable case, if

B> mex(OR, B 4N}, < minf(h, 2,

then I, : B,(r) — By(R-7) is trivial on m; and T3

Now we consider the case when M is not orientable. Consider,
By(r) % B,(R-r) 3 B,(R®- ).

.We can assume at least one of the three sets are nonorientable. Other-
wise we are in a situation we just dealed with. Furthermore, if B,(r) is

orientable, we can consider the following inclusions,
By(r/R’) % By(r/R) % By(r)

We are then in the orientable case. If this happens, we can just choose r

smaller. This will not effect our result (we will take this into consideration
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when choosing R, ). Now we assume that B,(r) is nonorientable. Therefore

all three sets involved are nonorientable.

we consider the first inclusion 4;. We will show T2(Bp(r)) = 0. Let
us point out here that for this to be true we need the nonorientability,
since there are strong topological restrictions on nonorientable three man-
ifolds. We again prove this by contradiction, along the same line as in the
orientable case. If 72(By(r)) is not trivial, then by the projective plane
theorem (which is the nonorientable version of the sphere theorem, Theo-
rem 4.12 in [He]), There is an embedded RP? in By(r). Again, we need to

consider three cases, each will lead to a contradiction.

Case 1. RP? does not seperate B,(R-r). We consider the double covers

of By(r) and B,(R - r) with the pulled back metric, denoted by B () and

p(R r) respectively. Since the double cover of a nonorientable manifold
can be constructed as the unit sphere bundle of the determinant bundle,

there is a natural 1ift 4, of t1, 5o that the following diagram cornmuts.

B,(r) <5 ByR.r)
m l m2 l

By(r) % B,(R-r)

here ¢; is again an inclusion. Now B (r) and BP(R r) are subsets in
the double cover of M which is orientable. Note that B (r‘) C BM (4r),
B,(R- r)D BM (R -r) and the previous argument showed that BM (4r) —

B~ (R - r) induces trivial maps on 7y and m;. Thus 7, induces trivial maps
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on 7y and m3. Let m~!(RP?) = S2. If this 5? does not separate B, (R 1),
then there is a closed curve in BP(R r) intersecting S? at only one point.
This implies from the Poincaré duality that $? is a nontrivial element in
wz(E;(R -7)). This contradicts the fact that 7; induces a trivial map on
mz. If the S? separates B,(R- r), then both the two components necessarily
have nontrivial intersections with 8B,(R -r). In fact, if one component is
compact with 5? as its bounda,ry(namely, does not intersect 3BP(R - 1)),
then projecting it down, we get B,(R - r) as the union of a compact set
and a noncompact set having RP? as the common boundary. This means
that RP? separates B,(R-r). This contradicts the assumption. Thus §?
separates Bp(PR_’ - 1) into two components both having nontrivial intersection

with 33;(]{ +7). This is impossible by Lemma 2.3.

Case 2. RP? separates B,(R - r) into two components both having non-

trivial intersection with B,(R - r). This is impossible by Lemma 2.3.

Case 3. RP? separates B,(R -r) into two components, one of them has
nonempty intersection with 0B,(R-r), the other, denoted by V, is compact

with boundary RP%. We consider two cases separately.

The first case is when m,(V') is finite. Since V is nonorientable, it follows
from the topology of three manifolds that 9V consists of two RP?’s ( [He}
page 77(i)). This contradicts that 8V = RP2.

The second case is when m (V) is infinite. As before, we have the fol-




30

lowing commuting diagram.

o~

| 2N :(R- r)

Tl T2l

V. % B(R.r)
Then OV = $? and this S? separates E;,(R - 7) into a compact V and
a manifold K which has nontrivial intersection with BB:,(R 7). Since
E;,(R-r) = VK, then B;(Rz -7) = VK, for some K. Thus, the inclusion
m(V) = m(BY(R? - 1)) is injective. Note that 7 ¢ B¥(2Rr) and by

assumption 1r1(T7) is infinite. This is impossible by lemma 2.4

We thus proved that if m2(Bp(r)) # 0, then we will get a contradiction
in all three cases. Hence #Z(Bp(r)) = 0. Therefore B,(r) is a K(,1) space.
It follows that m1(B,(r)) is torsion free(see the argument in the proof of
Theorem 1.2 on page 16). The same argument shows that r(B,(R-r)) is
torsion free. Then m(B,(r)) ). T (Bp(R - 1)) is a trivial map, otherwise

it would contradict Lemma, 2.4,

Let us summarize the nonorientable case. We have proved that if

roTy d}
R’ R’ ops ¥’

then either B,(r) — B,(R?- r) is trivial on m; and 72(This happens when

R 2 4max{3R,,R;,4N}, r< min{

both balls are orientable or both are nonorientable), or B,(Z%) — B,(r) is

trivial on 7; and #,. Thus the composition of the two inclusions,

By(5m) — Bylr) — B,(R*-r)




31

always induces trivial maps on 7, and Ty,
Thus, we have proved that, no matter M is orientable or not, B,(r) ER

By(R - r) induces trivial maps on m; and 7, when

T‘g d

R> (4max{3R1,R2a4N})4’ rsre < mm{R 'R 2R3}

We now show that for r < %> By(r) is contractible in B,(R? - r). In

fact, consider the two inclusions,
By(r) % B,(R-r) & B,(R? - 7).

From the condition on r, #; and 3, both induce trivial maps on m; and
73. Take a smoothing p, of the distance function p, and consider a regular
value ¢ of p, such that p'([0,c]) D B,(r). Then p7'(]0, c]) is a smooth three
manifold with non-empty boundary. A well known theorem in Morse theory
(Theorem 23.5 in [MC]) implies that pZ2([0, c]) has the homotopy type of a
two-dimensional CW complex. Thus B,(r) also has the homotopy type of a
two-dimensional CW complex. The same is true for B,(R-r) and Bp,(R2 7).
Proposition 2.1 (with R = [4max{3R,, R, 4N}J?,r, = min{%, &, ;41 is

an immediate consequence of the following lemma.

Q.ED

Lemma 2.6 Let X,Y,Z be two dimensional CW complexes and f, g con-

linous maps,
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such that f induces a trivial map on m and g induces a triviel map on .

Then go f is homotopic to a constant map.

Proof. Since f is trivial on 7y, we have the lifting f such that the

following diagram commuts.

g
Fr/ln
x L <,z
where ¥ is the universal covering space of Y. It thus suffices to prove that

g oan'ofis homotopic to a constant map. Denote ) = gom: ¥ — Z. Then,
Pul(ms(Y)) = gu 0 mu(my( 7)) = gu(ma(Y)) = e.

that is , % is trivial on 7. We now show that ¢ is homotopic to a constant
map. Since ¥ is a two dimensional CW complex which is simply connected,
by Corollary 3.6 on page 221 of [Wh], ¥ is homotopy equivalent to the wedge
of $%s, ¥ = §?V ... $2. Each of these S? represents an element in 72(Y).
Since ¢ is trivial on m5(Y), it follows that v, when restricted on each 52,
is homotopic to a constant map. Therefore 1 is homotopic to a constant

map. Hence g o f is homotopic to a constant map.

Q.ED

Proof of Theorem 1.1 The argument from Proposition 2.1 to Theorem
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1.1 is somewhat formal. It is essentially the same for all types of finiteness
theorems, namely, a center of mass argnment. The observation is that
M(n) is precompact with respect to the Hausdoff distance. And for two
manifolds which are Hausdorff close, and geometrically contractible in the
sense of Proposition 2.1, we can construct a map between them which is a
homotopy equivalence. This can be easily seen from the point of view of
obstruction theory. Proposition 2.1 garantees that there is no obstruction
for extending maps. We can thus start constructing the map skeleton-wise.
The detail is carried out by P. Petersen in [Pet]. This completes our proof
of Theorem 1.1 Q.E.D

Remark. Proposition 2.1 in actually more than what we need to conclude
Theorem 1.1. In fact, the statement that I is trivial on 7; and 75 is enough

|
to imply Theorem 1.1. For this see P. Petersen [Pet]. ‘
] [




34

Bibliography

[AG]

U. Abresch and D. Gromoll, On complete manifolds with nonnegtive

Ricei curvature, Preprint.

M. Anderson, P, Kronheimer and C. Lebrun, Complete Ricei flat
Kihler manifolds of infinite topological type, preprint.

W. Ambrose, Parallel translations of Riemannian curveture, Ann.

of math., 64 (1956), 337.

M. Anderson, Short geodesics and gravitational instantons, J. Diff.

Geom., 31 (1990), 165-175.

M. Anderson and L. Ridriguez, Minimal surfaces and 3-mam’fold.s
of nonnegative Ricci curvature, Math. Ann., 284 (1989), 461-475.

S. Aloff and N. Wallach, An infinite family of distinct 7-manifolds

admitting positively curved Riemannian structyres, Buil. AMS, 81

(1875), 93-97.




35

[Be] M. Berger, Les variétés riemanniennes 1/4-pincées Ann. Scuola

Norm. Pisa, 14 (1960), 161-170.

[Bb] L. Bérard-Bergery, Quelques examples de variétés riemanniennes
completes noncompactes & courbure de Ricei positive, C. R. Acad.

Sci. Paris, 302 (1986), 159-161.

[Chl] J. Cheeger, Comparison and finiteness theorems for Riemannian

manifolds, Thesis, Prinseton University, 1967.

[Ch2] —————, Finiteness theorems for Riemannian manifolds, Amer. |

J. Math., 92 (1970), 61-74.

[CG] J. Cheeger and D. Gromoll, The splitting theorem for manifold of * ‘ﬁ
non-negative Ricci curvature, J. Differential Geom., 6 (1971), 119-
129.

[GLP] M. Gromov, J. Lafontaine and P. Pansu, Structure métriques pour

les variétés riemanniennes, Cédic-Fernand /Nathan, Paris, 1981.

[GM] D. Gromoll and W. Meyer, Examples of complete manifolds with i
positive Ricci curvature, J. Diff. Geom., 22 (1985), 195-211.

[GP] K. Grove and P. Petersen, Bounding homotopy types by geometry,
Ann. of Math., 128 (1988), 195-206.

[GPW] K. Grove, P. Petersen and J. Wu, Controled topology in geomiry,
Bull. Amer. Math. Soc., 20 (1989), 181-183.




[Gr]

[GS]

(K1}

(MC]

[Mi]

[Na]

36

M. Gromov, Curvature and Betti numbers, Comment. math. Helv.,

56 (1981), 179-195.

K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of
Math., 106 (1977), 201-211.

R. Greene and H. Wu, Lipschitz convergence of Rimannian mani-

folds, Pac. Jour. Math., 131 (1988), 119-141.

R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff.

Geom., 17 (1982), 255-306.

J. Hempel, 3-manifolds, Ann. of Math. Studies, 86, Princeton Uni-
versity Press, 1976.

E. Heintze and H. Karcher, 4 general comparison theorem with ap-
plications o volume estimates for submanifolds, Ann. Scient. Ecole

Norm. Sup., 11 (1978), 451-470.

W. Klingenberg, Coniributions to Riemannian geometry in the

large, Ann. of Math., 69 (1959), 654-666.

M. Morse and 8. Cairns, Critical point theory in global analysis and
differential topology, Academic Press, New York, 1969.

J. Milnor, A note on curvature and fundamental group, J. Diff.

Geom., 2 (1968), 1-7.

J. Nash, Positive Ricei curvature on fiber bundles and ezotic

spheres, J. Diff. Geom., 14 (1979), 241-254.




[Pel]

[Pe2]

[Pet]

[SY1]

(SY2]

[Wel]

37

S. Peters, Cheeger’s finiteness theorem for diffeomorphism classes of

Riemannian manifolds, J. Reine Angwe. math. 349 (1984), T7-82.

y Convergence of Riemannian manifolds Comp. Math. 62

(1987), 3-16.

P. Petersen, A finiteness theorem for metric spaces, J. Diff. Geom.,

31 (1990), 387-395.

H. Rauch, A contribution to differential geometry in the large, Ann.
of Math., 54 (1951), 38-55.

R. Schoen and S. T. Yau, Complete three dimensional manifolds
with positive Ricei curvature and scalar curvature, Ann. of Math.

studies, 102, 209-227, Princeton University Press, 1982.

W. X. Shi, Noncompact three manifolds with nonnegative Ricci cur-

vature, J. Diff. Geom., 29 (1989), 353-360.

Z. Shen, Finiteness and vanishing theorems for complete open Rie-

mannien manifolds, Bull. AMS, 21 (1989), 241-244.

J. Sha and D. Yang, Ezamples of manifolds of positive Ricei curva-
ture, J. Diff. Geom., 29 (1989), 95-103.

J. Sha and D. Yang, Positive Ricci curvature on the connected sums

of S® x §™ | preprint.

G. Wei, Examples of complete manifolds of positive Ricei curvature

with nilpotent isometry groups, Bull. AMS, 19 (1988), 311-313.




38

-,Aspects of positively curved spaces, thesis, SUNY Stony
Brook, 1989.

G. Whitehead, Elements of homotopy theory, Springer-Verlag, New
York, 1978,

T. Yamaguchi, Homotopy finiteness theorems for certain precom-

pact families of Riemannian manifolds, Pro. Amer. Math. Soc., 102
(1988), 660-666.






