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Abstract of Dissertation

On Generalizations of Jorgensen’s Inequality
for Kleinian Groups

and Some Topics on Quasiconformal Extension

by
Delin Tan
Doctor of Philosophy
in
Mathematics
~ State University of New York at Stony Brook

1990

This dissertation consists of two parts. The main part is the ﬁrs;t one
which deals with the generalizations of Jgrgensen’s inequality. The second
part deals with some problems related to qusiconformal extensions.

We denote the field of complex numbers by C. A Mobius transformation
¢ is a one-to-one meromorphic function of the extended complex plane C
 onto itself. Tt is necessarily of form g(z) = ﬁ’ (ad ~ bc = 1). Denote the
group of all Mébius transformations by Méb. It is naturally isomorphic
to PSL(2,C). We define the trace of a transformation g(z) = 2% {o be

tr(g) = a4 d. It is clear that the trace of g is well defined up to sign.
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In 1976, Jgrgensen obtained the following very important results:

Let two Mobius transformations f and g generate a non-elementary
discrete group. Then

67(f) — 4 + [ex(fof"g™) ~ 2] > 1.
In this dissertation, we prove a general version of Jgrgensen’s inequality as
follows:

For arbitrary rational numbers R and r, 0 < R,» < %, there ezist
positive numbers a(R,r) and B(R,r) having the following properties: Lel
Mébius transformations [ and g generate a non-elementary discreie group.
If tr’(f) # 4 cos’ rm and tr(fgf‘lg‘l) # —2cos2Rw, then

| tr?(f) — 4cos® ro| + |tr(fgf1g™!) + 2cos 2Rx| > a R, 1),
in addition if tr(f) # 0 then
| tr?(f) — 4cos®ror] - |tx(fgf'g™") + 2cos 2Rn| > B(R, 7).

For some specific R and r, we get the estimaies of a(R,r) and S(R,r)
incluciing some sharp results. For example: Let Mébius transformations f
and g generaile a non-elementary discrete group. If tr(f) £ 0, then

()] + | te(fgf g7 — 2| > 2(v2 = 1) = 0.8284 - - -
and

| ex?(f)] - |tr(fgf1g7") — 2| > 0.1354.
If in addition tr(g) #£ 0, then

| t®(f) + [ tr*(g)| + | tr(fgf~1g™") — 2| > 1.5407

and

(D] + | te*(g) |} + [tx(fgf 1 g7") — 2| > 0.9706.
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Also we get the following result which generalizes the Shimizu-Leutbecher’s

lemma:

For an arbitrary rational number R € (0, -%], there exists a positive

constant o(R) having the following property: If the group generaied by
f(z) = 2+ 1 and g(2) = ﬁ_’% (ad — be = 1,¢ # 0) is non-elementary
discrete and c* # F4 cos® R, then

|c2 &+ 4 cos® Rx| > o(R).

We know o(3) = 1. By elementary calculation o(3) > 0.7548, o(3) >

0.2654 and o(1) > 0.1181. That means 1
[c? 41| > 0.7548, |c® & 2| > 0.2654, |¢® 4 3| > 0.1181
provided that the left sides are non-zero.
In the end of Part One we give some conjectures.

In Part Two we derive some lower bounds for the inner radius of uni-

versal Teichmiiller space from an Ahlfors inequality. We give improved
estimates for the dilatation of the Beuring-Ahlfors extension of quasisym-
metric automorphisms of the real line. At last, with the help of the sigular
integral, we obtain some general quasiconformal extension and univalency
criteria for analytic functions f(z) defined in the upper half plane or in the
unit disk. Unlike all the previous criteria, our results contain an arbitrary
analytic function a(z). Specific choices of a(z) will yield many new inter-

esting univalency criteria. Some of them generalize the results of Ahlfors,

Harmelin and Krzyz.
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Part One

Generalizations of Jgrgensen’s

Inequality




Chapter 1

Introduction and Preliminary

Remarks

§1.1. We denote the field of complex numbers by C. A Mobius trans-
formation is a one-to-one meromorphic function of the extended complex

plane C onto itself. We can write a Mobius transformation in the form

az4b

zZ = czd-d?

where a,b,¢,d € C and ad — bc = 1. Denote the group of all the
Mobbius transformations by M6éb. The group of two by two complex matri-
ces with determinant 1 is denoted by SL(2,C). There is a natural topology
on SL(2,C) which identifies it with a closed subspace of C*. Let PSL(2,C)
be the quotient group obtained from SL(2,C) by identifying a matrix with

its negative. So PSL(2,C) is endowed with the quotient topology. There is

a natural isomorphism between Méb and PSL(2,C). So we will consider




a matrix (ad — bc = 1) as an element of PSL(2,C) and also as

e d
the Mobius transformation z — :‘7”3.

Let g(z) = ﬁ’iﬁ define such a Mobius transformation. We define the
trace of g to be tr(g) = a + d. It is clear that the trace of g is well defined
up to sign on Mob.

Ifg %I, we call ¢

elliptic if 0 < tr¥(g) < 4,
parabolic  if tr’(g) :’4,

loxodromic if tr’(g) & [0,4].

The loxodromic elements with tr*(g) > 4 are called hyperbolic.
Definition 1: Let G be a subgroup of Méb. G is said to be a discrete

group if the corresponding subgroup of PSL(2,C) is a discrete set in the

topology mentioned above.
_ agziby c a

G is not discrete if and only if there is a sequence g,(z) = $2Z-
such that {g,} is distinct and {a,}, {bn}, {cn}, {d..} are all bounded.
Let 7
H3={w:z—]—tj: z€ Candt > 0}.

Then H?® is a hyperbolic space under the Poncaré metric Hdw| = 1(]dz|? +

|dt|2)%. For g(z) = %, we can define the Poncaré extension of g by

g(w) = (aw + b){cw + d)~!
_ (az+b)(ez +d) + act® + |ad — beftj
N lez + d|? + |cj2t? '




Then g acts as an isometry on Hs.

When g is not identity and not parabolic, g has two fixed points in C.
Then the hyperbolic line in H? connecting these two points is called the axis
of g.

Definition 2: Let G be a discrete subgroup of Mob., We say that G
acts discontinuously at z, € C provided there is a neighborhood K of z,
such that

gK)NK £
for only finitely many ¢ € G.

The region of discontinuity @ = Q(G) is the largest (open) set on which

G acté discontinuously. Its complement A = A(G) = € — 0 is called the

limit set of G. We will call G Kleinian if  # 0 and [A] > 2; elementary if
|A] < 2.

§1.2. It is very interesting to ask whether a group generated by two
Mobius transformations is discrete or not. A special case is when one ele-
mennt is parabolic. Because the discreteness is invariant under conjugation
y we can always assume the parabolic element is of form 2z s + 1. The
following classical result is called Shimizu-Leutbecher’s lemma:

Proposition 1: If the group generated by f(z) =2z+1 and g(z) = ﬁ

(where ad — be = 1) is discrele and ¢ # 0, then

le| > 1. (1.1)

From this lemma we see: if 0 < |c| < 1, then the group < f,g > is not




discrete.
Jgrgensen generalized {J-1] the above lemma as follows:
Proposition 2: Let f and g be two Mébius iransformations that

generate a non-elementary discrete group. Then
| tr?(f) — 4| + |te(fgf'g7") — 2] > 1. (1.2)

It is clear that tr(fgf~'g™') is well defined. If f(z) = z + 1 and g(z) =
%—3 (ad —bc = 1), then tr?(f) = 4 and tr(fgf 'g~') = 2 — c%. That means
that when f is parabolic Jgrgensen’s inequality reduces to the Shimizu-
Leutbecher inequality.

Jgrgensen’s inequality is important because it has many beautiful apph-
cations. For example, Jgrgensen [J-2] proved that a non-elementary group
is discrete if and only if any two of its elements generate a discrete group.
Many other applications of Jgrgensen’s inequality appear in Beardon’s book
[B].

In chapter 3, we obtain another generalization of the Shimizu-Leutbecher

lemma.

§1.3. There are many way to generalize Jgrgensen’s inequality. Let

az+b
f(z) =ulz, (u € C,u # 0,£1) g(z) = —
Define the Shimizu-Leutbecher’s sequence
anz + b,

g]_:gOng_l, 9n=gn—10f709,ﬂ1 = (TL)].). (13)

ez +d,




Set z, = buc, and 8 = (v — 1)?, then

Int1 = _ﬁzn(zn + 1)'

Define

Fi(t) = —Bt(t+1), F.(t)=FoF, ,(t). (1.4)
Set z = be, then F,(z) = z,. Brooks and Metalski [B-M]| proved that to
every fixed point of the polynomial F,(t) there corresponds an inequality
involving tr?(f) and tr(fgf'g~') . We see that Fj(¢) has fixed points#; = 0
and t; = —(1+ %) . If » = |B](1 + |z]) < 1, then |Fi(z) — t1] = |z — 4] - r.

By induction, we have
|Fa(2) — 0| < Jz — 4] - 7"
Therefore
lim Fu(z) —t; = 0. (1.5)

If < f,g > is non-elementary, then F,(z) — t; # 0 for any n. That means
{zn} is distinct and convergent. Then we can find a subset of < f, g > which

is not discrete. So the hypothesis of discreteness of < f, ¢ > implies
BI(1 + |z]) > 1. ‘ (1.6)

Because § = tr’(f)~4 and Bz = 2—tr(fgf'g™'), thisis just Jprgensen’s
inequality. But what will be happen if we apply the same trick to the other

fixed point of Fy(t) 7 By calculation

Fo(z) — ty = (Faoa(2) — 6)[B + 2 — B(F,_1(2) — 1))




Soif r = |8+2|+|8(z —13)| < 1, then |F,(z) —ts| = |z —t3]-r. By induction
| Fn{z) — ta] < |2 — 23} - 7™

Therefore

lim Fy(z) — 12 = 0. (1.7)

If F,.(z) —t; # 0 for any n, then same argument shows that the discreteness
of < f,g > implies

18 +2|+18(z — 12)] 2 1. (1.8)

Because S+ 2=1tr*(f) -2 and B(z —13) = tr(fgfg™!) — 1, this is the
new inequality

[te?(f) — 2| + | tr(fgfg™") ~ 1] > 1. (1.9)

But the trouble we meet here is the possibility that F,.(z) — ¢, = 0 for some
n even though z # ¢,. In this case z, is a constant for large n. So we can
not trivially get this new result. In chapter 4 we will get rid this possibility
and prove (1.9).

The approach of Gehring and Martin is slightly different. They analyze
a dynamically defined region in the complex plane given by iteration theory
of qua&ratic polynomials and produce new inequalities from its geometry as
follows [G-M]. For 8 € C define the quadratic mapping Rg(z) = —fBz + 22,
and let Rgn(2) denote the n'* iterate of Rg. The filled in Julia set for Rg is

the bounded perfect set

D(B) ={z€ C: {Rgn(2)}2, is a bounded set },



and the eventually periodic points which are not eventually the fixed point

zero is the countable subset of D(f) defined by
P*(B) ={z € C: {Ran(2)}:2, is a finite set not containing zero }.
Given Moébius transformations f and g, set

B=p(f)=tr*(f)—4 and v =(f,9) =tr(fgf'g7') -2,

Of(g) =gfg~" and ©f"'(g) = OF(Of"(g)).

They have established the following general result.

Proposition 3: If < f,g > is a kleinian group, then

7 ¢ D(B) - P*(8). (1.10)

Moreover if vy € P*(3), then there is a nontrivial relation in < f,g > of one

of the following types

Of'(g) =0f™(9), n2m+2 or fOFf(9)f*=0f"(g), k#0.
(1.11)
This result contains many inequalities including Jgrgensen’s inequality aﬁd
some of our results in chapter 4.

For some other generalizations of Jgrgensen’s inequality, the reader can

refer to [Gi], [J-K] and [R].

§1.4. Let Mobius transformations f and ¢ generate a non-elementary

discrete group. In this work we obtain some inequalities similar toJ grgensen’s.

%
%
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|
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It is natural to ask the following very general question: Do there ezist some

constants a, b and ¢ other than 4, 2 and 1 sueh that
[4e*(f) —al + |tx(fgf g™Y) — b| > ¢7 (1.12)

Also we can ask another even stronger question: Do there ezist some

conslants «, B and v such that

6% (F) ~ af - [tx(fgf gy = B] > 47 (1.13)

In chapter 2, we will give a positive answer to these questions and obtain
some estimations for ¢ and +.

The basic idea is follows: First we choose two elements from < g >
and apply the Jgrgensen’s inequality on them. Then we use the Jorgensen’s
Lie product transformation (defined below) to get some new Mébius trans-
formations which still generate a non-elementary discrete group. Applying
the Jgrgensen’s inequality once again and comparing two inequalities, we
will get some new results. But it is very hard to find the sharp lower bounds

of (1.12) and (1.13) for specific a, b and o and 8.

§1.5. A very important tool used in this thesis is the Jorgensen’s Lie
product [J-3]. Let the rﬁatrices A and B represent f and g in SL(2,C)
respectively., Suppose tr(ABA-1B-1) £ 2, (This hypothesis always holds
when < f,g > is non-elementary discrete.) Because det(AB —BA4) =2
tr(ABA™'B-1) £ 0, the matrix AB — B A defines a Mdbius transformation.

Denote it by ¢=AB — BA, which is called the Jorgensen’s Lie product of




A and B. We know that ¢ is elliptic element of order 2 with the following
properties :

¢ 'Ap= A", ¢7'Bp =B~ (1.14)

The group < A, B > has index at most two in the group < A,B,¢ > and
thus both groups are simultaneously discrete or nondiscrete.

Suppose < A, B > is nonelementary discrete, J grgensen chose A and B¢
as new generators to obtain the following result [J-3]:

Proposition 4.  Let f and g be two Mobius transformations that

generate a non-elementary discrete group. Then

|62 (F) ~ 4] + | x(Fgfg™) — 2| > 1. (1.15)

Here we want to ask: Can we choose some other generators?

Because the trace function is not well defined in M&b, we have to be

careful when we use this function. Notice that when we regard ¢ as a

matrix of SL(2,C), ¢* = —I. If we take F = AB¢ and G = A~1, then

tr®(F) = tr(AB¢)* + 2 = — tr(ABA™'B 1) + 2,
tr(FGFG™') = tr(ABAB™Y),

tr(FGFG™) = — tr(A?) = ~ tr%(4) + 2. (1.16)

Notice when tr(fgf~'g~') # 2 and tr(fgfg~") # 2, the inequality (1.15)

still holds. Applying this result to < AB¢, A1 > we get:
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Proposition 5. Suppose that the Mébius iransformations f and g

generate a discrete group. Iftr(f) # 0 and tr(fgfg™") # 2, then
[t (F)] + [te(fgflg7h) + 2 > 1. (1.17)

This result is very important for the proof in chapter 4.

In fact Proposition 5 is equivalent to Jgrgensen’s inequality under the
Jgrgensen Lie product transformation. Let < f, g > be discrete. If tr(f) # 0
and tr(fgf~1g7!) # 2, then we can aplly Proposition 5 to F = A and

G = B¢ to obtain

()] + | tr(fafg™ ) + 2] > 1. (1.18)

Now suppose < f,g > is discrete and non-elementary. Because the hypoth-
esis of non-elementary implies tr(fgf='g~) — 2, tr(fgfg—) — 2 are both

nonzero, we can apply inequality (1.18) to F' = AB¢ and G = A~ to obtain

|62 (f) — 4] + | te(Fgf g7 — 2] > 1. (1.19)

This is exactly the Jgrgensen’s inequality.
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Chapter 2

General Theorem and Some

Estimates

§2.1. To answer the questions in §1.4, we have the following general
theorem.

Theorem 1. For arbitrary rational numbers R and r, 0 < R,r < 2
there exist positive number a(R,r) and B(R,r) having the following prop-
erties: Let Mobius transformations f and g generate a non-elementary

discrete group. If tr*(f) # 4 cos®*rr and tr(fgf~'g7') # —2cos 2Rm, then
| tr?(f) — 4 cos® r| |tr(fgf'g7') + 2¢c0s2Rn} > (R, ), (2.1)

if in addition tr*(f) £ 0, then

| tr’(f) — 4 cos® rrr] - |tr(fgf'g™!) + 2cos 2Rr| > B(R,r). (2.2)
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Remark: Let us consider the group generated by

(A2+ A%z —2
f(z): 2z—(,\2+A—2)’

g(z) = ~Xz (A#£0,1) (2.3)

For real ), Jgrgensen showed that < f,g > is discrete and non-elementary
[J-3]. Tt is clear that tr(f) = 0, and tr(fgf g7 1) —2=4/(A—3)* — 0 (as
A — 00). So the hypothesis of tr(f) # 0 is necessary for Theorem 1 when
R = 1. But we do not know whether the hypothesis of tr(f) # 0 can be

omitted when R +# %.

§2.2. Proof of theorem 1

Suppose that < f,g > is discrete and non-elementary. Let matrices
A and B be representatives of f and g in SL(2,C) respectively. We can
define the Lie product ¢ — AB — BA € SL(2,C). Groups < AB¢,A~! >
and < A,B¢ > are always discrete but not necessarily non-elementary.
However we have the following observation: Let Mébius transformations F
and G generate a discrete group, if te( FGF1G™1) #£ 2 and tr(FGFG™') #
2, then < F,G > satisfies the Jgrgensen inequality. Let F = AB¢ and
G = A71, then

tr?(F) = —tr(ABA™*BY) + 2, tr(FGF'G™) = tr(ABAB™),

tr(FGFG™) = —tr?(4) 4 2. (2.4)

Let F = A and G = B¢, then [J-3]

tr(FGF'G~') = tr(ABAB™!), tr(FGFG™')=tr(ABA™'B™!). (2.5)
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So we can always apply the Jgrgensen inequality to < AB¢, A-' > under
the condition of tr(4) # 0 and to < A, B¢ > without assumption. In the
following, if there is no danger of confusion, we still write f and ¢ in stead
of A and B. For any rational number » € (0, ] let r = 4 where n and g are
positive integers and coprime. First we suppose < F,G > is non-elementary

discrete and F" s I. By an elementary calculation, we have

n-—1

te(FFGF "G 1) -2 = H (trz(F) — 4cos’ %) . ( te(FGF'G™1) -2 ) ,
tr(F"GF"G) — 2 = ﬂff (trz(F) seos? 1T ) (tr(FaFE™) - 2),
trz(F")——4=Tij_[1(tr2(F) 4 cos? %) (t 3F) - )

So < F",G > also satisfies Jgrgensen’s inequality. Then

|ex}(F™) — 4] + |tr(F"GF "G ') - 2| > 1. (2.8)
It follows
n—1
H(trz(F) 4 cos? ) {|4e2(F) — 4| + [tx(FGF@ ) — 2} > 1. (2.7)

When 1 = 2, we get

|602(F)| - {|te2(F) — 4| + | tr(FGF'G™Y) -2} > 1. (28)

When £ # %, we get

tr?(F) — 4 cos® ‘P (trz(F))l

A tr?(p) — 4+ [te(FGF G —2)} 21, (29)
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where

P (trz(F)) = II (trz(F) — 4 cos? %) .

1<j<n—1 j#qmn—g
It is clear that

Plw)ls T |

1<j<n~1 j#qn—g

y

Define the polynomial

T jr
cos? & _ cos? T
n n

)

trz(F) — 4 cos? ~ + 4
n

n-3
tr?(F) — 4 cos® %’ + 4) .

P(t) = (t +4)"%

Thus
|tr2(F) — 4cos? 1"1'r|2 . P, (

tr?(F) — 4 cos? r'u'[)

{13 (P) - 4]+ | (PGF G — 2} > 1. (r # %) (2.10)

If positive integer p # ¢ and p < n, then
2
P, (

So the hypothesis of Fr # I for (2.10) can be replaced by tr?(F) # 4cos? rr,
tr(fgf~'g™") # 2 and tx(fgfg™") # 2.

Similarly, if tr?(F) # 4 cos? R then

4 cos® 21&' —4cos?rr

scos®Pr — dcostrr
n n

) >4t > 1 (n > 3).

(2.11)

| tx2(F)| - {|ts*(F) — 4] + [te(FGF-'G-Y) — 2]} > 1, (R= %) (2.12)

or

|tr2(F) — 4cos? R'J’l‘|2 . Pp (|tr2(F) — 4 cos’ R1r|)

{(F) - 4l + | t(PGFG) — 2} 2 1. (R4 ) (219)
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Applying (2.12) and (2.13) to F = f and G = g¢ we get : if tri(f) #

4 cos® R then .

() () — 4l + [ex(fafg™) ~ 2D 21, (R=3)  (214)

> Itrz(f) — 4 cos? er!z « Pg (|tr2(f) — 4 cos? R1r|) |

1
Al (f) =4l + [ te(fafg™) -2} 2 1. (R#£3)  (215)
Now assume that < f,¢ > is non-elementary discrete, tr(fgf tg™') #

—2cos 2R and tr(f) 0. We can apply (2.14) and (2.15) to < fg¢,g~! >

té get
te(fofg™) — 2l {ltr(faf1g™) + 2]+ XD} 2 1, (R=2) (210
Itr(fgf‘lg‘l) + 2 cos 2R7‘I’|2 . Pg (|tr(fgf_lg'1) + 2 cos 2R7r|)

{Ite(fef g™ + 2+ (A} 21 (R4 5) (217)

Let
z = |tr’(f) —4cos’rm|, and y = |tr(fgf'g™') + 2cos2Rn|.

If < f,g >is non-elementary discrete, tr?(f) # 4 cos? rm,0 and tr{fgf1g™1) #

—2cos2Kxm then we have

2(z+y+8)>1 or 2?Ple)z+y+8)>1 (2.18)

and

ye+y+8)>1 or ¥*Pr(y)(z+y+8)>1 - (2.19)
Because the polynomials P.(x) and Pg(y) have positive coeflicients, it is

easy to see that = + y and zy have positive lower bounds depending only on
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R and r. When tr(f) = 0 and r # 1, (2.1) is trivial. So o(R,r) and S(R,r)
exist. This finishes the proof of Theorem 1.

§2.3. For some specific R and r we have:

Corollary 1. Let Mébius transformations f and g generate a non-

elementary discrete group. If tr(f) # 0, then

62 (F)] + [ ex(fof g™ — 2] > 2(VZ - 1) = 08284 (2.20)

and
|te?(f)| - [te(fgfg™") — 2| > 0.1354, (2.21)

Moreover if in addition tr(g) # O, then

(e (f)] + 162(g)] + [ ex(fofg™) — 2| > L5407 (2.22)

and

(D + 2@} + | ix(fef ™) 2] > 09706 (229)

Corollary 2. Let Mébius transformations f and g generate a non-

elementary discrete group. If tr2(f) # 1 and tr(fgf~2g™*) # 1, then
[te2(f) — 1| + |tr(fgf"g™") — 1] > 0.9032 (2.24)
if in addition tr(f) £ 0, then
[te®(f) — 1} |tr(fgf'g7") — 1| > 0.2039. (2.25)

Corollary 3. Let Mdbius transformations f and g generate a non-

elementary discrete group. If f* # I and tx(fgf~*g7') # 0, then

62 (f) — 2| + | tx(fgf'g™)| > 0.6181, (2.26)




|tr®(f) — 2| - | tx(fgf~"g™")| > 0.09398,
L er?(f) — 2| + | tr(fgft97') — 2] > 0.6757,

[tr?(f) — 2| - | tx(fgf"g™") — 2| > 0.03819.

§2.4. Proof of Corollaries
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(2.27)
(2.28)

(2.29)

First we suppose < F,G > is non-elementary discrete and tr(G) # 0,

then < F,G? > is also non-elementary. So

| tr?(F) — 4| + |tr(FG*F'1G7%) - 2] > 1

or

|tr?(F) — 4] + | t2%(G)] - [¢e(FGF-1G™) — 2| > 1.

Now if tr(f) # 0, let F = fg¢ and G = f~1. From (2.34) we get
[ tr(fgf~g™") + 2| + [tx*(f)] - [ex(fgfe™) — 2| 2 1.
Then applying (2.31) to < f, g¢ > yields

[te(fgfg™) + 2|+ |te?(£)] - [tx(fgfg7) = 2| > 1.

Let |
z = [tr’(f)| and y=|te(fgf 'g7") - 2]
then
|tr(fgfa™") + 2| = |te?(F) —te(Ffof g ) + 2| <z +y.
Thus

cyt+ect+y=>1

So

(2.30)

(2.31)

(2.32)
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zzl;y or yzlmm. (2.33)
14y 1+
Thus \
1—=z 1+ =
> = > 2(4/2 - 1), 2.34
ety2e+i— 1erm(\/_ ) (2.34)

If the equality holds, then # = y = v/2 — 1. Jgrgensen and Kiikka proved if
Jgrgensen’s inequality holds with the equal sign, then f must be elliptic or

parabolic. [J-K] So we get
tr*(f) = v2 - 1. (2.35)

However, (2.35) means f is an elliptic element of infinite order, this contra-
dicts discreteness. That proves (2.23).

Now From (2.8) and (2.16), we get
g(z+y+4)>1 and ylz+y+4) 21 (2.36)

So we have

2y >1—4z —2? and zy>1- 4y — % (2.37)

If  and y are both bigger than v/2 — 1. we have

oy > (V2—1)7 > 0.1715-- .. (2.38)
If £ <+4/2—1, then
zy > max {l-—4e—z? m—(1—_i)} > 0.1354634. (2.39)
T 0<z<v2-1 . R
If y <+/2—1, then
¢y > max {1-4y—y?, :—"'Ll_—y)} > 0.1354634. (2.40)
0<y<v2-1 14y
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Moreover if in addition tr’(g) # 0, applying the above result to group

< f,g* > we have

[tr?(f)| - 1tr*(g)| - | te(fgf~2g™") — 2| > 0.1354634. (2.41)
So
|te?(£)] + | te*(g)] + | tx(fgf2g7") — 2|
> 3{tr*(f)] - | (g)] - [ tx(fgf ~2g™") — 2}+
> 1.5407, (2.42)
and

S|+ [0} + | tr(fof g™) — 2

fef~lg71) -2

> 0.9706. (2.43)

§.1354634 11
>\/|tr( o+ (faf ) 2]

That finishes the proof of the Corollary 1.

Now we suppose tr’(f) # 1, tr’(f) # 0 and tr(fgf~'¢™') # 1, we have

| ex*(f) = 117 - {Jer’(F) — 4| + | tx(fof g ) — 2} > L. (2.44)
and |
ltr(fgfg7") — 1P - {[tx(fof g ) + 2| + [E*(F)} > 1. (245)
Let
o= |tr(f)~ 1] and y=|be(fof'g™") - 1|
Then

2 (z+y+4)>1 and y(z+y+4)>1.
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Let

D= {(z,y):2,y>0, 2*(z+y+4)>1and y*(z+y+4)>1},

L= {(5,9) 2y > 0, ez +y+4) = 1},

L ={(z,9): 2,9 > 0, y*(= +y+4) =1}
It is clear that minp {z + y} and minp {zy} only occur on the boundary of D.
Observing that @ 4 y and 2y are decreasing functions of  (or of y) on the
curve L, (or on L;). So only at the common point of L; and L, can they

attain their minimal values in D. Solving for the coordinates of this point,

we get z = y = 0.4516059 - - .. Thus
4y >0.9032118.--, and oy > 0.2039478... .  (247)

K tr(f) = 0, then (2.24) is trivial. That proves Corollary 2.
Now we suppose f* # I and tr(fgf—'g~") # 0, we have

tx2(F)] - [ £22(F) — 2% - {|4x?(f) — 4] + |ex(fgf g7 — 2} > 1 (2.48)
and
|te(Fgftg™") - 2| |tx(fgf g )P - {Itx(Faf 197 ) + 2|+ [t*(£)]} > 1. (2.49)

Let
z=|tr’(f) - 2| and y= |tr(fgf g™

We have

2 (z+2)(e+y+4)>1 and ¥ (y+2)(e+y+4)>1. (2.50)
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Solving the equations
2z +2)(z+y+4)=1and y(y+2)(z+y+4) =1, (2.51)
we get roots = y = 0.3065629 - .- . Thus
z+y>0.6131258--., zy > 0.0939808- -, (2.52)

and (2.26) and (2.27) follow,

If let
o= |tx(f)— 2| and y=|tx(fef ) —2)

then from (2.48) and (2.49), we have
Xz +2)(z+y+2)2>1 and yly+2)’(z+y+6)>1. (2.53)

Also applying (2.20) and (2.21) to < f?,g > we have

Ler?(F) — 2 + [¢2*(f)| - [te(fgf 1g7Y) — 20} > 2v2 — 2. (2.54)

[tx?(f) = 21 - |¢r*(f)] - | tr(fgf ~"g™) — 2|} > 0.1354634. (2.55)

So

2’4 ay+2y>2v/2-2 and z(z + 2)y > 0.1354634. (2.56)

Solving (2.53) and (2.56). we get

z +y > 0.86757646, zy > 0.0381988. (2.57)

That proves Corollary 3.
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Chapter 3

Some Applications

§3.1. We can use some inequalities as non-discrete criteria for Mobbius
groups. For example, consider the group generated by f and g in (2.3) of

chapter 2. Let ¢ = A* + A2, If |t| < 0.3108, then
2

< 0.13546. (3.1)

21
e (f0)|-|x(fof g™) ~ 2 = |7
Notice < f,g >=< fg,g > and fgf~'g™" = (fg)g(fg)~'y~'. By (2.39)
and (2.40), we conclude that the group < f,g > is not discrete when 0 <

A% + A% < 0.3108.

§3.2. The first important application is to generalize Shimizu-Leutbecher’s

lemma. We consider the group generated by

az + b
cz - d

f(2)=2z+1, g(2)= (ad — bc =1,c # 0). (3.2)

It is well-known if < f,g > is discrete then |c[ > 1. George proved

the following result: Let ¢ be real or pure imaginary and 1 < |¢| < 2, then

only when |c| = |2cos Rr| (R rational), can < f,g > be discrete (Gel. It
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is clear that tr?(f) = 4 and tr(fgf'¢g™!) = 2 + ¢®. Let rational numbers

R,r € (0,1]. Suppose that ¢? + 4 cos? Rm # 0, then from (2.2)

B(R,r)

. 3.3
4sin?rr ( )

|c2 + 4 cos? R‘rr’ >
i ¢ — 4cos® Rm # 0, applying (3.3) to < f,g¢ > we have

Ic2 —4cos’ Re| > ﬂ(iz:r)_
4 sin“ rwr

(3.4)
So we obtain the following theorem which generalizes Shirnizu-Leutbecher’s
lemma.

Theorem 2 For an arbitrary rational number R € (0, %], there ezists a
positive constant o(R) having the following property: If the group generated
by f(z) = z+1 and g(z) = -c‘*;_ig (ad — be = 1,c #£ 0) is non-elementary

discrete and ¢ # T4 cos? R, then
[cz + 4 cos® Rﬂ" > o(R). (3.5)

We know o(3) = 1. By elementary calculation o(%) > 0.7548, ¢(1) > 0.2654

and o(1) > 0.1181. That means
| £1] > 0.7548, |c? +2| > 0.2654, |¢® + 3] > 0.1181 (3.6)

provided that the left sides are non-zero. When R = 3> Theorem 2 reduces

to Shimizu-Leutbecher’s lemma.

§3.3. Now we try to get the geometric meaning of theorem 1. Let

a b
f:“—z‘l'—b(ad——bc::l. Then the matrx 4 = € GL(2,C).
cz-d

c d
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We define the norm of f to be ||Al| = \/[;]2 + 1b12 + le|2 + |d[2. After the

choosing of A representing f, we define the norm of f—Itobe||[A-1I| =

\/E— 12 + |bl* + |c — 1|2 + |d[>. Because the choices of A is not unique,
I|f — I} is not well-defined. However we have the following
Theorem 3 Let Mébius transformations f and g generale a non-

elementary discrete group. If f2 £ 1, then

|te(f)] - If1}- llg — I} > 0.36805. (3.7)

where ||g — I| is to be interpreted as [|B — I|| for either choice of matriz B

in SL(2,C) representing g.

Proof. Let matrices A and B be defined as above. First we sup-
pose that A and B are neither parabolic nor £I. Following Waterman’s
argument [W], we may conjugate A and B by T € SL(2,C) such that the
common perpendicular of the axes of TAT-! and TBT ! is the j-axis .a,nd
NTAT-| < || Al |\TBT-!|| < ||BJ|. It is clear that ||.TBT‘1—I|\ <||B-Ij.

So we can assume

( c as )
A= , ¢ = cos(u + iv), 8 = sin(u +v), a € C - {0},
\ -sfa ¢ |
( : ﬁg\
B= , &= cos(z +1y), § =sin(z +1iy), € C — {0}. (3.8)

\ —3/8 & )
Then

2

|tr?(4)| - |tr(ABAT'B™Y) - 2| = 4lci? -

s.‘s’(g—g)
g«

< st (a1 + 15 (1814 555). (3.9)
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and

| ¢e*(A)] - || Al - 1B - I]?

1 1
~ 4)ef? [2!42 lof? (1a2| + -——)] - [21&— 1 + J3f (lﬁ?i ¥ —m)]
| 18]
> [tr’(4)]- |tr(ABA™'B™1) — 2] > 0.1354634. (3.10)
So
jtr(4)]-]14] - || B — I| > v/0.1354634 > 0.36805. (3.11)

When one of A and B is parabolic, we can assume by conjugation with an

element of SU(2,C) [B, p108], that

1 A a b
A= , B =
0 1 ce d
Then
| te(A) - JAL 1B =T > 2A-1}- | B - I = 2. (3.12)

a

The geometric meaning of Theorem 3 is very clear. If we use the quantity
| tr(f)| - ||f]| to measure the distance from f to the set of elements of order
2. Then (3.7) means that if f is too closed to the set of elements of order
2 then g can not be too closed to the identity. Compare with the famous

inequality (due to Gehring)

1f=1I)-lg= I >2~+3

it is possible that ||f —I|| is very largr while | tr(f)|-||f]| is arbitrarily small.
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Also, from (2.2) we can get:

Theorem 4 For any non-elementary discrete group, let

= 1max ﬂ(%, %) )
o1 asn /2({lg — I||2 + flg — 1))

T (3.13)

If fr#1, then
FI? > s - (3.19)

tr’(f) —4003225- |

Inequality (3.14) clearly shows: In any non-elementary discrete group,
the elliptic elements are isolated not only in the sense of norm, also in the

sense in trace.
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Chapter 4

Some Sharp Results

84.1. It is difficult to get the accurate value of a(R,r) and G(R,r) for

specific R and r. In this chapter, we obtain some sharp estimates as follows:

Theorem 5. Suppose that the Mébius transformations f and g generate

a discrete group. Iftr(fgf='g~') # 1, then
[tr®(f) - 20+ |[tr(fgfTlg7) — 1| 2 1 (4.1)
fte(fgf2g7?) =1 and te*(f) # 2 ,then
|te?(f) — 2| > % (4.2)

Theorem 6. Suppose that the Méobius transformations f end g generate

a discrete group. If tv*(f) #£ 1, then
[tr?(F) — 1+ [te(faf g7 2 L (4.3)
if tr*(f) = 1, then

tr(faf 29> 5 or t(Fof g™ =0; (44)
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and
|tr(fgf'g7") — 1| > % or tr(fgf 'g7') =1 (4.5)

Theorem 7. Suppose that the Mdbius transformations f and g generate
a discrete group. Iftr(fgf1g~') # 1, then
|4 (f) —te(fgf g ) + tx(fof g7 ) ~ 1 2 15 (4.6)
ifte(fgf'97') =1 and tr?*(f) # 1, then
1

() 1] > 5. | (47)

Remark 1. If we take

f(z) =iz, g{z) = 2z,

then the lower bounds of (4.1) and (4.6) are attained. We see also (4.3) is

sharp by taking

f(z) = -z, 9(z) = i;i

(4.8)

Recent work of Maskit in response to a question of Gehring and Martin
(see [G-M]) shows that inequalities (4.1), (4.3) and (4.6) are sharp for
non-elementary groups [M1]. However, the lower bounds 1 of (4.2), (4.4),

(4.5) and (4.7} are not the best possible. In fact, the above theorems are

equivalent under the Lie product transformation.

Remark 2. Take the discrete group Gy generated by

fz) =iz, glz) =

(4.9)

z+1’
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the discrete group GG, generated by

z—1 . zZ—1
e = (4.10)

f(z) =

and the discrete group G generated by

z—1

3]
z4+1

iz+1
g(Z) = m.’ (4.11)

f(z) =
The group G; shows that hypothesis for Theorem i+4 is necessary.

Remark 3. Gehring and Martin have worked on the same problem and

have established a general result which contains many inequalities including

(4.1), (4.6) as well as Jgrgensen’s inequality [G-M].

§4.2. Proof of the theorems.
The proof is based on the following lemma:

Lemma Suppose that the Mébius transformations f and g generate a

discrete group. Iftx(fgfg~') # 1, then

[er?(f) - 2| + [ tr(fafg™) -1 2 15 (4.12)

if tr(fgfg~') =1 and tr’(f) # 2 ,then

| tr?(f) — 2| > % | (4.13)

We will prove the lemma in §4.3. In this section we use it to prove

Theorem 5 to 7.
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If tr(fgfg~') = 2, then there is nothing to prove. Next we suppose
that tr(fgfg~1) # 2. So we can define a new Mobius transformation ¢ as
before, which is the Lie product of f and g.

Now applying the Lemma to f and g¢ yields Theorem 5.

Applying the Lemma to fg¢ and f~* yields (4.3) and (4.4), while ap-
plying (4.4) to f and g¢ yields (4.5). Then applying Theorem 1 to fg¢ and

£, we have : if tr(fgf1g™!) # 1, then

|tr(fgf g7 ") + |tx(fafe™ ') — 1| 2 1; (4.14)

if tr(fgfg~1)=1 and tr{fgf~'g') # 0, then

|tr(faf'g7") > % (4.15)

Replacing f and ¢ by f and B¢ in (4.14) and (4.15), we get Theorem 7.

If we continue the same trick, we come back to (4.1), (4.3) or (4.12).

§4.3. Proof of the Lemma

For the proof of Lemma, we need only to consider the case where f is
elliptic or loxodromic. Let f and g be represented respectively by the matri-
ces A and B in SL(2,C). The inequalities are invariant under conjugation

and so we can assume A is of the form

a b
A= (x # -1,0,1) and B = (ad —bc=1).
¢ d

g 1
U
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Then
1\? 1\?
tr’(A) = (u + ;) , tr(ABAB ') =ad (u - —) + 2
and
—1p-1 2 1 1y?
tr(ABA7'B ) =u*4+ — —ad (’u - —) . (4.16)
. u U

Now we suppose that tr(ABAB~!) # 1 and (4.12) is false. Then

r = [tr?(A4) — 2} + | tr(ABAB™) — 1|

1 1
2 2
= |u +;§ -§-‘1+ad(u——;) < 1. (4.17)
Let
B, = Ba
1pei ant1 bat
Bnii = AB A7YB = (n=1,2,3,...).
Cnt1 dn+1

Then we have

Gni1 = Ondp(1 — u?) + u?,
bn.|.1 = anbﬂ(uz - 1),
1
Cny1 = cnd, (? - 1) ’
1 1
dor = ands (1 _ E) + 4. (4.18)
Hence

| 1)2 [, 1 1\?
1+an+1dn+1 U — -~ = 1+a'ndn(u_'—“) u 'i"‘g“"l_andn u_'_)
u u u

U

(4.19)
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Let t = u® 4+ % and 2z, = 1 + a,d,(u — 2)?, then (4.19) becomes
Znt1 = Zn(t — 2n). (4.20)

So

|z2] < |za|(Jt] + 121]) = |z (4.21)

Then by induction, we have
|Zay1l < lzalr < |2zy]r". (4.22)

Observe that z, tends to zero as n tends to oo. So from (4.18)

u?(u? — z,) . u?

1 = — =7 (n — o), (4.23)
(v?z, — 1) -1
dnp1 = w(a? —1) — P =T) (n — o0). (4.24)

Now we consider two cases.
Case 1. Suppose that z, # 0 for all n. Then (4.22) implies that the z,
are distinct and hence that the same is true of a,, and d,..

If f is elliptic, then |u| = 1. Therefore for some constant K

[bota| = ju® = za]lbnsa| < (14 Kr™)|bpss]
and

lentz] = [1 — w?znflena] < (1 + Er™)lensal. (4.25)
Hence the sequences {b,},{c,} are bounded.

If f is loxodromic, then |u| # 1. Notice that the distinctness of {z.}

implies for any n, b, # 0. So we can choose an integer k = k(n) such that

1
1< [u?*b,| < ] + H : (4.26)
u
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Thus

‘ ‘AanA_k =

has bounded entries .

Hence we can find a subsequence of < A,B > which is distinct and
bounded. This contradicts discreteness.

The above argument explicitly follows Jgrgensen. (Also see [B].)

Case 2. Suppose that z,=0 for some n.

The hypothesis tr(fgfg™') # 1 means z; #.0. From (4.20) we can find

an integer ¥V such that

2 =0 forn >N and z, #0 for n < N. (4.27)
So
1 1 1
t=2zy#0 and [tf] = (|¢] +|zn]) < gt + =) < 5. (4.28)
Also
ut -1
anzuz—'_—-l- and dﬂ:m for 'n>N+1.

Thus we get a matrix M in < A, B > of the form

2 1 b*
M=%~ 4 : (4.29)

u(u? — 1)

4 2
where §*'c* = —-ﬁ.

By computation
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pio | -1 o "
) 1 e
ui(u? —1)2
w4+ ut 41
- u? —1 Srwri1 |- (4.30)
" Cut(w?—1)

Now let B; be replaced by M? and return to the iteration of B,. Let z, be

defined as above corresponding to the new sequence. Then

1 2
z1=1+a,1d1 (u—;)

(@t et D) W+ 1)

=1 "

u12+u10+u8+2u6+u4+u2+1
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and
n=zn(l—z)=—-E+t-2) +t-1)
= 3t - 1)t + 2)(t* + ¢t —1). (4.32)
Let

Dlz{t: 0<|t| <> and ]t(t—i)(t+2)(t2-|—t-—1)|<1}. (4.33)

B2 | et

If t € Dy, we have 0 < |z,| < [t|. From (4.20)
|2nl([t] = |2n]) < lza41] < Jzal([t] + [2a])-
By induction we get
0 < |zn) < lzal <|t] and [t + |24] S [t| +|22) <1 for n2>2. (4.34)

So we can go back to the case 1. That means if t € Dy, then < A, B > is
not discrete,

By simple computation, we see that

1 -
D, > {t: 0 < |t} £ 2 and —:— < arg(t) < -E} . (4.35)

Now from (4.29)

8
u * &
1342 ( (u? —1)2 e *
ATMY = |
W ) e
\ ui(uw? —1)?
4
(g1
. : a1 |- (4.36)

\ T u(u? —1)




‘We redefine the matrix B to be

u¥(ut + 1)

- 21
B = d :—A3(A 1M)2_ u ) u4+1
[

—u5('u.2 - 1)

Then

tr’(B) = (a+ d)’ = (U4(:213.2§3£:u:01)

(v + 1)*u? +1)?
= 210

and

4 2
ad — _ (W H1)*
u?(u? — 1)?
—t
t—2

If we set F' = A%, then from (4.16)

tr(BFB'F') = tr(FBF'B™")

1 1
=u4+—4—ad(u4+—4—2)
(/) U
12
i—2
=1*+ 3t — 2.

=¥ 24 (t* —4)

36

(4.37)

(4.38)

(4.39)

(4.40)
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When 0 < {t| <1, we have tr?(B) £ 0 and
2

tr(BFBF™) -2 =tr*(B) — tr(BFB'F ') -2

=426~ 2 317 £ 0. (4.41)

So applying Proposition 5 of chapter 1 to B and F yields

|tr*(B)| + |te(BFB'F-')+ 2| > 1. (4.42)
Thus
[t4(t + 2)| + |£* + 3¢ > 1. (4.43)
Let
D,={t: 0<|i| < % and  [t*(¢ + 2)| + |#* + 38| < 1}. (4.44)

If t € Dy, then < A, B > is not discrete.

By simple computation, we see that

1
D, D {t : 0<t < 5 and % < arg(l) < T} . (4.45)

Combining (4.35) with (4.45), we conclude that < A, B > is not discrete.
So we get (4.12).

Iftr(ABAB~')=1, then z; = 0. The same argument yields ¢ ¢ D,UD,.

Sot=0or |t| > % and (4.13) follows. This finishes the proof of the Lemma.




Chapter 5

Some Conjectures

Because
|4 cos® rym — 4cos? rym| 4 | cos 2Ry — cos 2Rym| < 4w(|ry — mp| + |Ry ~ Ral),

thus
le(Ry,71) — a(Rs,r2)| < 4m(jry —r2| + [R1 — Ry

).
So the function a(R,r) in Theorem 1 is a continuous function of the rational
numbers R and r. Can we extend it to the whole region (0 < R < 1,
0 <7< 1)? Are (2.1) and (2.2) still valid for irrational R or »? Setting
R = }in (2.2) , we have

|t2%(£) — deos” v - bx(faf g ™) — 21 2 Bz,7).

As we said in chapter 3, this inequality implies the isolated behavior of
non-elementary discrete groups near elliptic Mobius transformations. But
we know that every element is isolated in a discrete group. So we have the
first conjecture as follows;

For every complez number a, there ezists a positive number v(a) such

that if < f,g > is non-elementary discrete and tr(f) +# a, then

38
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[tr?(f) — o] - | tr(fgfg™") — 2| = v(a). (5.1)

provided some auxiliary conditions are satisfied.

Observing that (2.1) is valid for r = 0 and R = 1, so we also hope to
extend Theorem 1 to R = 0 or r = 0 and suggest the following conjecture:
There exist positive constants oy and B, such that if < f,g > is non-

1

elementary discrete and f, fgf g~ are not parabolic then

|te?(F) — 4|+ |tr(fgf 7 g7") + 2| > o, (5.2)

[tr*(f) — 4] - [ tr(fgf"g77) + 2| > By, (5.3)

provided some auziliary conditions are satisfied.

On the other hand, many estimations are not best possible. For example,
when tr?(f) £1 and tr(fgf~'g™") # 1, by carefully calculating we can get
a bettér result:

[er®(f) - 1| + [te(fgf~'g7") ~ 1| > 0.96 ... (5.4)
We hope to find the sharp lower bounds of the following inequalities:
| 4x*(f) — a| + | tr(fgf1g™") — bf 27 (5.5)

|¢r*(f) —al - [tr(fgf~'g7") — b] 27 (5.6)

where ¢ = 0,1,2,3; b = —2,—1,0,1,2. All these inequalities correspond to
elliptic elements of low order.

The results established also suggest the following very interesting ques-
tion: For what kinds of discrete groups < f,g > will the left hand sides of
inequalities (1.2), (4.1), (4.3 ) or (1.17) be zero?

The left hand side of (1.2) is zero if f(2z) = z+1, g(z) = z+7(7 nonreal).

Here f and g are both parabolic and < f,g > has signature (1,0).
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The left hand side of (4.1) is zero if f(z) =iz, ¢(z) = 25 . Here f and
g are both of order 4 and < f, g > has signature (0,3;2,3,4).

The left hand side of (4.3) is zero if f(z) = :—;::, 9(z) = —=% | Here f
and g are both of order 3 and < f, g > has signature (0,3;2,3,3).

Finally the left hand side of (1.17) is zero if f(z) = ~2, g(z) = L . Here
f and g are both of order 2 and < f, g > has signature (0,3;2,2,2).

In each of the four cases discussed above, the group < f,g > is elemen-
tary. From these observations, we are led to make the following conjecture:

Let < F,G > be an elementary discrete group with tr(F) = tr(G). If

< f,g > is discrete, then
[t?(f) — t2*(F)| + | tr(fgfg7!) — tr(FQF'G™Y)| > 1, (5.7)

provided some appropriate auziliary conditions are satisfied.
For example, if we take F(z) = —z, G(z) = —z + 1, the signature of
< F,G >is (0,3;2,2,00). Then (5.7) will become

e (F)] + |t fof o) — 2] 2 1.  (58)

In the chapter 2 we have: If < f,g > is non-elementary discrete and tr{f) #
0, then

|6 ()| + [tx(fgf"g7") — 2| > 2(vV2—1)=0.828-...  (5.9)

The sharp lower bound of (5.9) is still unknown.

At last we hope to find |a| > 4, || > 2 and ¢ > O or |a| > 4 and || > 2

and 7 > 0 satisfying (1.12) or (1.13).
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Chapter 1

The Inner- Radius of Universal

Teichmiiller Space

§1.1. Introduction and main results

Let f be a holomorphic function defined on unit disc I/ = {z:

z| < 1}
and S; = ({,—',1)' - %(%’)2 be its Schwarzian derivative. Let k € (0,1). In
1973, Ahlfors proved if we can choose an auxiliary function v satisfying

Vzp2 # 0 for |z <1 and v — oo as |z] — 1, then the inequality
1 2
‘ESf‘i"U —v.{ < klvs| (|z] <1) (1.1)

implies the existence of a quasiconformal extension of f to the whole complex

plane. [A]

If f is defined on the upper half plane H = {z :Ihz(z) > 0} . Following
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the Ahlfors’ idea, define

9(z) = f(2) + ( )f’(’i).f"z (Im(z) > 0), (1.2)
U2 = 30

where v;/v? 3 0 for Im(z} > 0 and v(z) — oo as Im(z) — 0.

Then by computation

ig +v? v,
&’z 35 . (1.3)

gz '”2[

So if

< kloz| (Im(z) > 0), (1.4)

1
’ESf + '02 — vz

then g(2) (Im(z) < 0) is a quasiconformal extension of f(z).

Writing 1o instead of v, (1.1) and (1.4) becomes

51 (o~ 17)

Let 4 be any simply connected domain in C of hyperbolic type. We

<kl (0<k <), (1.5)

define the Poincaré density py of A by

1h'(2)]
pa(z) = I—TIW,

where h(z) is any conformal mapping of A onto the unit disc I, For

complex- valued functions ¢ on A we set the norm

o 182)
19lla = sup =

Let F(z) be any meromorphic function on A. Following the idea of Nehari

[N], Lehto defined the inner radius of univalence or{A) as the supremum
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of the numbers @ > 0 with the property that F(z) is injective whenever
|Srlla < a [O. L1).

Let g(z) be defined in U (orin H) and 4 — 9(U) (or g(H)) be a quasidisc.
Let o7(A) be the inner radius of univalence for A. Assume that f(z) is any
meromorphic function on U (or in H). It is clear that the inner radius
of univalence o7(4) is also the supremum of the numbers a > 0 with the
property that f(z) is injective whenever || S, —5llv < a (or [[Sy~ S, || < a).
In the other words, or(A) is the inner radius of universal Teichmiiller space
with respect to S, .

There are many papers con;:erning o1(A), for example, those published
by Calvis [C] and Lehtinen [M. L1] [M. L2] [M. L3]. In this chapter
we want to show that the Ahlfors inequality is a very powerful tool for
investigating o;(A4). Some special choices of v can yield valuable lower
bounds for o;(A) including some well-known results. In fact we obtain the
following results:

Theorem 1. Let g(z) be holomorphic in I/ and 4 — g(U). Then

o1(A) 22— 2sup |o(1 — |o]2) (L. _ 29 (1.6)
B lz|<1 g g+e
and
or(4) > 2inf 2L\ (1 29 _, (1.7)

lzl<1| g g

where ¢ is any complex number.

Theorem 2. Let g(z) be bolomorphic in H and 4 = 9(H). Then

H 2I
o1(A)>2—~4 sup |y g _=9

L

(1.8)

Im@zp>0 \9' g+e¢




and

. zgf zgf
A)>2 inf |—=||1-|= — . 1.9
UI( ) - Iml(z)>0 g g ( )

where ¢ is any complex number.
Remark: Let g(2) = 2z + 2® 2€ U and A = g(U). Then from (1.7)

141z 1
A>2inf | —2—|[1 - |~
UI( )_ |ifl<1 1+;11—z 1—i—%z

But for ¢ = 0 from (1.6)

1
oc(A)>2-2 z(1 = |z|*) - ——| > 1.13029.
1(A) > ﬁﬁ( |ﬂ)2+z

By carefully choosing the constant ¢, we can get the better estimation for

or(A)

§1.2. Proofs of Theorems

Because the proofs are routine, we omit the details.

(i) In the case of A = g(U), for any complex number ¢, choose

N [ ~
oL _ 2g + 2z '
g g+e 1—|z2
Then (1.5) becomes
2z " 2g' 2k
Si—S+—— L - )|< -
1-]22\¢ g+c (1—[2]%)

So

" 2 !
or(A) > 2 — 2sup (1 — |2[?) gg—,_ g3l (1.10)

|z|<1

g+c
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Let ¢ = oo, we have

2z [(¢" 2k
— —_— e .
Sf Sg + 1_ |2]2 g, = (1 — Izlz)z, (1 11)
and
gﬂ'
or(4) 22— 2sup |2(1 ~ [2|*)Z|. (1.12)
fzi<1 g

The inequality (1.11) was first obtained by Epstein under some additional

assumptions and was proved by Pommerenke later.[P]

Now choose
gﬂ' 2 f

g
g 9(1—1|z"2)"

Then (1.5) becomes

g, _ g _ 229'(z¢'— g) 2kzg’
SR R Presmy e E L
Thus
r !
or(4) > 2inf | 2L [ {1 |29 _4|). (1.13)
lsl<a| g g
(ii) In the case of A = g(H), choose
" 29' 2
L .
g g4+c¢ z-—:z
Then (1.5) becomes
N t
S;— S, + 2_ g 2g < 2k .
z2—2\¢g g+e¢ |z — 2|2
We get
" 2 ! ]
or(A)>2—-4 sup |y g .2 (1.14)

msel  \g  g+ec
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and in the special case for ¢ = oo

"
or(A)>2-4 sup |y g_’ . . (1.15)
Im(z)>0 g

If we choose
"

g __ 29
¢ g(1-3)

¥
P =

Then (1.5) becomes

2z¢'(2¢' ~ g) 2kzg’
S,_ 5§ — < .
P CIF I el FTPRSE
Thus
. zgf zgf
Ay > 2 f |—=|(1—-|=— . 1.16
aI( ) - Iml(rzl)>o q g ( )

This inequality makes sense only for lfg—' —1| < 1. If we take

1
g(z) = 2F = exp(klogz) (z€ H, [k—1] < 1, logi= Em) ,
A = g(H) is a spiral-like domain for non-real k. Because 55—' = k, we have
or(A) > 2|k|(1 — |k - 1]). (1.17)

When k is real, Lehtinen and Lehto obtained [O. L2]

or(A) = 2k(1 — |k — 1]). (1.18)

We do not know whether (1.17) is sharp for non-real k.

§1.3. A general formula

Generally, let h(z) be any quasiconformal self-mapping of the whole
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plane. Let g(z) be holomorphic in H or U. Define 7(z) = h(z)/h(z) for
A= g(H) and 7(z) = h(3)/R(2) for A = g(U) . We choose

oS _ 2
g g(1—7)
Then
O'I(A) 2 2inf Ig’l(lé(g'r)l - IB(QT)I) , (1'19)
lg — g7 [*n?

_ 1 1
where n = 25 OF T

Let h(z) be any quasiconformal extension of g{z), denote g* = ¢(Z) or

g(-;e), then

19'(18g°] — 184*])
lg — g% [*n?
This is just another form of Lehto’s result. 0. L2, page 121]

o1(A) > 2inf (1.20)
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Chapter 2

The Dilatation of
Beuring— Ahlfors

Quasiconformal Extension

§2.1. Introduction and theorems

Let u(z) be p-quasisymmetric, 1 < p < oo, that is, u(z) is a continuous

increasing function mapping the real line onto itself and satisfying

1 _ple+1) = p(a)
P @) —p(e—t) = (1)

for all x and £ # 0.

In 1956, Beuring and Ahlfors [B—A] using the formulas

u(zy) =5 [ [z + ) + oo — )l

wey) = ¢ [ +ty) - ple— )t (r>0)  (22)
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constructed the function w(z) = u(z,y) + tv(2,y)(z = z + iy), which is a
quusiconformal mapping from the upper half-plane onto itself having u(zx)

as its boundary value. It is of interest to estimate the dilatation K(z)of

w(z).

Beuring and Ahlfors [B-A| first proved for some r
K < ph (2.3)

For large p, (2.3) is not the best possible. In 1966, Reed [R] proved for
r=1

K < 8p. (2.4)

(2.4) means for any =, the order of K with respect to p is not bigger than
one.

In 1983, Li Zhong [Li] improved (2.4) as follow:
K<42 (r=1) (2.5)
Also in 1983, Lehtinen [Lel] obtained
K<2 (r=1). (2.6)

In 19686, Ahlfors [A2] also proved that the Beuring-Ahlfors extension func-

tion with r=1 is quasi-symmetric, i.e. there exists a constant 4 such that
. :
Xd(zl,2-'2) < d(w(z1), w(z2)) < Ad(z, 22) (2.7)

for any 2z, z; in the upper half-plane, where d(.,.) denotes the non-

Fuclidean distance.




83

Ahlfors obtained

A < 4p%(p+1). (2.8)

In this chapter we refine the Beuring-Ahlfors technique and obtained the

following theorems:

Theorem 1. Let pu(x) be a p-quasisymmetric function. Then the dilata-

tion K(z) of the Beuring- Ahlfors extension with r=1 satisfies the inequalities

K<2p— o1

— 2.9
<2 ST ) (2.9)
and
K<2p—2+o(1 (2.10)
P

Jor sufficiently large p.
Theorem 2. Let u(x) be a p-quasisymmetric function and let w(z) be
the Beuring-Ahlfors extension of u(z) for r=1. Then
1
%d(zl’ z2) < d{w(z1), w(zy)) < 2pd(z1, 23) (2.11)
for any z,, z, in the upper-half plane.

Remark. When p =1 and p(0) = 0, then for any ¢ # 0 and = we have
(e + 1) + pe — t) - 2u(z) = 0.

So the second derivative di:;,-n(a:) =0 a.e,, which means y(z) = cz (¢ > 0).

we easily see that w(z)=c(z + 1yi) (¢ > 0). It is evident that K(z) =2 and

lim d(w(z1), w(z3)) -9

21— 2T =%z >0 d(zl, 22)
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Therefore the coeflicient 2 of p either in theorem 1 or 2 cannot be replaced

by any smaller number.

§2.2. Lemma. Let p(z) be a p-quasisymmetric function normalized

by 1p(0) =0 and p(1) = 1. Then

(1+20)+8n>1+8, (2.12)

(1+20)Bn+€> 148, (2.13)

where = —p(~1), £ =1~ [f p(t)dt and n =14+ 81 f°, p(t)dt.
Proof. Taking £ =1 > 0in (2.1) we have (1 + p)u(t) > p(2t). Thus

1 1
0

(a+o) [ * ()t > [ ueana = | L u()dt + % / oL
Therefore
(1+20) | S u(t)dt > / oL (2.14)

Substituting 1 — (1 — t) for u(t), we get

(1+20)[1 - / ' ,u(t)dt} >1- °1 u(t)dt.

This yields (2.12). Similarly, substituting 1 + ~u(t — 1) for u(t) yields
(2.13).

§2.3. Proof of theorem 1.

‘Because of linear invariance we only need to estimate K(z) for = = 0 and

y = 1 and p(z) normalized by £(0) = 0 and p{1) = 1. Thus the dilatation
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K = K(i) with 7 =1 satisfying the equation [A-B]

i-—-—_l_ l 2 2 :F
Kt g =577 g+ +80+07)| = F(&,n,8), (2.15)
where
B<p ——<tn<—to
i 1+P_ ,7]_1+p.

Furthermore, we lca.n suppose 3 > 1, otherwise consider -—%—w(—z).

Lc;t @ be a closed domain bounded by a polygon ABCDE. The side
AB lies on the line of (1+2p)¢ + 5 = 1+ B; other sides BC, CD, DE and
AE lie on the lines of ¢ = 1—_}_—‘;, n=15,{ =1 and 5 = ﬁ; respectively.
It is sufficient to look at the maximum of F(¢,7,8) in G.

AN E ¢

By calculating we have

OF B+ -(B+35)1+¢€) &F 28+ 5(1+¢)
8 (€ +n)? T (Etap

Since &£ > 0, the max of F in G is in CD U AE U AB. Since ZE >,

the max of F in G isin DEU BC U AB. So the max is in AB U {C,D, E}.

Since 37 < 0in BC and 4 < 0 in AB, the max is in AB U {D}.
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When (£,7) € AB, then B =14+ — (1 +2p)¢ and

L, 148+ (1481 +20)€+ (1 +20+20")¢"
F(E!":ﬁ)——Z. 1+ﬁ._(1+2p—ﬂ)§

= 2W (¢, B). (2.16)

But W(¢,3) is a convex function of either 3 or £, therefore the max of

W (¢,8) must occur when £ = IITP’ B =p,or

_ 14p+pB
(1 +e)(1+20)]

1<B<p.

¢

Hence we only need to consider the following cases:

Case 1: When (¢,7) lies at the point D, Then { =7 = ,—_i"i—p,

F( p__° ,ﬂ)z(ﬁ+l).w

1+p 14p B)  2p(14p)
1 (p—1)(2°+40* +2p+1)
<%+ — (217
=%t % 2p*(p+1) (@.17)

Case 2: When (£,7) lies at the point B and # = p. Then £ = 1—_15, 7=

£
14p?
1 P 2 2 2
Fl— — =2p—24 - -
(1+P,1+P,p) 4 +P 1+p (1+P)2
1 (p=1)(4p*+5p+3)
=2 —_— . 2.18
Pt 2 2p(p +1)? (2.18)

Case 3: When (£,7) lies at the point A. Then { = (l—i';)ﬂ(—"f_%;j, 1<8<

Py M= 15
(1+p)(1+20) 1+p
1 8 itpt+8
_ B+ 5t wr t [
243

(1+p)(1+2p)
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B+3 B + (1+;o)2 + hlij)ﬁﬂp)]z
2+3p+8p
= (1+2)(1+20)Y(B,0) - (2.19)

S{I+0)(1+2p):

Denote A(p) = [ﬁﬁ;ﬂ_ﬁi—pi] . Then
Y 1
(2430 +8p)" 57 = (2+3) [1+—-~——(1+p)] [1+ A(p)] [ﬂ ﬂ2(2+3p)]

When f increases from 1 to p, the sign of aa—g changes only once. Hence

ax Y(f,p) = max{Y(1,0),Y(p,0)},

and

9 : 1 9 9
1 14+ 2p)Y (1 = - 1 - — -
H o)A+ 20 (Le) = go 1t o ~ s 5y~ T+ 3o

oy L (p=1)(T6" +136° +4p* — 20— 1)
T 2p(1 + p)(1 + 2)? ’

(2.20)

15 3 4 2
1+ p)(1+20)Y =2p—3 -
(1+0)(1+20)¥ (o) =20 -3 + PRI TR S P pral g

1 {p—1)(12p* + 26p° + 23p* + 9p + 2)

= 2p + 2.21
P 2p(p +1)%(p +2)(20 + 1) z21)
From (2.17), (2.18 }, (2.20 ) and (2.21) we have
1 1 7p-1)
K+—<2 —_——— 2.22
K =%t 9 8T (222
and
1 1 1
— < —_ ot
K+K__2p+2p 2+O(p) (2.23)

for sufficiently large p. Inequalities (2.9) and (2.10) follow.




58

§2.4. Proof of theorem 2.

Because the non-Eucleadian metric is also a linear invariant we only need

to prove
1 1 w
2= o @
for p(0) = 0 and (1) = 1. Similarly, we suppose 8 > 1. From (2.2)

<2 (2.24)

o) = 3 [ Iult) — (0t = (1 + ) - 2(¢ + ).

Then
1+8 <oi) < <P +8)
2(1+p) ~ =21 +p)
From [A)]
Jw.(3)}" = (1 +€) + 8L+ 1) + 26(¢ + ).
Then
2 2 o’ 458p
fe-(0)F < (1+ P ( T +p)2) i 1+p]
_ (1 +B8)*(20° +2p+ 1) — 28
B 8(1 + p)? ’
e 2 501+ 67,
Hence
_L,ﬂv_w < (L+B)(20° +2p+1) — 28 4(1+p)
v(i) dz = 8(1 + p)? (1+B)?
28
% {2,0 t20+1-gq ipp)z] : (2.25)
_}__éng 1 2y H1+p)* _ (1+p)
o) @] 2RO e 2 T (2
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From theorem 1 .
p—1 2 +p+1

K<2— =
2T p

Then

2
K _27+p+1

K+1 72242042 (2.27)

For dw = w,dz + w,dz, we have

wz |y 2K
< hat = |w.d
|dw| < (1+ - ) jwsde] = g hwsdz]
wy 2
>(1— |2 - .
|dw| > (1 ‘wz ) lw,.dz| e ll'wzdzi
Then
1 dw,. | 4K? 1 dw,.|
—_— e —(1 < . —11
o) E S ®I &
20 +p+1 ? 2 2p
<o LT ) o2 r2p+1— —F
=2\t te) | TR T

4t 2(p — 1)(2p° + 12p* + 15p° +13p% + 5p + 1)
21+ P (1 + o + p7)?
< 4p?, (2.28)
dw(3) 2> 4 w()) o4 +e 1
oa)dz| (K417 [o(i) | T (2p+1) 402 7 4p*

(2.29)

and that completes the proof.
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Chapter 3

Quasiconformal Extension and

Univalency Criteria

§3.1. Introduction and main results
Following Ahlfors [A2] and Anderson—Hinkkanen [A—H], Harmelin [H]
recently obtained a univalency criterion for analytic functions f(z) in the

upper half plane U. It says:

Suppose that f(z) is analytic and f'(z) # O in U and satisfies the in-

equality
f”(z)

2ym—~c <k

, for y=1I,2>0, (3.1)

where ¢ is some given complex number with |c| < k. Ifk < 1, then f(z) is
univalent in U and has o k—quasiconformal extension to the whole plane.

If k=1 and |c| <1, then (3.1) implies that f(z) is univalent in U.

Our initial observation is that the condition |¢| <%k can be dropped
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from Harmelin’s criterion. Later we find that the above constant ¢ can be
replaced by some analytic functions. So it is natural to ask the following
question:

Do there exist some analytic functions a(z) and ¢(2) related to f(z) such

that the inequality
(z—2)a(z)+e(z)i<k<l, for [,bz>0 (3.2)

implies that f(z) is univalent in U and has ¢ k—quasiconformal extension
to the whole plane?

In this chapter, we will give a positive answer. In fact, with the help of
singular integrals, we have obtained the following results.

Theorem 1. Let f(2) be analytic and f'(z) # 0 in U. Let woEF(U).

Assume there exists an anelytic function a(z) and some constant ¢ 3 0 such

that
cfi(z e—fa(z)dz
(2 — 2)a(z) + {f((z)) o 1| <k (3.3)
(2= 2)a(z) + ef'(z)e= = 1| < &, (3.4)

Ifk <1, then f(z) is univalent in U and has a k—quasiconformal eztension

to the whole plane. Ifk =1, then f(z) is also univalent in U.

When f(z) is analytic in the unit disk B = {2z : |z| < 1}, we have also

obtained the following similar result.

Theorem 2. Let f(z) be analytic and f'(z) # 0 in B. Let wo€f(B).

Assume there exists an analytic function a(z) and some constant c # 0 such
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that
cf(z e—fa(z)dz
z(1 — |zP)a(z) + ( .(ff((z)) mr TR 1) 2| < &, (3.5)
|2(1 = [2[*)a(2) + (cf'(z)e T o= — 1) 2| < K, (3.6)

Ifk <1, then f(z) is univalent in B and has ¢ k—quasiconformal eztension

to the whole plane. If k = 1, then f(z) is also univalent in B,

By choosing specific a(z), we get many interesting univalency criteria.

Here are some examples from Theorem 1: {1,z > 0)

lef'(z) ~ 1] < k,
a(z) = 0.
ef'(2) -
(¢ s e
w freogse SRR
4 ~§+czf'(z) <k < az)=—~
oLl . I i ©)
5 |(2y+ )f(z):FjSk’ = ()-—:tf(z).
f"( ) . _IM
6. f( ) -1 < k, < a(z) = 7o)
2 ") 1w
7. f( ) +e(f'(z)) +i| <k, & a(z) = 7o)
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7e) 2, oy 1) 1
8. 2yf'(z) —Jitez| <k, <+ afz) Fla) 7
f’"( ) . s " B afz) — _ffﬂ'(z)
O [y TS -1 <k < o) =T
From Theorem 2, we have ([z] < 1)
lef () =1 <
> < a(z)=0.
') [k
11. (f(z))2 1’ < Izlza
1), o f(e) N0
12, {e(1 - B+ P L 2 e <, = o) =222
13, |z(1— 2P );(( )) +(c— 1) e a(z)=1 ((j))
14 o0 P 4 () 4 1) & o) =L,
15 |a(1 = )T 4 e () 17(e) - 1) ols) = -T2,

Remark 1. Criterion 10 is equivalent to |f(z) — 1| < I——’T~, which was
obtained by Krzyz under an additional assumption f'(0) =1 in 1976. [K]
Remark 2. We know that the function f(2) = 2z + 7€) (Jvl > 1)

is not univalent in U. However |cf'(z) — 1| = {y|e7¥. So the constant k in

criterion 1 can not be replaced by any number bigger than 1. The function
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f(z) = T (l¥] > 1), which is not univalent in B, shows that criterion

11 is also sharp in the sense of k.
Remark 3. From the proof, the restriction ¢ # 0 can be removed from
criteria 6 and 13, which generalize the results of Harmelin and Ahlfors [A2]

respectively.

Remark 4. In order to generalize the criterion of Anderson and Hinkka-
nen [A—H], we need further to consider the following question:

Find the relation between analytic functions a(z2) and c(z) such that the
inequality

| (2~ z)?a(z)+ c(2)] <k <1, for [,z>0 (3.7)

implies that f(z) is univalent in U and has a k—quasiconformal eztension
to the whole plane.

Remark 5. We will only prove Theorem 1, because the proof of Theo-

rem 2 is similar (but relatively easier).

§3.2. Proof of Theorem 1

The proof is based on the following proposition.

Proposition. Suppose that a(z) and c(z) are analytic in U and satisfy
|(Z2—2)a(2) +c(z)| <k <1, ze€l. (3.8)

Set

0, for z € U,
w(z) = (3.9)
(z~2)a(z) +¢(2), for z€ L={z:1,2 <0}
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Let F(z) be any k—quasiconformal homeomorphism of C with dilatation
p(z). Then

F”(Z) = alz —_C'(Z) - or z .
Flo) ~ ()+c(z)+1, f el (3.10)

We postpone the proof of the proposition to the later.
Now suppose that f(z) satisfies (3.3} or (3.4). Set

cfl(z)e—fa(z)dz
(£(2) — wo)?
First we assume k < 1. Then a(z) and c¢(z) satisfy (8). Let F(z) be a

e(z) = —1 or ¢z)= cf'(z)e"f"(‘)dz —1. (3.11)

k—quasiconformal homeomorphism of C with dilatation of the form (3.9).

Then from the proposition

) o)
fi(z)  fz) —wo’
F'(z) ¢(z)
=a{z) + ——— = ¢ for 2€U. (3.12)
F'(z c(z)+1
®) SR
(=)

In both cases, we have
Sp(z) = S4(z), for ze U. (3.13)

Where S¢(z) = (%)’ -1 (%)2 is the Schwarzian derivative of f(z). So
there exist some complex constants «, 3, v, and § such that

_aF(z)+p
&)= re

It is clear that (3.14) is a quasiconformal extension formula for f (z).

for z € U. (3.14)

Next we consider the case k = 1. Forn =1,2,3,---, define

0 for z € U;
in(2) = (3.15)
1l(z - 2)a(z) + ()}, for z€ L,
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then |u.(2)| < ;2;. Let F,(z) be a k—quasiconformal homeomorphism of C
with dilatation pn(z) and agree with f(z) at three points of U, where f(z)
attains distinct values. Then {F,(z)} is a normal family in U. We may
choose a subsequence {F,,(z)} locally uniformly converging to an analytic
univalent function F(2) in U. So

F'(z) I F,f,.( z)

—m Lim T 7 (2) for z € U. (3.16)

But
Fo(2) __n wtic (2) N c'(z) as n — 0o or
Fiz) ~ ni1* )+,,,’;1+( 131~ i ¢ ), for zeU.

(3.17)
Again, we obtain (3.14) which implies that f(z) is univalent in U.

§3.3. Lemmas
To prove the proposition, we need some lemmas.

For positive numbers » and ¢, set
—ivri+1, D(r)={z:|z—2|<r}, B(te)= {z:]z—t] <e}.
Note when z € 8D(r)

Z=f5 4+ ——0 dze = ——— (.

z~z' (z — z)?

Let h(z) be a continuous function in L, we define

h(z) . h(z)
——=dz Adz = B G .
// 1) zAdz Hli’,?qo//,)(,)\g(t 0 _t)zdz Adz

/ (z)dz/\dz— lim ff h(z) dzAdz
Lz~—1 r—o0, r—0 D(rM\B(t,e) 2 — 1
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Lemma 1. Let a(z) be analytic in U. Then

a(t), ifteU,
f/ —dz A dz = ) ’ (3.18)
2miJ Jp (2~ ) *) 0, iftel.

Proof: Whentec U

a(z) _ 1 a(z) ,_
dands = —— [ d
2«1//13@) (z —1)? Fnas 27i Jop(ry 2 — 1 #

_ Lf a(fr + zif) _ r? s
8D(r)

2m3 z—1 (z — 2.)?
2 2
= —a zr+t“zr .(t—z,.)z
NPT T 2
S r.—]—l 1), T — a(t) (as r — oo).
t+ivri4+l ) (t+ivr2 +1)2

(3.19)

When te L

1 a(z) _ 1 a(z) 1 a(z) ,_
— e ndz=—— [ dz+ o [ d
2mi f/D(r)\B(t,e) (z — t)zdz A az 2wt JoD(ry z — 1 2t 27t Jjz—t]=e z — £ z

=I+ 1. (3.20)
Then
2 + 55 2
hi= 5};{ »[BD(r - (zz ——;-zr) . (z_rz,.)zdz =0
I, = %-E:—;) |z_:|=¢;% + %(-r—? tme 7 0 ledz-{—o(|z ~ [’y = 0, (as € — 0).
(3.21)
O

In the proof of the next two lemmas, we will use the following fact:
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Let D be a Jordan domain containing co. Suppose that a(z) is analytic

in D and has a zero of at least second order at co. Then fori e D,

.[aD a(z)log(z — t)dz = 2#5‘/(:: a(z)dz, (3.22)

where [ means any simple path from oo to {.

Lemma 2. Let a(z) be analytic in U. Then fort € U

5—% / /[ zi(:zltdz/\ dz = /+ ;i o(2)dz, (3.23)

provided that the integral in the left hand exists.

Proof:
1 a(z) 1
. dz Adz = —/ #)1 _ —
= -/;(r) e 1 N = 50t Jopgy AP loglx — 1)z
— 1 /' - 2 | ( t) 2 P
" Tar o\ 7 )l s
i _ 7_2 7‘2
_—v/;)a zr+z—zr .(z_zr)zdz
2
2r+‘:;'_ 7‘2
=/ o(Q)d¢ (=7 +—
z, z_ 2z,
t .
T J oy A9 (257 — 00). (3.24)
+ooi

Lemma 3. Let a(2) be analytic in U. Then fort € L

?jr?ffL ;(_zldz Adz = /{ a(z)dz, (3.25)

+o0i
provided that the integral in the left hand exists.

Proof: Assume that B(t,e) C D(r).
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! a(2) 1 _
AdZ = —-—f ] _ 4|2 =
2mi / »/.;)(r)\B(t,e) z —tdz 2= o aD(r) a(z)log |z — |*d

1
o /|z_¢|=, a(2}log | ~t['dz =L - I,. (3.26)

Denote t = z, + t_:—;_- Then for z € 'BD('r'),

logiz —tf* = log

+ log(z, — ) + log(z — ).

So 2 2
1 T - r
= —— Z —t)
h 21 -[BD(r) “ (z,. + z - z,.) log(z — 1) (z —2,)? z
¢ r? r?
= _ d
»/;oa(zr—'_z—z,.) (z—2.)? ?
\ .
1r+7:—"' _ 7'2
= [T a(o)c (c—zf+z_zr)
]
- f a(¢)d¢ (as r — oo). (3.27)
+ood
Obviously
I; =0, (ase — 0). (3.28)
O

§3.4. Proof of the proposition

First we assume that for some p>2
p(z) € L*(C). (3.29)

For g(z) € L?(C), operators P, T and Ty are defined by [A1]

Pg(t) = 2m f./ 9(2) ( B _) 4z A dz,

To(t) = — f f _t)zdzx\dz,
Tu(g) = T(ug). (3.30)
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Let I be the identity operator. As we know, ||T||, » 1 as p — 2. Let p
satisfy k||T|l, < 1. Then (I — Tu)™! exists. Denote

h(z) = (I — Tp) 'Tu. (3.31)
Since u(h + 1) € L?,

F(z) =Plp(h+1)] + 2 (3.32)
is well defined.

We claim that F(z) is a k—quasiconformal homeomorphism of C with

dilatation u(z). To see that, for n =1,2,3, ..., define

z for |z| < n;
i(z) = #(2) l2| <
0, for |z] > n.
ho(2) = (X — Tpp)  Titn,
F.(z) = Plpn(hn + 1)] + 2. (3.33)

From [A1], F,.(2) is a k—quasiconformal homeomorphism of C with dilata-
tion p,(z) and satisfies F,(0) = 0, Fn(z) = z + O(1) (z — o0). Note as
n — 00, ||An — hj|p — 0. Then F,(z) — F(z) in L* sense. However {F,(z)}
is a normal family in C. We may choose a subsequence locally uniformly con-
verging to a k—quasiconformal homeomorphism of C with dilatation p(z).
Obviously the limiting function must be F(z).

Next we want to prove that F{z) satisfies (3.10). From [A1] the distri-

butional derivative

{F(2)}. = (2} +1 =1+ Tu(z)+ TpuTu(z)+ TuTuTu(z)+---

=3 (" ()
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For z € U and n=1,2,3,- -, we formally define

gn(z) = ([ a(z,,)/ a(zn—l)f / a(zl)) dzy ++ dzpn_1dz,,

(3.35)

Then

gn(t) = f t _a(z)gn-1(z)dz (3.36)

+oot

When t € R

1[Gz, g,

Tu(t) = 27 (z —1)?

L) g ey L[ [ DA,

z—1t (z —1)?

gi(t) +¢c(t), iftel,

_ (3.37)
ai(D). ift € L.
TuTu(t) = - // 91(2) A2)9lz) ;. 4 4o
(t= DaDa(2) + 2)n(2) , .
2m f[ (Z - t)z ) dendz
_ gg(t) + c(t)_(h(t), iftel, (3 38)
g:(2). ift € L.

By induction

(Tp)(t) = _gn(t) +e(t)gn-1(t), iteUl, (3.39)
gn(T). ift € L.
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Clearly the existence of g.(z) is guaranteed by the condition p € L*. Define
g9(z) = =2, g.(2) (z € U). Since g(z) = h{z) € L?(L), it follows that

9(z) € L2(U). Then the distributional derivative of ¢ in U is

5= 3 () = al2) X dos(e) +ale) = alg +1). (3.40)

Nowfor z € U
h=g+gec+ec (3.41)

So the distributional derivative of A in U is

h;:gz-}—gzc—i-gcz—{—gc:(1+c)(1+9) (a..i_.i) :(h+1) (a+ C, )

1+e¢ 1+¢e
(3.42)
Note that the last expression is an analytic function. Therefore
F" hl !
(=) _ () a(z) + =) for z € U. (3.43)

Fr(z)  h(z2)+1 e(z)+1’
Because any two k—quasiconformal homeomorphisms of C with same di-
latation only differ by an integral linear transformation, we have finished

the proof in the case u(z) € L?(C).

In general, forn = 1,2,3,---, set

0, for z € U;
pnl2) = n (3.44)
n T (e~ Pal@) +e(@)}  for ze L.
where § is a small positive number satisfying k < cos 3.

Then for some p > 2

Bn(2) € LP(C) and |un(2)| < <1. (3.45)

=35
082
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Let F,(z) be a quasiconformal homeomorphism of C with dilatation p,(z)
and fixes 0, 1, and co. Again {F,(2)} is a normal family. Thus there exists
a subsequence {F,, (z)} locally uniformly converging to a k—quasiconformal
homeomorphism F(z) with dilatation u(z). Denote p,(z) = ey (2 €
U). Now for z € U

F() _ o E(e)

L]

Fi(z)  mmco FY ()

= lim {pﬂ,(z)a(z) +

P (2)e(2) + pry(2)(2)
Py (2)e(z)

) ¢(2)
J=are G

(3.46)

ng—oo

This completes the proof of the Proposition.

§3.5. Some other results

It is not hard to derive the following results from the proposition.

Theorem 3. Let f(z) be analytic, f'(z) #£ 0 and I,f(z) > 0 in U. If
there ezists an analytic function a(z) such that

Iz~ 2)a(z) + e( f(2))° fl(z)eo@ 1l <k <1, (3.47)

where ¢ and § are constants with ¢ # 0 and |§| < 1. Then f(z) is univalent

in U and has a k|é|—quasiconformal extension to the whole plane.

Theorem 4. Let f(z) be analytic, f'(z) # 0 end I,f(z) > 0 in B. If

there ezists an analytic function a(z) such that
|2(1 = |2%)a(2) + (e(f(2))* (z)e= )= — 1) [2P|<k<1,  (3.48)

where ¢ and § are constants with ¢ # 0 and |6| < 1. Then f(z) is univalent

in B and has a k|6|—quasiconformal extension to the whole plane.
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