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t .
The main result of Chapter I is that if n = 3 rl and p =
i=0

clogn/n , where r is a chosen constant and ¢ is a constant that
" depends on r, then there is a good algorithm that almost always
finds an r-ary spanning tree in the random graph Gn,p . We also
show that when np is constant or goes to infinity arbitrarily
slowly, vou can almost always find an r-ary tree on, respectively,
n/k (k a constant) and n {l1-o(1)) vertices. A result of de la
Vega’s on matchings that has been sharpened using martingales is
used in this proof, which is also algorithmic. The existence of
other large structures, particularly spanning trees of other

shapes, is also investigated. A "99% solution” is given to a

question of Erdfs concerning the existence of a Hamiltonian cycle
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with chords that join antipodal points.

In Chapter II we consider random graphs Gn with p = n_a

H

0 < a <1, « rational. A graph property A holds almost always in

G if Pr [ A holds in G ] — 1 as n — ®,. We show that
n,p n,p

’

there is no decision procedure for determining if a general first

order sentence S holds almost always in Gn g
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INTRODUCTION

In this dissertatioﬁ we consider two problems in the theory
of random graphs. The model we will use is the "probabilistic"
one. Gn.p will be a graph created randomly on a set of n verti-
ces. The probability p that two vertices are joined by an edge
will usually be a function of n. Each edge is chosen independent-
ly of the other edges. In the "static" model Gn,m ,» & graph is
chosen from among all graphs on n vertices with m edges, with
equal probability of choosing any such graph. Another model for a
random graph is the "dynamic" model. Start with the empty graph

on n vertices, and add randomly chosen edges one at a time until

you have the complete graph on n vertices.

The relationships between the various models are discussed in
[Bollobas 85] and [Palmer 851 . Asymptotically (as n tends to
infinity), when p = m/[g] the probabilistic and static models
are close to identical. The probabilistic model is generally

easier to work with from a computational point of view.

If A is a property of graphs then we say A holds almost al-

ways in Gn p if

Lim Pr{ A holds for G ] =1
n-+co n,p




If the limit is zero then we say that A holds almost never. A

function p(n) is said to be a threshold function for A if

(1)

}%i%or(n)/p(n) 0 implies A holds almost never for Gn,r(n)
(i1) Jnl_i.ﬂ},‘,r(n)/Jt?(n)

o implies A holds almost always for G

1

n,r(n)

In the statlic model, if m is a function of n, then we can define
threshold Ffunctions similarly. In the dynamic model we speak of
the "hitting time" - the number of the edge whose addition almost
certainly causeé the graph to have property A. It should be noted
that threshold functions are not unique. With the understanding
that g(n) is also a threshold function for A if p(n) ~ q{n) (their
ratio tends to a constant as n tends to infinity) , we will some-

times speak of "the" threshold function for A.

Some examples of threshold functions for various graph prop-

erties are:

Contains a & clique pl{n) = n—2/(k—1)
Planarity pin) = 1/n
Connectivity p(n) = logn/n

Good introductions to the theory of random graphs can be

found in [Spencer 87] and [Palmer 85] . [Bollobas 835} is a com-

prehensive reference.




Chapter I Large Structures in Random Graphs

The existence of subgraphs on a constant (that does not de-
pend on n) number of vertices in Gn,p has been exhaustively
studied. The topic is given a complete treatment in Chapter 4 of
[Bollobas 85]. On the other hand, little is known about thresh-
olds for subgraphs whose order is a function of n. Arguments
based on Chebychev's inequality {the “"second moment method"), for
example, can no longer be applied. When np is constant it has
been shown that Gn,p almost always contains long paths [Ajtail,
Komlés, Szemerédi 81] ., [de la Vega 79} , and any tree of constant
magximum degree on n/8 vertices [de la Vega 83]. np = lognrp has
been shown to be a threshold for the existence of a perfect match-
ing [Erdsés, Rényi 66] and a Hamiltonian cycle [Pésa 76]. 1In this
chapter we investigate the existence of other "large" subgraphs in
Gn,p , in particular those whose order is n or {1-o(l))a.

It should be noted that p = logn/n 1is the threshold for
connectivity. Before this point Gn p almost always has more

than one component and therefore no spanning subgraphs.

In this chapter w is a function of n that tends to infinity

arbitrarily slowly.




An r-ary tree is a branching process that starts from a sin-
gle vertex. In each successive generation r new vertices are
added to the existing terminal vertices. The main result of this
chapter is that p = log n/n is a threshold function for the

existence of an r-ary spanning tree for constant r.

THEOREM 1.1: Let r € N be a constant greater than or equal to 2,

t
n= 3 ri » Py = 8r/n , p, = clogn * W where ¢ is a constant that

i=0 n
depends on r , and w — « arbitrarily slowly. For
p= 1 - (1‘“Pg)(1“P1) ~ Po * Pl »
the random graph Gn p almost always contains an r-ary spanning

tree.

For a discussion on extending this theorem to r = logn and

related questions, see the end of this chapter (pp. 20-25).

PRooF: We consider G as the union G UG = Gy U G;. The
n,p n,p, mp,

edges of Gy will be called the red edges and the edges from G;
will be called the blue edges. (Note that a red edge and a blue
edge joining the same pair of vertices are identified.) We will
use an algorithm to find an r-ary tree of size n/8 whose edges are
red. Then, by using matchings whose edges are blue, we will ex—

pand this core tree to a spanning tree. The proof requires two




lemmas:

Leua 1.2: If p = 8r/n then almost always Gn p contains an r-ary

T

tree on n/8 vertices.

SKETCH OF ProorF: This lemma is a consequence of a much more gener-
al result [de la Vega 83]. The proof uses a modified greedy
breadth first search algorithm. The problem of searching for an
r-ary tree in Gn P is converted into the problem of searching

¥

for an r-ary tree in the random family tree Fr+1 g of a Galton—
Watson process. (At time zero there is almost surely one initial
point; each point of each generation spawns Zero or r+l1 , not r ,

vertices with probabilities 1-¢ and g respectively. The extra

"room" we get from the r+1St vertex is important.) -

logn + w

LEMMA 1.3: If p = o

then almost always the bipartite ran-
dom graph Gn mip contains a perfect matching.
ProoF: We follow [Bollobas 85]. The original result is in {Erdss

and Rényi 66].

Let V; and V2 be the vertex classes of Gn n3p and for A C

Vi (£ = 1,2) let I'(A) be the set of all vertices adjacent to some

vertex in A.




+ L}

At this edge probability Gn np almost always has no isola-
ted vertices. Suppose there is no complete matching.
CraiyM: There must be a set Ac V; (i = 1,2) such that:
i) |r(a)] = |A] -1
ii) A U r{(A) is connected
iii) 2 5 JA] = (n+1)/2
PROOF OF CLAIM: If there is no complete matching, then by Hall's
theorem there is some set A ¢ V; such that [I'(A)] < |A] . If we
choose such a set A of smallest cardinality, then conditions (i)
and (ii) hold since otherwise A could be replaced by a proper
subset of itself. Without loss of generality, suppose AcV; . B
= V3 \ r(A) is such that r'(B) ¢ Vv \ A , and so
[r(B)| < V1] - |A] < |V2f - |F(A)]| = |B]

and JA| € |B] = {V2] - |[F(A)] = n - (|A]-1) , so JA| £ (ntl1)/2. o

Let Fa be the event that there is a set A of order a that

satisfies the above three conditions and n' = |(m+1)/2] . We
nt
show that 3 Pr[Fa] = ofl)
a=2
Let Ay € V; , A ¢ V, and |A;| = JAz| + 1 = a , then the

probability that the graph spanned by A; U A has at least 2a - 2

edges (is connected) and no vertex of A; is joined to a vertex in

Va2\Az is at most




[aé::;)] pZa-z (1_p)a(n—a+1)

There are 2[2] choices for A with |A| = a , and [aﬁi] choices

for r(A} , therefore

n! nt 2a-2
< n] n ] a{a—-1) logn + w
afzpr[F“] <2 aéz [a a-1) | 2a-2 2n
(1-py2(7art)
<, 1271 [213. a _en a-1 ea 2a-2 log n 2a-2 -a + a?/2n
= a=2 a a-1 2 n
n! 3a _1-a+al/n
S 3 (elogn)” n = o(1) =
a=2

ProoF of THEOREM 1.1: We will take r z 8. A slight modification

(embedding technique, see THEOREM 1.8), is used for smaller val-

t-1
ues. > ri < n/8 , so by LEvMa 1.2, we almost always find a red
i=0
t-1 ;
r-ary tree on >r vertices. Let C be the set of vertices of
1=0

this red tree. Let E be the set of terminal vertices in C. Par-
tition the vertices of G \ C into r sets B; , . . . , Br ; |Bil =
rt-'. We then look at the blue edges. It is important to realize

that the blue edges are independent of the red edges. By LEUMA

1.3, since the number of B;'s is constant, the blue edges almost

always give us perfect matchings from E to each of the Bi's. The




edges of these matchings are the remaining edges of the spanning

tree.

Finally, we examine the value of the constant c. n = ort
where 1 € « £ 2 . Thus |B;| = n/ar , so in LEMMA 1.3 c = ar/2
t-1
When r < 8, 3 o> n/8 . 1In this case, the embedding technique
J=0 '

used in THeoreM 1.8 should be used. This will reduce the value of
the constant in this case since the matchings used in the first

growth steps will be between sets of size n/2 rather than n/ari. g

Two things should be noted here. The blue edges will almost
always give us perfect matchings among the Bi's too. This can be
used to show the existence of other large structures in Gn.p
It is also important to note that de la Vega's method is essen-
tially a greedy algorithm and that good algorithms exist to find

matchings [Lovasz, Plummer 86]. This proof provides a good method

for finding specific large structures in a random graph.

At p = ¢/n , ¢ a constant, or w/n , where w — o and is
o (logn), the random graph Gn P is not connected but it can he

shown to contaln large trees of size n/c’ and nr(l1-o0(1)) respec-

tively. {It should also be noted that 1f x € R , then at

p={logn + x + o(1)}/n , the probability that Gn nip contains




. P 1
a perfect matching tends to e 2e

[Bollobas 85].) We define a
defect r-ary tree to be a tree formed by deleting terminal verti-
ces from an r-ary tree if r 28 . When r < 8 we also allow dele-

tion of vertices (along with all their descendents) from any of

the last three generations.

TugoreEM 1.4: If np = w , then Gn p almost always contains a defect

¥

r-ary tree on {(l1-o(1)) n vertices.

Proor: The proof is identical to the proof of TumoreEM 1.1 except
that the edges of G; will not give us perfect matchings. By shar-
pening a result of de la Vega's [de la Vega 82], we show that the
probability that a matching will fail to cover (i-o(1)) n vertices
is exponentially small (THEOREM 1.5). This will be sufficient

since the number of matchings used is constant. -

TugoREM 1.5: If np = w , then the probability that the greedy
algorithm defined in the proof fails to find n» - 2n/w independent
: -n/2w?

edges in the random bipartite graph Gn mip is less than 2e
Proor: The proof follows [de la Vega 79] with the with the addi-

tion of a martingale argument to show that the probability that

more than o(n) vertices are not covered by the matching produced
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by the algorithm is exponentially small. A martingale is a se-
quence of random variables Xg,+++,X, for which E[X;4+;]|X:i] = X;.
An example of a martingale is a coin flip game in which the player
starts with Xg dollars and flips a coin n successive times. It
the coin comes up heads he wins a dollar. If it is tails he loses
a dollar. X; is the amount of money he has after the itk flip.
We give two proofs of this theorem, both of which use the follow-

ing result on the deviation of X,:

LEMMA: 1.6: Let Xg, *++ , Xn be a martingale with |X;j4+1 - Xi| £ c.
Then

Pri|Xa - Xo| > Ac {n 1 < 2exp{-r2/2}
Proor: [Shamir, Spencer 87] . -

ProoF 1 of THEOREH 1.5: Let Gn,n;p = A U B be a bipartite random
graph. A = {a;,...,aa} and B = {by,...,bn} . Think of the
edges of the graph as being hidden [Matula 87]. We expose the
vertices of B and the edges that join them to A one vertex at a
time. At the start of the algorithm all vertices of A are avail-
able. If b; is joined to at least one available vertex of A, then

from them choose the one of least index, say ax . ax is no longer

available and we add {b;,ax} to the matching. If bk is not joined

to any available vertices then it is not covered by the matching.
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In this case too we delete the vertex of least index from the set
of available vertices. Actually, as we expose the vertices of B
and the edges that join them to A, the remainder of the graph can
still be treated as a random graph. So in either case it does not
matter how we select the vertex ai which will no longer be avail-

able.

After j vertices have been exposed the probability that by,
is not matched with a vertex in A is (1 - p)n_j .  Thus the ex-

pected number of vertices of B not covered by the matching is

n-1 w©
5 - V< s 1-pFf cp-a
Jj=0 k=1

which is o(n).

Let Z be the total number of vertices not covered by the
 ﬁatching. and Z; = E{Z | exposure of the first i vertices of B] ;
.Zo = E[Z] and Z, = Z. The sequence Zg, *-- , IZn forms a martin-
.ééle. The central idea is that after we have uncovered % verti-
_eé, the average of the expected number of vertices not covered
‘after looking at the edges from the k+lst vertex is Zx . Suppose
_we.have uncovered k vertices of B and u(k) of them have not been
‘matched. Let F(k) be the expected number of unmatched vertices in

ne vertex class when this algorithm is applied to Sk, kip (so

13

E[Z] = Zo).
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B[Zis+1]Z:] = {E[u(i+1)] + F(n-i-1)} | Z;
= (i) + (1-p)™7 + F(n-1-1)
= u(i) + F(n-1)
_—
Furthermore, since u(i+1) = u(i) or u(i}+1 , |Zis+1 - 23| £ 1 and

the bound of LeEuuma 1.6 can be applied to the deviation of Z with ¢
=1, Setting A = {n/w , we have that Pr[Z > 2n/w] < o/ 203

{This method of forming a martingale can be used in various situa-
tions. General conditions for when a sequence of conditional
expectations will form a martingale can be found in [Feller 66].

For applications to the chromatic number of a random graph, see

[Bollobas 88] and [Shamir, Spencer 87].) -

Proor II of THEorEX 1.5: In the algorithm used in the first proof
we always delete a vertex from the set of available vertices,
regardless of whether or not vertex b; is matched. This was done
to make calculations easier. If we delete only those vertices
that are matched from the set of available vertices, the sequenhce
Zo,...,Zn will still form a martingale. It becomes more difficult

to show that {Z,,y - Z;| £ 1 .

We will use the following notation:

M(G) = the number of matchings when the algorithm is applied to G




the total exposed portion of G after exposing the edges
incident with b;
Ki+1 = the restriction of the random graph to {bj+1} UA

K*

il

a fixed graph on {bijs+;} U A

After exposing bij,.;, the exposed portion of G is H; U K4
Define (G} to be identical to G with the exception that the edges

incident to b; are changed to match K*

Zy = 3 M(G) Pr[G | Hi]

G o H;
= 3 2 M(G) Pr{G | Hi A Kis1] PriKisy]
Kisl G o
Hi U Kssy
= 2 PriKi:+;] 2 M(G) Pr(G | Hi A Kiesl
Kieg G D
Hi UKisy

> M(G) Pr[G [ Hi A K¥]
G >
H; U K*

Zi+1

Because the unexposed portion of the graph can be treated as
a random graph, Pr(G | Hi A Ki+1] = Prie(G) | Hi A K*¥] so
Zi ~ Zisr = 2 Pr(Kier]l 3 [M(G) - M(#(G))] Pr{G } Hi A Ki4,]

Kisl G >
Hi UKia

To show |Z; — Zi+s| £ 1 , we need to show
[M(G) - M(e(G))| =1 .

Suppose we have a bipartite graph on sets {c;,...cx} and
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{dy,...d1} . Apply the matching algorithm. Now change the vertex
of least index adjacent to d;, either by deleting or adding an
edge to the graph. This will change the output of the matching
algorithm, d; will be matched with a new vertex. If, in the
original graph, that vertex had been matched with vertex d; , then
dy will now be matched with its "second choice". That vertex, if
any, will not be available to vertices of index greater than I

If ¢, was matched in the original graph, and if the vertex it was
paired with would have been the first choice of another vertex dj,
then d; will now be matched with its first choice. If d; was
matched in the original graph, then the vertex it was paired with
becomes available to vertices of index greater than j . It is
possible that chain reactions will occur. One of the chains will
either add one to the number of pairs matched, or leave it un-
changed. The other chain will either decrease the number by oﬁe,
or leave it unchanged. Therefore the net change will be either 11

or 0

While this is a better algorithm than the one used in the
first proof, the best bound that can be given for the number of
vertices in B that do not get paired is the same as the bound for

the first algorithm. ' -

COROLLARY 1.7: If np = c a constant, then Gn p almost always con-
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tains a defect r-ary tree on n/c! vertices, c/ a constant.

Proor: Follow the proof of THeorEM 1.4, replacing w with the con-

stant value of np. -

The existence of trees whose growth from the core is suffi-

clogn + w
n

ciently uniform can be shown at p =

TueorEM 1.8: Suppose X,k € R and m € N are constants greater
than 1, and {Tl,Tz,...,T“,.[.} is a sequence of trees, each on n
vertices. If each tree can be expressed as a sequence of distinct
trees: T c Tf <« « + c T} = T® , j £ m such that:
i} |T¢| < n/8
ii) for all x &€ T", &p(%x) £r and 8141(x) £ &;(x) +1 , all i
(6:1(x) is the degree of x in TV} ),

111) n/ky € |T0 \ T8-1] £ n/k;

clogn + w

then, for p = , ¢ a constant, T" < G almost al-
n n,p

ways.

PROOF: The proof is uses the idea of THrorEM 1.1 . Replace G,

with a sequence of j random graphs G , Pi = cilogn *w v Ci

n,pi n

constant. The edges of these graphs are used to build the desired

tree step by step.




16

If |Ti-1| < n/2 , then partition the vertices of G into two
disjoint sets A and B of n/2 vertices with Ti-; € A. Otherwise
set B = G \ T; and let A be a set of |B| vertices in T;-; that
includes all the vertices of Ti-; whose degree increases as we go
from Ti{-; to Ty . The edges of Gn,pi almost always contain a
matching from A to B. Edges of the matching are used to enlarge

Ti.p to Ti . The third condition in the statement of the theorem

ensures that the threshold for these matchings is logn/n . -

The starfish with r arms (a central vertex with r paths of
length n/r radiating from it) does not satisfy the above criteria.
However it can be shown that the threshold for the appearance of

this graph is also p =clogn/n .

THECREM 1.9: If n = 1(modr ) , then when
p = (r/m}{logn + loglogn + w}
Gn p almost always contains a starfish with r arms whose center is

any vertex of the graph.

Proor: Partition the vertices into r sets that are disjoint except
for one peoint that is common to all of them. Almost always, each
of these sets will contain a Hamiltonian cycle [Pésa 76]. From

each cycle delete one of the vertices adjacent to the common

point. n
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It should be noted that if r_is an even number the constant
can be improved. Partition the vertices into r/2 sets and delete
the middle edge from each Hamiltonian cycle. Other "starfish
type" structures can be created by deleting edges other than the

middle edge or an edge adjacent to the center.

Among trees of constant maximum degree r , the r-ary tree and
the r-starfish have the minimum and the maximum diameters respec-
tively. These techniques seem to break down for certain graphs
with diameter in the middle of the range of possible diameters.
For example, take an r-ary tree of depth % and to each terminal
vertex adjoin a path of length rk .  The threshold for a matching

1/2

between two sets of size n or the existence of a Hamiltonian
cycle in a set of that size is p ~ 10g17/n1/2 , which is well

beyond the threshold for connectivity.

It seems 1likely that the actunal threshold for any spanning
tree of constant maximum degree is logn/n . More precisely, if
{rt,7*,...,T",...} is a sequence of trees, each on n vertices,
with constant maximum degree, then it is likely that for p =
clegn/n , T® c Gn,p almost always. There are two reasohs to
believe this. The first is that the thresholds for the appearance

of the log n-ary spanning tree and the rumor tree (see page 20)

are both at most {log n)z/n (TeEorEM 1.11, CoROLLARY 1.13). Both
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of these trees have maximum degree log n. The second is that in
the above example we could take S to be the set of all terminal
vertices of the r-ary part together with the remaining vertices.
The order of S is roughly n - nl/z , so the threshold for the
existence of a Hamiltonian cycle in this set is log n/n . The
terminal vertices would be randomly placed around that cycle; the
distances between them should be close to rk . By deleting edges

as in the starfish example, we will have a tree that is close to

what we want.

One of the difficulties in proving that log n/n - is the
correct threshold is that as the tree you are interested in re-
quires more conditions to describe it, you are trying to take
tighter and tighter control over a random process. The following
example, which involves an attempt to meld two structures that
both have threshold logn/n - a Hamiltonian cycle and a one factor

- further illustrates this,.

Erdés asks for the threshold function for the appearance of a
Hamiltonian cycle with n/2 chords that join antipodal points of

the cycle. We give a "99% solution”.

logn + lo§log17 + W and p; = 50 log;w + W

THEOREX 1.10: If po =

and p =1 - (1 - pg) (1 - p1) ~ (clogn + loglogn + w)/mn then
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Gn p almost always contains a Hamiltonlan cycle with n/2 chords
that join each vertex to a point that is at most n/100 vertices

away from its antipodal point on the cycle.

Proor: Define Gy and G, as in theorem 1.1. Gg almost always con-—
tains a Hamiltonian cycle [Pésa 76], “Partition the vertices of
the cycle into sepgments of length n/100. By lemma 1.3, the edges
of G, almost always give complete matchings between all pairs of
antipodal segments. (Note that the number of segments is constant.
If an arbitrary constant ¢ had been used instead of 100, then the

50 in p; would be replaced with ¢/2 .) -

Consider a matching between two segments A and B given by the
edges of Gy . If there is more than one matching, then choose one
at random. Orient the cycle and number the vertices of the two

segments from 1 to n/100. If we define o(x) for x € A to be the

. . . 1 n/100
point in B that x is matched with then Ls(l) o(n/ioo)] is a
random permutation of the set {1,...,n/100} . The number of fixed

points tends to a Poisson distribution with mean 1. A fixed point

of this permutation corresponds to an antipodal chord. Thus we

expect 50 antipodal chords among the edges of those matchings.

In actuality the edges of G; should create more antipodal

chords. Since the probability that a given pair of vertices is
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joined by an edge is p; = (50 logn + w)/n , the number of antipo-
dal chords formed by edges of G; has a binomial distribution
B(n/2,py) This has mean (50 logn + w)/2 . However, we may not
specify that these are edges of the matchings in the proof of
Theorem 1.10; this is a random graph. If we were to delete the
edges of antipodal chords in G;, there might no longer be complete

matchings between the pairs of segments.

By looking at matchings among different subsets of the verti-
ces of the cycle and changing the value of the constant 50 it can
be shown that Hamiltonian cycles with different chordal structures
exist_in Gn,p . In particular, the edges of G; almost always give
matchings between all pairs of segments in Tueore¥ 1.10. While it
may not be possible to show the existence of a specific chord
pattern it may be possible to show the existence of an approxima-
tion as was done here. It is also possible to show that a given
graph exists almost always when the edge probability is of the
order of magnitude log n/n by showing that the graph can be embed-

ded in a graph that is known to exist almost always, and then

deleting edges as in TuEoRER 1.9.

So far we have only considered trees of constant maximum
degree. Define Tk, a rumor tree of depth k&, inductively:

Ty iIs a single vertex.
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Tk+1 18 formed from Tk by having each vertex of Ty spawn a single
new vertex, so |Tx| = 2¥.

Attempts to determine a threshold function for the existence of a
spanning rumor tree in Gn,p led to the results in this chapter.
Unfortunately there is still a gap between the point below which

it is known that there is almost always no such tree (the thresh-

old for connectivity) , and the next theorem.

c(logn)?

THEOREM 1.11: If n = 2% and p = £

, then G almost al-
n,p

r

ways contains a spanning rumor tree,

Proor: We follow the proof of THEoREM 1.8. Set p, = n~! so that
Gg will contain a rumor tree of depth k%, where ¥ € N is a constant

[Bollobas 85] . We successively double the size of the tree in Gy

logn + w

using edges from G; ,..., Gg-x , ¢t ~ logn , with p; = p

as in the proof of T#romex 1.1 . Let T; be the tree formed from
the edges in Gy U -+-- UG; . Partition the vertices of G into A U
B, |A| = |B| = n/2 with T, ¢ A. The edges of G;.; contain a

J
matching from A to B. Restrict this matching to T; to form T;;;.g

This technique of embedding the existing tree in one set of a

bipartition of G is useful in sharpening the constant in THEOREK

1.1 when r < 8, and in the construction of other trees,
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The maximum degree of the rumor tree is logan. de la Vega's
theorem in its original form cannot be used to generate a core
rumor tree of size n/c. His use of the law of large numbers re-
lies on the maximum degree being constant. To extend LEMMA 1.2 to
trees whose maximum degree is a function of n requires a second
moment calculation. Furthermore, he bounds a random variable F
with a convergent infinite series that diverges when you square
the summands. The crucial observation is that if you do get to
depth t in the search algorithm in the (r+1)-ary family tree, you
stop because that tree will contain the tree that you are search-
ing for. While asymptotically this does not improve THgomem 1.11

(the net result is that the square term is multiplied by (1 -

1

TEETEET?) ), this may be useful in the case of other spanning

structures.

The following discussion refers to de 1la Vega's paper on

trees in sparse randoem graph {de la Vega 83].

Suppose you are searching for a (log n)-ary tree. The depth

t of this tree is less than log n/loglegn. Thus,

t

- 1-g+3 (r + 1)
D k=1 &

2k+2

E(F2) <

t k

<1+(r+1)2k§1[f—;—1-] .
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k t
Since 3 [ %—1- ] £ 2 [ %l ] we can bound the variance of F;
k=1
2 r+1 t
Var(F) € E(F2) <1 + (r + 1) 2 [—2—] .
This in turn bounds the variance of Uk:
n t
r.k 2 r+1
< L r—
var(u,) < -L: 1+(r+1)2[2]
-2
ar
<
E(Uk) ‘nr,]r (1 + 3 )
n o (1+2r?) =g, |1+
r.k - k
3r+2
Pr[U, 2 E(u,) | 1 + L1 ]
kK~ k 2
3r+2
(arf+2)? 1+ (re )22 [ XL ‘
< r,k r 2
- 2 2
r nr,k [ 1+ :?'—r—z]
- t
_er’ 2 |z
n
log n log n/loglogn
5 ———
=clog n Toglog i {(logn}
n 2log n/loglogn
6
= __C_LI.E& — 0 ag n —- o .,
nl/loglogn

Following de la Vega, the number of vertices Uy? visited
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before a tree of depth & is found is bounded above by the sum of

Uk and three other terms:
i)the number of free vertices that might have been visited

ii)the number, say W, of vertices visited on eventual first

dying trees
iii)unused "reserved" vertices of @

The first term is 5n, and the last term i1s bounded by
nokop ¥ is the sum of a random number X of independent random
variables distributed as F. X has a geometric distribution with
parameter q, - Therefore the expected number of "bad starts" is

E[X] = (i1-q_)/q_ = c1 , and E(W) is E(X)E(F) S cyr .

Since r is a function of n we need a second moment calcula-
tion. Recall that while ¥ is the product of two random variables
this- does not mean Var(W) = Var(X) Var(F). The relationship is
more complex [Feller 66]

var (W)

E(X)var{(F) + Var(X)E2(F)

Recall that X has a geometric distribution with parameter 9y

so Var[X] = (1—q;)/qi cz2. As above, Var{F} can be bounded by

E[F2] . A similar second moment calculation as for Uk works for

Ué since the terms that do not involve F2 are not asymptotically

significant.
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This gives us the following extension of LEuwa 1.2:
COROLLARY 1.12: If p = cllog n|/n then Gn p almost always con-

tains a |[log n |-ary tree on n/8 vertices. -

These second moment calculations required that the depth of
the tree be at most log n/loglogn and this requirement must Ee
included in any generalization of de la Vega's result, which is
for all trees of a given maximum degree. This depth restriction
is the reason why there is no asymptotic improvement in THEOREE

1.10 .

In terms of TuEomeEM 1.1 the sets B; will have order roughly
n/logn. This will force us to set
py = logn{logn - loglogn)/n

s0 we have

CoroLLARY 1.13: If p = cllog n]z/n , then Gn P almost always

¥

contains a llogn |-ary spanning tree. -




Chapter 2 Undecidable Statements and Random Graphs

The language of The First Order Theory of Graphs consists of
a countable number of variables, Boolean connectives, existential
and universal quantifiers, equality, and adjacency (denoted
I(x,y) ). The axioms are Vx -I(x,x) (no loops) and I(x,y) =
I{y.x) . (Note that implication can be expressed in terms of
"and" and "or".) Some examples of things we can say are:

There is a path of length 3

Ix,y,.z,w I{x,¥y) A I{y.2) A I(z,w)
There are no isolated points
Yx 3y I(x,y)
Every triangle is contained in a K4
Vx,y.z {[I{x,y) A I(y,z) A I(x,2)] = 3w [I{x,w) A I(y,w) A

I(z,w)]}
Many graph properties cannot be expressed in this language. For
example you cannot say that the graph is connected, planar, or
Hamiltonian. When looking at random graphs it is particularly
important to keep in mind that you cannot express the order of the

graph in a first order statement.

At first glance it might seem that problems in the first

order theory of graphs would not be difficult. This is not true.

26




27

For example, it is not known whether there exists a finite graph G
on two or more vertices that satisfies the following conditions:
i) 6 is triangle free.
~ [3 x,y.2z I(x,¥y) N I(x,2) A I(y,2)]
ii) For any pair of vertices x,y there exists a vertex z that
is adjacent to x and not adjacent to y.
Vx,y 3z 1(z,x) A -I{z,y)
iii) For any three vertices x,y,z , if x is not adjacent to ¥,
then there exists a vertex w that is adjacent to x and y
but is not adjacent to z

¥z, y.2 ~I(x,y) = [Iw I(x.w) A I(y,w) A -I(z,w)]

In this chapter we will consider random graphs Gn,p , P =
n » o a rational number between 0 and 1 . The main result of
this chapter is that there is no decision procedure that separates
those first order statements that hold almost alﬁays in Gn,p
from those whose negation holds almost always. This is slightly
stronger than showing that there is no decision procedure that

determines whether or not a first order statement holds almost

always.

To prove the main theorem we begin by looking a the neighbor-

hoods N of fixed sets of vertices in Gn'p . Subsets ﬁi < Nj;

1 I}

are defined inductively. A vertex is in ﬁi if it is adjacent to
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a vertex in ﬁi-l. We then give a procedure for defining a graph
on the vertices of the last ﬁi. It is shown that for any finite
graph H there is almost always a choice of fixed sets of verti-
ces so that the graph we define is isomorphic to H (Universal
Representation Theorem, 2.4). For any first order statement A
about a finite graph, a corresponding first order statement A¥
is shown to hold almost alwavs in Gn,p if A holds for some
finite graph, and never if A holds for no finite graph. 1If a
decision procedure as described in the previous paragraph existed
for Gn,p ., then the correspondence between A and A* would
allow us to use that procedure to separate those 4 that hold for
some finite graph from those that hold for no finite graph. This
would contradict the Trachtenbrot - Vaught Theorem (THEoREM 2.5)
[Trachtenbrot 50}, which says that there is no decision procedure

that separates those first order statements that hold for some

finite graph from those that hold for no finite graph.

We will first consider the case of a £ 1/2 . When a > 1/2
we need to make some modifications in the proof, These will be
explained at the end of the chapter. Fix disjoint sets X; of r;
vertices {(r; is defined below}. The exclusive neighborhood of X;,

N;y = N:(X3) € 6, is defined by:

i(y,x) for all x € X;
y e Ny if

-~I{(y,z) for all z e X; ,j# I




29

We define Ny & N; by:

(1) 8, = Ny

(2) z e ﬁi. 1 < i, if there exists w & ﬁi-; such that I(w,z)
and z € N;

Note N; < N; for all i

We define a first order predicate MEM : A vertex y satis-
fies MEM(y; X;.....Xs) if and only if vy € Na . It is important
to realize that X; is shorthand for x;; ,..., Xijr; . This is

necessary 1if MEM is to be a first order predicate. We cannot

talk about "the subset X;" in the first order language.

TREOREM 2.1: There is a sequence of integers ry,...,ra such that
for fixed subsets X,,...,%¥a. of Gn p [Xi| = rri1 , the order of
the set of vertices that satisfy the first order predicate

MEM({y; ¥:,...,Xa) tends to a Poisson distribution with mean 1 .

Proor: We will assume o = a/b 1is in lowest terms.

Put: ry = FJ
a
d; = b(mod a)
Dy = 4T Jif di- + k> &
t ry -1 ,else
51 = b - rja
di =di-y + 5; - a
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We will show that the orders of the sets defined above are

INg | ~ nSi/b , and |N;| ~ ndi/b

We first examine the distribution of |Ny} . The probability
that a vertex is in N; is pri 1T (1-prj) ~ pri and this is inde-
i#j
pendent over the vertices of G. Therefore,

INi| —B(n, p')

= E[ INi| ] = u; — o5V/P

.

The probability that a binomial random wvariable is topo far

from its expectation is exponentially small [Chernoff 52]:

~2A2
Pe[ | INi| -1 ] > a0 1 <2e

where o2 = np(1l-p) 1is the variance of the binomial random vari-
able (Note that for the edge probabilities we are considering

{1-p} ~ 1 } . This gives us:

1/2
3/4 -2
Pr[ | INif —ms | > /%] <2 e 2

Since there 1s constant number a of Ni's , the probability that

the order of some of them differ from their expectations by more

1/2 . 3/4
than u®/? is less than 25 e M < 2a e ™l 7} o

~5/28 n3/23

ExamrLE: If p = n then we expect ~ vertices in all of

the N; except for N3 where we expect ~ n8/23 .
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_ppl/23 |
3/4 2e , 1 =3
Pe[ | INi| - ma | > s ] <
3/46

2e 2n , else

The probability that the order of some of the N;i's differ from
3/4 _n3/46

their expectations by more than 4 is less than 10 e . 0

This bound on the tail of the binomial distribution is actu-
ally stronger than we need. In this case, because we are taking
the sum of a constant number of independent random variables, the
bound

Pr [ | X-u|>h ] < 1/r2
given by Chebychev's inequality [Rényi 70] would have been suffi-
clent.

We now examine |ﬁi| . ﬁ; is defined to be N; , whose
order was bounded in the above calculations. If =z € Ny.; then,

by induction, the number of points in ﬁi adjacent to z is

B( (1-0(1))n7/0 , P
S0 we expect (1—0(1))n(di—&)/b adjacent vertices in N; . It
helps to view the edges of G as "coveréd". We first exposed the

edges from the X; to the rest of the graph. Now we are succes-
sively exposing the edges from N: to Ni+i. This allows us to

treat the restriction of G to the edges between N; to Nij+: as a

random bigraph [Matula 87]. Thus, the probability that z has no
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neighbors in ﬁi is

di/b
(1-0(1))n
(1 - %2

~ 1 - (1-o(1))n!dr"@)/P

so the probability that z has neighbors in ﬁi is

)n(di_a)/b

~ 1 - (1 - (1-0(1) )

= (1-0(1))a!17a)/E

Call a point in N;4; good if it is joined to at least one
point in ﬁi . Take §i+1 to be the set of all good points in

Ni+1 . Since the edges joining two distinct points of Niys; to

Ni are all independent the number of good points in Nj41 is

B{ (1-0(1))nSi*Y/? (1-0(1))n(d12)/b

Thus, we expect (1-o(1))n“i++/P

)

vertices in N; , and, by the
same arguments as for |Ni| . the probability that the actual
number of good vertices differs from the expected number by more
than a factor of 1+o(1) 1is exponentially small.

-5/23

3/23
ExaMpLE: When p = n , INy] ~ N2y ~n /

. Iﬁll . n3/23

If * € N2 then the number of vertices in ﬁ; that are adjacent to x
tends to

B( (1_0(1)n3/23 ' n—5/23

)
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_ n~5/23 (1—0(1))123/23

)

Prix has no neighbors in N, ~ (1

~1 - (1-0(1))n 2/28

Pr[ x € N, ] ~ (1“0(1))n_2/23

3/23

[Nz2| ~ B( (1-0(1))n , (1-0(1))n 2723

}

Following the arguments used for INi| , the probability is expo-~

nentially small that the difference between the actual and the

1/238 1/23

expected number n of vertices in N, is more than o(n } . 0O

We claim that [Xa| = r; and |Na.y| ~ (1+0(1))n(a‘k)/b '
which will imply ]ﬁa| ~ 1 (ds will equal zero). This is a conse-

quence of the following algebra lemma:

LEMMs 2.2: If a,b € Z+ with b > a, (b,a) 1, and d; defined

“as follows:
dy = b(mod &) , ds = (di-; + dy){mod &) , i > 1 ,

then d, = 0 .

fl

Paoor: di =dj-; + b ~ rja -a {di.1 + b)(mod a)

= (di-1 + d;){mod a) . (a.b) 1 implies (a,b(mod a}) = 1.

Therefore, d; generates the cyclic group of order a. -

EXAMPLE: See figure 1, page 34. 0
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If we have a sequence Xn of binomial random variables
B(n,p(n)) with np — A a constant, then the sequence of bino-
mial distributions converges to a Poisson distribution with mean

A. Following [Rényi 70]

k n-k k-1 ,
PelX = k] = [”]p"(l—p)" =& - b (1 -3
P ' J=1
5 Ak a - i)n—k
k! n
LM
k!

Since, by LEuMa 2.2, the expectation for the order of ﬁ. tends

to 1, |[Na} — P(1) . =

Let H{X,,..,%¢) be the set of vertices y that satisfy

MEM(y ; X1,...,%:)

CoroLLARY 2.3: For any natural number &, there almost always exist
disjoint sets of vertices X;,...,X¢ in Gn b with the property

that {H(Xy.....Xe}]| = & .

Proor: Fix &k and g > 0. Choose disjoint sets of vertices
Xiyo. . Xa-y , X2 ,..., X2 with |X:) = ri and |Xi]| =r,

Define N: , Nl as in the main theorem. The sets N) will be

disjoint from each other and from the other N; . The same argu-
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ments as in the proof of THEorEM 2.1 apply to the orders of these

sets. Put H; = H(Xl,...,Xi ) . For each i the probability that
[Hi] = & tends to 1/ek! . Therefore, the expected number of H;
that contain k vertices tends to ¢/ek! . Because we have indepen-

dence (the Ni are disjoint) the number of H; that contain exact-
ly & vertices has a binomial distribution. Therefore the proba-
bility that none of the H; contain exactly k vertices tends to
{1~ I/ek!)q. S8ince ¢ is arbitrary, this probability can be made

arbitrarily small. -

We actually have more. Since the neighborhoods are indepen-
dent of each other, the probability that we have Ffewer than

q/2ek! H;'s of order %k is less than exp{-g/2ek!}

We now define a first order predicate ADJ(u,v; X;,...,Xa,A),
abbreviated ADJ(u,v) , on the pairs of vertices in H . This
will induce a graph on the vertices of H . As with MEM , the
definition of ADJ must be modified for « > 1/2 . These modifica-
tions will be explained at the end of the chapter.

When o« £ 1/2 , fix a set A of r, - 2 additional vertices
(A may be empty). For the pairs of vertices {u,v} in H we look

at the disjoint neighborhoods of the sets {u,v} UA as we did for

the Ny in ThgorEM 2.1 . The number of vertices in each of these
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will have the same distribution as N. . ADJ{u,v) holds if and
only if there are vertices in the neighborhood of {u,v} U A that

are adjacent to vertices of ﬁa-l.

The number of edges from N, to the neighborhood of {u,v} U
A tends to a poisson distribution with mean 1. For two vertices
u,v Pr[~ADJ{u,v)] tends to 1/e . Furthermore, these probabili-
ties are mutually independent among all pairs {u,v} Dbecause we
used disjoint sets to define them. We have now defined a random
graph with edge probability tending to (1-1/e} on the vertices of

H by I(u,v}) 1if and only if ADJ(u,v)

TygoREM 2.4 (Universal Representation Theorem) : For any finite
graph H on v vertices there almost always exists a collection of
disjoint sets X;,..., X, , A in Gn,p such that the random
graph defined on H(X,,...,Xa) by ADJ(u,v; Xi,...,%a,A) 1is iso-

morphic to H .

PROOF: Fix X;,...,Xa-1, A . Let the sets X! be ¢ disjoint sets
of r, vertices and define H; as in the proof of CoRroOLLARY 2.3
If the order of H is v, and E is the event that the graph defined

on H; by ADJ is isomorphic to H, then, by the comment preceding

the theorem,
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n! 1)1 1[2]"1
R o - B E R

which is a positive constant.

S8ince the H; are disjoint, the number of graphs isomorphic to H

1

po P ) . The probability that

has a binomial distribution B{g ,

q
there is no graph isomorphic to #H is [1 - E%T ﬁ] , which can be

made arbitrarily small by taking ¢ large. -

ExawrPLE: If H is a cycle on four vertices then

4 .2
5 = S A 4
p=s -4 3] - o

To prove our main result we need the following theorem:

THEOREM 2.5: (Trachtenbrot - Vaught Theorem) There is no decision
procedure that separates those first order statements A that
hold for some finite graph from those A that hold for no finite

graph.
Puoor: [Trachtenbrot 50] . -

THEOREM 2.6: There is no decision procedure that separates those

first order statements A that hold almost always for the random

graph Gn p from those for which -4 holds almost always.

’
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Proor: We have shown that for all finite graphs H

Lim Pr[ 3 ¥,;,...,%a,A C Gn p P H(X;, ..., ZajA) = H] — 1

) '

For any first order statement 4 about finite graphs define A*
to be the following statement about the random graph GH p :

3 X;,...,Xa,AC Gn p such that 4 holds for H{X;,...,X¢;A)
Exa¥PLE: Take the statement “"there are no isclated vertices in the
graph"” to be 4. 1In the first order language this 1s expressible
as: VY y 3 z I(y,z). The corresponding statement A* for the ran-

/5 Lould be:

dom graph with p=n

3 (x1,%2,%3,%q) [Vy MEM(y; x),%5,X%X3,%q) = 3 z MEM{Z; X;,X2,X3,%Xq)

A ADJ(y,z)]

where we have defined the two first order predicates MEM and ADJ

as follows

MEM(y;x1,%X2,X3.%4) & 3 z I(z,x3) A I(z,x2) A I(y,x3 ) A I(y,xq)
ANI(z,y)

ADJ(u,v) e MEM(u; X;,X2,X3,Xq) A MEM(v; X1,X2,X3,X4q)

A3t MEM(t; x1,.%2,u,v) 0

Since

Lim Pr[ A* holds in Gn
n+w

] = 0 if A holds for no finite graph
! 1 if A holds for some finite graph
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a decision procedure that could separate those statements that
hold almost always in Gn p from those whose negation holds almost
always would allow us to separate those A that hold for some fi-

nite graph from those that hold for no finite graph. This would

contradict the Trachtenbrot - Vaught Theorem. -

ExampLE: Earlier, we stated a problem in the first order theory of
graphs (p.27). If such a decision procedure existed, then we
could use it to determine whether or not a finite graph (not a
random graph) exists that satisfies conditions (i), (ii), and
{iii). It is important to realize that Theorem 2.6 does not imply
that this problem is undecidable. While that may be the case, all

we know is that the question has hot been decided.

When o > 1/2 we need to redefine N; slightly because in
some cases X;i will be empty. View the process dynamically. For
those i where X; is empty we take N; to be all of G except
for those vertices in the N;'s corresponding to nonempty Xi's
or in some N. , k <1 . The number of vertices of G that we
omit is small compared to the size of G so it does not affect
the final calculations exéept for a finite number of additional

o(1l) terms,

EXampLE: If p = n_5/7 then X2 = X4 =0 so we put N; =G \ N; ,
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Ng =G\ (N, U ﬁz U Na) . We expect nzﬁ vertices in N; , Nj,
Ng .

%38« 2™ 121,38, 5

Pe[ | {Ni| - s | >
The probability that the order of any of these N;'s differs from

its expectation by more than a factor of 1+o(1) is 1less than

/7
Ge n . (n]
For a > 1/2 (and therefore |Xs] = 1) we also must redefine
ADJ . We will work in N/ , the set of vertices that are not in
any of the sets X; , N; for those X; # @ , or Ni . N7 ~ |N]

For each vertex x; in an Hg of order v , fix a family of sets

si,....sl.; , with ISi| = JX;1 . Letting S = {x:} we form se-
quences of sets fi,...,"f'.i,-,, in the same way that we formed
Ni,...,Na-y , using the Si's in the place of the Xi's. We say

X; - x3 for x;,x; € He if and only if there are edges from ﬁ to
Ti.y . ADJ(u,v) holds if and only if u — v and u «— v. (See
figure 2, page 43.) We need the relationship ADJ to be symmetric.
This is why we require both uw — v and u «— v. Since all the T
sets are disjoint and the number of edges between a ‘f; and a fa_;
has a Poisson distribution with mean tending to 1 (by the same
calculation as for N,), the only change in the ocalculations of

THEorEM 2.4 1s that the random graph defined by ADJ has edge

probability (1-1/e)? .




X3 X2

Xq

X}

He = {x1,X2,%X3,%q}

A line joining two sets indicates the existence of
edges joining some of their vertices. If there is no
Iine joining two sets, then there are no edges from one
to the other.

In this situation, - the indicated graph will be
induced on Hi

Figure 2

.42
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