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Abstract of the Dissertation

The symplectic structure of submanifolds
of Kahler manifolds of non-positive curvature

by
Eleonora Beatriz Ciriza
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1989

Building on work of D. McDuff we investigate properties of
special manifold pairs. Let P be a simply connected complete
Kahler 2n-dimensional manifold of non-positive curvature . De-
note by w the Kahler form on P and by w, the standard sym-
plectic form on R*. A submanifold Q of (P,w) is said to be
symplectic if w restricts to a symplectic form on Q and is said to
be isotropic if the restriction of w to @ is identically zero. Let Q
be a totally geodesic connected properly embedded submanifold.

Some of our main results are :
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s if Q is complex ( therefore symplectic ) of dimension 2k then
(P, Q,w) is symplectomorphic to (R*™,R? ) , where RZ*

is a symplectic linear subspace of R?".

* if Q is isotropic of dimension k, then (P,Q,w) is symplec-
tomorphic to (R*™,R* wy), where R* is an isotropic linear

subspace of R?",

The proof involves studying the local structure of a Liouville
vector field £ which vanishes on an isotropic submanifold Q. Some
of the eigenvalues of its linear part at the singular points are
zero and the remaining ones are in resonance . This is a very

interesting question which appears not to have been looked at

before. We show that

o there is a C'-smooth linearizing conjugation between the

Liouville vector field ¢ and its linear part.

To do this we construct Darboux coordinates adapted to the
unstable foliation which is provided by the Center Manifold The-

orem. We then apply recent linearization results due to G. Sell.

iv




To Tristan Schmidt




Contents
Acknowledgements ... ... ................... viii
L e e e e e e e e e e e e e e e e e e e e 1 ;
1.1 Introduction . . . . . ¢ . i i i i i s e e e e e e e e e e e e 1 |
1.2 Basic definitions and notation . . . . . . ... .. . . .... 4
e e e e e e e e e e e 7
2.1 The symplecticcase . .. ... ... .. 0., 7
22 Anexample . . ... ... L L L o 13
3 e e e e e e e e e e e e e e e e 16
3.1 The local structure of a Liouville vector field . ... ... .. 16
3.2 The Center Manifold Theorem . ... . ... ........ . 18
3.3 Construction of the Darboux coordinates . .. .. ... ... 20
3.4 The relation with the Liouville vector field . . . . .. ... .. 37
3.5 The linearizing conjugation ... ... ............. 40
R 45
4.1 Theisotropiccase .. ... ... .. ..., 45
vi




4.2 Construction of @, . e

4.3 Constructionof &, . . ... ..

vii




Acknowledgements

I want to express my deep gratitude and admiration to my advisor Pro-
fessor Dusa McDuff, from whom I learned more than just Mathematics. 1
thank her for her infinite patience and generosity.

I thank Professor H. Blaine Lawson, who was always concerned about
My progress.

I thank Professor V.I. Arnold for his useful suggestion.

I thank my friends Javier Elizondo, Brian Kasper, Paulo Lima and
Marcelo Llarull for their encouragement and help.

I would like to thank Paul Kumpel, Claude LeBrun, Ralph Spatzier and
Martin Roéek. I would also like to thank Lucille Meci, Amy DelloRusso and
Joann Debis . )

I am specially grateful to Massimiliano Pontecorvo for his support and

for the many things he taught me to enjoy.

viii




Chapter 1

1.1 Introduction

Gromov’s discovery of the existence of exotic symplectic structures on
R?" has raised many questions. For example one can look for more explicit
examples of exotic structures » Or one can try to find invariants which would
distinguish exotic structures from the standard one. It is also important to
investigate properties of the standard structure itself in order to get a deeper
understanding of its nature. This is what we do in the present thesis. Build-

ing on work of D. McDuff we investigate properties of special manifold pairs,

McDuff proved a global version of the Darboux Theorem which states
that the Kihler form w on a simply connected complete Kihler 2n-dimensional
manifold P of non-positive curvature is diffeomorphic to the standard sym-
plectic form wy on R?". This means in particular that the symplectic struc.
ture on a Hermitian symmetric space of non-compact type is standard. She

also showed that if L is a totally geodesic connected properly embedded

Lagrangian submanifold of such a P then P is symplectomorphic to the




cotangent bundle T* L with its usual symplectic structure.

In this work we extend McDuff’s results to other special submanifolds
of the Kahler manifold (P,w). Recall that a submanifold Q of P is said to be
symplectic if w restricts to a symplectic form on Q and is said to be isotropic
if the restriction of w to @ is identically zero.

Let @ be a totally geodesic connected properly embedded submanifold

of (P,w). Then we prove:

Theorem 2.1.1 If ¢ is complex ( therefore symplectic ) of dimension
2k then (P, Q,w) is symplectomorphic to (R?*",R%,w,) , where R?* is a sym-
plectic linear subspace of R?".

and

Theorem 4.1.1 If Q is isotropic of dimension k, then (P, Q,w) is sym-

plectomorphic to (R**,R*, w,), where R* is an isotropic linear subspace of R?", .

The crucial point in the proof of Theorem 2.1.1 is to show that the sym-
plectomorphism constructed by McDuff takes a totally geodesic symplectic
submanifold @ into a symplectic linear subspace of R2". But in Example 2.2
we show that_this is no longer the case when Q is isotropic. Thus we have

to change strategy to deal with this case.

Theorem 4.1.1 appears as a natural extension of the theorems proved by

McDuff, and some of the proof goes through without much change. However




there is one crucial place where the argument breakes down and it is neces-
sary to study the local structure of a Liouville vector field £ which vanishes
on an isotropic submanifold Q. This is a very interesting question which

appears not to have been looked at before.

A homeomorphism which linearizes & vector field in a neighborhood of
a singular point can not always be chosen to be smooth, because of reso-
nant eigenvalues of the linear part. ( In our particular case the eigenvalues
1 and 1/2 are in resonance ). See Definition 3.5.1. The situation becomes
even more complicated when the linear part of the equation at the singular
point has eigenvalues on the imaginary axis ( for example 0 in our case). We
overcome this obstacle by constructing Darboux coordinates adapted to the
foliation provided by the Center Manifold Theorem. This allows us to treat
the isotropic submanifold @ as a parameter set. Further, although the vector
field ¢ has resonant eigenvalues , using the fact that ¢ is Liouville we show
that indeed it has no resonant terms in its Taylor expansion and therefore,

by recent results of G. Sell, we deduce

Theorem 3,1.1 There is a C'-smooth linearizing conjugation between

the Liouville vector field ¢ and its linear part.

This Thesis is organized as follows : in Chapter 2 we discuss the sym-

plectic case and describe an example. In Chapter 3 we study the properties

of the Liouville vector field €, and construct the Darboux coordinates men-




tioned above, finally we apply Sell’s theorem to prove Theorem 3.1.1. We

complete the discussion of the isotropic case in Chapter 4.

1.2‘ Basic definitions and notation

Let P bea 2n-dimensional differentiable manifold . A symplectic struc-

ture on P is a closed nondegenerate differentiable 2-form on P ie.
dw =0

and

VX £03Y:w(X,Y)#0(X,Y € T,P).

The pair (P,w) is called a symplectic manifold.

A diffeomorphism @ : (P}, w,) — (P,,wz) between symplectic manifolds
is said to be a symplectomorphism if ®*w, = w,.

If Q is a submanifold of (P,w), the orthogonal space to the tangent

space of @ with respect to the form w, at each point ¢ in @ is defined to be
(TqQ)l” ={vE€TP : wlv,w)=0Yw e 1,Q}

Q is called isotropic if for every ¢ € @ T,Q is contained in (T,Q) .
Note that this means that the restriction of the symplectic form w from P
to @ is identically zero. An isotropic submanifold Q is called Lagrangian if

dim@ = % dimP . Q is called coisotropic if for every ¢ € Q@ T,Q contains

(T,Q)*~. Q is called symplectic if w restricts to a symplectic form on Q.




( Equivalently , if for every ¢ € Q@ T,Q N (T,Q)*~ = 0).

A smooth vector field of (P,w) is called Liouville if its flow ¢, satisfies
piw = e'w ( or equivalently when L,w = w ). In particular a Liouville field

is conformal vector field.

A Poisson structure on a differentiable manifold P is defined by choosing
a bilinear map from C™(P,R) x C°(P,R) into C°(P,R) called the Poisson

bracket and denoted by (f,g) — {f, g} which satisfies the following properties
1. it is skewsymmetric: {g, f} = ~{f, g}

2. it satisfies the Jacobi identity:
{fa {gah}} + {gs{h: f}} + {h1{fag}} =0
3. it satisfies the Leibniz identity:

{fifes gt ={f1, 9} fo + f1{f2, 9}

A manifold equipped with this structure is called a Poisson manifold.
Properties 1. and 3. imply that the Poisson bracket is a derivation in each
of its arguments. Thus for each function A there is a vector field £, such that
§nf = {f,h} for all f. & is called the hamiltonian vector field generated by
h.

A map ¥ : P, — P, between Poisson manifolds is defined to be a Poisson

mapping if {f o ¥,g0¥}; = {f,g}:0 ¥ for all f,g € C=(P,,R).




A Poisson submanifold is a submanifold Q in a Poisson manifold P with
a Poisson structure for which the inclusion is a Poisson mapping . Such
structure , if it exists , is unique ( see [16] ).

Poisson manifolds appear as a natural extension of symplectic manifolds.

A symplectic manifold may be described as a manifold carring a Poisson |

structure which is locally isomorphic to the standard one on R?".




Chapter 2

2.1 The symplectic case

Let P be a simply connected, complete Kéhler manifold of nonpositive
curvature of dimension 2n, and let Q be a totally geodesic, complex (therefore
symplectic ), connected, propgrly embedded, 2k-dimensional submanifold of
P. Denote by w the Kahler form on P.

QOur first result 1s

Theorem 2.1.1 (P,Q,w) is symplectomorphic to (R™ ,R* w) , where R?*
is @ symplectic subspace of R*™ and wy is the standard symplectic form on

H2n

McDuff proved that the Kahler form on a simply connected complete
Kihler manifold of nonpositive curvature is diffeomorphic to (R**,w,) [9]
[10]. The proof of our theorem consist in verify that the symplectomorphism

that she constructed takes the submanifold @ into a symplectic subspace of

R .

Here is a sketch of the proof :




Pick a point z, in @ C P and let p(z) be the distance from z to zo. By
using a Hessian comparison theorem for manifolds of nonpositive curvature
MecDuff shows that the 2-form w, = —dJdp? is symplectic and that G, 2 4G,
where G, is the Levi form G,(X,Y) = w,(X,JY) and G is the original
Kihler metric.

Applying Moser’s method (see [11] ) to the family of forms
Ty =tw + (1 —t)w, 0 <t <1, she shows that (P,w) is symplectomorphic to
(P,w,). In Proposition 2.1.4 we will prove that this diffeomorphism, which

we call ®,, preserves Q.

Then McDuff constructs a symplectomorphism &, from (P,w,) to
(R**,wp). To do this , she shows that the Liouville vector field €, defined by
{,—dw, = ~Jdp? is diffeomorphic to the radial vector ﬁ'eld o on R*™ given
in polar coordinates by 32'-6%. Further this diffcomorphism takes w, to a sym-
plectic form which is linearly diffeomorphic to wy. In Proposition 2.1.5 we

show that £, is tangent to Q. Consequently &, takes @ into a symplectic

linear subspace, which we may clearly suppose to be R2*,

§The crucial point in the proof that the diffeomorphisms &, and b,

preserve the submanifold @ is the following :

Proposition 2.1.2 The w- and w,-orthogonal spaces to the tangent space

T,Q are equal at each point g of Q , ie. (T,Q)* = (T,Q)1».

For the proof we need the




Lemma 2.1.3 For every vector v which is orthogonal to T,Q with respect

to the meiric G we have v(p?) = dp?(v) = 0.

Proof: Let v be a smooth curve through ¢ tangent to v ,l.e. y:i(—€,e) > P
is a smooth map such that y(0) = ¢ and 4(0) = v , where v L 7,Q. By
the proof of Toponogov’s theorem 3], p?((0)) has a critical point at ¢ = 0 y

namely a minimum. Therefore dp?(v) = Lp*(y(¢))}4=o = 0. a

Denote by V the Levi-Civita connection on P , by V the induced con-
nection on the submanifold @ and by J the almost complex structure on P ,
which comes from its structure as a complex manifold. Denote by < X,Y >
the metric G(X,Y) and by < X,Y >, the metric G, = w,(X,JY).

Now we prove the proposition 2.1.2.

Proof: Let Y be a vector in T,Q*+ and let X be a vector in T7,Q , i.e.
Y and X are such that w(X,Y) = 0. Extend them in a neighborhood of g in
P . Then

dTdp*(X,Y) = X(Jdp*(Y)) - Y (Jdp*(X)) - Jdp?([X, Y]

Now Jdp*(Y) = dp*(JY) = 0 by Lemma 2.1.3 since ¥ ¢ (T,Q)** if and
only if JY is G-orthogonal to T,Q. Therefore

dIdp*(X,Y) = -Y(dp*(JX)) - dp*(J[X,Y])

= —Y(IX(p?) - (JIX,Y])p?

by definition of J and of dp?.




Furthermore, since V is torsion free —J[X,Y] = —JVxY + JVy X and
Y(IX(p?)) = ~JX(Yp?) — [V, JX]p®. Therefore

dIdpX(X,Y) = —IX(Yp?) - [Y,TX]p* - (JIX,Y))p*

= —~(VeJX)p? 4+ (VixY)p? — (JIxY)p? + (JVy X)p?

The first and the last term cancel each other because the almost complex
structure J is parallel with respect to the connection V since P is Kahler,
(ie. VI=0& JVyX = VyJX).

Thus dJdp?(X,Y) = (VxY)p? — J(VxY)p?.

Now let Z be a vector field tangent to @ , then < Y, Z > = 0, so that

X< Y,Z'.>= 0. Therefore
~ <VxY,Z>=<Y,VxZ >=<Y,VxZ >= 0.

The second equality holds because the second fundamental form s(X,Z) =
VxZ—VxZof Qis identically zero since @ is totally geodesic submanifold
and the third because Vx Z is tangent to Q.

Since @ is a complex submanifold, JX is also tangent to @, therefore
analogously we obtain < V;xY,Z >= 0. Since Z was érbitrary we have
that the vectors VxY and VixY are orthogonal to TQ with respect to the

metric.

Therefore , Lemma 2.1.3 implies that (VsxY p?) = dp*(V,xY) = 0 and

(v_xsz) = dpz(ejxy) =)

10




Hence w,(X,Y) = ~dJdp*(X,Y) = 0. ]

McDuff applies Moser’s method to the family of symplectic forms

t=tw4(1—tw,,0< ¢t S.l ; to construct the diffeomorphism &,
such that ®}w = w,. In her proof she shows that the family of vector fields
u; that the method provides is complete with respect to the metric G. Here

she used the fact that the curvature is nonpositive,

Proposition 2.1.4 &, preserves the totally geodesic symplectic submanifold

Q.

Proof: Tt suffices to check that the family of vector fields u, is tangent to
Q. The u, are defined by the equation u;. 17, = —f where # is some 1-
form which satisfies 7, = df, where 7, denotes % = w — w,. McDuff takes
B = 3Jdp?* + X where ) is obtained by integrating w along the geodesic
emanating from zp. Precisely , let ¢, : $2* 1 5 P be the map y - (r,y),

where (7,y) € (0,00) x §7*~1 are geodesic polar coordinates on P — {zo} and

let & denote the radial vector field a%' Define A by

SN = fo'gb;(a_m)ds
MO) = 0

Then dX = w.

Let X, be a vector G-orthogonal to T,Q . Then X, = (¢,),v for some

11




v € 1 and some r € (0,00), and

AXQ) = M(d)w)
= [@w)(g)ww)ds
= [ w(@(8)0)ds

The vector field W, e {(¢a)sv 1s @ Jacobi field . Since Wo = 0 and
W, = X, is G-orthogonal to Q then W,(q) L¢ Q for all 0 < s <7 and
g € Q. Therefore JW,(q) Lg @ since J preserves T'Q because Q is a complex
submanifold.

8 is tangent to the geodesics on P emanating from zo. Thus because Q
is totally geodesic 8(g) € T,Q for all g € Q. Then we have that w(8,W,) =0
for all s € [0,r]. Therefore A(X,) = 0 for all Xy Lg T,Q. It follows from this
and from Lemma 2.1.2 that 8(X) = 0 for all X € (TQ)*°.

Now if we denote by < - >t the norm associated to T, ( 1.e.
< X,Y >=n(X,JY) ) we have that < u, X >y=0forall X € (TQ)* <. It
follows by Proposition 2.1.2 that TQ*¢ = TQ* for all t € [0,1). Therefore

u, is tangent to @ for all t € io,1]. O

Proposition 2.1.5 The Liouville vector field &, is tangent to Q.

Proof; Observe that dp?(X) = J(€,dw, (X)) = wo(Epy JX) =< Ep X >

This together with Lemma 2.1.3 implies < £, X >p= 0 for all X G-

orthogonal to @ and for all ¢ € Q - Hence < £, X >= 0 for all X G-

12




orthogoné.l to @ by Proposition 2.1.2 . O

Consequently the diffeomorphism &, takes the submanifold @ into a

linear subspace of R**. This completes the proof of Theorem 2.1.1 .

2.2 An example

We now construct an example that illustrates why is not possible to
use McDuff’s symplectomorphism to obtain a similar result for the case of a
totally geodesic isotropic submanifold.

Copsider R* with the metric G given by the cartesian product of the
Poincaré metric on R? with the standard metric on R2. In polar coordinates
(r,0,s,¢):

G = dr® + (sinh r)? d8? + ds® + s* d¢p?

and the associated Kahler form

w = (sinhr)dr A d8+ sds A d¢.

A source of examples of totally geodesic isotropic submanifolds is pro-
vided by the rays through the origin. McDuff constructed a symplectomor-
phism & : (R*,w) — (R* w,) which fixes the origin. The diffeomorphism ¢~

takes the radial Liouville vector field £, on (R*, wy), which is tangent to the

geodesic rays through the origin, to the vector field ¢ = &£ which is a

13




Liouville field of w because

déw) = d(B7(L)dw) = d(871)* (¢ 19"w)
= (27")"d(€oJwo) = (37)*wo

= w.

But we claim that in (R? x R%,G) no Liouville vector field points in the
direction of the rays , which are the only geodesics through the origin. Hence
®-! fails to preserve the property of being totally geodesic.

Proof: If R = /r2 + s? , a general radial vector field through the origin

can be written as
o
OR

for some real function f = f(r,8,s, ¢).

Suppose that the radial vector field were a Liouville field for w. Because

O = flsinhrdd + Fodg
£y w = Rsm rat -+ R
and
0
d(fﬁ dw)=w
we find that the coefficient corresponding to ds A df on the left hand side of

the equation must equal zero. Thus:

af r . i s
a—sﬁsmhr + fr 3mh’r(——é§) =0

which implies

of Ea
8s = ' R?

(2.1)

14




Further the coefficient of ds A d¢ must equal s, then
Of s? 2s s

wE IR Im = 22)
From 2.1 and 2.2 we get
8f s* 2s r
%RTIR I
therefore
R
= — 3
=X (2.3

Further, we find that the coefficient corresponding to dr A d§ must equal
sinh r, then

Of rsinhr sinhr  rcoshr r?sinhr )
o & + f( 7 + BT TR ) = sinhr (2.4)

and the coeflicient corresponding to dr A d¢ must be zero ,2then we get

af s* rs?
R Tm 0 -
which implies
af r
2=z (2.5)
From 2.4 and 2.5 it follows that
Rsinhr
= 2.6
7 sinhr + rcoshr (2:6)
But 2.3 and 2.6 are incompatible , therefore the claim follows. O

YConsequently , in order to obtain a result similar to Theorem 2.1.1

for the case of an isotropic totally geodesic submanifold we have to change

strategy.



Chapter 3

3.1 'The local structure of a Liouville vector
field

INTRODUCTION

In this chapter we study the local structure of a Liouville vector field of
a 2n-dimensional Kéhler manifold (P, Q) , which vanishes on a k-dimensional
isotropic submanifold @ of P . We shall not assume that the manifold P has
nonpositive curvature, or that @ is totally geodesic.

Recall that a Liouville vector field of (P,f2) is a smooth vector field £
such that £,Q = Q. Its flow p, is a conformal transformation of £ such that
Pl = et Q.

We shall assume that at every point ¢in Q , ¢ (¢) = 0 and the eigenvalues

of its 1-jet are 1, 1/2 and 0. This means that in some coordinates

éj 1 3
Ji(€) = (0z>— ~ g )+ ( + ~¥r)
? 2 Oy, r——zk;q 2 8 27 oy,
where @ is given by {y; = 0} N {2 =0} N {y =032, ..

Our goal is to prove

16




Theorem 3.1.1 There is o C'-smooth linearizing conjugation between the

Liouville vector field £ and its linear part.

This means that there is a local diffeomorphism on a neighborhood of ¢ in
P which carries the trajectories of the flow generated by the vector field ¢
to the trajectories of the flow of its linear part, preserving the direction of

motion.

We proceed as follows:

In §3.2 we verify that the flow generated by the Liouville vector field ¢
is normally hyperbolic at @ , and that @ is an invariant manifold consisting
of fixed points. This means that we can apply the Center Manifold theorem
which states that under these conditions P is smoothly foliated By strong
unstable submanifolds W, which are transverse to Q , i.e. P = {,cq W,.
Since £ is tangent to the W, , we may treat @ as a parameter set and

analyze { by looking at the family £, of its restrictions to the W,.
In §3.3 we show that the fibers W, of the strong unstable foliation are

coisotropic and, using this fact, we construct at any point ¢ of @ Darboux

coordinates adapted to the foliation.

We study the relation of the Liouville vector field £ to the Darboux

i
coordinates in §3.4 .

Using this coordinates together with the recipe given by the Poincaré

-Dulac theorem [2] we show, in §3.5 , that for each g in Q the vector field

§; on W, contains no quadratic resonant monomials in its Taylor expansion.

17
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Hence we can apply Sell’s linearization theorem [13] , which guarantees that
for each g , the vector field {q is at least Cl-conjugate to its linear part in a
vicinity of the singular point ¢ in @ , and that the linearizing conjugation o,
depends smoothly on the parameter q. Putting the ®, together, we obtain

a O*-diffeomorphism which conjugates ¢ to its linearization.

3.2 The Center Manifold Theorem

YAn invariant manifold of a vector field ¢ and of the corresponding
differential equation & = £(z) is a submanifold of the phase space P which
is tangent to the vector field at each of its points.

Let @0 be a singular point of a differential vector field € (i.e. the vector
field £ vanishes at the point z9) . By linearizing P in some neighborhood
N(zo) of zo , we can consider § to be a map ¢ : N(zg) — T, P =RY, 1If
A denotes the derivative of the mapping £ : z — £(z) ,then the equation
z = Az is called the Lnearization of the equation & = £(z)at the singular
point xo. The vector field Az is the linear part of the field € at 5. The

eigenvalues of A are called the eigenvalues of £ at the singular point To.

- fLet us denote by ¢, the flow generated by the vector field .
An invariant submanifold S is normally hyperbolic if the restriction of
the tangent bundle of P to § splits into the continuous subbundles TP|s =

N“@TS@®N* , each of which is invariant by the derivative of ¢, , Dy, and

if for each ¢ there is a number r — 7(q) > 0 such that




a) Dy, expands N* more sharply than it expands anything in T'S.
b) Dy, contacts N* more sharply than it contracts anything in T'S.

More formally, the submanifold S is r-normally hyperbolic if ¢, is C"

and forallgin Sand 0 < k< r
a) m(Dy;|ng) > || D, s]|*

b) |1 D¢. I lI* < m(Dep, I1,5)

where m(L) = inf{||Lv]|

: [lv]] = 1} is the minimum norm of the linear map

L and ||L]| = sup{||Lv|| : ||v]| = 1} is the norm of L.

Theorem 3.2.1 Let ¢, be a C" flow on P, for r > 1, with an r-normally
hyperbolic submanifold S consisting of fized points . Assume further that the
splitting TP|s = N* @ TS ® N* is C"-smooth. Then

1) there ezist C7 locally p,-invariant submanifolds W and W2 tangent
at S to N*®TS and TS @ N* respectively.

it) W¢ has a g;-invariant fibration {W2**,q € S} over S whose fibers
are tangent to N* at S ,i.e. W§ =, cs W2

i1} each W is a C"-manifold and the map m : W§ — S given by
W(W;“) = q s C". Points of W™ are characterized by the fact that the

distance from @.(p) to pi(q) goes to zero exponentially fast.

In fact , d{o(p),e:i(q)) < Ce ™™ , where C is a constant and k =
1D:(a) g |-

w) similarly for the fibration {Wy,q € S} of W§.




This theorem is a less general version of the theorem stated in [12] . For
a proof see [6].
W4 and W are called the unstable and stable manifolds of S ; Wi and

W’ are called the strong unstable and strong stable leaves of the w,-invariant

fibration through g.

YIn our context, because the Liouville vector field ¢ vanishes on the
isotropic submanifold @ of (P,}) , Q is an invariant manifold of the field
§ which consist of fixed points . The eigenvalues of ¢ at a singular point
g € Q are {0,1,1/2} , so that m(Dyp,|ns) = €'/? and || Do froll = € = 1.
Therefore @ is r-normally hyperbolic for all » € N, and the theorem we just

stated applies.

Note that W3 = @ so we get a smooth fibration 7 : P — @ with fibers

W . From now on, we write W, = Wy

3.3 Construction of the Darboux coordinates

In this section we construct Darboux coordinates adapted to the W, .
More precisely, our aim is to construct coordinates z,,...,z,,1, ..., Y near a

point ¢ in @ such that

3 n
Q:de;/\dy,-—i- Z Zd:c,./\dy,.

=1 r=k+1
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k F) 9 "1 @ 1 &
ey 9 9 g =29
Jq(f) = Z(Om*azi + ly‘a ) +r§_1(2$”3m, + 2yr3yr)

=1 b4

Wo={p€ P:zp) = z:(¢)}

We show in Proposition 3.3.2 that the submanifolds W, are coisotropic.
This implies that each W, is itself foliated by isotropic manifolds Wq‘L where
T(W;") = (T.W,)*. Then we can form, at least locally, the quotient mani-

folds By = P/W and By» = P/W+ and consider the following diagram

¥

P Bw

We will show that there are unique Poisson structures on By and By,
such that the maps ¥ and & are Poisson morphisms and we will then con-

struct the desired coordinates by lifting functions from Bw and By to P.

YiGbserve that at any point ¢ in Q , the taﬁgent space to P at ¢ can be
written as I, P = T,Q @ N, , where N, = (T,Q)'¢ .

Lemma 3.3.1 N, is a coisotropic vector subspace of T,P .




Proof: Consider a non-zero vector v in qu“. Then for all vectors » in N,

we have £2(v,u) = 0 which implies that G(Jv,u) = 0 . Thus Jv belongs to
Nie = T,Q . But J(T,Q) C TQ*® = Ng since T,Q is an isotropic vector
space . Hence v = —J(Jv) belongs to N, . Therefore N;"‘ C N,, which

means that N, is coisotropic. o

Let us denote by ¢, the flow of the Liouville vector field ¢ and by 7
the projection that maps W, into ¢ . The definition of the strong unstable

foliation W, implies that:

1. mop, = 7, (since if p belongs to W, for some g so does ,(p) , therefore

m(ps(p)) = m(p) = ¢ ) ;

2. if Y is a vector tangent to W, at a point p , then (y,).Y is tangent to

Wy at 0.(p) ;
3. if X € (T,W,)* then (v,). X € (T, W)t ,( since &0 = e*Q2).
We can now prove the
Proposition 3.3.2 The W, are coisotropic submanifolds of (P, ).

Proof: Assume by contradiction , that for some p in W, ,there is a non-zero
vector v in (T, W,)*® that is not tangent to T,W, . Let o be a smooth curve
tangent to v at p , i.e. @ :(—¢,e) — P is a smooth map such that «(0) = p

and &(0) = v . Since d(@,(z),n(z)) = 0 as s = —oco0

d(e.(e(t)), m(¢s(a())) = d(e,(a(t)), 7(a(t)) — 0
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Therefore
lim_pu(a(t)) = lim_w(p.(a(t)) = r(a(t)
pointwise .

Define B(t) = n(y,(c(t)) . This is a curve in Q whose tangent vector at

t = 0is m,(v) and hence is non-zero. Further

lim (‘Pa)ta(o) = ,.ljl;noo(ﬂ o {p,).d(ﬂ) = agglw 7[',(&(0)) = 6(0)

S =00

By 2. and 3. above, (p,).(v) does not belong to T, W, but it belongs
to (T, (»Wy)*®. By continuity 4(0) (= lim, , _o(,)+(v)) does not belong
to N, but it belongs to (¥,)** , however this is impossible since N, is a

coisotropic subspace. O

Let us denote by W the foliation of P by the strong unstable manifolds
Wy, where W, is the leaf through a point ¢ in Q. In view of the fact that W

is a coisotropic foliation we have
Lemma 3.3.3 (TW)* considered as a subbundle of TW is integrable.

Proof: Let X , X; be vectors fields on W which are sections of TW<L . We
will show that [X;, X,] is a section of TW+,

Denote by Q|y the pullback of & to W. Q|w is a closed form and since
W is coisotropic Q)w(X;,Y) =0 for i = 1,2 and for all Y on W. Now, we

have for any vector field Z on W

0 = dﬂ|w(X1,X2)
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= XiQw (X2, Z) — XoQlw(Xs, Z) + ZQw (X1, X3)

—Qlw([.X;,Xz],Z) + 'QfW([Xl’ Z]’XZ) - Q|w([X2, Z},Xl)

Because

0 = Qw(Xs, Z)=0lw(X1,2) = Qw (X1, Xs)

= Q|W([X1, Z],Xz) = QIW([XZ)ZLXI)

then Qw([X1, X3}, Z) must be zero as well, since Z was arbitrary it follows

that [X;, X,] is a section of TW<L. 0

Consequently, TW* is the tangent bundle to a foliation of W, which we
denote by W+*. Now let ¢ be a point in the isotropic submanifold Q, and let
U be a neighborhood of ¢ in P sufﬁciéntly small so that the foliations of U/
defined by W+ and W are simple, i.e. the ’set of the leaves of the foliation

are smooth manifolds and the correspondings projections

PNnU

Q):U"—)———“WLQU

= Bwi

and
PnU

Vil — oy =

By

are submersions, .

Then we have

Proposition 3.3.4 1. There is a unique Poisson structure on By such

that ® is a Poisson morphism.




2. There is a unique Poisson structure on Bw such that ¥ is a Poisson

morphism.

In order to prove this proposition we need the following

Definition 3.3.5 A differentiable function f defined on P is said to be a
first integral of a distribution F (or of the foliation defined by F on P)if
and only if, for every differentiable section X of F, Xf = 0.

Lemma 3.3.8 Let F be a smooth and completely integrable distribution.
Then a smooth function f is a first integral of F if and only if its restriction

to each leaf of the foliation defined by F is constant.

Proof: Let X be a smooth section of F, if the restrietion of f to each leaf of
this foliation is constant, then X f = 0 since X is tangent to F.

Conversely, assume that f is a first integral of ¥'. Let § be a k-
dimensional leaf of F. For each point # of S there exist k-differentiable
sections Xj,..., Xj of F, defined on a neighborhood of , whose values at =
form a basis of 7,5 . Then X;f =0 forall 7 =1,.. k. Thus df|s is

constant, . O

Lemma 3.3.7 A function f is a first integral of a distribution F' if and only

if the Hamiltonian vector field X; , with hamiltonian function f, is a section

of Ft,
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Proof: f is a first integral of F « for all sections X of F, Xf =0 <
0 =df(X)={X;, X} = Xy, X) for all X tangent to F < Xy is a section
of F*

We can now prove Proposition 3.3.4

Proof: Let F' denote the distribution tangent to W or W-. Then the
distribﬁtion Ft equals either W+ or W and so is integrable. Let © denote
the projection P — P/F = Bp, so that © is either  or ¥ .

If f and § are smooth functions on By ,then f=fo® andg=§o®
are smooth functions on P and their restrictions to each fiber ®-1(b), b € By
are constant functions. Since ©~!(b) are the leaves of the foliation defined
by F, Lemma 3.3.6 implies that f and g are first integrals of the distribution
tangent to F' . Therefore the Hamiltonian vector fields X; and X, generated
by f and g are sections of F* by Lemma 3.3.7 . Since F! is integrable,
Xirgr, = [X5,X,] is a smooth section of F* , and so by Lemma 3.3.7 ,
{f,g}p is a first integral of TF.

Lemma 3.3.6 now implies that { f0©, 00} p is constant on each O~1(b),
b € BF | so that it is the pullback of some function on By ‘, which we call

{f,g}_,;,, . Therefore there exist a Poisson bracket {f”,g}f,,, on Bp such that

6*{16,5}51? = {f 00,90 G}P

Clearly this bracket satisfies the Jacobi identity. ‘ a
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At each point b € By the value of {f, g} and hence of X + depends only
on the differential of f, so there is a bundle map A : T*Br — TBp such
that X; = AF o df for all f.

The rank of the Poisson siructure at a point b € Bp is defined to be the
rank of AT : T*By — TBp.

We have the isomorphisms:

;P

Ty Bp & 2 =

(F.) = F}

@

b = ©(z) where (F,)° is the annihilator of F, (i.e. the set of 1-forms that
vanish on F,).

This isomorphism may be extended intc an isomorphism of the exterior
algebras which maps the Poisson tensor A¥ of Bp at O, into the bilinear
2-form Qg1 induced by  on the leaf of the foliation defined by F*,

Consequently the rank of the Poisson structure of By,. at ®(z) is equal
to the rank of the 2-form Q| induced by © on the leaf W, through z of the
foliation defined by W , which equals 2n — 2k.

Similarly the rank of the Poisson structure of By at ¥(z) equals the
rank of [y, , which is zero since W is isotropic.

Hence there are k coordinates functions # i = 1, ...,k on By such that
their Poisson brackets vanish , i.e. {#;,%;}=0;i,j=1,.. k.

" YDefinition of the functions z; :

Define on P, the functions #; = #;0¥ ; i,j = 1, ..., k. Observe that each

of the functions z; is constant when restricted to each leaf of the foliation
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defined by W . Thus if ¢ = ¥(g) € B we have
T Hz)=W,NU={pel : z(p) = z:(q)}.

Remark 3.3.8 The functions z; ; i = 1,...,k are first integrals of W by
Lemma 3.3.6 and for eachi =1, ...,k the Hamiltonian vector field §,, gener-

ated by z;, is a section of W+. Hence the {£,,}* | span TW™.

Because the foliations of U defined by W and W' are simple and for

each p € U we have
I,p _ T,P/T,W+

LW T,W/T,Wt
we can define a function T : By, = P/W* — By = P/W such that the

diagram

By

.BwJ..

commutes. Therefore we have k functions on Bﬁ, defined by &; = ;0T
i=1,..,k.
Now, for each ¢ in @ N U we may form the quotient manifold

_ W,nU
S wWinvu

q

contained in By. . Observe that since (W, N U) = §7 we have

8% ={b € By : &(b) = £(®(q))}
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The tangent space to 57 at a point b € By, may be identified with T W /T,W -
for some p € P such that $(p) = .

Thus we have the commutative diagram

A
W, - P ? Bw
i ] T
§9 —2 . By,

Let 07 be the 2-form defined on T, W,/ T,W; by
(X +WSY+WH = Qlw, (X,Y)

where X , Y lie in TW, .

Note that

1. ¢%1s well defined : (i.e. it does not depend on the point chosen on the

leaf TW)
Proof; For any section X of TW", we have
ﬁx(ﬂ!wg) = d(.X_]Q!W‘I) + X._Id(ﬂlwq) =0

since X lies in TW; and dQ|w, = 0. ' Q

2. 0% is non-degenerate :

Proof: Given Y € TW, - TW;' there exist X € TW, — TWQJ' such that
0(X,Y) # 0 therefore 0%(X + WL, Y + W) # 6. O




3. o71s closed :

Proof:
do¥(X + WY + Wi, Z + W) = 8*(do?)(X, Y, Z)

= d(8'0%)(X,Y, Z) = dw,(X,Y,Z) = 0

- It follows that there is a naturally determined symplectic structure on

5% for each ¢ € QN U , whose pullback to W, is Qw,.

Proposition 3.3.9 For each ¢ € QNU , 57 is a Poisson submanifold of the

Poisson manifold Byy..

Lemma 3.3.10 § is a Poisson submanifold of a Poisson manifold B if and
only if each tangent space TS contains the image of Ay : ;B — T,B , i.e.

if and only if all hamiltonian vector fields are tangent to S.

Proof: Given functions f and g ; extend them to functions f and g on
B . The tangency condition implies that the restriction of 1f19} = X4(g) to
S depends only on f and § so there is an induced bracket operation on § for
which the inclusion ¢ : § < B is a Poisson mapping.

Conversely , if the tangency condition fails , the bracket of extended

functions depends upon the extensions , so the restriction map C>(B) —

C*=(S) cannot define a homomorphism for any Lie algebra structure on
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c=(8$). | o

We now prove the proposition 3.3.9

Proof: Given any function f on By , the function f = fo® defined on
P is constant on W for each ¢ . Since the hamiltonian vector fields {&:}E,
span TW+ by Remark 3.3.8 we have that € f =0Vi=1,..,k, therefore
{=:, f}p = 0 Vi. This implies that the derivative of the z; in the direction
of the hamiltonian vector field generated by f is zero y le. Ei(z) = 0,
which implies that dz;(£;) = 0. Therefore the hamiltonian vector field & is
tangent to W, for each ¢. Hence the hamiltonian vector field generated by
f, §7 = ®.({s) is tangent to $? = &(W,). Since f was an arbitrary function

the proposition holds. D

We can consider ¢ as a parameter and use Arnold’s method to find
Darboux coordinates on each S? separately in such a way that they vary
smoothly with respect to the parameter g. Denote them by z? ,y9 ,r =
k+1,...,n. We can choose them such that {z2,y3} = 26,,.

Now define on By .1 functions 7;,%; ,7 = k + 1, ..., so that the restric-

tion Z;|ge of Z; to S7 equals z? and the restriction ¥;|sqs of 7 to S9 equals

yr.

31




32

U

K -

Qk Qk

Try Yr

L/

Proposition 3.3.11 The functions T, , §; ,r = k+1,...,n together with the
functions 7 ,i = 1,...,k form a coordinate system which satisfy the following
bracket relations : {z,,7;} = 26..

{#.5} ={z,8) = {75} = (£, 5} = (5;, 5} = 0

foralls,r=k+1,..,n and 1,7 =1,..., k.

Proof: By the Proposition 3.3.9 , the hamiltonian vector fields ¢ and

£z, generated repectively by the functions %;,%; ,r = k + 1,...,n are tangent
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to $9. Since each T; is constant on SY we have that
0=¢;%i = {Z,T}n,

and

0={:% = {=, i‘;}B;‘-‘,
forall i=1,.,k and r =k+1,..,n. Also
{E;aﬁ:}yﬁr = {jhéi}Bw o T=0.
And finally
{E:}E}B*, OLg = {mg}yg} = 2‘5"-

Therefore for all 6 € §¢ and all ¢ € QN U we have {z7, 3} 5y () = 24...

The other brackets relations can be obtained in a similar way. O

€ Definition of the functions z,,y. :

We define the functions
z;=ZF;0®,1=1,...,k
z, =2, 0%,y =%c®;r=k+1,..,n

Since @ is a Poisson morphism, it follows that for each pin U :

o2 }p(p) = {70 8,5 0 8}e(p) = {70, s,y B(p) = 26,1 8(s)
§ {v0, 4 }p(p) = {7 0 8,% 0 ®}p(p) = {72, % )5, 8(p) =0

In & similar manner we get the remaining bracket relations.

Summarizing we have, on the neighborhood U functions z; , z, , ¥,

1=1,.,k;r=k+1,..,n satisfying the relations :
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{:B,., ys} = 261-:
* {ynyr} = {ws"‘cr} = {y.,z;} = {znxi} = {:B.‘i!mt'} =0
forall s,r=k+1,.,nand 2,7 =1,...,k -

Further the coisotropic leaf through the point ¢ € @ N U , is given by
Wo={p€e P : zi(p) = z:q)}.

Let us denote by C the set of points in U/ whose z, and y,-coordinates
r=k+1,...,n vanish . Notice that this is the union of the isotropic leaves
W intersecting the isotropic submanifold QNU. We want to show that there
is a neighborhood V of ¢y contained in C, such that the restriction of 2 to
V is symplectic . Since being symplectic is an open condition it suffices to

show the following

Proposition 3.3.12 The resiriction of 2 to the tangent space to C at gy s

nondegenerate.

Proof: Let &, and £, ; » = k+ 1,...,n be the hamiltonian vector

fields corresponding to the hamiltonian functions z, , y, respectively, i.e.

Ez,-—lﬂ = dmr 1 Ey,.—lﬂ = dy.,. for all ».

Let X be a vector tangent to C at ¢, ,and take any extension of X to

a neighborhood of go. Since §1 depends only on the values of the vector field

at the point , we have that




Q(X,¢.,) = Xe, = 0 and Q(X,¢,,) = Xy, =0forall r = k+1,...,n
because z, = ¢, = 0 on C and X € T,,C. Therefore X is Q-orthogonal to
the vectors £, (o) » &y (g0) for all » = k + 1,...,n . Note that these vectors
span a subspace complementary to T,,C since their projections onto By
span T(S,). Therefore, if X were Q-orthogonal to the whole T, C' , X would

be orthogonal to T, P , which is not possible because {! is nondegenerate. O

By Darboux Theorem there are symplectic coordinates in a neighbor-

hood V of the point g in C.

Let us denote them by (&1, ..., Tk, F1, ---» T ). 1t is possible to choose them
such that #;(p) = z;(p) , p € V and such that 5%; is tangent to 3‘}.

{Definition of the functions y; :

Extend the coordinates (£ and ) % , ¢ = 1,...,k from V to U using the

bamiltonian flows of z, , y. ; * = k + 1,...,n in the following way :

tr

Denote by gb , gi7 ; » = k+1,...,n the hamiltonian flows with hamil-

tonian functions z. , y, respectively.
Because the Poisson brackets of the hamiltonian functions are constant
( #-relations ) , their flows commute. Therefore every point p in some

neighborhood U; C U of the point gg € @, can be uniquely represented in

the form

def
p= gi';t‘l o..ogino gitio...0 g;:(p’) = 4(p")

where p' belongs to the neighborhood V C C and s, ,t, e Rjr =k +1,...,n.

Define : yi(p) = Gi(p') and ci(p) = &(p'), i =1,..., k.
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We claim that the values of the extensions ¢; of &; agree with those of
the old functions z;

Proof: For the &-relations 0 = {¢;,2,} = &,¢; and 0 = {c;, 9.} = &,
i = 1,.,k ; = k+1,..,n imply that each ¢; is a first integral of the
hamiltonian functions z, ,y, ; » = k + 1,...,n and so is constant along the
corresponding hamiltonian flows . Similar remarks apply to the z;. Thus
2i(#) = a(p) = (8(F) = ailp) and 2(p) = (0(F)) = w:(p) s0 that

zi(p) = a(p). D

Y Proof that the coordinates are symplectic

Because of the way the functions §; ¢ = 1,...,k were extended , each
of this extensions y; is invariant with respect to the flows gi g7 ;7 =
k+1,..,n.

Thus the Poisson brackets of the y; with the z, ,y, are equal to zero :
{virz.} = {ys,un} =0i=1,..,k;r =k+1,..,n.

Therefore the hamiltonian flows g; with hamiltonian functions y; 1 =

t 8
:x:: ’gy:‘

1,..., &k commute with the g
Since the hamiltonian flows preserve the symplectic form §, we have
that the values of £ on the hamiltonian vector fields at p are the same of

those at p’ , and these equal the values of the Poisson brackets, i.e.

{vi, 3. }p) = A& (p), &, (P)) = Qi (p), 6. (7)) = {31, 4 }(P).

Further because 0 = {z,,u} = (.., £,,), and similarly 0 = {y,,y:} =

Uy b))t = 1,0,k 57 = k + 1,...,n, the functions z, and y, are first
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integrals of the hamiltonian vector fields £,,. Therefore the §,, restrict to
hamiltonian vector fields on the symplectic manifold (V, |y ) and the corre-
sponding hamiltonian functions are ¥;|lv = ;.

Thus in the whole neighborhood U; C U, the Poisson brackets of the y;
with themselves is the same as the Poisson brackets of this coordinates in
(V,Q),ie. {w:0-1p') = {7, % }p')-

Hence on the neighborhood U; C P of ¢o {v:,4-}p) = {&:, 9. }(p') = 0.
Similarly we get {y;,z.}{p) = §;; . We already had {z;,z,}(p) = 0.

The Poisson bracket of the coordinate functions determine the shape of
the symplectic form uniquely , thus

k n
Q=> dz; Ady; + Y 2dz, Ady,
=1 r=k+1

in the neighborhood U, of ¢ .

3.4 Therelation with the Liouville vector field

In this section we study the relation of the Liouville vector field £ to
the Darboux coordinates adapted to the foliation W,. Our aim is to show
that the linear part of { at the point g is diagonal with respect to these
coordinates.

Let us write { = L(£) + n where L(£) denotes the linear part of £ at g,
and 7 contains terms of order > 2 only. Then, for g5 € Q we have that

d(n2)(go) = 0 and d(L(€) I2){(go) = $¥go). Therefore since

d(¢ Q) =d(L(£)AN) + d(n30N) =  and N is linear it follows that
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d(n_1£1) = 0 and d(L(£) 10) = Q.

Now choose new coordinates (z1,...,22,) in a neighborhood of ¢ in P
which depend linearly on the coordinates (z;,y;,z.,y,) such that L(£) is
diagonal with respect to the (z1, ..., z3.). We will take z; = ; fori =1,..., k.

Then

2n 8
L(f) = g Aezy B_zt

Further, because { preserves the submanifolds W, and W each of the
subspaces T,(W,) and Tq(WqL) have a basis consisting of some of the b’%; which

diagonalize L{£). We will assume that {aiz,- 2% o1 span Ty(W.1). Therefore

F=

8 2k ]
- = Z Ay
Oy Lo 9%

and the transformation matrix has the form

8 a
s I oo || s
8 | = a
2 0 % x% b

i = 1,..k 52: fors=k+r,
where ¢ i o= k+1,..,2k and 5= = —5%: fors=n+r,

s,a > 2k where r=k+1,..,n




Thus
T, = z;
— ] j

v = Y dut )Y daz,

k<i<2k a>2k

r

z, = Ebmz,;,E

a>2k
¥ = ) Cita

a>2k

E R B T
for some constants af,al, b7, ).

Thus with respect to the new coordinates

_ K2k koo
Q= aidzAdy+ 3> aidziAdz, 42 > b chdza Adzg
i=1,7=k+1 i=l,a>k a,B

Hence we obtain

AL Q) = Y (A + Aaide Adz; + Y (M + Ao daldz A dz,

+23¥ (A + Ap)bochdzy A dzg

Because \; = 0 for ¢ = 1,..,k , d(L(£) Q) = O implies that A =1
foraﬂaj # 0, Ay = 1 for all ¢} # 0 and A, + A = 1 for all bcs # 0 By
hypothesis there are k eigenvalues equal to 1 and 2n — 2k equal to 1 /2.
Since the matrix corresponds to a change of coordinates, the submatrix (al )

is non-singular. Therefore all the ; = 1, and all &}, are zero.
Hence the eigenspace for L(£) corresponding to the eigenvalue A = 1/2
8

is exactly the space spanned by {a;:‘, s By Jr=k+1 8nd the eigenspace corre-

sponding to the eigevalue A = 1 is exactly the space spanned by {5‘%.7}.
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3.5 The linearizing conjugation

In order to prove that the Liouville vector field £ is smoothly conjugate
to its linear part, we shall use a linearization theorem due to G.Sell [13],
which extends the linearization theorem of Sternberg to the case of a vector
field with resonant eigenvalues.

We shall exploit the fact that the vector ¢ is Liouville , together with the
explicit algorithm that Sell’s Theorem provides to cdmpute a lower bound
for the order of smoothness of the conjugacy.

In the Darboux coordinate chart (U, 21, ..., Zn, ¥1, ..., ¥ ) about a singular
point gg , adapted to the strong unstable coisotropic foliation constructed in

§2 , the isotropic submanifold Q is given by
QNU ={y; = 0}?=1 N{zr = 0 s N{y- = 1) AN
the leaf through a point g in @ N U is given by
W.nU={pelU : z,(p) =zilq) i =1,....,k}

and all the coordinate functions vanish at the singular point go.
For each ¢ the integral curves of the vector field ¢ lw, satisfy the following
equation
() w = A(g)w + F(w,q)
where A(q) and F(w,q) depend smoothly on ¢ € Q N U and w € U, where
W = (Zp41y 00y Ty Y1y oy Yn ). Furthermore the matrix A(q) does not have zero

eigenvalues , that is, A(q) is hyperbolic. Because the eigenvalues are positive

A(q) is said to be unstable.
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In order to go further we need the following

Definition 3.5.1 A collection of non-zero eigenvalues is resonant if one of
them is an integral linear combination { with nonnegative coefficients whose
sum 13 at least two ) of the others,

t.e. Let Ay,...,An be a set of non-zero eigenvalues repeated with multi-
plicities and let m = (my, ...,mn) be nonnegative integers.

Define jm| = ¥ m; and v(X;,m) = X, — T m, ..

Then if a relation v(X;,m) = 0 holds for |m| > 2 the eigenvalues are

said 1o be in resonance , and |m| is called the order of resonance.

If (2%,...,2") are coordinates with respect to the basis (ey,...,ex), let

2™ stand for z7...z5".

Definition 3.5.2 The vector valued monomial z™e; is resonant if v(A;,m) =

0 and |m| > 2.

When A is hyperbolic, let 37 (A) denote those eigenvalues A of A with
ReX > 0 and 3.7(A) those with Rel < 0. If Y%(A) # @ where ¢ = + or —,

the spectral spread is defined to be

i _ maz{|Re)| : A€ T¥(A)}
T min{|Re) : A€ SHA)}

Definition 3.5.3 The r-smoothness of A is the largest integer K > 0 such : '

that

1.r—Kp=20,if Tt (A)=10

2.7r—Kpt2>0,if 5 (A) =10
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3. There exist positive numbers M,N withr =M +N , M — Kp* >0,
N—Kp 20ifTH(A)#0 and T~(4) £ 0.

Now suppose that the following condition holds for some integer r > 2.

(This is condition ”B” in [13] ).

DiF(go,q) =0 forO<j<r-1

(TI) and Rey(A,m) £0  forall A € ¥ A(q) = T* A(q) UL A(a),
t

kfor all m with |m| =r and for all ¢ € V neighborhood of go
Then Sell’s Theorem asserts that there is a C¥-smooth linearizing conju-
gation = z + ®(z, q) between (I) and 2 = A(g)z, where ® varies smoothly
in terms of the parameter ¢ , and is of class CX in z , where K is the

r-smoothness of 4(go).

Samovol (see [14]) proves a more general theorem which implies Sell’s
theorem, but we use Sell’s version because it describes the dependence of the
linearizing conjugation on the parameter set.

§in the situation we are considering , the eigenvalues of the Liouville
vector field £ (i.e. the eigenvalues of A(q) ) at the singular point ¢ satisfy
the integral relations

A= 1A, + 1),

where \; =1,i=1,.,kA, =X, =3,rs=k+1,..,n |

According to definition 3.5.2 , the possible resonant monomials in each
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fiber are

g o o
Iir LAt Ay ris g rYs T
( ) T 8y‘ ¥ y y 8y, b] T y ayl

for i=1,..,k;r,es=k+1,.,n

Recall that the linear part L(£) of the Liouville vector field £ is

k8 " 1 8 1 &
L(¢) =Zyia—%+ S (§3r§;:+§yrg§:)

=1 r=k+1

Thus

i i) il i

E=LE)+ Y B + 3 Fre
r=¥+1 (92:,. ; ayt

where for each ¢ = (zy,...,%;) the functions E,(g,-) ,Fi(q,-) vanish to

higher order than (X7, 2|2 + Ty [ye|?)*2.

Denote by £9 the restriction of £ to W,

Proposition 3.5.4 For each q the Teylor expansion of {7 contains no res-

onant quadratic terms.

Proof: The Taylor expansions of £7 fit together to give a Taylor expansion

of the vector field ¢ in terms of the coordinates y; ,2, ,%, ,% = 1,..,k ;

s=k+1,..n,with coeficients which are functions of the =;, 1 =1,..., k.
" It suffices to show that this expansion has no terms of the form (I17).

Notice that the vector field 7 = £ — L(£) is hamiltonian since
LAA=d((-L(£)2N)=0-0=0

Let H be a hamiltonian function for 5 (i.e. 71§ = dH)




If 7 (therefore £ ) had any resonant monomial , then the usual Taylor
expansion of the hamiltonian function H in terms of all the ¢;,3 would

contain nonzero terms of the type :

TiT,Ty 3 TiTeY, 5 TiYrY,

for1<i<k;k+1<s,r <n. Consequently  would also contain terms
of the type
& a o 8

z;r, y &L, y Tills or I:Y,

Oz, Oy, oz, Oy,

which is impossible since the functions E, and F; do not contain terms which
depend linearly on z, ory, , k+1 < s < n.

Note that for each leaf W, , the z; are constants and so are coefficients. O

€ Construction of the conjugacy

Proposition 3.5.4 implies that
DOF(QO:Q) = DIF(QO’ Q) =0

Hence condition (IT) holds for » = 2 at least.

Since the eigenvalues of A(gy) are 1 or 1/2, the spectral spread p*
equals 2. Thus , because ¥~ A(gy) = O the r-smoothness of A(go) is the
luéest integer K , K > 0, such that 2— K2 > 0. Thus K = 1. Hence Sell’s

theorem guarantees that the linearizing conjugation @ is at least of class C.

This completes the proof of Theorem 3.1.1.
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Chapter 4

4.1 The isotropic case

In this chapter we extend McDuff’s results to other special submanifolds
of a Kahler manifold, the isotropic ones.

As in Chapter 1 we assume that P is a cc;mplete, simply connected,
K#&hler manifold of dimension 2n with non-positive sectional curvature and
we denote the Kahler form by w. Now let @ be a totally geodesic isotropic

properly embedded k-dimensional submanifold . Our aim is to prove the

Theorem 4.1.1 (P, Q,w) is symplectomorphic to (R, R*,w,) , where wq is

the standard symplectic form on R™

This Theorem is a natural extension for the extreme cases proved by
McDuff when the dimension of @ is zero ( i.e. @ is a point ) and when the
dimension of @ isn (i.e. Qs lagfangian ).

We proceed as follows :

In §4.2 we construct a diffeomorphism @; which replaces the given

Kihler form by an equivalent form which arises from the Levi form of the
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distance function p to the submanifold Q.

In §4.3 we compute the 1-jet of the Liouville vector field £, defined by

We complete the proof, by showing that the symplectic form w, is dif-

feomorphic to the standard one in R?". We call this diffeomorphism ®,.

4.2 Construction of &,

We need a comparison theorem which estimates the Levi form of the
distance function from =z € P to @ , in terms of the original K&hler metric.
The arguments here are very similar to those in [9] .

Define p(z) = dist(z,Q) forzin P ,and let G,(X,Y) = —dJdp*(X,JY )=
the Levi form of the function p?, where J is the canonical almost complex

structure on TP . Denote by &G the Kahler metric on P . Then we have :
Lemma 4.2.1 There is a constant € > 0 such that G, > € G.

Proof: We will compare G, with the Levi form of r? on C* where r(z) =

dist(z,R*); z € C*, R* C C". Because G is a Kihler metric
G, (X,X)=D*p*(X,X)+ D*p*(JX,JX)

where D?p(X,Y) = X(Y f) — (VxY)f = Hessian of p*.
We also have D?*p? = 2[dp ® dp + p D?p] (see [4] ).

Let £ € P—Q and denote by 9 the gradient vector field of p with respect

to the metric G. Let X be a non-zero vector at z orthogonal to 8 . Then
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since Xp=10

D’p(X,8(z)) = —(Dx8)p =~ < Dx8,gradp >

- ——<Dxa,6>—_—_—-1§X<8,8>=0.

Thus the G—orthogonal direct sum P, = spand(z) ® 8 is also orthog-

onal with respect to the form D?p . Therefore because
D*(8,0) = 8(0p) — (Vad)p = (1) = 0 ,

it is enough to prove that there is a constant ¢ > 0 so that D?p(X,X) > ¢
for all X such that | X|g=1, and X 15 8.

Let b = p(z) . Then X is tangent to the level surface
S(d) = {y : p(y) = b}, and there is a curve { : (—a,a) — S(b) such that
¢(0) = X. Define a 1-parameter family of curves {7,} such that v, : [0,8] — P
and , is the unique normal geodesic from @ to S(b) such that +,(b) = ((s)
for all 5. These geodesics are all perpendicular to @ since dist(¢(s), Q) = b.

If we denote the Jacobi vector field along o by Wx(2)
Wa(t) = == ot
X = ds 2=07s

then Wx(b) = X and Wx(t) L 40(¢) for all . ( In particular ¥ = Wx(0) is
tangent to @).

Since the length function L(s) of {¥{s)} is constant , the second variation

formula gives




0=IL"0) = <VxX,% >-<VyY, %>

b . .
+j0 < Wx,Wx > — < R(Wx,40)Wx, 4 > dt

Now VyY is tangent to @ since @ is totally geodesic, and so

< VyY,% >= 0. Therefore, because of our assumption that
- < R(WX$ ;YU)WXV:)(O > geq 0$
~we have
b,
= <VxX, 50> 2> [ [Wxltdt
0

But
D’p(X,X)=X(Xp) - (VxX)p=— < VxX,0 >=~ < VyX,4 >,

where the second equality holds because Xp = 0 and the third because

Yo = 0 along 4. Thus
b,
D*p(X,X) 2 [ |Wxlfdt > 0
0

Sub-Lemﬁa : If X is a unit vector at = , which is perpendicular to &
and such that D?*p(X, X) < ¢/b where b = p(z), then [Wx(0)|| > 1— /€ and
|Wx(0) — Ux(0)]| < +/€, where Ux(t) is parallel translate of X along ~.

Proof: Let Yx(t) = Wx(t) ~ Ux(t). Then Y(t) = Wx(i), Yx(b) = 0,

and

|<Y,Y > |
Y1l

Yx ()i} = < ¥x| = [Wxl.

<
dt
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Therefore

O = | [ Evxae < [ 171de < 6 [ 1WxlPant < v

Thus [Wx(0)]] > 1 — /€ since ||Ux(t)|| =1, Vi. 0

Asin [9] , in order to complete the proof, it suffices to show that if X is
such that | X|| =1, X L 8 and X 1 J8, then at least one of D?p(X,X)
or D#p(JX,JX) is > ¢/b.

For suppose not. Then both D?p(X,X) and D*p(JX,JX) are < ¢/b.
The sub-lemma implies

(A) [Wx(0)] and ||[Wsx(0)| are both > 1 — /¢, and

| TWx(0) — Wix(0)|} < [[JWx(0) —JUx(0) + Usx(0) — Wix(0)]|

IA

[ TWx(0) — JUx(0}]| + [|Usx(0) — Wax(0)]

(B) 2/€

A

Now Wx(0) and W;x(0) are both tangent to @ by construction. On the
other hand JWx(0) is not tangent to Q ; suppose it were , then we would
have |Wx(0)|]* = w(JWx(0),Wx(0)) = 0 since @ is isotropic , therefore the

inequalities (A) and (B) are incompatible when ¢ is sufficiently small. 0

Thus G, is a Kéhler metric on P , tamed by J ; let us denote by

w, = —2dJdp? the corresponding Kahler forxp.
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We now prove the

Proposition 4.2.2 (P, Q,w) is symplectomorphic to (P,Q,w,).

Proof: We apply Moser’s Method to the one parameter family of 2-forms
7 = tw,+(1~t)w, 0 < t < 1, which are symplectic because they all tame J.
This method will provide a family of vector fields u; which integrates locally
to a family of maps &, : P — P such that ®;7, = w. Since P is non-compact,
the crucial step is to check that the u; are complete, i.e. that the ®, are dif-

feomorphisms. Then ®; will be the required symplectomorphism.

To begin with , we construct an explicit form # which vanishes on @
and is such that w, — w = df3.

Let S(vQ) denote the unit sphere bundle of @ and let ¢ : R* x S(vQ) —
P\ Q be the map (t,v,) — expy(tv,) , Po(ve) = ¢ which is a diffeomorphism.

Define 3 by

68 = [ #(01(w,~w))ds
Bo) = o

By the Cartan Homotopy Formula

4(46) = d(g:p) = d([ 610w, - w))ds)

= $1(w, ) - dilwp — ) = [ (0 1d(w, — w))ds
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But ¢f(w, — w) = 0 since @ is isotropic (¢jw = w|g = 0) and ¢jw, = 0 by
definition . Further d(w, — w) = 0. Thus , since ¢ is a diffeomorphism , we
have that w, —~w =df ( where 3=00n Q).

Solving the equation u, 17, = —8 we obtain a family of vector fields
u; , t € [0,1]. In order to prove that u; is complete we need to estimate the

size of . For this purpose write in polar coordinates on P\ Q :

Q=w,—w=drhaty

where a is a 1-form and 7 is a 2-form such that 8_1a = 0 and 8 _1y = 0.
By Lemma 4.2.1 since || X ||, > ¢€}|X|| we have that
t=flwllo= sup | (X,Y)[> sup |w(X,Y)| =€, l
1X11=(1Y||=1 X |l=y =2 N

Therefore ||wp|| < 215—, then ||| = ||lw, — w| < ~£—1,- +1

[€—vll= sup [(2—9)X, V)= sup |drAa(X,Y)
XY= |Y||=1 X |I=1Y |I=1 .

taking Y = 8 we get

sup |(X,8)] = sup [a(X)| = [la|.
lIXj=1 [IXll=1

It follows that ||| < {jw, — w|| < % + 1. Hence ||} is bounded.

Now for each v € S(¢Q) define the function _; |

fu(3) II(‘#:)*(U)HG

fi .

8

As in the proof of Rauch Comparison theorem the function

ORI

g?
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is increasing ( since f,(s) > 0 and this implies [f,(s)] > 0).

Now we are in a position to estimate the size of §

18U = 1 [ 62(0—1(w, — w))(w)ds|
< [ s - )@, (4).(0)llcds
= [ la((4@)lods

< [ Ooto)ds < O 1) = el )l

Thus ||8]] = O(r).
To finish the proof of the proposition , denote by || - ||; the norm given

by || X|If = 7(X,JX). Again by the Lemma 4.2.1 we have

[uelle < ffuelle = (Bl < [1Blle = O(r).

Because P is complete with respect to the metric G, the vector field u,

can be integrated to a family of diffeomorphisms ®, such that

dd,

E:uto@t, @(]Zid

Then as we expected $jw, = w because %T, =w, —w = df and

L1 =,dn+d(1,,7) =0+ du.Jdn) = —dB

imply

* ! d * ! * d
@lwp —w = [} E(Q’t‘ﬂ)dt = ‘/0 ‘I’t(-‘-ﬂ‘r‘ -+ CUth) = 0.




4.3 Construction of &,

§In this section we first compute the 1-jet of the Liouville vector field
£, at a point g € Q.
Let z; = z;+ iy; , § = 1,...,n be complex normal cocrdinates about

the point ¢ € @, chosen so that

ToQ = {Nj_y . Kerde;} n{N}_; Ker dy;},

i=1

To calculate the 1-jet of £, at ¢ define the function py near ¢ by
po(p) = Go-distance of ¢ from Qo = (E?:l y_;"' + 2k z?)'/? near g.
Let ¢ be the vector field given by the formula {_(dJdp}) = Jdp?. Then
0

(= Zy, Z +y’8,)

=1 2, 5h Oz,

and we want to show that J3({, = J}((). Since J7((£,),) depends on J3(p?)
‘we just have to show that p* and p} have the same 3-jet at ¢. This follows
if p = po + O(p}) near ¢, i.e. if p and pp have the same 2-jet. Since, if Gy
is the flat metric , we know that JJ(G) = J}(Go), where J¥ denotes the
k”‘—jef at ¢g. Because the Christoffel symbols I‘_f,-k depend on the 1-jet of the
metric, the geodesic equation Z; + I‘;k #;2), = 0 implies that the exponential
maps exp, : T,P — P corresponding to G and G, have the same 2-jet at
g. Because @) is totally geodesic , it is 2-tangent at ¢ to the submanifold
Qo = {v; = 033y N {zr = 0}7eiy-

Thus there is a local diffeomorphism A of P that takes @ into Qg and is
such that J:(h) = J2(Id). It follows that ¥ = ezpg o h, and g = expg, o by

have the same 2-jet at ¢. Thus J (¥.¢) = J;(+0.¢)
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But p(p) = G-dist of p from Q = h.G-dist of h{p) from h(Q) = Qo,
and if we define p by p(p) = Go-dist of h(p) from Qo it is not hard to check
using the above remarks that both p —  and p — po are O(p}).

Thus we just proved the

Proposition 4.3.1 The 1-jet of £, is

k 8 1 8
J (€) = Z(O:c,a +1y,8 )+ Z 2zra + 5y )

=1 k41

where ©; + 1y; , j = 1,...,n are complez normal coordinates about the point

q € Q, chosen so that

T,Q = {Nii Kerdz;} N {n}_ Ker dy;},

Remark 4.3.2 1. It follows from Theorem 3.1.1 Chapter 8 that {, is C*-

conjugate to its linear part.

2. Notice that in the normal complez coordinates on which we just com-

puted the 1-jet of £

k n
& W, = Zdwt A dy; + Z 2dz, A dy,
=1 r=k+1

only at the point q. Instead in the Darbour coordinates which we con-

structed on Chaptler 3 the equality ¢ holds on the whole neighborhood

U, of q.

ﬁ[Now consider in (R?", R*) the Liouville vector field

L8 1,8

k
. O LA |
(=St 3 st 3 Sy
= By L2 fz ity 2 dy
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for the standard symplectic form w, where
(coztery ey ez Y )8, = 1,0,k , 7,8 = k4+1,...,n are global Darboux

coordinates adapted to the foliation tangent to the Liouville vector field (.

Proposition 4.3.3 Any symplectic form w on R® for which the vector’ﬁeld

¢ s Liouville , is diffeomorphic to the standard symplectic form wy by a

diffeomorphism which is the identity on Qo = {y; = 2, = y, = 0} = R¥),

Proof: Let us denote by ¢, the flow generated by (. Let p be a point

with coordinates p = (..z'..,..37.., ..z"..,..5"*..). Then

$e(p) = (2., ey, B2, eFytL) (*)

Thus ¢, preserves each term dz* Adz? ,dz” Ady', etc. in the expresion of w

with respect to this coordinates , so that we can consider each of these terms

separately. Note also that because ( is Liouville for w its flow ¢, satisfies
$iw = e'w ()
We now claim:

1. The coeflicients of de* Ady? ; dz” Ady’® ; dz” Adz? ; dy” Ady® in w are
constant along the orbits of ¢;. Therefore since w|g = wg|g they equal |

those of wg.

Proof: By (*) we have that

¢i(ade’ Ady')(p) = a(du(p))de’ A d(e'y’)

= eta(qx(p))d:ﬂ" A dy?
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and (x*) implies ¢}(adz’ A dy?)(p) = e'a(p)dz’ A dy’. Thus the coef-
ficients in @ of the term dz* A dy’ are constant along the flow ¢, as

claimed.
Now consider a term of the form dz” A dy* . By (%) we have that

¢;(ade” Ady')(p) = a(¢;(p))d(et/*a") A d(et?y")

= ea(¢i(p))da’ A dy’

and (*) implies ¢}(adz” A dy*)(p) = e'a(p)dz" A dy’

Hence the coeflicients corresponding to dz™ A dy® are constant along

the flow ¢, . Similarly for the others. W

. The coefficients of dy* A dy’ ; dy’ A dz™ and dy? A dy° eqﬁal Zero.

Proof: Assume by contradiction that a term of the form dy’* A dy’ has

non-zero coefficients. Then by (*) we have

¢:(ady’ Ady')(p) = a(d)d(e'y’) A d(e'y)

= e®a(¢(p))dy’ A da”

but (**) implies ¢} (ady’ A dy')(p) = eta(p)dy’ A dy'

It follows that a(¢,(p)) = e ta(p), so that it blows up as ¢ goes to —oo.

Since ¢,(p) tends to a point of Q as ¢ goes to —oo, this is not allowed.

Therefore these coefficients must equal zero.
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Suppose now that the coefficients of dy’ A dz™ are different from zero.

Then by (*) we have

$i(ady’ Adz")(p) = o(d)d(e'y’) Ad(e?2")

= e%a(qﬁ:(p))dy" Adz'

but (x%) implies ¢;(ady’ A dz")(p) = e‘a(p)dy’ A dz".

It follows that a(¢,(p)) = e~*/2a(p) , so that it blows up as ¢ goes to
—~00. Since ¢,(p) tends to a point of @ as ¢t goes to —oo, this is not

allowed. Therefore these coefficients must equal zero.

Similarly for the coefficients of dy’ A dy* O

3. The coeflicients of d=* A dz” and of dz’ A dy* satisfy a{$:i(p)) = €'/*a(p)

and the ones corresponding to dz' A de? satisfy a(¢.(p)) = e*a(p).

Proof: by (*) we have

¢i(adz’ Ade™)(p) = a(i(p))dz’ A d(et/*z")

T )

form (**) we get ¢}(adz' A dz")(p) = e*a(p)dz’ A dz™. Thus a(¢,(p)) =

€*/2a(p). The calculations are analogous for the remaining terms. O
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Consequently we can write
w=wy + E A, dz' Adz" + E B, dz' Ady" + E C,'J-d:n‘. A dz?
where :

Ae($i(p) = e Au(p) =1,k

B (¢:(p)) = etlzBir(p) r=k+1,...,n

Cii(¢:(p)) = €'Ciy(p)
Recall that @ is assumed to be closed. An easy calculation shows that
w" = w§ so that w is always nondegenerate. In fact each 7, = wo+1(w —wy),
t € [0,1] also satisfies the equation 7* = wj. Thus we can apply Moser’s
method to the family of symplectic forms =, £ € [0,1].
If we take
1 » 1 i
B=((w-w)=3(35(2"Air + ¥ Bir))ds' = 3_Bidz
then 7, = w — w = dg.

Let

Y- Lo .8
we= 20 H V) + 2l g + Y 55

be the vector field that the method provides ( i.e. v;I7, = —f3)

From

~Y Budet = didy + [t{(—Aid" ~ BV — Cyja? + Cja?) - blda’

—(Abf — tA;ja")dm' + (a" + tB;,ai)dy’
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we get o' = 0 which implies a” = 5" = 0, Hence b = 8; and 8 = 0 on Q.
It remains to show that the u, is in effect complete. For this purpose , if
z = (2,47, 2",y*) we consider |z]| = max(|*],}y7], |z"|, ¥*|). By (*) we have
$-i(2) = (&, =%, e/7a7, e=/247) and by &

Air(z) = € Air($-4(2))

By (z) = € By (¢_4(2)).

Then

Bz) = > %(erir +y" Bi )(2)

> %(z"(z)Air(Z) +37(2)Bir(2))

1

= Z 5(3‘/2"5’(‘#’—:@))6‘/2*4#((¢—t(z)) + em?f((¢—t(z))et/23ir(¢—t(z)))

= & (e A+ VB )(6-u(2))

= &Bu$oi(2)

Consider the orbit z(t) = (z}, 47, 5, y3) of u; through 2(0) = (22,97, 27, 9°).

We claim that there are constants K; and K,, depending on the orbit, |

such that |B:(2(2))] < Kiliz|| + K, for all 2(t) = (zi,v],z],u2), where
K, = max || on points where |y/| < max(1,|zyf) and K; = max |8, on

the set § = {(mf,,yj,m',y‘) with |y?], |27], Jy7| < 1}.

Since u, involves only the %, if max ly| < max(1,|z}|) there is nothing

to prove. For any other point z(t) = (z},v{, 23,2 on the orbit,

12())]l = max; |y}] and for some 7 $_.(2(t)) = (ai,e™"vf, e~ /%], e="/%;)

belongs to the compact set §. Therefore |B,(¢_-(2(1))]| < Kqe™, V€= 1,..., k.




By hypothesis 35 € {1,..., K} such that ||z(¢)|| = |v{| > Wil for 1 <i <
k. We may take 7 to be such that e~"|y}| = 1, i.e. ¢.(z(t)) € S. Hence
=)l = 19} = €.

Therefore |53,(z)] £ K.||2(1)|] as required.

It follows that u, is complete. Therefore it can b e integrated to a
one-parameter family of diffeomorphisms 3, such that ;7 = wo.

Hence Yjw = w. O

{Since £, is the gradient of p* with respect to the metric G, then ¢, is

G ,-perpendicular to the level surfaces p =constant. By Lemma 4.2.1

1 1
el < léplle, = Il = 5Tde*le, < Il = 57dP%lle = plldplle = o

Therefore , because P is complete with respect to the metric G, £, integrates
up to a complete flow .

By Remark 4.3.2 ¢, is C'-conjugate to i.ts linear part (.

Because £, is complete this local conjugacy may be extended to a C'-
diffeomorphism from P to R**, which pushes {, forward to (. Note that this
diffeomorphism is C* on Q.

Then w, is pushed forward to a form w, for which { is a Liouville
field. By Proposition 4.3.3 w is diffeomorphic to wy by a diffeomorphism

preserving the linear subspace Q. Hence w, is symplectomorphic to wq by a

C!-diffeomorphism ¢ that takes the submanifold @ into the linear subspace
Qo-
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We now show that there exist a C*-diffeomorphism
&,: (P,Q,w,) — (R™,R* wp).

We can choose a diffeomorphism @ arbitrary close to p in the fine C*-
topology, i.e. given any function € = ¢(z) > 0 we can make |dp(z)—d@(z)| <
e(z) ( see [5] ). @ pushes forward w, to a symplectic form & on R*". Since ¢
is C* on Q @ can be chosen to be equal to ¢ on Q. There is an € = ¢(n)
such that ||& —wo|| < e for all z. Let 7, = wo+H@ —wo) , t € [0,1]. It follows
from a straight forward calculation that [7]" # 0 for all ¢ € [0,1]. Therefore
all the 7 are not degenerate. Hence we can apply Moser’s method to the
family of symplectic forms 7,.

If we take

. r(z) @9
B(z) :]0 = 1@ - wo))d,
where % is the radial vector field on R?>*. Then #, = @ — wg = df and if
€ < 1/2 then ||8(z)|| < ir(z).

Solving the equation u,_I7, = —0 we obtain a family of vector fields

u, , t € {0,1]. Then we have that u,_Jwy = f — (v (@ — wo). Therefore

luel = I8 — (we14& — wo)|

< 1B+ elluel} , V2 € [0,1).

Thus {1 — €)||luel| < ||8]l, this implies that [lu.]] < (2)IBI < 2||B]} since
€ <1/2. Hence ||u;|| = O(r). Consequently the vector field u, that Moser’s

method provides is complete, thus it can be integrated to a family of diffeo-

morphisms ¥, such that ¥} 7 = we.
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Let &, = 1;! 0 ¢. Since plg = @|g , ¢ takes Q into the linear subspace
Qo. It is easy to check that the family of vector fields u, is tangent to @y = R*,

therefore each 1), takes Qg intoitself. Hence &, is a C*-diffeomorphism which

pushes forward w, into wy and takes the isotropic submanifold @ into the

linear subspace Q.

This completes the proof of Theorem 4.1.1.
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