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Abstract of the Dissertation

h-Cobordisms over certain nonpositively curved spaces
by
Bizhong Hu
Doctor of Philosophy
in
Départment of Mathematics
State University of New York at Stony Brook

1989

We prove in particular that for a compact riemannian
space with K £ 0 such that there is no totally geodesic
IR x [a, b} immersed in it, the Whitehead group of its
fundamental group is zero. To do so we use the ordinary
control theory and the foliated version, an analysis of

periodic geodesics in a space with K £ 0, and the weakly
Anosov phenomenon.
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1. Introduction

Suppose W is a compact c & manifold with
boundaries M and N such that MCy W and NC9y W are
homotopy equivalences, i.e., W is an h-cobordism.
Suppose dim(M) 3 5. Then there is unique obstruction
T + called Whitehead torsion, for W being a
product, ¢ & Wh(["), "= w;(M), where wh(T] ) is the
Whitehead group. 1In fact any element of Wh([') is
the Whitehead torsion of an h-cobordism. This is
the handle-moving theory of S. Smale androthers,
leading to the solution of the higher Poincaré
conjectu;e. It is a conjecture that for any compact
aspherical manifold, the Whitehead group of the h
fundamental group is zero. Wh([ ) is in general
hard to compute. But if all h-cobordisms over M are
products, Wh{(l") is zeré. Another theory, called
control theory, has been available, which measures
h—cobbrdisms by real numbers and tells when an
h-cobordism is product. A theory along these lines
is developed by T. Farrell and L. Jones in [ FJ1 ).
They suppose M is a riemannian space with K < 0 and

use the geodesic flow which is Anosov to change W
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~and then apply their foliated control theory to

conclude that W has a pruduct structure. So for any
compact riemannian space with K < 0, M, whil") = 0,

U o= mm.

Our general purpose is to use the above theory
and use sharper tools developed by Gromov in [Gl] to
say something about the Whitehead groups of hygerbolic
groups and this paper is a step in that direction.

The paper contains the following results.

1.1. Theorem. If M is a compact riemannian
space with K £ 0 such that there is no totally
geodesic [R x {a, b] immersed in M, then Wh(l) =0,

r= “'|(M)-

1.2. Corollary. Suppose-M is as above and
co
dim(M) > 5. Then for any compact C manifold N

h-cobordant to M, N is diffeomorphic to M.

We will work on a more general geometric model,
i.e., we will consider a compact topological manifold

with a "K ¢ 0" geometric structure. The concept of

"space with K ¢ 0" is defined by M. Gromov by taking




out several properties of riemannian space with
K & 0 as axioms. This concept becomes important
after he presents several kinds of examples and the

meaning of "K ¢ 0" in PL geometry. See 4.1 for
D)

definition.

1.3. Theorem. Suppose M is a compact manifold

with a K ¢ 0 geometric structure suth that there is
no totally geodesic IR % [a, D] immerséd in M.
Assume the geodesic flow has a transversal PL or C
structure, or assume that 3.4 is true. Then

wh([ ) =0, = mw(n.

1.4. Corollary. Suppose M is as above and

dim(M} » 5. Then for any compact manifold N

h-cobordant to M, N is homeomorphic to M.

1.5. Remarks.

(1). By [Gl], if a compact space with K ¢ 0 has no
immersed totally geodesic tRa, its fundamental group is

hyperbolic. 1In particular, the [ of 1.1 or 1.3 is a

hyperbolic group.




(2). For a compact space with K $ 0 and with hyperbolic

fundamental group [', its geodesic flow as a foliation
is precisely Gromov's flow G(I") in [Gl] if and only if

there is no totally geodesic R x {a, b] immersed in it.

(3). The additional assumption in 1.3 is unnecessary

if the following is true.

True or not: If A, ,~*+ Ay are submanifolds in R"

containing the point 0, then there is set Ac ®"
seperating 0 andr°° such that A is covered by finitely
many compact submanifolds of dimensions § n-1 and that
for 15 ig k, AN A§ i% covered by finitely many compact

submanifolds of dimensions ¢ dim(Ai) - 1.

$
(4). There is a way to get stronger results.r The method

is explained in detail in [ FJI ]. Suppose M and I are

as in 1.1 or 1.3. Inétead of considering M, we can

congsider M x Ss, getting rid of the dimension restriction

in the control theory. If consider M x Ssx Tu;

k =0, 1, 2,*** , we can imply that

Whilr @ ﬁa Z})=20,%k=20,1, 2,-'* ,

which then imply the following vanishing of algebraic

K-groups:




~~

(o ZT) = 0 k= 0ty 2o

Hef¢ ié5an outline of the paper. Chpater 2
describes.tﬁé brdinary control theory and chapter 3 the
foliated Qéf§i§ﬁ. 'Chapterr4 contains the definition of
space with'g7$;p, an analysis of periodic geodesics,
PresentatibﬁﬁSfiézphenomenon that will lead to the weéle

Anosov phemamenon, and the construction of crossing R.

'Chaptel 5 contalns the study of the collection of all

geodesics as a’ space, and the weakly Anosov flow. Chapter

containg the asymptotic lifting of an h~cobordism over a
space with K <'0} Ehé decomposition of the geodesic flow
of a space with K 0 crossed by R, a dynamical behavior

in a weakly Anosov flow, and the proof of theorems 1.1

and 1.3.
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2}ffﬁiéontroled h-cobordism theorem

'Supp6§é ﬁ;is a manifold with two boundaries M and N,
and supp'o’s'é:;i}'t_h_é: inclusions M¢c— W, N> W are homotopy
equivalendésQf}Then there are
W-—JE-% W, 0 tgl,

W"-——-——"’WI_ 0 ét é 11
strong deformations of W to M and to N. Set WwZLILQM.
Also suppose Ehathéverything is trivial outside a compact

set of M. 'Thaffis; there must be compact set A< M such

that

o~ (Mon) = (H-AY x [0, 1],
(-a) x [0, 1] EIMXOBI a0, 11,
(n-n) x [0, 1] JAZIRIRROCRIL )y o, 1y

W is called an h?cbbofdism. The following curves in M are
called associated cur&es of the h-cobordism:
pe px(x), 0 gtgl, x&ewW,
poq‘t(x), 0 ¢ tgl, xe W

Suppose BC M, B x [0, 1]—j1—+ W is an embedding such
that |
id,

Plaxp
P(B x 1)< N,

.
pl{e x (0, )& w.




P is called a product structure for W over B. The

following curves in M are called associated curves of the
product structure:
ple(x, t)) , 0 ¢t g1, x eB.

Let d denote a metric of M. The maximum of the diameters
of associated curves of W is called the diameter_of W. In
the same way we have the diameter of P. The foliowing
theorem belongs to Chapman, Ferry and Quinn. Refef to for

exaﬁple [CF]

2.1. Theoren.

(1). Suppose M is a manifold, dim(M) 3 5, d is a
metric on M, A, B& M both compact, U is a neighborhood of
B inVM. Then given £ > 0, there is &> 0 such that the
following is true. For any h-cobordism W over M, with
product structure P over A and diam(w) ¢ § , diam(P) g § ,
there is a product structure Q for w over A ¥ B such that
Q [p-u = Pr diam(Q) ¢ & .

(2). Suppose E-_11_9M is a fiber bundle, dim(E) 3 5,
the fiber F is a compact manifold such that
Whi ™ (F)® @z 1 =0, k=0, 1, 2,

Substitute A,Rﬁ, U by '(a), w'(B), w'(U), consider

h-cobordisms over E, measure diameters in M. Then (1) is

still true.




3. a fhijated control theorem

3.1. Deflnltlon Suppose M is a manifold with a

1 - dlmen51ona1 follatlon structure and a metric. &(t),

0 ¢t ¢glis a curvealn M. 2 and a are p051t1ve

numbers and I 1s a leaf segment of the foliation suth that
length{I <.Qandd{o¢(t),1]5a,0$t.gl. Then we
say that the curve has dlameter g (Q . If there is a
collection of curves such that every curve has dlameter R
(ﬂ, a}, then we say’ that the collectlon has diameter ¢
(), a). 1f w is an h- cobordlsm and P is a product fot W,

then their diameters are those of their respectlve

associated curves.

3.2. Definition. Suppose M is a n-manifold with a

l-dimensional foliation structure. A split open set in M
by definition is an-open set in M split into product

R x ® M such that every fiber x x R, x & R" is
~contained in a single leaf of the foliation. If M is
covered by split open sets | Er; muufiffﬂ } such

that for any ‘ﬁ‘_( IRMx R ) n <P,-( ar-’xrR )+ ¢,

induced homeomorphism between open sets of rR“d,

U-jii)v is PL, then the foliation is said to have a




transverééi,bﬂ? tructure. Transversal ¢°° structure

is deflned 1n the same way.

The fbiiéﬁiﬁégﬁheorem belongs to Farrell and Jones.

We refer thé-féé'éf;EoA[FJlj for a proof.

M is a n-manifeold with a

metric and’ a 1 dlmensional foliation structure.

Suppose the follatlon has?a transversal PL or C ™
structure. W 15”an]_—cobordlsm over M w1th diameter

Q a). A M.lS a compact set such that any leaf

intersecting A has length S'C Q :Then W has a product

P over A with dlameter (HC Q b - Where C = C{n)
depends only on n, b”dOesjnpt depend on W, and

lim b = 0.

a0

3.4. Conjecture. 3.3 is true without assuming

that the foliation has a transvefsal PL or C°°

structure.




4. Spaces with K ¢ 0

4.1.1. pefinition. Let M be a topological

SRR

manifold. Suppose for each curve o in M there is
number L{ o) such that L{of} 3 0, L(&X ) = 0 oﬁly
when o is a point, L(®) = L(a'), and L{d *@8) =
L{A) + L{B). Then call M with L a length space.
Define distance as the minimum of lengths to get a
metric of M. A geodesic ig a local isometry

R— M. We will assume that the following are true.
Any two points can be joined by a geodesic realizing
distance. For any x & M, £> 0 small, the

£ - neighborhood is'homeomorphic to E®. Any geodesic
segment can be extended in a unique way. Note:

this last assumption is not made in the definition
by Gromov, it can be violated in PL geometry, but

we need it here.

4.1.2. pefinition. A triangle in a length

space is composed of three points and three geodesic

segments connecting them. We express a triangle

10




by & = ( x, xé;fx; ), or, more precisely,

A= (X, Xy, Xy, s s ohe )

where ( x\, x,, X3 ) are three points,

(&, oy, o) are,unoriented geodesic segments
connecting x, and x3, X3 and xy , X, andrxa

" Denote |A&| = { L(e), L{ef), Lieg) ).

Two triangles & and Er in two length spaces are

eguivalent if A | = |A .

4.1.3, Definition. Suppose 4 and A are

equivalent triangles in length spaces M and N . We
say that A is thinner than 'Z if the following is

always true.

o e

4.1.4. pefinition. Denote the simply connected

2 - riemannian space of constant curvature K & C ¢ 0
by H. Suppose M is a length space such that any

small triangle in M is thinner than its equivalent

triangle in 4, then M is said to be a space with

11




ie2

K ¢ C. Call a simply connected space with K £ 0 a

Hadamard space.

4.1.5, Theorem. Suppose X is a Hadamard space.

Then for any two geodesics ol(t) and B (t),

£(t) = d [ o (t), @ (t) 1, t€ R, is convex. See [Gl].

4.1.6. Remarks. For a Hadamard space X, any

geodesic MR—-——3 X is an isometry, two points can be
joined by a unique geodesic. These are seen by 4.1.5,
Two geodesics &£ (t) and B(t) are said to be
asymptotic if d [ & (t), .% (t) 1, t 3 0 is bounded.
For any geodesic and any point, there is unigque
geodesic from the point which is asymptotic to the
geodésic given. The existance can be proved

directly and the uniqﬁeness by 4.1.5. Asymptotic
relation is an equivalence relation. Equivalent
classes form JX. X =Xu 0X. For any x ¢ X, define
Z.x as the collectior:of sets in X each of which
containsg a_neighborhood of x in X. For any z € 3X,
take x € X, vy € Sx(l) is the point between x and z,

take a neighborhood § of y in Sx(1), consider those

those geodesic rays from x through s, take a set A

in X containing all of them, define ZZ== { A }. The




following are true for { Z, , xeX }.

(1). A€3y =%  x€A. |

(2). A, BE€3, = ANBE Ix

(3). AC B, A€y =y Be&Zx.

(4). M Ae3y, IUC A, Ualx, ¥yeU, UeZy.

That (2) is true for a point in X requires a proof,
which can be done with the help of 4.1.5. We get a
topoiogy to X such that the above sets are all
neighborhoods. One‘can show that for any x € X, £€> 0,

the E, (€) is naturally homeomorphic to X.

4.1.7. Proposition. Suppose X is a Hadamard space,

o(i(t); i =1, 2,~++ , o(t) are geodesics, then

oti(t)..—_.) o« (t) pointwise if and only if qi(O)-—)o{(O)

and o, (+00) —» X (+00),

The proof is done with 4.1.5, 4.1.6 and the

following picture.

13
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4.2.1. Lemma. Suppose X is a Hadamard space. &

and % are geodesics such that d for(t), B(t) ], te m
is bounded. Then & and @ span a totally geodesic erx [a,b].
Proof. Here is a proof by the follo&ing five steps,
where both 4.1.4 and 4.1.5 are used.
{1). Denote a=4d (Ime&, Im% ), then there is
parameterization such that d [ e{(t), Bi(t) 1 =a, t€ m.

Hint:

s [d

oA

g

S

f
-
g

Compare d ¢ and d, .

(2). Denote the unit speed geodesic from ot (t) to

% (t) as H(t, s), tE‘tR, s & [0, a]. Then for any

s & [0, a], H(t, 8), t € R is a geodesic. Hint:

o
—— ~¥
5
- > ¥

Consider the geodesic ¥ .

(3). Consider any geodesic segment ¥ from a point in

dtooneing.
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1
~— > B

Denote the following triangle as &
'—\q N
a c |

Then A is equivalent to the following triangle Z in IRZ.

am
b

Furthermcore, the following two geodesic segments £ and &

form a geodesic segment €U S and L(&) = L(&8).

- B
(4 = a2 4+ p?

(5). The middle point of ¥ is in H. In fact the

whole & is in H. We are done.

Suppose M is a space with K { 0. X ——3X/p = M is
the universal covering. If e (t), 0 ¢ t ¢ 1 is a closed

¢ 1 is a lifting , from x to'

curve at x in M, & (t), 0 g t <

f(x), where f € " , then

is a lifting of \.zJot . Now suppose A (t), t€ R is a
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e

periodic geodesic at x, with period a, &{(t), 0 ¢ t & a
is a lifting of &{t), 0 ¢ t < a, from x to f(x), fel,

then

+ 00
o &)

R=-00

is a lifting of of(t), t€é R, in particular, it must be a

geodesic in X. If X (t), 0 g t ¢ 1 and @(t), 0 g t ¢ 1
are closed curves in M, H is a homotopy from o to Q . "
is a lifting of H, a homotopy from & {t), © S tg1to

R (t), 0& t ¢ 1, then there is unique £ & T" such that
+oe T ko

“oo P (R )
R= -
is a homotopy between the following two curves:

—b:; R o~ -ET’ R

ReZo £ (&) o QWY £ (F)

Now suppose ®(t),t€é IR and B(t), t € IR are periodic
geodesics in M,with periods a and b, that are homotopic,
with of(0) going aleong curve & to B(0), L(¥) = L. The
above discussions indicate that there are liftiﬁgs ;atﬂ

and B(t) of o(t) and B(t), £€T , £a(t) = & (t+a),
£B(t) = Blteb), tew, a [&(0), B(0) ] =dg¢ L.

o R, o —

— 7
do de

v —_— N 'E’

© R b
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This means that a = b, And then d [sr(t),?f(t) ], t& W
is bounded. By 4.2.1, & and ?f'bound a totally geodesic
B x [0, ﬁ] c 'X. We may assume that «(t) = (t, 0),

L

g (L) = (t,,Q), t& fR. One can show that

f(t, s8) = (t+a, s). We have porved the following fact.

4.2.2. Proposgition. Suppose M is a space with K 0.

<

o/ (t), 0. g t g aand Bit), 0 & t g b are homotopic
pericdic geodesics. Then a = b, & and @ span a totally

geodesic S'(aj x [0, Q].

Suppose M is a space with K ¢ 0. X~—=X/r = M is the
universal covering. o and ﬂ are closed curves at x
and at y in M. Suppose & and ?r are liftings of
and P , from X to f(X) and ¥ to f(?)', where £ €T . Take
a curve EF from §'to'§1 Downstairs we have curve ¥ from x
to vy. &.IUEU?U-&?‘ is a closed curve in X, which is
simply connected, and thus can be extended. Go back to M
and we get a homotopy from & to p , with x going along ¥
to y. Now consider a connected set A € M over which the
universal covering is trivial, the collection [0 A is

discrete., Also consider a constant C. Remember that in X

any two points are joined by a unigque geodesic segment

realizing distance. We see the following is true.




4.2.3. Proposition. Suppose M is a space with K

< 0,
AC M is a connected set over which the universal covering
is triﬁial, and C is a constant. Then the following is a

finite get:

iﬂomotopy classes of periodic geodesics which interset

A and have perieds g C }

4.2.4. Corollary. Suppose M is a compact space with

K

& 0 such that there is no totally geodesic s'(a) x [0, Q}

immersed in M. Then for any constant C, the fellowing is

a finite set:

{ Periodic geodesics with periods $Ct.

Suppose X is a Hadamard space. Recall the Busgemann

fundtion B = B{&, x), where & shoﬁld be a geodesic and

X € X.

0 B

I
D

L =t + B+ ¢&, lim
x R

18
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Here is a proof that the Busemann is continuous.
Suppose X is a topological space, X-—j;?R is a map,¥x & X,
£ > 0, there is a neighborhood U of x such that
¢ f(x) + &, then say that £ is (+)-continuous.

$
: : (%,%X) .
Suppose X is a topological space, IR X X w———R 1S 3

f(u)

continuous map, when t—+00 , £(t, x) monotonically

decreases to a finite number, x & X, then lim £(t, x) is
. . A= t00

(+)-continuous. Proof left to the reader. Now suppose

X is a Hadamard space. We have the Busemann function

ankxx_ B(x, 2 ¥) 5 IR,

Y
Lix,x,2,4)

x — &

L{t,x,2,y) = t + B(x,z,y) + , lim = 0,

Y v & tafwe'

In fact we know that when te——p +00 , L(t,x,2,y) - t
monotonically decreases to B(x,z,y). So B{x,z,y) is

(+)-continuous. But we have the following relation

B(x,z,y) = - Bly,z,x).

So - B(x,z,y) is also {+)-continuous. 8o B{x,z,y) is

- continuous.
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4.3.1. Theorem. Suppose X is a Hadamard space, &

and E are asymptotic geodesics such that d (Im&, Dnﬁ ) = 0.

Then

lim d { &(t), Bt + B(o, (0)) ]} = 0.




4.3.2. Corollary. 1In 4.3.1, with parameterization

by horospheres, i.e., levels of the Busemann function,

lim d [ef(t), B(t)]} = 0.
A4 00 ?

4.3.3. Theorem. Suppose X is a Hadamard space

such tﬁat there is compact set whose isometric

transitions cover the whole X, and that theré is no

totally geodesic rﬁ x la, bl in X. Then for any two

asymptotic geodesics & and B , d (Imed, Imﬂ) = 0.
Procf. The idea of the following proof comes

from [EO]., 4.13.7 .
First, take any geodesic o (t). Take {(tp, k€é N)CIR

such that k&):’;mw th. = +po. Take for each k 3 1 fh ,

an isometry of X such that { th((tk ), k %1} is in a

compact set. We may assume that fhﬂ(tk)-—-—-)x. We

may also assume that £ & (+00)=—=y z, That is , by

R
.4.1.7, the geodesics fktX(t + tr ). k 3.1, convergence
pointwise to a geodesic &(t).- |

Now suppose & and p are geodesics such that
ad [&(t), P(t)] < G, t 3 0. We may assume tha£ there
are (tk » k5 1 CQ R, th—-)+w, igometries

~
(f"~ r k3 1) of X, _and geodesics & {t) and ’}; {(t)

such that

21
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A
pim fpe(t v tp) = (1),
. ~

Since for any t& IR, when k is large, we have

s ¢

dl fp & (t +'th), f o (t + tp) ]

we must also have

~ ~
dl e(t), PBI(t) 1&C te iR,

fal
By this result, lemma 4.2.1, and our hypothesis,

up to parameterization. We may suppose that &(t)
t & l'R Since
d bl ol(eg), Bltp) 1 =d [£pa(ty), £, plty) I,

. A I~

lim d[“(th), P(th) ]=d[o((0),P(0)]=0-_

% —3+00
This completes the proof.

4.4

Suppose M is a riemannian space, R——3R is a
positive ¢ ® function. Then M X iR can be given
riemannian structure'f(t.jzdsz + dta. The sectional
curvéture can be figured out explicitly.Computations are
left to the reader. Denote the direction of R in M x IR

by ¥ . If Z is a plane of M with curvature K, then in 3

M xR,

K (3 { ¥ e
= ey B~ - )

(2) = 938 - ()

If $

IRX + RY , where X is a vector of M, then
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R{ ) =- £/ ¢,
In general, if ¥ is a plane with basis (X + ay) and Y,
where X and Y are linearly indepeﬁdent vectors of M, with

curvature K, then

+* x4 Ly - 4

K Z): - o || | 2 2 | —
( £21x1% 4 a? fi 7 %" o+ a £
_ +* L .
4.4.1, Corollary. Let f£{(t}) = (e + e }/2 . Consider
S 1 2 % 2 ’
IR x IR with f(t) ds + dt .
ForlRax R, KL 0, a -~ 2
e -

2
For iR x ((-®, - ajYfa, +0@)}), a > 0, K § —-|{*—————].

Suppose X is a Hadamard space. E£(t) = (e + e )/2 .
Consider X x (R. For any curve in X x R, of(t) x P (t),
0.t g1, define its length by the following formula,

which can be understood as the maximum of discrete sums.

Y J{f[ﬁ(t)l_}"—ioc‘(t)1"+ | p'(e)®  at.
o

4,4.2, Proposition.
(1). X xR is a Hadamard space.

(2). X x ((-&, - al] la, +e0)), a > 0, is a space with
: o -0y 2
o - ()
e+ g%
(3), X =X x 0 C X xR is totally geodesic.

(4). x x R is a geodesic, *x & X.
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(5). For any isometry ¢-of X, g x Id is isometry.

(6). If o xﬁ is geodesic of X xR, In®™ must be geodesic
of X.

(7). For any geodesic ol of X, of{x R is totally geodesic
and is isometric to the standard in.

Proof. Proofs of (3)~—(7) are direct and left to
the reader. We will use 4.1.4 to prove (1) and (2). Here
is the trick to do so: We try to compare X x JR witthzx IR
and find that X x IR is in some sense more negatively.
curved thathleR. Details are in the next lemma 4.4.3.
NowlexiR is riemannian and, by 4.4.1, satisfies (1) and

{2). B0 X x IR satisfies (1} and (2}. Done.

Suppose X is a Hadamard space. We try to compare
X xR withtR?xiR; First, suppose (x x a, y X b} is‘a
geodesic segment in X x IR, (x, y) is the geodesic segment
in X;.take a geodesic segment (?ﬁ 3;) in!Rz such that

d(x,y) = d(X, ?3, then we get a geodesic segment

(';x a, 3" x b) in lex IR, Since d(x, y) = d(?c', ';), there
is natural isometry (x, y)__fz_g(QT ?3, we get an isometry
o x1d

(X, ¥) X R =———r—3(x, y)XR.In particular,

Pl

d(x x a, vy x b) = d{(x x a,'§'x b).
Second, we show that in R x IR, and thus in any X x R,

d(x x a, y x b) increases when d{(x, y) increases, Suppose
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X X a, y x b, XoX 2, yox b are four points in R x R,
d(Xg, Vo) = dgg d = d(x, y). Suppose ol(t) xﬁ (t),

0 K t &1 is a geodesic from x x a to y x b, after a new

parameterization,we may suppose that | o&’{t)| =d, 0 g tg 1.
Take a curve o(o(t)' 0L t &l from Xp to Yo+ with
| & (t)] = dg, 0.5 t <1, then og(t) xB(t), 0.g t ¢ 1 is
a curve from x,x a to yax-b. -
1 2
dx x a, y x 0 =V e paniats  glo®  at,
o]
d b tSI j_f € "'dz' f(ey1E at
(Xoxa.yox )—o {[P()]}-O+IP()| ’

dgg d.

< d(x x a, y x b).

Tbat is d(xox a, YOX k) RS

Third, remember that any triangle in X is thinner than
its equivalent in R® With these three points, we see the

following is true.

4.4.3. Lemma. Suppose X is a Hadamard space. Take

~any triangle A = (x xa, y x b, z x ‘c) in X x IR.

Qp = (x, y, 2) is the triangle in X. Take a triangle

2‘0 = (3T ) ian&equivalent to Ap . We get a triangle
—~ 2
Z =(xxa,'§'xb,?x o) ianlle. In factAandZare

equivalent and A is thinner than 7 .

i
|
|
|
|
|
|
|
|
|
|
)
]
i
i
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4.5.1. Lemma.

{1). H denotes the simply connected 2-riemannian
s'pace of constanf curvature K ®= C g 0. For any
(B, d) &1 x [0, +060 ), there is a pair of geodesics
(&, p ) in M, unigue up to isometries, such that
(¢, B(0)) = B and d[ & (0), (o)1 = 4.

(2). Suppose IR—-?-)_IR is a continuous map such that

t-‘]iitinw Lx—”‘t) =B, d& [0, +O0 ). Consider the
following in 4.
Oa
d La

0 ANy
ba
Then, when & - + 00, ﬁé_—)p + P is a geodesic, ot and
g are asymptotic, B(of, ﬁ(O)) = B, d{OC(O),ﬁ(O)] = d.
(3). Suppose X is a simply connected space with
K g C. of(t) and p (t) are asymptotic geodesics in X,
o( (t) and P (t) are asymptotic geodesics in JH such that

Blel, B(0)) - B(&, F(0)), digt (0), B (0)1= Al & (0), B (011,

Then

. i
diee (t), B (£)] 3 dlal(t , BN, tg oo,
dlet(t), B(t)] g'd{&‘(t),?‘(t)], t 0.
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Suppose X is a Hadamard space, ¥(t) =e(t) xﬁ(t),
t € IR is a gebdesic in ¥ x IR, with arbitrary parameterizatiqn.
By 4.4.2, d(t) t&€ IR is a geodesic in X, X is totally
geodesic in X x R,
dl (t), ol(t)] = | B(t)]

X x IR is totally gecodesic in X x IR and is le. We conclude

daf D’(t)r X} = dl a'(t)r Imbl].- te‘Rr

that B(+©0) = 0, L @0 . By these facts, 4.4.2.(2) and

4.5.1, we see that the following is true.

4.5.2. Theorem. If X is a Hadamard space such that any

two asymptotic geodesics have zero distance as sets, then

X x IR has the same property.




5. The space of geodesics

5.1. pefinition. Suppose X is a Hadamard space. Define

G(X) = { R——PX isometry }. The following metric to G{X)
appears in [Gl} , 8.3.

aL L TPV

-+ 00
A, B) = § alet(t), g(t)]- e
We will call this the geodesic metric. IR naturally acts
,on‘GtX), defining the geodesic flow. For a geodesicek(t},
T & IR, the action produces a geodesic O&{(t + € ). The

distance between these two geodesics is 2|1 i.

5.2. Consider two geodesics o and ﬂ in a Hadamard space.

0 % P

—0 x\ﬁ '

We have the following :

dle((0), (o)) - 21t] g aretit), B (t)) g Al (0), B(0)] + 2]t

5.3. As a consequence of 5.2,

2d[ & (0), o£(0)] = 4 g d(e,B) g 2d[%(0), B (0)] + 4.

5.4. 5till consider 5.2. We compute as follows.

28
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i
0 3

f

AR -12]
yoarolct), Bit)le Tat
- o ’

da
-1t
3°) ale(t), B(t)lie b e
o
ta .
;33 (a - 2/3 a)-e % gt
[+ ]

1/3 a+(1 - e 2 ] .

In fact the following is also true.

+ -5 -1t
5 dl & (t), P(t)]-e 14 dt 3 1/3 a+(1 - e? j.oe ! .
- 0o

5.5. Theorem. The obviocus 1-1 correspondence

G(X)&—¥% x9X is a homeomorphism.'
Proof. It is enough to show that for two sequences

of geodesics {Of(t)} and {?‘.(t)}, i',-l-)ii-noo dlef(t), ﬁi(t)] =0,
t & YR, if and only if lim d(o{;, @.) = 0. See 4.1.7.
iy Al

First,
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‘ - -
e/jq"). e el

d(o(i, i) % 173 aiv(l -~ r by 5.4, This formula

shows that if lim d(ef, B.) = 0, then 1lim a.= 0, TER.
£+ o v Q" i—ytoo ¢ Y
On the other hand, suppose 1lim dlet.(t), F,(t)] = 0,
i+ v
t & IR. Then ii.iyfoad[ui(o)' Fi(O)] = 0, and hence
d{o/;(0), B.(0)] g ¢, ¥i.
d[o(i(t), gi(t” S C+ 2)t], té IR, by 5.2.
+ -1#]
5 (C + 2ft])e dt < + po .
- 00 '

According to the Lebesque theorem in integration theory,

~+ 00 -iM
lim dlerlt), $.(t))-e dt
{=y+00 } ¥
-0 .
+00 , -{k
={ lim dlog(t), ?s(t)]-e ” dt
- O e k-] )

= 0.

™ . . :
5.6. Suppose X—aX/"= M is a universal covering
~of manifolds. Suppose also that X has a metric d
such that elements of [ are all isometries.

Consider d(fx, Ty} for x, y & X. One sees that this

is a metric for M. 1In fact for x, vy& X, d(fx,T"y) is




reached, because d(Tx, Ty) = d(x,{y), Ty is discrete.
X—>»M is local isometry. 1In fact for any x & X,

there is open neighborhood U of x so that

d(u, fu) > -diam(U), -;Vf € ["- e, and thus U—9Tr({U) is

isometry.

< 0. Define

5.7. Suppose M is a space with K K3

G(M) = { IR—>M local isometry }. Suppose X-—#X/r'=M
is the univeral covering. 5.5 indicates that
G(X)——%G(X)/r.= G(M) is a universal covering. Since
G(X) has the geodesic metric, for which elements of
[T are obviously isometries, we get a metric for G(ﬂ)

by 5.6. We call this the geodesic metric of G(M).

0.

<

5.8. Corollary. Suppose M is a space with K
Consider G(M) with the geodesic metric. IR naturally
acts on G(M), defining the geodesic flow. G(M)=y M

- -]
is a fiber bundle with fiber 8", n = dim(M).

5.9. Corollary. Suppose M is a space with K < 0

and X is the universal covering. of(t), ﬂ(t) are
F o — .
geodesics in M and o (%), F(t) are liftings of of(t),

B (t). Then d(¥,B ) g died, B

31
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5.10. Proposition. Suppose M is a space with

K< 0. o(t), P(t) are geodesics. Then
2 dlet(0), B(0)] - 4 < dlo, B) ¢ 2 dle(0), B(O)] + 4.
Proof. Let X—3 M be the universal covering.

~ ~ -
Take liftings o{{t), B(t) of of(t), pit), such that

dqer, ) = d(&',?’). By 5.3,

s -~ ~r ~
Zd[d(o):ﬁ(o)]‘—ﬁléd(d,ﬁ).
Note that dl%(0), f(0)) £ dIZ(0), F(0)]. so

2 d{e(0), B(0)] - 4 & dlet, ).

S
L

On the other hand, take ‘liftings & (t), ?f(t)
of ®(t), B(t), such that d(o(0), B(O)] - d{i’(m,?(on.
By 5.3,
AUk, B) ¢ 2 arko),
By 5.9, d(ef, B) ¢ d(&, B). So

d(et, ) < 2 Ala(0), B(0)] + 4.

5.11. Theorem. Suppese X is a Hadamard spcae, and

e (t), p(t) are geodesics. Then lim dlet(t), B(t)] =0

%t~ +00
if and only if in G(X) _lim d(g.d, TP ) = 0.
T—y+00
Proof. Denote dt = d{ef{t), 9 {(t)l. By 5.4,

+00
"ltl _ ‘yg de
3 dt_‘.x.e dt » 1/3 dt-(l e }.
-0

One sees that if

: e ~lt] _
lim 3 d e dt = 0,




then 1lim de = 0.

T-)+00
Now suppose *i.’liam dgy = 0. Then dg & €/ t 3 0. By
5:2, dgaq{ det 2It]. 50 dyye g C + 2]|t], TR0, t€ IR.
Note that
-4 Q0 _‘*1
§ (C+ 2/t])e dt < + &0 .
-0 '

S0, by the Lebesque theorem,

+ o - _
lim j d *t-e Hﬂ dt
T g ©
40 -
= lim d ) dt

- e
vk
2 T

= 0.

This completes the proof,

5.12. Definition. For a Hadamard space X, we

know by 4.3.1 and 5.11 that the following two
conditions are equivalent.

(1). For any two asymptotic geodesics o&aﬁd P '

d(Ime¢, Imp) = 0. |

(2). For any two asymptotic geodesics o and p , in G(X),
lim d{e.®, [T+ B(et, B(0))]P } = 0.

T+ 00 :
In fact, by 4.1.5 and by the appearance of the geodesic

metric in 5.1, the term on the left hand side must
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monotonically decrease to zero.

Suppose M is a space with K g G‘such that its
universal covéring satisfies these conditions, then
we say that the geodesic flow of M, G(M}, is weakiy

Arnosov.

5.13. Corollary. Suppose M is a compact space

with K < 0 such that there is no totally geodesic

IR x [a, b] immersed in it, then by 4.3.3, 4.5.2,

and 5.12, the geodesic flow§of both M and M XIﬁ are
weakly Anosov. Or suppose M is.a space with Krg c <0,
then by 4.5.1 and 5.12, the geodesic flow of M is

weakly Anosov.




6. Changing h-cobordisms

6.1. Let M be a space with K ¢ 0. Suppose &{t) is a.
curve in M and ¥(g) is a geodesic such that &(0) = ¥(0).
Consider the universal covering X— X/ = M. Lift
ol(t) and ¥(s) to (t) and ¥(s) such that Z(0) = ¥(0).

At ﬁ?t), draw the geodesic asymptotic to Sﬁs).' Express
the result as iéYffsl -For any two liftings, the results

are- the same up to an isometry in [ . S0 we can go

back to M to get only one result, denoted X’ (s).
& (t)

Let M be a space with K ¢ 0. W is an h-cobordism

over M. By chapter 2, we have W~12+DL 0 & t ¢ 1 and

q
W-—I+VL 0 g t ¢ 1, strong deformations of W to M and

~
R 63
to the other boundary, W-——JQM, and everything is trivial
outside a compact set of M.

Consider

35
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=Y

= G(M) XMW

{ (§, x): FEGM), x &€W, (0) = p(x) }.

N
W is a manifold with two boundaries, one G(M).
A,
Take a point in W, that is, a geodesic ¥in M and
a point x € W such that ¥(0) = p(x). We produce the |

A
following two curves in W , with notation from 6.1.

(Y‘r[?t(x)] ’ ?f:(‘x) ) , osktsl,

(b’rfixlﬂj , ixu:)) EE 58

All the curves of the first kind form a stroﬁg deformation
of Q to G(M) and those of the second kind form one

te the other boundafy of %. And everything is trivial
outside a compact set of G(M). So ﬁ becomes an
h-cobordism over G(M). Q is called the asymptotic

lifting of w.

6.2.1. Corollary. Ifel(t), 0

associated curve of W, then
' <t <1 G(M), = 0
{Xa&u:) 0gtg vei) J(0) =o{(0) }
are associated curves of W. If we go through all
associated curves of W, then we get all associated

A
curves of W.
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6.3. Suppose X is a Hadamard space. Consider G(X xIR).

Take X x t&X x IR, take a geodesic o« in X beginning
at x. Then-a>;m.is totally geodesic 1H* and contains
xx t. So we can see geodesics througﬁ X x t that
are in & x IR. Let & change. We will see all geodesics

through x x t.

+ o 1
We see that G(X xIR) = G wG wG where G~ are bundles
. . G o, . . n=t .
with fiber D and G~ is bundle with fiber 5 , n=dim(X}.
The decomposition respects isometries of X and the

action of time, Also see 4.5,

Suppese X is a Hadamard space whose geodesic
flow is weakly Anosov in the sense of 5.12. For a
point x & X and a direction z€ JX, we denote the
geodesic from x to z as & = J{x, z). Suppose((t},

0 RS t < 1 is a curve in X. Then

(¥(e(t), z ), 0t <1l z&X}

is a collection of curves in G(X). We want to study
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the behavior of the these curves as time goes oﬁ.
More precisely, we want to study the behavior of the
-diameter, with respect to the geodesic flow , of the
following collection of curves in G{X),
{r- W Kit), 2 ), 0<t<l:z€dq ]},

as T ———=> + 00 .

We set about doing so. Inspired.by 5.12, we
compare the following two expressions.
T¥( (), 2 ),
(e - BI¥(k({0), 2), o(t) 1) B(ef(0), 2 ).

Consider BI¥(&(0), z), &(t) 1, 0 < t <1, Let
a = a{z) and b = b(z) be its maximum and minimum. Then
the second expression is inside the following interval.

I ={%-a, T-bled(o(0), z ).

e

_',..U(o(t’c\, Z) (t)

— Z
‘_4_..
_.A, -}b Tb}a_ T—~b
l
— B ¥(x(o), ) ,0t()) T - B[&’(q(o}, 2), cx(r)]

By 5.1, length(I) = 2(a - b). Consider 2[a{z)- bi{z)],
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z& 8X. Let _Q be its maximum.
Oon the other hand, denote the distance between the

two expressions as f:

IR x [0, 1} x 9K 'Ht’-t’i)%m.
By our assumption that 5.12 is satisfied, when T—3+ o ,
f monotonically decreagses to zero. Consider £(%€, t, z),

t &[0, 1], z& JX. Let £=E(T) be its maximum.

6.4.1. Lemma. Suppose Y is a compact topological

space, R x YMIR is continuous map, when t-—-—)_+€b ,

f(e, 'y) monotonically decreases to zero, vy &Y.

£= max{f(r, v): Y}. Then 1lim = 0.
(f y): v & Y} _c__)_w,&

Proof. Fix any §> 0.4 vey, f(+p0, y) = 0, so
there is f£(t(y), y) {d/2 . So there is a neighborhood

< . S
unxug S8
£ & . Suppose Y = U(y )V U(yh). Let

U(y) of y such that f|

£
[ety),+oo) X uLY)

’co - max{t(YI )'1.‘1 'c(yh)}- Then f![to +m’x7$
I/

6.4.2. Proposition. We have proved the following:

Suppose X is a Hadamard space whose geodesic flow is
weakly Anosov. of{t}, 0 < t (1 is a curve in X. Then

{(g-¥loki(t), z), 0 gt gl :z2&dX}

has diameter < (p, £ ), where 'Pis a constant and lim &= 0.
T-r+o0




40

ssult is proved in the same way,

.Effor the notation used.

nlﬁfSuppose M is a space with

low is weakly Anosov. P is a

1] x EiEEQEQM is a

=d(0r P)}

of theorems 1.1 and 1.3.

Suppéééiﬁ' i¢§mpact space with K.i 0 such

that theré*isfnd t9ﬁéliy“geodesic iR x fa, b] immersed

in it. Také éﬁ H;6b$dfdism W over M x{R. By 6.2, we

AT A

have h- cobordlsm W over G(M xJR). W is lifting of W.
A

If W is a product then A (s™). T(W) = 0, where

;c(s ) = 1+ (-1);{ no= dim(M). By 6.3,

G{(M 2 IR) = GUG UG, "If we in fact show that W has a

product respecting this decomposition, then T(W) = 0.

By 5.13, G(M x R} is weakly Anosov. By 6.2.1

and 6.4.3, the diameter of the regult of the time




N
action € of the associated curves in G(M x IR) of W

is bounded by (ﬁ, £}, where‘ﬂ is a constant and
A ‘
lim = 0. If W after applying an action of time
T € A _
is a product, then W must be a product. So we can

A .
assume that W is (ﬂ, £) - controlled, where,Q is a

constant and § can be as small as we like.

Note that periodic geodesics of M X R are in
M x 0 =M. By 4.2.4, in M the number of periodic
geodesics having periods < C'g is finite. C = C{(n)
is the number in in 3.3. Také these periodic geodesics
away from G(M x R). Apply 3.3 to see that we may

N
assume W hag a product structure P over G{(M x R

”M«E—a‘,a]_
but away from those periodic geodesics taken out,

with diameter bounded by (C'ﬂ, 1), where a can be as
large as we like. Since s! has no torsion, P can be
extended over those periodic geodesics taken away.

In conclusion, we may assume that % has a product

structure P over G(M X [RHMX[-Q “l, the diameter of P at
’
, A

G(M x IR and the diameter of W over
( ) lMﬂta) '

G(M X IR have a bound A, where A is

) IM x{(-00,- alv{a +00))
a constant and a can be as large as we like.

Consider for example G(M x R) | Consider

Mxla,+oo)

41
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G(M x R M x [a, +© }. 5.10 says

)lm[a,-r-OO)
that 2 do(mxw) - 4 < d, de(jrxW) < 1/2d + 2. So a

set in Gf with diameter < A is mapped

M

* R) Imxta, + 00)
to M x [a, +00) to be a set with diameter g 1/2 A + 2,
Suppose ofit) x P(t), 0 st g 1 is a curve in M x [a, + &)
with length L.

‘ - ”
L = 30 j—{f[Q(t)]}". (oe) % 4 et ae,

F(t) = (e + oF /2 > £, t 30,

L.?.j‘ja"‘ioc'(t)|2-+ | g/ (e)]2 dt
O .

l 2
o ; / 2
a So [1« ()% + 1B/ (t)/al at.
Consider the following map

1
o 1dx z1d
G(M x (R — , +00 Q M 1, oo ),
( i{ ”Mxta,-l-uo\ x [a, +00) > :} + }

uﬂWith diameter < A is mapped to

A set in G(M x IR) |
Mx[a,+
Mx [1l, +00), with product metric, to be a set with

diameter < l/a (1/2 A + 2).

Let a be large. Also note that the above map is a

fiber bundle with fiber 8™ . By 2.1, P can be extended.

This completes the proof of 1.1 and 1.3.
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