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Abstract of the Dissértatioﬁ '
On the global 1nﬁuence of conJugate pomts
bv |
' Walter- Vannini
Doctor of Philosophy
Ln
~ Mathematics

State University of NJ;W York at Stony Brook
| 1988

Let M be a complete riema.nn%an manifold Nof dimension n.

A new criterion is given for the occurence of conjugate points along
a unit speed geodesic ¢:[0,L] — M. Writing Rié: SM — R for the Ricci
curvature function on the unit tangent bundle of M (so that Ricis n — 1

when M is the standard n-dimensional sphere), the criterion is that ¢(0) has

a conjugate point alohg the geodesic ¢ whenever

/0 Ric(c'(t))dt > w(n —il)l/2 ma.x(O Ric(c'(2))) .

te[0,L]

Birkhoff’s Ergodic Theorem can now be used to give us

_ 1/2
/Scal m(n—1) \/sup (0, Ric) /¢

vol(Sn-1,
SM

whenever M is of finite volume, w1th“chci curvature bounded above.
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“Here'tp: SM — [0, 00] is defined by

' 1 the nun;bei"of points cbnjugate to
Y(v) = liminf T f
Tmeo c»(0) along c,ljo, ), Where c,(t) = ezp(iv)

and integration on the unit tangent bundle SM is with respect to the Liou-
ville measure.

The above inequality generaﬁges the inequality -

/Scal_<_0
Mo .

6f L.W. Green, which he proved for M compact and without conjugate
points. - 3

It is also shown that if M iﬁ a compact, connected n-dimensional
riemannian manifold without conjugate points, and M has a nilpotent fun-
damental group, and M has an ison}etry group of at least dimension 7 — 2,

then M is a flat n-dimensional torus. The case where n = 2 was proved by

E. Hopf.
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Chapter 1.

Introductidh

1. Unanswered questions

During the 1970’s and 1980’s, great progress was made in the study
of complete riemannian manifolds of nonpositive curvature. A larger class
of complete riemannian manifolds are those without conjugate points. Very
little is known about them.

Many geometers (M. Anderson, W. Ballman, M. Brin, K. Burns,
C. Croke, G. Knieper, V. Schroeder) have focussed their attention on mani-
folds without conjugate points during the mid 1980’s. Motivating almost all

of the questions being asked, and occasionally answered, is the desire to know

srens s vt just how different-being without conjugate points is from having nonpositive
curvature.

The two major unanswered questions at the present time are
Question 1. Given an n-dimensional manifold with a complete rieman-
nian metric without conjugate points, does the manifold admit a complete
riemannian metric of nonpositive curvature?

Question 2. Given an n-dimensional torus with a riemannian metric
without conjugate points, is it flat?

Both questions are open for n greater than 2.



" This thesis has resulted from unsuccesfully attemi)ting to answer the

second question.

2. Some history

Complete riemannian manifolds without conjugate points had been -
~""studied before the mid 1980’s, and several of their properties had been es-
tablished. The following five results summarize almost all that was known

before the surge of recent activity [C] [H] [Grl] [Gu] [O’S].

Theorem (Cartan-Hadamard 1928). Complete riemannian manifolds v
without conjugate points are smoothly covered by Euclidean space.
In fact, letting M denote the riemannian manifold, expy: TM, — M

s a smooth covering for all points p of M.

Theorem (E. Hopf 1948). Any riemannian metric without conjugate

points on a 2-dimensional torus is flat.

Theorem (L.W. Green 1958). |

(1) For M a compact riemannian mdnifold without conjugate points,

/Sca.l <0.
M

(2) Equality occurs precisely when M is flat.



Theorem (J. Gulliver 1974). There ezist compact riemannian manifolda

without' conjugate points which possess regions of positive scalar curvature.

Theorem‘ (J.J. O’Sﬁliivan 1974). Any Killing field on a compact rie-
manﬁian ﬁza.nifold without conjuga.té points is parallel.
In fact, any Killing field X on a complete riemannian manifold with-
e o - - - .- out.conjugate points is pérallel,, provided that | | X| | haa' an upper bound wﬂich

18 attained.

Cartan a.ctua.lly.stated the Cartan-Hadamard theorem as a nonposi-
tive curvature result, but the proof is applicable to the no conjugate point
case (Hadamard proved the 2 dimensional case). |

Hopf’s theorem was the first major result that required techniques un-
necessary for dealing with nonpositive curvature. The nonpositive curvature |
analogue of his theorem can be proved by the Gauss-Bonnet theorem of the
last century.

Green’s genera.liza.tién of Hopf’s result resulted from an examination of

‘===msw.r = z==-- Hopf’s techniques for surfaces, and-then creating the necesary genefa.liza.tions

for dealing with higher dimensional spaces.



‘3. An overview

As mentioned before, this thesis arose from an attempt to prove or

disprove the famous

Hopf Conjecture. Any riemannian metric without conjugate points on

“an n dimensional torus is flat.

A natural simplification of the problem is to assume some symmetry.

Along these lines, John J. O’Sullivan has shown

Theorem (J.J. O’Sullivan 1974). Any homogeneous riemannian metric

without conjugate points on an n-dimensional torus is flat.

In fact, O’Sullivan showed more [O’S]. A homogeneous compact con-
nected riemannian manifold without conjugate points of dimension n, must
be a flat n-dimensional torus (this result is an immediate consequence qf
O’Sullivan’s Killing field theorem, together with the well known fact that
the only homogeneous flat compact connected riemmanian manifolds are
flat tori).

In chapter 6, it is established that the following is true



‘Theorem.  Any riemannian metric without coﬁjugate points on an n--
diménsional torus, that has aﬁ isometry group of at least dimension n — 2,
18 flat. |
in fact, we have that if M is a compact, connected n-dimensional -
riemannian manifold withcut coﬁjugate points, and the fundamental group
of." M is nilpotent, and the dimension of the isometry group of M is at least
el -~ =~.-m =2, then M is a flat torus. The case where n = 2 was proved by E. Hopf
[H]. '
| Hopf’s proof of the case where n = 2 inspired L.W. Green to show

that for M a compact riemannian manifold without conjugate points,

/ScalSO,
M

wmwcnzmeiso s With equality occuring precisely when M is flat [Grl].
In Chapter 5, it is established that the following generalization of

Green’s inequality statement holds

Theorem. For M a compact riemannian manifold of dimension n,

m(n —1)1/2n ,
/Scal < ( 1) )\/max(O,supRic)/i .
SM

vol(S™~1, can
M



Here SM is the unit tangent bundle with the induced Liou';ri]le mea-
sure, Ric: SM — R is the Ricci curvature, and ¥: SM — R is defined by

‘the number of points conjugate to
P(v) = Hﬁigf% c(0) along c:[0,T] - M
where ¢(t) = ezp(tv)

Note that if M is a compact riemannian manifold of constant sectional
céur'va.ture 1, we have that Scal = n(n — 1), Ric = (n - 1), ¥ = 1/m, and
vc;l(SM) = vol(M)vol(S™1,can), so that equality occurs in the above.

At present, a generalization of L.W. Green’s equality statement does
not exist. A plausible conjecture would be that equality occurs precisely

- when M has constant sectional curvature.
The above inequality can be generalized further. For example, it’s
" true if M is of finite volume with Ricci curvature bounded above. Such
improvements are discussed in Chapter 5.
In arriving at the above generalization of Green’s inequality, various
- eaiBa e snidiset 7 TesUlt s0f independent interest were stumbled upon. They are discussed in

chapters 3 and 4.



~ Chapter 2.

. Preliminaries

1. Conjugate points along geodesics of a riemannian manifold

We refer to [C-E] as a basic reference.

Let M be a riemannian manifold, and let ¢: [0, L] — M be a unit speed
geodesic on M. ¢(7) is said to be a conjugate point of ¢(0) along ¢ (where
O0<t<LL)if

ezpo): T Moy = M

is singular at 7¢'(0).
The multiplicity of the conjugate point is defined to be the dimension

of the nullspace of

dezp(o)(7¢'(0)): (TMco))rero) = TMe(ry -

It can be any integer ranging fromlton—1.

To study conjugate points, two extremely useful tools are Jacobi fields
and the Index form.

J:[0,L] — TM is a Jacobi field along c if

D?J

v +R(J,c')d = 0.

-~



It is a smooth vector field over ec. .
c(7) is conjugaté to ¢(0) precisely when there is a Jacobi field J along
¢, other than the zero field, that vanishes af 0 and 7. The multiplicity of
| ¢(7) is then .the dimension of the vector space generated by all such Jacobi

fields.

The index form associated to ¢, I, is defined to be

CLV,W) = /OL < %, %TV > — <RV, () (1), W > dt
where V, W are continuous piecewise smooth vector fields on ¢ that are or-
thogonal to ¢, and vanish at 0 and L. Such vector fields will be called
admissible (or c-adﬁnigsible, whenever there might be confusion). |

The index form is bilinear and symmetric.

.. There exists a conjugate point ¢(7) to ¢(0) along ¢, 0 < 7 < L, pre-
cisely when there exists an admissible vector field V on ¢, where V is not
the zero field, for which I.(V,V) < 0. If the only conjugate point to ¢(0)
along c is ¢(L), then the admissible V for which fc(V, V) < 0 are precisely
the Jacobi fields vanishing at 0 aﬁd L

The following result will be used repeatedly

The Morse Index Theorem. The number of conjugate points to c(0)
along c|jo,1), counted according to multiplicity, is equal to the dimension of .

a mazimal subspace of admissible fields for which I. is negative definite.



The counting of conjugate points will rely heavily on the above state- -
ment. In this thesis; counting of conjugate points will usually not be accord-

ing to multiplicity.

Lemma 1. If 0< Ty <T; <L and it is known that
c(0) has a conjugate point along c|jo, 1y,
~and ¢(T}) has a _conjugaté point along c|(,,1;],

then it follows that c(0) has a conjugate point c(T') along c, where

T'<T<LT,

"Lemma 2. If 0<T1<T3<...<Tx <L and it is known that
¢(0) has a conjugate point along c|jo,1y

¢(T1) has a conjugate point along c|(,,1,)

¢(Tk-1) has a conjugate point along C|[T,._1,T,.]

~ -~ then-it follows that c(0) has at least k conjugate points along c. |
In Lemma 3, conjugate points are counted according to multiplicity.
Lemma 3. If0<Ti<T2<...<T¢ <L and it is known that

c(0) has ay conjugate points along cljo, 1,

¢(Ty) has oy conjugate points along C|[T1,T2]



c(Tk—1) has oy conjugaie points along Cl[’;f’.._l,Tk]

" then it _follow.s th;zi .
% | -

] Za;—k(n—l) fa< Zai-i-k(n—l)

. i""l ‘ i=1 .

where o is the number of points conjugate to ¢(0) along cit

b

OyTh] °
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2. The geodesic flow and Birkhoff’s Ergodic Theorem

We refer to [P] as a basic reference.

Let M be a complete riemannian manifold. Let SM be its unit tangent

bundle. _ _
The geodesic flow G: SM x R — SM on SM is defined by G(v,t) =

- ¢'(t), where ¢(s) = ezp(sv). G(v,t) will often be written as G4(v).

' The unit tangent bundle possesses a Borel measure determined by the
riemannian structure of its base manifold. It’s called the Liouville measure,
and the geodesic flow is invariant with respect to it.

Birkhoff ’s; Ergodic Theorem applies to measure spaces with a measure

invariant flow. In our case, we have

Birkhoff’s Ergodic Theorem. Let M be a complete riemannian man-
ifold, let G:SM x R — SM be the geodesic flow, and let f:SM — R be
a function whose positive or negative part is integrable with respect o the

Liouville measure u. Then

“===-11) The following limit ezists for almost allv in SM

1 7T |
1i Gyv)dt .
m /0 f(Gev) dt

Tooo T

(2) If A is a flow invariant subset of SM of finite measure, then

/f(v)du(v) = /Tlinic %/OTf(Gtv)dtd#(y) :

A

11



Letting a be any real number, the above statement is also true when

13 replaced by

12



3. Proofs of lemmas’

Proof of_Lemme 1.

Without loss of generality T, < L.

Pick e; >0 (62 <L-T).

Then there exists e; > 0 for which ¢(T} + €;) has a conjugate point
along CI[T1+61,T2+52)° |

Take a maximal subspace of clj,1y4¢,j-admissible vector fields for
which the index form is negative definite, and extend it to a subspace of
c|[o,T,+¢,)-admissible vector fields by taking the vector fields to be zero out-
side of [0,T} + €]. 'Ca.ll the resulting subspace W;. |

Now take a maximal subspace of c|[T1+51,T2+52]-admissible vector fields

for which the index form is negative definite, and extend it in a similar way

to give Ws.

By the Morse Index Theorem dim(W;) > 0, so that dim(W; + W3) >
dim(W1).

Applying the Morse Index Theorem aga.m, we see tha.t c(O) has a
oTrmes =T <R ~conjugate point ¢(T') along c, Where Ti+a<T<Tr+e.

Now, there exists S satisfying Ty < § < T%, for which ¢(0) has no
conjugate points ¢(7) satisfying T} < 7 < S.

This tells us that ¢(0) has a conjugate point ¢(T') along ¢, where
S<T <T; +e.

This is true for any positive €3, and S > T, so that ¢(0) has a conju-

gate point ¢(T) along ¢, where T} < T' < T5.

13
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Proof of Lemma 2.
* By repeated application of Lemma 1, there exist conjugate points

e(71),¢(T2)y- - -y (k)

to ¢(0) along ¢, satisfying

O<7'1$T1S1'2$T2<...<TkST]¢.

Proof of Lemma 3. Define Ty to be 0. Note that conjugate points a.1l'e
- counted a.ccording to multiplicity in tIﬁs proof.
Take a maximal subspace of ¢|[7,_, 1j-admissible vector fields for which
. the index form is negative definite. -Call it W;. Extend it to .a. subspace of
c|[o,7.]-admissible vector fields by taking the vector fields .of W; to be zero
outside of [T;_;,T;]. Call this subspace W;. Let W be the direct sum of the
W;’s.

Since ¢(T;_;) has at least a; — (n—1) conjugate points along cliz_1, 1)

we have that dim(W;) > a; — (n — 1), and so
. _
dim(W) > %ai —k(n-1). é

Since a > dim (W), we have
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.Since ¢(T;-1) has at most a; conjugate points along ¢|1,_, 1), we have

that dim(Wi)"S o;, and so

dim(W) < i'a; . : I. G‘
i=p :

Now,;extend W to a maximal subspace of cljo,,;-admissible vector

~ fields for which the index form is negative definite. Call this space X, and

note that |

a < dimX +(n-1)

Let W' be the orthogonal complement of W in X (with respect to I).

By showing that dimW' < (k — 1)(n — 1), we are done, since then

a<dmX +(n-1)

= dimW + dimW' + (n — 1)

- .
SZ"""*'("’—l)(n—1)+('n.—1). : <_..

Suppose that dimW' > (k — 1)(n — 1).

Then there exists a non-trivial vector field V in W' for which
V(Tl) = O,V(Tz) = 0,. . .,‘V(Tk_l) = 0 .

For some j from 1 to k, V; = Vlir,_,,; is a non-trivial vector field for which
I(V;,V;) <0, and I(V;,W;) = 0 (since I(V,W) = 0). This contradicts the

maximal property of ;.



. Chapter 3.

Curvature criteria for conjugate points along geodesics

1. Introduction and Main Theorems

‘Differential geometry and the Sturm-Liouville theory of second order
differential equations are not disjoint areas of mathematics. The following

two theorems illustrate this [L] [M].

Theorem 1 (Sturm).  Consider the second order differential equation
g" + Fz = 0, where F is a continuous function defined on [0, L].

Let z: [0, L] — R be a solution for which z(0) = 0 and 2'(0) # 0. If
2

F(t) > 17 for allt in [0, L]

then z(T) = 0 for some T in (0, L].
Furthermore, if the smallest such T is L, then F(t) = w*/L? for allt
- in [0,L].
Theorem 2 (Myers 1941). Let c:[0,L] — M be a unit speed geodesic on
a riemannian manifold of dimension n. If
2

Ric(c'(t)) > (n — 1)%—2 for all t in [0, L]

then c(0) has a conjugate point ¢(T') along c, for some T in (0, L].

16
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- Furthermore, if the smallest such T is L, then K(o) = w2 /L? for all

tangent:two planes o containing a tangent vector to 7.
The following analogues are also true.
Theorem 3. Consider the second order differential equation z" + Fz = 0,

) u)here F is a continuous function defined on [0, L].

Let 2:[0, L] — R be a solution for which z(0) = 0 and 2'(0) # 0. If

/ F(t)dt > n |[maz(0, max F(t)
te[0,L]

and F is not identically zero, then 2(T) =0 for some T in (0, L].
Furthermore, if ithe smallest such T is L, then F(t) = n2/L? for all t
in [0, L].

Theorem 4. Let c:[0,L] — M be a unit speed geodesic on a riemannian

manifold of dimen.sz'on n. If

/ Rie(d(®) dt > m{n— 12 \/ma.:z: (0, max: Ric(e(8)

and Ric(c') is not identically zero, then ¢(0) has a conjugate point c(T) along
¢, for some T in (0, L].
Furthermore, if the smallest such T is L, then K(c) = n*/L? for all

tangent two planes o containing a tangent vector to c.



It should be noted that‘ the curvature condition in Theorem 4 cannot

be replaced by

2

L
/0 Ric(c'(t))dt > (n—l)L

(a sufficiently long geodesic beginning from the vertex of the paraboloid

z= 2% + y? demonstrates this). However, the curvature condition

/ * Rie(c'(£))(1 — cos (%) Vit > (n - 1)%

0

is a valid replacement, as shown by L.W. Green in 1963 [Gr2]. At present,

this is the strongest generalization of Myer’s criterion.
As-an immediate corollary of Theorem 4, we have the following sup-

plement to a result of Ambrose [Am]|.

Corollary. Let c:{0,00) — M be a unit speed geodesic on a riemannian
manifold of dimension n, which gives rise to no conjugate points of c(0).

Then

T : . o
limsup/0 Ric(c'(t))dt < w(n—l)l/z\/mam(ﬂ, sup Ric(c'(t))

T— oo te[0,00)

Ambrose has shown that with the same hypotheses

T

Tlim Ric(c'(t))dt is not +occ .

18



. 2. Proofs

Prodf of Theorem 3.'

Suppose that

/ F(t)dt > w /max(0, max F(t)
te[0,L)
- and that F' is not identically zero.

To prove the existence of T in (0, L] satisfying z(T") = 0, it suffices
— R such that

to find a continuous piecewise differentiable function ¢: [0, L]

#(0) = ¢(L) = 0 (and ¢ not identically zero) for which

L
/0 (8'(£))* = F(t)(¢(t))*dt < 0.

Letting
F(t
f = max (1)
we have that § is positive.
Let
T
Y=o73
2vP
so that
L
< —.
0<y< 5

Define v:[0,L] — R by

sin(wt/2y), ifo<t<
v(t) =<1, ify<t<



We now have

L ’ Y ’ - ] |
e -renera= [Tver 0 -serrme
+ / v'(2)% + (1 —v(t)?)F(t) dt

L-y
L

_ / F(t) dt

< [Ywrra-sesa

oL

+ /L W+ (1 - w0t

— /8

=0.

This means that there exists T in (0, L] for which z(T') = 0.
We now move onto the equality statement.
Suppose that the smallest such T is L.

Since

/o ’ v'()? — F(tju(t)dt < 0V
we have that v is a solution of " + Fz = 0. This means that v is a C2
function, so that y = L/2, giving ué v(t) = sin(wt/2y). The fa.cf that v is a
solution of 2" = Fz = 0 now tells us that F(t) = 8 for all ¢ in [0, L], so that
z(t) = Asin(t/+/B), where A is a nonzero constant. Since the smallest T for
which 2(T) = 0 is L, it must be that 7/+/8 = L, and so F(t) = x2/L? for
all ¢ in [0, L].

20



Proof of Theorem. 4.

Suppose that -

L _ ,
/0 Ric(c'(t))dt > 7r(n~1).1/2\/ma:z:(O,tIEia)a,.ic]Ric(c’(t))

and Ric(c') is not identically zero.

To show that ¢(0) has a conjugate point along c, it suffices to find an

- admissible vector field W:[0,L] — TM on c that is not identically zéro, and
. for which I(W, W) < 0.

Letting

f = max ch(c( )

te|0 L!

we have that g is positive.

Let
T [n—1 L
= — < =,
Y 5 3 sothat 0<y< 2
Define v:[0,L] — R by
sin(wt/2y), fo0<t<y;
v(t)= 1, fy<t<L- y,
SR Tk R szn(‘:r(L - t)/2y) ifL-y<t<L.

Let E be a parallel unit vector field on ¢ that is orthogonal to c.
Let V =vE. Then

. L V V _
I(V,V) =/ < D— by > — < R(V,c'(t))c'(t),V > dt
0 dt ’ di

= [ver+a o) < BB C)(O.F > de
° L
+/ o(1)? + (1 — v(t)?) < R(E.(1)(t), E > dt

L—-y

- /’L < R(E,c'(t))c'(t), E > dt .

21



Let E4q,...,En_1 be mutually orthogonal parallel unit vector fields on

c that are orthogonal to c. Letting V; = vE; for i=1lton— 1, we have -

| Z_: IV, Vi) = /:(ﬁ 1) (¢ +(1 - v.(tv)z')Ric(c'(t)) dt

i=1

L ‘
+ / (n = 1)0'(t)? + (1 — v(t)?) Ric(c'(2)) dt
L

_ OL Ric(c'(t)) dt

< [n-rer+a-sppa
. /L L_y(n ~1)0'(8)? + (1 — u(t)?)B dt
~x(n - 1)

0.

We now move onto the equality condition.
Suppose the first conjugate point to ¢(0) along c is ¢(L). Since

n-1
> I(Vi, Vi) <0 and I(V;, Vi) 2 0 fori =1 ton—1,

i=1
each V; is a Jacobi field. This means that v is C*, so that y = L/2, giving
- us v(t) = sin(wt/2y). The fact that V = vE is a Jacobi field now tells us

that

2y

< R(c'(t), E)E,c'(t) >= ( ’ )2

for all ¢ in [0, L]. Using y = L/2 one more time, we can conclude this proof

T 2_7r2
2y) L

with

22
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Chapter 4.

The density of conjugate points along a geodesic

1. Definitions and examples

Let M be a conﬁplete riemannian manifold.
- Any unit tangent vector v on M determines a unit speed geodesic
¢y:[0,00) — M via c,(0) = v. It then determines two elements of [0, +oc],

namely

the number of points conjugate to

P(v) = liq;ninf%
- cy(0) along ¢y ljo,

the number of points conjugate to

%(v) = limsup El; N
T—oo ¢,(0) along ¢, |[o, 1]

Examples.

(1) Let M be an n-sphere of constant curvature K. For all unit vectors v

Y(v) =9(v) =

[

(2) Let M be a complete manifold of non-positive curvature (or, more gen-

erally, without conjugate points). For all unit vectors v

23
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(3) Let M be n-dimensional complex pro jectiite space with the Fubini-Study
metric (so that the Hopf map from the unit. (‘2n + 1)-sphere is a riemannian

submersion). For all unit vectors v

$(o) = B) = 2 .

(4) Let M be the paraboloid of revolution z = z? + y°.

For all unit vectors v

$(v) = () = 0.



25

2. Propositions

.Proposition 1. Let M be a complete riemannian manifold of dimension 7.
" Let v be a unit vector on M. Let c,:[0,00) — M be the geodesic given by
c,(0) = v.

(1) If there are no conjugate points of ¢c,(0) along c,, then
$(v) =(v) = 0.

(2) If ¥(v) # 0, then there an infinite number of conjugate points to c,(0)
along c,.
(3) If K(o) > a, for all tangent two planes a'.co‘nta.ining a tangent vector to
. Cy, then

'ﬁ.

¥(v) >

(4) If K(o) < B, where f is positive, for all tangent two planes ¢ containing

-a tangent vector to c,, then

¥o) < (-1
TC.
(5) If Ric(c,(t)) > (r — 1)a, where « is positive, for all t > 0, then

¥(v) > Yo .

- T 7

(6) If B is a positive constant for which Ric(cl(t)) < 8, for all ¢ > 0, then



Proposition 2. Let M be a finite voluxﬁe complete riemannian manifold of
dimension n. o
- (1) The set of unit vectors v for which ¥(v) = 0 and the set of those for
which ¢,(0) has no conjﬁgate points aiong ¢, differ by a set of measure zero.
Equivalentl&, the set of unit vectors v for which ¥(v) > 0 and the
set of those for which ¢»(0) has a conjugate point along c, differ by a set of
measure zero. | |
(2) Suppose that the ﬁnit tangent vector w has the property that there exists
a conjugate point to‘ cw(0) along c,. | |
Then there exists an open neighborhood U of w, for which 9(v) > 0
for almost all v in U.
. (3) The condition “g(v)./= 0 for almost all unit vectors v” is eqivalent to the

condition “M has no conjugate points”.

With regard to ¢ and %, it is natural to ask whether they are really
" different. To show that they are the same, it suffices to show that ¢ > P.

Along these lines, it is true that (n-1)% > ¥ almost everywhere, for

S —»:Tf-:f::--;—f-M -a complete riemannian manifold of dimension n. This follows from

Propositiofx 3. Let M be a complete riemannian manifold. Then the
following is a well defined element of [0,+o0] for almost all v in SAL

the number of points conjugate to

. 1
A = c4(0) along culjo,17,

counted according to multiplicity

26
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3. Proofs

Firstly, some.'x'lota.tion.

For v a unit tangent vector of a riemannian manifold M, let
Cy:[0,00) — M be the geodesic c,(t) = exp(tv).

Z denotes the set of unit vectors v for which‘ ¢»(0) has no conjugate
points along c,. |

Z' denotes the set of unit vectors v for which év has finitely many
conjugate points along c,.

Z" denotes the set of unit vectors v for which #(v) = 0.

Z"™ denotes the set of unit vectors v for which ¥(v) = 0.

We have Z C Z'.C_Z z"cz"m,

Note that Z',Z",Z"" are each invariant with respect to the geodesic
flow.

p will denote the Liouville measure on SM.
Proof of Proposition 1.
(1) This is clear from the definition.
(2) This is clear from the definition. A T
(3) This is a consequence of Rauch’s comparispn theorem.
(4) This is a consequence of Rauch’s compa.riéon theorem.
(5) This is a consequence of Myer’s criterion for conjugate points.

~ (6) This is a consequence of Theorem 4 of Chapter 3.
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Proof of' Propositior; 2.
(1) Eq.uiva.lence‘is clear.-

We are required to show that Z and Z'" differ by a set of measure
zero. It suffices to show that u(SM — Z"™) > u(SM - Z).

For each positive integer j, define fi:SM — R by

fi= 1, if ¢y(0) has a conjugate point aiong Cal[o,i]3
7710, otherwise. .

Also, define f: SM — R by

f= 1, if cy(0) has a conjugate point along c,;
0, otherwise. :

Then f; approaches f from below, as j goes to infinity. It follows that

;.iiﬂgo/fj=/f-

SM SM

By Lemma 2 of Chapter 2,

N—oo

N-1
: : fi(Gjxv)
veee o m——-e= . lim ; J—JAJT_ < P(v)

"+ for all unit vectors v for which the above limit exists. For v in Z", we then

have -

N-1 :
: Z fi(Girv)
Nh_r.%o k=0 N - 0 .

We ca.h now conclude that



SM
= hm f]
j—oo
‘ SM
N-1
- : fi(Gjxv)
- [ i, > HE
N-1
) ) fi(Gjrv)
=1 i EEASl LS
jm | m D TR )
SM—-2Zm =0
< 1
SM—2zm

= p(SM - 2") .

(2) This is an immediate consequence of (1).

(3) M having no conjugate points certainly implies = 0 almost everywhere
(in fact, everﬁhere . |

wome s ersrswnerr = 0 almost everywhere; then almost all unit vectors v have no
conjugate points along c,, by Proposition 2(1). This means that thg set of
unit yectérs v for which ¢, has no conjugate points is dense. It’s also closed,

and so must be SM, from which it follows that M has no conjugate points.

Proof of Proposition 3.

For v a unit tangent vector, define

29
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the number of points conjugate to

| ... 1]
o(v) = hr}nmffl _c,,(O) along Cul[o,T],

-0

counted according to multiplicity
the number of points conjugate to

- . 1
¢(‘U) = hmsupf c,,(O) a‘_long cvl[O,T]a

T
counted according to multiplicity
It suffices to show that ¢(v) < ¢(v) for almost all ».

For j a positive integer, define g;: SM — R by
the number of points conjugate to

9i(v) = | ¢5(0) along ey 57,

counted according to multiplicity
Define §; by

1 N-1
éj = hm N Z gj(ijv) .
k=0

N—>oco

By Birkhofl’s Ergodic Theorem, this is well defined almost every-

where.

Whenever §;(v) exists, we have

1,y (=1)
i(v)ij:( ) ;

- 1. n—1
o) < 24300) + )
by Lemma 3 of Chapter 2.

For almost all v, we then have

2(n —1)

$(v) < g(v) +

Letting 7 go to infinity, we are done.



Chapter 3.

‘Generalizations of Green’s inequality for the total scalar curvature .

1. Introduction and Main Theorems

-

In 1958, L.W. Green published a curvature inequality for compact
riemannian manifolds without conjugate points [Grl]. For M -a. riemannian
manifold as above, he showed that [ Scal <0.

By Ambrose’s criterion for g)njugate points, and an observation of
A. Avez regarding the use of Birkhoff’s Ergodic Theoreﬁ, Green’s inequality
can be quickly derived [Am] [Av]. With the use of a new criterion for conju-
gate points (Theorem 4 of Chapter 3) we have the following generalization

of Green’s inequality

Theorem 1. Let M be a finite volume complete riemannian manifold of

dimension n with Ricct curvature bouﬁded above. Then

~ wol(S™1, can

(n — 1)1/2
/Scal < m(n — 1) n)\/ma,x(ﬂ,supRic) /ﬁ .
M : SAM

31



In the above théorem, SAM is the unit tangent bundle with the in--

duced Liouville 'measur,e,' Ric: SM — R is the Ricdi curvature function, and

P:SM — [0,0¢] is defined, as in Chapter 4, by

the number of points conjugate to

(v) = liminf =
T2 T €4(0) along cyljo,77, where ¢,(t) = ezp(iv)

For M the standard n-sphere of constant sectional curvature 1,.

¥=1/7, Ric = n—1, Scal =n(n=1),and vol(SM) = vol(M)vol(S™1, can).
. The standard n-sphere shows that the above generalization of Grecn’s in-
equality is sharp.

By considering the integral of the Ricci curvature, instead of the scalar
curvature, Theorem 1 can be slightly strengthened to |
Theorem 2. Lei AJI be a finite volume complete riemannian manifold of
dimension n.

(1) If Ric has an integrable positive or negative part then

' /Ricgo.
Z

(2) If Ric is bounded above then

-

Ric < w(n —1)*%y/maz(0, supRic) / Y .
SM-Z g sM

In the above theorem, Z (also defined in Chapter 4) is the set of unit
tangent vectors v for which ¢(0) has no conjugate points along c: [0,0c) — M,

where ¢(t) = ezp(tv).

32
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2. Proofs

vy Z,2',Z", Z", and p will be as in Chapter 4.

Proof of Theorem 2(1).

By Proposition 2(1) of Chapter 4, it suffices to prove

/RicSO.,
Zl

By Birkhoff’s Ergodic Theorem,
1 (T
/Ric = /Th_.l;lgc> T/o Ric(Giv) dt du(v) .
zZ' z
By Ambrose’s criterion for conjugate poiﬁts, and Lemma 2 of Chapter
2, we have that for v in Z’,

T
lim inf Ric{c,(t))dt < +oo
o .

LRIV TN T from Whlch it fO].lOWS tha.t

' . . 1 T . ]
RS . - — < .
h:rl'nmf T/o Ric(c,(t))dt < 0

In terms of the geodesic flow,
— 0

T
lim inf %/ Ric(G)dt < 0.
0

Combining this with

. S .
/ch = /Th_l:réo f/o Ric(Gyv) dt du(v)

z' z'



we are done.

Proof of Theorem 2(2). .

By Proposition 2(1) of Chapter 4, it suffices to prove

Ric < 71_(n'_1)1/2v,,fnw.,c((),,‘;upRic) /i
Sa g _ SM

:::oo i Let . be any positive upper'boﬁnd'to.the Ricci curvature. Birkhoff’s
Ergodic Theorem and Proposition 1(6) of Chapter 4 now gives

T .
Ric < / lim l/‘ Ric(Gyv) dt du(v)
T—oo T 0
SM=-zm SM—zm

T—oo T

= / lim inf L

T
‘/; Ric(Gv) dt du(v)

SM-2'"

< [ w/BE-DRd)

SM-2Z"

=B -1 [ 8.

SM

Proof of Theorem 1.

By Theorem 2

/Ricl < ﬁ(n—l)l/z\/ma:c(O,.supRic) /1&

SM : SM

n—1
/ Ric = 25", can) / Scal
n

S™M M

Using

we are done.
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Chapter 6.

A codimension 2 version of Hopf’s'.Theorem

1. Introduction and Main Theorem '

As an immediate consequence of the Gauss-Bonnet theorem, we have
that a 2-dimensional torus with a riemannian ﬁetﬁc of nonpositive cur-
vature is flat. This fact has a well known generalization, namely that a
2-dimensional torus with a riemannian metric without conjugate points is
flat [H].

Many geometers have unsuccessfully attempted to prove the more

general

‘Conjecture {E.-Hopf).~~Any riemannian-metric without conjugate points

on an n-dimensional torus is flat.

A more modest result would be to establish that any sufficiently sym-
metric riemannian metric without conjugate points on the n-dimensional
torusis flat. Along these lines, it is known that a homogeneous n-dimensional

compact connected riemannian manifold without conjugate points is a flat

n-dimensional torus [O’S]. We will show



Theorem. -An n-dimensional éompact connected riemannian manifold
without conjugaté points, with a nilpotent fundamental group, is a flat n-
dimensional torus provided ‘the dimeﬁqion of its isometry group is at least

n—2.

It should be noted that the nonpositive curvature analogue of the
. .- —-= -Hopf conjecture has beén shown to be true [W]. In fact, it was shown that
an n-dimensional c§mpa.ct connected riemannian manifold ;)f nonpositive
curvature:, with a nilpotent fundamental group, is a flat n-dimensional torus.
It should a.lsé be noted that the Hopf conjecture is unresolved for all n greater
than 2.

. 36



2. Basic facts and Tecl;m'ca.l Lémmas

For studying isoﬁzetry groups of compact riemannian manifolds with-
oﬁt conjugate points, some very important results are due to J.J. O’Sullivan
[0’S]. In particular, he showed that for all compact riemannian manifolds
without conjugate points, the Killing fields are pa.ra.liel. Two immediate
consequences are that the identity component of the isometry group is a
toral group, and that the isotropy group of any point is _ﬁzﬁte.

The following lemmas will be needed.

Lemma 1. If M is a compact riemannian manifold without conjugate
points, and all its geodesic loops are smoothly closed, then the identity com-

ponent of its isometry group acts freely.

Lemma 2. If M is a complete riemannian manifold without conjugate
points, and G is a compact Lie group that acts freely by isometries, then
M/ G, with the induced riemannian metric, is a compact riemannian manifold

without conjugate points.

37.



3. Proofs

We write I (JW) for the isometry group of M, and I(M), for its identity

component. Given pin M and gin I (M), g sends p to the point g - p.

Proof of Lemma 1. .

It suffices to prove that all §* subgroups of I(M), act freely on M,
since the isotropy group of a.ny point is finite. |

- Suppose that this is not true. Then it is possible to find X in the

Lie algebra of I(M), and p, a point of M for which ezp(X ) is the identity
of I(M),, ezp(tX) is not the identity for ¢ in the open interval (0,1), and |
ezp(to,X) - po = p, for some ¢, in (0,1). Since the isotropy group of Do is
- finite, ezp(£X) - po = po for some integer k larger than 1.

Let p be a point of M. Note that a:[0,1] — M, where a(t) =
ezp(tX)-p is a smoothly closed geodesic. It represents some nontrivial
element a of m(M,p). Let ¢:m(M,p) — w1 (M,p,) be the isomorphism
proviaed by a curve from p to p,. Then ¢a is represented by a,: [0,1] - M,
where ao(t) = ezp(tX) - po,‘. so that ga = cF, where ¢ is represented by
7:[0,1] = M where ~(t) = ezp(£X) - po. This tells us that a = b* for some
b. Let 3:[0,1] — M be the geodesic loop, based at p, that represents b. The
fact that it is smoothly closed tells us that 4(t) = a(£). Taking ¢t = 1, we
obtain ezp(1X)-p=p.

This holds for all p, which contradicts the fact that I(M), acts effec-

tively on M.



Proof of Lemma 2. ‘
Let ¢:[0,L} — M/G be a unit speed geodesic, and let J be a Jacobi
field of ¢ which vanishes at 0.

Now let ¢ be a horizontal lift of ¢ to A, and letlb J be the Jacobi field

of ¢ that vanishes at 0 and has

%(0) iaeing a horizontal Lift of l‘)i—tl(O) .

Writing m: M — M /G for the riemannian submersion, we can conclude
that =r.J = J.

To finish the proof, it suffices to show that J is horizontal. To do that,
it suffices to show < J(i),X(c(t)) > = 0for all ¢ in [0, L}, for X any Killing
field induced by the action of G on M.

This is clear, since

< J,Xec>(0)=0
IR < J,Xec>'(0)=0

and < J,Xoc>"(t)=0forall ¢.

Thé last two equalities follow from the fact that X is parallel.

Proof of Theorem. Let A be an n-dimensional compact riemannian man-
ifold that is without conjugate points. has a nilpotent fundamental group,

and has an isometry group of dimension at least n — 2. By a result of Croke
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and Schroeder, we have tha..t (M) is é,belian [C-S]. By a result of O’Sullivan,
all geodesic loops on M are smootlﬂy closed [O’S]. By Lemma 1, I(M), acts -
Vfreely on M. . |

Let' G be an n — 2 dimensional toral subgroup of I(M),. Since G
acts freely, we have a riemannian submersion 7: M — M/G. From the exacf

" sequence

e e (M) = m(MG) = mo(G)

and the fact that (M) is abelian, it follows that 73(M/G) is abelian. The
classification of compact surfaces tells us that M/G is either a sphere, a
projective plane, or a torus. By Lemma 2, M/G has no conjugate points,
and thus must be a torus by the Cartan-Hadamard theorem. Hopf’s theorem
now tells us that M/G is a flat torus.

....:Let o be a tangent 2-plane in M spanned by H; + V; and H, + V3,
where H,, H, are horizontal, and V3,V are vertical. Extend H; and H,
locally, and extend V; and V; to parallel fields (they extend to Killing fields,
and Killing fields are parallel). Then '

SRR IS B PR R(Hl -+ V.I,Hz +I‘r2)H2 +%,H1+ 1/1 > =< R(Hl,Hz)Hg,Hl >

since V] and V; are parallel. The last expression is nonpositive, since rie-
mannian submersions are curvature nondecreasing on horizontal planes, and
M/G is flat.

By a result of Wolf, we have that A is a flat n-dimensional torus [W].



References

(A
av]

(¢

AMBROSE, W., 4 theorem of Myers, Duke Math J. 24, 345-348
(1957)

AVEZ, A., Variétés riemannienes sans points focauz, C. R. Acad.
Sci. Paris Ser. A-B 270, A188-A191 (1970)

CARTAN, E., Legons sur la géométrie des espaces de Riemann,

. Gauthier-Villars 1928

[C-E]

[C-§]

[Grl]

[Gr2]

[Gu]

i

[L]

M]

[0°S]

[P]

CHEEGER, J. and EBIN, D., Comparison theorems in riemannian
geometry, North Holland, Amsterdam 1975

CROKE, C.B. and SCHROEDER, V., The fundamental éroup of
compact manifolds without conjugate points, Comment. Math. Hel-

vetici 61, 161-175 (1986)

GREEN, L.W., A theorem of E. Hopf, Michigan Math J. 5, 31-34
(1958) .

GREEN, L.W., Auf Wiedersehensflachen, Ann. Math. 78 289-299
(1963).

GULLIVER, R., On the variety of manifolds without conjugate
points, Trans. Amer. Math. Soc. 210, 185-201 (1975)

HOPF, E., Closed surfaces withoul conjugate points, Proc. Nat.
Acad. Sci. U.S.A. 34, 47-51 (1948)

"LEIGHTON, W., An introduction to the theory of ordinary differen-

tial equations, Belmont, Wadsworth 1976

MYERS, S.B., Riemannian manifolds with positive mean curvature,

Duke Math. J. 8, 401-404 (1941)

O’SULLIVAN, J.J., Manifolds without conjugate points, Math. Ann.
210, 295-311 (1974)

PETERSEN, K., Ergodic Theory, Cambridge University Press 1983

1

A ke an wonfells -
libias Usey MW T 38 (4987) Mod

37 140



[W] WOLF, J.A., Growth of ‘ﬁnite‘ly generated solvable groups and cur-
vature of riemannian manifolds, J. Differential Geometry 2, 421-446
(1968) ’ o | '



o . o . _
‘. N
13 . . B . . .
. . ) .
. . . . .
P Y : < °
- - N -
- 5 ) - L . - - L. .
3 R s - : A . -
A i - o *
. - - T . . .
4 : . : . N )
) ~
- © . e e - ) - PR PN v . -
. . ) e e . - . i




