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Abstract of the Dissertation
Sharp Estimate and Dirac Operator

by

Marcelo Llarull

Doctor of Philosophy

in

Mathematics

State Unive;sity of New York at Stony Brook

1988

This work established a global conservation phencmenon
for the scalar curvature function on a Riemannian manifold.

A classical result occurs in dimension 2 and it is given
by the Gauss-Bonnet Theorem, which states that the average of
the scalar curvature is a constant depending only on the
topology of the surface.

In higher dimension, any conservation phencmenon for the
scalar curvature is a weak measure of the Riemannian structure.
Using Dirac operator methods, certain sharp results are

established.
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Introduction

The main result of this work could be characterized as
establishing a global conservation phenomencn for the scalar
curvature funétion on a Riemannian manifold.

A classical example of this phenomenon is given by the
Gauss-Bomet Theorem in dimension 2, which states that the average

of the scalar curvature is a constant depending only on the topology

of the surface.

TR

In high dimensions any conservation phencmenon for the scalar
curvature must be far mere delicate since the scalar curvature is
a rather weak measure of the Riemannian structure. Nevertheless,
using Dirac operator methods we do succeed in establishing certain
sharp results.

We begin by examining the basic problem (originally posed
by M. Gromov) of studying perturbations of the canonical metric g
on the n-sphere with normalized scalar curvature x = 1. The
normalized scalar curvature is defined to be ¥ = u/n(n-1) where x

is the usual scalar curvature and n = dimension of the manifold.

Theorem 1.2. Yet g be any Riemannian metric on s with the property
that g 2 99° Then either there exists some x ¢ S with nq(x) < n({n-1),
or g = 9y

This situation can be extended in the following way. A map

f : M+ N between Riemannian manifolds is said to be e-constructing

if ”f*V|I§‘E”V” for all tangent vectors v on M.




Theorem 2.1. Let M be a compact Riemannian spin manifold of
dimension n. Suppose there exists a 1-contracting map £ : M, g} *>
Then either there exists x € M with

(Sn,go) of non-zero degree.

(k) < lorM= 3" and £ is an isometry.

t is sharp since the identity Id: (Sngo) >

Note that the resul

Sn,go) is l-contracting and x = 1.

Theorem 1 has the following immediate consequence:

Let M be compact Riemann spin manifold of dimension

Corollary 2.2.
n with % 2 2%, Then M admits no c—contracting maps £ : M- s" of
non—zero degree for any ¢ -~ 1/a.

We

neralized in the following way.

These results can be ge
act differentiable

gree of a map f£: M + N between corp

define the A-de
(s",z) and

manifolds to be {f*wh.ﬁ[m]}[M] where w, ~is the genexator of u"

A is the total ﬁrclass of M.

be a compact Riemannian spin manifold of

Let (M,q)
M,q) +

Theorem 3.1.

n + 4k which admits a 1-
Then there exists a point x € M

contracting map f :

dimension
where

(Sn,go) of non-zero ﬁrdegree.

or £ is an igometric submersion.

) < n(n—l)/(n+4k)(n+4k—l)

nix
o Corollary 1 above.

Theorem 2 has a corollary analogous t
continue to hold under a weaker

All of the results above
.M~ N

We shall define a smooth map £

hypothesis on the map f.
k)—contracting if

between Riemannian manifolds to be {e, A

| £*%al < || for all a ¢ Ak(N).
ans (l,Al)—contracting.

Note that "1-contracting” me




Theorem 4.1, The statement of Theorem 1 and 2 continue to hold

if the hypothesis that f be l-contracting is replaced by the

hypothesis that f be (l,Az)—contracting.

Remark. The hypothesis can not be weakened further, that is, there

are counterexamples that show that the theorem is false for (l,Am)— |

contracting maps with m z 3.




Chapter ©

In this section we shall recall some basic definitions and

results for Dirac operators on a spin compact Riemannian manifold,

Some Definitions and Notations

Let M,q9) be a spin compact Riemannian manifold with metric g.
let (Sn,go) be the unit sphere in RM with the standard metric 9q-
Given a map f between two compact manifolds, the degree of f is
defined as

deg(f) = Xl

L sign{det fy) ,
pef T (q) P

where ¢ is a regular point. A map £ : M+ N is said to be £-con-

”f*VH s € ||VH.-

for all tangent vectors N in M. Amap £ : M~ N is said to be (E,Ak

contracting if

lexol = € e

for all k-forms ¢ ¢ Ak(N). The normalized scalar curvature of a

manifold M of dimension n is defined to be

H

n(n=-1) ' where ¥ is the usual scalar curvature.

0=

Spin Structure

A gpin manifold is an oriented manifold with a spin structure

on its tangent bundle. Let E be an oriented vector bundle, a spin

} -




structure on E is a 2-sheeted covering

E:p () ~ P

. (E)
SplnIl

S0
n

such that & (p-g) = E(p)-io(g) for all pe P

Spinn(E) and g € Spin_,

where

g ¢ Sspin_ + 80,

is the universal covering homomorphism with kernel Zb, and PSPin (E)
n
and PSO (E) are principal Spinn* and SOn— bundle respectively.
n
Note that a manifold M is spin if the first and second Whitney
classes of M,w1 andw2 are both zero.
A real Spinor bundle of E is a bundle of the form
S(E) = Pspin(E) XV
) where V is a left module for the Clifford algebra Cf(R") = Ce  and

Al Spinn + S0(v} is a representation by left multiplication of

elements of Spin S C£ ®Y) = cee.
A complex spinor bundle of E is the bundle SE(E) = PSPinn(E)xﬁVE
where V¢ is a complex left module for the Clifford algebra

C@®") 8C=al . The Clifford algebra CZ (V) is generated by v
n n

subject. to the relations v.v = %Iv”z for all v ¢ V. The auto-

morphism ¢ Cﬂn > Cﬂn that extends the map o(v) = -v gives rise

to a deccmposition

ct =cte et
n n n




where Cﬁi = {y ¢ Cﬂn doaly) = (~l)i¢}are the eigenspaces of q.
Spin_ = Pin_ N CES, where Pinnr is defined as the subgroup of

ct - {0} generated by the elements v, with ||v| # 0. Given a
manifold M, CL(M) will be the Clifford bundle of M, which is the
bundle over M whose fibre at a point p ¢ M is the Clifford algebra

CE(TPM) of the tangent space at p.

Note that T(M) & Cl(M). We extend the metric and the connection
of M to CEL({M) with the connection V preserving the metric and

such that

Vipey) = (V(Q)-KIJ + w-(va

for all sections ¢ and { ¢ T(C (M)). Let us consider the following
camplex bundle over (M,qg), where M is Spin compact 2n-dimensional

Riemannian manifold

=P . M) x T
Splnzn A 2n

with the induced connection, where A is the representation by left
multiplication.

We introduce a Zb-grading on S. Fix p ¢ M and choose local

pointwise orthonormal tangent vector fields around p{el,...,e2n}
such that (ve } = 0. Letw be the oriented "volume element”
k
%
w = inel,...,ezn, where . denotes Clifford multiplication. This

is a globally defined section of T£(M) with the following properties:




i) Yw =0
i1} cu2 =1 }
iii) we = ~eyw for any e ¢ . |

Then $ has the decomposition
s=8"ps”

into the +1 and -1 eigenvalues of Clifford multiplication by ¢ .

For any e ¢ TM,

.87 87 an@ e.s7< st

Uver (Szn,go) we can carry out the same construction to get the bundle 3

_ 2n
By = PSpinzn(S )kaién d

with the induced metric and connections from (Szn,go). Fix % ¢ S2n

and choose local pointwise orthonormal tangent vector fields around

X, {El""'€2n} such that (V. ) = 0. ILetw, be the "volume element”

k
X

= i0
“o €17 rfon
As before, Wy gives the splitting

—_— + -
EO = EO & EO

into the +1 and -1 eigenspaces of(uo.

Suppose that £ : (Mzn,g) > (Szn,go) is a map of non-zero degree.

We can consider the pull-back bundle f*EO = E over (M,g). The pull-back




bundle E has also a splitting E = BN e E = f*ES ® f*E;. Now we
consider the tensor product bundle S 8 E over M with the tensor

product metric and connection. And
+ -
SRE=(S8E) & (S 8L).
We consider the Dirac operator of
D: I(S) » 1(8)

which in terms of an orthonormal basis of tangent vectors at p

is given by
2n

D: Ze-v -
k=1

Moreover, we can consider the twisted Dirac operator DE on§ ® E,

Dg, on simple elements ¢ ® v € T (S@E} is defined by

D_(98v) = ) (e ¥ o) 8 v+ (e e & (V_v).
E K k S K k ek

This first order operator DE preserves E+, i.e.
+ -

SBE=58 E ©SQE

“and

DE(S®E+) s gg.

2 + +

In fact, B = £%(By) = £*({v € By : Wyv = vh = {ver: fryw=
s0ifoBveS @E,

then D (08v) = Eeivei(ﬁm)

Yo (V,08v+08Y.v) = (Je.7.0) 8 v +] .e.v @ V.v)
3 11 1 11 i1 L




where V, = V_,
i

@,
i
Since v € E+, V.v e E because V.v = V. (w,v) = (V.w)v + w(V,v}
i i i i i
and (Vw) = 0. Therefore, Dy(08V) € S ® EY. Since any element of

S @ E is the sum of simple elements of the form ¢ 8 v, we can

write

. + -
D =D @ D
oM o
and
+ + +
p* .¢tegrt st ek
E+

Bochner-Lichnerowicz-Weitzenbtck Formula

We now recall the fundamental B~L-W formula for the twisted

Dirac operator D of the bundle § @ E over M, see [IM]

2 _ o 1 E
DE = V*V + i + R .

V*Y : T(SBE) - [(S®E) is defined in terms of a local basis of point-

wise orthonormal tangent vector fields by V*V = —Zve Ve - Vv ek
k "k k e
w= ] g(R, ’ej'ej'ei) is the scalar curvature of M, g is the K
i,3 i

Riemannian metric and R the curvature tensor of M. RE ig defined in

simple elements 0 8 v ¢ T(SRE) by RE(oﬁv) E-% E(eiejc) bz (REeieﬁm

where RE denotes the curvature tensor of E.

Note that RE depends linearly on the curvature tensor RE of E.

For a more detailed description see [IM].




Chapter 1

Case of S"
We start this section by examining the basic problem, originally
posed by M. Gromov [Gr] of studying perturbaticns of the canonical

metric 9o On the n-sphere with nommalized curvature 1.

Theorem 1.0. Let g be any Riemannian metric on s™ with the property

that g 2 g,. Then either there exist some x ¢ s" with ﬁg(x) <1,

or g = 99"
Example 1.1. (s", 9 —;g—+(8n,go)f
. ~ 1

= > 3 -
where g = {(1+c} dgr © > 0, then g 2 9q9- In this case ng (1te) <1
for all x.
This result is also true when the map between the spheres is of
non-zers degree and not necessarily the id.
Theorem 1.2, Let £ : (Sn,g) - (Sn,go) be a map of non-zero degree.

Suppose that f is l-contracting. Then either there exists same

x € s with Eg(x) <1, or f is an iscmetry.

Remark 1.3. This result is sharp since the identity Id : (Sn,g) -

(Sn,go) is l-contracting and ﬁg = 1.
0]

Theorem 1.2 has the following immediate consegquence:

Corollary 1.4. If (s",g) has Eg 2 1, there exists a constant c,

such that there exists no c—contracting maps £ : (Sn,q) + (Sn,go)

10
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of non-zero degree.

When we go through the proofs of these results, one realizes
that (Sn,g) can be replaced by any compact Spin manifold. We

shall leave the proofs as part of the more general situation

studied in Chapter 2.




Chapter 2

Results for a Compact Spin Manifold

The results in Chapter 1 can be extended in the following

way.

Theorem 2.1. Let M be a compact Riemannian Spin manifold of dimension
n. Suppose there exists a l-contracting map £ : (M,g) - (Sn,go) of
non-zero degree. Then either there exists X ¢ M with ﬁg(x) < 1or

n , ,
= 5 and f is an isometry.
As an immediate consequence, we have

Corollary 2.2. Let M be a compact Riemannian Spin manifold of

dimension n with R 2 a2. Then M admits no c-contracting maps

f: M- 5" of non-zero degree for any c > é.

Proof. Consider § : [M,Sn]A+IR

£ 8= max|fuv
|Ivli=1

W |

If n > a2, then §, >

Theorem 2.1 will be proved by contradiction. The idea is
the following. Consider a twisted spinor bundle S & E+ over M and

its Dirac operator D
E
Using the Atiyah-Singer Index Theoram we will show that

Index (D ) # 0.
at

Assuming that ﬁé 2 1 all over M and considering the B-L-W

formula for D 4 we will show that Index (D +) = 0. The key point
E E

12
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of the proof is chocosing the appropriate coefficient bundle E. This
method has been used by Gromov and Lawson, see [GL]. But in their
work the choice of the coefficient bundle was not essential for

their results.

Procf of Theorem 2.1. The proof will be done First for the even

dimensicnal case. Let M be a compact Spin 2m-dimensional Riemannian

manifold with metric g. Let 82n be the unit 2n-sphere with standard

metric 9o+ Let £ : M~ 82n be a l-contracting map of non-zero degree.

By contradiction, assume that ﬂg 2z 1 all over M., We consider
the twisted vector bundle S ® o over M and its Dirac operator

D | as we did in Chapter 0. Recall that D =D [S R® E+. Fix p € M.
E+ E+ iy
Let {el,...,ezn} be a g-orthognormal tangent frame near p € M such

that (v ) = 0 for each . Let {e,,...,e, } be a g ~orthonormal
€y o i 2n

tangent frame near f{p) ¢ 82n

such that (VE ) = 0 for each H.
k £{p)

Since f has non-zero degree, f*p can be simultanecusly diagonalized
with respect to the bases {el""’eZn} and {el,...,EQH}. Therefore,

we can find positive scalar {Ai} such that
i=1

Ej = kjf*ej.

Note that Aj 2 1 since £ is l-contracting and

= _ _ .2
1= go(ej,ej) = go{kjf*ej,kjf*ej) = Ajgo(f*ej,f*ej).

2 2 .2
(2.3) 1= Ajgo(f*ej,f*ej) < Ajg(ej,ej) = lj
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Considering the inner product <,> on the space [ (S8E) of cross-

sections defined by

B, 0> = | g (8,0) Ve, b e I (S8R,
M

we can write the B-L-W formula as e

il

<D§¢,¢> <U*VA, > + %ﬁ<¢,¢> + <RE¢,¢>

I}

<V, V> + %u<¢,¢> +<REp, >
<Dp,8> = TulpIF + RBp, 5.

In order to establish the result, we must look at the term <RE¢,é>
in more detail.

On simple elements ¢ 8@ v ¢ [{S@F}, RE is defined by

E _1 E
R7(c8v) = > Z (eiejc) B (Re.e.v)'
i,3=1 17]
More explicitly, see [IM].
B E
E 0 1 0
R =R =% ) g,(R €€, E0E 1
eiej f*eif*ej 4 X0 0 f*eif*ej k=9 “k~s
EO 2n
whete R 7 is the curvature tensor on $“°. Therefore,
E 1 2n
Fepos T4, 0, [90l6ese)gg(fuege) = gy faejie)gg(fueyie ) lege,
i’j k,i=1
2n €. €. € . €.
1 . i | i i
=7 (90 Gre, VaGe ) = g Gre ) gy e Ve ¢
2n
1 1 1
== [——— &, . 6., - — 6.8, le ¢
R T RN AP

k, =1
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i R
4 Allj 171 Kikj 173
1 1
= = 2 ec.c |
TRV I |
. B 1 1
- . R = T e £ gL .
52N 52n ’ |
let {o } be a basis for § and {v_} be a basis for E,. Then |
*o=1 B g=1 ° |

iféecS BE,

b = a%gaaﬁoa ® VB

and

(24)<@ﬁ¢>=<@2§;ufﬁwg,k&éwﬂ{ﬁvg

=<%- ) Z a e.e.g @ 1 1 £, g 8 v
l#] o

£,
ag i d o )\i)\j2 3 7iv8 ’kgzakgk £

= 1
s e o

a a
OBKE o

XAy i) a5 1V vy

This suggests choosing the hases {ga} and {v,} "invariant" by e;ey

ol
and EjEi respectively.

Consider the following bases {ei ,-.-,e, o} for § and

{e. Peeergs v} for E,. where o ¢ S with la!l=1 and v ¢ E, with

31 S

[lv]l= 1. For each fixed pair (i,3), e e

0

5 S+ 8§ permutes the basis

for S (up to sign}); and so does ajei .2 E0 - EO for the hasis of EO'

Jeereo},

Moreover, since (e.e.)2 =-1, ifg_ is any element ¢ [e,
1] o 1]

1

then i e, ub rated b e.e, i
S0 1s % elejca and the subspace gene V4 {ga, 1930&} is

invariant under eiej. Analogous considerations are true for E0 and
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the basis {e. ,...,e. v} since (e.e.)? = -1, Therefore, if {o }

Iy Jg J L @

represents {ei ,...,ei o} and {VB} represents k. [ S V}, then
1 k )1 s

the above sum can be bounded as follows.
For each pair {i,3), the sum

<Jae.e.0 ®e.ev,; ) a,5 8 v,>
aB«mB by e’ 3718 X2 ki~ k £

can be rewritten in a 4-term sum. Each pair {Ua’eiequ} and

{VB,gjgivB} will give the following four orthogonal basis elements

for § 2 E:

o 8v , 0 B ¢c.e.v, e.e.g Ry and e.e.g & c.ce.v
Q 1 i ]

S ] U A B B J1R
<a .e.e.0d Qe.e.v, +a .,e.e.0 8 (E.E.)2v
ol i ] g 73718 aB" i a il B
+ ar (e.e.)2o 8 c.e,v, + a (e e.)20' ® (e.c )2v
a'B LTI o jTivB a'd' i o j i’ VR’

kZE(akzak®vg+ak£'Ok@ejEivﬂ+ak'£eiejokgvﬁ+ak'£'eiejgkggjeiVE) >

" apfarpt T %aptatp T éa'BaaB' MR T

T 220t gl
since 2aa8aa'8' 2 -(ai8+ai,8) |
and -2a , .4 (a2. +a2 )

> -
o' B af' T a'B Taf’

We get that each four-term sum for fixed (o, B) is

2 2 2
B+a&'8+a&'8+ad8

).

z —(a
4§




17

Sumiing over o and B, we obtain that

a, a
1 k
vy Yo7 ] —gﬁ__"<eiej0u’gk><€jeivs’Vﬁ>

iF kol op Mt

v

1 1 2
'Z.Z.)\.A.Hé“ .
i#3 173

Thus,

(2.5) <REZ, 4

v

1 1 2
i#F3 1%y

Recall that Ai z 1, (2.3)

R8> 2 -5 1 gl
i#]
: - ¢ 2n(n-1)|g)P
Consequently,

'

2 2 1
<Dgp, 8> = Bl = § 2n(20-1)|| g

3 2n(2n-1) Gi-1)|| 6

13v4

<D§¢,¢>

where » = e L — is the normalized scalar curvature of M. There-
2n{2n-1)

fore, if w > 1, then ker D2 = 0. But ker Dé = ker D_, see {[GL1].

E 2
Since D : S8 E 6S®E ~SBE ®S@E preserves the direct

sun,

0 = ker D = ker D s
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where

b T+
e

Since 0 =kerD ker D+ ® ker D , ,
+ - +

E

Il

ker D L= 0.

we get that ker D++
E E

The index of D + is given by
E

Index(D } = dim(ker o' ) - dim{ker D .} = 0.
5t = et

However, this index can also be found by using the Atiyah~Singer

Index Theorem.

Index(D ) = {ch E AW} M,

E

where ch ET is the Chern character of ET and F:‘MS the total Zg—class of M.
Recall that ch E' = dim E+ + chl(E+)+...+chn(E+) where chi = ith
symmetric polynomial in the Chern class i with Chi £ HZi(M), see
[Hi].
Remember that E+ is the pull-back bundle of Eg through f£*.

On 82n is the Chern character of a vector bundle is given by

o o1 +
ch E0 = dim E0 + T cn(EO).
Therefore on the pull-back
Foo e oF 1 N +
ch(E") = dim E, + T f e, (Ey)
+ _ ,2n-1 1 % + |
ch(B’) =2 o1 e Byl -

2Applying the B-L-W type formula, Atiyah, Hitchin, Lichnerowicz

and Singer showed that a compact spin manifold M with » > 0 must




19

have.iJM) = 1, In our case we are under the assumption that

% > landso n > 0 and &(M) = 1. Consequently,

Thdex(d ) =@ + Sy fro, (o) AlMl} i)
IndeX(DE+) = (m%)! frc_(E) [M]
- ﬁ fo*cn(EE)
= oy (Cegree £) f zncn(Eg)
s

-

D) # 0 [See Appendix 1]

Claim 2.6. < _(E
— n

Therefore, if Index(D +) = 0, then degree(f) = 0; which is a contra-
B
diction.

If aé = 1, then £ is an isometry. In fact, if ig_E 1, or

ecuivalently ”g = 2n{2n-1), then inequality (2.5) gives

2n
N R LU S el L
i#5 Mt
<D%p, B> 2 l||¢s||2(2n(2n—1)~2rzl Ly
B 4 it Mg
2n
> Ll - 5.
i# g

Since Index(D +) # 0, ker DE # 0, there exists 0 # ¢ ¢ T (SBE) such
E

that Dy = 0, so

2n
7 ozl (- A0
i#] 1]

Recall that each ki 21, so 1 - AlA > 0

1 . .
and 1 _)\.A. 0 Vl}é j
17




equivalently,

AiAj = 1.

li
s

Therefore, Ai for all 1 i £72n

and £ is an iscmetry.

Odd-dimensional Case

Let Mzﬂnl be a compact spin manifold of dimension 2n-1, with

Riemannian metric g. Let Sin_l be (2n-1)-sphere of radius r with

the standard metric 9o+

Let ¥ denote the nommalized scalar curvature of M.

Ory—
Let £ : M » §°0 . be a l-contracting map of non-zero degree.

We want to show that there exists x & M where ﬁg(x) < 1.

Consider

Sl r_, SZn-l < Sl h SZnelésl ~ S2n

M x
where Si is the one dimensional sphere of radius r, f x-% id

is defined as (f % id) (p,t) = (f(p),%) vip,t) ¢ M x Sl: and

where h is a l-contracting map into the smash product of non-zero

degree.

Let us consider the following metrics.

On M x Si, g+ ds® where ds® is the standard metric on Si.

S2n-l 1

On x 87, gy + ds® where ds® is the standard metric on ST.

2n

And on $7, E is the standard metric of the unit sphere S2n.

20




The compose map f= ho(fX% id) is of non-zero degree from

ménl gl s g2n oy is also l-contracting,
~ 1 1 1
B0 | = liny Ev, 200 s gl + 1260 5 ol + 2 e
<{lvll + 1l el

We assume r > 1.

We can now apply the same method we used for the even—-dimensional

case. Construct complex vector bundles § over MZn—l X S1 and EO over

82n and consider the bundle

4
*
S@f By

2n-1 1
over M X Sr .

, 2
Choose a basis { el,...,ezn_l,ezn} of (g+ds”)-orthonomal adapted

tangent vectors around X ¢ M2n—1 X Si such that (V_ ) = 0 for each
X
. 1
w and such that ey, 18 tangent to Sr and el""'e2n—l are tangent
to M™%, As before choose g-orthonormal basis {El,...,EZH} of g2
around £(x). Therefore, we can find positive scalar {ki}zn such
~ i=]
that gj = Ajf*ej
Then we have that
-3 = SOuFe. e = e E
1= g(ej,ej) = g(kjf*ej,kjf*ej) = Ajg(f*ej,f*ej)

so for 1l £j ¢2n-1
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and for j = 2n

42 = = 2 .2 %nm S
b= ongteyn faey ) S Ay ds™ (5,0
2
A
2n
1z 5
r
2 2
A2n r.

In the B-L-W formula for the twisted bundle § @ E and its Dirac

operator DE’

2 _ 1., E

the curvature teranE (2.4) can be bounded as follows, by separating

the terms coming from the Si factor

2n=1 a ,a
E _1 _aB7kE
R, B> = 2 Z‘ z z o <eiej0a,0k}<ejEiVB,V£>

+ 1 2%-1 ;-“;‘{E €380 %0 " Fan 1V Ve
i=1 k, £ of “i"Zn
+ 2% y EQ@EE£< €, €.0 ,0 »<E, € Vv, >
4 =1 kol of anKj 2n"j o’ "k 3 2n BYR
Therefore,
<RE¢5¢S>2~LZ%_1X Voa ,a ,<0 ,q ><v.,v.>
! 4i#j a,Bk,EaB kL TakE B! ey

2n-1
11
= 2[32 ] ) )@ nB g gy, TV, V]
I 5 Cp o oBke o Tk Ve




Zn=-1 2n=1
-1 IR - 22 T IglP
i#] i=1

A%

<R%4, 4>

R, 6> 2 = p(20-D) (-2 8IF - L2n-1)[1g]P

X

Note that in (2.8) # is the unnormalized scalar curvature of M°T L
which is equal to the unnormalized scalar curvature of M2n—l.
And
. ‘ n-1 _ H o~

normalized scalar curvature of M = o) Gy~ -
Consequently,

2 T R oy _ 2n-1 2
DB, 4> 2 [yx - g(2n-1) (20-2) - 22D g

2 1 ~ 2
<D°.¢> 2 fl2n-1) (20-2) [% - 1 - =21 |8l

As before, if ¥ = 1, since f is a l-contracting map, £ is an
isometry (see (2.7).

If % > 1, since the last inequality is valid for all r > 0,

then

2 _ _
ker DE = ker DE = 0.

And ker(D++) = 0, hence Index (D +) = 0. But the Atiyah-~Singer
B E

Index Theorem gives

Index (D +) 0 as before {2.6).
E

Sl
r




Chapter 3

Manifold of Dimension n+4k

The notion of degree of a map between two compact manifolds
can be extended to the case where the dimensions are not the same.

The A-degree of a map £ : M + N is defined to be

A-degree (f) = {f*ug&IM]} M1,

where wy, is the generator of BN , B and A[M] is the total E&-—class

of M.
Now Theorem Z.l can be generalized in the following:

Theorem 3.1. Let (Mn+4k,g) be a compact spin Riemannian manifold

n

of dim n + 4k which admits a l-contracting map f : (Mp+4k,g) + (S ,go}

of non-zeio A-degree. Then there exists a point x € M where

ﬁg(x) < (n+4£f?;iik—1) or f is an isometric submersion
Corollary 3.2. 1If Mn+4k has # 2 n{ntl) , then there exists no

(n+4k) (n+4k-1)

c-contracting map £ : M~ s" of non-zero ﬁrdegree with ¢ < 1.

Proof of Theorem 3.1. We proceed as in the proof of Theorem 2.

Suppose n is even. Let {el,.;.,e } be a basis of

n’ Sn+l’ " Cntak
g-orthogonal tangent vectors near p € M.
Let {El,...,en} be a go—orthogonal basis of tangent vectors

near f(p) ¢ st Since f has ﬁ—degree # 0, we can find scalar Aj

24
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such " hat
f.e. =¢., with AL,z 1 1= g
AytaCy T &y j l=n
.. atp
kl-
' 0
B = " 0 .
1
0 X
n
L I

Then the term <D%&¢> in the B-L-W-formula can be bounded as follows.

2 2% 4 a
<REé,¢> :-% ) vy ~%ﬁxﬁ—-<eiej0a,0k?<ejeiye,v£> .

Fixing each pair (i,j) we use the same bound as in the proof of

Theorem 2.1.

<RE¢,¢> > -'% n(n~l)H¢H2, since X, z 1

A

e gt 2 g I - 3 neeiigff

) . + ,
where % is the unnommalized scalar curvature of Mn 4k. The normalized
scalar curvature of Mn+4k is

o H

" T (n+dk) (ntdk-1)
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. 2 w1 R n{n-1) 2
. <DB,#> 2 FnHK) (ndkeD) [ - o gl
~ n{n-1) ~ n(n-1)
If o rmd D Y % F g edeny then
as before, we condlude that Index(D +) = 0 by using the above
E
inequality.
But Atiyah-Singer Index Theorem gives
Index(D ) = {ch E" A(M)} M]
E
= —L1 e EHm
S +1) n0
2 : 2
= —— [ ¢ EhAm
(E +1)! M 5
+ . . n,.n
cn(EO) = cu where 0 # ¢ is a constant and W, is a generator of H(58,4%)
2
Therefore,
— R S o
0 = Index(D ) =— f £*w, AIM]
B (—2'+1)! M
& ~
= ——=— A-degree (f)
(§+1) !

what contradicts the hypothesis that A-degree(f) # 0.

Notice that the condition on the dimension of the manifold

M to be n + 4k is because we need the hypothesis ﬁ—degree(f)

{f#ﬁﬁﬁ(M)}{M] # 0. And A(M) has non~vanishing components only




. ~ n{n-1) . . .
If wus= (k) (n+dR=1) * then f is an isometric submersion.
In fact, if # = n{n~1), then the inequality gives
n
D%, 8> 2 L |6PIatn-1) - § —i.
4 LBl AL AL
i=j "i%y
Take a hammonic spinor 0 # ¢ € S @ B, so
n
1
02+l mm-1)- § L
4 LS5 ALl
i#3 "173
0z il8lFL § (- 1 2 0.
i#3 177
So, )&)\J = 1 and congequently )‘i =1 forlsg i< n

n+dk n
.

and £ is an isometric submersion. In particular, £ : M S

is a fiber bundle map.




Chapter 4

Weaker Hypotheses

In this section we analyze how these results change when we

modify the hypothesis of f being l-contracting. Recall that a

map £ : M > N between Riemannian manifolds is (E,Ak)—contracting
if

lgxall < ellal]  va e Agy.

Note that "l-contracting” means (1,Al)—contracting. We have the

following immediate result.

Theorem 4.1. The statements of Theorem 2 and Theorem 3 continue
to hold if the hypothesis that f be l-contracting is replaced by

the hypothesis that f be (l,Az)—contracting.

Proof. It follows through the proofs of Theorem 2.1 and 3.1. We only

need to point out that [Ai]? satisfy

=1

[
]

|,E14€j”g0 :”Xif*eiﬁ}jf*eJlg = Ailef*eiAf*ejIg

0 0

'_I
il

AAllere, el = A ]le el = A n,
i3 i3 g 13 1 J9g

0 ]

’ AAL 21,
17

But this is what we need in those proofs rather than asking that
each ki 2 1 as we had originally.

Now we ask the question: Are these same results true when

the map f is (l,Ak)—contracting for 3 £ k £ n? The answer is no.
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The hypothesis on f cannot be further weakened in that sense.
The following construction provides counterexamples:

Counterexample 4.2. Consider the connected sum of two S unit

spheres with n z 3

Using the Gramov-Lawson construction, see [GL] we can find a metric

on this space with scalar curvature z C2 uniformly. Renormalizing
2.

I

if necessary, we can assume that C 1.

Consider now the connected sum of m  S™'s with metrics Iy
with % 2z 1. Notice that volg -~ o when m -+ «, i.e. the volume
can be ﬁade as large as we wantmby taking encugh terms in the

connected sum.

i
=

_ A _.2/n .
Set = [Volg ] 9r then the changes in the scalar

curvature and volume are as follows:

vol 2/n vol 2/n
(4.3) P [ g’“] % e
. Hoe = [—— w2
In A 9, a2/
A 1/n m
(4.4) Volam = [{;az——] ] volgm = A independent of m.




Notice that the scalar curvature can be as large as we want and

that the volume remain unchanged.

Now send the space

into the standard S" in the obvious way, choosing A = volume of s™.
Since the volumes are the same (4.4), according to Moser's Theorem,

there exists a map
f: Mg ~ (Sn,go)

volume preserving and therefore, (l,An)—contracting. But ﬁg »o>1
(4.2).
For counterexamples of maps (l,Ak)—contracting with 3 £ u < n,

we take the constructicn above for n = 3

f:M~ S3 (l,A3)—contracting.

The map h : M x Si - SP+3 got as

1
p idxg id P £xid, .3

str-——————»st————+stP+s3

&P~ P

is (l,A3)—contracting for r large enough, see page 21.
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Lemna 4.5. If £ is (lJ\P)—contracting, then f is (lJ\P+k)-contract—

ing ¥k 2 0
Proof. We only have to notice that

A, se-emm, | 51 for any p-tuple with all
l .

i P
Xi different, then
b
PYRREERR W
1 jp+1
But [ A reserh [ < AL | for any j
] Jp+1 Js S
.'7 IA. peesash. ] < min[kiI < 1.
1 3p+1

By induction, it is true for allyx 2 1.

Therefore, the example above gives also counterexamples for

(l,Ak)-contracting maps with 3 <k < n.

Remark 4.6. The Gromov-Lawson construction of a metric with
Wz el can only be done in dimension 23.

In the manifolds of dimension 23, the scalar curvature has
no control on the volume of the manifold. In dimension 2, however,

the scalar curvature which twice the sectional curvature, determines

the volume completely. In fact, Gauss-Bonnet says that

1
fo === w
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where ¥ is the Euler characteristic of the surface M,

# is the sectional curvature and w is the volume element of M.

Counterexample 4.7. Finally, we will describe an explicit counter-

example for the case of dimension 3 and a (l,A3)—contracting map.

This counterexample was pointed out to me by M. Katz.

InIR4 we consider the manifold that we get by rotating a

curve & about the X, axis. P
o 1 o 3

TN s N T N
// '»\m// \/ - x C N

1

We can assume that %y is parametrized by arc-length s.

\\ / =i - . //rfi\
Miz ? [ ' >
R

?

Consider the map.fm into S3 that sends the curve o into the half

circle that when rotatedaboutx1 gives the sphere 83 and each S2
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orthogonal to X1 in M3 into and 82 orthogonal to Xy in 83.
We provide Milwith metric g such thatiig > 1. For a point
m
X € M3 we have that
af : TM— 1, S
m X f_(x)
i
1
“1 F—+.£ €1
m
e. v c(s)e. i =1,2
5 ():1 ] '

where ﬂm is the function length of % and c¢(s}) some bounded functions

of s, say a £ c{s} £ b. These constants a and b are independent of m.

b2 3
Thus, fm is (5—,A7) -contracting.

f

2
By choosing m large enough4‘§L-can be made 51 {and the volume
m
of M as big as we want). Consequently, fm is (1,A3)—contracting

and n_ > 1.

I

Spin Hypothesis

Currently I am investigating the extent to which the spin
hypothesis is necessary to my results on scalar curvature. I am
algo trying to refine these results by considering the more

delicate mod-2 invariants related to the Dirac operator via the

Clk-Index Theorem.




Appendix 1
Proof of Claim 2.6
Recall that
_ 2n
EO - PSpinzn(s ) X)\(M‘Zn'

mﬂzn acts on EO on the right since right Clifford multiplication
camites with A. EO has a decomposition into irreducible modules
under left multiplicaiton that comes from the decomposition of

m£2n into irreducible modules.

E0 = $0...08

Ey is the direct sum of 2n'copies of ¢, where

g=P, . (STHx Cv,
Spln2n A

and A is the fundamental representation of Spin2n inte U

on
The splitting EO = Eg i) Eg gives rise to the splitting
+ —
g.'_"S ®Sr
where dim(S+) = o0k, Therefore,
Eg = $+$...$$+ 2" terms) .
n-1
Fach § =B . (s°™Mx L5 with
Pily, A

+ .
A 3 SpJ_n2n - g




35

For a detailed description, see [Hul, [Hi] and [Pal.

Now the Chern character of E+ is given by

0
ch(E;) = ch(g'e...e¢" = 2"cn(g").
2n o + 1 +
Over S ch(S8') = dim(g') + )T Cn (8 ).

To prove the claim, it is enough to show that cn($+) £ 0.

Let T" be a maximal torus of Spin2n

n .
T -———-’-Spln2n

On the classifying spaces we have
R ' .
p: BT —B Spln2n
Recall that BT = CP{w)x...xCP(w), theérefore,
H* (BI,Q) = Q(x,... %]

H**(BTTQ) o Q{xl,...,xn] {the ring of formal power series)

where x, ¢ HZ(BTEQ)
let W = W(Spinzn,Tn) be the Weyl group of automorphisms of

T which can be extended to automorphisms of Spinzn. The map
o* 3 HY(B Spin, ,0) » H*(BT",Q)

is injective. The image consists of those elements in H*(BTn,Q)

which are invariant under the action of W.
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We have
L Tl(el,. ,ezn) = T1 Spin2n
o
Tn< £ 2o
Eo o > Tle,, ' jey) =T ——r sod(rzn)

where EO is the covering homomorphis and w is defined as follows.

Let wy ? S1 :]Réz -+ Spin2r1 be the homomorphism given by

= i <4 3
wj(O) cos 210 + ©94-18z351n 2m@  for 1 £3j £n.

Note that gouﬁ(cﬁ = diag{(0,...,0,26,0,...,0) for all © €JRéZ.
Let g o Spin2n be defined by

m(Olr---K)n) = “d(el)""'wnajn)

for (0 B2 ) e T

17 n

Then the Weyl group consists of the 2™n1 permutations
of the indexes of «)l,...,en) compose with (61,“.,@n)+

€ = 1. BSee [Hu].

(e,0 ,...,enen) with €, = & 1 and Elreer €y

171

ch(g) lies in H*(B Spin, ,Q) - H* (BT, Q) .
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Since we want ch(S+) we must consider (el,...,Sn) -> (i@l,...,i@ )

with EqrresrEy = 1 and with even number of pluses.

1, 0 i~

ch(gh = 7§ e mr(sh

even #
of +'s

where ii = g*xi for g : T > T.
But from ch($+) we on.y need to calculate the terms that belongs

2n

to HO ' ( )

s°%) | That term will come from ) L Lz 4R R
nt .n—1 "2 n
even # 2

of +'s

Since to Pontrjagin classes over the sphere are all zero, the only

term that remains is 13 §l,...,§n, which is the Euler class of 82n
2

and therefore # 0.
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