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Abstract of the Dissertation

The Willmore Problem

by
Freddie Santiago

Doctor of Philosophy

in
Mathematics
State University of New York at Stony Brook

1988

The Willmore problem is discussed and the literature surveyed.
The first and second variations of the Willmore integral in]R3 and
S3 are calculated. Lawson's minimal surfaces in S3 are shown to be
branched coverings of a square torus or Riemann sphere. Therefore,
their metric satisfies a hyperbolic-sine-Gordon equation. First
and second generation solutions to this equation are produced via

a Backlund transformation and Permutability Theorem.
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Introduction

The total mean curvature of a surface Z in]R3 is given by

the integral
[ wd]
b3

where H is the mean curvature of the surface. This integral represents
the amount of work needed to deform a flat piece of elastic material
into the shape of the surface J. It is invariant under conformal
transformations ofIR3.

The Willmore problem is to find, for each genus, the surface
inIR3 of minimum total mean curvature among all surfaces in R3
of that genus. The absolute minimum, among all surfaces in 33, is
achieved by round spheres. In the case of genus 1, 7. J. Willmore
conjectured that szdZ 2 2ﬂ2 with equalify for surfaces conformally
equivalent to a cirtain torus of revolution. The generalized Willmore
conjecture states that the solution to the Willmore problem for each
genus g is a surface in R3 conformally eguivalent, via stereographic

3

projection, to Lawson's minimal surface E in S7.

g,1
In this Thesis, after a historical survey in Chapter 1, we record
scme work we have done on various approaches to the problem.
In Chapter 2 we apply calculus of variations to the Willmore
problem. We calculate the first and_second variation of total mean

curvature with the aim of showing the second variation is non-negative

on the standard torus. The Euler-Lagrange equation is the standard

equation for non-linear elasticity, and was already known in the 1920's.




The second variation formula we obtain proves to be unwieldy and
we can only apply it to a special case oOn the standard torus.

In Chapter 3 we transfer the problem to S3 via stereographic pro-
jection. There the appropriate integral to study is I(H2+l)dz for a
surface z in S3. Again we calculate the first and seiond variations.
These were already calculated in a different manner by J. Weiner.
ﬁinimal surfaces in 83 are trivial solutions to the Euler-Lagrange
equations. This and the fact that Eg;l is a natural generalization
of the Clifford torus El,l’ which corresponds to a standard torus in133
via stereographic projection, leads to the genéralized Willmore
conjecture. The second variation is shown to be non-negative on the
Clifford torus.

Since the Willmore integral £(H2+1)dz for a minimal surface in
83 is just the area, we shift our attention in Chapter 4 to the problem
of finding the metric on Lawson's minimal surfaces Emn' By taking
quotients of these éurfaces by certain groups of rotations, we exhibit
them as branched coverings of either a square torus or the Riemann
sphere. We then show that the Gauss curvature equation leads to a
hyperbolic-sine—Gordon equation for the metric, via the study of a
certain holamorphic quadratic differential on minimal gurfaces in 83.

In Chapter 5 we record some of the work we have done in applying
Backlund transformations to the sinh—-Gordon equation to generate

families of solutions. We show that the sinh-Gordon equation is

invariant under a certain Backlund transformation, and use this to




prove a Permutability Theorem. This theorem allows us to generate
families of solutions by a purely algebraic process. We write down
two first—generation families and two second-generation families,
which we are currently in the process of studying.

In Appendices A,B,C we give some background material for the

main body. In Appendix D we show directly that f HZdE 2 2712 for
z

. . 4
.certain tori inR".




Chapter 1

Historical Survey

Let M be a closed two-dimensional smooth manifold and £ : M > R°

a smooth immersion. The Willmore integral or total mean curvature of
f is the integral
W(e) = [ v’ds
M
where H is the mean curvature of the immersion. The general Willmore

problem may be divided into three parts [11], For each M:

{1) Determine W{M) = inf{W(f)} where £ ranges over all smooth

immersions of M into]R3.
(2)  Classify all f for which W(f) equals the minimum value ¥W(M).

(3)  Determine all critical points f of W and the corresponding

value W({f).

The integral szds was proposed by Sophie_Germain in 1810 as the
"virtual Qor " in her study of vibrating curved plates [11]. Early in
this century the total mean curvature and its properties {conformal
invariance, Euler eqﬁation, critical points) were studied by Schadow,
Thomsen, and Blascke.

In recent years, the problem of minimum total mean curvature
was propoéed by Willmore [18], and he gave the answer to the question

>

of the minimum among all surfaces inﬂR3: W(Ff) 2 4w, and W(f) = 4nu

if and only if f is an embedding of 82 as a standard round sphere.

Willmore posed the problem of finding, for each g, Wg = inf f Hds
z




among all surfaces ) of genus g inIR3. He considered the problem
for tori in ]R3 and showed that if M is a torus embedded inIR3 as a

"tube" of constant circular cross-section, then f szs > 2'{;2, with
M .

equality if and only if the torus is embedded as a surface of re-
volution, the ratio of the radii being 1 : v2. (Shichama and Takagi
[13] obtained an equivalent result). Based on this, Willmore made the

still unconfirmed conjecture that now carries his name.

Willmore Conjecture. f H2ds 2 21T2 for all tori immersed in JR3, with

équality only for the circular torus 1 : v2 , up to conformal trans-
formations of ER?’ .

The fundamental property of the Wi_llmore integral is its conformal
invariance: If g :R3 U {00} +]R3u {=} is a conformal transformation and
£f: >R an immersion of a surface M, then W(gof) = W(f). This was
established by Thomsen [15] in the form (ﬁ2-ﬁ)§ = (H2—K)dS where a bar
denctes the quantities after the conformal transformation, and was
"rediscovered" by White [17].

More generally, for immersions £ : M+ N of a 2-manifold M into
a smooth Riemannian manifold, the Willmore integral may be defined as
W(f) = J (H2+k)ds where k is the sectional curvature of N on planes
tangentmto f(My. This ‘integral is invariant under conformal changes in
the metric on N, [16]. In particular, for £ : M~ S°,W(f) = A{ (H2+1) dS

and if the immersion is minimal, W(f) = area(f).

The Buler-Language equation for the Willmore integral is

AH + ZH(H2

-K) =0,




where K is the Gauss curvature. Immersions £ M +JR3 which satisfy
this equation are called Willmore surfaces or static surfaces:

surfaces which tend to retain their sﬂgpe. willmore [20] lectured on
this equation in the 60's, thinking it was new. Voss informed him
that he knew of it in the 50's, but did not publish it. Later they
both found out this equation appears in Blaschke's text {1] and is
attributed to Thomsen. Rlaschke and Thomsen proved that stereographic
projections of campact minimal surfaces in 83 are always Willmore
surfaces. Thomsen attributes the Euler equation to Schadow, but some
form of it may have been known to GCermain or Poisson {6]. Poisson was

aware of the equivalence petween the functionals W(f) and W(f) =

f(k§+k§)ds (kl,k2 are the principal curvatures) for the variational
m

problem, thié before the Gauss-Bormnet Theorem [11]1.

J. L. Weiner [16]} showed the following: Iet £ : M~ 83 be an
immersion of a closed orientable surface, with G = determinant of the
second fundamental form relative to 83. Leto : S3-+ZR3 be stereo—
graphic projection. Then f satisfies (1) AH + 2H(H2—G) = 0 if and
only if Oof satisfies (2) AH + 2H(H2—K) ~ 0. Therefore, because any

minimal immersion satisfies (1), and because of Lawson's construction

(8] of minimal surfaces of arbitrary genus in 53:
Theorem. There exist Willmore surfaces of arbitrary genus in]R3.

Lawson's minimal surface El 1 is the Clifford torus, which under
r

stereographic projection maps to the circular torus 1 : /2 of Willmore's




conjecture. The conjectured value wl = 21T2 is the area of the
Clifford torus, which is isometric to a square of side /2. Kusner

[6] has generalized Willmore's conjecture.

Conjecture. For each genus g, the minimum value Wg is the area a(q)
of Lawson's minimal gurface Eg 1 in S3. The minimizing surface inIR3
r .

‘is a stereographic image of Eg‘ 1°

Kusner (51 showed that area(Emn) < 4n{n+l) and that area
(Emn) 5 4n(n+l) as m > «©, where Emn is Lawson's genus mn minimal
surface in S3. Therefore, alg) < 8T and a(g)' > 81 as g * ©. Using
their concept of conformal volume (more below), Li and Yau [9] showed:
If ¢ : M >TRY is an immersion of a compact surface, and if there is a
point p ¢ R" such that lb—l {p) = {xl, .. "Xk} where the xi's are distinct

points in M, then | g® 2 4km. In particular, if an immersion ¥ : M >R°
M _

has the property that }J\:{ H2 < 87, then ¥ must be an embedding. Therefore,
wg <alg) <8m and any Willmore-minimizing surface in 33 mast be
embedded: if M is an image under stereographic projection of Eq 17 then

by the conformal invariance of W and the minimality of Eq 1°
r

wg < WM = w(Eg,l) = area(Eg'l) = af{g) <8

Using methods of gecmetric measure theory, Leon Simon proved the

existence of Willmore surfaces which achieve the minimum Wg. Collecting

the above results:




3ofa

Theorem. For each g 2 0 there exists an embedding fg : Mg +1R
surface of genus g with W(fg) = Wg. In addition, W, = 4m, wg > 4w

if g > 0, and Wg < alg) < 8m.

In [5] , Kusner estimates the infimum of W for each regular homotopy
class of immersed surfaces in ]R3. His main theorem is: The infimum
w{M] for W over any regular homotopy class [M] of compact immersed
‘surfaces M in IR3 satisfies W{M] < 20m. (He gives specific estimates for
each homotopy class.) In particular, the infimum of W among compact
immersed surfaces of a given topological type M is strictly less than
8T if M is orientable, 121 if M is non-orientable with even Euler number,
167 if M is non-orientable with odd Euler number. W. Kuhnel and U. Pinkall

[4] obtain § inequalities above.

The Willmore problem has been solved in the case of IR]P2 and Sz.

For 82, as noted above, Willmore showed W(Sz) = 41 and the minimizing
surfaces are round spheres. Robert Bryant [2] campletely classified all

Willmore immersions f : 52 - S3. He showed that all the critical values

of W on spherical immersions are non-negative multiples of 4mw. For]R]Pz,
the theofem of Li and Yau quoted above shows that WC]RIP2) 2 127, since
any immersed projective plane inIR3 must have a triple point. Bryant
and Kusner have independently found explicit immersions £ ]RIP2+ IR3
with W(f) = 12m. Therefore, WCRIPZ) = 127. Bryant classified all

3

minj_mizingIR]PZ's inR".

Tn 1982, Li and Yau [9] introduced a new conformal invariant

called conformal volume. They defined it as follows. Let M be an




m-dimensicnal compact manifold which admits a conformal map ¢ into
the n—dimensional unit sphere Sn. Let G be the group of conformal
diffeamorphisms of s®, and dvg the volume form induced on M by ged,
where g € G. Then the n-conformal volume of M is defined to be
v (M = inf sup [ av
# geG M

where ¢ runs over all non-degenerate conformal mappings of M into s™.
Since Vé(n,M) 2 VC(§+1,M), the conformal volume of Mis defined to be

V(M) = lim V_(n, M) .

nooe

Li and Yau showed that if M is a campact surface without boundary

inR", then [ g > V.(n,M). Furthermore, equality implies M is the
M /

image of some minimal surface in s" under some stereographic projection.
They conjecture that if M can be conformally embedded as a minimal
surface in 83, then W(M) is not less than the areé of this minimal
surface.

Some progress has been made on the original Willmore problem on
the torus. Applying their work on conformal volume to the torus, Li
and Yau proved the following: Suppose M is a surface of genus 1 in R®

that is conformmally equivalent to a flat torusIRz/T with lattice T

generated by {(1,0)(x,y)} where 0 € x < % and Vl-xz Sy £ 1. Then
f H2 2 2“2. Equality implies M must be conformally equivalent to the
M

square torus and is the image of a stereographic projection of a

minimal torus in S3.
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Let v be a reqular closed curve with gecdesic curvature k in
the hyperbolic ﬁlane P, where P is represented by the upper half-plane
above the x-axis. Bryant and Ulrich Pinkall independently observed
that if f is the immersion of.the torus obtained by revolving y about

the x-axis, then W(f) = % f kzds. Langer and Singer [7] showed that

Y
f kzds > 4 /-G with equality precisely for the circle of radius
Y .

sinh”1(1) '
———— (where the hyperbolic plane is of curvature G < 0). Combining
V=G {

the two results, they concluded that W(f) 2 2ﬂ2 for all tori of revolu-—
tion, with equality for the circular torus 1: V2. Willmore [19]1 states
that a Professor Hombu had proved this. .

Pinkall [10] found the first example of compact embedded Willmore
surfaces which are not stereographic projections of minimal surfaces in
83, as follows. Let ¥ be a closed curve in 82 with curvature function
k. Let 7T : S3 > 82 be the Hopf fibration. The inverse image of v under
T ig an immersed torus fY in S3, called a Hopf torus, and k is also the
mean curvature of f_. Therefore, w(fY) =/

Y 2
T
is a Willmore surface if and only if v is an extremal curve of

(l+k2). The immersion fY

$(l+k2). Langer and Singer have shown that there are infinitely many
simple closed curves on 82 that are critical points for ﬁ(1+k2).
Therefore, there are infinitely many embedded Hopf tori that are critical
points for the Willmore integral. .The stereographic projections of these

tori are embedded Willmore tori in]R3. All of these are unstable

critical points for W.
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H.Karcher, Pinkall, and I. Sterliing [3] have constructed new
examples of compact embedded minimal surfaces in S3, of varying genus,

and therefore new Willmore surfaces, Computer estimates show these

do not minimize the Willmore integral.




Chapter 2

Variation Formulas for Surfaces inIR3

In this chapter we establish the first and second

variation formulas for total mean curvature for surfaces
in]R3.

Let E be a compact orientable 2-dimensional memnufold,
f a C” immersion of ) into Euclidean space, and F : ) L*lﬁl)\+JR3 ac”
variation of f. For each t ¢ (-1,1), the map £, ¢ ¥ + R
defined by ft(p) = F(p,t) for each p ¢ | is a c® immersion

of E, and £ = f.
0

2
Given local coordinates (xl,x ) defined on some open

set of Z, we may consider F to be a smooth map defined on
an cpen set U x (-1,1) C:RZ x (-1,1):

Fooo(x1,x%,8) e U x(-1,10= F(x',x2,t) ¢ R>.

We may also consider all vector fields along F and all
functions on ) x (-1,1) as smooth maps defined on U x (-1,1),

for the purpose of local computations. We suppress the

2,t) in our notation, and we can freely

interchange ordinary derivatives with respect to xl,x2,

dependence on (xl,x

and t.
. . o . . 3 ,
There are four basic C vector fields inIR™ defined
along F.
a) The coordinate vector fields Fi = —i% , for i = 1,2.
00X

12




13

These are tangent to the surfaces ], = £ (0,
and are only locally defined.

b) The variation vector field V of F : Vt = 55
defined on all of ] x (-1,1).

¢} A unit normal vector field n, which is normal to

the surfaces Zt. It is defined on all of

yox o (-1,1).

Let <,> denote the standard EBuclidean metric on]R3.

Since V and n are globally defined, there exists a c®
function 4 : J x (-1,1) »IR defined by 4 = <n,V>. At

each point p ¢ F(Ux(-1,1)) the set {n,Fl,Fz} is a basis

1 .2

for T5R3, and this basis depends smoothly on (x ,x“,t).

Also, <n,F.> = <n,F2> = 0. Therefore, there exist C%

1
functions wi : U x (~1,1) IR for i = 1,2 such that
V = gn + ¢iFi on U x (-1,1).

Finally we have the usual locally defined coeffigients
13, h,,, nd, £

and symbols gij' g -, igr Dis rij' and the globally defined

mean curvature H and Gauss curvature K. For local coordinate

computations we consider all of these as smooth functions of
1 2

(x7,x7,t).

The first step is to calculate the first variation

of the volume form dj.

Lemma 2.1

99, =
i _ k k k AE ‘a
at — Zéhj_j + (¢igkj+¢jgki) + Y (Tikg£j+ l'jkgzi) .
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Proof. Using gij = <Fi,Fj>, vV = Ft = ¢én + kak ' <n,Fi> = 0,

and Weingarten's formulas we calculate:

9. .
i1 _ 3. = =
AT at<Fi,Fj> <Fit’Fj> + <Fi,th> <Vi'Fj> + <Fi,Vj>

il

k
<¢in+éni+¢?Fk+qFFki,Fj> + <Fi,éjn+¢nj+q§Fk+¢,ij>

k k k
¢kni,Fj>+<nj,Fi>) + (¢i<Fk,Fj>+¢j§Fi,Fk>) + |y KF g Fpt<E j,Fi>)

- i £
= ~20h; ; + N}i(gkj*”}j{gki) * ‘”k”ikgzs”jkgﬂi)

QED

Let G be the matrix whose ijth entry is 94 and let

7
g = detG. In the next lemma we use the standard formula
g - gtr(G_l %%) and the notation V' for the component of

V which is tangent to the surfaces Zt' The C° vector field
VT is globally defined by VT = V - <V,n>n and is given

locally by V@ = ¢ka.

Lemma 2.2

A - (Cognraivvh) Vg

at
Proof
8 g/~—__1 39 _1r -193G, _1 i3 3914
Lrog i ki3 . ki K, £ ij .8 ii
91=26g hys+ (Y59 Iy tV59 Gi) WV I59 9t T5k9 "p3)]

%/&[—2¢hi+2¢i+2¢kriik} = [—ﬁh}(ﬁwjri‘j)]@ = [—2¢H+div(vT)]/§

QED
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The local coordinate expression for the volume form
. l 2 " .
d} is /g dx dx“. From Lemma 2.2 we see that the "first

variation" of d] is expressed globally by

B T

at(dZ) = [-24H+div(V

)1d).

In passing we note that the area of the immersion ft of

L is A(t) = Jd] and thus, by Lemma 2.2 and the Divergence
. bX
Theorem,
A'(t) = [ -2¢H4] for t ¢ (-1,1).
Z

The next step is to calculate the first variation

of the coefficients of the second fundamental form.

Lemma 2.3

an _ ., iJ j, i
St (g ¢j+¢ hj)Fi.

Proof. Define C~ functions u U x (-1,1) »IR and

vi iU x (-1,1) »R for i = 1,2 by %% = un + V'F,. Since
- = . -~ .91 - 1.3 -

<n,n> = 1 and <n,Fi> =0 : py-= <at,n> 5 at<n,n> = (.
Also, vl = vJG;

3 ki

v gjkg
= <ij.,F >gkl
3"k N
_ _an ki
= <at,Fk>g
i

_ 8 . K
= Lga,Fyrs> - <, Fyoslg

ki
= —<n,Vk>g +
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- J ] ki
= <n,¢kn+¢nk+¢ij+¢_ij>g
_ j ki
= {¢k<n,n> + <n,ij>]g
- ] ki
(¢k+¢ hjk)g
= —(g"tg +yInh
k J
b (giig 4 yInt
v (g éj i hj)
QED

In this proof we derived the formula <n,Vi> = éi + ¢]hjl

which we use in the next lemma.

Lemma 2.4

ah, . ah, .
A3 _ _ k - k k k k ij
dh.
1] _ 8 |
Proof. Yl at<Fij'n> |
- | 2n |
= <F jt,n> + <F 'y
Z !
= <V,.,n> + <Fij’ ¢k+¢ h )Fﬂ
m
= <V..,n> - £¢ + £ 1jgmﬂ
= <Vyyene émﬁij ¢ rlj mk "
Y n>=—a-<V n> - <v,,n.>
ijl’ ax- 1 it 3
£
:._§3(¢i+¢#hki) - <¢in+¢ni+¢§Fk+¢kF i’"thZ>
ax '
3h
kl
= .+1phk ld( j£l+q)hgk£+\j)h1"gm£
ah
- kﬁ k k
=¢ - éhk k 3 hj
ij ihkj ¥ (wj itV hkj} + S;QJ +Tnglﬁm{)
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The Codazzi-Mainardi equations were used in the last step.
dh,

The lemma follows from the expressions for —5%1 and <Vij,n>

QED

The next few lemmas are preparation for the calculation

of the first variation of the mean curvature H.

Lemma 2.5

ij , . . .
39 - _ 2¢glkhj _ (glk¢§+gjk¢l) -y (glﬂ

32 i ).
ot k

Pex®97 Tox

Proof. The definition gljgjk = Gﬁ_implies

ij ag
39 ik kﬂ £ .
At " -g Tt —/g g, Applying Lemma 2.1,
iJ
3 ik Kj ik £ ik £73
45 2y Uemed T T Wyoyg 9 )
m,-1 ik £ k £3
- IR g g g g gt ™)

2¢hﬂglk _ k g +¢z51 Ej) _‘pm( ﬁmﬁjglk fﬁméigﬂj)

— ik, j _ ik, 3, Jk iy k. if_3 JE_1
QED
Lemma 2.6
ah. . .
2<vH,vT> = Ky 13-~i%——2hgr?k)
IX J
Proof.
T. _ ij - - k
2<VH,V > = 2<g “H, F w F> 2H, w g g Sk 2H k¥
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Therefore,

T. _ .k 3 ij
2<VH,V > = ¢ —axk(g hij)

(g

i3 M3 aghd
ki3 T,k

k

= U )

ax
SR i R T j gth)
.. ah. .
= Jkp i3 7713 ﬂ_ 3 ﬂ
.. 5h.
= yFigtl =L - o aly
X

QED

In the next lemma, S is the square of the length of

the second fundamental form.

Lemma 2.7

_ i ks _ ik Je _ e i
Proof. 8 = <hijdx dx +h £dx dx h hkzg g = hihz'

On the other hand, since the matrix A = (hg) represents
the Weingarten map in the basis {Fl,Fz} and the principal
curvatures Al,lz are the eigenvalues of the Weingarten

map, we can calculate as follows.

hfh = trace(Az)

i
£

]
—
e

+

)
[y

1

[\

P

o
b

QED

= (2H)" - 2K
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Lemma 2.8
8 . Sa + (2H2-K) 4 + <VH,V>
Proof., From 2H = gi3hij and Lemmas 2.4-2.7,
ij .. gh
3H _ 3 ij ij
2§E ot 13 tg at
_ ik _ J .0
269 hijhk (g K, wk+g wk w (g h s kt9 zhljrgk
P B g, eI )+ oot o, 5
g % 13 i9 gt i tV59 Ty t U E
— ok ok d ko1 £ Lr
2¢hjhk (hj¢k+hi¢k) w (hjrﬂkml zk)
i3 ik 3 k ij 2Pij
+ g (g_s..-gskr —géhh +(h¢+h1p)+q;g
ij axk
= gl 45 4 gndnd 4 (gt i i
I 257% 045 ity vl axk il 3k
2 T
= Agp + (4H"-2K)@ + 2<VH,V >. oD

Now we can c¢alculate the first variation of total mean
curvature.
For each t € (-1,1), let H(t) denote the total mean

curvature of the immersion £, of J:
_ 2
Hi{t) = fH"a).
z

Proposition 2.1

= f $[A H+2H (H%-K) 1 &Y for all t e (-1,1).
5
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Proof. By Lemma 2.2 and 2.8,

SmYg) = 1 &g + 8 %

[HAG + 2H(H2-K)@ + 2HWH, V> - 248° + B2div(vD) 1/g

I

2 2, T

[HAB + 2H(H-K)$ + <y (H%), V%> + HQiv(vD) 1/5 .

Integrating, and applying
[ (HAB) ] = [(pM) AT
by z

f @m?,vhay = -fmldivvh)ay
Z Z

we obtain

Hiw) = Lw@’a)) = [imn + mEK)gla]
2

o~

= [BIAH + 2H(H?K) 1)
5
OFD

Thus, AH + 2H(2H2—K) = 0 is a necessary and sufficient con-

dition'for an immersion £ of X to be stationary with respect
to total mean curvature.

We proceed to calculate the second variation of total
mean curvature under the assumptions {(a) AH + 2H(H2—K) =0

at t = 0 and (b) VT = 0 at t = 0, that is, the variation

3

vector field of F is normal to the surface f()). This is

equivalent to assuming wk = 0 at t = 0, and therefore, the

formulas in Lemmas 2.1-2.8 simplify considerably. We use




21

. D 3
the notation ¢ = — ;, 0, = ~ = F,.
at =0 i axl i
(1)' 8g;y = -26h, (2)' . 8/g = -2¢40/g
' I ' - - k _ k

(3) Sn = -g éjai (4) Ghij (éij ¢krij) féhihkj
(5)" 8gtd = 2¢gikh£ (6)' ©OH = A4 + (20%-K) 4.

Observe that, because of assumption (a), H"(0) = [@6[AH+2H (H2-K)1d).

3
Lemma 2.9
§(AH) = A(SH) + 2div(@A(VH)) - <V4,VE> - 28)vH| 2.
Proof. AH =-l—8.(gij/§ H,) = —£~8.(gij/§ a.hk).
e /g i 3 2/5 i j 'k
Therefore,
o oa ) =172 i3 k 1 i3 k
S(AH) = § (= )3, Vg o.hp) + —3. [§{g" Vg a .n
(A7) (59 l(g g 9hy _2@1[ g Vg jk)]
1, , i3 k 1 i3 k 1 Ky o, 17
= ¢H—=3, (g7 0Vg a.h) + —=0.[g" Vg 3. (8K 1 + =3, [(3.hY) (g1 I/ ]
VE i Jk 2%5 i 3 hk 2/6 i jhk

- 1 o 13 i85 -
20HAH + A{SH) + Jgai[ﬂj( 2¢Hg 2 Vg+2dg hy/) ]

The third term gives

_ ij_ig 3
3; [-2¢H, (Hg™ /-g h£>%§1

Q1 |

i

. ig,3 . i3
2d1v[¢Hj(g h£ Hg™-) 3,1

= 2div[¢gi£h%Hjai] - 2div[¢ginjHai}

= 2div($A(VH)) - 2div (4HVH) .

The second divergence term gives
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2div {PHVH) div(¢VH2)

2

<Vg, VH" > + éAHZ

2

]

<V@,VH > + 24HVH + 24 |vH |2,

The lemma follows.
QED

We calculate 6[2H(H2—K)] by an indirect route. Qbserve

that H2 - K = (2H2—K) - H2 = %S - H2 and therefore,

3 2

S[2H(H®-K)] = §[HS-2H] = HSS + (S-6H2)SH.

Lemma 2.10

2

8g = 2<B,Hess é> + 4¢4H(4H"-3K).

Proof.

K = g b, + g (269500))

i 2
Sh- S(hikg i

ki L K £, 3 2,7
g (éik rikéz) aShihz + 2¢Shih£

i

Kk L £, 3
9B " T8y + ¢hihs.
Therefore,

_ 3,4y oo ki o i85
68 = 8(hjhy) = 2n59" T (B, -7 6 + 26h iR,

] ik™p £
Note that
i &, _ 3, _ 4,3 3 _ 2 _
hjhihg = trace(A”} = Al + kz = (A1+A2)[(A1+A2) 3A1A2]

2H{4H"-3R)
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and also
<B,Hess ¢> = <h£jdx£dxj, (éik-éﬂfgk)dxidxk>
= hyy by T8 gt
= h§gjk(¢ik—rfk¢£). | OED

Using Lemma 2.10 and the previous observation, we

obtain:

Lemma 2.11

2 4

S[2H(H2-K)] = 2H<B,Hess ¢> - (H24+K)Ag + &(12H%-14102K+2K2) .

Combining Lemmas 2.9 and 2.1l we can write
H"(0) = [[24H<B,Hess &> + ¢2(12H4-14H2K+2K2)]
+{ 160 (8H) - $(H%4K) 8]
+ f24div ($A(VH))
+ [1-g<vg, 72> - 242 |vm|?],

We treat the last three integrals separately.

2

H(H +K) AB]

[16H - $(H%+K) 1A%
= [130¢ + (B%-2K) 8144
J1588)% + (8°-2K) $04)

[1568%8 + (H-2K) d0d

[ 18A (88)

i

féf%azé + (H2-2K) 4] .
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Next [24div(gA(VH)) = [#%div(A(VH)).

This follows from observing
2¢ div($X) - ¢2div X = div(ézx) for vector fields X.
Finally

[ 1-6<98,78% - 26%|vu|?]

= f[%éZAHz - 2¢4%|va|?]

[#%tHam + |vEl? - 2|vm| 2

Iézt-232(H2—K) - |VH|2].

Here we used AH +—2H(H2~K) = 0.
Combining these integrals yields the second variation

formula for total mean curvature.

Proposition 2.2

H'(0) = [4L(4)d), where
%

L{g) = %Azé + 2H<B,Hess ¢> + (H2-2K)A¢

+ $1div(A(VH)) - |val? + 2(58%-K) (H%-K)].

More work is needed to put the second variation formula

into a more manageable form. However, we were able to

analyze a special case ¢on the torus.
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The standard embedding of the torus Sl x Sl inZlR3 is

obtained by rotating a circle of radius l//E around an

axisg 1 unit from itsAcenter. In local coordinates the

S1 x Slﬂ-IR3 is given by

“n

embedding f

((l+—l cosRB)cos a,(l+—lcos B)sin a,—%sin-B).
/Z V2 2

f(a,B)

This embedding is stationary with respect to total mean
curvature, i.e. the first variation is identically zero.

We have calculated the second variation in the special
case of a variation of constant cross-section, i.e. & = é(a).

In this case

2m 2 2m
H"(0) = 137D J $ao + 2 J (,,) %da - ! (4,)%aa].

Using Fourier series we have shown that this is non-

negative, and is zero if and only if d(a) = A cos & + B sin «.




Chapter 3

The Willmore Integral for Surfaces in 83

In this chapter we calculate the first and second

variation formulas for the Willmore integral

Ho= [(5°+1)dy
5
3

for surfaces in S°. These were calculated by J. Weiner
using a different method.
We set up very similar machinery to that in the pre-

vious chapter. Let f : Z + S3 ::m4 be an immersion and

F : ) x (-1,1) ~ 83 o RA a variation of f, both thought of
of as‘R4—va1ued. As before, we have several fields (now
in]R4) defined along F: The coordinate vector fields Fi’
the variation vector field V, a unit normal vector field n.
These are all tangent to S3. In addition, we let N be

4

the inward-pointing unit normal vector field to 83 inIR".

Note that N = -F when restricted to F(}). Finally, we

M

fn + wlFi as before.

99i3 ag'd a/g
at 7 9t ' ot

may write V

The formulas for are as before. On the

other hand:
Lemma 3.1
%ﬁ =-1gij¢j+wjh§)Fi + ¢N
Proof. The vector field n is determined up to sign by

the relations: <n,n> = 1, <n,Fi> = 0, <n,N> = 0. /

26
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Define (at least locally) C functions A, u, v> on ) by

an _ i .
5t = AN 4+ un + v Fi. Then:
A= <%§, N> = =«n, %%> = <n,Ft> = <n,V> = ¢,
_ .on -1 _a -
HE e B2 T g g = 0,
i3 ki _ an _ ki _ _an ki
VooT VTIES,FL>g “9¢ T PN.Fi>g “atr Fx9

= —(gl]¢j+¢jh§), as before.

QED

Let K be the Gaussian curvature and G the "relative"

curvature. They are related by G = K - 1. Lemma 3.2 and
2 2

the fact that § = 4H® - 2G = 4H® - 2K + 2 lead to a slightly
different formula for %%.
Lemma 3.2

%ﬂ = %Aé + (2H2-K+2)¢ + <VH,VT>,

The proof is so similar to that of Lemma 2.8 that we
omit it.
Now we are ready to derive the variation formulas

for the Willmore integral.

Propeosition 3.1

! H'(£) = [laH + 2H(H?-K+1)]4].

b
Proof, %[(H2+1)/§] = J2H %/& + (H2+1)§§_?:
= (20 & 4 (H2+l)(—2¢H+div(VT)l¢§

at
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[HAB + 26H(H2-R+1) + <v(B2+1),vT> + (12+1) aiv(vT) 1/3

[HAG + 2¢H(H2-K+1) + div((H2+l) VT)]/§ .

)

Integrating:
9 2
1 - —
Hr(t) = [55[E%+1)4]]
= [[HAG + 24H (H%-K+1)1d])
= [[drH + 2¢H(H2-K+l)}dz.
QED
Therefore, AH + 2H(H2—K+l) = 0 is a necessary and sufficient
condition for an immersion f of ) to be stationary with
respect to the Willmore integral.
3

Corollary (Weiner [16]). A minimal immersion f : J + s
is stationary with respect to the Willmore integral.

We calculate the second variation assuming that f is
a minimal immersion., Thus, at t = 0: H = H, = 0 and

j
AH + 2H(H?-K+1) = 0.

Lemma 3.3
5 (AH) = A(SH) .
o 3. (/5 m.) 1
The ]
es(—gl)ai(qij/& H) + 7{—2 aim(gij@ﬂj ¥ gij/g(smj]

0+0+ =5, 1g" G 1 = alem
g

Proof. - § (AH)

QED




29

Proposition 3.2

w0y = L fguipral, where L = (A-2K+2) (A-2Rrd).

z

Proof. H"(0) = j¢6{AH+2H(H2-—K+1)]d{.
z

Since H =0 at t = 0:

5 [AH+2H (H2-K+1)1 = A(S8H) + 5 (-K+1) (SH)
= (A-2K+2) (8H)

- (A-2K+2)(%A¢+(2—K)¢)

- %(A—2K+2)(A—2K+4)é
QED

Weiner [161 has applied this to the Clifford minimal
embedding of the torus in 83. This embedding can be

expressed in local coordinates by
f£(o,B) = —l(cos a,sin a,cos R,sin B) .
The Clifford torus ig flat, i.e. K = 0, and therefore
L= 2(h+2) (M+4) .

The eigenvalues of the Laplacian oOn the Clifford torus
are xkﬂ = -2(k2+£2) for k,£ 2 0. Therefore, those of

I are Wy , = 2(k2+£2-2)(k2+£2—1) > 0. This implies that

the second variation is non-negative for the Clifford torus.




Chapter 4

Quotients of Lawson's Minimal Surfaces

In this chapter we study quotients of Lawson's minimal surfaces
Emn in the sphere 83 by groups of rotations. The main goal is to
show that the metric on these surfaces satisfies a hyperbolic-gine~
Gordon equation.

We begin with a review of the construction of the surfaces

Emn' ConsiderIR4 as Ez and S3 as the unit sphere in E2 :]R4 = m2 =

{(z,w) :ze T, we m} and 83 = {(z,w)}szmz : |z|2 + |wl2 = l}. On
s> distinguish two great circles C; = {(z,w) : |2z =1} and c, =
{(z,w) s |wl = 1}. For each pair of non-negative integers m,n choose
2{mt+l) equally spaced points PO""'P2m+l on Cl and 2{(n+l) equally

k

Qg_with a great circle segment in 83. In this way obtain a geodesic

spaced points QO""’Q2n+1 on C2. Join each point P to each point

lattice Lm,n in S3 which divides it into 4(m+1) (n+l} congruent cells,
each cell within a frame an consisting of four geodesic segments.
Choosing one of these cells arbitrarily, solve the Platean problem
in S3 for that cell with respect to its frame Imn to obtain a unique
smooth embedded surface %mn of least area having rmn as its boundary.
Finally, reflect %nn throughout S3 by geodesic reflection in the
segments of Lmn' This produces a smooth orientable compact minimal
surface Emnrembedded in 87, The surfacef = is of genus mn and

consists of 2(mt+l) (n+l) congruent copies of %nn’ one copy in every

other cell of Lmn in a checkerboard pattern. The surfaces &

mo0 and Ebn

30
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are geodesic 2-spheres, and Ell is the Clifford torus. Henceforth
we assume m,n 2 1.

Suppose the vertices of i. are P = (exp(ﬁ%zi),o) for k = 0
to 2m + 1, and Q£_= {0, exp(£ 1)) for £ =0 to 2n + 1, We cah

choose coordinate axes X1r X5y Xq in.iR3 so that under sterecgraphic

projecticn oy ¢ S3-+]R3 fram (0,-1) ¢ EZ the circle C, 1is mapped to

the circle x? + xg = 1 and the circle 02 is mapped to the x3-axis.
' e
sin(==)
kn . Lk n+l
Then ol(Pk) = (COS(EFI)r 51n(m+1) 0) and o (Qﬁ) = (0,0, i ),
l+cos(n+1

Ul(Qn+l) = o, This gives us the picture of Lmn partially shown in

Figure (1}). On the other hand, we can choose coordinates axes

Yy yé, Y, iniR3 so that sterecgraphic projection Oy ¢ 83+ IR3 from

{-1,0) ¢ E2 maps Cl to the y3—axis and C2 to the circle yi + yg = 1.

51n( T
m+l _ £
——————jz?;) and 02(Q£) = (cos (==

m+l)

T
n+2) 0).

Then O = (0,0, 1, sin

(P, )
27k 1+cos ( +1

This interchanges the vertices in Figure (1).

A%y
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Now, a reflection in one of the great circles of Lnn maps the
surface Eﬁn onto itself, by construction. And, the product of
reflections in intersecting great circles is a rotation through twice
the angle between them. Therefore, the group %m+l X %n +1 acts on
Emn by orientation-preserving isometries. The generators o,B for

this group are defined by

fl

o E_ > E , alz,w

2
o mm (z exP(m+ll) ,W)

: > - 2T,
B : Emn Emn, Blz,w = (z, w exp(n+ll)).

The generator o corresponds precisely to a rotation through %TI around

the x3-axis in figure (1), and B correspohds to a rotation through

% around the y3-axis. Furthermore, if p divides

m+ 1 and q divides n + 1 then de X qu also acts on Emn by orientation-
preserving isametries, the generators corresponding to rotations of

27 2/

p around the x3—axis and g around the y3—axis. These observa-

tions lead us to the following theorem,

Theorem 4.1. The surface Emn’ regarded as a Riemann surface,is a

pa-sheeted branched covering of a compact Riemann surface Emn/ Zp x Z

g
of genus (El,il - 1) (%l ~-1). The covering branches at the points
P, (with branch number q - 1) and Q, (with branch number p - 1).

k 2

Proof. In general, if Z is a compact Riemann surface and [ < Aut(g)

is a finite group acting on Z by orientation-preserving conformal

diffeomorphisms of ), then the quotient }/T has a conformal structure
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which makes it a compact Riemann surface. The projection is then
a finite-sheeted ramified covering map.

In the present situation, let E‘I’nn = _-1p

mn ~ (Fore e Pomyy Qe e+ Qi

be the open set where %p X %q acts freely. The orbit of any point
(z,w) ¢ E;m under the %p x %q action consists of the pg points
(z exp(%i),w exp(ggﬁi)) fork=0top-land £=0toq~- 1.
The orbhit of any an consists of pg congruent copies of an. Any
point x ¢ E;E\n has a neighborhood U = EI;n whose orbit is, likewise,
pg copies of U. (Specifically, M;m ; the interior of an, if x is
not on the lattice Lmn’ and two adjacent copies of M;m along with
the geodesic segment in between minus endpoints otherwise, for example).
Let z be a locgl coordinate in U, and transfer it throughout Emn by
the Z el X En+1 action. Define a local coordinate w near any point
y in Ez:m/ %P x %q, where 7 Emn > Emn/'zp X Zq is the natural projec-
tion, simply by w(y) = z(w-ly) . That this is well-defined follows
from the invariance of z under the Zm+1 X Zn 11 action.

On the cother hand, any Pk has an orbit consisting of p of the
Pés, is fixed by %q' and has a neighborhood { = Emn whose orbit

consists of p copies of U, Let z be a local coordinate in U such that

27

z(Pk) = 0 and the generator 8 in this coordinate is 8(z) = z exp(mi) .

Transfer this coordinate throughout Emn by the & ., action. Define
-1

a local coordinate w near vr(Pk) by: wly) = [z(x v} 19. That this

is well-defined follows from noting that m vy consists of pg points

whose coordinates, by construction, are of the form Z, exp(z—zrk-i) .




34

ly)lp.

Analogously, near Qk and TT(Qk) define w,z by wly) = [z(7
We have thus shown that the projection 7 may be expressed in local
coordinates by w = z (local homeomorphism away from fixed points),

W=Zq

(branch point with branch namber g - 1 at Pk) , Or w= zP
{branch point with branch number p - 1 at Qk) . Furthermore, if y
is any point of Emn/Zp X Zq and b{x) is the branch number of 7 at

X € Emn' then X (b(x)+1) = pg. Thus 71 is pg-sheeted with the -

-1
XET 7Y
required branch points.
A fundamental domain for the action of a%p X zq on gm consists

of the 2(m+l) (n+1) /pq copies of Mrm contained in the cells bounded

by the geodesic segments joining the points QO' ces ,Q2 (n+1) /q to
Poree- ,P2 (m+1) /p° Triangulating each copy of Mnm by inserting an
edge between its Q-vertices, we obtain a triangulation of Emn/ ’ZZP X .%q
which has 2(m+l)/p + 2{(n+l)q vertices, 4(mt+l) (n+l)/pgq faces, and

6 (m+l) (n+1) /pq edges. Applying 2 - 29 =V - E + F, the required genus
g follows.

QED

Obgserve that Emn/ Zm+l x 7

1 18 the Riemann sphere, and if m

and n are codd, Em/zm+1 X %n+l is a tor.s. We will show it is a
2 2

square torus by considering its group of symmetries,
We begin by examining the group Gmn of symmetries of Emn Let

Sl be the geodesic 2-sphere determined by PO,P and the midpoint of Q

091

1
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on the great circle C2, and 82 the Z-sphere determined by QO'Ql
and the midpoint of P{)Pl on Cl‘ The following orthogonal trans-
formations of R are symnetries of Exm by construction. Indices on

Pk and Q, are written mod(2m+2) and mod(2n+2}, respectively.

(1) & : Geodesic reflection in the great circle 04Pp-
On vertices, a is defined by a(P,) =P_, a(@Q P = Ly
As a map on ﬂ32, it is defined by a(z,w) = (z,w). As an
element of 0(4), it is the matrix 1 0 0 0

g -1 0 0

(ii) b : Geodesic reflection in QgPy- On vertices, b(P) =P,

and b(Q)) = Q_,- On €%, blzw = = expELi), W . Ino0(4),
21 . '
cos(m+l) sm(m.j“l 0 0
b = coS (i—% -cos (%) 0 0
0 it 1 0
0 0 0 -1

(iil) ¢ : Geodesic reflection in the 2-sphere Sl' On vertices,

m

c(Pk) =P and c(Qﬂ) = Qlw{{' On (332, olz,w) = (z,w exp(mi)) .

In Q(4),
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1 0 0 0

0 1 0 0

¢= T T
0 0 cos ("n—+-l- sui(m)

. T T
0 0 sin (n+l) _COS(n+1)

(iv) d : Geodesic reflection in S,- On vertices, 4(P) =P _,
-

d(©) =0, On T, dlz,w = (Z exp(1=i),w). In 0(4),

u T
cos(m+1 sm(m+1) 0 0
- o (T - _T_
4= s:.n(m+l) cos (m+l) 0 0
0 0 1 0
0 0 0 1

(v)  If m = n, then the angles between the pairs of vertices
are equal and there is a symmetry e which interchanges them:
@ is reflectionin the plane z = w. On vertices, e(Pk) = Qk’

2

e(Qﬁ) = PE' On €7, e(z,w) = (w,2). 1In O(4),

Lemma 4.1. The symmetries a,b,¢,d (and € if m = n) generate the

group G of symmetries of Emn'
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Proof. Any symmetry S of Emn, being an element of 0(4), is completely
determined by its action on the vertices Q0 ' PO’ Q1 R Pl' gince these
are linearly independent in R4. Agssuming there is a coﬁy of Mnm in
the cell QOPOlel’ then there is a copy of an in each cell
szP2 £Q2k+lp2 241 and QZk—-lP2 £—1Q2kp2 2 For convenience, define
maps A = cda and B = bdc., These are "diagonal" symmetries of the
checkerboard pattern of Emn : A is "one over, one up," B is "one-
over, one down." On vertices, A(Pk) = Pk+1’ A(Qﬂ) = Q£+l’
B(Pk} =P B(Qz) =Qp -

Now § maps QpPq0 Py to some 0y Py 0y 1Pyp.y OF Oy 1Py 10, P
This is accamplished by either 4 = Ak+£‘B£-k. or ¢ = Ak+£—lB£“k,
respectively. Therefore @ '8 or Ll)—ls is a symmetry of £ which
maps the cell QOPOQlPZL to itself and thus must be a symmetry of Mrrm'
By uniqueness, such a symmetry must be a symmetry of the frame QOPOQlPl'
But this frame has at most 8 symmetries:

(i) identity : QOPOQlPl > QPR Py

(ii) c: QOPOQlPl + QlPOQOPl
(1id) d: QOPOQlPl + QOPlQlPO
(iv) cd : QFo® Py 12198 (rotation by )

(and if m = n)

w) QP > PP
(vi) ce : Q4P Q)P PoOF 19
(vid) de : QP10,P; + P,0,P0,

{viii) cde : QOPOQ]_P]_ +> _PlQlPOQO
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In each case, S is a product of powers of a,b,c,d,e.

QED
Let Hm be the subgroup of Gmm generated by a,b,c,d.
Theorem 4.2. The group of symmetries of gnnﬂzp X Z& is: E
(i) Gmnﬁzp x Z% if m# n, (ii) Gmn/%p X Zb ifm=nand p=gqg and

(iii) Hm[Ep X %a ifm=n and p # qg.

Proof. If I is the group of symmetries of a space X, and G is a

subgroup of T with normalizer N(G), then N(G)/G is the group of
mt+l n+i
symmetries of X/G. Let ® =aP® and vy = B 9 be the generators

of Z% X ZE. The relations afa = 9_1, bob = @_l, cfc = 0, dod = G—l,
ava=7Y"', byb =Y}, cve = v}, &yd = v show that, if m # n, G is
the normalizer of 2£>< Za. If m = n, then in addition to the above
relations we have ede = B and eBe = a, which imply that Gmm normalizes

Z% X Z& if and only if p = q. If p # g, then Hm is the normalizer.
QED

/B . X %n+l is conformally
2 2 \

Corollary 4.1. The Riemann surface Emn
equivalent to a square torus.

Proof. Any torus is conformally eguivalent to T/ where I is scme
lattice in the plane. Any symmetry of the torus is a conformal or

anticonformal automorphism and therefore corresponds to a transforma-

tion z*+ az + b or z+* az + b of the plane which fixes the lattice T.
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Fixed point sets of the symmetry map to fixed point sets of the

corresponding transformation and thus to lines or points.

We map a fundamental domain of Emnﬂzm+lx Z ., (for example, the
2 2
8 copies of an contained in the cells with vertices Py through P, and

Qp through Q4) to a fundamental domain for C/I in the plane. The
geodesics QxFp are mapped to lines and the copies of an they bound

are mapped to congruent parallelograms. This gives us the picture of

the fundamental domain in Figure 2. Note that P0~P4, Q0~Q4.

— X Zn+1) Fixes each Pk and inter-

2 2
changes QO++-Q1, Q2+4-Q3. The corresponding map in the plane is a

The reflection € = ¢ (mod Z.

reflection in the line POP1 which must interchange Q0 and Ql’ this
forces the lattice to be rectangular. Similarly, the symnetry a fixes
PO’ QO' P2, Q2 and interchanges Pl++-P3, Ql+ﬁ-Q3. The corresponding

map in the plane is a reflection in the line POQO which must interchange

Pl++ P3. Therefore, the fundamental domain is a square.

QED
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The remainder of this chapter is dedicated to showing that the
Gauss curvature equation on Emn leads to a hyperbolic sine-Gordon
equation for the metric on Emn'

Let hij be the coefficients of the second fundamental form of

3 1l . .
Emn in §7, let g = 2(hll lhl2)' and write the metric on £ as
ds2 = 2F{dz|2. Because Emn is minimal, the differential form w = & d22

is holomorphic and the Gauss curvature equation takes the form
Fz(l-K) = f¢|2 where K is the Gauss curvature. See Appendix C for
details.

We begin by analyzing the nature of W on Emn'

Lemma 4.2. The differential form w has-zeroes of order n -~ 1 at each i

Pk’ and order m = 1 at each QE' It has no other zeroces.

Proof. At each Pk’ the geodesics QOPk""'Q2n+2Pk divide the surface
into 2n + 2-wedge—like régions. If d is the degree of the zero of g
at Pk’ then 2d + 4 = 2n + 2 glves d = n -~ 1 (see Appendix C). A similar
argument holds at Qﬁ.

The degree of a meramorphic differential on a surface of genus
mn is 4mn ~ 4 = # zeroes - # poles, counting multiplicity. But w has
no poles, and the sum of the degrees of the above zerces is {(2m+2) (n-1)} +

(2n+2) (m=1) = 4mn - 4. Therefore, W can have no other zeroes.
QED

Of course if m= 1 or n =1, "a zero of order zero" is no zero

at all.
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Next we look at power series expansions of ¢ at P and Q-
| Lemma 4.i. At PO""'P2m+1’ ¢ has a power series expansion
- {n+1) k-2 -
$lz) = kzl az , where a, # 0. Similarly, at QqrevesQp 15 |
$(z) = ) bkz(m'ihl)k-'2 where b, # 0.

k=1

Proof. Since w depends on the first and second fundamental forms, it
ig invariant under symmetries of Emn' Suppose that at p ¢ Eﬁn’ w is
invariant under rotation by zﬁ/ﬂ. Choose a coordinate z centered at p
so that this rotation is multiplication by A = exp(%ﬂ i). Then
invariance requires

6002) [d02)1° = B(z) az?

which gives .A2¢(Az) = pi(z).
Writing #(z) = ) cjzj, this becomes
3=0
) chJ+223 = 7 c.zd

4=0 5=0 7

and therefore, cjk3+2 = cj for j = 0 to ». The only possible non-zero
coefficients cj are those for which A3+2 = 1, which implies j = k£ - 2
for k = 1 to =, Setting A = Cpponr W arrive at the expansion

Bl(z) = ) akzkﬁ—z.
k=1

The first temm is alz*z-2 and so if w has a zero of order ¢ - 2, then

a, # 0.

The required expansions follow by noting that at PO""'P2m+1’

£=n+1, and at QO”"'Q2n+1' £ =m+ 1. ' OED
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The differential y projects to a differential @ on Emn/*zsz Zq

such that T = w. Recall that we can choose coordinates so that the
projection 7 is given by w = z away from branch points, w = 23 at Pk
and w = zF at QK' We will use these coordinates and the previous lemma

to prove the following.

Lemma 4.4. The differential W has simple poles at the 4 branch points

of E_ /&

/21 X %,4p- @nd is holomorphic on Emn/sz Z_ ifp<m+ 1 and

q
q<n+1,

2 P

Proof. We work at Q,. Write i = d{w)dw", o = gé(z)dzz, where w = 2%,

£

Then 1*0 = w becomes
3(2P) [a(zP)1? = p(z)dz°.

This leads to
p23(zP) = 22" P4 ()

. 22—2}-32 a z(m+l)k—2
k=1

where we have written m + 1 = pp.

Therefore

’hw) = akwpk‘2
k=1

where a, # 0. Thus % has a simple pole at Qp if p =m + 1, but none
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otherwise. An entirely analogous calculation holds at the branch

points Pk'

QED

Theorem 4.3. For m,n odd, the metric ds2 = 2F[dz|2 on the surface i

Emn satisfies a hyperbolic-sine-Gordon equation

33v = ~2¢ sinh v

where F = cev, ¢ > 0. For all m,n, the metric satisfies

v .= =2c sinh v

né

where F = ]—g——T ev, ¢ >0, and n,f are variables defined below.
z -1

In each case, the Gauss curvature K = 1 - e 2V,

Proof (m,n odd). By the previous lemma, the differential ® on the

torus Emn/zﬁ+lx %,y is holomorphic. Any holomorphic quadratic

2 2
differential on a torus is of the form: udwz, o e €, where w is a local
coordinate. Therefore, |3| = constant ¢ > 0. Except at the branch points,

we may choose local coordintes so that the projection T is the identity,

and hence l¢| = |gf ¢. The Gauss curvature equation then becomes

FZ(I—K) = 02

or F2 + 799 log F = 02.

Upon substituting F = cev, this becanes

ce2v + evaﬁv =C

which is equivalent to
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33v = =2¢ sinh V.

In general, on the Riemann sphere Emnﬁznwl x Z .1, the quadratic

2 2
differential @ has four simple poles and therefore must be of the form

dzz, a e .

Q=
24—1

As above, by the Gauss curvature equation we cbtain

2 — 02-
F" + Fdd log F = ———— |
4 2
|27 =1
We make the substitution F = | z ] e’ and obtain
z -1

|23- 13w = cle™V-e"),

since 33 logfz4—ll = 0. Now we make the change of independent variable

Il

dz
g= [—2— and q e
24—1 V£4—l

and note

4 —
= -1l)2av.
vnE |z l| v
The sinh-Gordon equation follows.

Pinally, either

il
I

- - L13F
K = F 33 log F
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At the branch points, the projection 7 is no longer the identity,
the change of coordinates are singular ng = 0), and we expect our
golutions to have singularities, which we will investigate in the next

1 - &2V gince K » 1 at the

chapter. This also follows from K

branch points, v » = there.

On the torus Eﬁnﬂzm+1 ZE+1 , writing z = X + iy, the sinh-Gordon
2 2
equation becames
v+ v, = -8c sinh V.
(XX vy

Thus, we are looking for real-valued, periodic solutions with the
symmetries illustrated in the fundamental domain. The group of symmetries

is generated by reflections in the lines shown.

Y

vix+e,y) = vix,yte) = viX,y) These suffice to generate
vix,y) = v{y,x) all the symmetries.

vi-x,y) = vix,-y) = v(x,y)




The scolution v will be = at the points indicated by o, these are

the branch points. In addition, v is determined by its values in

any of the triangles. Any "diamond" corresponds to an an.
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Chapter 5

The Hyperbolic Sine-Gordon Equation

In this chapter we prove a "Permutability Theorem" which allows us
to generate solutions to the sinh-Gordon equation algebraically. We
obtain first and second-generation solutions. In addition, we examine
the behavicr of the metric on %m'at the branch points Pk and Qp.

The Backlund transformation

_ _ , v
u, = vy 40851nh(—§—)
w = -v, +2 sinh (&Y
t 't B 2
leaves the differential equation Uy = -2c Sinh u invariant. In other

words, if u and v are related by this transformation, then u is a

solution if and only if v is. More precisely, we state the following

proposition,

Proposition b.1. Suppose that

(a) U = -2c sinh u

and consider the system

= - s g (Y
u —CBl(B,s,t) = vy 4cBsinh{ 5 )
(B)
_ - 2 iV
u, —]BZ&Ls,t) = vy + g ginh( > )

where B is an arbitrary constant. Then the integrability condition

BIBl 8:B2

3t - Jds

is equivalent to the conditicn

47
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{b) Vg T -2c ginh v. ' l

Conversely, if (b) holds, then the integrability condition for the

system
_ _ UtV
vS —ZBi(B,s,t) = Uy + 4cB 51nhﬁjfﬂ
|
B')
=B = — 2 qipp TV
v, —IBz(B,s,t) = -+ g sinh{ 5

is equivalent to (a). The proof is a simple calculation.
We say that "u generates v, via g" if they are related by the

transformation (B) (or equivalently, (B')). The usefulness of this

transformation is that we can generate solutions by a purely algebraic

process, as follows:

Theorem 5.1 (Permutability Theorem). Suppose that ) generates p and v
via Bl and 62, respectively. Then U and V generate a solution ¥ via

62 and 81, respectively, given by

_1 BB -
Y = 4 tanh ltjl——g tanh 1Y) + 2.
Schematically,
" 3
8 2

Proof. Applying the two transformations

By By

AT Ty
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we obtain
- F b (HEA b (UHH
by = AS + 4c8181nh( > )+ 4CB251nh( 5 )
=% - 2 giph@THy L2 oo sl
P = Ay 5 sinh( 5 ) + g sinh( 3 )
Similarly, from A Y, » Y  we obtain
= f i (AEY Lo (Y
by = A 408251nh( 5 ) + 408151nh( > )
=) - 2 Ginh DY) 4 2 o
wt = At 82 sinh( > ) + Bl ginh{ 5 ) .

Subtracting and rearranging, via an identity, gives

0 = cosh (YY) (g ginh (RHEVY 4 g gipp AEAY |
0 = cosh (MY [g sinn AHEVY g ginp HEATY) )

This in turn requires

oAU MYy P, el "N Vol
8151nh( T T I ) = stlnh( 7 7 )

Expanding both sides, dividing by cosh(iiy)cosh(ﬂig), and rearranging

leads to
- Anly _ LY
Solving for ¢ gives the desired result,
QED

If we seek solutions of the form u(s,t) = f(s) + g(t), then

Ugp = 0 = sinh u and hence we have a family of constant solutions
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u=kmi, k ¢ &

of ust= -2c sinh u, for any c. We will use these to obtain a pair
of families of non-trivial solutions.
Substituting u = kni in the Bdcklund transformation, we arrive

at the system

_ . v ki

v, = 4chmh(2 5 }
o2 v _ ki

Vi = 8 51nh(2 5 ).

There are two distinct cases: k=0 and k = 1.

k =0: The system becomes

vy = 4cB sinh 3
v, =-%simh ¥ .
Let Vis) = é— v{s,0). Then % = % vy = 2¢cB ginh Vv
and g{%’l—‘; = 2cB ds
| £n{tanh % V) = 2cBs + a,
V =2 tanh " (ae?°F%),
Therefore,

visg,0) = 4 tanh T (2e2°PS) (*)

po =

vis,t).

Now, for each s, define W(t) =




aw _ 1.
Then at = B sinh W
aw L _1
sinh W~ R dt
Kn(tanh-]lw) = --lt+b
2 & 0
-1 —_% t
W = 2tan " (be ).
-1 - % t
Therefore, vis,t) = 4 tanh ~(be ).
This gives v{s,0) = 4 tanh b

which on comparison with (*) , tells us that b = anCBS. Therefore,

we have obtained a (formal) solution

4 tanh_l(anCBs - é{)

v{s,t)

which we may rewrite as

vis,t) = 4 tanh_l(exp(2ch - %- t+a)).
A short calculation shows that this indeed satisfies Vst= —2c sinh v.

k =1: The system becomes

- . v
VS = 4cBi cosh 2

v —aicosh%

t B

Letting V(s) =

Mo

v(s,0) we obtain

_dav
cosh V

= 2cfi ds




52

which leads to v(s,0) = 2 sinh_l(tan(ZcBis+bO)). Defining

W(t) = % v{s,t) for each s leads to

&M 1,
coshw ~ g Tt
which gives us v(s,t) = 2 sinh_l(tan(% it+ag)). On comparison with

the above v(s,0), we have

oy Fool

vis,t) = 2 sinh T (tan(2cBist = it+bg) )
which we rewrite as

v(is,t) = 2 tanh_l(sin i(2ch+-% t+b)).

Direct verification shows that this satisfies
Vstz =2c sinh wv.

We summarize these results in:

Proposition 5.2, The trivial solution u = 0 to the sinh-Gordon

equation generates the solution

(a) vis,t) = 4 tanh_l(exP(2ch—-% t+a)) via the parameter R.
The solution u = Ti generates

(B) wvis,t) =2 tanh_l(sin i{2cBs+ % t+a)) via the parameter B.

Next we will obtain real, periodic solutions from (B) by

requiring

Re&c%-#%t+a)=0.




Substituting ¢ = ¢; + ic,, B=Db; + ib), 5 = x + 1y,t—x- iy,

a=a)+ ia2, this requirement leads to the system

b,
2(Clbl-—02b2) + b—2_;;"2- = {
1 -2
b
-2{(¢,b,+c.b,} - —2 0
172 7271 b2+b2
172
which reduces to the requirements
2,2, _ -
c2 =0
a; = 0 .
The solution (B} then becaomes
-1 2b2 2bl
(B") vi(x,y) = 2 tanh ~(sin( X + y-a,))
b2+b2 b2+b2 2
172 172
and satisfies the equation
4 \
ka + vyy = b§+b§ sinh v.

The solution (B') has singularities wherever sin X = +1, that is,

on the lines

2b 2b
—2—22x+*~2—1-2—y—a2=%+k,k€%.
bl+b bi+b

172 172

Note that for each value of bf + bé we have a family of solutions in

one-to—-one correspondence with Sl. We make this explicit by substituting
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_ 2 cos @ _2sino .2 2 _ 4
by ==y by ="y 'b1+b2")\2

and summarizing our results in

Proposition 5.3. The equation Vs + vyy = Azsinh v
has real, periodic solutions
(B") vix,y) = 2 tanh_l(sin(kx sin G+iy cos &+a))
which have singularities on the lines:

X sin®+)\ycose+a=%+kﬂ (ke ®.
iQ

These solutions are generated by 1i via g =< e 7,

> 0o

The family of solutoins (A} cannot be made both real and periodic.

However, by similar considerations to those above, we can state this

proposition:
- . _ 2,
Proposition 5.4. The equation Vex + Vyy~»-l sinh v
has periodic solutions
(A") v&d)=4tMKJMenb<mnwycmeh. (acl)

These are generated by the trivial solution v = 0 via g = % et , and

have singularities on the lines

Ax sin@+y cos Q) = +1 log a (if |a] = 1).

The Permutability Theorem can be used to generate more families

of solutions to the sinh-Gordon equation. This work is still in progress.
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We include two families of second-generation solutions.

Let Lk(x,y) = X sin @k + y cos @k . k=1,2,
vk(x,y) = 4 tanh [ake 1, 3 € T,
10
2.7k
and Bk = e .

Using the Bianchi diagram
v
1
Bl/ B\
0 v
\\EE\\\\\EA ”,/’Tr/’;,
v 1
2 .
we arrive at the family of solutions (A")
iALl(X,y) iALz(x,y)

0,-0, a,e -a,e
-1. . 1 72 1 2

viX,y) = 4 tanh ~[-i cot( ) . ]

2 ;A(Ll(x,y)+L2(x,y))

l—ala2e

. _ 42 .
to the equation Vs + vyy = -A"sinh v.

Similarly, using the family (B') we derive a family (B")

1 6,-6, sin AL, (x,y)-sin AL, (%,¥)
vi{x,y) = 4 tanh " [-i cot( > ) E k(Ll(x,y)+L2(x,y)) ]
which satisfies v.  + v = ?Zsinh v.
XX YY

We conclude by studying the behavior of the metric on

, _ ol —
Emn/%ﬁ+lj< Z ., near the branch points Py. ILet p = - and g = =5

2 2

Choose a local coordinate z on Emn near Pﬁ_and a coordinate w on
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Emn/ﬁb x'%q near m(p} as in the proof of Theorem 4.1. That is,

2mi i
+1 q

rotation by 21 around PK is given by zerzel T = ge

1 , and w = 23,

. , 2 _ 2 .
The metric on Emn is ds“ = £(z) |dz|*, on Emnﬂgp x %& its

—~

as® = g(w)!dw|2, where ds® = ﬂ*dSQ.
mi/
The metric on Emn is invariant under the rotation zw ze 9.
i/
Writing O = ze q'
then f(e(z)»gg az|? = £(z)|az|?
i/ i/
gives flze 9 le qdz|2 = f(z) |dz|2
which leads to
mi/
fize 9 = £(z). (%)
If we write f(z) = z b. zjzk, where b., = b, . since f is real,
j,k=0 JK ko Tk]

and b,, # 0, then (*) translates to

o ﬂ(j-— ) ey
I byzed” "= 7 b o0
3,k=0 i, k=0 J
g (37K) |
and therefore bjk = bjke for j,k =0 to », If bjk £ 0,
then we must have
m,.
5(3—]{) = 2Nm, N eZ,
This means J =k (mod 2q9).

We may replace j by r + 293, k by r + 2gk, and bjk by ik = br+2qj,r+2qk

where 0 £ r £ 29 -~ 1, and j,k = 0 to ». Then
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_ 2r 2qi—2gk
£(z) = r§k arjklzl g “Alg <N
or
_ 2r_(n+1) j—(n+l)k
£(z) = rgk arjklz[ z z .
Now the requirement d52 = ﬂ*d82 means
gtn(2)) [ az|? = £(2) az]?
g(z9 fqzq_ldzl2 = f(z) |dz|2.
qy 1 1
Then q(z?) q2 |z]2(q-l) f(z)
1 1 2r_(nH)}—(n+l}k
:—3——11_'— Z arjklz| Z( JZ( ) .
q” fz|7" rik
Therefore
4r
1 1 n+l 252k
gw) = =5 - Loa_ [w| T Wt S,
q2 |wf2(n 1)/ (n+1) rik rijk
where oo # 0, arjk = Erkj' " Thus, near the branch points P pr the |
metric on Emn/z me1 © %1 has a singularity of the type
2 2
1

for n > 1.

,WIZ(n-l)/(IHl)

The behavior at the branch points Q ? is analogous, with m replacirig T



Appendix A

Basgsic Operators On Manifolds

Let M be a Riemannian manifold with metric <,>. TIf
f: M ~>R is a smooth function on M, the gradient of f, ..
Vi, is defined to be the unique vector field on M .

satisfying
<VE,Y> = Y(£f) = df(Y)

for all smooth vector fields Y on M. If g : M IR is

another smooth function on M, then
V(fg) = fVg + gVvf.

The expression for the gradient in local coordinates is
(] a y
vE = g‘lj Aﬁj — = gl3f.8i.

axX~ ax J

The divergence of a vector field X on M is a smooth

function div X which may be defined pointwise as the trace

of the linear map Y - vyx:
(div X) (p} = trace(Y+va)

for p ¢ M and Y ¢ TPM. If £ is a smooth function cocn M

then

div(fX) = <vf,X> + £ div X.




Two local coordinate expressions for the divergence of

X = al _§7 are
ax
\ i ..
div(al _QT) = ggf + a’rl,
axt oxt tJ
. 3 1 3 i
, i —%) = —= —S=(a"/g).
and div{a - /5 gl

The Laplacian of a smooth function f on M is defined

to be the smooth function
Af = div(VE).
If g is another such function,
A(fg) = fAg + gAf + 2<VE,Vg>.
Local coordinate expressions for the Laplacian are
Af = gij(f..ff r
and Af =

The Hessian of a function f on M is defined to be the

2-form
Hess £ = Vdf.

It satisfies the identity

Hess(fg) = f Hess g + g Hess f + 2df & dg.
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In local cocrdinates

- . i i,.3
Hess f (fij fkfij)dx dx-.

Now suppose that M is a compact manifold without
boundary. The fundamental integration identifies involv-

ing these operators are the Divergence Theorem

f(div X)av = 0
M

and Green's formulas, which follow from the Divergence

Theorem:

[<VE,Vg>av = —-f (fAg)av ‘ |
M M ?

[(£Aag)aV = [ (gAf)av.
M M

Here dV is the volume form on M.

2

Integrating the identity A(f") = 2fAf + 2lVf|2 over

M and applying the Divergence Theorem, we obtain

[fAf = —flVfl2. If we define an inner product ( , ) on
c” (M) by {f,g9) = {fg, then we can write
o 2
(Af,£) = -[|VE|“av,
M

showing that A is a negative operator on M,




Appendix B

Surfaces In]R3l Some Identities

In this appendix we review the basic geometry of

3

surfaces in RB. Let £ : Z +IR” be an immersion of a

2-manifold as a surface inIR3. In terms of local
coordinates (xl,xz), we will write the coordinate vector

fields as ~§7'or aj when thought of as derivations or

o0x
vector fields on z, and as _ﬁf or fi when thought of as
ax
vector fields in R3. If <,> is the standard Riemannian

metric onIR3, the coefficients gij of the induced metric
on | are defined by gij = <fi'fj>‘ From the fact that the
metric tensor is parallel with respect to the induced

Riemannian connection we have

g, .
ij _ -4 £
K P19 * Tx39 -

The symbols g7 are defined by the relations gt jk'= 6;

so that in matrix terms (g*J) = (g,.) t. Also, g = det(g,.).
1]

ij

Let V be the standard Riemannian connection onIR3, and

n a unit normal vector field at least locally defined on Z.
If X,Y‘are tangent vector fields on Z, the vector field

VXY can be separated into components tangent and normal to

Z by writing

Vy=Vv+ B(X,Y)n.
X X




: Y A
Figrfe = L9

The Weingarten map:

Let (hi) be the matrikfpepr séhting A in the basis

i 3,
i

{31,82} of TpM. Then on on¢ bé§qj;A(8.) = -V, n = -n.,
and on the other, A(Bi) = hgaj.-'Therefore, we have

Weingarten's equations

— _wJ
ni— hiaj.




Furthermore, h,., = B(3,,3.) = <A(d,),9.> = <h<y 3 > =,3‘
13 1 ]

gives us the relations

Differentiating Gauss' formulas we obtain <fijk,n> =
oh, .
’E I

i - -
rijhﬁk axk' On the other hand, <fijk’n> = <fikj,n> =
i oh,y
I';,h,. + —. Therefore, we have the Codazzi-Mainardi

tk43 axJ

equations

his  dhy e

k - n -— r.kh,e‘ - F.-h/e’k.
Ix 5xJ 1 J 1]

The eigenvalues Al and A2 of the Weingarten map are
called the principal curvatures. The mean curvature H
is the average of the principal curvatures, or half the

trace:

2H = Al f Az = trace A = h

i
i
It is an extrinsic curvature measure in the sense that it
depends on the immersion. The Gauss curvature K is the

product of the principal curvatures, or the determinant

of the Weingarten map:

_ _ ]
R = Alxz = det(hi).

It is an intrinsic curvature measure in the sense that it

depends only on the metric.




(a) div(A(V@)) = <B,Hess ¢> + 2<VH,Vg>.
(b) <B,Hess ¢> - 2HA¢ = div(a(Vdh)) - 2 éi?ﬁﬂvé)
(c) TIf ] is compact without boundary,

[<B,Hess #>d] = [2uA84d) .
b z

Proof. The identity (c) follows immediately from (b

)5
which in turn follows from (a) by noting <VH,Vé> =
div(HV$) - HAS. To prove {(a): The Codazzi~Mainardi

equations imply

k k _ Lk L.k
Iihg = Ay = byl = Ty
Therefore,
= pgltd
2<VH,V¢> 2qg Hiéj
i X
=g (aihk)éj
= 17 k,,&rk _ 2k
= g T, By hyah Ty T o)
_ 1] k, -k v £3, kit
2<VH,V¢> = g éj(akhi+hirﬂk) g éjhirkﬂf
Also <B,Hess ¢> = <h .dxidxj (A, , - rm )dxkdx£>
[ ’ lj r k¢ m k¢
- J8 _ m
g™ by p =Bl g
ki k _if, -3
<B,Hess ¢> = hig ékj hlg éjsz.




From A(Vd) = h?gljéjak we calculate:

k

. _ K i £ 15
div{aVg) = Bk(hig éj) + hig qul"ﬁk

oLk oij k i ij
= hig éjk + hiéj(akg ) + g ¢j(a

]

k ij k _rJ 1
hyg "dy + hid (-Tyqg

<B,Hess ¢> + 2<VH,Vd>.




Appendix C

Surfaces in S3

immersions of Riemann surfaces, following Lawso

4 !

3

induced metric <,>., Let ¥ : R > 8° be a conforma

of a Riemann surface R, If z = x, + ix2 is a loca

<,”, We may write

ds® = 2Flaz|? = 2F(dxf+dx§).

We note that 2F = <Wl,¢l> = <¢2,¢2> and <¢l,¢2>

I P ¥ _ 1 : T o=
Let 3 = 2(81 132), 3 = 2(81+182), and 33 =

Then the Gauss curvature of the metric induced by ¥ is
_ 1.y
K = ¥ 39 log F.

Let n be a unit vector field normal to R but tangeﬂtV
to S3. Then the coefficients of the second fundamental

3 .
R i < .
form of in 87 are given by hij wij,n

> . Since
T\ wl‘A ¢2 is perpendicular to wl and ¥, it is normqi to
R. Since it is perpendicular to ¥, it is tangent t§;S

And since

U <> <, 1 0 o
HwAw1Aw2H2 R O R T IR [ P O
Wy by by by by 0 0 2F
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We may write n = g; wAwlsz and therefore

1
Biy = 2 WAV AP0, L.

, . 1 O N
A simple calculation shows that iF VAIPAY = 5o ¢A¢1A¢2

and therefore the second fundamental form may be written as

B(X,Y) = f; wAawAﬁwAvxvyw.

The second fundamental form, metric, and Weingartenf

map satisfy

2
_ By hap - by,

i3 472

det(h,.)
1]
det (g

G = det{(hJ) =
1

Now recalling that for surfaces in the sphere, G = K -:i

we obtain the Gauss curvature equation:

2

2 = —
4F" (1-K) = hl2 hll

h22.

The immersion ¥ is called minimal if the meaﬂzéuséfﬁkef
vanishes, i.e. hi + h§ = 0. Since hi = hy i/2F, this implies

hy; + hy, = 0. This is equivalent to the equation

33 = -FY,

To see this, note that

- L
By ¥ Bpp = g WAV ML AMN )y

_ 4 SThAST
= 55 PAIVATYASTY




and therefore hll + h22= 0 if and only if a?w is a line;

combination of y, 3y, and 3y. Now we apply the folldﬁin

lemma.

A
(%]
.

Lemma <ak¢,3£¢> = <§k¢,§£¢> 0 for 1 £ k + &

]

<353, P> <33y, P> = 0

fl

<3P, du> ~<33Y, P> = F

Proof. Using <Yy,¥5> = 0 and <¢1,¢1> = <¢2,¢2> = F

and simple calculations give

<3, 39> = <3y, dP> = 0, <3Y,d0> = F.

Differentiating the identity <y, ¢> =1 immediately gives
<3y, P> = <3y, P> = 0. The others are obtained by applying
these and repeated differentiations.
QED
If we write 33w = X + poy + vgw, applying the above
identities leads to )\ = -F, U= v =20, If on the other

hand we assume 33) = -Fy, then from the expression f§r:,f.

hll + h22 we immediately see that V is minimal.

1 . : . o
Eihll—lhlz). If Vv is mlnlmal, t_

;zSdz2 is holomorphic.

i

Lemma. Let §

ential form w

Proof. A short calculation shows that @& #?_ :

Therefore,




8% = - L whapaTyrady) 2

F
<> <p,avs <, T <y,3 2y

1 [<R,u> <Bw, A <ay, Ty <ay,dZys
<aw’¢> <a¢,aw> <aw,a¢> <8¢,8 )=
<%y, <0%u,00> <oy, Ty> <a2p, 82>

¢2 = <82¢,32¢>, by the previous lemma. Now & is holomorphic
if and only if 3¢ = 0, this is equivalent to the Cauchy-

Riemann equations.
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]

F<aty,s2p>

= 2<_8_821p1821p>

N = 2

= 2<0(a3y),07 P>

_ 2

- —2(8(Fll)),3 lp>

2 2

= ~2F<3y,0%)> - 2(3F) <y, 3%Y>

If ¥ is minimal, the Gauss curvature equation becomes

2 2 2
4F° (1-K) = (hll+h12) and thus

F2 (1-k) = |g]2.

Therefore,




Proposition. The Gauss curvature of a minimai.éﬁ?fédeﬁ_fii:fﬁ
in S3 satisfies K £ 1, and K = 1 precisely at the;: i
isolated zeroes of the holomorphic differential u.

A non-zero meromorphic quadratic differential on a

compact Riemann surface of genus g has degree
4g - 4 = # zeroes - % poles,

counting multiplicity. Thus on the sphere (g=0), it must
have poles. Since @ is holomorphic, it must be identically
zero. Then K = 1 identically and the immersion is totally
geodesic. If g 2 1, w has 49 - 4 zeroes since it has no
poles. On the torus (g=1), w has no zeroes and hence K < 1.

Now we'll give a geometric interpretation of the order
of the zeroes of w. First, some vocabulary.

The k~jet of y at p is the linear subspace ofLR4 spanned

by the derivatives of Y up to and including the kth order ones.

aj_+j
k-jet of ¢ at p = L{——i——j : 0 €1+ 3 2k},
axlaxz
Thus, the l-jet of { at p is the 3-dimensional subspace of
34 spanned by y{p), wl(p), ¢2(p). The 2-jet is spanned by
Y, ¢1' wZ' wll’ wl2’ ¢22 at p. Call the 1l-jet at P, Pp.
Let Sp denote the geodesic 2-sphere which is tangent
3

to the immersed surface at Y(p). Note that Sp = PP n s .

(Pp 0 83 is the intersection of a hyperplane through the

origin with 83, and therefore is a geodesic 2-sphere.




Its tangent space at p is spanned by wl and ¢2, i.e. fhe

same as the immersed surface. So it must be Sp.) The

order of contact Op of ¥ with Sp at p is the largest

integer k such that Pp contains the k-jet of ¥ at p.

Since Pp is the 1-jet, Op 2 1. The degree of spherical

flatness of ¥ at p is dp = Op - 1.
Now, since ¢ = hll - ihl2 and hll = -h22, W is zero

at p if and only if the second fundamental form vanishes

at p. And this occurs if and only if for each pair i,3:

- - 1
0 = hij(p) = 3pV¥i(p) A by (p) A wz (p) A wij(p).

.(p) are linearly dependent

for each pair i,7j.

<> The 2-jet of ¥ at p is contained in the l-jet Pp.

Therefore, © has a zero at P if and only if the 2-jet of
v at p is contained in Pp‘ More generally, the order of
the zero is k if and only 1if the (k+l)-jet is contained

in Pp' i.e., if and only if the order of contact is k + 1.

*his gives us the desired geometric interpretation:
The order of the zero of w at P is precisely the degree of
spherical flatness of V¥ at P.

The degree dp can be measured at any point p of the

surface as follows. Small neighborhoods of p on the

surface are divided by Sp like a pie into 2dp + 4 wedge-like




regions. The surface crosses from above to below Sp:.ﬂ
from wedge to wedge producing a pattern of + and —;
Generically, graphing a minimal surface in such a manner
over its tangent geodesic 2-sphere produces a saddle, and

4| -

T - Here, d,. = 0, W does not vanish

the pattern is D
and K < 1. At points where there are more than four wedges

(if g > 1 such points must occur) , dp > 0, w has a Zzero and

K= 1.




Appendix D

Tori in 1R4

Here we record a calculation of the minimum total mean 'Cl.l.fvature
2 PREITRY

I

of a special class of tori in ]R4. Given embeddings Yy ® Sl +R

i=1,2, we will show that fH2dS 2 21T2 for the product f = Yy XYy
Sl % Sl +R4, with equality if and only if Yy and Y, are circles of
equal length.
We suppose that Yy and Y2 are parametized by arc-length S, and
L ay, szi
8,, respectively. Then”——lﬂ =1 and —5= = u.n, where 1, is the
2 dsi ds:-a il i
i
curvature of Yy and Ny is a unit normal field to 1 in]RZ.

Writing vectors inIR4 as (vl,vz) where v, € ]Rz, and - for

the standard innerproduct in R4, the coefficients of the metric on

Yy X ¥, in the coordinates (sl,sz) are

9F  Of 5f  af dvy dr, dyy v,
s, s 5. 3s (ES—‘,O)-(dS_.‘;O) (‘d_s—’ol' (O’H)

1 9% 1 95y 1 1 1 2
of 3f  of  3f ( i{@).(&m (o%moi&)
852 asl 852 852 d82 dsl d52 d52

_ (3 g).

- The coefficients of the second fundamental form in direction

El = (nl,O) are

Ei_ d2 d Yl




and those in direction £2 = (O,nz) are

oo

PR £ i S Y
1 o 1fio o 0

and in direction 52 it is given by

The mean curvature normal is then

H =

DO [t

2
_ 1
iEl(trace A)E; = 2(n151+n2g2)

and finally the mean curvature is given by

B =

|

2, 2
(Ml+u2).
Let 21 be the length of ;. Then the total mean curvature is

' £

frds = 1?2 ds,ds e 23 +—l—§ 245
s = 0 19T M T "

1 2 2£1
E(R 2) é

OY— =

By the Cauchy-Schwarz inequality,
Z, £,
i

1
2 1
[ xids, 2 z;[j

nidsilz with equality if and only if . is constant.
0

0
£,

i
By Fenchel's Theorem, f uidsi 2 27 with equality if and only if Yi
0

is a plane convex curve, Therefore,




1\

2ﬂ2, with equality if and only if Yy and Y, are

circles of equal length.
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