Foliations with Ehresmann Connections

by

Alan Stuart Horwitz

1 to
The Graduate School
in Partial Fulfillment of the Requirements
for the Degree of
Doctorate of Philosoph;v
in
The Mathematics Department
State Univérsity of New York
at

Stony Brook

December 1988




STATE UNIVERSITY OF NEW YORK
AT STONY BROOK

THE GRADUATE SCHOOL

Alan Horwitz

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hareby recommend acceptance of
the dissertation.

_:j[u.nx ‘- ML‘ (DW% \

Dusa McDuff, Professor of Mathematics
Dissertation Director

N
Ralf Spﬁtzigga Assist
Chairman of Defense

t Professor

Nicolae Teleman, Professor of Mathematics

_Tomes, MMM¢ -

Nancy Mend@l1l, Associate Professor, Applied Mathematics &
Statistics Department
Outside member

This dissertation is accepted by the Graduate School,

3
%%FO\M?&?%Z{-%%? tf%;i..‘.

Graduate School

fﬂ”““‘“‘“%-.

ii




Abstract of the Dissertation
Foliations with Ehresmann Conﬁections
by
‘Alan Stuart Horwitz
Doctorate of Philosophy
in
The Department of Mathemafics
State University of New York at Stony Brook

' 1988

An Ehresmann connection for a foliation is a distribution which is com-
plementary to the leaves and has properties similar to those of an Ehresmann
connection on fiber bundles. In particular, a horizontal curve (ie. a curve
which is t_a,ngeﬁt to the complemehta,ry distributi_on) can be lifted along any
intersecting vertical curve (ie. curve in é leémf) to a horizontal path which
depends only on the homotopy class of the vertical curve. Not every foli-
ation has an Ehresmann connection, and even when one exists, not every
distribution complementary to the foliation qualifies. The only examples of
Ehresmann connections, described by Blumenthal and Hebda, are the or-
thogona] distributions to foliations that are totally geodesic or riemannian,
Cora product of these types.

This thesis begins with a discussion of flows with Ehresmann connections.
The perturbed Hopf flow on §* is shown to be an example of such a foliation
which is not of the types mentioned above.

Another major concern of this thesis is the growth of leaves in foliations

iif




é:_»f compact manifolds with Ehresmann connections. Blumenthal and Hebda
have shown that the universal covers of leaves are diffeomorphic, and they
have observed, in the case of totally geodesic foliations, that this diffeomor-
phism is an isometry. In the thesis, two proofs are given to show that, in the
riemannian case, the universal covers are quasi isometric. One proof uses a
simple estimate to measure how much neighborhoods in a leaf grow as they
are mapped to another leaf by an element of holonomy along a horizontal
path. The estimate holds for certain non riemannian foliations. In the other
proof, the riemannian foliation is lifted to a transversally pa.ralleiisable fo-
liation of the orthonormal frame bundle and the lifted leaves are shown to
be quasi isometric. From these proofs, it follows that the growth of a fun-
damental group of a compact leaf in a riemannian foliation places an upper
bound on the growth of any other leaf. A finer estimate can be oi)ta.ined by

measuring the growth of an appropriate quotient of this fundamental group.
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INTRODUCTION - \

.The motivation for this thesis was a paper [BHZ] in which the following
two theorems appear:
Theorem 1 Let 7 be a smooth foliation of connected manifold M admitiing
an Ehresmann connection D. If ¥ has a compact leaf Lo with Hp (Lo, po) (see
Chapter 4 for definition) finite, then every leaf L- is compact with Hp(L,p)
finite.
Theorem 2 Let F be a totally geodesic foliation of a connected, complet;

riemannian mantfold M. If F has a leaf Lo, of finite volume with H p(L,p)

finite, then every leaf has finite volume with Hp(L,p) finite, where the Ehres-
mann connection 1s D = (TF)L. |
A problem, proposed by my advisor, was to determine, for foliations
of compact manifolds with Ehresmann connections, whether all leaves have
polynomial growth when the finiteness cbnditioﬁ in the hypothesis of each
theorem is weakened to requiring that Hp{Lo, py) have polynomial growth.

My best conclusion, which is stated as follows, falls short of a statement

about all foliations with Ehresmann connections.

Corollary 4.24 Let D = (TF)* be an Ehresmann connection and suppose
that ¥ s totally geodesic or that [2.3] holds. For any compact L € ¥, the

growth type of Hp(L) ‘bounds the growth type of any other leaf from above.

The preceeding corollary follows, indirectly, from Theorem 4.9, which




~ states that the universal covers of the leaves have the same growth type.
The proof of this theorem depends on results from Chapters 2 and 4 of the
thesis. In Chapter 2, a variational argument is used to derive estimates.
for the energies of vertical paths in rectangles. From these estimates, a
comparison between the lengths 6f vertical paths in rectangles is derived in
Chapter 4, and used to show that a diffeomorphism between the universal
covérs of leaves in a foliation which satisfies condition [2.3] is a quasi isometry.
The preceeding result holds for riemannian foliations since't'hey satisfy [2.3].

A study of riemannian foliations from a different point of view, in Chap-
ters 5 and 6, leads to an alternate proof of Corollary 4.24, A proof of a theo-
rem of Molino, that the transverse orthonormal frame bundle of a riemannian
foliation # has a tra.nsve;rsa.lly parallelisable foliation 7r, obtained by lifting
7, is given in Chapter 5. Also in this chapter, transversally parallelisable
foliations of compact manifolds are shown to have Ehresmann connections
and leaves, all with the same growth type. In Chapter 6, a proof, different
from that in .[BH‘1], shows that a riemannian foliation ¥ has an Ehresmann
connection induced from that of its lift to the transversally parallelisable fo-
liation, Fr, of the transverse orthonormal frame bundle. The alternate proof
of Corollary 4.24, for riemannian foliations, follows from observing that the
lift Ly € Frofaleaf L € ¥ is a covering space of I, with fuﬁdamental group
m(Lr) = Kp(L). (see Ch4, p. 42 for definition)

Flows with Ehresmann connections are studied in Chapters 2 and 3. A
sufficient condition for a flow to have an Ehresmann connection is discussed
in Chapter 2. In Chapter 3, the perturbed Hopf flow ¢ §% is shown to be

an example of a foliation with an Ehresmann connection which is neither

rTiemannian nor totally' geodesic, nor a product of these types. The only
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examplés of foliations with Ehresmann connections which are currently in

the literature are the types mentioned above.




CHAPTER 1

In this chapter, we define an Ehresmann connection for a foliation and
describe some examples of foliations with Ehresmann connections.

Let 7 be a codimensijon q foliation on a riemannian manifold M and
consider a ¢ dimensional distribution I» which is transverse to ¥ , that is,
TM =TF + D . A curve is said to be horizontal if it is tangent to D and

vertical if it lies in a leaf of 7.

Definition 1.1 A rectangle 6(s,t) is a piecewise smooth map
6:[a,b] x [e,d] - M

such that for each s, the path t ~> 8(s,t) ts vertical and for each t, the path

s — 8(s,t) ts horizontal with respect to D.

For convenience, parameters s and ¢t will often be chosen so that § :
10,1] x [0,T] — M , for some T > 0. We call 6(s,0) the initial horizontal
edge and 6(0,¢) the initial vertical edge. Paths 6(s,T) and § (1,t) are the
terminal horizontal and vertical edges, respectively. _

For a vertical path r(t) and a horizontal path o(s) such that o(0) = 7(0),
we say that a rectangle 6(s,t) is determined by  and ¢ provided 6 (s,0) =

“o(s) and §(0,¢) = 7(t). From [BH1], 7 and o determine at most one rectangle,
50 6 is unique.
For any choice of D, a rectangle always exists, locally. One can see this

as follows. The collection {U;,;} of local submersion charts for # consists

of open neighborhoods and locally defined submersions of rank q such that




M = U;U; and ¥ is determined on U; by ;. Suppose that 7 and o lie in
' the domain of a local submersion chart {U, }. A unique rectangle 6 in U is
determined by letting, for each t', 6(s,t') be the unique horizontal path for
which |
©b(s,t') = po(s)
and

6(0,t") = 7(¢)
To show § does not depend on {U, v}, suppose that 7 and ¢ lie in the domain
of another local submersion chart {U’, ¢’ } and determine a rectangle §' such
that

©'8'(s,t') = p'o(s)

and

8'(0,t") = r(¥').
Claim that 6'(s,t') = 6{s,#'). There is a local diffeomorphism ~ : ©'(U N
U') — (U NU") such that ¢ = v 0 ¢', thus

©8'(s,') = vo ©'8'(s,t') = yo p'o(s)

agrees with po(s) = o p'o(s), so uniqueness implies that §'(s,#') = S(S,t’).

A rectangle can always be constructed when one of 7 or o is sufficiently
short. To see this when ¢ is short, cover 7 with a finite collection {U;, ;}7,
of submersion charts such that U; N U;_; # 8. On Uy, a rectangle 61(s,t) is
determined by = |Ul— and o |y,, and on U;, a rectangle §(s,t) is determined

by 7 |y, and the portion of the terminal horizontal edge of 6;_; in U; N Ui 5.

A rectangle § is contained in U} ,§; which has all of 7(t), t € [0,1] as its
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initial vertical edge and a portion of ¢ |y, as the initial horizontal edge. The
argument is similar for constructing a rectangle when r is short.
| Let Lq, L, € 7 such that o{0) € L, and -6(1) € L;y. The horizontal path
o detefmines the germ of a local diffeomorphism from Ly to L; as follows.
Let us, first, suppose that o lies entirely in fhe domain of a local submersion
chart {U,}. For any vertical path 7 in U N Lo such that 7(0) = o(0)
and 7(1) = &, there is a rectangle é(s,t) with 7 and o as initial vertical
and horizontal edges, respectively. An element of holonomy along ¢ is a
map from U N Ly onto U N L, which sends = + §(1,1). Since, beginning
at any £ € U N Ly, there is a unique horizontal path in U whose image
under ¢ agrees with o, we see that the element of hoionomy along o does
not depend on the pa,rtioular rectangle §(s,t); if §' is determined by o and
some other path 7 in U N Ly from ¢(0) to z, then 6' and 6 share a terminal
horizontal edge, that is 6'(s, 1) = §(s, 1), s0 6'(1,1) = 6(1,1). An inverse map
is provided by an element of holonomy along o(1 - s), thus o determines the
germ of a local diffeomorphism from Ly to L;. Suppose,. now;v, that o lies
in the domains of several local submersion charts, then a unique element of
holohomy along o can be assembled by cutting down the domains and piecing
together elements of holonomy along small segments of 0. The element of
- holonomy maps an open neighborhood, U N Ly, of o(0), diffeomorphically
onto an open neighborhood, U' N Ly, of ¢(1), by sending = - 6(1,1), where 6
~ is the rectangle determined by 7(t),t € [0,1] and o, for any path 7 in U N Lg
joining ¢(0) and x. |
Let 7 be a vertical path with 7(0) = p and suppose 7(t) lies in a sub-

mersion chart {U,p} for 0 < ¢ < e¢. Let v, be a horizontal vector at p,

ie. v, € D,. At 7(e), there is a unique horizontal vector Vi) € Dy such




that dov,( = dpv,. For r(t), 0 < t < ¢ lying in some other submer-
sion chart {U','} and v';( € Dy such that dp'V' (o = di'v,, we see that
Vi(e) = V'r(e), since dpv'y ) = dpodp'todp'v',(y = dgooa!t,io"‘lodt,o'vp = dpv,,
where the map dp'™! “lifts” vectors from T,)0'(U') to .D,(E). The linear
map from D, to D,( which sends v, V() is called the linear germinal
holonomy along 7 |y, and the local picture extends to give a linear holon-
omy map along all of 7, from D, to D:(1)- Linear holonomy along vertical

paths is used in Ch.6, although barely mentioned by name.

Definition 1.2 A transverse distribution D ts said to be an Ehresmann con-

nection for a foliation 7 if for every vertical path 1 and horizontal path o

“with 7(0) = 0(0), there exists a rectangle §(s,t) determined by 7 and o.

The following is an example of a distribution D N TF which is not an

Ehresmann connection for 7.

Example 1.3 Constder the one dimensional foliatio_n ¥, (drawn in Fig. 1
with solid lines) on R* with the usual metric, and let the dotted lines repre-
sent the direction of D = (T'¥)*. For leaves Ly and Ly, let vertical path 7
and horizontal path o begin at p € Ly and end at péints r € Lo and q € Ly,
respectively.. Claim that v and o do not determine a rectangle. For a rect-
angle to exist, its terminal vertical edge must lie in L, but this fsn’t possible
since horizontal paths near r don’t meet Ly. Thus, D = (TF)L is not an

Ehresmann connection for 7.

We, now, recall some examples of foliations with Ehresmann connections

which appear in [BH1].




Ly
Figure 1,

Example 1.4 : The orthogonal distribution D = (T¥)L is an Ehresmann
connection for a riemannian foliation ¥ on a manifold M, with a bundlelike
metric. | |

The explanation in [BH1] involves the following definition from [KN].
Given a manifold M of dimension n, we choose a fixed frame of n orthonormal
tangent vectors to identify vectors in the tangent plane T, M with points in
R™ in the obvious way. The development Qf a curve ¢ into T,)M is déﬁned

as a path ¢ in Tyq)M obtained by integrating in R",

s de
E(S’) = fO Pc(l—u)( )dla

du | u=t

de
du| u=l

de
du | u={

where Py;_y) ( ) denotes the parallel translation of

, backward

along c(u)| ueo) b0 @ vector in T:0)M. The definition does not depend on
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the choice of the orthonormal frame which is used to identify T,oM with
R". We, also, note from [KN] that a path ¢{s) in T,M can be undeveloped
into a curve ¢(s) in M with ¢(0) = p, when M is complete. |

The development of a horizontal path ¢{s) into the ¢ dimensional horizon-
tal distribution D,(0) is more complicated. The difficulty with the previous
definition is that parallel translation preserves D if and only if D is inte--
grable, so Py(;_, (%I u=;) May not be in Dy (), in general. For o lying in a
submersion chart { U, } of a codimension q foliation ¥, the development,
o, of o(s) into D, is defined, locally, by letting @ be the development of
the path ¢ o o(s) into the tangent _spé.ce |

do Doy = T,y p(U),

then letting o(s) = dp™ @(s) be the lift of & to D,(p). This definition is
independent of the choice of local submer'sion chart. When o is covered by
_ intersecting submersion charts { Us, ¢ } and { U}, ; }, parallel translation
| aléng p; o 0(s) can be continued to parallel translation along w; o a(s) by
a change of coordinates v;; = ;0 ]!, so development can bé defined
along o, globally. We, also, mention that paths in D0y can be undeveloped
when M is horizontally complete, that is, when horizontal geodesics can be
extended indefinitely. |

Returning to the example in [BH1], the horizontal paths of .a rectangle
0 with initial vertical edge v and tnitial horizontal edge o are determined
as follows. The path o can be developed into the distribution D, to obtain
a path Co. The riemannian foliation ¥ on M, with a bundlelike metric,
1S determ:'ned'by local submersion charts {U,(p}, where © 15 a riemannian

submerston, te. dp : D, — T,,10(U) is a linear isometry. It follows that
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the linear germinal holonomy along r is an isometry from D, to D, for
each t'. Let Cy be the tmage of Cy under the holonomy along 7. Since M 1s
complete, there exists a horizontal path whfcfa develops into D,y as the path
Cp. We let 6(s,t') be this horizontal path.

Example 1.5 A distribution D = (TF)*, for a totally geodesic foliation 7
on a compact riemannian mam}‘old. M is an Ehresmann connection. From
[BHI]; the vertical paths of a rectangle 6 with initial vertical edge 7 and |
initial horizontal edge o are determined as follows. Usihg_ the riemannian
connection on the leaves, r.can developed into T, as a curve Cy. The
differential of the element of holonomy along o(s), 0 < s < &' is a map
which sends Cy to a curve Cp in To(snF . Since the leaves-ar'e complete in the
induced riemannian metrics, there exists a vertical curve whose development

into Ty F is Cyr. We let §(5',t) be this vertical curve.

We mention some basic properties of rectangles, for foliations with an

- Fhresmann connection.

Remark 1.6 In a leaf L, let 7 and 7' be fixed endpoint homotopic paths |
(with homotopy through paths in L) which begin at a point p. Let o be a
horizontal path beginning at p. Then from [BH1], the rectangles § and §'
with initial vertical edges 7 and 7', respectively, and with the same initial

horizontal edge o, have a common terminal horizontal edge and terminal

vertical edges which are homotopic through vertical paths. (See Fig. 2)

We mention, without proof, a result which appears in [BH1].

Proposition 1.7 If M s connected and D is an Ehresmann connection for

¥ then any two leaves of F may be joined by a horizontal curve.




11

e

Figure 2

‘Example 1.8 The Reeb foliation ¥ of an annulus (see Fig. 3) cannot have
an Ehresmann connection since any path from Ly to Ly must be tangent

to 7 al some point. Also, the Reeb foliation of a solid torus, M, does not

have an Ehresmann connection, otherwise, from Proposition 3.1 of [BHI];

M = R’xR.
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Figure 3
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CHAPTER 2

In this section, estimates are derived to compare the lengths of vertical
paths in rectangles and applied to the case of foliated flows. This comparison
is used in a proof of a sufficient condition for the orthogonal distribution to a
flow to be an Ehresmann connection. We show th.at riemannian flows -sa.tisfy
this condition and, thus, have an Ehresmann connection.

For most of this chapter, let ¥ be a smooth m - dimensional foliation on
a compact riemannian manifold M. For each leaf I € ¥, consider the second
fundamental form S; = 57 ~ £, for riemannian connection 7 on M and the
connection 7% of the induced metric on L. On the i.ntersection of a leaf L
with a neighborhood U; with local coordinates, {2}, ...,z},}, we can express

m .m

Si{v,w) = > > hidz} @ dzi(v,w)

i=1j=1 _
where v,w € TL and the h; in (TF)* are locally defined vector ficlds. By
choosing a partition of unity {fi} subordinate to a finite cover {U;} of M,
We can express

m m ‘

Se(v,w) =3 > "> fihi;dz} ® dzi(v,w).
U oi=1j=1

.. The vector fields f;hf-j are continuous on M so for some K, the finite sum

¥ |l fikd ;I < K. For vectors in T'L expressed, locally, as

LU ! a3
vV = Z’U'——
]
$=1 aml‘
and
"" d
_
W = Z Wy .’
=1 K
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an estimate

|dzi ® dz(v, )| = [v]|w}] < fiv]|]lw]

holds. The preceeding inequalities imply that

1S(v, w)l) < 3550 S bk lIvliwl < 355 K] jwll

i=135=1 1 i=1§=1

that is,

1S6(v, W)l < m*K|lv||w| (2.1)

Proposition 2.2 Let the distribution D = (TF)L, with respect to some met-

ric on M. Suppose the following holds:
For each horizontal o(s), 3 an integrable function f : R — R so that any

rectangle 6(s,t),(s,t) € [0,1] x [0,T], with initial horizontal edge 6(s,0) =

o(s) satisfies

12008y < g 20 ey

Then 3 a constant C > 0, which is determined by the second fundamental

form on M, such that
ET(a)e—Cf:ﬁ"%%(s,ﬂ)“)ds S ET(b) < ET((I)CCI: f(”%(.q'o)”)da,

where Er(s) denotes the energy of vertical path 6(s,t)) teo,r)- That is, the
energies of vertical paths in § have the same growth type, as funetions of T.

proof
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Let 0 < a < b < 1. We wish to compare the energies Er (a) and Ep(b) of
vertical paths 6 (a,t) and 6(b,2), t € |0, T'), respectively. Observe that

dEr(s) d fT 36 96

ds dsh “am %
[T d <9 as 86 dt
“Jo ds T a9t ot
T 6 36
=2 o <‘ V%E't“, ot dt
[T 9% 36
I 7*%33’ ot
since {22,281 = O
Because ‘gf is vertical and is horizontal, we have
dEr(s) _ fT d 86 96 8 96 [T 3 _ 86
s i G <arm <3y Ve >)dt‘_2fo 35 Vg > U

L9 % __ _96 96 (35 36)+ RN
SesVia T T < g Slgp ) TV
86 38 96

= S
< 30050 5 >
the last inequality follows since 22 ‘” 4 Va.s o ¢ because D is orthogonal to T'7,

Using the Schwarz inequality, hypothe51s [2.3], and mequality {2.1], we get

6 _ 36 96 86 86 .
< 5er5uap 5 > 1 < W5 e G 3ol < 702 0pmt 51 2 e
therefore,
dExr(s) T 36 36 aa ,
< — — <
e 22 1< s Ghan >l < 2 [T 2 s o r) Lira

- 2f(||§§(s,0)||)zm2KET(s)- e




C =2m’K,
then

dl nET (s) dE7(s)

= = g < 032 so) ¢

By integrating on [a, b}, we get

Er(b), b 36
gl < €[ 1U56.0ds,
therefore,
o[ 0500 < w2 < ¢ 1'% oy
and

.ET(a)e_cf:f(Il + (8,0)[1)ds < Ep(b) < ET(a)er F158 (.90)|f)da

(2.5)

(2.6)

Thus, ET(a) and Er(b) have the same growth type, as functions of 7. O

Let 7 be a riemannian foliation and let D = (T )t , With respect to a

bundlelike metric on M. Recall, from [L.4], p.9, that F is locally determined

by riemannian submersions and that the linear germinal holonomy along

vertical paths £ - 6(s,t) is an isometry, so

a6 06
Ha(s,t)n = ”5‘3‘"(8,0”],)’03' all t.

Since the hypothesis [2.3'] is satisfied, with the function f(z) = z, we have
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Corollary 2.7 Let ¥ be a riemannian foliation and let D = (TF)*, with
respect to a bundlelike metric on M. Then

&

ET(a)e_C f: i|%(a,0)f|da < ET(b) < ET(G,)BC f: ||%%(s,0)]|da
where C' is as in the proof of Proposition 2.2.

Corollary 2.8 Let 7 be a totally geodesic foliation and let D — (T#)~.

Then the vertical paths of any fectangle 6 have the same energy.

proof

On every leaf I, the second fundamental form S; = 0 so it follows from

the proof of Proposition 2.2 that |22} = 0, O

Let Lr(a) denote the length of the vertical path § (a,t) in a rectangle
6(s,t),(s,t) € [0,1] x [0,T]. We can say

Ln(a) = [ gz 0llat < ([ 12)rat ([ 12yt = (Br(a)d )},
(2.9)

If || 28(a,t)|| = constant, then

Lr(a) = (Er(a))*(T)}  (2.10)

Lemma 2.11 If §(a,t) ts a piecewise geodesic curve in leaf L, then Ly(a) =
(Br(e))3(T)3

proof




18

d, 86, 12 _ 96 95 ) 35 86, 95
”-....._(a t)” V%‘._a-"t_ a 2 < Vaf at S 6(5{, 5),5 > =

since §(a,t) is a geodesic with respect to Ve and St, 1. T'L,. The conclusion
follows from the preceeding remarks.O

We wish to compare the lengths Lz(0) and Lr(1).

Proposition 2.12 Suppose, for some C and rectangle §, that the following

condition holds:

Er(0)e™® < Er(1) < E:T(o)ec : ' (2.13)

Suppose, further, that 6(0,t) is a piecewise geodesic curve in Ly. Then
Ly(1) < Ly(0)e?

proof

 From remarks preceeding the last lemma,

[+

Lz(1) < (Br(1)5(T)* < (Er(0)e%)}(T)} = Lr(0)e

For the remainder of Ché.pter 2, suppose that ¥ is a 1 dimensional folia-

tion.

Proposition 2.14 Let a distribution D = (TF)*, for a1 dimensional folia-
tion 7. Suppose that ¥ is totally geodesic, or that hypothesis [2.3] is satisfied.
Then for any rectangle 6(s,t), (s,t) € [0,1] x [0,T], 3 @ constant C such that

LT(O)ET < LT( ) < LT( )

uEQ




proof

From the hypothesis {2.3] and Proposition [2.2],
Er(0)e™C < Ep(1) < Ep(0)e®

where

¢ =ami [ 7220 g,

By changing the t parameter of § so that § (0, t) has the arclength parameter,
the path §(0,1) is a geodesic in the leaf Ly. Length remains unchanged under
reparameterization, so we can express the conclusion of Proposition 2.12; in
terms of the original ¢ parameter of 4, as Lr(1) < Ly (0)3%. By changing t to
make 6‘(1’. t) a geodesic in leaf ., Proposition 2.12, applied to the rectangle
6(1 — s,t), implies that L(0) < LT(l)e%, with C as above, therefore,

“’IQ
u]Q

Lr(0)e™ < Lg ()<LT()

When 7 is totally geodesic, C = 0 in [2.13], S0 L7(0) = Ly(1).0

The next proposition gives a sufficient condition for 1 dimensional foli-
ations to have an Ehresmann connection. We note that in [2.6], the term
IN F(I%|Dds can be replaced with supseianf (| £ (s, 0)||)(b — a) to give the

inequality,

Er(a)e® ™ < Br(b) < Ep(b)et-2), (2.15)
where C = 2m*K sup,epo,uf (|| (s,0)|}).

Proposition 2.16 Let 7 be a 1 dimensional foliation on M and let D =
(TF)L. Supposé that the hypothesis [2.8] is satisfied. Then D is an Ehres-

mann connection.




proof

Let 7(t)epo,r) and o (s) se[0,1] be vertical and horizontal paths, respectively,
beginning at point p. For sufficiently small € > 0, 7 and U(S)se[o,e] determine a
rectangle. Let exs be the supremum of € € [0, 1] such that there is a rectangle
6(s,¢) with §(s,0) = o(s) and 6(0,t) = {¢) for (s,t) € [0,¢] X [0, T. (see Fig.
4) | |

We, first, show that ey = 1, so that 7 and ¢ determine a rectangle for

(s,8) €]0,1) x [0,T].

T

Ol %) (€ O*(en+'- eé)

Figure 4

Suppose ey < 1. Let ¢:{o(ear)) be a vertical path through o(epr) when

t = 0 and choose Tpr so that the length of path ¢:(o(err))icior,,) is equal
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to (length 7{t)ieom)e 7™, where C = 2m* K sup,eio,1 f(|| 1) with K as in
2.1). | |

For sufficiently small € > 0, there is a rectangle 6y (s, ), (s,t) € [55, £] x
[0, Tar] such that 6p(0,t) = @{o(ear)) and Sp(s, 0) = o(em — s). Let En,,(s)
and Ly, (s) denote the energy and length, respectwely, of the vertical path
6(s,t)cpo,1y- From [2.3] and [2.15], we have Er,(0)e™z < Eqp,(5) <

Er,,{0)e, with C as above. From proposition [2.14], it follows that
’ Ok € £
LTM(O)"' c% < LTM(_z") < LTM(O)eC""

From the inequality on the left, the length of the leftmost vertical edge
in 6ps is bounded from below by length{¢:(c(err)sepo,1,,)e €, which equals
length(7(2) o, T])ezeMe_fe. | |

Choose a rectangle 6(s,t) with (s,t) € [0,ep — 3] x {0,T] such that
6(s,0) = o(s) and §(0,¢) = r(t). The rightmost-vertical edge §(ear — £,1) lies
on -}:he same leaf as the path SM(g, t). We will show that 6,5 can be patched
to é to form a rectangle determined by r and (8} se(oens + <-

Let Lr(s) denote the length of §(s,t)ic[o,7), then we have the following

inequality,
Lr(0)e ¥ 8 < Ly (e - £) < Ly(0)eFn),

From the inequality on the right, the length of the rightmost vertical edge of
¢ is less than length(r(t)tE[U,T])e%(EM ~%), which is less than the length of the
leftmost vertical edge of §y;. The ¢ parameter of éps can be changed so that

Sm(5.1) = 6(enr — £t)onte[0,T].

The s parameter of 8ps can be reversed to define a rectangle 63,(s,t) =
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Sm(5 - s,t). The union

{S(Sat)v (s,) € .[Oa €M — %] x [0, T} u {61'\4’(3!t)’ (s,t) € [0,¢] x [0, T} ;

is a rectangie determined by r and o for (s,t) € [0, exr + 51 % [O, T}, contrary
to the definition of €)y. |

It follows that eps = 1. By patching a rectangle &yr to § when ey = 1,
as in the preceeding arguments, we obtain a rectangle determined by 7 and

all of the horizontal path o(8}seloo -

Corollary 2.17 If 7 is a 1 dimensional riemannian foliation, then D ==

(T#)L is an Ehresmann connection.
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CHAPTER 3

- In this chapter, we describe a foliation, which is not riemannian, totally

geodesic, nor a product of these types, and we show, directly, that it has an

Ehresmann connection.

Consider §* < C? as the unit circle
Az 2) €071 alf +a)? = 1)

in the complex plane. Using the circular orbits {z1 = 0} and {2, = 0} as

refere.nces, we assign to a point p € §% coordinates (r(p),0(p),¥(p)), as in

H
(Fig. 5).
These are related to the coordinates on the complex plane by

(21,22) = (re®,v/1 - rie'?).

Notice that {z; = 0} = {p € 5% | r(p) = 0} and {z, = 0} = {pes®|r(p) =
1}. We choose the metric on S% so that the vector fields 39,0y and 9, are

mutually perpendicular and

18011 = 1, 180]| = r and |l3y]) = vI=72

so that 9y and dy vanish on {2; = 0} and {2 = 0}, respectively. The
tangent space 7,5 is spanned by 3, Jy, and 8, at points p such that

0 <r(p) < 1. On {z = 0}, T,5% is spanned by Jy and a perpendicular .
plane {1 = constant} and on {22 = 0}, by 8, and the perpendicular plane ‘

{6 = constant}.
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21.:0
Figure 5

The perturbed Hopf flow on S* (see Fig. 6) is defined as the integral flow
of the vector field
9% -
At |(r(p).0(p)0(p))
where X; = 9, and A, is the bump function (see Fig. 7), with :T((’;c’T’\:;(T) =
0, Vkatr =0, r = % and r = 1. Note that this integral flow includes the

Ap(r) X + 8 + By, (3.1)

closed orbits {2 = 0} and {2z, = 0}.

M The perturbed Hopf flow on S*® is not riemannian since, the distance
between leaves is not constant. In fact, from [Cal], the lens space L,, and
$% x S* are the only 3 dimensional manifolds which can have a riemannian

flow with exactly 2 closed orbits.

Further, the perturbed Hopf flow is not geodesible for any choice of metric
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2=0
Figure 6: orbit of perturbed Hopf flow

on S°, since [Gl] shows that a closed orbit can be approximated, arbitrarily

closely, by the boundary of a 2 chain which is tangent to the flow, and this, |
together with a theorem of Sullivan, implies the result.

In the remainder of this chapter, we show that the perturbed Hopf flow
has an Ehresmann connection.

We describe a distribution I on 53, Let
X1 = (1 — A(r))ag — A(T)B,p, (3.2)

where the function A (see Fig.8) satisfies f%)(r) =0, Vk, when r < 1 and

ro> 2. Both X; and X, vanish at p on {z1 = 0} and {z; = 0} and as

r(p) — 0 and 1, the plane spanned by X; and X, becomes tangent to the

planes {1 = constant} and {# = constant}, respectively. Let D be spanned
by X; and X, when 0 < 7{p) < 1, and let D be tangent to {¢p = constant}

and {0 = constant} when r =0 and r = 1, respectively.

We will show, eventually, that D is an Ehresmann connection for the -
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0 |/2' ' l
Figure 7

perturbed Hopf flow foliation by constructing a rectangle § such that §(0,t) =

7(t) and 8(s,0) = ¢(s), for any vertical path  and horizontal path ¢ begin-
ning at a common point.

Paths ¢ and 7, as above, lie in a flow surface
{#elo(s)) |0<s<1,te R}

with ¢o(o(s)) = o(s) and ¢¢(e(0)) = r(t). At any point d:(o(s)), there
is a horizontal vector Vi4.(o(s)) Which is parallel to the line at which the
tangent plane to the flow surface (spanned by %? and %) and the plane
spanned by X; and X, intersect. A rectangle § corresponding to edges 7
and o is determined by letting s —» &(s,t) be the integral curve of V such
“that §(0,2) = 7(t). We must show that these integral curves exist over
0 < s < 1. Forsimplicity, we will assume that 0 < r(o(s)) < i, Vs € [0,1].
The case where the endpoints of o lie on {z; = 0} and {z = 0} will be

considered, later.

We define V, more precisely, as follows. At any point (r,8,%), with
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l l: )
1 %
Figure 8-

0 < r < 1, the vectors X;, X, and %? = Ap(r) X3 + 8y + 9y are linearly

independent so

d 7
P 06) = al) 22 (o) + b, ) Xy + 0060 XKy iy (3:)

for some coefficient functions a,b, and c. Let

Vot = 2rlo(s) — als,) 22 o(s)). (3.4

Clearly, V is tangent to the flow surface and V is horizontal since

Viitotsp) = b(8,8) X1y, oy + e(5,8) X2, (o) . (3.5)

The integral flow of V preserves orbits of the perturbed Hopf flow, since

‘[V,ﬁt(a(s)),%(a(s))] is proportional to 5ft(o(s)), so 6(s,t) lies on the leaf
through o(s).

In the following, we solve for coefficient functions a, b, and ¢ in [3.3].

Since % = %% (5(s)) is horizontal, the expression in [3.3| with ¢ = 0 has

a(s,0) = 0, so z—z = b(s,VO)Xi + ¢(s,0) X;. To compute %(0‘(8)), we need
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expressions for d$: Xi, .,y + = 1,2. Since 8%t commutes with 0y, Oy, and

at

Ap(r) X2, these vector fields are invariant under d¢; so

dde X1,y = (1 — A(r(0(3))) B pu(o(e)) — AMr{0(5))p 4 (0(s))

and

Ap(r(de(o(s
Wi, = )(\pgf(f(r(i))))) Footon

From the preceeding, we can express

Fo(s) = b(s,00(1 = A(r(0(5))) B putote
- b(svo)’\(r(o))a'ﬁtﬁe(ﬂ(’))

Ap(r(gele{a))})
o e(s, 0 G Xeacoren

Substituting-[3.1] and [3.8] into [3.4], we can write

Vool = [A—a(5,8)]004,(o(s)) + [B — al5,)]0p.(0(5))
+ {(W((—O(Lg — a(s,£)) A (r(¢e (o ()] X2y, (0 i0rys
where '

A = b(s,0)(1 — A(r(o(s)))
and
B = —b(s,0)A(r(c(s))).
Comparing with [3.5], observe that

— (0 - afs r{d:(o(s
C(S,t) - (/\p(r(o_(s))) ( st))AP( (QSE( ( ))))

and [A - G(Sat)]85¢e(a(a)) + [-B - a(sit)]3¢¢e(0(3)) = b(s’t)'Xlt#t(ﬂ(ﬂ))'
Let

E =1— X(r{¢:(o(s))))
F = =Xr(é:(o(9))))

(3.8)

._(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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so that Xy, )y = EOs4,(a(s)) + Fygu(o(s))- Solving for a(s,t) and b(s,t), we

have
FA—EB - A-a B-A
T i
so that
a(s,t) = b(s,0)(A(r(d: (o (s)))) — A(r(o(s))) (3.15)
b(s,t) = b(s,0)  (3.18)

and , ‘
|
We remark that a(s,t) and b(s,0) have the same sign, since r(¢e{o(s))) >

r(c(s)) for t > 0.

To show that rectangles exist, in general, it is sufficient to show that they

exist when the initial horizontal edge ¢ is a piecewise smooth curve which
joins {z; = 0} to {2; = 0}. Assume that 0 < r(o(s)) < 1for0 < s < 1.
As spelled out for me by my advisor, Professor Dusa McDuff, the problem

can be reduced to showing that integral curves exist for a vector field

0% ad
w(s,t} — 5:; - a(sat)”é_ts

defined on (s,t) € [0,1] x R*. Let

¢: o1 x RY — &3

8(s,8) = ulofs)),
then ;
d® : Ty pn([0,1] x R:r) = Ty (o (S7) %

by

a d
dd W{s’t) = d(ﬁg‘; - a(s,t)d@ a
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- %?(0(6)) = afs,t) %(0(8)) = Vaots)-

Observe that integral curves of V join {z, = 0} to {2, = 0} if and only if
integral curves of W join {0 x R} to {1 x R}, and the latter happens when
a(s,t) is bounded, for 0 < s < 1. From [3.15], it suffices to show that
b(s,0) is bounded.
Observe from
% = b{s,0)(1 — A(r(a(5)))Bs0(s) — b(s, O)A(r(a(s)))a.pa(,) + ¢(s, O)sz)
= & O T E Oroy + B Dy

that

= b(s,0)(1 — AG(o(s) ) e

- and

% = —~b(s,0) A(r(o(s))) (3.18)

so that b is bounded for o(s) near {2, = 0} when 7 1s and for o(s) near
{22 = 0} when % is,

The following argument that g% is bounded has been spelled out for me
by my advisor, Professor Dusa McDuff. Since motion in the ¢ direction lies
in a plane {¢) = constant }, assume, for simplicity, that path o(s) lies in
such a plane for r(o(s)) near 0. Let rectangular coordinates (z,y) on the

plane satisfy

z + yz — 2

and
@ = arctan 2_
T

We are free to parameterize o(s) so that

z(o(s)) = s
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g.nd
y(a(s)) = f(s)

where f is a real valued, smooth function which vanishes at s = 0. We can

express
die) darctan(f(s)) _ 1 s - 7
_ ds ds i 1 + {; 52
so that .
do fls® — f
I ;i; , = 52 )

The expression on the right side is bounded since the MacClaurin expansion
is

fls —f=0+0-s + f0) s* + ...,

therefore 5(s,0) is bounded when ¢ is appropriately parameterized for r(o(s))
near 0.

S

—

The argument for boundedness of #(o(s)) when r(o(s)) is near 1
similar, and involves the use of rectangular coordinates on a plane { 4 =
constant }, so b{s,0) is bounded when o is appropriately parameterized for

r(o(s)) near 1.
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CHAPTER 4

In this chapter, estimates from Chapter 2 are used to compare the lengths
of the initial and terminal vertical edges of rectangles. According to [BH1],
when a foliation has an Ehresmann connection, there is a diffeomorphism be-
tween the universal covers of any two leaves which are joined by a horizontal
path. Using the comparison abbve, we show, under certain conditions, that
‘this diffeomorphism is a quasi isometry with respect to t_he pullback metrics
on the universal covers. |

For the first two propositions of this chapter, assume only that D =
(T'F)*, where 7 is totally geodesic or satisfies hypothesis [2.3] of Proposition
2.2. We do not necessarily assume that D is an Ehresmann connection,
although D is, in some of preceeding cases.

The ﬁrs.t propositionA‘is a somewhat local version of the second proposition

and both propositions are proved in the same way.

Proposition 4.1 Let 6(s,t), (s,t) € [0,1] x [0,T] be the rectangle deter-
mined by a sufficiently short minimal geodesic ry in leaf Ly and a horizontal
path o(s} from Ly to l_eaf Ly. Let 7i(t) be the shortest geodesic in L, such
that 11(0) = 6(1,0) and n(T) = §(1,T), then there is a constant C, which

. depends only on o, such that

{length Tg)e_% < (length 1) < (length 'rg)e%

(see Fig. 9)
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L |

Figure 9.

By hypothesis, length 7y < length 6(1,t).

Since the hypothesis of Proposition 2.12 in Chapter 2 is satisfied,

length 6(1,t) < (length o(t))e?,

where C' depends only on ¢. When 7 is sufficiently short, §(1,t) and n
lie in thé range of an element of holonomy along . From Remark [1.6], ry
and o(1 — s) determine a rectangle §' such that the terminal horizontal edge
satisfies 6'(s,T) = &(1 — s,T). Since the paths 7(t) = 6(0,¢) and 6'(1,¢) in
Lg share the same endpoints, length 7 < length ;5'(1,t). From Proposition i

2.12, length 6'(1,t) < (length 'rl)e% , with the same C as above, therefore

o
Z

length 1o < {length m1)e




34

and

(94
2

length 1 < (length mo)e

S0

o
2

(length Tg)e“% < length ry < (length rp)ez D

Proposition 4.2 For D and 7 as above, any rectangle 6(s,t), (s,t) €
[0,1] x [0,T] satisfies

(length 6(0, t)| wejo,r))e”

[Mis
w|Q

< length §(1,1), tepor] < (length 6(0,1), tefo,T]) €
| (43)
for some constant C' which depends only on the path 8(s,0).

proof
Let L, denote the leaf containing the path s — 6(s,¢). Fix a partition

0:t0<t1<.<tn:T

Let To(t)lte[t‘._ht‘.] be the shortest geodesic in Ly which shares endpoints

with the segment (0, t)lecltis.t;]- Clearly,

Iength To(t) |t6[t¢._1,t;] S length 6(0, t)ltE[t.‘—l,t.’]‘

When length § (0,t)teft;_,.2q is sufficiently small (by making the partition
of [0,T] fine), Tﬁ(t)|te[ti_l,t;] is in the domain of an element of holonomy |
along 6(s,ti—y), so there is a rectangle 8(s,t),(s,t) € [0,1] x [t;—y, %] with

Q(O,t)fte[t,._.ht‘.j = Tg(t)|te[t';_1’t'.] and 6{s,t;_1) = 6(s,t;~1) as the initial vertical

and horizontal edges, respectively, such that the terminal horizontal edge

satisfies §(s,;) = é(s,t,-);




Figure 10:

Let n (t)|t€“.._1,t‘.] be the shortest geodesic path in Ly which shares end-
points with 6(1,)jeef;_,,t- We have

length 1 (t),tE!tn'—hti] S length lé(}-:t)rtE[t.‘_l,t,‘]- (4.4)

The length § (lat)|te[t;_1,t;] can be made sufficiently short (from Proposition

2.12, by making To(t)lte{t.-_l,t;] short) so that Tl(t)lte[t.-_l,t;] lies in the range

-of an element of holonomy along §(s,t;) = 6(s,t;~1). There is a rectan-

gle 8(s,t), (s,t) € [0,1) x [tic1,t:] with (0, ) ejti_y 1 = 71(t)tefti_, 1) and

6(s,tq) = 6(1 — s,ti_1) as the initial vertical and horizontal edges, respec-

tively, such that the terminal horizontal edge satisfies 6(s, ) = 6(1— s,t).
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Since paths 8(1,)tepr,_, ] and 6(0, t)jeefti_s,tq in Lo share endpoints,
length o(t)pep,_,0q < length 6(1,8) peftis i A(4.5)
Taking unions, we see that the piecewise geodesic
7ot )eeto,r) = UPy 0 ()eefs_, )
in Ly is the initial vertical edge of the rectangle
8(s,t), (s,t) €]0,1] x [0,T] = U,’-‘,__l‘ﬁ(s,‘.t), (s,t) € [0,1] x [t.-_l,t,-]..
From Proposition 2.12, we have
- length é(l,t)lge[o;T] < (lengih Tg(t)lte{g,T])e% (4.6)

for some constant C which depends only on the initial horizontal edge, 6(s,0),

of the rectangle é.

Again taking unions, We seg that the piecewise geodesic

T () jefo,r) = Ui 7 () eeftis i ,‘

in L.l is the initial vertical edge of the rectangle . : |
6(s,t), (s,) €[0,1] x [0,7] = UL, 8(s,t), (s,2) € [0,1] X [ti_1, )

From Proposition 2.12, we have

length, g(l, t)ItE[O,Ti S‘(length Tl(t)ltE[O,T])e%, (4.7)

with the same C as before. Using (4.6] and summing up lengths in [4.4], we n
have

g
ER

length np < (length 1o)e




37

Doing the same with [4.7] and [4.5], we get
Iengt.h 7o < (length Tl)e%.

By making the partition of [0, 7] fine, the lengths of paths 7, and 71 closely
approximate the lengths of paths 6 (0,t) and 6(1,¢), respectwely, 80 in the

limit, the inequality
(length p)e”% < length n, < (length ro)e?

becomes

2]
2

(length 6(O,t)tefO,T])e"% < length 6(1,t)icp,m) < (length 6(0, t)te[o T))ez.
(4.8)
Note that when 7 is totally geodesic, C' = 0, so

length 0(t)tep,r) = length Tl(t)“e[o’T].D

For the remainder of this chapter, assurﬁe, unless otherwise stated, that

D is an Ehresmann connection.

Theorem 4.9 Let D = (TF)L be an Ehresmann connection and suppose
that condition [2.3] is satisfied. Then the universal covers of the leaves have

the same growth type.

proof

Let o(s) be a horizontal path starting at p € Lo and ending at ¢ € L.
Choose p € Ly and § € L, as lifts of p and ¢ to the universal covers. A

diffeomorphism ¢ : L, - I:l will be constructed. For any € I:o, let 7 be a

L
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path from p to z . Its project.ion to Lo -is a path, 7, which begins at p and,
with o, determines a rectangle §(s, t}). The path 6(1,t) in L, begins at ¢ and
lifts uniquely to a path in I:l starting at & and ending at some point §. Define |
" ¢: Ly — L, by ¢(i) = §. Note that ¢(p) = §. To see that § is independent |
of the choice of path from § to Z, observe that all such paths project to |
fixed endpoint homotopic paths in Ly which, from Remark [1.6], determine, | !

along with o, a family of rectangles which have fixed endpoint homotopic

terminal vertical edges in L;. The map ¢ has an inverse map determined
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by the path o(1 — s), and the maps are smooth since the terminal vertical

edge of a rectangle depends smoothly on the initial vertical edge. Therefore, '

v

¢t Ly — Liisa diffeomorphism. We will show that $ is a quasi isometry.

<

—
\
o3

e

Figure 12

"In L, let 1 be the shortest path starting at p which lifts to a path from p to
z. In Ly, let 1; be the shortest path starting at ¢ which lifts to a path from
q = ¢(p) to § = (). The rectangle 6y(s,t) determined by 1, and ¢ satisfies,

for some C which depends on o,

leﬁgth 6(1,t) < (length 'ro)e%‘.
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Since 6p(1,¢) is fixed endpoint homotopic to 7, length y < length 8(1,t).
The rectangle 6,(s,t), determined by r; and o(1 — s), satisfies

length 6,(1,t) < (length r;)e¥.

Since 1 and 6(1,t) are fixed endpoint honiotopic, so are 6;(1,t) and r,

therefore length o < length 6,(1,t). From the above, (length r)e% <

length 1y < (length ro)e%.
Let, fo and I:l have for riemannian metrics the pullbacks of the metrics
on Ly and L, respectively. The lengths of the shortest paths from p to %

and from § to ¢(&) are length 1y and length 7, respectively, 50
dist(p,Z) = length 1y and dist(§,§) = _length 71,
where dist is the distance in each coveﬁng space. Thus,
dist(p,%)e" 3 'g dz’st.(q&(ﬁ),gb(f:)) < dist(p,E)e?,  (4.10)
for any % € Ly. From the following lemma, ¢ is a quasi isorﬁetry.

Lemma 4.11 Let a diffeomorphism f : X — Y and suppose Vxr € X that
k-dist(p,z) < dist(f(p),f(z)) < K- dist(p,z), for some constants

K,k > 0. Then f is a quasi isometry.

proof

We'll show for any v € T, X that kl|v|| < || f.v]| < K|}V

Let c(t) be the unique geodesic in X with ¢(0) = p and d_fi(aﬂp:o =v.
By the hypothesis, k - dist(p,c(t)) < dist(f(p), f(c(t))), with equality

when t =0, so

e
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k- %hzodist(p,c(t}) < %ltzodist( fo) Fe@)  (412)

Near ¢ = 0, ¢(t) minimizes arclength, so dist(p, c(t)) = fi l|¢'(s)||ds = t]jv]||

and

T dist(pe(t)) = 1. (4.13)

Since f(c(t)) need not be a geodesic in Y, its arclength

[ 17 e > s £, 1c(0)
with equality when ¢ = 0,. thereforé
, ) |
A Bt (), (e(®)) < [ fev])- (4.14)

From {4.12], (4,13}, and [4.14], k||v|| < (FAE
Similar reasoning is used for obtaining the other inequality. From the

hypothesis,

dist(f(f"H(a)), F(7 71 (¥))) S K - dist(f7(q), F~*(y))

for f~'(q), f~'(y) in X, therefore

flfwdist(q,y) < dist(fMg), ()

“for q,y € Y. By working with a geodesic b(t) such that b(0) = ¢ and

2{s) = f.v, one shows

ds |s=0

1
IVl < 17 vl = vl | f

therefore k||v| < ||fov|| < K||v|.D
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Suppose the hypothesis of Theorem 4.9 is satisfied and suppose some leaf
L is compact. From [M], the growth type of L agrees with the growth type
of m1(L). For any other L' € ¥, the growth type of L' is no greater than that

of I/, so Theorem 4.9 implies the following,.

Corbllary 4.15 Let D = (T#)! and supﬁose that condition [2.3] is satis-
fied. For any compact leaf L, the growth type of m\(L) bounds the growth
type of any other leaf L' from above.

From [BH2], the universal covers of leaves are isémetric when ¥ is totally
geodesic. This result, also, follows from observing that proof of Theorem 4.9
works with C : 0 in [4.10] when ¥ is totally geodesic. We, also, remark that
Corollary 4.15 holds when ¥ is a riemannian foliation, since condition [2.3]
is satisfied.

Let distribution D be transverse to T7. Fix a base point p in leaf L.
The vertical loop a(t) based at p and the horizontal path o(s) starting at
p determine a rectangle 6(s,), (s,t) € [0,1] x [0,1]. Denote by a - ¢ the
terminal horizontal edge §(s,1).

Following [BH1|, define
Definition 4.16

Kp{L,p) = {aem(L,p) | @+ 0 =0}

that is, Kp(L, p) consists of homotopy classes of loops based at p for which
the rectangles always close up. |

It is easily shown that Kp(L,p) < mi(L,p) and for p,p' € L that

Kp(L,p) = Kp(L,p'). We remark that a horizontal path, o, from p € L
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to ¢ € L' determines an isomorphism from K (L, p) onto K. p(L',g) by the
map

o — §(1,t)

where 6(s,t), (s,t) € [0,1] x [0,1] is the rectangle determined by o €
Kp(L,p) and o.

For convenience, the base point p will sometimes be omitted from the
notation.

We give the following definition,

Definition 4.17 Hp(L,p) = m(L,p)/Kp(L,p).

HD(L, p) does not depend on the base point p and is independent of the
choice of the Ehresmann connection D, from [BH2].

The following result is proved in [BH2].

Proposition 4.18 Let the transverse distribution D be an Ehresmann con-

nection for ¥. Then EO/KD(LU) = I:leD(Ll) for any Lo, Ly € F.°

proof

The proof is almost identical to the first portion of the proof of Theorem
4.9, |

Let o(s) be a horizontal path beginning at p € L, and ending at ¢ €
Ly. Let p € Lo/Kp(Lo,p) and § € Ly1/Kp(Ly1,q) be the lifts of p and g,

respectively. On any £ € I:O/KD (Lo, p), define a map

¢ I:O/KD(LO,P) - EI/KD(LI;Q) '
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as follows. Let 7 be the projection to Ly of a path 7 in L, /Kp(Ly,p) from
to £, and let §(s,t) be the rectangle determined by 7 and o. The path 8(1,¢)
in L, lifts to a unique path in I, /Kp(L1,q) from § to some point . Define
#(Z) = . Observe that ¢(p) = §.

To show that § is independent of the choice of path 7 from p to Z, let 2/
be another such path and let ' be its projectioil to Ly. The lodp Fagt €
ﬁl(fo/KD(Lo,p)) projects to a loop 7 x 1! € Kp(Lo,p). Let 6'(s,t) be the
rectangle determined by 7' and o. It follows that §(1,t) *6'(1,1— t) is a loop
in Kp(Ly,q) which lifts to a loop in m (L, /Kp (I, q)), therefore the lifts of
8(1,t) and 6'(1,t) both end at §.

An inverse to ¢ is determined by the path o(1 — s), and the maps are

smooth, therefore ¢ is a diffeomorphism.

Theorem 4.19 Let D = (T'F)* be an Ehresmann connection and suppose _

that 7 satisfies condition [2.8]. Then the map
‘¢ : Lo/Kp(Lo,p) — L1/ Kp(Ly,q)

from the previous proposition ts a quast isometry.

proof

Let Ly /Kp(Lo,p) and L;/Kp (L1, ¢) have as metrics the pullbacks of the

metrics on Ly and Ly, respectively. Let
¢: EG/KD(LOap) — EI/KD(LI:Q)

be determined by the horizontal path ¢ from p to ¢, as in the previous

proposition.
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‘ In Ly, let 7 be the shortest path starting at p which lifts to a path in
EO/KD(LO, p) from a base point § to some point Z. Let bo(s,t), (s,t) €
[0,1] x [0,1] be the rectangle determined by 70 and go. By the way ¢ is
defined, éo(1,) lifts to a path in L;/Kp(L,,q) from the base point § = ¢(p)
to t.he point 7.

| In L,, let r; be the shortest path, starting at ¢, which lifts to a path in
EI/KD(Ll,q) from § to §. We can say

length ry < length 6y(1,1) (4.20)

Let 61(s,t) be the rectangle determined by 7, and o(1 — s). By the way ¢~
is defined, &,(1,¢) in Ly lifts to a path in Lo/Kp(Lo,p) from § = ¢~1(§) to
z = ¢~(§), so
length 7 < length 6,(1,t) (4.21)
From Proposition 4.2,

o
2

length 8(1,¢) < (length 7o)e (4.22)

and

length &(1,t) < (length rl)e% (4.23}

for some C which depends on o.

From [4.20 - 4.23], it follows that

o4
2

(length ro)e__f < lengthm < (léngth To)e

In the metrics on ﬁg/KD(Lg,p) and ﬁl/KD(Ll,q), length 7o = dist(p, %)
and length 1 = dist(§,§), where dist denotes the distance in each space,
therefore

dist(p, 2)e ™ < dist(d,§) < dist(p,&)e?.
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From Lemma 4.11, it follows that ¢ is a quasi isometry. O
When 7 is totally geodesic, L, /Kp(Lo,p) and L, /Kp(L,,q) are isomet-
ric, from [BH2|. This result can be seen from the previous proof since C = 0

and ¢ is an isometry when ¥ is totally geodesic.

Corollary 4.24 Let D = (T7)* be an Ehresmann connection and suppose
that ¥ is totally geodesic or that [2..3] holds. For any compact L € ¥, the
growth type of Hp(L) bounds the growth type of any other leaf from above.

proof

The growth type of I /Kp (L,. p) agrees with the growth type of the group

of deck transformations,

m1(L,p)/Kp(L,p) = Hp(L,p).

From the preceeding theorem, the growth type of any other leaf cannot

exceed the growth type of Hp (L, p). ' :
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CHAPTER 5

In this chapter, we discuss the growth of leaves in a transversally paral-
lelisable foliation and prove a theorem of Molino that the transverse orthonor-
mal frame bundle of a riemannian foliation has a transversally parallelisable
foliation. Notation is developed for use in the following chapter.

The following definitions and observations are due to Molino [Mo].

Let 7 be a codimension ¢ foliation of a manifol& M. Given a.vector field

X e TM, the following conditions are equivalent:
X, Y]eTFVY e T¥ (5.1)

The integral flow of X preserves 7 (5.2)

Using local coordinates (z!,..,z"7%,y!,...,y?) where the z!,..,2" 7 are

coordinates along the leaf, we can express

" n—g . _ (9 q ) 3
X =3 &', LYty o+ znf(yl,..,yQ)BF (5.3)
: &

=1

that is, the transverse part of X does not change along the leaves.

Definition 5.4 X is said to be a foliated vector field with respect to ¥ if one

of the conditions above is satisfied.

The collection of foliated vector fields is a Lie algebra which we denote
by L(M, F).
We can assume that codimension q foliation ¥ is determined by local

_submersion charts {U;, ¢;} of rank ¢ which satisfy the following conditions

from [Cal].
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e Whenever U; N U; # 8,3 a local “change of transverse coordinates”

diffeomorphisiu ~;; such that

() = vji 0 pi(z) for z€ U;nN U, (5.5)
o The ~;; satisfy a cocyclé condition:

Ti(2) = Y5 0 vi(2) for z € (U NU; N UY) (5.8)

We can think of the disjoint union T = U'-A ©:(U;) as a transverse manifold
- of dimension ¢. The ~;; generate a pseudogroup, G, of local diffeomorphisms
onT. |
Locally, a path with initial point ¢;(p) can be lifted, via submersion chart
{Ui,¢1}, to a unique path in M, starting at p, which is tangent to (TF)*,
for some choice of metric on M. It is clear how a locally defined vector field
at 1 (p) lifts to one at p. The lift of a globally defined, G- invariant vector
field, X, oﬁ T is a globally defined, foliated vector field, X. To see that X
does not depend on the local submersion chart, suppose that p is in another
local submers;ion chart, {Us, 2}, then 3 = 33 0 oy for some '72-1 € G, and

Ko (p) lifts to X, since

Kesp) = Xaropilp) = 311Xy, () = dyn 0 dp1(Xp) = dipy(X5). |
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Definition 5.7 A codimension ¢ foliation ¥ is transversally parallelisable if

there exists a parallelism of vector fields Xy, s Xq on T which are tnvariant

under elements of G.

It follows, when ¥ is transversally parallelisable, that a parallelism X, Xy
of foliated vector fields in (TF)* is obtained as the lift of a G-invariant
parallelism X;,..,Xq on T. ¥ T is given a riemannian metric gr such that
97(X:,X;) = 6 , then elements of G become local isometries and 7 becomes
a riemannian foliation when the riemannian metric g on M is redefined on
(TF)* x (TF)* so that
| 9(X:,Y;) = 6.

From now on, assume that ¢ on M is chosen as above and, also, assume that
M is compact.

Since a trra,nsversa,lly parallelisable foliation ¥ with metric g, as above, is
a riemannian foliation, we know from [BH1] that D = {TF)* is an Ehres-
mann connection. We can see this more directly, as‘foll;)ws.‘ A rectangle
is' determined by a vertical curve 7(t), t € [0,7], and a horizontal curve
v(s), s € [0,1] as follows. For some smooth functions a;(s), we can express

dry(s) _
ds

29} (S)K,'_’(") .

=1
Observe that v is the integral curve of the foliated vector field i a(s)X;
with initial condition 7(0) = 7(0). For each t, let the horizontal path 6(s, )
be the integral curve of 321, ¢;(s)X; with initial condition 8(0,t) = r(t).
Since 1, a;iX; € L(M, F ), the integral flow of the vector field preserves ¥,

so the paths t — &6(s,t) are vertical and it follows that § is a rectangle.

The preceeding ideas lead to the following proposition.
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Proposition 5.8 Let 7 be a transversally parallelisable Joliation of a com-
pact manifold M, then all leaves have the same growth type.

proof
From [BH1]|, we know that any two leaves, Ly and L,, are joined by some

horizontal path v(s).ep,1]. Let

dyis) & <
ds = ; (I.‘X;‘,r(’-),

for some functions a;(s), then the integral flow of 23;1 a;X; gives a self
diffeomorphism on M which preserves # and maps Ly onto Ly. Since M is

compact, the flow map is a quasi isometry on M and its restriction is a quasi

isometry from L onto Ly, so Ly and L; have the same growth type.O

Remark 5.9 For a transversally parallelisable foliation 7 with Ehresmann

connection D = (T¥)*, we hav:re
Kp (L) = Wl(L)’

and, therefore, Hp(L) ={e}, for any L € F. This follows, since vertical loops
remain as loops under the flow of a foliated vector field, so that rectangles

are always determined in which the initial and terminal horizontal edges

coincide.

Definition 5.10 Let ¥ be a codimension g foliation of M, with a bundlelike

metric. The transverse orthonormal frame bundle

e(M) = {(p,f,) | p € M and

f, is an orthonormal frame of ¢ vectors in T,M N (TF)*}.
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Note that ¢(M) is a compact manifold of dimension n + ﬂ";—ll, when M is
compact.

The foliation ¥ on M can be iifted to a foliation 71 on e(M) with leaves of
the same dimension as leaves on 7. A picture of the lifted leaf through (p, f,)
may be obtained by seeing how vertical paths through p lift to e(M ) A ver-
tical path 7(t), beginning at p, lifts to a path 7(t) = (r(t), fr(»), which Begins
at (p,f,), where the orthnormal frame f,(y) satisfies dp(f, () = constant, for
any local riemannian submersion chart {U, o} at p. The lifted leaf through
‘(p,1,) can be viewed as the union of the lifts to ¢(M) of all paths in L through
p-

Molino has shown that:

Theorem 5.11 71 is transversally parallelisable when 7 is a riemannian

foliation of M.

Most of the remainder of Chapter 5 will be devoted to proving Molino’s
result. We will also show how Fr is induced by local submersions and describe
an mnvariant parallelism in the submersion space. The notation introduced

will be needed in Chapter 6.

Definition 5.12 Let T be a g dimensional mantfold. The orthonormal frame

bundle
B(T} = {(b,e) |6bET and
e 13 an orthonormal frame of q vectors in T, (T)}

Note that B(T) is a manifold of dimension ﬂqz—'ll +q.

Assume T = U ;(U;), as before. We can regard

B(T) = | Bloi(Ui).




52
Define the projection map
m: B(T) - T

by n(b,e) = b.
Fix a neighborhood p(U) in T. A curve ¢(s) in ©(U) can be lifted in a
canonical way to a path in B{(U)) which begins at (b,€;). The lifted path

.

is
&s) = (e(s),Pesy(es) )

where P(,)(e;) denotes the parallel translation of the frame e, along ¢(s).
The canonical horizontal distribution at (b, e;) is the span of tangent vectors
of canonical lifts to paths beginﬁing at (b,e,) of all paths in T beginning at
b.

For a vector X = (z4,..,2,) € R? and a point a = (b, e;) in B(T),
denote | |

q
a e X = Z Tie, (5.13)
=1

where e, is the orthonormal frame of ¢ vectors
{e..,e; }
in T,(7T).
Definition 5.14 At ¢ point a = (b,e;) in B(T), the solder form is a map
W : TaB_(T) — RY

defined by

where dn(X,) = a e X.
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Note that w vanishes on 7, 7 {a) since this subspace is the kerne! of di.
Denote by E(X) the vector field tangent to the canonical horizontal dis-
tribution on TB(T) which satisfies, at each @ = (b,e;), the equation

w{EX)(a) ) = X.

Equivalently, we can say
dr BE(X){a) = a ¢ X.

It is easy to show that the integral curve of E(X) which begins at @ =

(b,es) is the lift &(s) = ( ¢(s), P.(s)(es) ) of the unique geodesic e(s) in T
which satisfies ¢(0) = b and d_fi(flp:o = a ¢ X.
E(X) is called a basic vector field. Every basic vector field can be ex-

pressed as
q

E( (21,520 ) = 3 «E,

i=1

where the E,,..,Eq are basic vector fields which satisfy
E: = E((0,.,1,.,0)).

Now, consider the fiber #71(b) over b€ 7. S O(q) acts freely and transi-

tively on the fibers. For a = (b,e,) in B(T) and M = (my ) € S0(g),
let

aM = (b, Me;),

where the vectors of the frame M. e, are

q _ q
{ Zmileia---,zmiqei }
i=1

i=1 -

Observe for the identity matrix I < § O(q) that eI = a. The point

a = (b,e;) determines a map from S0O(q) to B(T) by

a: M — aM,
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with derivative map
da: Sp(q) — T.{x Y (w(a))}.
A vector field A is called fundamental if, at every a € B(T),
Aa) = da Ay, for a fized A; € Sp(q),

where Sp(qg) denotes the Lie algebra of S0(q). Let Al,_..,Aq(q_g_l_l be fun-
damental vector fields which correspond to the usual basis of skew sym-
metric matrices in Sp(q). It is clear t'hat the space of fundamental vec-
tor fields is spanned by this collection. We observe that the collection

{ A, ..,A.,(qg_n yEi,..,E, } is a parallelism of nonvanishing vector fields on

B(T).

Definition 5.15 The connection one form 8 : T.B(T) — Sp(q) is defined

by 8(Y,) = A, where da Ay is the projection of Y, onto to the fiber
{ #7Y(n(a))} in B(T).

Remark 5.16 For a fundamental vector field Ala) = da Ay, we always
have 6(A(a)) = A;. For a basic vector field E(X), we have 9( E(X)) = O,

the zero matrix. Also, w( Afa) ) = (0,..,0), the zero element of RY.

Let p; and ¢, be riemannian submersions which locally determine ¥
and suppose that their domains, U; and U;, respectively, intersect. The

composition y;; = ;o P ! is a local isometry from T into itself. A map
(Y0 dvis) + Blei(Us)) — Blp;(U;))

is defined by

[(B,en)] (50, dv56) = (75(B), dvji(es)).
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From the following two lemmas, we conclude that the parallelism

Aly -'3A1(‘J"!13E1$ --vK
2

on B(T) is invariant under the maps
(Vii»di)e : TB(T) — TB(T).

Lemma 5.17 Let v; = ©;j o p;t, then any basie vector field E(X) 1s

tmvariant under (v, dv;)..

proof
Let p = ( b,e ) in B(p;(U;)). We will show that
(i d). BX)(p) = E(X) ( plvse, dis) ).
Note that on the left, E(X) is deﬁﬁed on B(p;(U;)) and on the right, E{X)

is defined on B(p;(U;)).

Let p(s) be the unique integral curve of E(X) with p(0) = p. We know

 that p(s) is the canonical horizontal lift of some geodesic, ©; o ¢(s) in ;(U;)

which satisfies
wioe(0) = &

and

We can express

p(s) = (0 (), Poyocts) () )-
Consider the path

(P()] (iirdvji ) = (s 001 0 ¢(s), dsi Poonisy(es) )
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in B(p;(U;)). Since ;; is a locai isometry,
@i Ppoo(s) (@) = Poyjopioc(s) ( dsiles) )
SO We can express
(P(s)] (0,475 ) = (05 0 ¢(5), Ppjous) (dssles)).

Observe that the right hand side is the canonical horizontal lift of the geodesic

w;oc(s) to a path which starts at [p] ( 4, d~;: ). Since the geodesic p;oc(s)

-satisfies initial conditions

wjoe(0) = ;(b)

and
dp; o ¢fs) dp; o c(s)
_—_— = i —_— = d 't X
ds |s=0 d’b ¢ ds |s=0 i ( p e )

=[p] (virdvsi ) o X,
it follows that [p(s)] (fy,-,-;d'fy,;.-) is the integral curve of E(X) which begins at
[P} { i i ).
This result follows from lettihg s = 0 in the following:

ar(s)

(s d)e BX) (p(s)) = (s ) 2

= L) (i) ) = BX) ([p(s))(oper ) )0

Lemma 5.18 Let v;; = ;o0 o, then any fundamental vector freld A is

invariant under (v, dsi)e.

proof
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Ata = (be ) in B(pi(U;)), Ala) = da Ay, for some Ar € Sp(q). Let

curve A(t} in SO(g) satisfy A(0) = I and %it:—o = Ay, then

dA(t)  deAlt)
= g;lt:o(bafi(t)eb),

Afd) = d
(a) “ dt  jt=o dt  |=o

where the frame A(t)e, has vectors as described near the end of p. 53.

We must show that

('Yq'i’d'yﬁ)* Afa) = A( [a]('TJ‘:‘;d'in) ).

Certainly,

(i dviids Ala) = 4, ([(6, A(t)es)] (930> ;) )
dtemol 15 (0), dvii(A(t)es) ).

The frame d-y;:(A(t)e;) is the same as the frame A(t)dvji(es), so

(V36> d¥5i)s Ala) = ditltzo(’Y.ﬁ(b),A(t)d’Yﬁ(eb)) =

%“:0( 75:(8), dvsi(es) )A(t) = ﬂ%lt:O( [a]('yj;,dfyﬁ) )A(t) —

dat)  _ d( [a](vsi, dv;i) ) Ar.

a( {a](ys,dv5i) ) dt o

We have the desired result since the rlas‘t expression is the same as
A( [a](vji, dvy) ).

Thus, B(T) has a parallelism which is invariant under elements of G,

which is defined as the pseudogroup.generated by the local diffeomorphisms

(Ysi» d;4) of B(T).
For future use, we must develop a metric on B (T) in which elements of

G are local isometries. Define a metric
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< XY >pry =< wX),w(Y) > + < 0(X),0(Y) >s0(q)

where < , >p, is the standard euclidean metric and < A B >50() =

3 trace(A'B) on 50(g). The fundamental vector fields A, ..,Aq(q;n satisfy

< 0(A,-),9(Aj) >s0(q) = 5;3‘
when they are chosen, as on p-54, so that they correspond to the usual basis

of skew symmetric matrices. The basic vector fields satisfy
< w(E,-),w(E,-) PR =< (0,..,0,1,0, ..,0),(0,..,0,1,0,..,0) PRy = 6.','.

The fundamental and basic vector fields are mutually orthogonal so the par-
allelism |

Ala '-sAq(qg—l) aEl, .y Eq

is orthonormal. It-follows that elements of G are local isometries in the

metric <, >p(p).

After the preceeding discussion of the transverse space B(T), we return
to our study of the lifted foliation . We can conclude that Fr is transver-
sally parallelisable once we discuss how elements of G relate to the local

submersions which determine %p.

Definition 5.19 Let ¢; be a riemannian submersion which determines 7
on a neighborhood U;. Define the map (0i,dw;) from e(U;) < e(M) to
B(p:(Us)) by

[(p Tp)] (i, dws) = (0i(p), dips(£,)).
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The domain of (g, dip;) is diffeomorphic to U; x S0(g), and we can say, '
forU; N U; # 0, that

(P, E)) (05, dios) = [ [p,E)(01, d:) (4505 dj0).

It is easily seen that the (i, dp;) are locally constant on the leaves of r.
To show, rigorously, that leaves are regular 