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Abstract of the Dissertation

Arithmetic Claésification of Families of Abelian Varieties of
quaternion type.
by
Monica Petri
Doctor in Philesophy
in
Mathematics
State University of New York at Stony Brook

1987

A family of Abelian varieties of quaternion type, A ~£~> V is a
fiber space whose fibers are Abelian varieties and which is
parametrized by a Hilbert modular variety T\Ht,

We present a classification of such families with a given
endomorphism ring and Hodge structure. The main result is that
the bottom field of A is an abelian extension of the bottom field
of V. An example of family of "Satake" type is constructed to

show that the bottom field of A can be different from the bottom

field of V.
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Introduction

TR .

A family of Abelian varieties of quaternion type A —E—D Vis a
fiber space whose fibers are Abelian varieties and which is
parameterized by a Hilbert modular variety v = r\nt.

The aim of this dissertation is to study the arithmetic of the
family. The main result is that, assuming the family is charac-
terized by its Hodge structure, the bottom field of A is an
abelian Galois extension of the bottom field of V. Definitions
will be given later, but the best known example is the bottom
field of a polarized Abelian variety (field of moduli), the
central notion in the theory of complex multiplication.

The construction of T\EL is classical. Let k be a totally
real algebraic number field B a quaternioen algebra over k. Then

we have an isomorphism

BeRazMI(R) x ... x Mp(R) x K x ... xK

®
Q
where M,(R) is the total matrix algebra of degree two and K the
algebra of real quaternions. Let t > 0 be the number of copies of
M,(R) and G = Resy/q {a = B|aafL = 1} where i is the canonical
involution.

Any arithmetic subgroup I' of G is a discontinuous group of

transformations of the product of upper half planes Ht. It

defines a Hilbert modular variety TC\BHL.




A family over T\HY is constructed from a symplectic represen-
tation. In particular we consider only rigid families, i.e., G is
isomorphic to the Hodge group of the generic fiber of A.

The first Chapter is dedicated to the classification of the
families induced by a given rigid symplectic representation p. We
will prove

Theorem # (?somorphlsm classes of familie%) = n(E)ev

defined by p over T'\HT

where K ig the smallest Galois extension containing k and v is a
constant. .

In the second Chapter we prove our main result via the study
of the analytic structure of AY £2—> VY, where ¢ is an automor-
phism of G, This proof will proceed in several steps.

In Section 2.3, assuming V® = V we prove that A°£E>V° can be
defined by the same analytic data as A —i;b V with the exception
of the lattice defining the fibers. We will have, at that point,
reduced the problem to the classification in Chapter 1 that
establishes a correspondence between possible lattices and ideal

classes of K. It is via the lattices that we construct the

homomorphism
1 » Gal(X,/Ky) + Ideal class group (K).

In the third chapter we construct an example to show that

[Kp:Kyl can be different from 1. We apply the




Shimura-Taniyama [Sh-T] theory of complex multiplication to the

fibers of CM type.

Notation and Conventions. All algebraic varieties are assumed to

be connected and smooth. If a variety is defined over a field k,
and K is an extension of k, we write Xg for the set of K-rational
points of X. A vector space or algebra W over a field k deter-

mines an algebraic variety, again called W, such that Wy =W £ X

for any field K containing k. If K > k and [K:k] < « then ResK/k

denotes the restriction to the category of k-varieties.




Chapter 1. -

1.1 Group Theoretic Families of Abelian Varieties

Kuga developed the general theory of families of Abelian
varieties parameterized by a projective variety V, i.e. holomor-
phic fiber spaces, A ﬂ£—> V, whose fibers are Abelian varieties,
and where A and V are projective varieties. Kuga's construction
is purely analytic and makes use of Kodaira's Embedding Theorem to
show the existence of an algebraic structure for A and V. We
shall summarize this construction following Kuga [K] and Satake
[s].

The starting point is an arithmetic variety V that we con-
struct from a connected semisimple linear algebraic group G,
defined over Q and with finite center. Let K be a maximal compact
subgroup of G and T an arithmetic torsion free subgroup of G such
that I'\G is compact. If we also assume that X = GR/K has a Gy~
invariant complex structure, then V = I'\X with the induced complex
structure is a compact complex manifold. V is known to be
holomorphically equivalent to an algebraic submanifold of a
complex projective space and is called an arithmetic variety.

It is over V that Kuga constructs families of Abelian varie-

ties and uses a long list of ingredients to do so:




let G, X, X, I and V be given as above. Let F bé an even
dimensional vector space over Q and B:FxF =+ @ a non degenerate
bilinear form on F so that Sp(¥,p) = {g e GL(FR) | B(gx,gy) =
R(x,y)}, the symplectic group is an algebraic group defined over
Q.

Let p:G - Sp(F,R) be an algebraic representation of G defined
over Q, which we will call a "symplectic representatioﬁ" of G.

Let L be a lattice in F satisfying p(T')L ¢ L and B(L,L) c L.

A lattice satisfying the first condition exists since T is an
arithmetic subgroup of G and the second condition is always
satisfied replacing L by nL if necessary.

Via p we can define the semidirect product G x Fp with the
following multiplication law: (g,w)-(g',w') = (ggt,o(g)w' + w).

Furthermore consider the product space X x Fp on which the

group G x Fp acts:

(g,w) € GXFR] —> (g,w)(x,u) = (g(x),p(glu + w)
(x,u) & XxFy

The condition p(T)L € L makes I x L, into a discrete subgroup of

G x L acting of X x Fy freely and discontinuously. So finally we

is defined as follows:

{<————— X x (FRp/L)

can define the fiber space A —£—> V, where A = T x L\Xx Fg and f ‘
J
. |
projy |

|

I €— b
<

v

T\X < X




A —£—> V is a smooth fiber bundle with fiber FR/L and structure

group p(I'). To make it into a holomorphic fiber space we need one
more object.

We define the Eichler map t associated to a symplectic
representation p as a holomorphic map from X into the Siegel
space,

T 31 XX =é5(ER,B) = {J g GL(FR)|J2 = -1,R(x,Jy)>>0 and symme-
tric}

which is weakly equivalent with respect to p, i.e. t(g{(x)) =
p(g){(t(x)). Note that neither the existence nor the uniqueness of
v is assured.

We identify X' =5(FR,B) with SO(F,B)\Sp(F,R) via the transitive
action Sp(F,B) x X' » X', (g,J) - gJg~'.

If J, € X' and Hy = 1/2J, it is known (Satake [S], Chapter
2.§7), that adH! is a complex structure on TJO(X‘) and there is a
unique Hermitian complex structure on X' which induces the complex
structure J' = adH,' on TJG(X')' We shall always consider X' as a
complex manifold with this complex structure, and this structure
is independent of J,. Returning now to T;X + X' we recall that T
is p-equivariant. Therefore if we choose 0 £ X = G/K for every
x € X we have g(0) = x for some g £ G and ©(x) = t(g(0)) =

p(g)(1(0)) = p(g)t(0)p{g™*). Thus T is completely determined by p

and t(0). We set 1(0) = J, £ X'.




Let now J be the complex structure on Tr"l(Jo)(X) slg where %
is the Lie algebra of Gg. Then J = adH,, H, uniquely determined.
We define the following conditiens H
Condition (H1) [dpH, - Ho', dp(¥)] = 0, for all Y& , Hy = 1/2J,
Condition (H2) dpH, = H,'

Condition (H2) implies (H1) and (H1) is equivalent to T being
holomorphic (Satake [S], chapter 11.§8). T makes X x (FR/L) > X
into a fiber space whose fibers are Abelian varieties with

polarization B; in fact:

Lemma 1.1.1. t(x) is a complex structure on Fp such that
(FR/L,T(X)) ig an Abelian variety with polarization B.

Moreover if y £ I' we have:
Lemma 1.1.2. (Fp/L,t(x),8) is isomorphic to (FR/L,T(YX),B).

So also A —i—b V is a fiber space whose fibers are Abelian

varieties with a fixed polarization. We have:

Theorem 1.1.3. (Kuga [K] Theorem 11.6.3) Let A —£—> V be the fiber
space constructed above from the data: (G,K,X,r,F,R,p,7). Then,

if T is holomorphic, or equivalently if the (H1) condition is

satisfied, A has a unique structure J, such that:




1. Jp restricted to the zero section coincides with the given
structure on V (recail that V = T'\X where X is a Hermitian
symmetric space). |

2, f: A —£—> V is a holomorphic map.

3. Jp restricted to each fiber A, coincides with T(x).

We will call the holomorphic fiber space A ﬂ£—> V a group theore-
tic family of Abelian varieties or a Kuga fiber variety, since

using Kodaira's theorem we have the following.

Theorem 1.1.4. (Kuga [K] Theorem 11.6.8) Let A —£—> V be a group
theoretic family of Abelian varieties. If V is compact then A has

a projective embedding.

Throughout this work we shall always consider a fixed prdjec-
tive realization of A —E—D V.
Remark: A natural problem arises from Theorem 1.1.3 and was posed
by Kuga in the 1960's: Classify all of the representations of G, G
a Q-simple algebraic group of hermitian type, into a symplectic
group and investigate the existence of corresponding Eichler maps.
Let Gg be the set of real points of G and K a maximal compact

subgroup. G of Hermitian type means that Gp/K is a Hermitian

symmetric space. So, given such a symplectic representation the

existence of a corresponding Eichler map is the only ohstruction




to the construction of Kuga fiber varieties over F\G/K.

In the case when Gp has no compact factors the problem was solved
by Satake. In the case when Gg has compact factors and the
corresponding symmetric domains are of type IT or III the solution
is due to Addington ([Ad2],{Ad1]). We shall describe the solution

of the quaternion case in the next Section.

1.2 FPamilies arising from quaternion algebras.

In this paper we will investigate the arithmetic structure of
families of Abelian varieties parameterized by a quaternion

Hilbert modular variety.

Definition 1.2.1. A quaternion Hilbert modular variety V is the
quotient space T'\X, where X is the symmetric space associated to
G = Resk/Q(SLl(B)), B a quaternion algebra over k, and T is an
arithmetic subgroup of G.

Addington [Adl] classified the representations of G into
Sp(F,B) which define families of Abelian varieties over V,
equivalently for which there exist T',L,T such that
(G,K,X,r,F,L,B,p,1) satisfy the assumptions of Section 1.1. These
symplectic representations of G = Resk/Q(Sll(B)) are describable
by a combinatorial scheme called chemistry. Since they are our

main tools we well give an explicit description, following

Addington.




Let k be a totally real number field and B a division quater-
nion algebra over k, i.e. a central simple algebra of dimension 4
over k. We will denote by v:B =+ k, the reduced norm of B.
Assuming k of degree n over Q, let S = {¢;,...,¢,} be the distinct
embeddings of k into R. We define S, = {a € S|B g R = M,;(R)} and

S, =S - S,.

If we now consider SL,(B) {xeB|v(x) = 1}, it is an algebraic

group defined over k and so G Resk/Q(Sll(B)) is a Q-simple alge-

braic group defined over Q (Weil [W]).

Proposition 1.2.2. (a) G = IyegSLi(BogR) = SLo(®)[Sel x k251

[tH

=« sL,(R) S0l x su(2)!8:]

sL,(c) S|

1]

G¢
(b) Identifying Gg and SLZ(R)'SUI x SU(Z)ISll,
a maximal compact subgroup is

K = 50(2)1S0lx su(2)!811,

So Gg is a semisimple Lie group and

G/K = (SL,(R)/S0(2)) 150l x {p3ISal = & Sel

n

is a Hermitian symmetric space of non compact type as it is a
product of Hermitian symmetric spaces.

Henceforth.G will always mean Resk/Q(SLl(B)).

Put K = ¢,(k) --- ¢,(k), then K is a totally real Galois

extension of Q. 9 = Gal(EK/Q) acts transitively on S via gla) =

10




goa. The triple (Q,S,So) is called chemistry. Elements of 5 are
called atoms, subsets of S are called molecules and finite sums
EMj of molecules are called polymers.

Since G acts on S5, G acts on the set of all molecules and poly-

mers.

Definition 1.2.3. We say that a molecules is stable if |[MNS,| < 1
and rigid if IMQSO| = 1. Analogously a polymer P= EMj is stable
(resp. rigid) if P is G-invariant and each M; is stable (resp.
rigid).
For any polymer P we will construct a representaticn Pp of the

algebraic group G.
We have seen in proposition 1.2.1 that

G = Gg = Iyes SLi(B 3 €) = sL,(c) 8|
Let proj¢ be the projection map of G into its simple factor

Gy = SL,(B 2 C) = SL,(C).
For every atom o let p, be the map proj, considered as a represen-
tation of G on the vector space C*.
For a molecule M = {a;,...,0,.}, set py = Pa,®" " *®Pq, For a
polymer P = i;M;, set pp = py1 ®...2pME.

We are finally able to state:

Theorem 1.2.4. (Addington [Ad1]). Let G be the algebraic group

Resk/Q(SLl(B)).

11
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1. Suppose that p is a symplectic representation of G defined
over Q that defines a group theoretic family of Abelian varieties;
Then there exists a stable polymer P such that p is equivalent to
pp over G.
2. Let P be a stable polymer. Then some multiple of Pp is an
algebraic group representation of G defined over Q and defines a

group theoretic family of Abelian varieties.

Proof. We will only describe in detail the representation and the
construction for part 2. In fact it is these families that we
will use throughout this paper.

Let P be an invariant polymer and M any molecule of P. The
smallest orbit of M under the action of the Galois group is a
subpolymer of P and we can write P as P = ZP;, P; generated by any

single molecule.

Definition 1.2.5. We call a minimal G-invariant polymer prime
when it is generated by a single molecule.

For a prime polymer P there exists an integer u 2 1 such that

uP gM

= géﬂ
In general pp is an algebraic group homomorphism. We shall
prove that there exists and integer u such that either Pup or

PUP @ PLP is an algebraic group representation defined over Q.

Since pp = Ippy, it is indeed enough to consider pp when P is

prime.




For any o £ © = Gal (k/Q) we define B* = B 2 k; Similarly, for
any molecule M = {o;,...,da.}, BM = B%1 8...0BYY | and for any
polymer P = IM;, BP = BM! e...0 BMt | B is a central simple
algebra over k for any a, as is BY for any M.

Let Fy be a minimal left ideal in B" . BY acts on Fy by left
multiplication so that we have a representation p:BM - EndE(FM)

~

and p is defined over k.

Lemma 1.2.6. Let P be a prime polymer, P = % gM. Them B! is a
central simple algebra over k and B = ResR/Q(BM),

B and BM are isomorphic as algebras and Fp = ResE/Q(FM) is a
minimal left ideal in BE.

. - a s, 0,
Recalling that Resk/Q(B) = Hy.gBY we call proj, : Resk/Q(B)+B the
natural projections.

For any molecule M we define iy : Resk/Q(B)ﬁBM as iy = o, .MProj,

and for any polymer P = IMy, ip = eiy;.

Lemma 1.2.7. Assuming that P is as in Lemma 1.2.3, the map

ip : Res ,.(B) » BP is defined over Q.

k/Q

We are now prepared to define a representation of G. From the

previous results we have that
i P
P gP > Endg(Tp)

Resk/Q(B)

is an algebra homomorphism defined over Q, so restructuring to Gq:

13
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ip

p
Gq = Res ;((SL1(B)) > BF > Autqg(Fp)

is an algebraic group representation defined over Q that we will

denote again by p. Extending p to Gg we get
Pe ¢ Gc > Autc(FP@C)

Returning to pp we have:

Lemma 1.2.8. If BY is a trivial simple algebra then p = pp over C.

Otherwise p = ppp over C.

Proof. By definition if M = {o;,...,a,}, Bl = B! e-..e BOT,
Recalling that a tensor product of division quaternion algebras is
either trivial or equivalent to a division quaternion algebra, we

can write:

(‘E and N = 2F

B = my(B,) By = or .
division quaternion algebra over k and
N = 2r-l

It follows that Fy = BDN viewed as column vectors. Now

PGiGg ~ ®geq Cacgt2(C) < Morp(C)

2tm

ifm = |Q|, r = |M| and the representation space is € .
On the other hand p : Gg - (ResE/Q(BM))®G is the same map but
the representation space may differ. In fact
( 2Ym if N = 2T

dine(RyeC) = dingfy = 27t i N = 227l

Then pe = pp if BM = MN(E) and pg = 2pp if Bl = My(Bg). =




Now to complete the proof of part 2 (of 1.2.2) Addington
‘congiders T < GQ an arithmetic subgroup of G and constructs a
family of Abelian varieties over V = r\E&lSo| using
pRp :Gg > Aut(FpeR).

For this purpose she defines B¥ a non degenerate bilinear form on
Fp such that Sp(FP, BP) and tf a holomorphic Eichler map asso-
ciated to p. Moreover she chooses LY a p(G)-invariant lattice in
Fp. The data (G,K,X,F,FP,LP,BP,Q,TP) satisfy the hypotheses of
theorem 1.1.3 and give a Kuga fiber variety Ap —£—> V.

is

To extend the construction to any stable polymer P = IP;

immediate, In fact we can define the following data:

(6,K,X,T,F,L,R,p,T) where p = pp or pp @ pp whichever is indicated

by lemma 1.2.5

F = QFP:’L or F = Q(FPiOFPi)
L = olFl or L = o(1LPlerP1)
B - eBPi ot B = @(BPiQBPi)
v = etPl or 1t = e(PlacPl)

The family defined by p will then be the fiber product over V of

families:

A = APl {(’----\)} APd

¥

v F\H'Sol

[}

This completes the sketch of the proof of 1.2.4, part 2. =

i5
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Remark: A family of Abelian varieties, defined by a polymer

representation'pP will not necessarily be the fiber product of

families defined by the irreducible components of Pp- In general

it is only isogeneous to such a product.

Definition 1.2.9 Let G be an algebraic group defined over a field
F. A representation (V,p) of G defined over F is F-primary if for
any F-irreducible invariant subspaces W and W' of V, p]W' = (p|W)°
for some o £ Gal (F/F).

In this paper we will restrict ourselves to Kuga fiber
varieties defined by Q-primary symplectic representations of G, or

in other words by prime polymers P = ZgM.

Proposition 1.2.10 (Satake [S]) Let A £ 5V be a Kuga fiber
variety defined by a symplectic representation p: G - Sp(F,B).

Then if F = ? F[i] is the primary decomposition we have:

i)

T

It follows that we can find an integer n such that:

id xnT [1]x N A[i]

A > A

v i ¥
. where the map nl: A, > Ax[l] R Ax[l]
.

ST _ is an isogeny.




1.3 Rigid Kupa varieties and Hodge Xuga varieties.

Let A —£—> V be a Kuga fiber variety defined

by (G,K,X,I,F,L,B,p,T).

Definition. We say that A —£—> V is rigid if t is uniquely
determined by the rest of the data: G,K,X,T,F,L,R, and p.

Rigid families were introduced by Abdulali[Abl] and we follow
his beautiful exposition.

We recall that T is completely defined by p and t1(0), where
0 £ X is an arbitrary point. In fact 1:X » &(FR,B) is equivari-
ant with respect to p, so that we have 1(g(0)) = p(g)t(0)p(g)™?

for all g ¢ Gy.

Definition 1.3.1. Let X, be the set of possible w(0)'s i.e. the
set of J, £ &(Fg,B) such that the map g(0) > p(g)dop(g)™ ! is well

defined and satisfies the (H1)-condition (see 1.1).

Lemma 1.3.2. A -£~> V is rigid if and only if X, reduces to a

peoint.

Theorem 1.3.3. (Satake [S], chapter 4, prop. 4.1). X, is a
complex submanifold of éS(FR,B). Furthermore, Gp the Zariski

connected component of the centralizer of p(G) in Sp(¥,8) is a

reductive subgroup which acts transitively on Xp.

17
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Theorem 1.3.4. (Abdulali [Abl], proposition 1.2.2). If the (H2)-

condition is satisfied then the fiber variety A —£—> V is rigid.

We return to families arising from quaternion algebras.
Recall that for the chemistry (S5,S,,Q) a polymer P = ZM; is rigid

if |MynS,| = 1 for every i.

Theorem 1.3.5. (Abdulali [Abl], theorem 1.3.7) Let P be a rigid
stable polymer and suppose that u is an integer such that PLP is
defined over Q. Then any family of Abelian varieties induced by

PP is rigid and in particular satisfies the (H2)-condition.

Proof. The idea is to construct an Eichler map 7 associated to
PuP and show that T satisfies the (H2)-condition and is therefore
unique by theorem 1.3.3. We shall define t after recalling some
notation from section 1.2.

Let B be a division algebra over a totally real number field
k. Define G = Resk/Q(SLl(B)) and identify Gy with
SLl(R)lsﬂlx SU(Z)lsll, Kg maximal compact subgroup with

s0(2)18a| x su(2)I811,
[So|

L
2 x { [Sll
0

0
and X = Gg/Kg with Hlso . The element H, = | _;
2

of the Lie algebra of Gg determines a complex structure on X.

.= (0 D)[Sel , lSil - N .
Set j = (_1 0) x T and J, = puP(J), Ppt CR Sp(Fg,B)
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By definition py = Por, ® ... ® Py M= {a;,...,0.}. Therefore

0 I
r

ifMeP, [MNS,| =1andpy(i)=| _; g
T

with respect to a suitable basis, so J, = ppP(j) = (;g g)
with respect to a suitable basis of Fg and it is a complex
structure on Fp.

We are ready to define a map 1:X +é;(FR,B) equivariant with
respect to p, as t(g(0)) = p(g)JI,plg)™* where
0= (V-1,...,/-1)e X = H|Su|. Abdulali shows that t satisfies the

(H2)-condition, dp(Hy) = 1/2J,.%

Let X be an Abelian variety given by (F,J,L,B):
F an even dimensional vector space,
J complex structure on F,
L<F aZ-lattice,
B a non degenerate bilinear form on F, such that
i. p(L,L)c Z

ii. BA(u, Jv) is symmetric and positive definite.

Consider ¢: T = {zeC| [z]| = 1 } » GL(F)

with ¢{@) = cos@I + sin6J.

Definition 1.3.7. The Hodge group of X, Hg(X), is the smallest

algebraic subgroup of GL(V) defined over Q and containing ¢(T).
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Definition 1.3.8. A group theoretic family of Abelian varieties
A —E—D V defined by a symplectic representation p is of Hodge type

if p(6) = Hg(A,) where Ay is a generic fiber.
Theorem 1.3.8. (Addington [Ad2]). Let P be a polymer. Then the
families defined by pyp are of Hodge type if and only if P is

rigid.

Definition 1.3.9. We say that an Abelian variety X has complex

multiplication (is of CM type) if HomQ(X) = Hom(¥X,X) contains a

commutative semisimple Q-algebra R such that [R:Q] = 2 dim X.

Theorem 1.3.10. (Mumford [M2]1). a) Every family of Abelian
varieties of Hodge type contains Abelian varieties of CM type.
b) If a family contains an Abelian variety of CM type then it is

isomorphic to a family of Hodge type.
Corollary 1.3.11. (Addington [Adl]). A family defined by a
polymer representation contains a fiber with complex multiplica-

tion if and only if the polymer is rigid.

We will give an explicit description of the endomorphism ring

of a CM fiber in the next section.
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1.4. FEndomorphism Ring of the fibers.

LeEVA —£—> V be a rigid Kuga fiber variety given by the data:
(G,K,T,F,L,B,p,T) , where as in 1.2.: k is an algebraic number
field, & the smallest Galois extension containing k, G= Gal(E/Q),
B a quaternion algebra over k, B # M,(k),

G

Resk/Q(SLl(B))

p = pPyp symplectic representation defined over Q associated to a
rigid polymer P.

Tn this section we compute the endomorphism ring of the generic
fiber of A —f—b V and the endomorphism ring of the fibers of

CM type.

Let p = ¢ p[i] be the primary decomposition. Any p[i] determines
naturally a family of Abelian varieties Alil 5 v and we know that
A L5 is isogeneous to Alllx, . xalnls v (see proposition 1.2.6).
9o since we are concerned with the endomorphism ring we may
consider p to bhe Q-primary.

Let p be a Q-primary representation ; p = Pp> with P = IgM and we
will also assume gM # YM if g # v.

Remembering the definition: pp = ResE/QpM

with py : Resk,Q(SLl(B)) + M e EndE(FM) the regular represen-
tation.

Let A, be the generic fiber of A, x in V, isomorphie to

(F,L,J; = t(x)). Any endomorphism of Ay has a natural rational

representation:
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I

Hom (A,) {g € Endg(F) | gL = L , gJy = Jyg}

{g ¢ Endg(F) | gly = Jxg}

1H]

Homg (Ag)
Since Hg(A,), the Hodge group of A,, is gemerated by
cos6I + sin8J, and their conjugates over Q, we have:

Homg (Ay) = {g € Endg(F) | sg' = g'g for any g'e Hg (Ag) }.
But A —=> V is a rigid family so that Hg(A,) = p(G) and

Homg (Ag) = {g e Endg(F) | gg' = g'g for any g'e p(G) }.

Proposition 1.4.1. Let A —;—> V be a Kuga fiber variety of
quaternion type defined by a symplectic representation p. Let Ay
be a generic fiber, k the smallest Galois extension of Q contain-
ing k. If p is a polymer Q-primary representation , p = pp, P =
TgM, and gM = yM for g # v, then

Endg (AX) = ResE/Q(BU)
where B, = k if p is C-irreducible and B, is a division gquaternion

algebra over K otherwise.

M, Q= 6al(k/Q), M = {a;,...,a.} € Q

Proof. We assumed P =g§9g
Therefore M
Resk/Q(B) > B c Endj(Fy)
# ¥
G = Res, ;.SL,(B) > ResE/QBM © Endg(F)

k/Q Pp = ResE/QpM

Fy is a minimal left ideal and F = ReSE/QFM is a minimal left

. , M
ideal in ResR/QB .

As we have seen in the proof of Lemma 1.3. we have: BM = My(By)
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Fy = BDN , By a simple division algebra over k (B, is either k or
a division gquaternion algebra). Under these identifications:
{ge EndgF|gg' = g's &' € p(G)}
= ResE/Q{g £ EndEFM|gg' = g'g,g" € py(SL.(B))}.

In fact for M = {a;,...,0,}

=§ng=§pg°'-1 ® ... & p8% and F = g Foy

Pp Q

by construction. Since gM # yM if g # v, we have that idgM e p(G)
for any g.
Therefore {g € EndQF|gg' =g'g , g' € p(G)}
c {g|g(Fy) = Fyq for any a} = RESRIQ End{Fy.
We must look closely at EndjFy and py(SL.(B)).

We distinguish two cases.

(i) BM

I
1z

Mg(®) , Fy = &Y ;  then EndgRy = BM.

(ii) BM B,N , B, division quaternion algebra

[H

My(Bg) » Py

n

over k ; then EndiFy = BH @ B,.
k

In fact Endj(Fy) contains B! o B, where B, is identified with B,I
in the dual (BM)* and acts on Fy by right multiplication,.
Moreover dimj(BM e B,) = N?4? = dim{Fy.

So we can write EndE(FM) « M s B, with the convention that B, is
either k or a division quaternion algebra, depending on the class
of BM in the Braner group.

Finally we can compute End(A;) ® Q.

i) B =gk, Fy = &N
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Then py : Resk/Q(SLl(B)) » M = Endj;(Fy) is an irreducible
representation over k as well as over C, since ByeC = My(C) =
Endc( FMGDC) .

So by Schur's lemma, k = {g £ Endf(Fy)|gs' = g'g g's p(SL;(B))}.

[IH

i) BM = My(B,) , By = B,N.

Then py : Resk/Q(SLl(B)) > 81 c Endﬁ(FM) ie irreducible over k but
reducible over C. 1In fact B! & € = Myy(C) , Fy @ C = ¢*N. So by
Schur's lemma we can only conclude that

{g = EndE(FM)|gg‘ = g'sg g'e (SL,(B))} is a division algebra.

We need to define a new representation

P = py ®id : Res,;(SL1(B)) @ SL,(B,) > 8% p B, = Endf(Fy).

p is an irreducible representation over k as a tensor product of
jirreducible representations and is moreover irreducible over C,

since (By g By) ® C = Endp(Fy o C). We can now conclude as in

(i), that k = {g ¢ Endf(Fy)|ge' = g'g 8'e p(SL1(B)) @ SL.(By))}.

Now let H = {g € End{(Fy) = B e Bylgg' = g's g'e pn(6)}.
k

H> 1 e B, and any h in H can be written as h = Zhy ® by,
where B, = <b1,...,bq>E s hy € BM.
Let g © 1 be an element of p(SL;(B)} < By < Endj(F).
We have: h-gel=gel +h
and I higra b; = Igh; ® by

if and only if hyg ® by = gh; ® b; for any i, i.e.

(hy » 1)(g ® by) = (g » by)(hy @ 1) for any i and therefore
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hy o 1 ¢ centralizerEndEFM(p(SLl(B)) ® SL,(B,)) = k.
We have shown that H= 1 & B,. = -

Remark 1. End(A;) = 0, an order in ResE/QBU
If 0 is a maximal order, then
End(A,) = RESE/QO' , an Of order in By.
Remark 2. If A —£—> V is a Kuga fiber variety of quaternion type
induced by a Q-primary symplectic representation then the generié

fiber is a simple Abelian variety.

The study of the fibers of CM type is far more complicated
than the study of the generic fiber.
Let A —£—> V¥ = I'\X be a rigid Kuga variety of quaternion type
induced by a polymer representation irreducible over Q.
We have seen in 1.2 that X = Ht., We shall construct an elliptic
point A in V, i.e. A = (Xy,...,A) with Ay elliptic for every i,
such that Ay = £71(A) is of CM type.
We need to consider the quaternion algebra B. We defined in
Section 1.2.:

S = {¢1, ***, ¢} the set of real embeddings of k and

S, = {9 ¢ slngaxz M,(R)}, |S,| = t.

For every ¢ £ S, we consider the natural immersion i¢:

p? = BeR = M, (R).

R
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Recalling that det o i¢ = v, where v is the reduced norm, we have:

i
{a B | \J(a)¢ >0, ¢ & 3,7} 550 GL: (R)t

Proposition 1.4.2. ([Sh4, Proposition 9.4] Let L be a totally
imaginary quadratic extension of k and q a k-linear isomorphism of
L into B. Then q(L*) is contained in {a € Bjv(a)$>0, ¢ € S,} and
every element of q(L*) not contained in k has a unique fixed point
A on HY, which is common to all such elements of q(L*). Moreover,
a(L*) = {y e B{v(Y)¥>0, ¢ = 55, (1) = A}

Conversely if an element @ € B, v(a)?>0 for any element in S,, has
a fixed point in HY then k(a) is isomorphic to a totally imaginary

number field.

Returning to the base space of our family:
v=T\X , X= GR/KR

We recall the identification of X with gt

G = Res /o(SLa(B)) = T s, (8%)
S s,
og = 1 sL,(B*) e R = SLZ(R)l o su(z)I |
3 S, | EN
Kg 2 S0(2) x SuU(2)
X = Gp/Kg = st /50 7s0(2y 5ol = wt




So we can consider A the fixed point of q(L*) as a peint in X and
therefore in V. We shall show that under suitable hypotheses A,
is of CM type.

We need to construct a field R contained in EndQ(AA) and
[R:Q] = 2 dim A,.
As in the case of the generic fiber A; is isomorphic to (F,L,JA)

and the rational representation for the endomorphism ring gives:
EndQ(Al) = {g'e EndQF, g'Jy = Je'ls

where g(Jij"'XJ:T) = A, JA = t(A) = plg) Jo p(g)™t.

From the previous considerations A is a fixed point in Ht for

the group H(L*)?9, which group we will denote by (L¥)S. Let a be
S

in (L*)S, a = (a¢1, e, a¢n). Since v(a)? > 0 for any ¢ we can

¢1 ¢n
define @ = ( ——fi—__\ , e, (_Ji—ag.\) an element of G, so that o
Vo) Wv(a) ™)

belongs to the isotropy group of A, Ky. p and form an equivar-
jant pair so it follows that p(a) & EndQ(AA). Moreover,
P =® Py and Jy = @ JgM by construction and so also p(a) belongs
to EndQ(AA) and p((L¥)S) < EndQ(AA). If we put L9 =L @ k and

¢

M = 1%e--v0 L%t then we can state the previous result as

ResE/QLM < Endy(A))-

On the other hand J, and Jy = p(g) J,p(g)~? are in p{(Gg) so that

J, commutes with ResE/Q(lw Bg)s

Finally: EndQ(Ax) > Resk./Q(LM ® B,).

27
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We shall look closely at IM and show that:

Proposition 1.4.2. There exist L in B and K in B, such that:
I91...1% - K = tM e B,
50 that: A, is of CM type

AL

We will break the proof into several steps:

Lemma 1. Let B a quaternion algebra over k, k totally real
algebraic number field. There exists L < B, L totally imaginary
gquadratic extension of k such that: L¢1,..n,L¢n are linearly

disjoint where L¢i =L ek and S = {¢1,..-,9,} is the set of real

]
b3

embeddings of k.

Lemma la. Let k be an algebraic number field, and a;,..., &, Y
elements of k. If vy e k(vog,...,/a,) then
0

= {or
1

£ £
1 n 2 .
Yeog e Oy e k where €5

Proof. k(Va,,...,/a,) is a Galois extension of k of degree 2n,
Gal (k(Vay,...,Yay)/k) = Z,°

We define ay = al?l.... anen, e; either 0 or 1, so that we can
write k(/a;,...,/a;) = ; k /af .

{aI}I are the 20 eigenvectors of the Galois group.

If VY ¢ k(va;,...,/a,) then /Yy is an eigenvector of the Galois
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group and so

/Y = a vay for some a € k and I. Therefore yar & k*. =

Lemma 1.b. ([v], Ch.3, lemma 3.8)

Suppose B and k are as in lemma 1. L a quadratic extension of k.
L is contained in B if and only if L, is a quadratic extension of
k, for every v place of k such that B, = B @ k,, is a division
algebra.

Lemma 1.c¢. ([v]), Ch.3, lemma 3.6) 1

There exists a quadratic extension L of k such that L, = L ® k, is

a given quadratic extension of k, for a finite set of places of k.
We are finally able to prove lemma 1.

Proof. Let d(B) = Il p; be the discriminant of B. Let p be a
I
prime ideal of k, p # Pi¢ for any i in I and ¢ in S and

char (Ok/p) # 2, BSet Lp_ an unramified quadratic extension of
i
k for any i e I.
1

Lp a ramified quadratic extension of kP

=k if ¢ # id
P¢ if ¢ i

| ,UL—'
-
| 1

= C for any q infinite prime of k
By lemma l.c. there exists an L, imaginary quadratic extension of

k, L = k(¥/-d) that coincides locally with the given extensions.

By lemma l.b. L is contained in B. From our construction
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d(L) = p+b, b ideal of k, (b,p?) = 1 for any ¢ in S, so (d) =
d(L)-a?, a an ideal of k.

Now L9

k(v=a%) so I (d)% = IIp¢ mb? 1n(a?)? with (p¢, p¥) = 1
5

for any ¢, ¢ in S.

The lemma is then proved applying lemma 1.a. =

Moreover we can show:

Lemma 2. Let B,B, be two quaternion algebras over k. Let L ¢ B
be as in lemma 1. There exists X < B, such that L¢1,--',L¢n, K

are linearly disjeoint.

Proof. In fact if we assume L = k(v¥-o) we can choose, in the
above notation, a prime ideal g of k such that ({a),q) =1, q = pd
for any ¢ in S and char (0y/q) # 2. Then we can construct as in

lemma 1, K © B, an imaginary quadratic extension of k such that

d(K) = gqb', (b', g%) = 1 for any ¢ in 8. K = k(v-R),
(B) = d(K)(a')? and
B (1¢1... G.¢n = p¢1--- p¢nq a s (Es P¢) =1, (;,CI) =1

S0 B a¢1,.. a¢n is not in k? and again by lemma l.a. the lemma

follows =

Proof of Proposition 1.4.2.

It is now eas& to extend I, and K to B 24 k and B, 24 k

respectively, so that they will satisfy propesition 1.4.2.
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For L we just need to choose p, see proof of Lemma 1 such that p #
Pi¢ for any p;|d(B), pi[d(Beﬁ) and ¢ in S. Proceed analogously
for K. We obtain then L¢1, coay L¢n, K linearly disjoint where
L =L e & so that L1, 1%k 2 1M e K m

1.5 Lattices in F

Let € = M,(k) be a trivial central simple algebra over k. k an
algebraic number field. Let F be a minimal left ideal in 4q, and
0 an order in4#¢ . In this section we clarify the O-invariant

lattices of F. The main result will be:

Theorem. The number of isomorphism classes of O-invariant

lattices in F is up to a constant, equal to the class number of k.

All the lattices are assumed to be Op-lattices, Oy the ring of
integers of k.

The main reference for this chapter is I. Reiner [R]

F is a minimal ideal of and since is trivial we have

“PL = PndyF. Let L be a lattice in “® , we define:

0.(L) = {x e -7 | Lx < L}

0y (L) {x e M | xL c L}
0,.(L) and 0y(L) are orders in AL and called right order of L and

left order of L respectively.




Proposition 1.5.1. There is a natural correspondence between

lattices in F and lattices in - with right order M,(0y).

Proof. Let L be a lattice in F. ~PZ is isomorphic to the direct
sum of n copies of F so we can define the lattice M = L e...o L, n
copies of L.

We have 0.(M) = M, (0y).

Viceversa given M a lattice in - such that O,.(M) = M, (0y)

then M =L @¢,..2 L. =

Lemma 1.5.2. Let L be lattice in F.

Then OQ(L) = {x e [ %1, ¢ L} is a maximal order of M.

L ...e L be the associated lattice to L in -%.

Proof. Let M

We have Or(M) Mn(ok) a maximal order and therefore OQ(M) is a

maximal order. But Oy(L) = 0y (M) so 04(L) is maximal. ®

Let L,and L,be O-invariant lattices in F, O any order of -t . Put

a = {x e-fg such that xL; < Lp}. a is a two sided O-ideal

.Proposition 1.5.3. L, = al,

Proof. 4, coincide with EndyF, therefore there is Yy in R such

that L, = yLy. ™

32
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Corollary 1.5.4. The action of the set of two sided O~ideals on

the O-invariant lattices of F is transitive.

Proposition 1.5.5. Let L,, L, be as above. Then L, is isomorphic

to L, as O-modules if and only if L, = oL, where o is in k™.

Proof. Suppose L, = ¢L,, ¢ isomorphism of O-modules.
Then ¢x = x¢ for any x in O, but O is an order so ¢ belongs to

center of - , i.e. k¥, =

Corollary 1.5.6. Let L,, L, be as above. If L, is isomorphic to

L, as O-module, then: 0,(L,) = 0g(L,).

By lemma 1.5.2 we know that if L is a lattice in ¥ then 0y(L) is a
maximal order, this allows us to classify the O-invariant lat-
tices. Put C(F,0) = {L lattice in F}/= g,

where L; = L, means that L, and L, are isomorphic as O-modules.

0

Theorem 1.5.7. C(F,0) = U C(F,0;) ,

[

0; are the maximal orders of -tr. containing 0.

Proof. Let L,, L, be two O-invariant lattices in the same

isomorphism class. Then L, = al,, a € k*, and Og(L,) = 04(L,) is

a maximal order by lemma 1.5.2. , containing 0. The theorem is
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proved. =
To estimate the number of isomorphism classes of O-invariant

lattices in F we need:

Lemma 1.5.6. The number of maximal orders of - containing a

given order 0 is finite.

Proof. - is a trivial simple algebra then:

At ={ac | v(a) = 1} is a k simple group. O' is an arithme-
tic subgroup of Al. Let O be a maximal order in <& containing O.
Then 0! is a subgroup of .o ! containing O' as a subgroup of
finite index. By Borel's result [B] there ar only finitely many
subgroups of ~tt' containing 0! as a subgroup of finite index.

But since a maximal order in a trivial algebra is generated by its

units elements the lemma is proved. =

Theorem 1.5.9. Let 4L be a trivial central simple algebra over k.
|C(F,0)| = ch(k)

Where ¢ is the number of maximal orders containing O and h{k) is

the class number of k.

Proof. Let O be a maximal order in ~¥L. Since -4 is a trivial

central simple algebra we have that the non zero prime ideals p of

k and the prime ideals B of O are in one to one correspondence:




35
p=0c0ng , po=3s.
Therefore by proposition 1.5.3 we have |C(F,0}| = h(k) and

applying lemma 1.5.8 the theorem is proved. =

Let L, and L, be two O-invariant lattices in F as above.

Definition 1.5.10. We say that L; and L, have the same genus if

Ll,p is isomorphic as 0,-module to LZ,p for any prime p.

p
Theorem 1.5.10. Let -t be a trivial central simple algebra over
k. The number of genus classes of O-invariant lattices in F is

equal to the class number of k.

Proof. Let L, and L, be lattices in ¥, O-invariant. If L; and L,
have the same genus then:

Oz(Ll,p) = OZ(LZ,p) for every p prime.
But Og(LP) = (OQ(L))p and two orders are equal if they coincide at
every localization. Se Oy(L;) = O¢(L,) and it is a maximal order.

The theorem follows. »

1.6 CGlassification of Kuga fiber varieties arising from quater-

nion algebras.

Let A —£—> T\H' be a Kuga fiber variety defined, as in 1.2, by

a symplectic representation p of G = Resk/QSLl(B). By Addington's
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Theorem we can assume p to be a polymer representation. In this

section we will classify, up to isomorphism, the rigid Kuga fiber
varieties defined by a given polymer representation.
i g R R .
Let A —-> V and B > V be Kuga fiber varieties given by

(G,K,X,T,F,L,B,p,T) and (G,K,X,T,F',L',p',p',7') respectively.

Definition 1.6.1. We say that A —£—> v, B —B.5 vV are isomorphic

if there existes a Q-linear isomorphism §:F » F' such that:

p =197y

B(x,y) = B'(¥(x,y)), %,y € F
=9 ey
L=yt

The fiber of A —£—> V as a real torus is isomorphic to F/L

where ¥ is a minimal left ideal in a Q-algebra and L is a lattice

in F. We will show that the classification of the families
induced by a given representation can be reduced to the classifi- f
cation of lattices in a given central simple algebra. Therefore

this classification is easily obtained from the results of section

1.5.

Lemma 1.6.2. Let $:F > F' be a Q-linear isomorphism. Then p(g) =

. ¥~ 2p'(g)¢ and L = p”'L' if and only if L is isomorphic via ¥ to L'
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as T-modules.

Proof. Sufficiency is obvious so we want to prove necessity.
Suppose P:L - L' is an isomorphism of T'-modules; then
w(p(y)z) = p'(y)¥(z) for any z in L and v in T'. Since T is an
arithmetic subgroup of G, it is Zariski dense in G (Borel [B]) so
that p(p(g)z) = p'(g)¥(z) for any g in G and z in L.
Therefore p = " 1p'y and the lemma is proved. =

In most cases the isomorphism of L and L' as p(T) modules
determines the isomorphism of the two families. We have the

following:

Proposition 1.6.3. (Satake [S]). Let A £ 5V and B B> V be
Kuga fiber varieties defined by (6,X,X,7,F,L,8,p,T) and
(G,K,X,T,F',L',8',p',t'). If p satisfies the H2 - condition and
p' is equivalent to p over Q, then B £ 5 V can be defined by

(G,K,X,T,F,L",B,T).

Rigid families of quaternion type are defined by polymer represen-

tation satisfying the H2 - condition, so we have:

Corollary 1.6.4. Let A —£—> V and B > V be rigid Kuga fiber

varieties defined by the same polymer representation.

Then A —i—b V is isomorphic to B £ 5 V in the sense of definition
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1.5.1 if and only if L and L' are isomorphic as T'-molules.

Proof. Lemma 1.5.2 and proposition 1.5.3 give this result. m

We can now find a classification.

Suppose the data (G,K,X,F,B,p) is given.

Notation: We will denote by C(p,F) the set of isomorphism
classes of families of Abelian varieties defined by p over

V = F\X. -

Definition 1.6.5. Let R be an algebra over Q and O a Z-order in
R. An Abelian variety of Op type is a pair (X,1) formed by an

Abelian variety X and an isomorphism 1 of Qg into End(X) such that
1y(1) = 1y. We say that a Kuga fiber variety is of Op type if the

fibers are of OR type.

Definition 1.6.6. We say that two Kuga fiber varieties A —f—> v

and B 8> V of Op type are isomorphic as Op type if:

(i) They are isomorphic (in the sense of 1.6.1), and
gii) If y:F > F' is the Q-linear map inducing the isomorphism

then Y1, = 1pY.




39
Notation: Let C(p,T,OR) be the set of classes of isomorphism of

families of Abelian varieties of Op-type defined by p.

Main Theorem 1.6.7. Let p be a rigid polymer representation of
G = ResE/Q(SLl(B)), irreducible over Q. B a quaternion algebra
over k, B # M,{k). k a totally real number field, k the smallest
Galois extension of Q containing k. € = Gal(k/Q).
Let R be a Q-algebra of dimension n if p= pp and 4n otherwise.
Let Op be a maximal order in R.
Then we have:

|c(p,T,0g)} = ¢ + h(k).
Where ¢ is a constant, h(ﬁ) is the class number of k and I' is an

arithmetic subgroup of G.

Proof. Let A —£—> V and B 8-> V be two Kuga fiber varieties
defined by p. By proposition 1.6.3 we may assume:
A —L > V defined by (G,K,X,I,F,Ly,B,0,T)

and B > V defined by (G,K,X,I,F,L,,B,p,T)

Let P = IgM, gM # yM if vy # g, the polymer such that p = pp. In
the notation of 1.2 we have:

(i) p = RESR/QPM’ pMiM ¢ Resk/Q(SLi(B)) - EndgFM.

s

(i1) Fy minimal left ideal in M, F = ReSE/QFM'

(i1ii) The endomorphism ring of the generic fiber of any family

defined by p depends on the class of BY in the Brauer group. In




fact by proposition 1.4.1:

Let Ay be the generic fiber

EndgF > Res, (B & B,)
if B = My(B,) o k/q
EndQAX =1 @ ReSE/QB°
End 2 Res i
if BY = My(R) o k/Q

EndQAx = Resﬁlqﬁ

If A, is any fiber we have only inclusions.
We can identify O with a maximal order in the endomorphism ring
of the generic fiber, since dimQR = 2dim A,.
Therefore Op contains Of (prop. 1.4.1) and we can consider O as
an Oy-order, L, and L, as Op-lattices.

f g . ; 1 .
A —> V and B > V are isomorphic as families of Op type if and
only if L; and L, are isomorphic as Z{p(T'}] & Op-medules.

Therefore if and only if L, and L, are isomorphic as

Ox[pM(T)1 ® Op-modules.

If py is a G-irreducible representation of G, then, since T is
Zariski dense in G, we have that OE[pM(T)] is an order.

If pPM is a C-reducible representation of G, then we have to
consider py @ id: G x SL;(B,) » Endi(Fy). py ® id is defined over
K and C-irreducible.

T x Oé is an arithmetic subgroup of G x SL;{B,) so as above

Oglp(T) = Oﬁ] is an order in Endp(Fy).

We can conclude: C(p,T,0p) = C(Fy,0) ,

40
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OE[pM(F)]
where 0 = or is an order in EndEFM

OE[pM(I’)] ® Op

By theorem 1.5.9. |C(p,P,OR)| ¢ h(k) where ¢ is the number of

maximal orders containing O.

Corollary 1.6.8. Suppose that O is a maximal order. Then we have

a bijection:

C(p,T,0p) > Ideal class group (k).
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Chapter 2.

2.0 Definitions

Let V be a projective variety defined over a subfield of €. Let
o € Ant(C) be an automorphism of the complex numbers. If V is the
variety determined by I(V) we define VY as the variety determined

by I(V)°.

Definition. A subfield h of C is called the bottom field of V if
an automorphism ¢ of C is the identity mapping on h if and only

if V9 is biregularly equivalent to V.

The definition of bottom field is due to Shimura, as are all the
results quoted in this section [Shl,2]. The best known example is
the bottom field of a polarized Abelian variety (moduli field),
the central notion in the theory of complex multiplication [Sh-T].
The moduli field is interpreted in terms of class field theory
Shimura described also the bottom field of the Hilbert modular
variety T\H* in terms of class field theory. In particular he
constructed a Hilbert modular variety with bottom field different
from Q.

Shimura's original definition is weaker: it requires V and VY

to be only birationally equivalent. But in the case of Hilbert

modular varieties the two definitions coincide. Let D be a
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bounded symmetric domain and I' a properly discontinuocus group of
transformations of D with compact quotient and without fixed
points. Then I'\D is known to be isomorphic (analytically) to a
non singular projective variety V. By Igusa V is a minimal model,

i.e. every rational mapping of a variety W into V is defined at
every simple point of W.
Therefore for V the biregular equivalence coincides with the

birational equivalence.

Following Shimura we have:

2.0.0 If W is biregularly equivalent to V then the bottom field
of W and V coincide.

2.0.1 Every field of definition of V contains the bottom field
of V, if the latter exists.

2.0.2 Assume V is defined over an algebraic number field, then
the bottom field of V exists and is an algebraic number
field of finite degree.

Let V = T'\Ht be as above then the existence of the bottom field of

V is assured:

I\D is rigid if the dimension is bigger then 1. (Calabi-Vesen-

tini). T\D is therefore defined over an algebraic number field

[Sh3] so that its bottom field exists by 2.0.2.

If T\D = V has dimension 1 then the argument is different.

By Torelli's theorem the bottom field of V coincides with the




field of moduli of (J, ), J the Jacobian variety of the curve V

and the canonical polarization.

Let A —£—> V be a family of Abelian varieties parametrized by a
Hilbert modular variety. As we mentioned A and V are biregularly
equivalent to a projective variety [K] (V = T'\Ht is always compact
if the quaternion algebra is a division algebra).

If we assume that V and A have models defined over an algebraic
number field then by 2.0.0 and 2.0.1 the bottom fields of A and V
are well defined, exist and are algebraic number fields.

The main result of this chapter relates the two fields:

Theorem. The bottom field of A is a Galois extension of the

bottom field of V.

From now on we will assume that A —£~> V has a model defined over

an algebraic number field.

o
2.1 A9 £ > VO

Let o € Aut (C) be an automorphism of the complex numbers. Let
A —£—> V be a family of Abelian varieties parametrized by a
compact arithmetic variety. We shall identify A and V with their

embedded images in the complex projective space so that f is a

morphism of algebraic varieties and f9 is defined as in 2.0.
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Theorem 2.1.1. (M.H. Lee [L]) Let f: A —> V be a Kuga fiber
variety over a compact arithmetic variety V. Then £9: A% » VO is

a Kuga fiber variety over V.

AC £2 > V9 is therefore defined analytically by the data:
(G(O), K(o)’ X(c), I'(G), F(c), L(O), {3(0): p("), {9y
and A% = (F(O) x L(c)) \(X(c)x F(U))
(o)
P
£(9)

NO BN NE

a

Gorollary 2.1.1. If A —=> V is of Hodge type then A° > VO is
of Hodge type.
Proof. A family of Abelian varieties A —£—> V is of Hodge type if

and only if it contains A, a fiber of CM type. But then A is
a

contained in AC > VO and A% is of CM type. =

Corollary 2.1.3. ILet L_ and Léc) be the p-adic completions of L

P
and L(o) respectively. Let T and I'? be the completions of T and

F(c) respectively in the topology of the subgroups of finite g5 

index. Then Lp and Léc) are isomorphic as T modules for any prime

p- In other words

- g .

Pox oL =1 10
5 P (o) P
p p

for any prime p.




Proof. Let {I';} be a cofinal system of subgroups of I', T=2I;2T,>...
Then for any i,X; = F;\X is a finite unramified covering manifold

of V and {X;} is a cofinal system of covering manifolds. For each

n

i we consider Tj x piL, so that Ay = (T X plL)\(X x F) is a

finite unramified covering of A = (T ; L)\(X x F). Moreover

£y

A; 5 V; is a family of Abelian varieties.

Applying o to every A;, we obtain a cofinal system {Aic} of
unramified covering manifolds of A®. We have the following

diagrams:

@ ° e a

[ L
A, + ¥, A9 » V,0
| | |
A, >V, A9 > VO
| | | |
A > V¥ A% 5 e

By theorem 2.1.1 A;% > V;9 is a family of Abelian varieties for
any i. Let JQ(A) be the L-adic points of any fiber of A; it
doesn't matter which fiber as the f-adic points of any two fibers
are isomorphic. o induces an isomorphism of Jg(A) onto Jy(A°) and

therefore:

it

A,U " (FE_O) x Pi L(U))\(X(U) x F(O))

p(c)

'y

éo) is a bijection. To show that

We proved that o: T x T, =+ % x L

o is a homomorphism of groups we need the definition of p® as
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given in the proof of theorem 2.1.1. If y € I'9, v = <EiE Yic

then p(;) = <}ET (p(Yi))U«

So the conclusion follows at once:

r « L =17 «x L(G) as groups. ®
s P N
P P

2.2 Bottom fields.

Let A —£—> V be a Kuga fiber variety parametrized by an arithmetic
variety V = I'\X. We assume that A —£—> V has a projective model
defined over a number field. We define K as the bottom field of

A and Ky as the bottom field of V.

Theorem 2.2.1. K, and Ky exist and Ky > Ky.

Proof. The existence follows from 2.0.2 and the hypothesis . Let

o be an element of Aut (C). By theorem 2.1.1 we know that

po £2

> V9 is a Kuga fiber variety over an arithmetic variety
yo = r{o\x(o)

Assume that GlKA = id, i.e., there exists a biholomorphic map 1
b{c): A » A, If we show that b{c) induces a biholomorphic map

between V and VY the theorem is proved. In fact then c[KA = id

implies GlKV = id so that X, > Ky.

Consider the fiber AGA = (£9)"1()), X € V9, and the holomorphic
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map fb(o): AJ -+ V.
AS is an Abelian variety and V an arithmetic variety, V = I'\X.

80 there exists a lifting fc such that the following diagram

s A

commutes:

Ay fb(o)
m n
N — > X
fl,o

Then %A,c is a bounded holomorphic function and therefore a
constant, i.e. fb(o)(A]) = x for some x € V. This implies that
b{c) sends fibers of AC to fibers of A and induces in the natural
way, identifying V® with the zero section, n(g) : VO = V |, n(o)
holomorphic.

Replacing b(o) with b_(ﬁ)'1 we conclude that n{c) is biholomorphic

and 0| = id. =
Ky

2.3 v9 o= v,

Let ¢ be an element of Ant(C)
o

We examined in 2.2 the structure of AC > V9 as a family of
Abelian varieties.

In this section we show that in the rigid quaternion case,
o}

if V =2 V9 then A° > VY can be defined by the data

(G,K,X,F,F,L(U),B,p,r). So it is the lattice L(9) that character-

izes the new family. We need some preliminary results:
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Let Y, and Y, be Abelian varieties and o0:Y, - Y, a morphism. We
will denote by aq the rational representation of o and by oy its

2-adic representation. The following is well known:

Lemma 2.3.1. The representations aq and ag are equivalent.

Lemma 2.3.2. Given the morphism a, apply o to get a9:Y§ » Y9.

Then og ~ (ac)Q.

Proof. Let J ;(Y;) ., J ((Y,) be the groups of %-adic points.
Then ¢ induces the isomorphisms:

and the commutative diagram

I (0 —2 3 (1)

o
%
3,009 —2 5 T ,(19)

Therefore oy ~ aj and ag ~ (aG)Q. ]

We assume that A _£—> V is defined by (G,K,X,T',F,L,BR,p,T)
f

o
where G = Res, ,.(SL;(B)), and A° > VO is defined by

k/Q
(c(a), x(0), x(o) (o) (o) (o) glo) ,(a) ((ady,

Following Lee [L] we analyze the representation

ag
£ 5 vo. Let x(9) be

p(c): gla) » Sp(F(U), B(U)) that defines AY




the universal covering of V9, then:
r(9) is the fundamental group of VO,
¢(9) is the connected component of the identity in Aut(X(U)),
We define C(r(9)) the commensurability subgroup of r{o) in (o)
. -1
3%t ¢ (r(")) = 1g°% ¢ aut(x$9%) | (r(9), g° r(")(g") n (97 « w}

We have:

F(o) c G(U) and Zariski dense,

c (r(c)) L C) R (i(o))
The representation p(c) is actually defined on
c (r(a)y - ¢{0), ret r(o) 5 Tl(c) D ... be a cofinal sequence
of groups. Then the corresponding system of coverings of V(U) is
a cofinal system ... = v;(ﬁ) > Vl(c) > v(®), 1In the same way we

can consider the cofinal system {Ti(c) B(U) L(U)}. We then have

v ¥
(o) _ (o)  plo) | (o)
MU e gy
v t ¢
(o) (o)
Aifl > Vic-rl
¥ ¥
. ) .
A(cr) N V(cr)

Applying ™! to these constructions yields

[y
[ '

[
]
—_
[
]
s

f LR S~
AYS
<l & cse & & <&
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where {V;} corresponds to a cofinal sequence {I;} and for each i
A; » V; is a family of Abelian varieties. Therefore

Ai = (I‘i S L)\(X X F)o

Let v be an element of r(o), since r{9) 5 ¢(9) ye have
_ lim . (0’) . .
Y = ¢~ v; and for each i, (v;, p*9/{y)): Ay + A; is a covering

transformation over A.

Applying o”?! yields the set

G"l

-1
vy > [p(d)(y)]0 } of covering transformations for the cofinal

system > Ay > Aj.1 > ... > AL
-1
Hence Yic = Yi‘ for some Yil € I'; and the rational representa-

- ‘
tion ([p(o)(Y)]U )q = p(y4') is independent of the fiber.

This implies

Lemma 2.3.3. (1) ojr:T = r(o)  ang

(ii) ¢o|r 4is an isomorphism.

By lemea 2.3.2 we have ([p(°)]°—l)Q~p(°),
Thus there exists ¥:F + F(9) such that p(0)(y') c yp(G)y~! for
any v' e €90, Since r{(9) is dense in G{9) ,

p(0) (6(a) ) c yp(e).

By interchanging p(ﬁ) and p we can proceed in the same way to

conclude:




Lemma 2.3.4. p(G) = ¢_lp(c)(G(d))w

This result is the crucial step in the proof of the following:

Theorem 2.3.5. Let A —£—> V be a rigid Kuga fiber variety of
quaternion type defined by the data (G,K,X,I',F,L,R,p,t). If ¢ is
an element of Aut(C) and V = V9, then the Kuga fiber variety

ao £

> V@ can be defined by the data (G,K,X,F,F,L(U),B,p,T),

g
Proof. We assume that AC

> VO is defined by the data

(g(0) (o) x(o) plo) y(o) 1 (o) glo) (o) (o)) Lot ¢ be the
biregular isomorphism ¢:V -+ VY. ¢ induces an isomorphism of the
fundamental group ¢, : w (V) » m,(V9).

I and r(9) are arithmetic subgroups of G and c(a) (respectively)
so that m,(V) = {e} , ﬂO(V(G)) = {e} and 7,(V) =T, ﬁl(V(U)) =
r{o)  (see Kajdan [Kjl).

Therefore ¢ induces and isomorphism ¢, : T —+ r{o), sincer is

Zariski dense in G we can extend ¢, to a Q-morphism ¢, : G = G(U).

By lemma 2.3.3 we have p(G) = w_lp(c)(G(U))w so that:

G g > Sp(F,B)

¢=’: Ilb

G(G) p(c) > SP(F(G):B(U))
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The map of p~'I p(c)¢4 : G > G is an automorphism defined over
P %

Q.G = Res, ,.SL;(B) so that any Q-automorphism is inner and thus

k/Q
there exists x € G such that any p'lpr(°)¢* = I.

Therefore p(°)¢*~p.

Now the two representations p and p(°)¢* satisfy the hypotheses of
G

proposition 1.6.3. We conclude that AC > VY can be defined by

(G,K;X,F,F,L(U),BsP,T)- =

Corollary 2.3.6. Let L, =L e Z, and 1§ = 1(9) oz, for any

prime p. Then Lp and Lgo) are isomorphic as I'-modules :

T x L
Pp

[

I x Lgc) .

p Pp

Proof. The map y:F = F(U) introduced before Lemma 2.3.4 locally

coincides with o, and therefore:

- axg,

by lemma 2.1.3 T x Ly = P F(cg x Lgc) .

p "p
by lemma 2.3.3 o|l:f —> r(o)

oxiy
so that ' x L. = P r(o) « (o) |
P (a) P
p Pp

Moreover in the proof above (2.3.5) we have shown that there

exists x £ G such that

#xpp(x)

r(d) b4 L(U) .
5(0)

T x Lgc)




where, for simplicity, we write L(G) for {p(x)]'lL(U). ¢*“1 X g
is an automorphism of I, so, as we have seen, it is given by

conjugation by an element of G. The corollary is then proved.m

2.4 Gal (C/Bottom field of V) » Ideal class group (K).

Let ¢ be an element of Gal(C/Bottom V), let A —£—> V be a

rigid family of guaternion type defined as usual by
£

(6,K,X,Ir,F,L,B,p,T). We proved that AY > VO is defined by
(6,K,%,r,F,L(9) 8,0,1).

In this section we will show that L(0) = a(o)L, a(o) an ideal
of k, and show that the map Gal(C/Ky) - 1c(k) is a group homomor-=
phism., We first need to make some assumptions, as in Section 1.6.
i) p = pp is rigid, Q-primary, Q-irreducible

i.e., P=%gM ; gM# yM when g = v
gell

ii) A —£—> V is of type Op maximal order in the Q-algebra R,
dimQR = dimQ[Enqux] where A, is a generic fiber.

g
> VO,

Lemma 2.4.1. If A —£—> V is of type Og then so is AC
Proof. In the notation of proposition 1.4.1 we may identify Op
with a Oy maximal order in ResE/Q By = Endq(AX). As before B, is
either k or a division algebra over k and Ay is isomorphic to

= - N
(F,L,J;) where F = Resk/Q By
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Let b be an element of B, and ry: B, » B, the right multipli-

cation by b. Put Ry = Resk/ The rational representation of

Q Fb-
By is N copies of Ry:
i: B, - GL(F)
b > Resk/Q Nry = NRp

We can therefore write F as a sum of invariant subspaces

(Resk/Q B,ON. 1If S:0p » End A; is the analytic representation

then the generic fiber AGXU of AC > VO is of type Op via the

representation S9:0p + End(A;%). We show that S° = S. Let

Resy,;~ B, be an i-invariant subspace of F. Then J (Resk/ B,) is

k/qQ Q

i-invariant and therefore coincides with a copy of Resﬁ/Q B,.

We can conclude that S(b) = 2 Rb and
N R = N . .
s%(p) = 5 b 5 Rb’ as Rbls defined over Q.

The choice of A; is not restrictive and the lemma is proved. =

Lemma 2.4.2. (i) L,L(U) can be considered as O lattices in Fy,

F = ReSE/QFM'

(ii) L,L(o) are Oﬁ [oM(T)] @ Op - lattices of the same genus,
so  that 0g(L) = 04(L(9)).
(iii L= a(c)L(U), where a(c) is the Oi-ideal in k:

: a(o) = [L(O):L] ={ge EndQFM|gL(°) < L}.

Proof. (i) is an obvious consequence of lemma 2.4.1, recalling

that since Op is a maximal order, Og 2 OE'




ii) follows from corollary 2.3.6 since all the local isomor-
phisms considered commute with the elements of Og.

(11i) is just Proposition 1.5.3. =
We will denote the order OE[pM(F)] ® O by 0.

TLemma 2.4.3. let L and L(U) be OE-lattices associated to

A-£5 v and a°

> V9 respectively.

Then L{0) = a(o)lL,
the ideal class of a{c) is independent of L and L(U), and the
map Gal(C/Bottom field (V)) + Ideal class group (k) is well

defined.

Proof. We must show that the ideal class of a(c) is independent
of the choice of L and L(a), Suppose A —£—> V has two analytic
models as a family of Op-type. Let L and L' be the lattices
associated to the two models. Since the two models are biregu-

larly isomorphic as Og-type, L and L! are isomorphic as O-modules,

i.e., L= alL', a € k*.
Suppose L = [L(U):L] 1{0) and L' = [L(o):L']L(G), then
a[L(U):L'] = [L(U):L] and the ideal class of a(oc) is independent

on the choice of L. We can proceed analogously for L(e), a
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Lemma 2.4.4. Let A —£~> V and AI —E——D V be two families of
quaternion type defined by (G,X,X,I,F,R,p,t). Let L and L' be the
corresponding lattices and let ¢ € Gal(C/Ky). If we assume that

L = [L':L]L' where [L':L] is an OE ideal, then

[L':L] = [L'(o):L(G)] as ideal classes, here L'() and .(o) are
the Of-lattices associated to A'® + V and A >V,
Proof. Since we are concerned with ideal classes, we can assume:

(L':L] < OE gso that L' ¢« L. Let x be in V and 7, the natural

+ : 1 o ~ ~ !
projection = Ax > A %+ Let A be Ker 7y 3 (Resk/QL)/Resk/ I.'.

Q

%t

Now for any a in Oy we have the following diagrams:

Nro
. —> L and 0O —> A —>A' — A —> 0
X e
N N
Yo v IRy Vv 3Ry
. 1 - ' s —_ At _
Resk/QL > Rggk/QL 0 > A > AK > Ax > 0
Then [L':L] = { a e O N R =0}
El 2 o IA
Applying ¢ 0 — J\— A;g —_ A;cﬂ—> 0
¥ ¥ ¥
o o g
g
G ~ ~ |(0) - |(U) - _Ei
where AY = Resk/Q /Resk/QL and Z Ra 5 Ra




0. .0, _ N _
So [L':L] = { o | 7 B, ’ A0 =03
g
={a| G;I%J 20 = 0}
={a|nR | ,=0}=1(L:L]
Lemma 2.4.5.

The map Gal(C/Ky) + Ideal class group (K) is an homomorphism of
groups.
Proof. Let 0,8 be elements of Gal(C/Ky).

Consider the following ideal classes:

a(o) = [L(U):L]
a(s§) = {L(é):L]
a(8g) = [L(US):L]

By definition

£(08) = [1(68),(8)1-2 rlo),p)=2 L
and L{od) = [L(c"‘s):L]'1 L.

By the uniqueness of the associated ideal:

SACONRIEN s ACNAC [ ACI 4

and we just prove that [L(Uﬁ):L(G) = [L(a):L] as

ideal classes. So a(o8) = a(8) - a(s). »
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2.5 1~ Gal(KA,O/KV) -+ Ideal class group (k)

Let A —£—> V be a rigid Kuga fiber variety. In Section 2.2. we
proved that the bottom field of A is an extension of the bottom
field of V. Our discussion of A° —£S—> VP in the previous section
suggests that the definition of bottom field of A must be modified
to give an interpretation of the extension.

In fact if V 2 V9 then A°

> V9 is a Kuga fiber variety defined
by the same data as A —£—> V and with the same endomorphisms ring
of the generic fiber [same type]. We will therefore define the

bottom field of a family with a given ring of endomorphisms KA 0*
]

and prove that KA,O is abelian over Ky.

Main Theorem 2.5.1. Let A » V be a Kuga fiber variety defined by:

(G,K,X,T,F,L,B,p,1).

We assume:

(i) B is a quaternion algebra over k, k a totally real number
field, B # M,(k) and G = RESE/Q(SLl(B)).
k is the smallest Galois extension of Q containing k.

(ii) p = pp rigid, Q irreducible, Q primary polymer represen-
tation

(iii) A ~£—> V is of 0-type, 0 a maximal order in Endq(Ax). Ay

is a generic fiber.,

Then 1 + Gal(KA’OlKV) ~ Tdeal class group (k)

59




We need the definition of KA,O'

ad

We showed that AC > V9 is of the same O-type as A -EL> v,

naturally we can modify the definition of bottom field of A.

Definition 2.5.2. We call the subfield KA,O of C the bottom field

of A respect to 0 if an automorphism ¢ of C is the identity

mapping on KA,O if and only if AY > VO is isomorphic to
A —E—D V as a family of O-type.
Proof. Let L o KA,O > Ky be a Galois extension of Q. We already

constructed the homomorphism:

Gal(L/KV) + Ideal class group (k)

What is yet to be determined is the kernel.

Let o £ Gal (L/Ky) such.that a(c) =1, i.e. L9 = (q)L, g € k™.
But L{9) = (q)L if and only if A and A% are isomorphic. So we
have |

1 > H > Gal(L/Ky) + Ideal class group (k).

and LH = KA,O'
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Chapter 3.

In this chapter we will construct a Kuga fiber variety of quater-
nion type, A —£*> V, with bottom field of A strictly bigger then
the bottom field of V.

In particular we consider a totally real number field k of
class number 2. Any rigid Kuga fiber variety, A ﬂg—b V, construc-
ted from a quaternion algebra over k has [Kp:Ky] € 2. We will
show that with a suitable choice of the data we have [KA:KV] = 2.
To do so we need to state several results of Complex Multiplica-
tion Theory. 1In fact a rigid Kuga fiber variety contains fibers
of CM type (Section 1.3.) and the action of an automorphism of the
complex numbers on such varieties is determined by the main

theorem of Complex Multiplication.
The universal reference for this chapter is Shimura-Taniyama
"Complex multiplication of Abelian varieties and its application

to number theory".

3.1 The Endomorphism.Ring of an Abelian variety

Let A be an Abelian variety defined over the complex numbers.

We denote Hom(A) the set of all homomorphism of A into A. Hom(A)

is a finitely generated free Z-module, we put Homg(A) = Hom(A)=Q.
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Theorem 3.1.1. Let A be an Abelian variety of dimension n and F

be a subfield of HomQ(A). Then we have:

(1) [F:Q] divides 2n
Suppose [F:Q] = 2n
(ii) F is totally imaginary
(iii) The commutant of F in HomQ(A) is equal to F.
(iv) A is isogeneous to a product Bx+-+xB where B is a simple
Abelian variety.

(v) For every o € F, we hava:

vwia) = NF/Q(a) , tr(a) = TrF/Q(a)

Theorem 3.1.2. Let B a simple Abelian variety defined over C.
Let K be the center of HomQ(B)

(i) K = HomQ(B)

(ii) [K:Q] = 2 dim (B)

(iii) K is totally imaginary
Let R be an algebra over Q, with identity element 1.

Definition 3.1.3. An Abelian variety of type (R) is a pair (A,i)

formed by an Abelian variety A and an isomorphism i of R into

HomQ(A)
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3.2 CM type

Let F be an algebraic number field of degree 2n. Let ¢1,-°=,4¢n
be n distinct isomorphisms of F into C, we say that (F, {¢i}) is
of CM type if: F contains to subfields K and K, satisfying the
following conditions:

(CM1) K, is totally real and K is a totally imaginary quadratic
extension of K,.

(CM2) There are no two isomorphisms among the ¢; which are

complex conjugate to each other on K.

Theorem 3.2.1. In order that (¥,{¢;}) be a CM type, it is
necessary and sufficient that there exists an Abelian variety of

dimension n of type (F,{¢;}).

Theorem 3.2.2. Let A be an Abelian variety of type (F,{¢;1}),
A ~ Bxs++xB, Let K be the subfield of F defined above, then:

HomQ(B) = K.

3.3 The Reflex of a CM type.

Proposition 3.3.1. Let F be an extension of Q of degree Zn and
{$1,°**, ¢,} be a set of n distinct isomorphisms of F into C.
(F,{$;}) of CM type.

Let E be a Galois extension of Q containing ¥ and R be the Galois

group of E over Q. Denote by p the element of Q such that &P is

TR

S




the complex conjugate of £ for every £ € E, and by 5 the set of
all elements of @ inducing some ¢; on F.

Put: S*

= {¢"!| o ¢ S}, H" = vl vy =9, vS8* = 8%3}.
Let K* be the subfield of E corresponding to H* and {¥{} the set
of all the isomorphisms of K* into C obtained from the elements of

S, Then (K*,{wi}) is a CM type and we have

* = o( z3£%i|g e B) .

(K*,{wi}) is determined only by (F,{¢;}) and independent on the

choice of E.

Corollary 3.3.2. The Abelian varieties of (K*,{wi}) type are

simple.

We call the CM type (K*,{wi}) of the above proposition the reflex

of (F:{¢i})

For every CM type (F,{¢$;}) we can find two subfields K and K, of ¥
satisfying the conditions CMl and CM2. Let {$;} be the set of
distinct isomorphisms of K into C induced by the ¢;. Then it is

easy to see that (F,{¢;}) and (X,{§;}) have the same reflex.

Proposition 3.3.3. Let (F,{¢4}) be a CM type and (K*,{wi}) the

reflex of (F,{¢{}). Let o be an element of K*; put 8 =1 ai,
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Then B is an element of F and we have RRP = NK*/Q(&). Set a be an
ideal of K*.
Put b=1 gwi, then b is an ideal of F; and we have

b bP = NK*/Q(E).

3.4 The Main Theorem of Complex Multiplication.

Let (K,{¢;}) be a field of CM type, [K:Q] = 2n, and (K*s{¢i}) be
the reflex of (K,{¢;}).

Let (A,i) be an Abelian variety of type (K,{¢4}). Let k, be the
field of moduli of (A, ) where is a polarization of A.

Put kO* = ¥ - kg, ko* is an abelian extension of K.

We assume Hom(A) = Oy, Og ring of integers in K. Then there
exists a an ideal of X such that A is isomorphic to the complex
torus C*/D(a). We say that (A,i) is of type (K,{¢;}, a).

Let ¢ be an automorphism of C such that ¢ = id on K*. Then

(A%,i%) is again of (K,{¢;}) type and isomorphic to the complex

torus C?/D(b) for some b ideal of K.

Theorem 3.4.1. Let (A,i) be an Abelian variety of type (K,{¢;},a)
as above. Let o & Aut(C/K*) and let s an ideal of K* such that ¢
= (§,K*) on Xab,

Then (A%,i%) is of type (K,{¢;}, Ny(s™') a), where

(s~1)Vi.

Ny(s™?) =

H- =
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Theorem 3.4.2. Let (A,i) be an Abelian variety of type (K,{¢;})
as above. Let H, be the group of all ideals a of K" such that
there exists an element u £ K for which we have
pa’i= @, N@) =u¥
Let k, be the field of moduli of (A, ). Then H, is an ideal group
of K* and ku* is the unramified class field over K" corresponding

to the ideal group H,.

3.5 The Example

Let A —£—> V be a Kuga fiber variety defined by B a division

quaternion algebra over k a totally real Galois number field.

If we assume the defining representation rigid and irreducible
over Q, we proved the following:

(i) The bottom field of A, Kp, is an abelian Galois extension

of the bottom field of V, Ky.
o

(i1) If o & Gal(Ky/Ky), then AC > V9 is defined by the
same data as A —£—> V except the lattice L(U). In fact

L{o) = a(o)L , a(o) an ideal in k and we have:

1 » Gal(Ka/Ky) ~ Ideal class group (k)

If k has class number 1, then K = Ky. If k has class number

bigger than 1 then be can apply the theory of complex multiplica-

tion to determine a(o).

SHERRATN




Let A —£—> V be defined by the data:

(G = Res, ;. SL,{(B),K,X,T,F,L,B,p,T)

k/Q
We make the following assumptions:
1. k is Galois over @, @ = Gal(k/Q).
2. p=pp; P=1Igh, P rigid, gM = yM if g # v.
M _ =
3. B" =Mylk) , F = Resk/QFM.
4. A-¥§~> V is of type Oy, Oy ring of integers in k.
5. Let Ay be the fiber with complex multiplication constructed in

Section 1.4 of type (K’{¢i})' Then we assume Hom(A,) = O, Og the

ring of integers of K.

A, as a complex torus is isomorphic to (F/L, Jy = (X)),
and if o £ Aut(C/Ky), then (4,)°9 = Afo is isomorphic to
(7/L09), 350 = ©(29)).
From assumption 4 it follows that A, is of type (K, {¢i}, a) where
a is an Og ideal. Let (K*:{¢i}) be the reflex of K and o an
element of Aut (G/K¥). If o = (s, K*) on K2P then (4,)° is of
type (K,{¢;}, Nw(g"l)g). Moreover if we assume o £ Aut(C/K*KV),
we have: )

Ng(s™%) = {x e K | sL c L(O)},
On the other hand:

[L:L(9)] = {x ¢ EndyFy | xL < L(O)},

So we can conclude:

[L:L(U)] Nk =Ng(s™")nk-= a(o)
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and we proﬁed the following lemma:

Lemma 3.5.1 If ¢ is an element of Aut(C/K*KV) and o = (g,K*) on
k2P, then:

[Ny(s™*)] 0 k = a(o).

We want to use this result to show that a(c) may not be principal.
As a first step we need to analyze the CM type (K,{¢;}). K
was constructed in Section 1.4 as:

K = L%, ,,.L%F = 1%%s,, al0T,

L = k(vV~7) is a totally imaginary extension of k, contained in B
and £ is totally ﬁositive.

K is of CM type together with a set of embeddings into C :
$15-.-50,5- The analytic representation of K is equivalent to the
direct sum of the ¢;. So to determine BrseessPy We need to
discuss the embeddings of X into C and the analytic
representation.

Let £ = Gal(k/Q) = {ul,...,ag}, then K% = 1L®1,,,,L%8 is the
smallest extension of Q containing K. We can assume, by Proposi-

tion 1.4.2, that [K% : Q] = 28 - g.

Lemma 3.5.2 The Galois group of % over Q is isomorphic to

Q x ZZQ, where the product is defined in the following way:
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P60 € 0 x 2§ 5 ¢ = (a,(0y)) , ¥ = (¥,(84))

¢+ P = (ay,(o5 « 854))

Proof. Let ¢ be an element of Gal(k%/Q)
Then ¢ restricted to k coincides with an element of @ that we call

da. For any i e Q, ¢:Li > 1i% js an extension of a to LI, So

either ¢(vV=C1) = /=Ci% or ¢(/-Ti) = - /-gi®,

Put 1 : Gal(XR/Q) » 0 x Z8, 1(¢) = (a,(03)), where a; = 0
if ¢(y-C1) = /=Ti% and o5 = 1 if ¢(/-CL) = - /=Cio,

1 is a bijection and it is easy to see that it is also an homo-

morphism of groups. = %

Gorollary 3.5.2 The embeddings of K into C are the restrictions

" of the elements of & x Zzﬂ to K.

Lemma 3.5.3 In the above notations. AA is of type (K’{¢a Sn}).
H

Where ¢a g :K > C is defined in the following way:
239

¢ - (a,(05)) » oy 0”18, 0

0,5
Proof. A, as complex torus is isomorphic to (F/L , Jy = 1(A)).
Jy is defined in the following way. Let g be an element of Gg

such that A = p(g) (V/-1,....,/-1) and J the element of Gg»

J= (.2 HISel x 1l8al,
10




Then J, = p(g)p(JI)p(g)~t. In other words:

F=9oFyi and Jy = » JA,i , Where

Jr,i = ppi(g) I x..oox(_f g)x...xI pMi(g)'l and (_9 %) occurs at
the place gM N §,.

The rational representation of K is just p: K » EndQ(F) and

P =9 pyi- Nowpyi : K~ EndC(FMi) is equivalent to e¢; where the
¢4 are all the extension of i € 2 to K. So by the construction of

JA yi we obtain that the analytic representation of K is equiva-
3

lent to $¢i,S°' =

A field of CM type

Let k be Q(¥10) and 9 = Gal (k/Q) = {id,v}.
k has class number 2 and its ideal classes are (1), (2,/10).

Let ¢ be in k, [ totally positive, for instance we will

4-y10
5 -

consider ¢ =

Put K = k(v/=C) and K¥ = k(v/=C¥). K and X' are linearly disjoint.
The smallest Galois extension of Q containing K is
E = K-KY = k(vV-C, v-CY¥), [E:Q] = 8. As we have seen in Lemma
3.5.2. Gal(L/Q) = o x Z,%.
K is of CM type with respect to {¢,,¢,} where ¢, = id and
$,:k > k, ¢, = y on k and ¢,(vV-C) = (V-T¥). L is also of CM type

respect to {¢;} where:

¢, = (id,0,0), b, = (id,o,l)s Py = (73090), ¢, = (Y;O;l)'-
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We want to compute the reflex of E. Note that K and k are the
fields satisfying condition CM1 and CM2. Therefore the reflex of
E coincide with the reflex of K.

For E, in the notation of proposition 3.3.1, we have:

s = {¢;} s*={o'11055}=s

%

H

i

(v | v eGal (B/Q) y§ =81 =g x {0}

¥ H* %
K =E =Q (T +v7¥) , [K:Q] =4

i

K* is a CM type respect to {¢ ,¥,} :
P, (VT +TY) =vT + /TY
‘pz (‘/E +\/EY)=1/E ‘m.

The diagram is as follows:

=K KY

.
/

Let a be an ideal of X* then Ng(a) = §¢1-5w2 is an ideal of K.

K

E
\\\ k
\Q

In particular any ideal class of k contains an ideal of the form
NQ(E) N k for some a in K*.
Since there are only two ideal classes in k: (1) and (2,¥10) we

need to verify that there exists a such that NW(E) = (2,/10)

Put a = (2, VT + vTY), then:
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Ng(a) = a’* a2 = (2,410, &) = (2,/10).

A Kuga fiber wvariety

Let k be Q(v10) and © = Gal(k/Q) = {id,¥y}.

Let B be a quaternion algebra containing K = k(v-%), ¢ = 4-210 .
For instance we consider. B = Ej%ga = EH%%

so that we have: B o K, B > KY and

B 8 R = M,(R) x My(R)

In the notation of Section 1.2.: 5, =S5 = Q.
Put G = Resy/q SL.(B) and p = pp, P = {id} + {v}.
Note that p is the only rigid polymer representation for the
chemistry (2,5,S,). On the other hand to have a representaﬁion
defined over Q we need to increase the multiplicity and consider
We want to construct a family of Abelian varieties, A —§—> v,
associated to p2P; We need many ingredients.
1. The space of parameters V. Let 0 be a maximal order of B.

Put T = Resquol. Then T is an arithmetic subgroup of G.

I defines a Hilbert modular variety: V = I'\HZ.




2. The vector space. In our case P {id} + {y} is the simple

Resk/QFl.

F, minimal left ideal in B, therefore B itself.

polymer generated by {id}. So F

3. The lattice. Let 0 be a maximal order of B ® B containing 0
and Op the ring of integers of E. Let L be a lattice in F,, 0

variant.

So we can define: A=T x L\X x Fg
£
V = r'\H?
A L5V is a family of Abelian varieties, Sec. 1.2.

Since I' = 0!, 0 a maximal order, V = I'\H? has a projective
model defined over Q, Shimura [Sh3]. Therefore the bottom field
of V is Q and K, is an Abelian extension of Q.

We want to show that [Kj:Ky = Q] =2
Let Ay be the fiber of A _£.> V, of type (E,{¢;}) constructed in
Section l.4.. A, is isomorphic to F/L as real torus.

In our case B = B is not a trivial algebra, but it is easy to
generalize Lemma 3.5.3 and show that {¢;} is the set of embeddings
of E we discussed previously.

Let K* be the reflex of E. Let a be the ideal of K*,

a=(2, YT +/C¥)", and o € Aut(C/K*) such that o = (a, K*) on

Kab

o
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We note then that ¢ is the identity map on Ky so (A;)7 = AKG is
isomorphic to r/1.(9),

By Lemma 3.5.1. Llo) = a(o)L = (Nw(gnl)'ﬂ k)L and as computed

previously:

Ny(a™*) nk = (2, /10)

So we can ceonclude:
1 » Gal(Ky/Ky) » Ideal class group (k) - 1
and [KA:KV} = 2,
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