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Abstract of the Dissertation
On four-dimensional manifolds of nonnegative curvaturs
by
Gerard Walschap
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook
1987

Noncompact manifolds of nonnegative curvature have been
classified in dimensions ¢ 3. In dimension 4, the only case
unaccounted for occurs when the soul S has codimension 2. By
considering the holonomy of the normal bundle +{8) of 5 in M,

we show:

Theorem: If M2 has a soul 3 of codimension 2, then

a) There is a Riemannian submersion from M onto $

or

b) v(3) is flat.

If both &) and b) occur, then M is a locally isometrically trivial

fibration over S.

Next, we examine case a) above. In dimension 4, when S is

diffeomorphic to a 2-sphere, one has:
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Theorem: M? splits metrically iff. M is diffeomorphic to 5%xR%
and M — 3 has totally geodesic fibers.

Some results on tl:m total curvature of both M and the
fibers of M — 5 follow.

The standard examples with nonflat normal bundle are of
the type GxyPs. Here G is a Lie group with biinvariant metric,
Py is R? together with a metric of nonnegative curvature, and H
is a closed subgroup of G acting on Py by isometries. Thus there
is a unique metric of nonnegative curvature on the quotient, for
which the projection w: GxPy = GxyPs becomes a Riermannian
submersion. By explicitely calculating the sectional curvature,

we show:

Theorem: Consider M = S5x31 R? with the standard submersion
metric, and let dré+f8d9¢ denote the fiber metric in polar

coordinates. If h is a smooth function with compact support in
M-3, and bounded derivatives, then the mestric on M obtainad
by deforming f to f+eh has nonnegative curvature for small
anough «.

In particular, choosing h adequately yields a metric that

does not originate from the above construction.

Finally, we show:
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Theorem: Let S denote the Z-sphere together with sorne metric
of positive curvature. Then any 2-dimensional vector bundle

over 5 admits a family of metrics of nonnegative curvature,

with soul isometric to S, and totally geodesic fibers.
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0. Introduction

One of the central arsas in clontemporary Riemannian
geometry is the study of complete manifolds of nonnegative
sectional curvature K. While many questions still remain
unanswered in both the compact and noncompact cases, the
general structure in the noncompact situation is better
understood at least as far as its topology is concerned. The first
results are due to Cohn-Vossen [C-V] who dealt with the 2-
dimensional cass. More recently, Gromcll and Mayer [GM]
studied the complete noncompact manifolds M with K > 0 in
arbitrary dimensions, relying extensively on the crucial notion
of convexity. One amazing result is that M is diffeomorphic to
soms Euclidean space. Finally, Cheeger and Gromoll {C4] extended
the previous work to the case K 2 0. They found that M is
diffsomorphic to the normal bundle of a certain submanifold S,
called a soul of M, which is compact, totally geodesic, and totally
convex. wWhen K> 0, 3 is a point, vielding the above theorem as
a special case. Among the many other results they obtained, one
in particular led them to a classification up to isometry in
dimensions ¢ 3. It relies on the fact that if dimS = 1, or codimS

= 1, then M is a locally isometrically trivial bundle over 8.




The next step would be to obtain a classification in
dimension 4, and here- the only possibility as yst unaccounted
for occurs when dimS = codimS = 2. In this work, we examine
some properties of the case codim3 = 2. But first we briefly
recall some well known facts about complete manifolds of
nonnegative curvature and Riemannian submersions. The proofs
can be found in [CG], [CE], and [O'N]. The notation throughout this
work follows [GKM). Thus, if c: [a,b] = M is a smooth curve, X a
vector field along c, then ¢ := ¢,D, and X' := VpX. I'E will denote
thcspaceofsectisnsofthevactorbundleE, and ¥M = I'TM.

Let M be a connected Riemannian manifold. ¢ € M is said
to be convex ifanyZpointsinCcanhejoinedhymme
minimal geodesic lying entirely in C. A convex sst is strongly
convex if any 2 of its points are connected by exactly one
minimal geodesic in M. There is a continuous function
conv: M = R4U {e0} such that any metric ball Be(p) is strongly
convex whenever ¢ < conv(p). A weaker notion is that of local
convexity: C is locallv convex if every point in the closure of C
has a relative neighborhood in C that is strongly convex. Finally,
Cis totally convex if any geodesic of M with endpoints in € is
entirely contained in C. The relationship bstween the different

types of convexity is summarized below, for complete M:




strongly convex = convex 4 totally convex

3

locally convex

Ona hﬁs the follov}ing structure theorem for convex sets:

Theorem 0.1 Ls2tC be a closed connected locally convex subsst
of an arbitrary Riemannisn mamiold MU, ThenC carriss the
structure of an imbedded k-dirmensional submanifold of M with
smooth totally geodesic intertor intC = N and (possibly
nonsmooth) boundary 3C = N - N, which may be ampty; 0sksn,

In what follows, M will denote a complete noncompact
Riemannian manifold of nannegatiﬁe curvature. To carry out
the basic soul construction, we need a totally convex set (tcs)
to begin with. It can be constructed as follows: chooss p € M, and
a ray ¥: [0,00] = M originating at p (ie. ¥ is a geodesic with t =
d(¥(0), ¥(t))). Such a ray exists because M is noncompact. Define
the open half-space By = Ut>gBt(f(t)). Then M - By is a tcs. To
obtain a compact tcs, let Cp = nx(M - By, where the

intersection is taken over all rays ¥ originating at p, and ¥(s) =
¥(t+s). Then {Ci},q is & family of compact tcs. such that:

(i) p € aCg

(i) M = Ug,0Ct

(iii) tz2t1 implies Cy,2Cy, and




Cty = {g € Cpy / dlq, aCy,) 2 t2 - t4)
ACty = {g € Cp, / dlg, 3Cyy) = t2 - t1}.
A soul of M is a minimal t.cs. obtained from Cg, as follows.
For C closed and convex with aC # &, we let

Caz{pe C/dlp aC) 2 a},
gmax- nc%,gc“.

Theorem 0.2 LstM have nonnegative curvature and lstC be

closed and locally convex, .rm tmﬂymmw aC = &, Then

(1) for any a, C? Is locally convex, resp. tota![ymnmn
(&}dim CMBX ¢ dim C.

Theorem 0.2 is actually a c:cnr'ollzmryr of the followmg more
ganeral result.

Theorem 0.3 With the hypothesis of 0.2 let f: C ~ R be definad
by fp) = dlp, 3C). Then f is (weakly) concave, iz

foc{octq+pt2) @ «xfoclty) + pfoc(ty)
for any normal geodaesic ¢ contammed it C, and«, p > 0, a+p =
1. Moreover, suppose foc = d Is constant on some interval [a,bl.
Lot 2 denote the parallel vector field slong C{a,b] Such that
Zea) = cof0), where cg is any mimimal geodesic from ds) to dC.

Then for any s, expy(stZ(shp,a] & & minimal geodesic from c(s)




to 9C and the rectangle V:|(ablxI0,d] - M defined by Vist) =
expo(s)td(s) is tiat and toitallv geodesic.

Now choose a compact tcas. as in the basic construction.
By applying Theorem 0.2 repeatedly if necessary, we obtain a
compact totally geodesic submanifold 5. without boundary,
which is totally convex, 0 ¢ dimS < dimM. Such a manifold is
called & sou/ of M. The following 2 properties of souls will be

used later on, and contain basically all the information nesdsd
for a classification of manifolds of nonnegat.lve curvature in
dimension ¢ 3.

Theorem 0.4

(a} M is ditfoomorphic to the normal bundle WS) of S in M.
(B f dimS = 1 or dimM - 1, then M is a locally isometrically
trivial bundle over S.

We next look briefly at Riemannian submersions. Consider
Riemannian manifolds E™*% M® and a submersion 7 E = M.
Each tangsnt space Eg splits uniquely as EqV® th, where EqV is
the space tangent to the fiber through q, and Eqh its arthogonal
complement. 7 is called & Riernannian submersion if 1'l'g.|th is
isoretric onto My(q) for each q € E. The bundle TEV (resp. TEN)

is called the wveriica/(resp. horizontal/) bundle, and induces a
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decomposition of Z € XE as 2 = ZV + 2h. The Aorigontal Lt of
X € XM is the unique horizontal X € XE that is m-related to X.
X is also called a sasic vector field.

Proposition 0.5

(1} The Levi-CSvita connections on E, M are related bv

—h —
(V}—{Y) = VXY, XY €3€M

"N =1 %7’ xvexm
X 2
This last exprassion 1s ¥(E)- linesr, so that

AV (vuv;", UVe FTED

detines & skew-symmetric tensor fisld on TED, called the ONel!
tensor.
(2} Lot ¢ be & horisontal lift of & curve ¢ [a,b] = M. Then c Is
a geodesic Iif and only if c s one. Conssquently,

o oxpE jgh = oxpM vy g b
(F} For local orthonormal XY € ¥M,

N BT ey AV
K,, =K _+3 XY
xy %3 4"[ il

1]

The following facts, whose proofs can be found in (H] and
[V], will also be needed.




Theorem 0.6 Lot m E = M be a Rismannian submersion, with
E compiste.

(1) Bach curve ¥ in M Induces a map betwesn the Fibers over
the endpomts, by means of horizontal hitts of . These maps are
1sometries If and only If the fibers of © are totallv geodesic.

(3 If the fibers are totally geodesic, then AXY restricted to a
tiber 15 a Killing vector fisld on that fiber, X, Y € XM.

(3} If the fibers are totally geodesic and if the O'Neill tensor is

| identically szsro, then w is a locally isometrically trivial

libration over M.

—
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‘1. Basic results

M will denote a complete noncompact manifold of

nonnegative curvature with soul S,

- Lemma 1.1 L&t c: (0,8l = S be a priocewise smooth curve

Joning p and o in S, and suppose ¥ :[0,0) » M ir a ray
orginating at p. ff u € My denctes the parallel transiate of

¥(0) € Mp along c, t!}m t equ(tu) Is & ray originating at
q.

Froof Since any piecewise smooth curve is a limit of broken
geodesics, we may assume that c is a geodesic, and thus

extendable to c: R — 5. Carry out the basic soul construction at
P, so that M =Uy,q Ct, with ¥(t) € 3C;. Now (R} lies in the

compact set 5, and is therefore contained in some Ctg , hence in
svery Cy for t : tg. By 03, the distance function
s » d(c(s), aCy) is concave. Being bounded from below and

defined on all of R, it must be constant. Consider the parallel
field X along ¢ with X{(0) = ¥(0), and set calt): = expg(g)tX(s).
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Again by 03, cg is a minimal geodesic from c(s} to aCy. Since

thisis true for all t 2 tg, cgisaray. 0

Recall that M is diffeomorphic to the normal bundle v(3)
of 3 in M. The following result was already known to D. Gromoll

in the case dimM = 4.

Theorem 12 Suppose codim S = 2. Then one of the folipwing
hHolds:

(&l The normal bundie of S is flat (with respect to the induced
connection} |

(bl There is a Riemannian submersion w: M - S,

Remark: (a) and (b) are not mutually exclusive. In fact, their
intersection consists precisely of those M which are locally
iIsometrically trivial bundles over S, cf. 14.

Froor of 1.2 Since the fibers of v are Z-dimensional, the reduced
holonomy group 2p(p) of the connection is either trivial or
isomorphic to S(2) = S1. The trivial case corresponds to (a).
Assume then that $g(p) is isomorphic to 51 for each p € S. The
remaining part of the proof is divided into several steps. First,
notice that every direction in the normal bundle yields a ray,

ie. given v € ¢(3), llvli=1, t = expltv) is a ray. Indeed, since M is

noncompact, there is at least one ray emanating from any one




point of M. Fix p € 3, and choose v € Mp so that t Hexpp(tv) is

a ray. By [CGl Theorem 5.1, v € ¥(3). Since S is totally geodesic in
M, a parallel section of v along a curve will be parallel in M. By
1.1, t & expltu) is a ray for any u in $g(p)v. Since $p(p) is 31,
the result follows. Next, let p € 3, and carry out the basic soul
construction at p. Then 8 = Cg = aC, and the closure of By(3)
equals Cy, where By(3): = {g €M / d(q,5) < t}. To see this, consider
a minimal connection ¥ from a given q € M-3 to 8. Then ¥:=-¢'
is a ray with ¥(tg)=q,where tg: = d{q,35). Let X denote the
parallel vector field along some minimal geodesic c: [D,a] =& 8
from ¥%(0) to p, with X(0) = ¥(0). Then t = §{t):= exp tX{a) is a
ray at p, #(tg) € dCtq. and by 03, s = expg(s)toX(s) is a curve
in 3Cy from q to ¥ltg). In particular, g € aCy; Thus
3Bty(S) € 3Cyy, tg > 0 . This also shows that Cp € 5. Now assume
q is in 3, and choose a minimal geodesic ¢ from p to g. By the
argument in 1.1, c(R) is contained in some aCy. Then p = c(0)
belongs to Cp N ACy, so t = 0. Hence 3 € aCy. The inclusion
aC; € 3By(3) now follows easily.

Finally, we show that exp, : (8 - M is a
diffeomorphism. Since every q in M has a rinimal connection to
3, expy is onto. Suppose there are 2 minimal connections

¥i: [0,tg] = M from S to q, i = 1, 2. This would contradict

¥1(tg*8) € 3Cysg , since the compaosite curve
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20,0 * ¥illtg,tg+8] is a connection of length tg+6 from 3 to
¥1(tg+8) which can be shortened. Thus exp,, is 1-1.
To complete the proof of 1.2, recall that if K denotes the

connection map of +({S), then

«a,b»:= <Ka,Kb>+<m,a,my b>, abe(To)y
defines a metric on +(S), called the connection metric, such that
the projection my: v(S) = 3 becornes a Riemannian submersion.
Define 7 : = wy o expy~1 : M — S. Then 7 is a submersion, and

to show 7 is Riemannian, it suffices to establish the following;
(1) expy, maps the horizontal and vertical subspaces of 7, onto

mutually orthogonal subspaces.
(2) expy,, is isometric on the horizontal subspaces.
Solet 0 2 2z € o3, mla) = : p, a € {Tv)y horizontal,

b € (Tv)z vertical. Since exp is radially isometric, we may
assume (& b,Azz » = 0, where Ay : vp = {vp)y denotes the

canonical isomorphism between the fiber through p and its
tangent space at z. Jet w= expy, b, wi= exp, a, and let ¥
denote the ray ¥(t) = exp(tz/llzll). u determines a variation of ¥

through rays emanating from p, and thus a Jacobi field X along
¥, with X(0)=0, X(0)=(Az"1b)/llzll, and X(lzll)=u. Consider the
geodesic c: R = 3 with c(0)=my, a=w_ w.c and ¥ determine a

flat totally geodesic rectangle V(t,s) = expc(t) sW(t), where W is

the parallel vector field along ¢ with W(0) = z/llzll. Thus the
Jacobi field Y along ¥, Y(s) = V, dyp,s is parallel along ¥.

11
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Moreover, by uniqueness of horizontal lifts, |||W(0) = a, so that
w = exp, & = Y(llzll). Then llwll = Y02l = IY(OM = llwy, all = llall,
which proves (2).

Finally, since X and Y are Jacobi and Y is paraliel,
KLY - VX = X\Y> is constant, and <X'Y> = <X\ Yln
<Ag~lb,m,, , ®/id = 0. Tharefars, <X,Y> is constant, and <u,w>

<X, 03 gt = <X,Y>|g = 0, which proves (1). 0

We now examine the submersion case in more detail. For
the sake of simplicity, M and S will be assumed oriented, even
though this hypothesis is often unnecassary . In any case, local
results carry through to nonorientable M, while similar global
results can be obtained by considering the orientation covering.

Denote by J the canonical complex structure on {3}, ie.

vU = V for (local) oriented orthonormal sections {UV} of v.
Define vector fields dy, dg on v(S)-S as follows:

9| g = Agz/ld, Jg| g = ApJz, 2 € w(S)-5,
where A is the isomorphism defined in 12. ( J,, dg, when

restricted to a fiber, are just the standard polar coordinates
vector fields). Let 3, and dg denote the corresponding exp,-

related vector fields on M-8, with dual i-forms dr and de.
Observe that dy = Vdg , where dg is the distance function from

the soul, while g, when restricted to a ray originating at 5, is &

Jacobi field Y with initial conditions Y(0}=0, lIY'(0)ll={. Maorsover,

12
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[3r,3¢] = 0, and if X is the horizontal lift of X € XS, then (X, 3,)
= [X, 3g) = 0, since [X, 3} = (K, 8g) = 0 in w(3), for the
horizontal lift X of X to ¥(S). This can be seen as follows. First
notice that the fibers of v are totally geodesic: if ¢ is a curve in
the zero section, then a horizontal lift of ¢ is & parallel section U
of v along c. Since 3 is totally geodesic, U is parallsl in M along c,
and thus < U,U > is constant. By 06(1), v has totally geodesic
fibers. Therefore

0= <V§ef(, dp = -% %d,,3 + 43,8,

1 2
*2“ 2(!' )+ 450,52],53

r<f{,§r> + 459,2],53)
dd,%1,d,

On the other hand,
<[§B,5'{],§r> =[d e,5'(](:') z §e<5'{,§r> - R<56,5r> =0

Hence [3g,XIV = 0. 8ince 3, is vertical, (34, %] = [3,%IV = 0.

Proposition 1.3

(1) Lot Q denote the curvature form of v(3) , viewed as & J-

tormon 3, 1e. SAXY) : = (RIX,V)U,JU, forXY e X3, Ue Mvor

norm 1. If X, Y € XM are the horizontal fits of X,Y € XS, then |
XYV = -Q(X,Y) 2.
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In particular, if the ONeill tensor is sero (resp. nonsero) at some
pomt g then it is identicallv sero (resp. nowhere zera) on the
fiber through . )

(1] St G2 = < dg, 3g>, so that the fiber metric s dre+ G2de2, fF
the ONelll tensor is nonzero on a fiber, then @ is bounded on
that fiber. The intrinsic sectional curvature of a fiber squals the
one induced by M,

Kfiber = -G 16y

(11} Consider v(S) with the connection metriz, and replace the
standard flat fiber metric dr2+r2deZ by dri+(Goexp,)2de2.

Than expy: v(8) = M &5 an jsometry.

Proof. As before, X and X are the horizontal lifts of X € XS to
¥(5) and M respectivaly. Since exp.,,.' preserves the orthogonal
splitting,
[1’?,\7]"1 exp z = €XPp, [f(,?l‘ﬂ 2, 2 € v(3).
If R and K denote the curvature tensor and the connection map
of v(3), then
R(X.Y)z = -KI&, Y’]jz , or equivalentls,

[R,¥19) 2 = ~AzR(X,V)z = -Q(X,Y)AzJz = - QAUX,Y) Sgf » .

Applying exp,,  to the last equation now vields (i).
By O'Neill's formula 0.5(3) and (i),
(3/4)Q2(X, 62 = (/M IXTIVIZ = Kx vy - KR T < KX Y,

hence @ is bounded if ) is nonzero.




Consider a horizontal u € TM. Sinee V 0y = 0, we have
L{3r,0r) = £(3r,99) = 0, where ¢,; is the second fundamental
form of the fiber with respect to u; by the Gauss squations, the
intrinsic sectional curvature of the fiber equals the one induced
by M. The 2-dimensional Jacobi equation then vields Keper =
-G 16, Finally, (iii) is implicitely contained in the proof of 1.2. 0

For any horizontal unit-speed geodesicc: R = M, T = d4°c
is a Jacobi field along c. Let u(t) denote the principal curvature
of the fiber through c{t) with corresponding principal curvature
direction G 1T. Thus Sz dg = uT, (3 is the second fundamental
tensor of the fiber), and

= (Gocy 1 (Goc)' = (Goc)~2 <T'T».
Differentiating this equation yields:
m'= = Ko T+ (Goc) 4T - 2u2.
Suppose now that ¢(5) is flat, or equivalently, that the O'Neill

tensor is identically zero. Then T'h = 0, for if X is horizontal,

<T'h,X°c> =z ~T,{Xec)» = ~«T,A. X = 0.
c

Thus ITHZ = ITVIZ = u%Gec)?, and

W'=-uZ-Rer
This in turn implies that p = 0. For if ¢ is an antiderivative of

M, then

()" = (' + ud) < O

15
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Thus e® is concave and bounded from below, hence constant, |
and W = 0.Therefore, the fibers are totally geodesic. Togsther |
with the fact that v is flat, this impliss (cf. 0.6(3)): |

Theorem 14 Assume S has codimension 2 IF v(8) s Hat and
i svery normel direction repressnts & ray, then M is locally
Isometricallv a product .

One should take cars, when dealing with flat normal
bundles, to distinguish them from trivial ones. Of course, if 3 is
topologically a 2-sphere, then +(S) is trivial whensver it is flat.
The converse is not true in general. Consider for example
the free R-action I' on S52xRZ2xR given by the formula
(q,u,tg) = (pig, eity, tg+t), where gy denctes rotation by angle t
in 52 about the z-axis, and et is rotation by angle t in R2
around the origin. I' acts freely by isometriss on the
Rismannian product $2xRZ2xR, and there is a unique metric of
nonnegative curvature on M = $2xR2xR /I for which the

projection 92xRZxR — M becomes a Riemannian submersion, cf.
section 2. We claim that M is diffeomorphic to 32xRZ, and that
under this identification, the soul 8 turns out to be Szx[l, while

the submersion #: M = S becomes the projection
7y 52xR2 - 32x0. Nevertheless, the matric on M is not a |
|

Riemannian product, hence the normal bundle of S is not flat




even though it is trivial. To ses that M is diffeomorphic to
S2xR2, consider p: 3ZxRZxR — SZxRZ, plagut)= (p_yq.e ).
Then p'i(q,u) = I'-orbit of {(q,u,0), and therefore f: 32xRZ = M is
a diffeomorphisrn, where flgu)= [(gu,0)]. Identify M with
S2xR2. Next, notice that if U is the Killing field on 52 with flow
¢, 3/38 the usual polar coordinate vector field on R2, and D the
standard vector field on R, then the vertical subspace of p at
(g,u,0) is spanned by
{(U,a/aa,m, ifuz0
(UOD), ifu=0

while the horizontal subspace is spanned by (V,0,0), where
V € %32 is orthogonal to U of unit length, (U0,-UI2D),
(0,8/3r,0), and (-r?U,(1+IUI%)3/38,-r?D). If q is the North or
South pole, the first two vectors are to be replaced by a basis for
(52)q, while if u = 0, the last two vectars are to be replaced by a
basis for (RZ)g. In particular, the normal bundle of S2x0 has
fiber over (q,0) equal to 0;x(RZ)g. Since (0,3/3r,0) is horizontal,
t = plqtv,0) = (q,tv) is & geodesic in M for any q € 32, v ¢ RZ,
Consequently, every direction in the normal bundle yields a ray.
By the basic soul construction, it follows that x0 is the soul
of M, and the submersion M — 3 is the projection

my: 52xRZ = F2x0. In fact, it is easily seen that the p-horizontal
vector fields (U,0,-IUI%D) and (V,0,0) on S2xR2xR are p-related
to the vector fields X:= ((1+UI®)U,IUI2a/29) and Y:= {v,0) on

17
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S2xR2. Moreover, mi.X = Xomy, TgaY = Yowy, and Xyl =
U0,-IUIED)g uoll = IU0AIUEDg a0l = IXgoll = HmyuXg .
Similarly, [Yg ol =liwisYqll, and so XY are basic for wy. It

follows that the normal bundle of 5 is not flat. For if T denotes
the unit vector field in direction (-r2U {1+JU2)a/3¢ -r2D), then

2 2172
p.T = é 3, = (0, 1“—%)— 3/39) ()

where ¢:= (1+JUlI2)/2_ Thus
X YIVop il = | <X, Ylop,puT> |

= | <pu [ (U,0,-UIIED)(V,0,0) ], paT> |

= | d (U,0,-IUID),(V,0,0) |, T> |

= | «([U,v1,0,0) + VIUI%(0,0,D) , T> |

= KVIIUI%) «(0,0,0) , | = 0, except on equator and
poles. Therefore v(S) is not flat. Notice that the fibers are not
totally geodesic. In fact, by («),

_ re
G= 2 2.1/2
(e +r)
and the principal curvature of the fibers in direction Y is (YG)/G
z 0, since VIIUll # 0. This feature is the key obstruction here.

Indeed, one has

Theorem 15 /Ff M4 is & trivial bundie over o, andm: M — 5

has totally geodesic libers, then w s a locally isometricallv

trivial tbration
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Together with 14, this result immediately impliss

Corollary 16 Suppose M4 has soul S ditfeomorphic to & 2-
sphere, and every direction in v(S) is a rayv direction. Then the
lollowing statements are equivalent:

(2 v(3) is tiar

(W} M s diffeomorphic to SxR2 and m: M — S has totally
geodssic 1ibers

(il M = 3xPy romstrically, where Py is R2 together with

some metric of nonnegative curvature.
To prove 15, we need

Lemma 1.7
(1 div 39 = 34 In G. /f dg is divergence-fres, then it is a Killing
fald onn M.

(3} It v(S) is not fat and w: M - 3 has totally geodesic fibers
thendy 15 a Killing field

Froof of 1.7 1f {X;} is a local orthonormal basis of basic vectors

fields, then
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) _ 2
div aﬂ =d <Va aﬂ,aﬂ> + <Va aﬂ,ar> + Z<vx.aﬂ,xi>
| r 1 vl
=3,InG-@ V. 35- z‘caﬁ,(vx'xi) ;
r 1 1
=3d In@G
88 n G

Assume div dg = 0. Then

v v

V.,9 X>+ Ko ==, J HV, X)»>»=0,
VP9 * Vg 9% = ~Qu(Vy X oV X0

1 J 1 J
<inaﬂ,a&> + (vaoaﬂ'xf = <[xfaﬂl,aﬁ> =0,
<vx.aﬁ,ar> + <Va aﬂ,xi> = - <aﬁ,vx.ar+va Xi:v =0,

i r i r
<vaﬁa9,ar> + Narae’aa} = <rar,aal,aﬁ> = 0.

Thus dg is a Killing field. To prove (ii), choose p € S so that Qp =
0. Since the fibers are totally geodesic, [X,YIV=-Q(X.Y) 3 is
Killing on the fiber through p, cf. 0.6(2), implying 343G = 0 on this
fiber. But for any basic X, XdgQ = 39X@ = U, so that dg@ = 0 on
M. By (i), ag is Killing on M. o

Froof of 15 1f w is not locally isometrically trivial, then v(5)
cannot be flat by 14. By 17, 3y is a Killing field. Fix some

positive r, and consider the set N of points of M at distance r

from 5. N has nonnegative curvature by the Gauss equations, is




diffeomorphic to Sx31, and thus admits a parallel vector field Z
by basic harmonic theory or [CGl. Then <Z,04> is & harmonic

function on the compaet N, and is therefore constant. Since § =

lagll is also constant on N, the same must be true for the angle
between Z and dg. Choose p € S so that Qp = 0, and let
g€ Nn w~1(p). If X, Y are basic orthonormal, equation (22) in
section 2 yields:

1 T 1 b,
V- a3, ==Q (XY GZY 20,V- a3 =-=00 (XY GZX 2 0,
X & 2 P( ) q Y ¢ 2 P{ ) q

But 0 = X<Z,3¢> = (1/2)AX,V)62¢Y,2>, so that Z L Y on the fiber
over p. Similarly Z + X, and Z is then vertical on this fiber.
Hence Z is vertical everywhere, and so dg, being a constant

multiple of Z, is a parallel vector field, contradicting vga,gzu.

Thus w is locally isometrically trivial. o

Recall that the total curvature of an orientsd 'cernplet,e
even-dimensional manifold M is defined as [% C(if it exists),
M
where ¥ is the Chern-Euler form of M. When dim M = 2, ¥ =
(1/2w) K (K is the sectional curvature), and for K 2 0, it is
known that the total curvature is bounded between 0 and 1, cf.
[C-vI.
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Lemma 18 Suppase Q 2 0 at some p € 8. Then the fiber
through p has total curvature 1. In particular, iFf 7 M - 8

has totally geodesic fibers and is not locally a Riemannian

product, then svery fiker has total curvature 1.

froot’ By 13(ii), @ is bounded on the fiber through p. Since
Gy ¢ 0, r = Gp(r,8) is a nonincreasing function of r and admits

a limit as r — co. This limit must be 0, for otherwise, G would
grow without bound. Thus

4]
I-Grr drlim @ =1
0 e r=0 *ir g

and the total curvature of the fiber through p is:
21 0o

1 I =1 f _ .
Zm Kfiher 2% I Gn.dr de = 1, by 1.3(ii).
fiber 00

If M is not locally isometrically a product, then  is
nonzero at somse p € 3 by 14. Thus the fiber through p has total
curvature 1. Jince the fibers are totally geodesic, they are all
isometric to one another (cf. 0.6(1)), and the statement follows. O

It is known that the total curvature of any 4-dimensional

oriented manifold of nonnegative curvature exists, and is

bounded between 0 and the Euler characteristic of M, cf. [P].
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Assume dim M = 4. Under our additional assurnptions, namely
dim 3 = 2 and every normal dirsction represents a ray, we can

prove a stronger result:

Theorem 1.9 Lst k(p) denote the total curvature of the fiber
through p € 8, k: S — [0,1]. 7hen the total curvature of M4

eguals:

1 I kK

2m 3 S
where Kg s the sectional curvature of S.
Assume furthermore that 3 is ditfeomorphic to the Z-sphere
(the only other possthility Is S = Hat torus, In which case the
total curvature of M is 0} and that m: M = 3 has totallv
geodesic lihers. Then the total curvature of M is 2, unless M =
3xPy rsometrically, in which case 1t Is 2x.

Froof let MF= {q € M / d(q,5) ¢ r}. Thus each aMr is
diffeomorphic via exp,~1 to the sphere bundle of radius r over
9, and admits the restriction of Vdg = 9, as unit normal vector

field. wy and wg will denote the volume forms of 3MP and S

respectively. The Gauss Bonnet theorem for manifolds with

boundary then yialds:




Jxeweefew

M aM"
where %(5) is the Euler characteristic of S, and

gr{q) = (-1/4%2) {a1Kp3 + a2Kq3 + agKqp + 212233}, cf. [P],
Here the Aj are the principal curvatures of dMI at q, with
principal curvature direction uj, and Kij is the sectional
curvature of the plane spanned by u; and uj. Now Vy; 9 = 0
for horizontal v, and V(1/q)a, 3r = G2G, dg. Thus
[x = xs -~ Jx @ 1Gr°°r*

Mr 4w M
where Kp(q) is the sectional curvature of the unique horizontal
2-plane contained in (dMF)g. Sinca the restriction of 7 to dMT is

a Riemannian submersion, Fubini's theorsm yields:

IKG Gw I{KS 4fG}fi?a Gwr

aM M

2
- IKS(J?(;rdﬁ)w -2 ff (feedaiw
3 0

Here, f is defined by the equation §? = fw, . Now
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2 255
I—f (JG a dojoo_= I ¢ (I aa doyu,
3 {(£20) 0
o _
J KS(IGrdﬂ)ws , by 1.3(i). Thus
{520} 0

lim Ifz (J.G2 c] dﬂ)w 0 , by monotone convergence, and
™%®s 0

from e o
= 4“_2 r1.1-1:-)11w i(tl;l G dﬁ)K w
= 1 f uszs.
S

The last statement of the theorem now follows from 15. O
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2. Some metrics on vector bundles over spheres

Theorem 1.4 shows that the flat bundle case is rigid, The
standard examples of nonnegative curvature in the nonflat case
are found in [CG] and [C]. We brisfly recall this construction, for
fibers diffeornorphic to RZ.

Let G be a Lie group with biinvariant metric, and let Ps
denots RZ together with a metric of nonnegative curvature.
Suppose H is a closed subgroup of @ which acts on Pz by
isometries. Then H acts freely on the Riemannian product @ x Py
via (gm) » (ghh~lm), and there is & metric of nonnegative
curvature on the quotient M = @ xy P with respect to which
the projection m: @ x P = M becomes a Riemannian
submersion. For example, let = 85 and H = st acting on R by
rotations around the origin, so that M is topologicaily the 2-
dimensional vector bundle over 52 associated with the Hopf
fibration. It is straightforward to check that with the above
metric, the soul (= the zero section) of M is isometric to the 2-
sphere of constant curvature 4. The fibers are totally geodesic,
and with the notation of section 1, G = r/(1+r9)12, while f = 2.

To be specific, view S° as the Lie group of quaternions of norm 1,
and 5! as the subgroup $n¢. The homogeneous space S""/si is
diffsomorphic to the 2- sphere via ¢: 5%/51 — 2 ¢ g3 =
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span(i,j,k}, 9(g5'):= qiq™L. Consider the projection w: 55 — 5%/ 31".3. |

Let ¥y, .Xz, Xz denote the left-invariant vector fields on 3

whose values at e are A,i, A,j, Ack respectively. Thus the fiber
q31 of m through q is the image of the integral curve of X3
through . The standard hiinvariant mestric on &% is Just the
usual metric <X1,XJ> = SU' and we consider that metric on 8¢ for
which 7 becomes a Riemannian submersion. If ) denotes the Lie
algebra of S, then m := 9t is spanned by {Xp, Xz}, and by
0.5(3), the sectional curvatura of S2 is

K. +3 U221 o3 g g
KoK 5+ UG = 10 20205 4

Thus 55/51 is isometric to the 2-sphere of constant curvature 4.

Next, we look at the associated bundle M = 3%xg1R%, One has the

commutative diagram

™
SsxRZ——*Sz’
pd L=
M —s g%

v
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Here w4 is projection onto the first factor, plq,u):= l{q,w)], where
(gu) ~ (gz, z-1y), q € 3z ue R = C, llal = 1, and Ty I8
defined by the equation w0 p = o wy , cf. [P2]. my, is a fiber
bundle with fiker RZ, and it is known that if M is given the p-
submersion metric, then the soul S of M is 5% snd the
submersion M — S from 12 is Tay after identification of 5% with
the zero section, cf. [CG], [C], and [CE). Since the pruof of this does
not appear in the litterature, we shall carry it out in some
detail. 3/ar and 3/30 will dencte the standard polar coordinate
vector fields on R%. For (qu € S%xR?, p'i(p(q,un =

{lgz, 21w/ 2 ¢ 51}, and therefore (S"’sz)q‘uv is spanned by
(X4)q-0/98|y) = &0), where c{t):= (qe'*,e”i*u). The horizontal
subspace at (gu) is thus spanned by (X2.0qu (X3.0)q 4
(0,9/ar)q 4, (1+r2)“1’2(rX1,r'1a/aﬂhq'u, for u 20. Here, r:={lull. By
the proof of 12, it suffices to establish that p(S3xD) is totally

convex and that every direction in its normal bundle is a ray

Joining p(p,0) to p(q,0). Its horizontal p-lift ¢ with c{0) = (p,0) is
a geodesic in 9xR% from (p,0) to (4z,0) for some = €51, Then the
projection mwooc is a geodesic in R with rgec{0) = mwgeclh) = 0.
Thus wgec = 0, and ¢ = pec is contained in p(3°x0). This shows
that p(3%x0) is totally convex. For the second part, notice that
the tangent space of p(Sst} at plq,0) is spanned by p.(X2,0)|5 0,
p«(X3,0)jq,0. Therefore §: [0,00) = M, ¥(t):= p(q,tu)', u € RZ of

norm 1, is a p-horizontal gsodesic with ¥(0) € normal bundle of
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p(35x0). Let E:= S*xR2. For any t > 0,
t = L{¥jjo,¢p) 2 dmlp(q,0),plq.tu)) = delp~Lp(q,00,p~2plg,tu)) = t.
Thus ¥ is a ray. In other words, svery direction in the normal

bundle yields a ray, and p(S°x0) is the soul of S. Finally, it is
clear that the submersion M ~ 8 from 12 is Ty since the

fibers of T™ coincide with the fibers of the normal bundle of 3.

Next, we compute G and Q (notation as in section 1).
Consider the diffsomorphism p: qxRZ — p{qxR2) = fiber of Tag

over w(q). Since

2 _
(0.2/28) = ~L—(X, ~3/38) + —L~(rX,x 'a/38),
r +1 r +1
we have
2 .-1/2 -1
G = lp,(0,3/30)ll = ———5llp (r"+1) " (rX ,r "/30)l
(r+1)
- r
(s 1)1!2

In particular, the fihers are totally geodesic. To compute ), we
proceed as follows: let vi= Mpupe(Xp,0)|q u Wi T prePaX3,0)jq u-

Then {v,w} is an orthonormal basis of Szﬂ(q}. Recall that [, ]V is a
tensor field on the horizontal subbundle, and as such is defined
pointwise. If T:= (rf+1)"Y%(r% r~13/38) (= p,T = @13y, then
by 1.3,
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1
I£2(v,w)l - kp (%00 o pX,0), L p, T, Dl

1
angm X0, Ty |

2
- I
Gop(g,u) ¥y Prgad

2.

In contrast to the rigidity when +(S) is flat, one has

Theorem 2.1 (onsider M = SPxglRZ wath the standard
submersion metric. fet h dencte an arbitrary real valusd
function with compact support m M-S and with boundsd
derivatives up to order 2. Then for small enough e > 1 the
metric on M obtained by detorming G to & = § + sh Aas

nonnegative sectional curvature,

Notice that if one chooses h so that hg = 0, then the
resulting metric on M cannot originate from the construction
described above, is. M is not isometrically a quotient SOx gl R
for any metrics on 55 and B2, since in such a quotient, dg must
be a Killing field, implying Gg = 0. To see this, notice that if ¢
denates the Sl-action on RZ, then the corresponding Killing field
is +t3/39. For any s € (0,27}, (qu) = (g is an isometry of

SPxR% that preserves the vertical subspaces, and is therefore
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isometric on the horizontal ones. It then induces an isometry
plgu) +~ plgeau) of M with corresponding  Killing field
px(0,£3/99) = £3,,

Before proceeding to the proof of the theorem, we includs
for future reference some results that are valid for any 4-
dimensional manifold M in the context of 1 2(b). XY will denote
& local oriented orthonormal basis of vector fislds on S, as well
as their horizontal lifts. = (XG)/6 and a:= (YG)/G are the
principal curvatures of the fibers of w : M — 8 in directions X
and Y respectively. Then straightforward computations yield:

(2.2)

VXor
Vyds
V3,99
Vagds

Va, X =0; Vxag = VaX = u dg + (1/2)162Y;
VagY = a 3g - (1/2)162X;

Vagar = @16, 34 ; Va,or = 0;

a1, g - 6Gr oy - B2uX - G22Y .

Thess equalities in turn imply:
(2.3)
R(X,0p)9,
2R(X,3,)Y

R, XK =0 ;
R(X,Y)3y = fa-1G, 34 ;

Kx 2, = G UUKX-XX)GE + (1/4)£262 ;
Ky,a = 6 HVYY-YY)G + (1/4)6262;
Kfiber = -6 1Gpy ;
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<R(24, X)X, Y> = -(1/2){(XH)E2 + XA} ;

<R(3g,7)Y,X> = (1/2){(YHE2 + 3FQAYQ)} ;

<R(3r,99)89,%> = -@3,XG; <R(dr,d9)3g,Y> = -G 3, Y4 ;
R(X,39)94.Y> = AVyY-XY)Q ;

Rx v = Ks - (3/4)f262.

Proof of (2.2) By the proof of 1.1, Vy3, = V3, X =0, 9339, = 0.

The other covariant derivatives are computed with the help of
the local orthonormal basis {X,Y,3,,67134}. Thus, for example,

1,01 - -
<vxae, d aa> = % X<ae,ae> = XG =G

<vxae,ar> = X< t,,,al) - @B,anr:» =0

X d

3]
- -1 vy =4
<ane,‘{> @,V Y= ane, [X,Yl> = zfez

X

V0.3 = VXK = % 3K = 0

x 8
Y=, - 1Py,
2

Therefore, V. 3, = V. X = u3, + %fazv, and similarly,
]

Vyae = Vae

1001 -
<Va ae,e ae> = “25 ar<ae,ae> = Gr

r
<?a ae,ar:» = - <ae, v

r

aar»:l]
I

<V ae,x;» = - <ae,va X=0

r r

d




-1
S0 that? aﬁr— v ar= a Grae.

a!’ aﬂ

_1 _ 1 _
<Vaeae, G ae> * 28 ae<ae,ae> =z G‘e

<V_. 0o a>=-<ae,v

3, ¢r 3 9, = -Gg_

o
3 X = -Gzp
8

<va&a o

- <ae,v

V_ 9., -sz

o
aﬁ

. . -1
implying V2 =0 62, - 682, -GFux - @y,

Froof of (&3}
anr = "i?a X=0= R(X,ar)é)r = R(ar,X)ar =0
I

VXX basic = VarVXX =0= R(Br,X)X = R{X,ar)X =0

. .. v__1 v
R(X,3 )Y = varva var(vXY) zvarlx,Yl
= -1 8 (UX.Y1'=f3_ f =0 = [3_[X.¥]"]=0)
- 2 [XY]V r 220 TG AT prtet -
1 ' ]
=1y 3
2 [XYlr

R(X,Y)r)r = -

-1
= RIXY)3,.

-1
Vv = =
s = 5 2 16702,

= RXY)3, = 2R(X3 )Y = 14 63,
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R(3,X)X = Va VXX vaa X

u

~X7 -
Vae( <X, XY>Y) ?XVaGX

(using V. X = (vxx) = T XY = XV, DY)

- - - 1e?
<X,vXY>‘G'aeY Vo hd, + faY)

X000, - 2K - (X3, - uiwd, + 1Y)
-1 -1
ZX{fGZ)Y szZVxY
= ~{Xu + Hz_ lfzez + X,V )3, - l{X(sz )+ MfG‘z Y
4 X 6 2
_y _ h v _ 21
(using VXY = (VXY) + (VxY) = (VXY,XJ*X zfaﬁ)

- (R y2- A2 g - L) +
= -t s u- 26 0 v wma, z{xtfez) ua}y.

1,2 —1
- - fa (Y
#KX,BG Xu u +4 ,.XXJG

..1 . _ -l
67 (v, X - XX)G + 4?&2
and R _X)XY> = -—%{X(fez) » i@ = -%{82}(1‘ + HEXG).

The equations for KY 3 and <R(ae,Y)Y,X> are similar.
“e

aﬂ 8 r

R(@,2)3,=V, V., 3,-V_V_3,
r




11

-1 2 -1
V(@ 63, - 889, -6°uK - @aY) - v (@63

r

a’ -6,8, + ad_ )3, + G'lese'iarae - (etzr + 66 )3
-2
- 3,(GXG)X - 3 (GYG)Y - @ (GA,, - G, G,)2,
-1 -1 2
-6 a6 63, - 663~ G uX- Ga)
=- 66, 3, - & XX - &_YQY

=gt X, :-g {X
K o =70 6, <R(ar,ae)ae,{Y> = aar{Y G,
r

<R(X,3 )0 et <vxvaea g 12~ <vaevxa o 17

-1
= @ (660, - 3 - dux - FaYLYs - <vae{pa ,* %fGZY},‘b

-1 2 2
=68,V 3, > -G WU XY -K(G ) W, 2, Y5 2,466

-1 2 h 2 2 2
Leaty 4 o7V 8- @ au -6 X+ g - f6G,

n
G
i)

Ir
.
sz
<]
p
0

= -lfeee + G(VXY)hG - GXYE = &V, Y -XY)a

= R(X,d.0,Y> = G(‘l?xY -XY)G. o




FProof of 2.1 . Let C:= supp h. Since & = @ outside C, it suffices to
check that K » 0 on C. Notice that (22) and (2.3) remain valid in
the G-metric. Moreover, the G-metric is of the type described in
the proof of 24, with 2 = 1. Thus the only planes of zero
curvature in the G-metric are those spanned by J, and a
horizontal vector. Planes close by are spanned by {U,V}, where
after normalization, ws may assume [JlUN)} = 1, and V.00 = 1. If
X is the horizontal lift of w,U, and Y is chossn so that {X,Y} iz a
local orthonormal basis of basic vector fislds, then
U = X+axdp+pdg, V = Irt¥X+5Y+pdg, «,B,Y,8,0 € R.

A different plane will in general vield a different X, but this will
turn out to be irrelevant because of the boundedness
assumptions.

Expanding <R(U,V)V,U> and making use of the first two
equations of (2.3) as well as the symmetries of the curvature

tensor, yields:
RUVIV,U> = %Ky v + (by-0)28Ky 3, + (96128Ky 3, +

(B~ )2 &K piper + 26(3-BYNR(2g, X)X, Y> +
36(B-cx EMR(X, V)3, 09> +
2(pY-2)(p-e g KR(3y,34)34,X> +
2p8(p-x g )<R(Dy,29)34,Y> + 2p5(BY-§)CR(X,34)34,Y>
+ Zp82R(3g, V)Y, 0.

Set x1:=8, X2:=p- g, Xz:=pY-¢, x4:=68. Then the above expression

is & quadratic function of x = (x4,x2,x3,%4), which will be shown
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to be positive definite for small e, First we show that Q = O +
¢Qg, where Qy is the corresponding quadratic function for the G-
metric, and the matrix of Qp has its entries bounded on C for all
€ say, less than 1. For the sake of simplicity, the term "bounded”
will be used to refer to any expression that is bounded on C for
all £ < 1. Finally, recall that f = 2 in the G-metric, and therefore
also in the G-metric. (23) now yields:

2 2 2
Ry = Kg- 3 (@eh)” = Ky - 376" + efbounded)

fa"zxﬁbm, -8 = ~(Greh)(@_ +eh_) = -66_ + efbounded)

% LA _ 1 - & _ 1.2 4
GZKX,BG = &V, X xx;é+ L ‘gt &9, X - X(eh) + L6 (@ren)
- %fztf + e{bounded)

and sirnilarly, GZKY , =i’ + e(pounded)

12
By 4

(R(X,YR,.3, = {88, = f(@+eh)(@, seh ) = GG + e{bounded)
RV, = -%{(Xf)@z + SEEXE) = -—g-fGX(eh) = e{bounded)
and similarly, <R{X,Y)Y,dp = e{bounded}.

<R3 33, X> = -G8 X8 =-8d_X(eh) = e{bounded),
and similarly, <R{ar,a t))E) e,Y) = e{bounded]}.

Finally, recall that X@ = Y@ = Gy = 0, implying (VxY)G = 0. Thus
R(X2,d,Y> = C{vxv - XY)8 = C—i(vxv -XY)(eh)} = e{bounded}.




Therefore Q = Qq + ¢Qz, and by hypothesis there exists n>0
such that [Q(x)I < nflxll? for all ¢ < 1. Now Q4 has matrix

{ Bl 3
S" Zf*G *'z"fGGr ) 0
-3-fGG -GG
~faq, by 00

(1417 ]

and is therefors positive definite for r#0, since the upper Isft
corner submatrix has positive trace and determinant. Let 8 > 0
be a lower bound for the eigenvalues of Qq on C:= supp h, and
choose 0 < & < min{@/n, 1}. Then (Q+eQa){x) 2 Qy(x) - €lQa(x)l 2 0.

Thus the &-metric has nonnegative curvature. Uniform
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boundedness in & iz crucial hers, and the reader may want to

compare this construction with the one given in [BDS). 0

The associated bundle construction in [C] shows that any
RZ-bundle over 57 admits a metric of nonnegative curvature.

Actually, a somewhat stronger result is true:

Theorem 2.4 st S denote the n-sphere together with some
metric of positive curvature and /et mw E — 8 be a 2-
dimensional vector bundle over S. Then there axists & family of
meétrics of nonnegative curvature on E, sach of which has soul/
sometric to 8, with totally geodesic fibers.

Froof. For n » 2, E is a trivial bundle (cf. [SD), and one then
takes the isometric product § x Pz, where P is R2 together
with any metric of nonnegative curvature. Assumes then that
n=2 and that E is nontrivial. By the classification theorem of
bundles over spheres, every vector bundle over the 2-sphere is
crientable, cf. [3]. Choose an orientation of E. As befors, given a
Riemannian connection on E with curvature tensor R, the

corresponding curvatures form ¢ will be identified with fw,

where w is the volume form of S, and £ 8 =+ R is given locally
by £ = QUX,YXUJU), X, Y local orientad orthonormal wvector




fields on S, U local section of E with [JUlf = 1,and J the canonical
complex structure on E,
Fix any Riemannian connection on E, and let { denote its
curvature form. Set c:= (1/val 8) [Q = (fQ)/(fw), and {3= cw.
8 8 8
We claim there exists a Rismannian connection ¥ on E with
curvature form = {}. To ses this, notice that JIQ-) = 0, s0

8

that = Q + dB, for some 1-form 8 on 5. Now define ¥ by
VXU = VU + B(XJU, X € XS, U TE. J is parallel with respect
to V:if U is parallel of unit-length,then

VX(JU) = <VX(JU),U>U = -<JU,VXU>U = 0.

It is easily verified that ¥ is a Riemannian connection. If R is
the curvature tensor of ¥, then

RIXYIU = ¥R(VyU + BYWU) - FHVRU + BXIY) - Yix U

R(X,Y)U + B(X0IVYU + V(B(YIU) + B(IB(Y)JU

= BYWVKU - 9y(8(X)JU) - B(VB(XWJU - B(X, YIJU
= R(X,Y)U + dB(X,Y)JU.

Thus the curvaturs form of ¥ is . Now choose a Riemannian
connection V as above, so that Q = cw. Given u € E, let Ay

denote the canonical vector space isomorphism between the

fiber through u and its tangent space at u. One has the vector
fields 3y, 8y on E-S given by
arlu = Auuf"uu ’ aﬁlu = AuJu s B € E-S.
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Next defins & Rismannian metric on E as follows: 7 E = S is to
be a Riemannian submersion, where the horizontal subspaces
are those determined by the connection V, and the metric on
the fibers is taken to be dr? + 62d8%, with G:= ex/(e2+r2)1/2 for
some fixed & > 0 satisfying €% < (4/3¢%) min Kg (Ks = sectional
curvature of 5). Notice that replacing the connection V by ¥,
VxU:= VxU + dh(X)U, for h: S — R, changes the horizontal
distribution and therefors the metric, even though the
curvature form remains unchanged. Thus Q = cw actually
detsrmines a family of metrics on E. A standard argument
shows that (22) and (23) remain valid, with G as above,
f=c u=2xm=0 The details follow. Recall from section 1 that if
X is basic, then [3,,34] = [X,3,] =[X,34 = O.

Lemma 25 (hder the above Aypotheses, let XY be basic Then
(2} [XXIY = -QXY)8g ( = [XYI® = -cdy for orthonormal
oriented XY)

(5} V3, = Vo X=0

(3} The fibers are totally geodesic and V3,8 = 0.

Froof of 25 (1) was proved in 1.3. Now

21 "
V3.3 = oK@, 85 = 0

4l




2¢V.,3.,3) X< 3, + d.@,X> - ae<x,ar> + <ae,[x,ar1>

+ <ar,[ae,x1> - <x,[ar,a01>

0

VB30 = =<3, 9.2 = 0

V. 9.,Y>=- <ar,v

@ 34 i |
x9r Y= -EQ(X,Y)«-) RNV

X

= anr = (). Finally, [X,ar] =0= Va X= vxar = 0.

r

To prove (3), consider the second fundamental form ¢y of the |
fibers with respect to X. Then by (2),

zX(a r_,ar) = ex(ar,a e} = 0.

2 2
- - | 1 r . |
843,.3,) = <vasx,a e <vxaa,ae> = X@,3 = 5 x'; =0

Y

(%]

Thus the fibers are totally geodesic. Now,

d

r

-1 -
<V ar,ar> * 5 ar<ar,ar> = 0, and

- - - i -
<Va ar,ae> = <Va aﬁ,ar> = (vaear"ar) =2 d l,;:E_!r,ar:» =0
Y r

=3 (‘?a ar)"=n %?a ar=0, since the fibers are totally geodesic. o

r r




Notice that by 25(3) and the Gauss equations, the inducd&-

curvature of the fibers equals the intrinsic curvature,

2
K ‘b = - GYT - 33
fi ’
er G (6211_2)2

Lemma 26 /st R denots the curvature tensor of the
Rizmannian manifold E, X, Y € XS basic Then

(&l
R(x,ar)ar = R(ar,X)X = 0 (26.1)

q
R(X,Y}Br = ZR(X,ar)Y = QX.Y) —ar dg (262)

= <R(X,Y)ar,aﬁ> = Q(X,Y)GrG.

Let (XX} be a local orthonormal orsented basis of XS. Then
Y

. 21 2

Van = vxae > v Cl ¢ (2.6.3)
- N |

VaeY = VYBS = 2 X (256.9)

V.a =V_3a Gr d (26.5)

ar o ae r g e '
Ga
vaeaﬂ = -a Be - GGr ar = -GGrar {26 6)

_ _1 2.2

KX,BB = KY,BG = 4 cd 7 (26.7)




(R, X)X Y = R, VYK = (268)

RIKIOY> = RIY.03, %> = (269
(R(Elr,a;)ae,}{) = R(3 ae)ae,*a = (2.5.10)
Ky y = Kgom -5 o' (256.11)

Froof of 26 (a)(26.1) follows from 2.5(1). Next,

_ _ v_1 v
R(X a )Y Va VXY Va (VXY) ZVa (¥X,Y]

r

.1
= 2 RIXN,

€]
and R(X,Y)ar = -V[x Y]var= Q(X,Y)Vaﬂar = Q(X,Y)Eraﬂ = (26.2)

{b) Va X is horizontal since the fibers ars totally geodesic, and
o ,_

<V X,X> =0, while <V XY>-<VXaB,Y>- <a v Y>-—cG2
8 9

= (28.3), and the argument for (2.6.4) is similar.

Va d, is vertical since the fibers are totally geodesic, and

<Va ae,a > = —<v a a > = 0, while <Va ae,a > = (4’32)r = GGr.
1’

= (265), and the argument for (26 5) is similar.
(c) is a consequence of (b):

R(x,aﬁ)ae=vv a. -V V.2 -V {——OGY}- c:GX

X350 T8, X Va 'z 4
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= (26.7), (269), and (256.10). (26.11) follows from ONeill's
formula and 2.5(1). Finally:

R@E XY =<V, VXV -V V_ XY

d, X X 3,

=z ae<'i?XX,Y> - <VX 3 X

XY Y- -;- GV YT
g

Since V’XX and Y are basic, 0 e(va'Y) = (0. Moreover,

V. XY Y = -% CGZ<VXX,X> = 0.V Y,V = % XYYs = 0.

X9, X

= (268). This concludes the proof of 25. 0

We now return to the proof of 24. To see that E has
nonnegative curvature, consider u, w € Eq If ¢ € E-3, then

there exist local basic XY, {X,Y} oriented orthonormal, such
that

u = (nX+xdr +pdglly , w = (O3 +X+8Y+5dg)|g,
for some «, B, ¥, 8, 8, 0, ® € R. Simplifying and grouping terms
with the help of 26,

2
4+ (B¥ng) Gsz,a

r'e

2 2.2
<R{u,w)w,u> = (nh) KX,Y+ (pO-e)'q Ka )

(B8 TR, , +3nb (B8-wXRX T3,
o

where the right side is evaluated at q.

Thus Rlu,wlw,w> = Q(n6,s8-«t,p¥-ne,ps), where Q: R — R is

the quadratic function with matrix




[- K 2 ]
XY E<R(X'Y)ar‘ae> c 0
3 ‘ &K
SR(X )33 3.2 o 0
r“e
A7 GZK
0 0 xa 0
;]
2
0 0 o @ KY,ae

Now Kx 3, = Ky,a, = (1/4)%6% 5 0, so by 26, A is positive
definite iff. its upper left corner

B 9

322 3
Kgem-3 & 3 s,
B= is positive definite,
3 66 &

rr
d A

™o

But
3 2 _3 22
Kq ZCGZJrKS :l-ce >0
by choice of €, while

rr 2 22
(e +r)

> 0.

Thus the trace of B is positive. Finally,




1 detB = {KS -3 czezrz} 332 29 0236
& 4 2,2 (€2+r2)2 1 (205
2
3 22 3¢
={KS-—c: e }———>0.
4 (e2+r2)2

Therefore B is positive definite, and <R(u,w)w,w 2 0. It is worth
mentioning that the only nentrivial solutions for <R{u,w)w,w =
0 are span{u,w} = spanfhorizontal vector, 3,}, a fact that was
used in the proof of 2.1. The proof consists of a straightforward
case by case analysis: assume <R{uwlw,w = 0. Since Q is

positive definite, we have

nb =0 (1)
p6 =0 (2)
PO - g = 0 (3)
PE-ng =0 (4}

Assume first § 2 0.Then (1), (2) » = p = 0= u = «xdy. If & =
0, we obtain a trivial solution u = @, Otherwiss, {(3) = ¢ = 0 and
w = 83, + ¥X + §Y, so span{u,w} = span{d ., ¥ X+6Y}, where yX+5Y
is horizontal. Next assume § = §. Wa distinguish 3 cases:
(p=¢=0Thenu=nX+ %dy, w = 83, + {X, so span{u,w} =
span{d,., X}.

(i) Oneof por ¢, say ¢ is 0. Then (3) = @ = 0, (4) = ¥ = 0, 50 w

= 0. The case p = 0 is sirnilar.
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