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Abstra;t-of the Dissertation
p-Convexity of Manifolds with Boundary
by
JifPing Sha-

Doctor of Philosophy
in
‘Mathematics
State University of New York at Stony Brook
1986

We say that the boundary of a connected compact n-dimen-

sional Riemannian manifold M is p-convex {where p is an in-

“teger with:1 <p < n-= 1) if -at each point of the boundary

the sum of any p principal curvatures, defined with respect

to the outward normal, is positive. By generalizing Bochner's
formula to differential forms with proper boundary conditions,
we show that if the curvature operator of M is non-negative
and the boundary is p-convex then Hl(M,aM;m) = a0 =
Hn_p(M,aM;R) = 0. . By applying Morse theory to a modified

distance function, a stronger theorem is proved: If M carries

a Riemannian metric with non-negative sectional curvature and




p-convex boundary, then M ﬁas the homotopy type of a CW-
complex of dimension < b - 1. We also prove the converse

of this result, i.e. if a compact n-dimensional manifold
with boundary is a handlebody only with handles 6f dimension
'<p - 1, then it supports a Riemannian metric of positive
sectionaT'curvaturé and p-convex boundary. Taken together,
these theorems give a complete characterization of such

mahif01ds.
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0. Introduction

The purpose of this dissertation, roughly speaking, is
to study the global topological structure of a Riemannian
manifold with boundary which has positive sectional ﬁur-
vature in the interior andrproper geometric conditions on
the boundary. OQur main intérest is in the effect of the

- geometric behavior of the boundary.

In [G], M. Gromov proved a theorem which states that
on an open n-manifold M(n>1) there exist Riemannian metrics
‘both with positive and With negative curvature. An im-
mediate consequence then is that an n-manifold M{(n>1) with
oM + ¢ (i.e., each connected component of M has non-empty
boundary) always carries a Riemannian metric with positiVe
sectional curvature. However, in this theorem there are no
assumptions on the behavior of the metric at the boundary.

s ZIf we impose “somegeometric conditions onm 38M, then the situa-
tion is certainly differenf.. For instances:

" B. Lawson showed in TL] that if M carries a Riemannian
metric of positive Ricci curvature with positive méan curva-
ture at 3M, then nl(M,aM) = 0 and in particular, 3aM is con-
nected.

It follows from the work of J. Cheeger, D. Gromoll and

W. Meyer in [CG] and [GM] that if M carries Riemannian metric

of positive sectional curvature with convex 3M, then M is




diffeomorphic to the standard n-dfsc.

We shall generalize these results. For each integer p,
1 s p s {n-1), we shall formulate a notion of “p-convexity"
at the boundary, and show that this condition together with
fnon—negative sectional curvature in the interior implies that
the manifold is at most'(p—l)-dimensionaiy'i.e., is homotopy
>réquiva1ent,toma_£omplax of dimension <(p-1)}. We shall also
 Sh0w thaﬁ any manifold with this property can carry suéh a
metric.

>Let-us-nowab@~moré”SpEtﬁfit.-*Let‘K~be1anﬂ(n¥1J-dimen_w
sional (normally oriented) hypersurface in a Riemannian mani-

fold Q‘and let

be its principal curvature functions.

“Definition {0.1).--X iscalled p-convex if

o vt
?\1+?\2+ }\p>0

at each point of X. (X is called weakly p-convex if

)\1+)\2+---+Ap 2 0).
Note in particular that "l-convexity" is the usual notion

of Tocal convexity; "{n-1)-convexity" means that X has positive

mean curvature. It is also obvious that p-convexity implies

(p+1)-convexity.




Let M be an n-dimensional compact connected Riemannian
manifold with non-empty boundary aM. aM can be considered

as a normally oriented hypersurface in M.

Definition (0.2). M is said to be with p-convex (or WeakTy

P-convex) boundary if aM is p-convex (or weakly péConVex

respectiveiy) with respect to the outward normal vector.

- ——-In-Seetion-2, we-shall prove the following.

~ Theorem (2:0.1). If M is-with non-negative sectional curvature

in .the interior»and-withvp-convexrboundary, then M has the

homotopy type of a CW-complex of dimension <(p-1).

It should be mentioned that there has been a concept of
p-convéxity in both real and complex geometry for a long time.
It is genefa11y defined by the requirement that at least {(n-p)
eigenvalues of the sécond fundamental form (or.the Levi form
in the complex case) be positive. However, with this defini-
“tion-of p-convexity, Theorem (2:0:1) is false. A counter-
-example was pointed out by M. Gromov as follows.

Suppose S1 and 52 are two non-intersecting great circles
in the standard 3-sphere S3. Let T1 and T2 be the tubular
§-neighborhoods of S1 and 52 respectively. If 6 > 0 is small
enough, M = 33\(T1uT2) is a compact connected 3-manifold with
boundary and, at each point of the boundary, one of the two

principal curvatures is positive. However, sM here is cer-

tainly not connected. (Note that in this example, the sum of




the two principal curvature is negative.)

OQur stronger noﬁion of p-convexity Was first suggested
by a Bochner-type vanishing theorem that we proved for har-
monic forms on Riemannian manifolds with boundary. This 1is

discussed in Section 1. The main result there is the follow-

ing.

':Jheorem'(1.3;2)a-~5uppose—the curvature operator of M is non-

negative and positive somewhere. Suppose furthermore oM is
k
(

weakly p-convex. Then H*(M,oM;R) = 0 for k = 0,1,--+,(n-p).

Ih‘[LMi],“B.”Lawson and M.-L. Michelsohn showed the

_fo]Towing. Suppose X has positive mean curvature and let X'

be a hypersurface‘obtained from X by attaching an ambient

k-handie to the positive side of X. 1If the codimension (n-k)

of the handle is 22, then X' can be constructed also to have

positive mean curvature. Their method is generalized in

Section 3:- We shali_.prove the following.

Theorem (3.0.1). . Suppose X is.a (normally oriented) D-convex

hypersurface in a Riemannian manifold @, and let X' be a

hypersurface obtained from X by attaching a k-handle to the

positive side of X. If k g p - 1, then X' can be constructed

also to be p-convex.

Applying this together with the theorem of Gromov in

[G], a striking consequence ‘then is the following.

Theorem (3.0.3). Let M be a compact connected manifold with

T
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non-empty boundar& and suppose M is a handlebody with handles
only of dimension <(p-1). Then M supports a Riemannian metric
with positive sectional curvature and p-convex boundary.

Hence the Theorem (2.0.1) is “sharp® and it leads to a

complete characterization of such manifolds.

Remark. J. D. Moore and T. Schulte recently proved a special
case O0f the Theorem (2.0.1) for p = (n-2)-{[MS]). Very recent-

1y, we learned that the Theorem (2.0.1) has also been proved

independently by H. Wu ([Wul).




1. Harmonic forms on Riemannian manifolds with L
boundary and Bochner-type vanishing theorem.
Among the great achievements in geometry and topology
are the Hodge Decomposition Theorem and Bochner Formula. We

© Tsummarize very'brief1y those facts we need (we refer to [F1,

[w},m[Gi],i[LMZ]_ﬁor?example, for general references) in this
section and then use Bochner's method for harmonic forms on
Riemannian manifolds with boundary to give some vanishing

theorems.

1.1 'Hodge's decomposition theorem on Riemannian manifaolds
with boundary.

Let M be a n-dimensional compact Riemannian manifold and

A be the Hodge Laplacian on

§

T(a*(M)) = (a0 @ rat ()@@ ()

—~-where T(Ak(M}) 1s ~the-space - of real k-forms on M.

o 17 3M_= ¢, Hodge Theorem tells us that the space. of

]

i

|

harmonic k-forms é
|

]Hk = {wEI‘(Ak(M)) i Aw = 0} |

is isomorphic to the real cohomology space Hk(M;R). |

In the case 3M $ ¢, some elliptic boundary conditions

are needed. Let i : 3M - M be the inclusion. As usual, we ]




denote by =« the.Hodge'"star-operatorf and § = *xdx the adjoint
of the exterior derivative d. There are two sets of standard
elliptic boundary conditiohs for A, i.e., the absolute and
relative boundary conditions. They are defined by

A LR Ba(m) E‘,('i.*'*g_l,'i**dw) "and Br(w-) = (i%w,1%6w).

Let

K = tweraf(n) 8,

We denote by the following the two specific sets of

harmonic forms on M.
k _ k . _ k _ k . _
]Ha(M) = {weEa(M) : Mw = 0} and Hr(M) = {weEr(M) : Aw = 0},
Then by the generalized Hodge Theorem

. k
S :’}I_[a (

1) -2 K (M33M;R) and ]Ht(M) ¥ HE(M,0M5R)

1.2. Bochner's formula.

One of the major results in Riemannian geometry is

the foilowing formula discovered by S. Bochner.

A = VY + R,

() = 0} and EX(M) = fwer(a¥(m) : B (w) = 0J.
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For the convenience of calculation, we use the canonical
isomorphism A*(M) v Ce{M). Then v = D2, where D = d+§ is the

"Dirac operator” on T(Ce(M)). V'V is the connection Laplacian

defined by

—-o-—using local orthonormal vector fields €15 se .

R e T(Hom(Ca(M),Ce{M))) is a symmetric bundie endomorphism.

When acting on 1-forms, it is equal to the Ricci tensor. While
acting 'on higher degree forms, 3t has the property that R >0
(or > 0) at any point of M where the curvature operator is =0

(or>-Q respectively).

1.3. Vanishing theorems.

Suppose M is a n-dimensional Riemannian manifold with

boundary aM $ ¢. Let

be the principal curvature functions of 3M with respect to

the outward normal. We first prove the following.

Lemma (1.3.1). Suppose there is a fixed p > 0 {(lspsn-1),

such that

kl + AZ teeet Ap z 0

everywhere on 5M. Then for any ¥ € HE(M) where 0 < k

[ FaN
o3
1
=)
w




J<V*Vg,> 2 0.
M

FUrthermore,.[<V*vT,@> = 0 only if p is parallel.
M

Proof. By a direct calculaiion using Stoke's theorem,

LT 1“?'@”'<V*V > =] <V, Vy> + »
’J'M Vs IM iy £M<VN‘P ®>

“o czowhere N is the -inner unit normal. ofaM. _Hence, it will suffice
to show that <VN?’T> 2 0 on 3M,

Observe that
0= <Aip,pp> = dSuphxp + Sdphx =
[ b = ] dogheg f Sdphsp
= fMd(G@A*¢) - (~1)k-1j Sphdwp + f phxSdyp =
’ M M

= d( Sl + Stphx S -1 k-1 Adwdp =
IM (phoxtp) IM phsip + (-1) wa ¢

d{ Siphxp) + xé AxSp + [ dphxdp - [ d{pAxdp) =
IM (phixtp) IM (pllox Sip IM (phdyp IM (iphrdyp)

i

P S~ —1.?71 Ci*spni™ | e 2 +-{-]d 2. -1 n-1 oA i xdyp =
(1S T+ f Isql” Ll g™ - (-1 i =,

2 4 2
J e+ ] Tdgl”.

Here we have used the condition that i%p = 1*6@ = 0. We con-

clude that dg

¢ = 0, and hence Dy = 0.
Fix x € 3M, and choose a smooth orthonormal tangent frame
field PR in a neighborhood of x such that e, N on the

|
boundary, and such that at the point x i

(i) v_ N = -Aje. for j = 1,-++,(n-1);
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) T . )
(11} (Ve_ek) = 0 (and therefore Vo & = Gj lkN)
J J k

for j,k=1,...,{(n-1)

(iii) and Vye; = O and i = 1,..-,n,
Suppose that ¢ has the form
P = - L er.---e. + z g8, *re, E_.

¢ el i i c o Jj Jp_an
S e e - 11<3- <Jkgn~ﬁf”1 ~k ‘ J1< <3k“1<n 1 k-1

1t

“Then the condition i% =0 1mp1ies,thathI!aM = 0 and hence

that 2, f 0 Tor-1-

ll

I[BM = Lyeees(n-1) and a1l dg<ee o<y <n.

Therefore, at x we find that

0= D@

Z e.v_( T er.---ek + -z g8, e, e_)

i'e, s i s J-J J n
=1 .1 11 <1k<n 1 Jp<eee<dp _gn 1 k-1
n
= T e {z[(e ey + 7, (e e, )]
i=1 1 Kk i 1 K
o (Zg4e e, Je + (zg.e e, )V, e}
S RCAE TR P B ki PR PR R
(1) 2(e F,) (e
= (-1)" Z(e f e, e +I I (e.qg )e.e e. e
1 n I 1 Ty n J =1 | d7 71 Jl Jg-1 M
( ; ( Je, ]
1} z{e g,) e + 179, re.v (e, +--e e
L PR P T i e S P
n-1 *
- 2 gy( I As€.e, ()




Note that

n
k-1
eV, (e, e e = (S1)H(A, te-etd, ey eeve.
i=1 V& J1 Jgt M J1 -1 91 g
T (1)L )
L AsR.e. seee, g, = (=1)" pTIE TS 5 g, s+nsp,
i=1 Py Jp g I J-1 91 I
k
+ (-1)7 & kﬂe. o
- - igd U 91 Jka1
i#n :
Then we see that
0 = the coefficient of e, .+-e, in (%)

)]

K
(-1)"[Ng,-( = A:)g,].
J Y2100
'Iéu
i#n
Consequently we find that

[P e --<VN(P,*LP>"= <%(Nfl)eilc ."ae_ik + E(Ngd)ej e, e .,

1 k-1 !
If.e, »-+e, +5g.e, +-ve, e>=7%
ERAE R PI A F RS PRI
_ 2
=T E)\i)g z 0
J g VY
i#n
because, by the assumption on k, each sum ¢ Ai takes over
i¢d
i#n

at least p Aﬁ's.

11.
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. . .
Furthermore, 'iff<V*VLP,LP> = 0, then | <V, V> = ”V(F”?- = 0
M M
and therefore, ¢ is parallel. ' #

Taking this lemma together with the material in 1.1 and
1.2, the fb]1owing theorems foilows immediately from Bochner's

--vanishing argument.

Theorem (1.3.2).. Suppose M is an_n-dimensional compact

Riemannian manifold with weakly p—cdnvex boundary aM and

non-negative curvature operator which is positive somewhere.

Then HY(M) = 0-and hence HX(M,3M3R) = 0 for 0 < k < (n-p). #
We also have a similar version of the theorem in [L].

Theorem {(1.3.3). Suppose the compact manifold M supports a

Riemannian metric with non-negative Ricci curvature which is

positive somewhere and with non-negative mean curvature on

the boundary 3M. Then HI(M,BM;R) = 0. Consequently, &M

is connected if M is connected. #

The corresponding vanishing theorems for H*(M;R) follows
from the Poincare duality. They can also be derived from a

similar Temma by using the absolute boundary conditions.

Theorem (1.3.2)'. Let M be as in(1.3.2). Then mg(M) - 0

and hence Hk(M;R) = 0 for p ¢ k < n. #
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2. Homotopy type of p-convex Riemannian manifolds

Let M be an n-dimensional compact connected manifold

with 3M # ¢. We shall prove the following in this section.

~ Theorem (2.0.1). If M carries a Riemannian metric with non-

‘negative sectional curvature and -p~convex boundary, then M

has the homotopy type of a CW-complex of dimension <(p-1).

We use Morse theory to prove this theorem. The principal
-— 1idea is-to show the "p-convexity" of the distance function to

the boundary and then to construct.a delicate smoothing.

2.1. An algebraic lemma.

Let V be a real vector space of dimension d wifh inner
product <,>, and Tet A be a symmetric Tinear transformation
from V into itself: . We call the quadratic form <A-,->
p-positive if for all orthonormal sets of p vectors

vl e {xr,~.-,xp} C VY, we have

o <A, X +eeet <AX X > > 0.
s -Xl PP

1>

Lemma (2.1.1). The following are equivalent.

i) <A+, > is p-positive;

ii) The sum of any p eigenvalues of A is positive.

Proof. That i) = i) is obvious.

To prove that ii) = i), let Al 2T Ay be the eigenvalues

of A, with corresponding orthonormal eigenvectors Yl"'f’Yd‘
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Define q by the condition that Aq >
' d
q > d-p. Now suppose that X; = jilaijvj’

arbitrary orthogonal unit vectors. Then we have that

0 > Aq+1, and note that

i=1,-+-,p are p

d
++s et E
i=p+l

2

P
- - '..+
a1q + A E a

P 2
1+ Ad—p+2 15 ai,d-p+2 q

i=1

T A 2 Agpey T Agepep Tt Ag YA

9 q+1+...+)‘d > 0.

Note that we have extended (aij) to a dxd orthogonal matrix. #
. From .this lemma, it dis easy to see the following.

Corellary (2.1.2). There exist §,> 0. and A >0 such that

for all y ¢ oM and for all sets of p unit tangent vectors

{Yl,---,Yp} c:TyaM with |<Yi’Yj>l < &, for 1 # J, one has
that

aIS(Yl,Yl)+---+apS(Yp,Yp) > A

where S is the second fundamental form of 8M in M, and where

ajs°t,a, are arbitrary real numbers with [a,-1] < §, for
al

1.
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2.2. The modified bbundary distance function.

Let cy > 0 and C, > 0 be two generic constants whose
value will be specified later on. Set

c,t
T(t) = ce z

and consider the function

",
F = tofF : M >R

where F{x) ~dist{x,aM) is the negative of the distance to
the -boundary in M.

We call a function f on M uniformly p-convex if for

. |
any given Ccc M, there exist § > 0 and n > 0 such that for f
allt x ¢ C and for all orthonormal sets {Xl,n?f,Xp}c: TXM,' |

we have that

2

[L I g iy

1[f(e3px(-txi)) + flexp, (tX,)) - 2f(x)] 2 nt

i
for all t ¢ R with |t] < &.
- Our main purpose in this section is to prove the follow-

ing.

ny,
Theorem (2.2.1). F is uniformly p-convex.

Proof. Suppose x ¢ ﬁ. Choose a minimal geodesic co(s) =eprsX09

0 s s £5s_=dist{x,aM)}, from x to aM. Let X

0 1°

be orthogoral unit vectors. Suppose the angle between X0 and | ﬁ

---,Xp g TXM

the linear subspace spanned by {Xl,---,XD} is a. We have
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0 < a g %, and there are three cases to consider.
Case I. Suppose o = %. Set | | ‘
i

i K —
ct(s) = eXpCO(S)tX'

 “V~and5Y{”1s”the“vector fie]d*generatéd by parallel transliation

of Xi a]opg Cye

Fig. 1

It is not hard to see that for some 89 > 0 there exist
smooth functions ai(t), 1 ¢4 p, with the property that the
curves ci are well defined for 0 € s < ai(t) and have
Ct(ai(t)) e aM for each i. A calculation in Fermi coordinates

shows that a;(O) = 0 and a;(O) = _S(Xi’xi)' We then have that,

. a,(t) ..
Leg) = f 1 leglds

t
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. s . Ca,
and Fetlel) = el ta (t)aj(t) + f T
t

from which we conclude that

Ay =
qi-(Ct) [g=q = O

gE—L(ci) = a'(0) - s°<R(' X ¥, .c >ds < -S(¥.,¥.)
N |t=O- 15 (0 jo Cor kst hysCy < s Ks )

R a,nd dtt" i i

- ~-Corollary .(2.1.2) implies that

P (- S eh) )

_ ‘ - C g > A,

=1 dt?t | €0

Choose c, > e » Where d is the diameter of M.
2

Then we have T'(-so) > 1, and therefore,

2
4

p
> Z(__(_j_
dt™ i =

1 dt

Mo

(L)) [1ag = T (5

1 074

It follows that there exists 8, > 0 such that for [t] < $5s

[Flexp, (-tX,) + Flexp tX.) - 2F(x)]

HDQ

i=1

. 2. (1)

[e(-L{ely)) + w(-L{e])) - 2t(-s ) 1> 3t

1

i=1

Case II. Suppose % >0z oag where a, is a constant such that
H

. 2 ! . . |
|sin 30-1[ < 50 and |<X1,Xj>| < 8, for i # j, where Xi

denotes the normalized projection of Xi onto the orthogonal

complement Xz of XO.
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For simplicity, we momentarily omit the subscripts 1§

{(12isp).

Co(VtJ 84 ,/X
j—_.._.._.., /—/’)__/
¥ wi /,./ . —
B (Mip)= exf’x("iii;}\“’( ) o Cl8) = 3y (U
: = - Xl_
x

a_¢

Fig. 2
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For each sufficiently small t > 0, let ay be the arc-
Tength parametrized minimal geodesic segment from the point
c{t) = expxtX to the curve S (See Fig. 2.) Suppose
at(O) = CO(Vt) and‘c(t) = at(ut). Let
e ey (s) = fexp_co(s)utat(o), Sz vy
-~ - be_a .curve from c(t) to 3aM, where.gt(o) is the paraliel
translation of ét(o) along C,- By the argument given in

Case I, there exists §; > 0 so that for t < 8§71 3

-Llcy) 2 =50 + vy + 35(3,(0),3 (0))u.

By Rauch's comparison theorem, we have that

+ t2 - 2tv,.cos

u £

A
Lo

2
t

2

i
e

t

ot N ot M

- :V~ConseQUent1y, we Tind that

) , p .
o ,2vtt-cos o< 2vt.. ji.e., vt =t cos q.

Uy

+ } .
Furthermore, Tsina l as t - 0, and sina, < sinasl.

Note also that Et(O) > X" as t - o", Combining these facts,

we get a 62 > 0, such that for t < 62. we have

2

1 o7
-L(ct) 2 -5, ttcosa + E-aS(X X )t

v

where a is some real number with ja-1| < 8,
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From this we conclude, after noting that

[»
+

Hf("L(Ct))lt=D = cosa, that

42t o1 o
gt_z(-!.(ct)) t=0 b4 aS(X . K ).

“.....-0On. the other hand, 1et;a_tmbe a minimal geodesic segment
from the point c(-t) = exps(-tX).to the point a_t(u_t) =
exp (-t sindX'). Let |

{a_t(s), 0<s<u_y

e (s) = <

[expco(s_u_t)(-tsin<xx boos 2 ou_y

By the same use of Case I arguments and Rauch's comparison

theorem, we have that

" lml-—|2.2
-L(c_t) 2 -5 - tcosa + §S(X K Jt%sin‘a.

[ —"We‘seerthatfL(c:t);is;rjght?djfferentiab]e and that
4*
wl=L{c_.)){s_.n = -cosa. This implies that
dt -t t=0
4 (L)) [,y 2 aS(X
—={-L(c¢ _n~ = aS{X;

and therefore that

The same final arguments as those given in Case [ complete

the proof of Case II.
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Case III. Suppose 0 < o ¢ oy Let 0 5 denote the angle

between Cy and Xi' If Gy oag for all i, then the arguments

of Case II apply, so we shall assume that ay < . Set

Fig. 3

1 _ —
ct(s) = expco(s)a(s)tx1, 0 < 5 ¢ 5o

where a(s) is a non-negative smooth function on 0 < s < Ss

such that a(0) =1, a(so) = 0. Then we have

d 1 -
HTL(Ct)It=O = -coso g -cosa,

and
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' i
2 ~c,s d(-L{cy))
d el - 2%0 t )
2t (-L{eg)) o = cpc5e = N
t=0
: ~CyS dz(-L(cl))
+ c.c.e ° t
172 2
dt t=0
2 "%, 2 "5,
> -
e cigze cos o clcze K

where K is a positive constant depending.only on the manifold M.

For the other X;'s; we clearly have

S

- }
2 Oy

2 .
d i
E;§T(~L(9t))+t=o_2 "C1%2¢

where

i o
c, = expco(s)a(s)txi, 0 <s < s .

0
: c.d c,d
By choosing c, > iﬂlélﬁ, c; > max{éLe 2 , éLe 2 (czcoszao—(n—l)Kfl}
cosTa, 2 2

we get

¢? . P o]
- E;?[1= (- (Ct)))]ltzg > A

The same argument as before now gives (1).

To complete the proof of Theorem (2.2.1) we first observe
by careful checking that the 61,62 in the proof can always be
chosen uniformly in small open sets. This implies that & can

[+
be chosen uniformly on compact subsets of M; and the argument

is complete.
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"y
2.3. Smooth approximation of F.

Let ¢ : R + R be a non-negative C” function which has
support contained in'[—l,lj, is constant in [- %,%ﬂ, and

has the property that [  w{|[v])du = 1, where [[v]] = the
c velR

duc1ideanl1ength of v and dﬁ is the usuaj Lebeégue measure
on R". A | |

There is a collar neighborhood U ~ 3M % [O,to] df 5M in
M. Choose a C~ function £ : M.+ [0,1] such that £ = 0 on

o t
=1 0n .M = M- M oc's[o,-—zﬂ,) - ‘Define f_,

Al

%
oM - x EO{jr] and

t
0 < g < 73, by

L ey Frexp g(x)van,

£ VETXM

1l

£ (x)

where || | and d2, are the euclidean metric and volume on
TxM obtained from the Riemannian. metric of M.
Lemma (2.3.1). For all sufficiently small e > 0, the function

Ay
R ¢” on all of M and has the property that fE(x) = F(x)

£
t0
for x ¢ 3M x [0=7f .

Proof. The second statement is obvious for all g, so we only

v
need to check the differentiability of fE at x e M. For

sufficiently small € > @,

-1
1 (HBX 'y”) v

fE(X) = ;ﬁ f@ — 'F(Y)dxy
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where

ex(v) =.exva

-
d.y = 021 ¢

X X de)'

Standard results about differentiation under the integral sign

compliete the argument. ' #

A Tittle modification of the arguments as in [GW] then

gives the following.

Proposition (2.3.2). There exists n > 0 such that for all

"\ _
X € M and for arbitrary orthonormal vectors Xl,-'--,Xp € TXM,

one has
p 2

d
T —xf {exp tX.)|.e_n > n
121 dt2 £ X0 It—O _

for all sufficiently small £ > 0. .

2.4. Completion of the proof.

"It is-a well-known fact-that the Morse functions form
an open dense subset of C*(M) in the C2 topology. By 2.3,
we can get a Morse function ¢ : M » [0,1] with only non-
degenerate critical points in ﬁ, such that w'l(l) = 3M and
such that the Hessjan H at any critical point is p-positive.
This implies that the index of H is g<(p-1). The Theorem (2.0.1)

now follows from standard Morse theory. In fact we conclude

that M is a handlebody with handles only of dimension <(p-1).
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3. Handlebodies and p-convexity

Let X be a hypersurface in a n-dimensional Riemannian
manifold Q. 1In [LMl], by a handle-attaching process, Lawson

and Michelsohn showed the following. Suppose X has positive:

mean curvature and let X' be a hypersurface obtained from

X by attaching an ambient k-handle to the positive side of

~-u7mmmxr-AIfmthe_cudimension;(hjk) of the handle is >2, then X'

can be constructed also to have positive mean curvature.

(That is to say that X' is ambiently isotopic to a hyper-
surface of positive mean curvature.)

Our central result of this section is a generalization
of this theorem to the p-convex case. Specifically we shall

prove the following.

Theorem (3.0.1). Let X be a (normally oriented) p-convex

hypersurface in a Riemannian manifold 9, and let X' be a

crmTmohypersurface obtained from Xoby sattaching a k-handle Dk

to the positive side of X. If k 5 p-1, then X' can be

constructed also to be p-convex.

Arguing as in [LMl] we get the following.

Corollary (3.0.2). Let X be a compact manifold embedded as

the boundary of a domain D in a Riemannian manifold Q.

Orient X with respect to the inward pointing normal vector.

If D is diffeomorphic to a handlebody of dimension < p-1,

then X is ambiently isotopic through mutually disjoint .
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embeddings to a p-convex hypersurface X' in Q. The new

hypersurface X' bounds a domain D' which is diffeomorphic

to D.
Applying this together with the fundamental results of
Gromov in [G] we then. obtain the following result which is a

converse to the theorem in Section 2.

~Theorem (3:0.3). Let M be a compact connected manifold with

non-empty boundary. If M is a handlebody with handles only

of dimension < p-1, then M supports a Riemannian metric with:

positive sectional curvature and p-convex boundary.

~In fact, by the theorem of Gromov the sectional curvature
of M can be e-pinched for any € > 0. 1If Mzis parallelizable,
then by immersion—submers%on.theory {cf. [Hi]) there exists
an immersion M< S"(1) where n = dimM. By pulling back
the constant curvature metric from S$"(1) and proceeding as

in Theorem (3.0.3), we have the following.

Theorem (3.0.4). Let M be as in Theorem (3.0.3). If M i

parallelizable and is a handlebody with handles only of

dimension < p-1, then M supports a Riemannian metric with

constant sectional curvature 1 and p-convex boundary.

The remainder of the section is devoted to proving Theorem
(3.0.1). Since our basic set-up here closely follows Lawson

and Michelsohn [LM1], our presentation will be brief. The basic

picture is shown in Fig. 4.




3.1. The basic set-up. S,

Assume @ is connected. Let X be as in Theorem 1. Positive
mean curvature (implied by p-convexity) implies a well defined
normal direction to X; i.e., we have an embedding of X x (~1,1)
in @ with the image of Xx0 identified to X. Let X+ be the
union of components'of aAX contéining Xx(0,1), and X~ be

~~z--the:union of components of Q\X containing Xx(-1,0).

k

Let D" be a k—dimensidné1 disk orthogonally attached

“to X in X+. Set, for x & @,

i

s{x) dist(x,X)

dist(x,D¥).

Hl

r(x)

Then there exists a nejghborhood Q4 of X in @ such that

s is smooth in o, = @\X™ and |[Vs]] = 1. Similarly, there

k

exists a neighborhood @, of D" such that r is smooth in

2
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5 Z Qé\(X'UDk) and ||vr|

surface 1in Qé for any sufficiently small r_ >

£

1l

1, then r"l(r y N Qé is a hyper-
0

Hence, the map

s 1 1 Z
(r,s) : Ql 8 92 + R

R - smooth-submersion;-~Our-4dea'is-t0~construct a regular
curve y which is essentially the graph of some function s=f(r)
in RZ, so that the h&persurface SY = (r,s)-l(y) joins r_l(eo)
to X smoothly for some £, > 0, and the whole new hypersurface
obtained will still be .p-convex.

RecalI that the second fundamental form of the level
hypersurface of a function is closely related to its Hessian

form. We summarize this fact in the following.

Lemma (3.1.1}). Let 4 be a smooth function on a domain of 0.

Then at every point the 2-form vVv°u defined by

Lo VZUC‘,70 =”Hessu(';’) = <V;(V“)='>

is _symmetric. Furthermore, if ||vu|] = 1, then vu lies in

pa . i 2 .
U, and when restricted to Vu , v u 1is

the null space of V

the second fundamental form of the level hypersurface of u

with respect to vu.

Proof. See [LMl]' ‘ #

Suppose u is a function as in Lemma (3.1.1). Let

kl S S A
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be the eigenvalues of vzu. We denote by cu(m) the sum

Ayttt km

1

form=1,--,n.

Remark. Note that by Lemma (31.1),Vu is an eigenvector of Vzu;

the corresponding éigenva]ue is 0. The other (n-1) eigen- . |
-— - -—values are-the-principal curvatures of “the level hypersurface

of u. We theh clearly have that the 1evé1 hypersurface is

p-convex if and only if cu(p+l) is positive.

Lemma (3.1.2). (i) We can choose 1, such that there exists

a constant 6 > 0 for which
Us(p+1) > &

in 2. (Here & cou]d be replaced by a smooth positive

function.)

(i) We can choose 2, such that

o.{p+l) > £

in 92\(X'UDk), where ¢ > 0 is a constant.

Proof. (i) dis from the p-convexity of X.

(ii) is by a calculation in Fermi coordinates and the fact
that k ¢« p-1 as follows.

Choose Tocally smooth orthonormal vector fields els-Gf,e
k

n
and that

along Dk such that €t r,€, are tangent to D
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k n-k

41272, are normal to D". Then for ¢ ¢ Dk’ (Xlo“'sxn_k)em

n

with x§+---+xn_§ small, the map

(B (xgarmmaxy ) boexpo(xpepgqbee ety ye))

gives a local coordinate in some open set W C Q,. Extend

PRS- to smooth vector fields 31,---,3 on W, where

n

“feach:gi;ﬁs’bbtainédey~parélleT-translation of e, along the

geodesic

af{t) =rexpgft(glek+l+t--fxn_ken)J”.0 < t < 1.

On W, it is clear that

| A 5
gt )) = ST

anhd that

1
i

1 y n
Vf_7_?(Xlek+1+"'+xn-ken)'

IT the metric were euclidean, i.e., if all the gi’s

“wer parallel, we would obviously have

- P-k
cr(P+1)- -

In general, let vl,---,v be arbitrary (p+l) orthonormal

p+1
tangent vectors at some point in W, we have that
pt+l
X
A

ptl

5 p+l x X
v rUH,V1)= z

v ‘ "1 N . -
rVgaVi) 4 (Tvaviek+1=Vi>+"'+ v

v (*)
. <VV-en’V1>)

i=1 i
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Where ézr.denotes the Hessian of r under the euclidean metric,
then the first sum in (*) is » Eik. The second sum in (*) can
clearly be bounded by some fixed constant which is independent -
of r. Therefore, by choosing 92 properly and noting that

p-kz 1; there exists a constant ¢ > 0 such that
o.{p+l} > %

in Q\(XUD¥). | #

3.2. The bending fynction.

Let §, €15 €y and ¢_ be fixed positive constants. Our

. 0
aim in this section is to construct a smooth function f which

is defined on r » £y for some Q < ey < €1 such that

f(r) = 0 for v 2 €y
f'{r) <0 for r > €45

- - - - f(r) - €3 < €, as r - s;.

A1l the derivatives of -f + »-in absolute value as

ro- e;. (See Fig. 5.)

s

S=f(r)

=5
m
[+]
o
-
-3
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Furthermore, f satisfies either of the following con-

ditions for r > Eo:

. cof'(r)
§ - f{r) - — >0
or
- ' (r) cof (r)
S*rl 5 - - > 0.
fi(r)
We begin by choosing f; properly to get a smooth func-
tion f, such that

1

.fl(r) = 0 for r 2 e

fi{r) <0 for all r;

1
I E]_
0 < fl(r) = constant < § for r < -3
exp 1 ] > 1
2 f'(ing
R T\ 2
£
! 1+43
- - el ()] . El,
fl(O) 2
E |
1, 1443
c [-f,(=)]
f.o(0) + =2 % 2 i fz 4t e, for all 2> 1.
1 f,(0) 1 /2c, Tnt
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A1l the requirements can be satisfied by chobsing f;(o)
small and then by choosing the area of the shaded part in
Fig. 6 -small and also by noting that

: 1 fﬁ dt "
e % 1 /2c01nt

0 as L + o

therefore in particular it is bounded for 2 > 1.

Now set
1
a = exp 2
zcofl(T?)
£
11493
_ Sol-Fi (5]
E - H
0 af,(0)
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Then by the construction of fl
. s
a > 1 and ae < > -
Define for r > 5
- ae
_ ) fz(l") = J’ 8] dt
r 2c0]né5-
_ 0
We have
fa(r) = - —L
2
‘ JZCOInJL i
_ - o ‘
fg(r) = 1 : |
2}2c0(1ng1)3/2r
)
Hence
1" I‘_ i
f2(r) . cofz(r) s
_ AT
Finally, let
(. F1,
fl(irji-fz(r) for e < r« I
falr) =<
£1
fl(r-ago~+7?) for r 2 ag,

hd

Then it is easy to verify that f3 is C2 and satisfies

all the conditions required for f. 1In fact when r 2 aeg
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c falr) -
§ -~ f3 (r) - —jLﬁi——— > 0

by the construction of fl and when €, < r g aeo

. f;(r) cfalr) . f;(r) cofé(r) s o
- - = - - - > .
fé(r)2 o fg(r)2 v
The required f is then gotten by a smoothing of fg.

3.3. The construction of X'.

.Let

Ixen : r(x)<e}

Lww
1]

X

. {xeq : s{x)<el

be tubular neighborhoods of Dk and X respectively.

There exists €1s €5 > 0, such that

D C'QZ’XZ C.Ql

x> P

1
and such that

[<Vr,v >| <1

, _ +
in U = {stzglfW Xzelf\ X7t or{x) > 0},

Let v be the curve s = f(r) as in Fig. 5 . The hyper-

surface SY = (r,s)'l(y) smoothly joining XN(XnU) to

BDE\\(BDE{WU) produces a new hypersurface which will be our
0 0
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hypersurface X' obtained from X by attaching the handle DX
(see Fig. 7). |

We claim that X' is p-convex. It only needs to verify

at the part of SY where r > €q° For this part, SY is the

— level set of the smooth function

F(x) = s(x) - f{r(x)).

We have

VF .
Let e, = WV_W' The second fundamental form of SYTS

given by
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2 2
cLe) = s = VP Y([VF[T)VF
SANEERAS R 2 vF|°

n

Clearly

BF(en’en) = 0

2 - 2
e UTFR)5g Fom, (f7F)%) <o, urs

v
_VvF .. VF
= ”_—_<VF vF ,VF> <”W”_’VF>

2<V, LVF ,VF> = 292F(VF,VF)

z[vzsuw,vr)-f'uqurunaVF)]-zummzf“uq(ve r)?
n

20 (r) 575 (vr,97) - £ (r)72r(vs,7s)] - 2| vF] ()T, r)?
n

[}

where the last equality is obtained by recalling that vs is

2

in the null space of v°s and that Vr is in the null space

- of Vzr.
Then

ven(quuz)ve F

N = _ f”t\"}(v P)Z

EE vl Sn
N 1 e (r)v%r(vs,vs) - £'(r)20%s(vr,vr)]
VF

Now suppose that el,--~,ep are orthonormal vectors

tangent to s_. Then Vv_F =0 for i = 1,-++,p.
Yo €;




Therefore,

p .
ZIBF(ei’ei) = 1_1 F(e i) + BF(en’en)

2 [7s(e o) - (1Pree) - (7 (7, 1)2]
'l

+ ”VFIEV s(e,,e,) -ff_(r)vzr(en,en) - f"(r)(venr)zl

T T f"(r)(ve )2 “(r )VZr(vs,vs)— f'(r)zvzs(vr,vr)]

HVFH n u Fu

, p
n 2
> 1 +1) - f
2 ”vF”[os(p } = £'(r)o, (p+1) (r)igl(veir)\]
5 -1—3 £' ()70 (Vs,Vs) - F' (r) 2925 (Tr,7r) ]
I vFl
s L g rye - 2 yrvze<vs=vs>;
HVFH T v
e P 2
B i ﬂf(rﬁ’ﬂ?rvﬂl (r) B (V. P)°]
. o.
|| vF =1 i
Note that
Tim rvzr(Vs,Vs)
r-0
in U, and that
f \ 1
VZS(vr,vr),'f(ré = — (r%
(Kdd L+ (r)%-2f (r)<vr,vs>

are bounded in U. It is then easy to see that we <can choose

€12 Eps Cg SO that




p ) c fh(r) |
v, s
_ 1
or {note that Veir = f'(r))
b , 1 TS
SRR E R R 17 L FnE

- — ~Therefore by the.construyction of f, S

is p-convex.

39 .
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