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Abstract of the Dissertation

Absolute Hodge Cycles in Ruga Fiber Varieties

by

Salman Abdulali

Doctor of Philosophy

in -

Mathematics

State University of New York at Stony Brook

1985

We show that if A =2 V is a Kuga fiber variety satisfy-

[
ing the H C1 2P 2,2 (p), of

2—condition, then the space H

cohomology classes coming from a fiber, consists of absoluta
Hodge cycles. We use this to find relations between the
zeta functions of two Kuga fiber varieties over the same

base.
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CHAPTER 0. Introduction

A group theoretical abelian scheme, or Kuga fiber
variety, is a family of abelian varieties, f : A = V, para-
metrized by an arithmetic variety V = r\_X, and constructed
£from a symplectic representation, p : G = Sp(F,B),-ﬁf an
algebraic group G (Kuga [8]). In the rigid case, a group
theoretical abelian scheme has a model defined over an al-
gebraic number field: the study of such fiber varieties has
led to deep results in the arithmetic theory of automorphic
functions: for example, the proof of the Ramanujan-Petersson
conjecture (Deligne [37).

The Hasse-Weil zeta functions of rigid group theoretical
abelian schemes over a Shimura curve are now known (Ruga-
Shimura {117, Ohta [17]}). Lancglands {13] has investigated the
case ©f higher dimensional base spaces. However, this-re—
mains a vast subject where little is known.

The zim of thisg investigation ig +to find relations be-
tween the zeta functions of two rigid Kuga fiber varieties,

A =V and B » V, cver the same base V. In particular, suppose
that Vv = Vv, xV, is a product of two Shimura curves. Then,

1 2

there are abelian schemes, Al - Vl and A2 > V2, whose zeta

functions are known (Ohta [17]). If Vl and V2 afe suitably

1.




chosen, then there exists a rigid abelian scheme B = Vl xvz,
which is not a product (Kuga [10]). By comparing the zeta
functions of A = Al xA2 and B we may then expect to obtain
nontrivial information about abelian schemes over products
of Shimura curves.

Our technigque is to use absolute Hodge cycles (Deligne
[41) in the product A XxB to describe homomorphisms between
the etale cohomology groups of A and B. These homomorphisms
commute wi£h the action of a Frobenius element (up to a Tate
twist), forla sufficiently large field of definition, and
thus give rise to relations between zeta functions. Loosely
speaking, we think of zeta functions as the objects of a
category, whose morphisms are absolute Hodge cycles.

We shall now describe our main results.

Let A » V be a Kuga fiber variety satisfying the HZ_

O'2p>(A,Q)(p), of ccheomology

s <
condition. Then, the space H
classes coming from a fiber, consists of absolute Hodge cvcles
{Theorem (3.3.5)).

Let A -V and B 2 V be Kuga fiber varieties satisfying

_ 3 1 - o
the H2 condition, and let Py * G = up(FA,BA) and

' IR G - Sp(FB,BE) be the representations defining them.
. bg
For bo = bl (mod 2}, consider the representations A pA




b, P, by |
and X Py of G on A FA and A Fos respectively, and write them 3
b b |
o o
as direct sums of irreducible representations: A QA =& RA o
b b b o
1 . . e} .
Ap. = @R ! . For each pair {a&,B) with R equivalent to
b B g B.8 A,n
RBlB as representations of-G over ¢, we find an absolute Hodge
r

cycle in A ¥ B, and thus cobtain a relation between the zeta .
functions of A and B (Theorems {3.4.4), (3.4.6)).
Let us point out that though our main results are valid

over a sufficiently large field of definition, we do not know

how to find such a field.
Finally, we look at examples (Section 3.5). We compute

<0, 2p>
the dimension of the space H P (A xB,%) (p) of absolute
v b
o)
Hodge cycles, and we compare the representations A DA and
b
1
A Ppe In order to do so we first describe (Section 1.3) the

representations defining families of abelian varieties over

guaternion Hilbert modular varieties. This is a generaliza-

tion of Addington's classification [1]. We show that families
of abelian varieties defined by "rigid polymers" satisfy the

Hz—condition and are rigid.

Notations and Conventions. All algebraic varieties are assumed

to be connected and smooth. We usually use the same symbol

to represent an algebro-geometric object considered

as a scheme, an algebraic variety in the sense of




s

Weil, or as a complex manifold. When it ig necassary to
make the distinction, we write %0 for the complex manifold
associated to a variety defined over a subfield of T. TIf =
variety X is defined over a field k, and K is an extension
of k, we write XK for the set of K-rational points of X.
ER and XE are often considered as real and complex manifolds,
respectively,.

A vector space or algebra W over a field k determines
an algebraic Qariety, agaih called W, such that wW_ = w'® K

&

for any field X containing k. If K D k then Res denotes

K/k
the restriction of scalar functor from the category of K-
varieties to the category of k-varieties, if [K:k] < =.

Notations for cohomology groups are explained in detail

in Section 2.1.
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CHAPTER 1. Group Theoretical Abelian Schemes

This chapter deals with the construction of group theo-
retical families of abelian varieties, with emphasis on
families of abelian varieties parametrized by guaternion

Hilbert modular varieties:

l.1. Kuga's Construction of Fiber Varieties

A group theoretical family of abelian varieties,

£ : A =2V, is constructed out of data {G,K,X,T,7,L,3,0,7),

as described below. For details see Xuaz 8], or Satake [187.
Let G be a semisimple, linear algebraic group defined

over . We assume that %R is a connected, semisimple, real

Lie group with finite center, and that G has no connected,

normal @-subgroup N # {1} such that Np is compact. Let T

be a torsion-free arithmetic subgroup of GQ' with F\%R

compact,

Propesition (1.1.1) (Borel [2], Theorem 1). I is Zariski-dense

We assume that X = QP/K has a %R—invariant complex
structure, where K is a maximal compact subgroup of QR.

It is known that X is diffeomorphic to a Euclidean space.

Let g be the Lie algebra of QP’ ® the Lie subalgebra of g
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-

corresponding to X, and B the orthogonal complement of &
in g_with respect to the Killing form. If v : QR ~» X is
the natural map,rthen dvlm is an isomorphism of P onto
TO(X), the tangent space of X at 0 = v(l). 8ince X is a
complex manifold, TO(X)-has a complex structure JO, and it
is known that there exists a unique Ho € 2(R), the center
of &, such that (aﬂHO)|$ = Jo,where we have considerad JO
as a complex structure on P via the iscmorphism dv.

.r aétéﬁprOPerly diécontinuously and without fixed
points on X, s0o V = T\X is a compact, connected, complex
manifold. We shall coﬁstruct a family of abelian varieties

parametrized by V.

Let F be a finite dimensional vector space over ¢, L

Jut

a lattice in F, and 8 a nondegenerate alternating bilinear

form on F with g8(L,L) ©Z. Then, the symplectic group,
G' = Sp(F,8) = {xcon{r) |p(xu,xv) = g(u,v) Yu,v € 7},

is an algebrzic group defined over @. Let p : G = G' be an
algebraic representation bf G, defined over ¢, such .
that p{v)L = L for all v € I', Since T acts on L, we can
Torm the semidirect product TKIL which acts on X ¥ ER by

(v,2) - (x,u) = (yx,p(y)u+t). Then the quotient A= L\(XXF )

'L ®




is a smooth manifold, and we denote by £ the natural pro-

jection: » = AXE ) » V= _\X.
jection: A HKL\( X ) T\

f : A -2V is a smooth fiber bundle with fiber T = QD/L,and

structure group (7).

The Siegel space is defined hy

: 2 - : s
X' = B(E,,8) = {JEGL(FR) |07 = -1, 8(x,Jy) is a positive

definite symmetric form on ER}.

G'_ acts transitively on X' by g(J ) = ngﬁl, Choose a

=

base point JO € X' and let K' be the isotropy subgroup of G%R

at Jo' g' the Lie algebra of G' &' the Lie subalgebra of

= m’

g' corresponding to K', and B' the drthogonai complement of

&' in g' with respect to the Xilling form. Then, it is known

(Satake [187, Chapter 2, Section 7) that Hé = %-JO belongs to

the center of &', and adlagis a complex structure on B'.
The map v' q& < X' given by v'(g) = gJOg_l induces an iso-

morphism dv' : f' = TJ (X'). With this identification, adf%;
o)

is a complex structure on TJ (X'). There exists a unique gé—
O A

invariant complex structure on X' which induces the complex

structure adfﬁ)on TJ {x'). We shall always consider X' as
o

a complex manifold with this complex structure; it is in-

dependent of the choice of the base point JO.




8.

Let v : X 2 X' be equivariant with respect to p, i.e.,

r{g(x)) = pl{g) (r{x})) Vx¢&X VgEE%R, and let JO = 7({0) where

0 = v(1) is the base point in X. We sav that the H1—

condition is satisfied if

Va € g. (1.1.2)

ST
(o
-
fo}
to)
o
ol
If |
o

Ldp(H ) -
We say that the Hz—condition is satisfied if
1
de(sI ) = 5 J . - {1.1.3)

We note that (1.1.3) implies (1.1.2), and (1.1.2) implies

that 1 is holomorphic. We assume that T satisfies the Hl-

condition, but not necessarily the H?mcondition.

For each x € X, 7(x) is a complex structure on %R such

that the torus TT(Y) = %R/L with the complex structure f1(x),

is an abelian variety with polarization B. Since T and

T ()

are isomorphic abelian varieties for v€T, AP==T

TT(YK) T{x)

is well-defined for P = g(x) € V, where g : X =V = T\X is
the natural map. Identifying A, with the fiber f-l({P}) of
the bundle £ : A » V, we see that A is =z family of polarized

abelian varieties parametrized by V.

r-;j

-
2 Liy

Theorem (1.1.4) (Kuga [8], Theorem II-56-3). Let (3,X,X%,T,

8,0,7) be as above. Then, there exists = unigque complex




structure on A such that

(i} £ : A » V is holcocmorphic;

(ii)} the underlying real analvtic structure on a
coincides with the one it already has;

(iii) +the restriction of the complekistructure to the
fiber‘over P €V is 1(x), where P = g(x) as in
the previous paragraph:

(iv} lifting the complex structure tothe universal

Fd

covering A = X X 3& of A defines a holomorphic
[
vector bundle A - X, where the fiber over x £ I

is Ep with the complex structure 7(x).

New suppose. {(G,%,%X,T,7,L,8,p,7T) are as above and
f ¢+ A =V is the fibher bundle constructed above with the
unigue complex structure given by the theorem. Then, it is
known that A and V can be biholomerphically embedded in a

complex projective space, i.e., thev can be identified with

h

projective algebraic varieties, with £ a2 regular map o
algebraic varieties. Such a fiber varietv, considersd as a

projective algebraic varietv, a scheme, or a complex mani-

fold, will be called a Ruga fiber varietv, a group theo-
’ .

. retical familv of abelian varieties, or a group theoretical
. oL

abelian schene.




£~

We shall need the following facts.

Lemma (1.1.5) (Sztake [1873, ». 172). Let p be a symplectic

Iy

|
|
repregentation of G, azsg above. Then p ig gelf-dual, i.e., ]
the representation p of G on F is eqguivalent over ¢ to the

£ -1
representation g = “alg) of G on F*,

i
%
5
0]
—
[ 3
|_.l
»
[8)1
—r
»
W
i

Al - Vl and 2_ =+ V_ are Kuga fiber
=

varieties, then so ig Al X A, @+ V., X V,. Murthermore, if

B, » V, and A, =V, satisfy the H_-condition, then sc does
A ra

Pz 2 - v Vo
Al XA 1 X 5

(b) If A -V and B =» VY are Xuca fiber varieties, then so is

A x B -V, rurthermcre, 1f A2 - V and B - V satisfy the Hz—
YV

condition, then so does A X B,
v

Procf: {a} Let Ai - Vi, (i=1,2), be defined bv data (Gi’

., X., Fi, Fi' Li' Bi, Py Ti). Then Al e A2 - Vl X V2
hd

is defined by data (G

r ! ?

e

G K K p:4 X, T ;
1 X G By XKy XXX,y 2 |

F, 97, L, L, 8 D8, 0,0PY; @ PoPry, Tiopr; @ 'rgoprz),

1 2

jections. If B is the element of g, the Lie algebra of

GiAR,defining the complex structure on Xi’ then (B )

where pr, = G, X G, =G, and pr, : X, X X, = X, are the pro- ’

ol’ o2
= |
2

gi X g_ defines the ceomplex structure on ¥, % X,_. Both

1 2




11.

statements of (a) are easy consequences of these facts.
(b) If A >V and B » V are defined by (G’K'X'T’FA'LA'BA’D”
i

TA) and (G,K,X,F,FB,LB,BB,QB,TB) respectively, then it is

easy to see that A X B is defined by (G,X,X,T,F_@®F_, L @1L_,
v A B A B

S . @ . r ; " 3 3
BA @ BB' P @ Pgr Ta ‘TB) The second statement- is an -immediate

consequence of this fact, since

B 1
4
O
®
I
_"

(0} =

DY s

dlp, ®p, (8 ) = (1, @) (0).

1.2. Rigidity of Abelian Schemes

Let £ : A » V be a group theoretical family of abelian
varieties defined by data (G,X,X,I',F,L,B,p,T). We say that
A =V is rigid if r is uniquely determined by the rest of
the data: G,X,Xx,I,F,L,8, énd 0.

Let v : %R = ¥ be the natural map, and 0 = vw(l). Since
T is eguivariant with respect to p, we have 1(g{0)) =
p
p(g)r(O)p(g)—l for all g € QR. Thus, * is uniquely determined
by gpecifving r(0}). Let Xo be the set of all J€}€:=6(%R,e)
such that the map g{(0) » p(g)Je{g) = is well-defined, satisfies
the Hl—condition (1.1.2), and thus defines a Kuga fiber

variety. We view Xp as the space of all deformations of the

fiber variety A -» V. Thus, A is rigid if and only if Xp

reduces to a point,




1z2.

Theorem (1.2.1} (Satake [18], Chapter 4, Proposition 4.1).

Xp is a complex submanifold of X'. Furthermore, CGp, the
Zariski-connected component of the centralizer of p(G) in

G', is a reductive subgroup of G' which acts transitively

on Xp. ' o

Proposition (l1.2.2). 1If the H2—condition is satisfied, then

the fiber variety A -» V is rigid.

Proof: Let J € Xp and JO = 7¢(0). Then, by Theorem (1.2.1),
1

there exists g € Gp such that J = gJOg_

Now, since Jo is a complex structure on ER’ we can

write J = (
o

-I O
n

n . .
> with respect to some basis of ER’ where

2n = dim F, Then, an easy calculation skows that

exp(t.%3)= cos t-I2n + 51n't'JO Tt € R, (1.2.3)

We have the following commutative diagram:

dp

la

g
Jexp (1.2.4)
G

5
Ca
= R




13.

(cf. Helgason [73, Chapter 2, Lemma 1.12). Then,

T

Jo = exp(j‘Jo} From (1.2.3))
= exp(do(wHo)) {by the Hz—condition)
= p(exP(ﬂEﬁﬂ) (From(1.2.4)),

and we conclude that JO € p(qR). Since g belongs to the
-1
centralizer of Q(QR) we have J = 979 =J,- Thus, Xp

reduces to a point and A = V is rigid,

1.3, Abelian Schemes arising from Quaternion Algebras

Addington [1] constructed families of abelian varieties
over an arithmetic variety obtained from a guaternion algebra,
in terms of a combinatorial device called "chemistry." Kuga
L10] constructed families of abelian varieties over a Pro-
duct of two such arithmetic varieties; these were obtained
as familieé of deformations of the fiber wvarieties construct-—
ed by Addington, and were described in terms of a "sharing"
between two chemistries. Here, we describe a géneralization
of Addington's method which includes the families obtained

by "sharing," TFor simplicity, we deal mainly with the rigid

case.

. i . .
For i = 1,...,n, let B" be a division quaternion algebra

Oover a totally real number field ki of finite degree over {,




14,

i ) . i i, 1
S~ the set of all embeddings of k, into R, 5 = (hestlzrom |
- o 3
i i i n i . . n i |
= T =8"-8", 8 =1 & (disjoint uni e = |
I2GR)}, 1= 5 o ST, (Gisjoint unicn), o i=1SO, |
. i, |
and, Sl = S~—SO. We assume that each SO is nonempty. |

For any gquaternion. algebraz B, let v be the reduced norm

. . . - o p . . 4
is isomorphic to ngcR) ¥ SUQ r we fix an isomorphism and

i,
on B, and put SLl(B) = {x=§B]v(x) = 11. Then, SLl(B ) is_an
algebraic group over ki’ G = Resk /s SLl(Bl) is an algebraic
. \
n . 1
i, .
group over &, and G = I & is an algebraic group over ¢
i=1 \
satisfying the assumptions of Section 1.1. The Lie groun GQ
: | s T : J,
|

identify them. A maximal compact subgroup of G_ is

S, 5 ® 8
¥ = - i i = = .
802 X SU2 ; thelqugtlent is X GIR/K (SL2 CIR)/SUz) The
0 = o ST SO
element“HO= 1 “ x O = of the Lie algebra g =88 [®)

1 . :
Pt 532 of QR determines a complex structure on X. QF acts
S : .

holecmorphically. on ¥ O, the product of [Soi copies of the

()
BN

upper half plane ¥ by linear fractional transformations, and 1
\
|

S
. S T o ., .
the isoctropy group of (J/-1,...,./-1)¢ ¥ is ¥; hence we can
Sf‘\
identify gR/K =X with ¥ 7. If T is an arithmetic subgroup

of GQ' then Vv = F\X is called a quaternion Hilbert modular

variety.

We shall partially classify representations p of Gm on

a complex vector space W which define families of abelian




15,

varieties, i.e., for which there exist I',F,L,8, and rt such i
that FE =W, and (G,X,X%,T,F,L,8,0,7) satisfy the assump- !
tiong of Section 1.1.

Let Kk ©R be a finite Galois extension of @ such that
a{ki) < k-for all i = 1,...,n, and all g4 € Si. Put
G = Gal(k/d). Then, § acts on S by g(a) = goa, and the
crbits of this action are the sets Si. The triple (Q,S,SO)

is called a chemistry. Elements of S are called atoms, sub- |
- . A
o

sets of S are called molecules, and formal sums % M, of |
J

molecules are called polvmers. Since § acts on S, ¢ ackts

on the set of all molecules, and on the set of all polymers.

A molecule ¥ is called stable if |M n_sol < 1, and rigid

if [Mrws l = 1. & polymer P = I M. is called stable (resp.
3=1 , ,
rigid) if P is Q-invariant and each Mj(j=1,...,t) is stable

{resp. rigid).

S S
We extend the isomorphism qR 2= SLZCR) © X SU 1 Q0 an

i

. . - : S < s . 4
lsomorphism of G, with SL2(E) , and identify them. An atom

e

. @ € S determines a representation pCL of Gm

by projection ko ‘

the a-th factor, pa : GE - SLz(m) ot GL?(E). A molecule M < S

determines a representation by = ® p_ oOF Gpr with the under-
AEM

standing that O is a trivial one-dimensional representation.
. £ .
inallv, a polymer P = T Mj determines a representation
j=1




|
[

L
@ cr

]—J

e
td

Q

h

a1

Theorem (1.3.1). Let G, K, and X be as above, and suppose

that p is a representation of GE that defines a family of
abelian varieties. Then there exists a stable polymer P

such that p isg eqgquivalent to pp Over C.

Proof: This is proved by Addington ([1], Section 8) under
the assumption that n = 1. However, the same proof applies
for general n, mutatis mutandis, if we observe that even

though the action of ¢ on § is not transitive, each g-orbit

of 8 contains an element of SO.

Conversely, let M be a molecule such that P = ¥ oM
oeq

is rigid. We will show that either pp OF Pop defines a

family of abelian varieties.

€ S

For an atom g € &, let i(a) be the unique index such

o o i
that q ¢ Sl(aj. Put B, = Bl(a, ® %, and let a:l?{m’ -3
&

be the extension to Bl(a} of the embedding g - ki(m) - k.

- Restricting scalars to ¢, # induces a map of algebraic

— i(e)
:varieties over 4, b, Res, B - Resk/g

“a (i) /G

_the k-algebra E==® B , and put G = Res, . Let F be a
8EM /4

B Form
o
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minimal left ideal in 5; then 7 = Resk/Q Fois a minimal left
4

ideal in G. Let X be the action of & on & by left multipli-

cation,
Y : G- Endk(g);

then X is defined over k, and we put A\ = Resk/g D G ~»

End  (F).
Q( )
no 4
Next, define 0o GQ = Qg = GQ = & B by
i=1 aem @
) = ® BHlg. .
wlg,) aen “ %1 ()’

Then m-extends to a map ¢ : G = 0 of algebraic varieties over
@, and p = oo is an algebraic representation of G on F, de-
fined over ¢.

We shall now describe the above constructions in greater

fd

detail. For g € @, let G

® B, Then,
acoM

2

* T ¢, with
1 acs &

p o]
a1
I

G = @& 5@. Also, G =
g&l} i

Il

Ga = 5L {Ba}. In these terms, we may describe o as follows:

ifg=1(g) € 0 G, then olg) = T ¢_(g), where
m EC“ a UCQ c .

mg(g) = ® g € &;. We note that each Py is defined over k,
while @& is defined over Q.

Next, we take a closer look at . Recall that a central,

simple k-algebra is equivalent to a division quaternion algebra




if and only if it determines an element of order 2 in B{(k), the
Brauer group of k., Since B(k) iz commutative, this implies
that a tensor product of division gquaternion algebras is

either trivial, or eguivalent to a division guaternion al-

Il

gebra. Hence, we can write § = MN(C) where either C k, -

cr C is a division quaternion algebra over k. Then, for

some e = 1,...,N¥, the minimal left ideal B of G consists of

all x = (xij) € MN(C) such that ¥.. =0 when j # e. In par-
. ~ N . . ’_:-u_ ~ ___ .- '_7
ticular, F = ", and the action of G on F 18 just the left

multiplication of matrices on column vectors.

Lemma (1.3.2). If G is trivial, then p~pp Over L; otherwise

~ over .
P pZP ve
Proof: pP maps G = Ga into 0 = & ® B, via the map
#ES e} acoM

By ® p,where p : I G =G <B is the projection
e o o o
Ceg acoM GaeS

map. Since G ®G(C is isomorphic o & ®& M (C) oM o (¢),
. aeg acoM 2 g

= ]ql, m = [M{, 0 1s a representation of G on a minimal
P
. . . m . :
eft ideal of M m (C), which is 2 g-dimensional.
29

Suppose G = MN(k). Then N = 2m, dimkﬁ = 2™, and

= 2mg. Since Fm is an ideal of ¢ ®QE of dimension ng

14

- Must be a minimal left ideal. There

th

ore, o~,oP ovar .
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O
L)

. m-1 o~ m+l
algebra over k. Then, N = 2 ’ dlmkF = 2 , and
dim F = 2m+lg = dim _F_. Since F_ is a left ideal in fo€_ T,
& (ool T %

it must be a direct sum of two minimal lef:t idezls. There-

fore, ~ @ over .
p~p *W“PP’” =

10

LE.D.

Next, we define an alternating form B on F. For each
i (i=1,...,n) there exists ﬂi € Bi such that ﬂi = —ﬂi and
v(ﬂi) is totally pdsitive, where ( ) denotes the canonical
involution of Bi and v is the reduced norm (Addington [11,
Lemma 11.1). Such an ni is not unique; for the time heing
we choose one arbitrarily, later we will need to adjust it.

For an atom a4 € S, define k-bilinear forms em,fa on
Ba by

e {u,v) = v{u v'),
o

I
~3
o
2 B
=

£ (u,v)
n

where 1 denotes the reduced trace on B . Then, eu is sym-
metric and fa is alternating ([1], Lemma 11.7). For an atom

€ M define an alternating k-bilinear form E_ on

B
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Then, E_= I E_, is again an alternating k-bilinear form
M g
BEM
on G. Since Gg = 5%, we can define a @-bilinear form on
GQ by
B(ulv) = trk/Q(EM(urV)) = 52{} U(EM(U.,V)).

Since EM is alternating, 8 is again an alternating form on

G or onF < G.

Lemma (1.3.3). o maps G into Sp{(F,8).

Proof: Since G, is Zariski-dense in G it is encugh to

@
nv
show that p maps G, into Sp(F_,B). Let g = (g,) € G, = TG,
2 7 ) €% = L
and u,v € FQ = ﬁ% < a& = ® B . Then, it is sufficient to

mEM
show that 2(p(g){(u),olg) {v)) = 8(u,v) for all u,v of the form

"u=®u , v=Qv_ with u ,v € B . Let B € M. Then,
o s A s 4 (o

Bg(®alg; (g)) 8y BT; (47

I

fB(S(gl(B))uB:E(gi(s))ve) 'ugmem(ﬂ.(gi{m))um:@(gi(m))Va)
a#B

= T{Bg; (gyhug BNy (g))vg Blay(gy) )mgMT(“(gi(a))un

0#B

_ ~ o~ [ Mg -1 g
= (8095 ()0 BNy (g)) VgBlg;(ay) SR O
o078

-1 i
! — F
(because 95 9, for gi.- SLl(B )

091 ta)) )

Ve -1
mvaa‘gi(a)) )

B,

- T(uB i(8)

)VB) @gm T(uﬂ v“)
078




21.

(because t1 is invariant under conjugation)

= E (& , D .
Q( ua va)

i

Thus,

3 (p(g) (W), 0lg) (v))

= B(owlg)u,ewlg)v)

- : ~ . ’®~( '
'trk/Q z Eﬁﬂgaigl(m))ua & gl(a))vm)
geM
= tr T B (®u ,v )
-k/g_aem B 3 -
= B(u,v).
S S S S
. 0 1V o 1 - o) 1
Next, let j = (_1 O> xI € gR = SchR) X 8U_ ,

and set J = p(j).

Lemma (1.3.4). J is a complex structure on Eﬁ.

~ Proof: We know that pf~puP over € for u = 1 or 2. Hence,

p(j) is conjugate to @ Pot (3), where each M, is a rigid

N
_ o ./ 0 1 .

molecule. L (7) is the tensor product of <—l O) with

i .
]Mil - 1 copies of the identity matrix; hence Pat (3) can be

i

0 Iﬁ
written as ( ‘ I) with respect to g suitable basis.

-% 0

m

Then & Put {(3) = ( 0 Iﬁ) with respect to a suitable basis of
;L +
i

-I_ 0
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FE' This shows that J2 = p(j)2 = -I, and J is a complex

structure on ER'

Q.E.D.

Lemma (1.3.5). @8(u,v) is nondegenerate, and 8({(u,Jdv) is 3

positive definite symmetric bilinear form on %R for a suit-

able choice of the ni's.

Proof: It is sufficient to show that B8(u,Jv) is symmetric
and positivérdefinite, since that implies the nondegeheracy
of B8(u,v}. We begin by proving that B(u,Jv) is symmetric.

Since F_. = G = ® ® (B @ R), it is enough to show
R R geqg acom o kK7 7T

8(u,Jv) = B(v,Ju) foru= ¥ ® ua,v = % & v°
ge wcoM 2 acd afaoMm O

with ug,vz € Ba ® R. Then, Jv.= p(j)(v) = w(i)v

o 0 1
= Z (e () ® v)= ¢ ® g v where § =
acq © Ve a o€ acaM Ta’e To <—1 o)
] sl = T 3 : . =
if @ € So’ and j = 1I if & € Sl' Note that V(jd} 1 and
j' = j_l for all & € 8, j—l= j for & € S,, and j"l = -3
& a o o l (o -

for o € So' Using the fact that the reduced trace is in-

variant under conjugation, and under the canonical involu-

tion, we get,

8 (u, Jv)

=2 2 wLiv)n e (%5 0
veg seom & B 7878 L 2aParIeYy
a#8

)
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a lo LA
= ¥ T T(u g(m. Yv, 32) 0 q{a. v F)
o€ seom 1(8) Blacon @ 70
078 ) ;
o 5 o o |
= T T or(j, v, B{(n, Y'u ') 02 (3. v ou e
ocq Beom © P BB eom ooa :
&8
= ¥ E T(v B(n ) u o jo) 0 T(vc uc!j ) |
. g€q BEaM i(B) 8 8 acom & 078 |
a8
c' , g of
= -3 Z'r(v Yug F2) Boa(v, ul )
cEG BEoM 1(5) B acom * © o
678
- {(because ni = -n, for all i) |
a' . o ot _, ?
= ¥ ZT(VB(T\ Juy 3. 0 or(v. w5
o€ BEOM 1(8) B meanm o e |
a8
(because 3; -ja for the unigque & € S, N o M) !
o g a |
= N b3 f (v .3 ) T e {v,i u) |
ocq geam © PP B peoy 0wl N |
a#3
= B(v,Ju). |

It remains to show that B(u,Jv) is positive definite,
We note that we can replace ni e " by ai ni for any nonzero

. ?_— -
t € ki, and still have (ai ni) = (ai ni) and v(mi ﬂi) total

ly positive. We will show that after adjusting n; by a
suitable choice of ai in this way, we get a positive definite

form B(u,Jv). Replacing ur by 8, M. we have with u,v as

before,




of a' g _a' .

B(u,dv) = % T or(u. Ba. n. Yve 3y T o1{ul v 5
0€Q 8com B i(g) 1(8)' "8 Bleamw o ¢ "
o#8
_ 8 o s' ., ¢ o' §').
= cgg B;;Mﬁ(ai(a)?T(uB B(ni(ﬁ))vﬁ jB)agaMT(url Ve a4
a#p
o o o~ a' ¢ ot ., -
L = Sy, oy
et QB(V) T(VB B(ni(s))vB ja) GQLMT(V v, ja)
a¥8
Then, B(v,Jdv) = ¢ b3 B(ai(e))Qg(v), and our proof of the

o€} BeaM

symmetry of B(u,Jv) shows that Qg(v) is a quadratic form.
It follows from {1] (Lemmas 13.7, 13.12, 13.13) that Q;(v)
is positive definite if g € So. For ¢ € (4, let Bc be the
unique element of oM N S,- Then, Corollary 13.8 of [1]
implies the existence of a positive intgger NG such that

; (v) + Qg(v) is positive definite for all & € oM. Let

o
N = Nu for all ¢ € 4. Then, using the approximation theorem

NCQ

of Artin-Whaples {cf. Lang [12], Chapter 2, Section 1, Theorem

1) we can find a. € ki such that w(ai) > N« M| for ¢ ¢ Sg, and,
0 < ¥(a,) <1 For § € s*
ACH - Sy

Fixing such ui. we can see that

B(v,Jv) = % ¢ B(a.(B))Qg(v) is positive definite. i
ocg BeoM

1
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Define amap 7 : X » X' = Q(ER:B) by 1t{g(0)) = F(ng_l)r

s
where 0 = v{1) = (/-1,...,./-1) is the base point in X = ¥ ©

It is easy to check that 7 is well-defined: if g(0) = g'(0),
then g—lg' € K, and an easy calculation shows that

"'l . "l -1 . o _l N l—l
g g'jlg "g') "=3; so that gijg ~ = g'jg' .

Lemma (1.3.6). The map 1 defined above is equivariant with

regpect to p, and satisfies the Hz—condition.

Proof: The equivariance of v+ is obvious from the definition.

We shall check the H_-condition.

2
S S
. _ cos 8 sin 8 - 1
Let j{(8) = <—sin 5 cos B> X I G,QR, for 0 € R.

v

. = L.
Then, we know that JO = r(0} = 9(3(2)), and H = > 3(2).
Since onupuP for 4w = 1 or 2, and P is a rigid polymer, we

see that, as in the proof of Lemma (1.3.4), p(5(8)) is con-

0 I

jugate to cos §°I + sin 8 (—I 0

), i.e., there exists a com-

plex invertible matrix T such that

p(3(8)) = T(cos g+I +sin 9( 0 I)jr
~T 0

cog B+I+ gin @ T( 0 I)T
-~ 0

Setting 6 = %’ gives r(0} = p(j(%ﬂ) = T( 0 I)T'l, and we
’ -1
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conclude that p(j(8)) = cos G-I-Fsin.e-JO for all 8 € R,
An easy calculation shows that exp(28 HO) = j(9).

Then, (1.2.4) shows that

exp(dp(28 HOY) p{exp(286 HO))

= p(3(8))

cosB‘I-+sinG-Jo
But, as in (1.2.3),
exp (8 J } = cos &+I+sin B-T .
o o

Since dp(zﬁo) and J, are elements of g' which generate the
same l-~parameter subgroup of %é=gqﬂ§R,B), they must be egual:

Jo' which is the H_-condition.

_ 1
do(zHc) = Jo' or, dp(Ho) =3 5
QL.E.D.

Theorem (1.3.7). Let P be a rigid polymer. Then, for some

positive integer yu, puP defines a family of abelian varieties

which satisfies the Hz—condition and is therefore rigid.

Proof: Because of Lemma {1.1.6(a)), it is enocugh to prove

the theorem for polymers of the type we have been consider-

ing so far: P L oM, with each oM rigid.

oeG

For each 1 = 1,...,n, there exists a cocompact, torsion-

free, arithmetic subgroup Fi of G% (Vignbras [20], chapter

. n
IV, Theorem 1.1 and Proposition 1.6). Then, I''= U T, is a
i=1

i
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cocompact, torsion-free arithmetic subgroup of G Let L

g
be any I'-lattice in FQ on which B8 takes integer wvalues (such
an L always exists, see Satake [18], p. 198, Remark 2). Then,
(G,K,x,I,F,L,B,p,7) define a Ruga fiber variety which satis-~
fies the Hz—condition by Lemma (1.3.6), is rigid by Pro-

position (1.2.2), and is defined by either Pp OF f,p by

Lemma {1.3.2).

Q.E.D.
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CHAPTER 2. Absolute Hodge Cvcles

In this chapter, we review Deligne's theory of absolute
Hodge cycles, as described in [47] and [5]. We include only
those definitions and results which are needed for our pur-

pose. In this chapter all z@lgebraic varieties are assumed

to be connected, smooth, and projective.

2.1, Cohomology Theories

We now review the three cohomdlogy theories we need,
hamely topological (singular) cohomology, algebraic de Rham
cohomology, and etale cohomology. Our aim is to fix nota-
tions and state some results which will be used later; we

follow Deligne ([43, Section 1).

Tovological Theorv. Let X be an algebraic variety over C.

We write HE(X) for Hn(Xan,Q), the singular cohomology of the

complex manifold associated to X, If K = g, R, or €, we also

write Hg(x,x) for EO(x*,K) = Hg(x) 8 K.

Now let X be an algebraic variety over a field %k, and
g : k& T an embedding. Then, X = X ® € is a variety over
a
€ and we write Hg(x) for HE(UX), and HE(X,K) for HE(UX,K) if

K=¢g, R, or €. There is a canonical Hodge decomposition:

Hz(x,m) = @ HP’q(cxan),Hﬁ'q(chn) = VP (o x™ .
r+g=n
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1 T
Setting FPHZ(X) = @ g~ ‘9 (o Xan) defines a canonical filtra-
n p'=p
tion on HG (X,C), called the Hodge filtration.

Algebraic de Rham Theory (See Hartshorne [6] for details.)
Let X be an algebraic variety over a field k of character-
o . . RSN o
istic zero. We denote by X /% the complex in which Q X /%

is the sheaf of algebraic differential n-forms on X. Define

n n
a ~ no
the algebraic de Rham cohomclogy H DR(X/k) to be H (‘{Zar’ X/k) .
the hypercchomology. of Q.X/k rélative. to the Zariski topo-
logy on X. For any embedding ¢ : k% k' there is a canonical

isomorphism HnDR(X/k) ® k' = HnDR(ng'/k") . There is a
-k, 0 ;
cancnically defined filtration FpHnDR(X/k) on HnDR(X/k), which

is stable under base change.

ﬁtale Theorv (See Milne [14] for details.) Let X be an al-

gebraic variety over an algebraically closed field k of

characteristic zero. Let mf =( ;im Z/m 22) ® F. We write
50 7z

n

— £
et(A) iz a frea B -

n . n
Het (X) for ( lim (xet,z,tfn

\,@Zg. o
m>»0

Tz 7
module of finite rank.

. n o a n
For a prime number 4, let H (Xet'ZL) = l:rg H (Xet'Z/,Lmzz)
m

n
2 ’ = . 1 . [
and Hn("{et QL) H (Xet'ZL) ® _¢. An inclusion k% k' of

algebraically closed fields induces- canonical isomorphisms
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n T n n
1 X) = 2 k' d H (X = T 2 Kk .
51 et(*c) H et(x ®k ) an (}‘et'gz) T {(x " )et,QL)

Hnet(x) may also be described as the restricted direct pro-
duct of the spaces Hn(Xet,Q!), 4 prime, with respect tc the

n
ubs B (X -
s paces ( etﬁzé)

Tate Twist. In each of our cochomology theories, a Tate twist
is introduced as described below.
Let k be a field of characteristic zero, and

wo = {¢ € k|¢" = 1). Then, define: ' - -

QB(I) = 2mig;

oo fl) = k:
1) =(m u) 8 g
n>0

Q{’(l) =<l:Lm " ) ®22Q', (4 a prime number).
n>0 Ln

For a nonnegative integer m, @(m) denotes the tensor
product of m copies of ¢(1). Thus, QB(m) = (Zni)mg is a
one-dimensional ¢g-subspace of T, QﬁR(m) = k, Qet(m) is a

reeiﬁf—module of rank 6ne on which Aut (k) acts, and QL(m)
is a one~dimensional QL-vector space on which Aut (k) acts.

Now let X be an algebraic variety over k.

If 6 : ¥ @ is an embedding, define HE(X) (m) =

HI;(X) ®Q’QB (m). If k =&, define HE(X) () = H;(X)‘ ®QIQB (m) .
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The Tate twist is trivial on algebraic de Rham co-

homology : HER(X)(m) = H;R(X)G%chR(m) = HDR(X)-

Next suppose k is algebraically closed, and define

n

n .
H =
_et(X)(m) Het(x)® fQ'et(m), and, for a prime number 4,

R

n _ .n g pa . .
H (Xet'QL)(m) = H (Xet,Q{)<%Z q&(m). If X ig defined over

2
a subfield k_ of k with E; = k, then Hzt (X) (m) and

Hn(Xet,QL)(m) are Gal(k/ko)—modules.

If F is a subspace of Hn(X), then F(m) is defined as a
subspace of Hn(x)(m) in the obvious way, in any cohomology

theory.

Comparison Isomorphisms. Let X be an algebraic variety over

a field k of characteristic zero, and g : k% € an embedding.

Then, there is a canonical isomorphism

H;R(x/k) (m) k®c € = H (x) (m) 25T, (2.1.1)

inducing an isomorphism

PR X/k) @ T o= riE(x). (2.1.2)
DR k. g o
r

Assume, further, that k is algebraically closed, and 4

'1s a prime number. Then, there are canonical isomorphisms
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n £ o
HG(X) (m) ®QJA = I—Iet(x) {m), (2.1.3)
Ho(X) (m) ® @, =85 (X__,2,) (m) (2.1.4)
o g at’ "4 VT e
2.2. Absoclute Hodge Cvcles

Let X be a variety over an algebraically closed field
kX, which we assume to be embeddable in L. For p 2 0, write
gép(x)(p) for the free k xi@f—module HEE(X/k)(P) X Hiz(x)(p).
An embedding g : k‘ém¢ gives riseito canonical iso-

morphisms:

Hgg(x/k) (p) ® €© — Hgg(cx/m) (),
k,o
and

2p 3 = 2P y
Hop X) (p) = H [ (oX) (p).
Taking the product, we get a canonical embedding:
o, + H-P(x) (p) & P (ox) (p). (2.2.1)
* gﬂ 7 2.

Also, the comparison isomorphisms (2.1.1) and (2.1.3) in-

duce a diagonal embedding§
p o BPx) (p) & m2P(0x) (p) (2.2.2)
T e HI—\ ) v

= 2p . .
An element t = (tDR’tet) € Hy (x) (p) is called rational
relative to ¢ if ¢ (t) belongs to the image of A. t is

called Hodge relative to ¢ if t is rational relative to ¢

and t € FpH;g‘X/k)' t is called an absolute Hodge cvcle

DR
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if t is Hodge relative to every embedding of k into €. The
2 .
space of all absolute Hodge cycles in QBP(X)(p) is denoted

by CiH(X/k); it is a finite dimensional vector space over .

By abuse of language, an element t ¢ Hip(X)(p) is some-
times called an absolute Hodge cycle when A(t) is an absolute
Hodge cycle.

2p ,
£ = =
If k = €, then t (#DR'tet) € 3& (X) (p) is an absolute

Hodge cycle if and only if t is rational relative to every

P,2D
o € Aut{C), and tor € P H o (X/T).
Let k &= k' be an extension of algebraically closed
fields, both embeddable in ©. The natural map
2p 2p 1
Hy &) (p) > (X®kk ) (p),

induces an isomorphism:

CiH(X/k)—Jlﬁ CEH(XQ%{k'/k')' (Deligne [4], Proposition 2.9{a)).

For this reason, we shall usually just write CiH(X) for

CiH(X/k), when kX is algebraically closed.

Theorem (2.2.3) (Deligne [4], Main Theorem 2.11). If X is

an abelian variety over an algebraically closed field %k, and

t is a Hodge cycle on X relative to one embedding @ : k <» €,

then t is an absolute Hodge cycle.
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Now suppose X is defined over a subfield ko of k with
ko = k, i.e., there exists a variety Xo over ko with
b
L o== ) _
X X jﬂgk‘ Then Gal(k/ko) acts on CAH(X/k), and the sub
P ; : ; e
space of-CAH(X/k) fixed by Gal(k/ko) ig denoted by CAHjX/kO).

Proposition (2.2.4) (Deligne [4], Proposition 2,9(b))., 1If

X is defined over a subfield ko of kX with E;-= k, then there
exists a finite extension k' of kO such that Gal(k/k!} acts

trivially on CiH(X/k).

2.3. Maps Induced on Cohomology

Let X and Y be varieties over an algebraically closed
field k which is embeddable in L. Tet ko be a subfield of
k with i;'= k, and assume that X and Y are defined over k,
i.e., there exist varieties XO and YO over kO such that

=V @
Xk k and v 7o %
o} o

X =.Xoﬁ> k. Let n = dim X, and let P be

a positive integer, 0 = p < 2n. Then, in any cohomology
theory (singular, é&tale, or algebraic de Rham), we have the
following canonical isomorphisms:

PP 0wy (ptn) = @ mR(x) ® B°(¥) (pm)
r+s=2n+2p

e

® H(X)* e 5°(Y) (p)
s=r+2p

2n

= @ hom " (x), 57 2P (1) (p)) .
r-.-"‘"-
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Theorem (2.3.1) (Deligne and Milne [5], Proposition 6.1) .,

n- . .
An element 7 € CAHp(XxY/kO) gives rise to
(a) for each prime £, homomorphisms

. T f+29 .
2, : H({X_.,g,) ~H (Y . %) (p);

(b) homomorphisms

r r
pEq : =
HDR(XO/ko)

r+2p
DR i

DR

~8

(Yo/ko) (p)

(c) for each embedding ¢ : k & T, homomorphisms

z7 HZ (x) - H§+2P(Y) P).

These maps satisfy the following conditions:

(d) for all v € Gal(k/ko) and all primes 4,

(e) Z;R is compatible with the Hodge filtrations:

(£) for each o5 : k ¢ &, the maps Z-, Z©

r
2
I DR’ and o

corresponc under the comparison isomorphisms

(2.1.1), (2.1.4).

Conversely, any family of maps Zi, Z;R as in (a) and

. . + .
(b) arises from a unique z € CﬁHp(XXY/kO) provided that

S
Z
4

and Z;R satisfy (d) and (e), and, for every g : k <o ¢

r r
2

r .
nd g
DR’ a zc satisfy

there exist Zz as in (¢) such that Z

(£).




36,

2.4, Functorial Properties

In this section we investigate the behavior of absolute
Hodge cycles under maps of algebraic varieties.

Let £ : X 5 Y be a map of algebraic varieties defined
over €, n = dimX, m = dim¥. Since cohomoloéy is a contra-
variant functor, £ induces maps f* : Hr(Y) - Hr(X) in any
cohomology theory (singular, algebraic de Rham, or &tale).
Then, by Poincaré duality, we get maps

£, = Ce* L B (x) - 1

r+2m—2n(Y)(m_n).

In the analytic de Rham theory we may describe f, as follows:

If @& € Hr(xan,m), then £ 4 is the unique element of

+2m- r
gfT2M-2n an o o oh ehat
[ fyaac= @ri)" ™ [ art*e, vee g2 T qy, (2.4.1)
4 X

Lemma (2.4.2). TLet f : X » Y be a map of varieties over €,

n=dimX, m=dimnv. If w-€ CiH(Y), then £*y ¢ cf:H(x).

pHm-n

AR (¥).

If # ¢ qiéx), then £ 4 € C
- H -

Proof: First of all we observe that f*m is a Hodge cycle
since £* takes rational cycles to rational cycles, and is
compatible with the Hodge filtration.

Next, since @ is absolute Hodge, for each n‘e Aut (T)

{o)

thers exists u'” € H_P(7) (p) whose image in P (gy) (p) is
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o,(w) (see (2.2.1), (2.2.2)). Then, the commutative

diagram
1P (¥) (p) b 312 (ay) (p) 12P (v) (p)

5 P >H, " (oy) (p) < - P

(of) ™ (e£) *| - |
122 () (o) b 3 #2P () (p) 2P (%) (p)

g o) 4 % p: P % P }
shows that ¢, (£f¥w) = (of)*(c,w) = (cf)*(A(w(ﬂ))) '

= A((cf)*(w(c))). Hence, £*mn is ratinnal relative to g, and
this completes the proof of the fact that f*w is an absolute
Hodge cycle.

The proof that & is rational relative to each o € Aut{CT)
is similar. Since a_is absolute Hodge, there exists
a(c)'e Hip(x)(p) such that A(a(g)) = 0, (a) .+ Then, 0. (£ a)
= (af), (o, (@) = (o£) (a(a'?)) = (o), (a'?)), shows that
f,0 is rational relative to @.

It remains to show that f, & is Hodge. Because of the

comparison isomorphism (2.1.2), it is enough to show that

f,a € Hq'q(Yan,m), where g = p+m-n. Write f,a = z "Zs't
* ‘ : ¥ s+t=2g
with z%/% ¢ g5/ % (2" 2B (yBR 0y with

(¥y7,C), and let ¢ € H®

a,b

a+b = 2n-2p. Then f*¢ € H (Xan,m), and we know from (2.4.1)

that
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. .y M=N 8
[ £ymag= (2mi) [ aAf*c. If a=b, then,
Y : X

-

m-..
£arl =2V ag 50 [ 2% % ag =(2m)™ [ ans*c. 1f

b4 o X
a$b, then we see that both I Zq'qu; and
. v
vr o Af*{ are zero. Thus j‘ z9r9 AL = (Zﬂi)m_n‘f oA ErE
X Y X

for all ¢ € 2R 2P

(¥*7,€). Therefore, £,6 = 2%, tnis
completes the proof.

T 7 Q.EOD.

Remark: The first statement of the Lemma is property (b)

in the definition of an accessible cycle (Deligne [4], p. 10).




CHAPTER 3. Zeta PFunctions

This chapter contains ocur main results.

3.1. Cohomology of Kuga Fiber Varieties

Let £ : A » V be a group theoretical family of abelian
varieties, consﬁructed from data (G,X,¥,T,F,L,B8,p,7). We
shall now summarize some known results on the topoiogy of
A (Ruga [8], [9], Tjiok [197).

Since X is diffeomorphic to a Euclidean space, we have

a global coordinate system (xl,...,XZd) on X. Let (ul,...,uzm)

(51 2d 2m,

be a basis of the dual space of F. Then, teeerX 1 oot

is a global coordinate system on X XQR = K. Such a coordinate

System is called an admissible coordinate system. Since

A = FXL\(XXER)' the cohomology of A (real or complex co-

efficients) may be computed as the cohomology of the complex
'KL . . . .

Q'(Xxgm) » Of TKL-invariant differential forms on X><%R.

Let p : XIXER = A be the universal covering map. We shall

identify a differential form @ on A with its pullback p*u

Let g + ¥ » V be the universal covering map, x € X, and

P = g(x). Then, there is a canonical isomorphism (depending

on %), I' = ﬂl(V,P), under which y € T corresponds to the
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image in V of any path connecting y(x) to x in X. nl(V,P)
. b . . 1
acts on the cohomology of the fiber, 4 (AP,Q). Since A, is

a torus F /L identifying L with Hl(AP;Z) gives a canonical

isomorphism H (AP &) = A F;. Since T acts on FQ via o, T

b b
acts on A F;. The isomorphisms”ﬂl(V,P) I and H AP JB) =A
b

¥

J.Q,.

are compatible with the actions of ﬂl(V,P) on H (AP,Q) and of

-

b
' on A Fé. Since p is self-dual (Lemma (1.1.5)), we have an

isomorphism of T-modules:

b b
(AP,@) = A FQ,. (3.1.1)

Now let £ : A - V be any abelian scheme,‘(not neces-—
sarily group theoretical), defined over a subfield k of T.
We assume that V is a smooth, projective variety. For any
integer N, let 6(N) ; A - A be the‘map which is multiplica-
tion by N on each fiber. In each echomology theory (singular,

algebraic de Rham, and é&tale), let

H (a) = {wer®" (A)[e (N ¥ = mevvezz} (3.1.2)

Then, we have the follecwing fiber-base decompositions:

H;(A,K) = @ H;a'b>(A,K), K =¢g,R, or C; (3.1.3)
atb=r
r o, _ <a,b> .
p B/C) = aT%_r or (ALY, (k=T); (3.1.4)
rt(A) = @ H;i'b>(A), (k algebraically closed). (3.1.5)

atb=r
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For a proof of (3.1.5), see the proof of Lemma 5.3 of
Deligne [3]. The same argument (due to Lieberman) works for
(3.1.3), and then (3.1.4) follows from the comparison iso-
morphism (2,1.1).

Returning to the group theoretical case, we have canonical

isomorphisms:

b
52, 9) = v (v, 2%, () = w?(r, AF) . (3.1.6)

. - o, . : . 1 2d
With respect to an admissible coordinate system (X ,...,x ,

2 <a,b>»

ul,...,u m) on K, a cchomology class in H (A,C) can be

represented by s differential férm

w= % o (x) dx" Adu’, | (3.1.7)
c.D c,D
2

where, C runs over all a-tuples (il,...,ia) with

1 <i <i_ «,.,.< ia < 2d, D runs over all b-tuples (jl,...,jb)

1 2 .
. . : : C 1 i
with 1 = 3, €3y <e..< 3, < 2m, @x =dx ~ A...Adx g,
D Iy I
dt” = dt T A...Adt T, and, 0y D(x) are C®-functions on X.
?

Note that &, p (X} depends only on x € X, and not on u € e

(see Kuga [8], Lemma II-3-5).

Lemma (3.1.8). If DF is a fundamental domain for the action

of T on X, and DL is a fundamental domain for the lattice

L c Frps then Dr X Dr, is a fundamental domain for the action

of on X F .
'KL on X R
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Proof: TLet (x,u), (x',u') ¢ DF XDL and suppose there exists
(v,2) € TKL such that (y,4)-(x,u)} = (x',u'). Then,
(vx,0(v)u+d) = (x',u'). Since D is a fundamental domain
for [, and T acts without fixed points on X, yX = x' implies

x =x'" and vy = 1. Then u+4

u' implies u = u' and 4 = ',

I

since u,u' € DL' Thus (x,u) {x',u').

Conversely, let (x,u) € X ¥x gR. Then there exist x! EDT

and v € T such that vx = x'. Let 4 € L be such that u' =

o('\{)u-f—LGDL. Then, (v,2)({x,u) = (x',u') GDI.,XDL.
Q-E-D¢
3.2. Hodge Cycles in a Fiber

Hodge cycles in a fiber Ap of a group thecretical family
of abelian varieties have been studied by many people:
Addington (unpublished), Kuga [9], (101, Mumford [15], {161,
and Weil [21]. The following proposition may be well known,

but we include it for the sake of completeness.

Proposition (3.2.1}). If A = V is a Kuga fiber variety satis-

fying the H2—condition (1.1.3) then, for any P € V, the space

Hzp(AP,Q)r(p), of I'-invariant rational cycles, consists of

Hodge cycles,
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Proof: We have,

plexp(26 HO)) = exp(dp(2@ HO)) (by 1.2.4)
= exp(8-7(0)) (by 1.1.3)
= cos B*I + sin 8.7 {0) (by 1.2.3).
Let x € X be such thaf_ékk) QNP, where g : X =2 V is the

natural map. If x = g(0) for g ¢ QR, then

1

cOs B+I +sin Ber(x) cos 6+I+sin Bep(g)T(0)p(g)

-1

p(g)(cos 8+ I +sin 8+7(0)) plg)

0{g exp (28 Ho)g_l),

and we conclude that cos 8+I +sin 6-7(x) € p(gm).

*Since T 1s Zariski-dense in G (Proposition (1.1.1)), any
w € Hzp(AP,Q)r(p) is actually QR-invariant, and therefore in-
variant under the action of cos 6T + gin Ber(x) for all & € R.

This implies that w is a Hodge cycle.

Q.E.D.

Remark: 1In the course of the above proof we have shown that
A * V satisfies the Condition Inner of Kuga (€93, 1.4.10).

. . 2 T
Hence, for a generic point P, H P(AP,Q) (p) equals the space

of Hodge cycles of degree 2p on AP' However, the above

Proposition is sufficient for our purpose.




3.3. Absolute Hodge Cvcles in the Total Space

In this section we show that for a Kuga fiber variety
f : A 2V satisfying the szcondition (1.1.3), the subspace
< . )
H O'2P>(A,Q)(p) of Hzp(A,ﬂ)(p) consists of absolute Hodge

cycles,

Let P € V, and let 1t : AP = V be the inclusion map.
2m
Let (xl,...,XZd,ul,...,u ) be an admissible coordinate sys-
tem on K, where d . = dimV and m = dimA. . Then (3.1.7) shows

P
<0 >
that any element of H )+ 2P

(A,T) can be represented by a dif-
ferential form w = T @D(x)duD. Since w is closed, each wD(x)
is a constant a, € €. Hence @ = g a, duD and is T'-invariant.
Therefore, the map

T

* g0 P> ) -»HZP(AP,G:) {3.3.1)

1 H

is an iéomorphism.

We denote by dV the cchomology class of the point P in
any cohomology theory: &V € HZd(V)(d), (Deligne [4], Section
1). In the analytic de Rham theory AV is represented by a

volume form which we again call dv, and is characterized by

f av = (Zni)d. Since dV is an algebraic cycle, it is ab-

v
solute Hodge (Deligne (4], Example 2.1 (a)).
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r
Lemma (3.3.2). If Wy € HZP(AP,E) , then t*(wP) = £*qv A g,

<0, 2p>

where w is the unique element of H (A,T) such that

= W .
L UP

Proof: By (2.4.1) we have to show that

[ eravaunt =2ri)? [y ae¥e (3.3.3)
A Ap

for all ¢ € Hzm-zp(A,m). Because of the fiber-base decomposi-

tion (3.1.3), it is sufficient to prove (3.3,3) for all

H<a,b>

{ € (A,C) with a+Db = 2m - 2p. Then, both sides of

(3.3.3) are zero unless a=0 and b =2m ~ 2p, which we assume.
Let DT be a fundamental domain for the action of T on X, and

DL a fundamental domain for I, = %R' Then DF b DL is a funda-

mental domain for the action of I'KT, on X x %R (Lemma (3.1.8)).

<24,0>»

. <
Since f*av € 1§ (3,C) and w A ¢ € H 0'2m>(A,¢), we have,

jf*dVAwAg = [ ffavAuwAl = ( j'dV)( j-t*_(—m/\.g))

A DpXD, DL D,

I

(2mi) @ I w, A%
Ap
Q.E.D.,

<24, 0>

Lemma (3.3.4). The subspace H (a,d) (a) ® H<O'2p>(A.Q}(p)

<
of H 24, 2p>»

(a,4) (d+p) consists of absolute Hodge cycles.
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r
Proof: The previous lemma shows that t, maps Hzp(AP;Q) (p)

< <
240, (@ & 5% %P> (a,0) (p), Proposition (3.2.1)

onto H
2p r .

and Theorem (2.2.3) show that H (AP,Q) (p) consists of

absolute Hodge cycles, and Lemma (2.4.2) shows that t, maps

absolute Hodge cycles to absolute. Hodge cycles.

Q.E.D.

Theorem (3.3.5). ILet £ : A » V be a Kuga fiber variety satis-

fying the H,_-condition. Then, for p 2 0, the subspace

2

<0, 2p>

H (A,2) (p) of HZP(A,Q)(p) consists of absolute Hodge

cycles,

Proof: Proposition (3.2.1) and the iscmorphism (3.3.1) imply

<0,2p>»

that H (a,2) (p) consists of Hodge cycles. It will there-

fore be sufficient to show that if g € Aut (C), and w is

. ) < < <
rational in gao'zp>(A)(p} = HD§'29>(AXE)(p) X Hei'zp>(A)(p),
<0,2p>»

then g{w) is rational in QR (ca) (p). We will chase

around the following commutative diagram, where X(()} = £%av Ac.




<0,2 o= ' <0,
5 B @) () . V@) @) e w02 (o)
N
A A
’ \
<0, 2p> o <24, , ,
B A ) e %) (a) g 5020 ()
Op | = =10,
v &
<0, 2p>, == - . 0,
By e (o) — 128 0a) (@) @ 10 2P (ga) (p)
T
A ah
<0, 2p> o <24, e
B ) () 2 m 200y gy 5 502
Now let Wy, g HSO'2P>(A)(p) be such that A(wB) = w, Then

Lemma (3.3.4) shows that ¥ (w) =_Ax(qB) is an absolute Hodge

cycle. In particular, ¥%(w) is rational relative to @, so

2d+2p
03

<
(eA) () ® HEO'ZP”(GA) (®), we have
H<O,2p>
e}

there exists x(m)c € H

Since g, %(w} € H£2d’o>

(2) (d+p) such that (gA) (X(w)a) = o, X (w) .

%(w) € 529020y a1e

o o (A} (p}. But then,

(08) () H (% (w) ) = 0, (w), showing that u is rational re.

lative to g.

0.E.D.




3.4. Application to Zeta Functions

Let A » V and B =2 V be two Kuga fiber varieties with
the same base V. 1In this section we make the following two

assumptions:

Assumotion (3.4.1). A and B are defined over algebraic

number fields:

Assumption (3.4.2). A -5V and B » v satisfy the Hz—condition

(1.1.3).

We shall now find relations between the zetsa funections
of A and B,

We denote the data defining A by (G,K,X,F,FA,LA,BA,pA,TA),
and the data defining B by (G,K,X,T,FB,LB,BB, B’TB)‘ Choose
a base point P ¢ V, and let d = dimV, m = dhnAP, and

b
n =dimB . We know (3.1.1) that Hb(AP,Q) 2= AT and
P 5 A,dq
Hb(BP,Q) A FB g as I'-modules. Since the representations
b b ’ b b |
= 1 . ‘

A pA and A Py of I' on A FA,Q and A Fs,q° %espectlvely, extend
to representations of the semisimple algebraic group G defined
over @, and T is Zariski-dense in G (Proposition'(l.l.l)),
these representations are completely reducible. Write
b b b b

b - b
F =@ F =@F 1 F d Ly~
A a2 % A, and A FB,Q 5 B, with A, 20 FB,B ir

reducible I-modules. Then, from (3.1.3) and (3.1.6) we have:




b
r a, a b
B (A,g) = @® H(T,AF )= & @H¥(I,F :
g atb=r " Tadg atb=r @ (L, A,m)
by a b b b
H (B,g) = @ H (T, AF ) = @ @y (T,F ).
atb=r B,4 atb=r 8 ' B,
Therefore, for. .a prime number 4, we have:
o HE G, Z) = @ e NP )ed,; :
et 'tr a-—l-b:r 8 A'G. Q 'rJ
- _ a 5 (3.4.3)
H (B  ,4,) =2 @& ® HY(T,F ) @ g .
bo' bl
Now suppose that F = F as 'modules, with b = b
A,ao BJBl o 1
(mod 2). wWithout loss of generality we may assume that bo:sbl.
. . ,
= - - = = = = —
Let p 2(bl bo) + m, a 0, r a-FbO, and s a+bl r+2p - 2m.

Theorem (3.4.4). There exists an absolute Hodge cycle

+
€ Cin(AxB) such that the induced map

z, + B (A.2,) 2 5%(s_,,g,) (),

is an isomorphism of the subspace Ha(I‘,FAOCﬁ } ® & onto

b o gt b
‘Ha(F F 1 ) ® g {p-m}, and z- is the zero map on Ha(r F.° ) ®g
[ B,B ‘&‘ ’ [ .{’ ’A'& ‘f/
1 ¢ ]
if e #a_.

Proof: We have the following canonical isomorphisms:

2P (a ke, @) | (p) = i+;izp[Hi(AP'Q) @ 1l (8,2 1 (p)

2m-—i

= ® homr(H
i+j=2p

(8,9 B (B,,9) (p-m))
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2m
- b+2p-2m
= bEO homF(Hb(AP,Q),H (BP.Q)(p-m))

2m ,
® @ hom_(F° ,pP¥2P-2m
h=0 G"B r A,G. B:B

I

(p-m)).

2m
Let M, € ® @ hom (F° ,p0 2P-2m
b=0 a, 8 T 7A,a B,8
bO - b
of FA.aO onto FB

(p-m)) be an isomorphism

i

. B
1
T
ponents. Let m be the corresponding element of H2P(APxBP,Q) {p)

(p~m), and the zero map on all other com-

under the above iscmorphisms. Then N is a Hodge cycle by -
Lemma (1.1.6(b)) and Proposition (3.2.1), and therefore an
absolute Hodge cycle by Theorem (2.2.3).

Let ¢ :‘AP b BP 2 A X B be the inclusion map, and ﬁ the
v

<0, 2p>»

unique element of H (A xB,92) (p) such that t*(ﬁ) = n
v )

(3.3.1). Then, 7 is an.absolute Hodge cycle by Theorem (3.3.5).

Let j : A X B2 A x B be the natural embedding, and put
Vv

z = j'(ﬁla 2 is an absolute Hodge cycle by Lemma (2.4.2), and
we claim that z satisfies the pProperties stated in the theorem.
Let z, be the map induced by z on singular cohomology,

z, : H (a,d) - 2% (8,2) (p-m) . Then, because of Theorem {2,3.1(f})
b

it is sufficient to show that Z, 1s an isomorphism of Ha(F,FAOa

b b ' o

onto Ha(F,F . ) {p-m}), and is zero on Ha(F,F © ) for a # g .
B,Bl A,n o]

)

In other words, it is sufficient to show that z, = Ha(n*}. To

do this, we may work with complex coefficients instead of
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rational coefficients (using Theorem (2.3.1(£)) again).

1 ,
Let (x ,...,x2d) be global coordinates on X angd

1 1
(u-,...,uzm) a basis of F*, se that (x ,...,XZd,ul,...,uzm)

A
) - . ~ 1 24
1s an admissible coordinate system on A. Let (Y eeasy™)

be coordinates on a second copy of X, with xk = yk(k=l,...,2d),

and let (vl,...,vzn) be a basis of F*. Then, (yl,...,yzd,

B
1 2n, . . . . ~
Viieee,v ) is an admissible coordinate system on B. Also,

2d 2m 1 2n, , . . .
(xl,...,x ,ul,...,u 'V iees, Vv ) i3 an admissible coordinate

B T —— 2d d :
system on A X B, and, (xl,...,x ,yl,...,y2 ,ul,...,uzm,
v
1 2n, | , , , —
V7eeaoV ) is an admissible coordinate system on A ¥ B. In

what follows, all differential forms are expressed in terms

of these coordinates.

b b
The map n, : H O(AP,(E) = H l(AP,E) is given by M, (1) =

(2wi)—m f N Au.. The induced map Ha(n*) may be described

AP , o D <a,bo>
as follows: If w= I ¢ (x)dx~ Adu” e H (A,r), then,
c,p C,D

a -m C D <a’bl>
H™ (nw) = (2mi) 2o, vy Al nAdu enm (B,T).
‘ c,D c,D 2
P
Use the Kinneth formula to write 2z = bN ze'I with

e+f=2p+2d

ze'f € He(A,E) ® Hf(B,E). Then,

Z, () = 2n) O™ [ % sag. ()@ A aud
C,D <,D |
A e S
' .
= (2mi) d-m f 2z ° A (x)dxC,AduD,
c b c,D
A r
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where eO = 2d+2m-r, and s = r+2p - 2m.
We have an isomorphism

+
v H2m 2d

(a,¢) ® #°(B,0) > 55(8,0)

given by (8) = (2pi) 0™ ['6. In order to show that
A o

Ha(n*)(w) = z,{(w), we will show that ¢—1(Ha(n*)(m)) =
¢—l(z*(w)). We have

e ,s

-1 c D

¥ Tz (w) = = 2 Ao, p(x)dx Adu;
c,b r

-1,.a - c D
TE (n) (w) = C?D “"c,D(Y)dY AnAdu Adv,,

where dVA is a volume form on V, expressed in the coordinates

1’..1'x2d)’ and normalized so that f dVA = (Zﬂi)d.

\% |
By Poincaré duality it is encugh to show that

{x

Iy ' C D
[ ®. p(¥)dy” AnAau Adv A c

e ,s8

J' L 2z ° A (x)dxcf\duDAC
AX%B C,D c,D

: m+2n+2d~r-
for zl1 € Hzm Znt2d-r 2P(AXB,E). In fact, we mav zssume

+2n+2d-r- ~ a
that ¢ € w2290 (0 0y Cinee i (n) () and
ez, (w)) belong to B 23 (a,¢) ® u°(s,c).

Tet DF’ DL , and D be fundamental domains for the

A

i T 0
actions of T, LA' and LB n X, F and FB:R

respectively,
. ;

AR’

Then, using Lemma (3.1.8), we have
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' o e (y)dyC A Adud Adv, A

c,D
Axs C,D
= ! b (y)dyCA’nAduDAdV AcC
. cp C.D A
DI‘XDFXD xDL '
A B 7
A C D
- = (2ni) d ‘[‘ T tpC'D(y)dy AnAdu Ag
DI,><DL XDL c,D !
A B
.y =d C D, L%
= (2mi) f I (x}dx™ Anadu A% ¢
c,D -
DFXDL XDL c,D
A B - R -
Py~ C \
= @2m)™ [ g o () ax" Anadud A% ¢
: AxB C,D ! :
v
L =d .
= (27i) (2111)d [ 2 = Ao, D(x)dxC,AduD AT
AXB C,D '
(using z = i, ﬁ and (2.4.1))
e .5
= ¥ oz ° /\cpc D(x)dchduDAg.
AXB C,D !

Q.E.D.

Assumption (3.4.1) and Proposition (2.2.4) imply the

[0}
Fhy

existence of an algebraic number ficld k finite degree

over ¢, such that A and B are defined over k, and Gal (@/k)
. k k k

acts trivially on CAH(AXB), CAH(AXA) and CAH(BXB) for all k.

We shall now examine the action of Gal(ﬁ?k) on the é&tale

cohomology groups of A and B.
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Corollarv (3.4.5). In the direct sum decompositions (3.4.3),

- r
each Ha(F,Fg'a) ®Q QL is a Gal(g/k)-submodule of H (Aet’gé)’

and ezch Ha(F,Fg B) ®Q QL is a Gal(éyk)~submodule of
r

Proof: It is encugh to prove the first statement. Apply

bo bo
. F and F are

the theor with B=A. PFor an b
em any G.Or Arn-o Arﬂao

O

isomorphic as T-modules, hence there exists z ¢ C:;d@mA)

such that .
r a bo a o
: ® : &
z, : H (F,FA:m ) 7 ¢, —~H ”3FA,Q ) ¢ g,
0 o
is an isomcrphism, and zi is the zero map on all other sum- ‘:{E

mands. By assumption, Gal(éyk) acts trivially on CKE%AXA);

Theorem (2.3.1(d)) then shows that zf

_ b
of Gal(Z/k). This implies that Ha(r,FADcn )
o

image of zi, is a Gal(a?k)—submodule of Hr(Aet'gL)'

commutes with the action

®Q Q&, the

g.E.D,
Let B be a finite prime of k, D,;3 a decomposition sub-

group of Gal(é&k) for B, I$ the inertia subgroup of D and

$f
G$ € D$ a Frobenius element. For a smooth, projective variety
X over k, and a prime & which is prime to B, the local zeta

function of X is defined by

. * — I _—
qul) {(u;x/%) = det(l—u'cmllﬁl((-X@kQ)et'Q’{’) ‘3) l,
2dimX . i

Zy (0 X/%) = R Zél)(u;xﬁc)(_l) ]

1i=1
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It is known that the local zeta function is independent of

the choice of { when X has good reduction at B. The global

Zeta function is defined by
Zlsix/k) = T 2, () "Sixk),
m P P

the product being taken over all finite piiﬁes 6% k. For
more details see Ohta ([17], Part 1, Section 4.5) and the
references cited there.

Corollary (3.4.5) gives us factorizations of the zeta
functions of A and of B:

(x)

Zy o (wsA/k) = 0 023 %(uak);
"D ‘ atbh=r & '3
zér} (;B/k) = T @ za'b’e(u;B/k),
; a+b=yr B ‘D
where,
I
. b, -1 -1
2 M) = det(ueart @, ) ey gy D,
I
'b' _l b -
z; BlasB/k) = det (1-u-oy |(Ha(F,FB’S) @, 2,) Py-1

We know from Theorem (2.3.1(d)) that the map_zi(Aet,Qf) -
HS(Bet'QL)(P-m)’ defined in Theorem (3.4.4) commutes with
the action of c$. We have an isomorphism:

Vs E (B .2 (pm) 2 B (B_,q,) .

Since U$ acts on QL(p-m) as multiplication by (N$)p—m' I

satisfies the relation
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R
ll'(crq}-w) = (N,:p) G,p(llf(w))
s
for all w € H (Bet'QL)(p_m)'

We have proved our main theorem:

Theorem (3.4.6). Let the notations and assumptions be as

b b
above, with F © ™ I 1 as T-modules. Then,
A.ao B,Bl
alb la alb IB
- 1’71
Zo O (0P ™ a/k) = 7y (u; B/X).
B T
3.5. Examples

Example 1.

Let k = Q(Méﬁ where d > 1 is a square-free integer.

Let k; and k, be fields isomorphic to k, ' = {s,,0_ ] the

set of embeddings of k; into R, and g% = {wl,m_l} the set
of embeddingé of k2 into R. Let Bi be qﬁatefnion algebras
over ki (i=1,2), such that Bl splitsiat cl and ramifies at
02, and Bz splits at @ and ramifies at P, - Then, we have
a chemistry (q,s,so) with ¢ = Gal(kx/d), s = [Gl’c—l’wl'm—l}'
and §_ = {ol,wl}.
Ohta ([17]), Part 2) constructed group theoretical abelian

. K . .
schemes A, @V, and A, V, with v, = F\“ » T, an arithmetic

group contained in Bl, belonging to the polymers Pl = 28

and P2 = 282 respectively. The zeta functions of Al and A

2
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have also been determined by Ohta. Taking the product of

these two abelian schemes we get an abelian scheme

1

A=A XA =V =V xv2 defined by the polymer PA = 28 +252.

1 2 1
We can also define an abelian scheme B » V by the rigid
. = + . i
palymer Py 2{cl,¢_l} Z{U_l,ml} B is not a product of
two abelian schemes.
Since A and B are defined by rigid polymers, they'satisfy
the H2—condition (Theorem(1.3.7)). By Lemma (1.1.6(b)),
A X B 2V is defined by the polymer P = PA + PB and again
v
. s <0,2p>
satisfies the H2—Cond3.tlon. Therefore H (AéB,Q’) (p)

-consists of absolute Hodge cycles (Theorem (3.3.5)). Let
us calculate its dimension:

F'x T
. <0, 2p> ' . 2 2
dz.mQ g <P (AéB,Q’) (p) = d:l.mg s p(AP XBP,Q') 1

. 12 T
= dlmg( A(FA'QXFB'Q)) = dlmm( A(FA,ExFB,E)) .

4
N G, = € t oy ti G
ow, G, SL2( ) and the representation of ¢ on FA,E X FB,E
is equivalent to the representation of SLz((E)4 in an example

of Kuga ([10], p.280). By Kuga's calculations the dimensions

o <0, 2p> .
d2P = d:__mQ H (AéB,Q’) (p) are:
dy = dy, =1, 4, =4, =4, dg = 9y =82, & =4, =452,
dg = d,, = 2600, 4, =4, = 8208, 4, = d,, = 20574,

diq = dyg = 33224, dy, = 40790.
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b b
0 1
We shall now compare the representations A pA and A o

B
where pA and pB are the representations defining A and B
respectively. We know Ffrom {17]; Part 2, that A is defined
over a number field; if B has a model defined over a number
field then Theorem (3.4.6) combined with our calculations .
gives relations between the zeta functions of A and B,

We have G = ags Ga with Ga = SLl(Ba)' (see 1.3). Each
projecFion pa : G - Ga is a representation of G defined
over k. We abbreviate pa by a, denote by Fm the repre-
sentation space of @&, and write Sk(a) for the representation
of G on Sk(Fa), the space of symmetric tensors of degree k

2
on Fm' With these notations, A QA is egquivalent over € to

3 5%(0)) @3 5%(0_)) @3 5%(s)) ®3 5%(0_,)

1

2 2 2 2
® 57 (o)) ®57(0_)) @5%(0_,) ® s (ep7)

4 _
@40, 80,80, ©24,

where % denotes a trivial one-dimensional representation.

The subrepresentations

2 . .2 2
P, = 38 (0,) @38 (o_y),

2 2 2 i

= @ =

Pp,p = 3 57(w) @3 87 (p_.), |

2 4 @ b2 & |
PR, 3 T T 91 %9 By ®Rw .

2

29,

o
oy ]
1y

il
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2
ol = 52(61) ® Sz(cp_l) ® sz(u_l) 2 5 (v,),

B,5

are defined over ¢, and are multiples of @-irreducible

, 2 .
representations. Furthermore, pB 8 15 also a subrepresenta-
f
2 .
tion of A pA-for g8 =1,2,3,4, while oé 5 is a subrepresenta-
r
4 - . -
tion of A Ay We conclude that each g-irreducible subrepre-
) b

, o
senatation of A Pq is also a subrepresentation of A Pa for

bo = 2{mod 2).

Example 2. : ' _ . .

Let k €CR be a Galois extension of ¢, of degree 3; for
example, take k = J(cos %?). Let kl and k2 be fields isomor-
phic to k, Sl = [co,cl,d_l} the set of embeddings of k, into
R, and s? = {wo,ml,m_l} the set of embeddings of k2 into R.
Let Bl be a quaternion algebra over k1 with discriminant
cl'c_l and B2 a quaternion algebra over k2 with discriminant
ml‘m_l. Then, we have a chemistry (Q,S,So) with G = Gal(k/g),

1 2
S =5 U 87, and SO = [co,mo}.

The rigid polymers Pl = Sl and P2 = 82 define abelian
schemes A - Vl = r;&i and A, - V2 = r;&!, where Fi is an

arithmetic subgroup of SLl(Bl) (see Mumford [16], Section 4,
or the remark at the end of Kuga [9]). Ohta ({173, Part 1)

has found models of Al and A2 defined over algebraic number

fields, and determined their zeta functions. Taking the
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2
product we get an abelian scheme A = A_ XA » V = v XV2=F¢£,

1 2 1

where [ = Ii XF2' Al XAZ is defined by the polymer

1, .2
P, = g~ +3g°.
A =8 +S

We define an abelian scheme B - v by the rigid polymer
P = -+
The fiber varieties A, B, and A X B over V, all satisfy
v
the szcbndition. As in Example 1, we write g for the pro-

jection of G = N G +o the a~th component.
) aés @ 3 3
We shall now compare the representations A Pa and A P+

3 3
Using Lemma 2.2.1 of XKuga [9], we can write A P, and A Py

as direct sums of irreducible representations over C.

3 3
A P has 14 irreducible subrepresentations, while APB has

52 irreducible subrepresentations. Four subrepresentations

3 3
are common to A pA and A QB' namely:

g g, @ ¢
O —

L 1’

2
o, @ I, ® c_,®8 (wo) ® S” (w,),

2 2
9 ® 0, 80, 85 (p) ®5 (0_1),

2 2
a, ® o, ® c_,®S (ml) ® 3 (m_l).

Of these, the first one, v, ® cl ® U_l is defined over g

i R ) =
in fact co c U—l oAl

1 - Also, the sum of the last three

3

is defined over ¢ and is g-irreducible: it is equal to Ba D (A
1

Pa

2

).
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