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bundle E over X and G = <g> (the group generated by g) a

Abstract of the Dissertation
Equivariant Reidemeister Torsion

by

Harvey Scoft Hensley

Doctor of Philosophy
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Mathematics _ -
State University of New York at Stony Brook

1985

For a finite simplical complex X with flat orthogonal

finite group acting simplically on X such that g extends to

a bundle automorphism we define the "torsion" invariants

T, and T where p is an orthogonal irreducible representa-

tion of G. These invariants depend on "preferred volume

forms"” being chgsen for a certain chain complex associated
to the pair {X,E) and its cohomology groups. A basic pro-
perty of Tp and Tg is they are combinatorial invariants.
Their invariance is established by developing a formula for
T and g that involves expressing T and T4 in terms of

the torsions of the isotropy spaces X(H) = {xeX|G&, = H}
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where H is a subgroup of G and GX is the stabilizer of x.
In addition we show that rp and Tg have many of the same
properties of the classical Reidemeister torsion T.
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0. Introduction

One of the basic aims of Riemannian geometry is to
understand the relationship between the geometry and the
topology of a manifold. One fruitful Tine of investigation
has been the connection between the topology and the analysis
‘félg.;_Hodge theory, Atiyah-Singer index theory) on compact
manifolds. 1In pafticu1ar the study of the Laplace and heat
operators has given rise to many 1ntefesting results,

In 1935 the concept of "torsionf was introduced to
study certain finite simplicial complexes by Franz, Reidemeister
and de Rham (see [F], [R], [DR]}. A particular type of torsion
known as the Reidemeister torsion, t, is a real number obtain-
ed from a certain chain complex associated to a CW-complex.
This complex is defined in terms of an orthogonal representa-
tion of the fundamental group of the CW-complex and the torsion
depends on "preferred volume forms" being chosen for the chain
groups and their cohomology groups (see §1). A basic property
of the torsion is that it is a combinatorial invariant [M p.
378]. It was conjectured but not proved until 1974 by T.A.
Chdpman [Ch] that the torsion is a topological invariant for
compact, connected CW-complexes.

Arnold Shapiro suggested that an expression involving
the spectrum for the Laplacian on forms should exist For the

Reidemeister torsion. In [RS], [R] Ray and Singer suggested

1.




2.

the following formula. Let .z(s) = z AES

o ; where {ikj}
J

is the spectrum of L the Laplacian on i-forms with co-
efficients in a flat bundle E. Then define the analytic

torsion
Th T(M,E) = z(—1)1i1c'(0).

Ray and Singer proved that T was a manifold invariant and
presented some evidence that t=T. Finally, in [C] and [MU
Cheeger and MUller independently succeeded ih proving the
equality between T and T.

In [C] and [RS] heat equation methods play a major role.
That heat equation methods are useful can be understood from
the following identity. Letting ;E{x,y,t) denote the funda-

mental solution to the heat equation on i-forms we have

- 1 o . 5-1
; ;els) = RG] Io t77 e E(t)dt.

Thus in studying the behavibr of the analytic torsion T one
is lead to the study of the trace of the heat kernel about
which much is known.

In [C] Cheeger suggested a generalization of the equality
=T to the case where an isometry of finite order acts on a
manifold. One can define an analog of the Reidemeister
torsion, TQ(M,E), which is a combinatorial invariant {(see §2),

In addition one defines Tg(M,E) to be

;
i
i
1
:
]

|
;
;
5




i. 1
?(-1) 11Cg(0),
where
_ -5
ir,g(s) § 1Aj <g¢j,¢j>
i%J
and g is an eigenform of ;A.. With these definitions we

J
expect the following to be ture.

Conjecture 0.1. Let M be a closed compact Riemannian manifold,

g an isometry of finite order which extends to an automorphism

of the flat orthogonal bundle EM; Then

Tg(M,E) = Tg(M,E).

It is the purpose of this thesis to begin such a gen-
eralization. In Section 1 we begin with a review of Reidemeister
torsion and ine a sketch of the prbof of the combinatorial com-
binatorial invarianée of . In Section 2 we introduce the
torsions TS and Tg (where p is an orthogonal representation
of G) and show they have many of the same properties as t.

We also show Tp(Tg) can be determined from the {Tg}({Tp}).

In Section 3 we prove T and g are combinatorial invariants
for G a finite group acting freely and in Section 4 extend
the proof of combinatorial invariance to the case where G has

fixed points. In Section 5 we compute the torsions Tp and

Ty in some simple cases.




1. Review of Reidemeister Torsion

In this section the definftion and basic properties
of Reidemeister Torsion are stated. The basic references
for this material are Milnor [M] and Cheeger [C].

1.1

Let C* be a real cochain complex

d d d d d
CO _Q+ Cl _l+ C2 _§+ oo n-1 Cn ﬂ, 0
i.e., each C' is a real vector space and d1+1d1 = 0. Let

dim ¢' = 21 and dim H' = b, where H' denotes the ith cohomology

;

| L. .

group of C*. Suppose volume element w; € A Tc")y* and
b, .

u; € A T(rhy* (wi and My # 0) have been chosen. Let

i

B = d, (¢’ 1y, 7V = ker d. and Tet dim B} = t.. Let p. be
1-1 t 1 i

i
an element of A '(C')* such that it # 0, then using the

exact sequence

—a
s

08" »z! Tyl 4

we have

T %oy
Py A dilegyy) A v (ig) = Moy
: .

1}

for some m, # 0 {this follows as dim A 1(C1)* 1).

Definition 1.1.1. The Reidemeister Torsion is defined as

Moy .

(1.1.2) T(Cooou) = T
’ 2i+l

i
,
!
z
%
z




5.

It is straightforward to check that T(C,&;p) is inde-
pendent of the choices of the Py

We state several useful properties of the Reidemeister
torsion. Proposition 1.1.5 and its analog in Section 2 play
a key role in tﬁe proof of cbmbinatoria] invariance of 7 and

. respectively.

Proposition 1.1.3. If Y represents another choice of volume

: R -
elements of A "(H")" with v; = kiui then

Ko
(1.1.4) (Cowsy) = I —— 1{C,w,u)

2i+1
Proof. Let

* - —
pi A di{ps 4) AT (u;) = mio,
then
- _ * ok _ * A T
miw. = p. A di(pi+l) AT (Yi) = kip1 A di(p1+1) A (ui) kim.w“
Thus
ms. Kn.Man. k L
T(Cow,y) = 1 ﬁ%gl— = I 1 21m21 I % zk T(C,m,u).
: 2i+1 2i+1724+1 2i+1

Q.E.D.

Proposition 1.1.5. Let 0 - CT > C; > Cg +~ 0 be an exact

sequence of chain complexes with volumes jmi (j=1,2,3) and

for H1(Cj). Suppose that for all i the torsion of the

U

J
complex 0 ~+ 01 - C; -> C; + 0 equals one. Then

.i

(1.1.6) T(Czswzauz) = T(Cl:wlsul)T(C3sm35u2)T(H)




6.

where H is the long exact sequence in cohomology associated
to the short exact sequence of chain complexes 0 » €] + C; =

cg -+ 0.

Proof. First we use the fact that (0 + c; - c; > cg +0)=1

to obtain a relationship bEtW9?ﬁ”2“i and 1Wis 304 Since

0 - CI > C; + C; + 0 is acyclic we have

. . . nan
: i i i _ 4 . 02
(0 » €, ~Cp > Cq~ 0) =1 = T
where
* —
g & a7(4ny) = ng oy
(1.1.7) sng A v (ing) = ng Lw,

* -
ing & 87 (ynp) = np jug-

B*(i”3) = 1 since g* pulls back the zero volume form. Thus

we choose iNo = g which implies Ny = 1. Since ing = 1 we

* _ * _ o
have ¢ (1n1) = Ny jW,s wo choose .n; such that ¢ (1n1) = LW
which implies ng = 1. This implies n, = 1 and

_ * e * '
(1.1.8) g0y = 4N A Y (Smi) = 0 Ay (3mi)'

For the long exact sequence in cohomoiogy H let 1ki’

oKis gk; denote the kernels of the homomorphisms
, ‘11 \ . . . _
H; 2 H; R H; 3, H}, and H; LN H; respectively. Then
0,.
t{(H) = I 21/021+1 where




0 )

- *
37 3§ T 385 A 2T (,8,

~ *
(1.1.9) O3i41 2M4 = 285 4 0 (445)

= *
O3442 1M5 = 195 & 37(504,,)

and jﬁi denotes a volume form for jki‘ Set

. T(CB)T(CI)T(H)
(1.1.10) Q= .
T(Cz)

We want to show @ 1. We have Q@ equals

M, . G, . m ; 0,. M. 0,.
(1.1.11) = é 21 g O61+2 1 2 $1+1 I D61+4 I i 2i " 0_61
1721i+1 6i+5 2721 6i+1 372i+1 63+3
with
- * e X
(1.1.12) _jmijwi 3P A jdi(jpi+1) A (j“i)'
Letting 57 = J.p p, be another choice of volume forms

i Jri
and using Proposition 1.1.3 it follows after a tittle calcula-
tion that @ is independent of the choice R Thus we may

i
- * - *

as well assume that 3Hy = 3B B D (2¢1), JUi = B A3 (1¢i),

and 1M = lﬁi A B*(3¢1+1) yielding T(H) = 1.

If 195 = P oqul and 3m€ = q W, then via (1.1.12) we

have M = lmgp and gMs = 3m{q. Use of (1.1.8) then gives

PuF 2mIqu. With these relations another simple computation

shows @ is independent of the choices of 1Q1 and Zﬁi' So we

i

i
. . 3
3W; = gp; A 3d?(3pi+1) A ﬁ*(3p1) yielding T(Cl) = ¢{C”) = 1.

may as well assume ju 1P5 A 1d”.‘(lle) A “*(lui) and



With these assumptions it remains to show T(CE) = 1.

i ;+C;+O) = 1 we have as before

17C

But using the fact that Tt(0~C

. that

= * *
25 205 = oPi A pdilapyyg) A (ouy)

H

* * * * *
lp'i A ldi(lp'l-'['l) Aom (1]—11) A (3piA3di(3p'i+1) Ao (B]J'i)

- T *
= Yy h v (ey)
=2ﬁ5~
implying that oMy = 1.
Q.E.D.
Observe that if we take C; = Cf 6 Cg that the above
proposition implies that T(C;@ c3) = T(C?)T(C;)T(H).
Now let CT and C; be two complexes equipped with inner

product__jh'k (j=1,2) inducing volume forms_ﬁg and inner products
kKep®y s * *

jfk on H (Cj) inducing volume forms Yk Let C1 @ C2 denote

the tensor product complex with its standard differential.

By the Klnneth formula

-i * * -
(1.1.13) H (C1 @Cz) =

i \
k * 1=Ky %
B HU(c]) 8 HT(c3).

k=1

*

1
;
product Z;h, 8,h, , and suppose the volume form w; on H (CT@ CE)

Let w denote the volume form on CT 8 C; induced from the inner

is induced by the inner product n; = Zlfk 8 Zfi-k' Then we

have the foliowing Proposition.



where x(C§) denotes the Euler characteristic of the complex.

roof. See Cheeger [C].

The following Proposition comes fﬂ£;”51éy when we estab-
lish the combinatorial invariance of © for a geometrically
defined complex. |

Let

0 dO 1 dl dn-l n dn

F¥ ——— — e e > F

be a complex of free abelian groups and set Ci = Fi 8 R. Each
Ci has a preferred equivalence class of bases coming from bases
of Fi and any two such bases differ by a matrix with integral
entries. Thus each ¢ has a canonical volume element. With
respect to these bases di is represented by a matrix with

integral entries, hence HT(C) has canonical volume element.

With these choices of volumes we have

Proposition 1.1.15.

0
T(Chru,u) = 1 —%—m

2k

.

where 01 represents the order of the torsion subgroup of HY.

Proof. See Cheeger [C].
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1.2

Let X be a finite simplical (cell) complex with flat
orthogonal bundle E over X. E can be thought of as a vector
bundie over X with a distinguished family of local trivializa-

tions having transition functions gog : UanU + 0(n) which

B
are locally constant. In this situation the horizontal Tift
of a cell in any dimension makes sense. The collection of

horizontal 1ifts of an i-cell Gy v denoted as L(igj) forms

;
a vector space équal to the dimension of the fiber of E.
Setting Ci(X,E) = § L(igj) and taking the set of Ci(X,E)

forms a compliex 1nJa natural way. The cohomeclogy groups
Hi(X,E) defined from the dual complex are topological invar-
iants of the pair (X,E) [BT]. When E is the trivial flat R'-
bundie H*(X,E) = H*(X,R) 8 R". Therefore if we are given a
choice of volume forms u for Hi(X,E), the torsion T(X,E,u)

is defined. For the case of féalrcoefffcients, as explained
before Proposition 1.1.15, there is a natural choice of volume
elements corresponding to a basis of integral classes. The
key property enjoyed by T{X,E,u) is that we get the same

value of T for all subdivisions of X, i.e., t{(X,E,u) is a

combinatorial invariant.
1.3

Here we outline two methods of proving the combinatorial

invariance of t. The key point in each case is to reduce
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computing the torsion (X, Eu) to computing torsions of com-
plexes where the bundle E is trivial and then using Proposi-
tion 1.1.15 to get these torsions in terms of purely topo-
logical data. In order to use Proposition 1.1.15 we have
made a particular choice of volume forms; however, we can use
Propoéition 1.1.3 to get the general case. _

We begin with a lemma which relates the torsion of a

complex C to that of the relative torsions obtained from a

filtration of C.

Lemma 1.3.1. Let C* be a cochain complex and C:,---,CB a

filtration of C* by a subcomplexes such that C* =

¢ro>cx DD C’{ D Cs 36’_‘1 = ¢. Suppose 0 - (C’;,C‘;_l) >

C¥ »~ C¥_; » 0 satisfies the conditions of Proposition 1.1.5,

(1.3.2) t(Cu,u) = [
J

I Hos

* Ak
0 T(stcj_l)T(Hj_l)]

where Hj denotes the long exact sequence in cohomology

associated to 0 - (c* ,c*) >~ ¢* -+ c* > 0.
_ Jj+1°J j+l J

Proof. The proof proceeds via induction over the number

of elements in the filtration. So suppose we have c* =

* * ® * * * * . .
C1 2 C0 27 g. Then 0 - (Cl,CD) -+ C1 + CO +~ 0 satisfies

the conditions of Proposition 1.1.5 and hence by Proposition

1.1.5 we have

(1.3.3) T(C*) = «(cY,Cq)n(Cy,Ch )T (H,).
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Thus the lemma is true for n=1. So assume true for n-1.

n-1

(1.8.4) s(ep) = [ e (c],ef ek )]

~So consider the exact sequence

* AR * *
0 - (Cn,Cn_l) + Cn + Cn-l + 0.
Using Proposition 1.1.5 gives
‘E(C*)
n+1
(1.3.5) t(C}) =~ = :
" T((:n+1’cn)"r(Hn—1)

Plugging {1.3.5) into (1.3.4) yields the lemma.
| | Q.E.D.

Suppose X is a finite n-dimensional sympliical complex.
Then X is naturally filtered by letting Xj = j skeleton of X.

So if C(X.,E) denotes the complex of horizontal lifts of

j,
cells in Xj and C*(Xj,E) the dual complex we haye that C*(Xj,E)
is filtration of C*(X,E). In order to dpp]j the above lemma

we need one additional fact contained in the following lTemma.

Lemma 1.3.6. Let X be a simplical complex with flat orthogonal

bundle E over X and Y a subcomplex of X. Let U be a volume

form for HT(X,E) and p;, u; volume forms for Hi(Y,E) and

=1
H1(X,Y,E)respective1y. Then.

(1.3.7) (X, E.u) = (X, Y,E,p ) t(Y,Esp)c(H)

where H denotes the long exact sequence in cohomology of

0~ C{(Y,E) = C{X,E) » C{X,Y,E) ~ 0.




13.

Proof. This follows immediately from Proposition (1.1.5)
after observing that the right hand side of (1.3.7) is in-
dependent of the choices of P and y by an argument similar
to the one in the proof of Proposition 1.1.5 using Proposi-

tion 1.1.3.
Q.E.D.

Xj we have H1(X,E) = H1(Y,E) hence we may

as well assume p = y.

I

Remark. For Y

Theorem 1.3.8.-  t{(X,E,u) s a combinatorial invariant.

Sketch of Proof. Suppressing expiicit mention of the volume

forms we have from Lemma 1.3.1

(1.3.9) T(X,E) = [

n .
Jj=

. T(Xj,xj_l,E)T(Hj)].
By excision we have C*(X.,X. .,E) = 8 (o',50 )* where o.
i?7i-1 ol i

denotes the i—ce??é in X. The bundle E is trivial over o’
(and aci) since 01 is simply connected and ﬁence Proposition
1.1.15 applies giving T(Xi,Xi_l,E) = 1. Since the cohomology
groups are combinatorially invariant we have T(Hi) is a com-
binatorial invariant t%us proving the theorenm,

Q.E.D.

Our second method invelves repeated application of a

Mayer-Yietoris type lemma, Lemma 1.3.10.

Lemma 1.3.10. Let X be a finite simplical complex with flat

orthogonal bundle E over X. Let X1 and X2 be two subcomplexes
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of X. Then

EYr(H )

(1.3.11) T(XI,E)T(XZ,E) = T(XIHXZ,E)T(XlUXZ, m

where Hm is the Tong exact sequence in cohomology obtained

from

0 - C(XI"XZ’E) +~ C(X,,E) @& C(XZE) - C(XlUXZ,E) +~ 0

1)
Proof. This is an immediate consequence of Proposition 1.1.5.

Q.E.D.

We now generalize Lemma 1.3.10 to the case where we
have n subcomplexes KysmroaXoo In fact we will restrict

ourselves to considering the case where X = U Xi'
i

Lemma 1.3.12. Let X be a finite n-dimensional simplical

complex with flat orthogona]Ibundle E over X. Let X1""=Xg
be complexes of X such that X = UXi. Then
) .
(1.3.13) il il r(xi n---nx. ,E)
' . n=l o gy <eee<d 1 Ym
m odd 151,58 B
T(X:E) = 7 T(H)
II I T(Xi N---N Xi »E)
m=1 11<---<1m 1 m
m even 151152
where
. 2 LIPS i T PR B
(1.3.14) T I T(qu...im_l m+1 1 m-T
m=1 11<---<1 1 m
m even lsilsﬂ—m
T(H) = 7 ] . ‘ . . ..
I Taee ] _ 1 s sl 4" _
n=1 il<"'<j T(H.il.._.im 1 m+l 1 w1
m odd 1 m
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T,eesd S0 R S|
where T(H.l 1m'1 m+1 1
L ™

of the long exact sequence in cohomology coming from the

L
m-1 ) denotes the torsion

short exact sequence

(1.3.15) 0+ C((X, MeeelX,  In((X, D-velX,  U=--U(X,
1 Tn-1 il "m-1 1

- C(X-i n"'n-X.i nX'i ,E)@C((Xi ﬂ"'nxi We--U(X. N+ -nX,
1 m-1 'm 1 m+1

ﬂXR),E) -+ C((Xi fi---NX, JU---U(X. n---nX,

X,),E) 0.
1 n 1 L

Proof. This proof is by induction over the number of Xi‘ We

verify the Temma for the case 2£=2 first. So suppose X = X,UX

1772

and consider the exact sequence
0 - C(XEXZ’E) > C(Xl,E) B C(XZ,E) ~ C{X,E) - 0.

Using Lemma 1.3.10 we have

T(XI,E)T(XZ,E)

T(X,E) =

(X, NX E)T(E%)

17727

and thus the lemma is verified for 2=2. So assume true for

2-1. Then .
, S 3 Cr(Xy,E)T( U Xy »E)
(1.3.16) <(X,E) = t(X;u U X, ,E) = k=2 XX}
k=2 T MU - U (XX, E)T(HT )
% 2
Applying the lemma to the terms t( U Xk,E) and t( U (xlnxk),z)

k=2 k=2

yields




ls.

-1
I il (X A--onX, LE)
U PR 1 m
) m odd Zsilsl N
(1.3.17) (U X, E) =—= 1(H)
k=2 -
I I T(Xi fi--nx, ,E) )
m=1 1l<---<im 1 m
TEVEN ogixn
and
2-1
11 Ii T(Xl X- ﬂ"‘ﬂX_i :E)
m=l g, <o < 1 m
m odd o m
L 2511s2 =
(1.3.18) ={ U-(Xfﬂxk),f) = 1 = t(#)
k=2 . :
i i T(X1 X ne-nX, »E)
m=1 11<---<1m 1 m
m even 2S11§£

Plugging (1.3.17) and (1.3.18) 4into (1.3.16) yields

2-1 ‘ 2=1 , _ -
T(XlsE) I Il T(X'I ﬂ“'nx.i :E) | I T(Xlﬂxigﬂ-"nxi 9E)T(H)
m=1 11<---<im 1 m m=1 11<---<im m
m odd 251152 m even 2511$2
-1 ' g-1 =
{ U (Xlnxk)’E) II 1 T(Xi n.--Ax, ,E) I T(xlﬂxin---nxi LEjt{H)
k=2 =1 <ol Tmoom=l i< m
m-even 251152 m even 2311$£
which equals S
2-1 =
I It (X, N---NX, LE}T(H)
m=1 IERNARA 1 m
m odd 1<1152
% Dt .
i 1 T(X, Ne-eNXy LE)T(Hy yT(H)
m=1 [ER 1 m
meven i g



Thus it remains to examine the product

17.

By taking Xl,---,Xg

(1.3.19) s
T(H JT(H)
where
-1 A PEERE N | st rraiqeesi LR
m=1 11<---<1m Tl
- (1.3.20 T(H) = - - . - >
AT =1 Tyreed 41 seaasdqeasi_ 44
I I T(Hil 1_m-l m+1 1 m-1 )
m=1 11<---<1 177 'm
modd Toci <aem
and
2-1 | EPAERY S IR TRIS & SRR N
I I T(Hlil 1.m-l mtl 1 m-1 )
m=1 il<---<im 1" 'm
: ) (z) m even ZSilsR-m
1.3.21 ~T(H) = - : . - -
-1 Ligeesdi o arregliqeaai L2
N I T(Hlil---im-l mtl 1 m-1 ).
m=1 1'1<---<1°m 1 m
m odd 2gi st-m
Plugging (1.3.20) and (1.3.21) into (1.3.19) yields T(ﬁ) and completes
the proof.
Q.E.D.

such that the X, are simply connected

and all their intersections are simply connected (this can be

achieved for instance by Tetting the X, be the n-cells in X)

T(X,E,u) is a combinatorial invariant.

we can repeat the arguement of Theorem (1.3.8) to show that
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1.4

We end this section with a slight generalization of

Proposition 1.1.5 and obtain from this one last formula for

the torsion T(X,E,u).

lemma 1.4.1. Let 0 - C? > €3 SRR Cﬁ denote a long exact

sequence of chain complexes. Denote by K? the kernel of the

“map between C_i and C1+1

cohomology obtained from the short exact sequence

and Hi the Tong exact sequence in

* * *
(1.4.2) 0+K1'+C1' +K‘i+1+0'

Suppose that all the short exact sequences in (1.4.2) satisfy

the conditions of Proposition 1.1.5 then

. is T(Hi)
I T(Ci) i even
i even _ 25i<n-1
(1.4.3) T T(CH) " T (AT
i odd i odd
3<i<n-1
Proof. Since we have K§ = C; and K; = C: consider the n-2
short exact sequences
® +* *
0~ Cl + C2 > K3 = 0
0 + K§ - c; - Kz + 0
* * *
0 - Kn-l > Cn-l -+ Cn - 0.

Using Proposition 1.1.5 we have
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T(C:) = T(K?)T(K?+1)T(H1).

Thus

i esen T(C?) i egén T(K?)T(K:+1)T(Hi)
25jsn-1 = 25i€n-1 o

i odd G i odd TG )
2=i=n-1 2<i<n-1

Taking T“%) = T(C;) and T(K:) = T(C:) to the left hand side
and cancelling the T(K?) yields the lemma.

Q.E.D.

Using the generalized Mayer-Vietoris sequence we can
obtain a formula for T(X,E,u) using the above lemma. As
before et C'(X,E) denote the cochain complex associated to

complex of horizontal 1ifts and let 5 be its boundary operator.
' A
=1X1

So let Xl""’xﬂ be subcomplexes of X such that X =

i
Then one has the exact cochain complex given by

0+ C*(X, ) 2> 1 c¥(x_ ,E) Do m CH(X nX,,E)—>ee-
o o o B

1 a<B

Do oxx_ ..y )= o0
o o

u1<---<a2 1 A

where D=6+ (-l)p'§ and & is the difference operator. See [BT]. Thus
applying Lemma 1.4.1 to the above yields a formula for t(X,E,u) in terms
of torsions of all the various intersections of the Xi.

The formula obtained in the above manner avoids the asymmetry that

appears in Lemma 1.3.12. By this we mean that in Lemma 1.3.12 the terms
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t{H) occur for some of the Mayer-Vietoris sequences but not
all possible such sequences. However, in the above formulation

all the Mayer-Vietoris sequences are used.




21.

2. Eguivariant Torsion

We begin by defining the torsions Tp and Tg. A simple
example shows that T, and Tg are finer invariants than the
classical torsion t. 1In this section we alsoc show that T and

Tg enjoy many of the same properties of the classical torsion.

2.1

Let C* be a finite cochain complex on which G = <g>
(the group generated by g} acts. Suppose that g is of finite
order. Let C; be the largest subcomplex on which the action
G spiits aS a direct sum of compiexes on which G acts by a

given irreducible p(G). Let w pbea g invariant volume element
for C; and My 8 g-invariant volume element for H1(C;).

Definiiion 2.1.1. The g-torsion is defined as

(2.1.2) Tg{C wsn) = E T(c;,wp,up)tr(p(g))
and
(2.1.3) Tp(C*) = T(C;,wp,up).

The above definition for Tp works equally well where G
is any finite group. 1In the following discussion we will give
the correspondence between Tp and Tg for an arbitrary finite
group G. In order to get this correspondence between Tp and

Tg we first derive some formulas for Tp and Tg in terms of

zeta functions,
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Now suppose the ¢' come equipped with G invariant inner-
products and these inner-products induce volume forms. Then

taking W 0 and My o to be the induced volume forms where we

3

. _— .
have identified H; with (B;) n2; gives G-invariant volume
forms for C; and H; respectively.

be an orthonormal basis of eigen-
th1

vectors for the operator

(2.1.4) (d°2)*dP C ol
1 1 s o
(z))
o
where d{)denotes d11 and the adjoint (dg)* is computed with
‘ i
4 Cp
respect to the given inner-products. Let iA denote the eigen-

J
values of the above operators. Then we have

Py df(.eM)
J i1k =“———1—-—<d)*d(e)e>
- : - 0¥d.(cen)s ey
(.AE) (.2° .AE) LR

i%3 i

(2.1.5)

= sjk

Thus using the orthogonal decompositions

i Tt i iyt i 1 i+ i+l
5@ ()" 1708 (217" > 50 (3™ ™ e 17

1
2

i
ohe has Mp = H(.Aj)

; whera M; denotes the numbers in {1.1) for the

complex C;. Thus

) | 1 i p
(2.1.6) In o E (-1) [.E Tn .lj].
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Letting .cp(s) denote the zeta function for the operator

i

* *
A? = d?_1d$_1 + d? d? where the zeta function for any non-

negative symmetric operator A is defined as I A"E where Ak
A,>0
‘ : k
are the nonzero eigenvalues of A. Then as in Ray and Singer

[RS] (2.1.6)-can be rewritten as

(2.1.7) n z(-l)"iig;(o).

A
I
roj =

Letting ifl""’ifti+1 be an orthonormal basis of eigen-

vectors for the operator 4, = d,_;di ; + d¥d, such that each

=,
i Jd i
vector A?. Then for g ¢ G let

fj, where the {1f§} are an orthonormal basis of eigen-

R S
1]

5

(2.1.8) 1.cg(s).=z:1.>t.

i <gif

J

where ilj are the eigenvalues of 1.fj and define
TIRI SRS

(2.1.9) Tn Tg(C ) = 5 (-1) 1159(0).

That this definition is justified is a consequence of
our next proposition which gives the relationship between Tg
and the T, for a finite group G. That is by taking 6 = <g>

in the next proposition gives the same expression as {(2.1.2).

Proposition 2.1.10. With the setup as above

(2.2.11) ' 1n.Tg(c*) =gxp(g)1n Tp(c*)

where xp(g) is the character of the representation p.
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*

Proof. Let FA denote the eigenspace of A; on ¢! with eigen-
value A. For f ¢ F, we have gfe Fk Vg e G since Ai(gf) =

gh.(f) = g(af) = x(gf). Thus G acts on FA and we can write

i

Fy = I din(Fy ) 8 o]

where [p] denotes an irreducible subspace of p. Consequently

for all g € G we have

(2.1.12) tr(gl ) = & dim(F
F p
A

From (2.1.8) we have

-5
A <g1.f.,1.f.>

.z {s) b3 .
i~g pgro 1 J*it

-5
, .Aj Tr(g]F )

1
70 ,

'(Z dim(F}\’p)Xp(g))i 3

i

i

p
J
; J.;éo o
= 3( © di 233K (g
D(.A.;éo in(Fy )52570%,(9)
i3
I . ’
z 1Cp(S))\p(g)

Thus using the above in (2.1.7) and (2.1.9) the proposition

follows.

Q.E.D.

In order to get T, in terms of the Tg it will be con-

venient to complexify the Ci. Let Ki = Ci B,L,C and take her-

R
mitian inner product on K given by the product of the inner
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product on ¢! and the standard hermitian inner product on U.
~Then k' is compiex vector space of complex dimension 21.
Let K* denote the complex

d.81

d,81 d, .81
0 0% 1 G0 e

K > mowe — = + 0.

Denoting di 8 1 as di we can as before define the operator
A, = d, .d¥ pt E:H}. This operator has the same eigenvalues
as Ai and hence has basis of eigenvectors consisting of

;f18 1""’ifti+1® 1. Thus the zeta function_;EQTET asso-
ciafed to Ki equals the zeta functions 1.Cg(s) of Ai and the
torsions?g and T, are equal.

Let [p] be a subspace of Ci on which 6 acts by a given

irreducibie p(G). Then

Vel

[p'] Xp = Xy
[p1BL = \ _

[p 18[p'] if Xy = xp,+xw

where [p'] is a subspace of K' on which G acts by a given
irreducible p'(G) and the bar denotes conjugation. Thus we

have that

Letting c;(s) denote the zeta function for A; and

1cp(s) the zeta function corresponding to the operator A;
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we have as before that 1.cp(s) = .;p(si. Thus by the above

decomposition

iCor(s) Xp = X
1-cp(s) =
. +
1CDJ(S) 1€ET(5) X.o= x oty
Y P o
where icpt(s) is the zeta function of the operator A;.. Since
the eigenvalues of A1i are real we have that .z ,(s) = .z (s
o 17°p 1°pf
From the above we have
' o
toi Xp 7 Xpo
T =9
+ =0 :
\rp, TF X, (XD'XF)

The same proof as in Proposition 2.1.10 shows that

(2.1.14) ?g(K*) - g,xp.(g)rp,(K*).

Using the above relations for Tg, Tg, Toe Tp., and Xo and
X we can always recover the real case from the complex case.
Before giving the relation between Tp and the Tg we first

recall the following theoren.

Theorem 2.1.15. Let G be a finite group of order |G|. If

Xo® Xg aTe the characters of two irreducible complex unitary

o
representation o, Rof G, then

(2.1.16) Lo 2y (9)X.(9) = &
TET geG ] B8 ad
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where 6@8 =1 if o is equivalent to B and 6a6 =0 if o is

not equivalent to B.
Proof. See [S].

Proposition 2.1.17.

_ 1
(2.1.18) InT =T X

. (g)in T
P geb P

g

Remark. It follows from Proposition 2.1.17 that

. _
Tn = z 1
To T TET SEg Yo (g)Tn 4

by using the fact that ?g = T4 and the relations in (11).

Proof. From Proposition 2.1.10 we have

1 =z 7 : '
" Tg p' Xp.(g) n Tpl
Thus
. geG p g get o X, :

1 —
= X T&T h2 Tn
pI & gEG_Xp#(g)Xpl(g) Tpl

1]
T ™M
9
H—l
S
-

Tn t ,

where the Tast step follows from (2.1.16).

Q.E.D.
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2.2

We now show that Tp and Tg have many of the same pro-

perties as that of classical Reidemeister torsion t. By
Propositions 2.1.10 and 2.1.17 it will be enough to establish
these properties for Tp~W1th G a finite cyclic group. So

although the following propositions will be stated for G

finite cyclic they will be understood to hold more generally,

Proposition 2.2.1. Suppose 0— Ciia-cg LA Cg LNy

seduence ofﬁchain comp1e§es with volume ng of C1p (j=1,2,3)

and qu for H;(Cg). In addition assume that for all i and p

i
the torsion of the complex (0 - Cip - C;p - Cép -+~ 0) is 1,

is an exact

'}

then
9] Py _ P [ P p
Tp(C2:w29U2) Tp(cl:wlsul)Tp(c33w31U3)Tp(H)

where H is the long exact sequence in cohomology associated

to the short exact sequence 0 =+ C; - C; - Cg + 0.

Proof. The Proposition will follow from Proposition 1.1.5

. . ' i s i i
if we can show that (i) G acts on jH and (ii) ij ij

where jH; the Targest subcomplex on which the action of G
splits as a direct sum of complexes on which G acts by a given

irreducible p(G) and ml

j ; is the cohomology of the complex Cgp

Proof of (i). Let h ¢ jH1, then if z and z' are two cycles

representing h we have z - z' = b. Since ged = deg for all
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g ¢ G we have g{z-z') = g(b) = g(da) = d(ga). Thus G acts

Q.E.D.

Proof of (ii). We have

i .
jc g mp[p]
7' = @
; 0 np[p]
Bl -
3 g Sp[p]
~where S, < np < mp."lThus jH; = (np-lsp)[p]. Therefor? we
d how that ,Z!| = d B! = s h 71 =
need to show at ;I n [p].an i85 ;p[p] v ere ;7
o _ i _ D i i _
.d. = .d. B o= .d% . = -
ker 3d1 ker Jd1 . and 58, ; 1_l(Cp) Zp (np Sp)[p]
7o )
follows immedijately from the definitions. Now suppose
b e sp[p] then di—l(a) = b for a ¢ ¢'"1. We can assume
a8 € C1"1 since by Schur's lemma the mapping d. : CT'l > C1,
p i-1 e p
is the zero map unless p = o',
Q.E.D.

&

lLet KY and K; be the complexified complexes of Cl and
C; respectively with hermitian inner products jhk(j=1,2)

obtained as before inducing volume forms 4K and hermitian

inner products jfk on Hk(Kg) inducing volume forms j“k'

Suppose K; and KE are acted on in such a way that G = <g»

1 1
preserves the given inner products. Let jfﬁ and jhE

k

denote the induced inner products on H (K§ ) and K¥ res-

J
pectively with w? and j“E their induced volume forms.




30.

Let Kf 8 K3 denote the tensor product complex with its
standard differential and (Ki’@K’Z‘)pI the Targest subcomplex

on which the action of G splits as the direct sum of compiexes
on which G acts by a given irreducible p'(G). Since G is
finite cycTic we have the irreducible representatioﬁs of G

have degree 1. Using a simple dimension counting arguement

we have
] i
P P Y
(Kjoxy) “= 8 k¥ Fa T
L+m=k
2 ik :
G i
where Xp.(g) = e . By the Kinneth formula and Schur's
l.emma.
1 1 1
. p . p s 3 p
(2.2.2)  H((KfeKS) M) = o Wy e nitiga™),
L+m=k
pk * * pk -
Let w denote the volume form of (Klﬂ Kz) induced form
P p! ,
Xihjﬁ 8 ZhiTj and suppose that the volume form u? on
1 *® +* p!; . . . p,Q, pm
H ((K1 @KZ) } is induced from.the inner product Eifj 8 Zfi—j'

Then we have the following proposition.

Proposition 2.2.3.

* *y * * * *
Tn T .(KlﬁKi) 2+§1=k(xp£(K1)1n ’L‘pm(KZ) + xpm(Kz)]n Tpg(Kl))

(K;) denotes the Euler characteristic of the complex

Proof. This Proposition follows from Propositions 1.1.4, 2.2.1

and remarks (i) and (ii) of the previous proof. LED
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Proposition 2.2.4. Let C* be a cochain complex on which

‘G =<g>acts. Let C; be the largest subcomplex on which the

“action of G splits as a direct sum of the complexes on which

G acts by a given irreducible p{(G). Let C:,---,C; be a

. . * * _ K * e * * *
filtration of C™ such that C™ = Cn o Cn_l'j :JC1 ) CO :)le ¢'

and such that G acts on each C?. Let C?'i be the largest sub-

complex on which the action of G splits as a direct sum of the
complexes on which G acts by & given irreducible p(G}. If
0 + (C:’C?—l) > C? - C?-l + 0 satisfies the conditions of

Proposition 2.2.1, then

(2.2.5) rp(c*) =

A=
o

* Kk
5o Tl i)y

where Hj denotes the long exact sequence in cohomology asso-

ciated to 0 - (C¥

* * *
1+1°05) 7 Ciyp 2 G5 > 00

1

Proof. The proof is the same as Lemma 1.3.1 except one

uses Proposition 2.2.1 instead of Proposition 1.1.5.

Q.E.D.
2.3

Let X be a finite simplical complex, £ a flat orthogonal
bundle over X and g a simplical automorphism of X that extends
to a bundle automorphism, d. Suppose further that g is of
finite order and let G = <g> the group generated by g. Let
F(H) denote the set of points fixed by every element of H. We

say G satisfies condition S if given x ¢ F{(H)no then o C F(H).
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Condition S which guarantees that F(H) is a subcomplex of
X can always be achieved by taking barycentric subdivision.
~Thus without essential loss of generality we will aTways
assume condition S is satisfied.

Let C:(X,E) be the largest subcomplex on which the
action of G splits as the direct sum of complékes on which
G acts by a given irreducible p{G). Given g-invariant volume
forms for Ci(X,E) and H;(X,E) (the cohomology of the complex
C:(,E)) the torsion rp(X,E) is defined.

The next lemma plays a role in the proof'of combinatorial

invariance (Section 4).

Lemma 2.3.1. Let X be a simplical complex with orthogonal

bundle E over X. Let g be a simplical automorphism of finite

which extends to a bundle automorphism and G = <g> the group
generated by G. Let Xl,X2 be invariant subéomp]exes of X

Quch that X2 C'Xl’ then

(2.3.2) Tp(X,E) = Tb(XZ’E)Tp(XI’XZ’E)TQ(HF)

where Hr is the Tong exact sequence in cohomology obtained

from the relative sequence.

Proof. This follows immediately from Proposition 2.2.1.
Q.E.D.

Now let X = M" be a smooth compact manifold, then X has

a unique g equivariant combinatorial structure {I]. By this
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-given two simpliical decompositions of M for which G
mplically there is a common refinement such that G

s to act simplically. Let g be an isometry of M which

‘to an automorphisms of E". As above assume g is of

‘order and G = <g> the group generated b&rG. Since E™ is
undle, the induced inner product on Ci(M,E) ié_g-invariant.
-ifying Hi(M,E) with the space of harmonic forms with coef-

ts inEfand using the global inner product on these forms,

is defined.

Let M" be a closed compact oriented n-manifold with flat
gonal bundle E over M. Let g be as above and assume

hef that g is orientation preserving. Then by the standard
4éf Poincaré duality there is an isomorphism Ag : (H;(M,E))*+

).

osition 2.3.3. Let M" be a closed, compact orientable

dimensiona] manifold. Let {ug} denote volume elements
?fM,E) and {u?? the induced volume elements for Hi(M,E)*,
ct as above, g orientation preserving, then if
HI(M,E))* > H'"T(M,E) s the isomorphism defined by

= °" then 1 ) = 0
'I) = p_i , then n lp(M,E,u = .

aré duality and h? (“2-
‘ ny

f. Let K be a g-invariant triangulation of M and K the
fing g-invariant dual cell complex. Let * : C1(K,E) >

N
(K,E) be induced by mapping an orientable simplex of K
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to the dual cell of E with suitable orientation. Let

*p o Ci(K,E) + Cn'i(E,E) denote the restriction of * to
C;(K,E). Then *p induces a map which takes harmonic co-
cycles of Ci(K,E) to harmonic cocycles of Cn'i(E,E), and we
also denote by *p the induced on cohomology. The standard
inner product and hence volume e?ement‘yp for which (2.1.9)
holds is induced by <<x,y>> = X U *py. The arguement of [RS]
implies 1n Tp(M,E,Yp) = the {v”} satisfy the condition

* . .
P P _ P - . yn-i n-1 * .
An-i(Yn-i) I For if o : Hp (MyE) - (H (M,E))" is the

isomorphism induced by the inner product then aA® is an

isometry. Now let {U?} be any other set of voiume forms

* *
. . ) ) . P .
satisfying An-ﬁun-i) WY Then if
P - p
Tn-i K M.y

it follows that

p 0 o* p P

MaiVaoi 050 = K A e (v

, p* [P p*  p* o* e

Since Ap s{vp_s) = v% s A A 4 = u,_y and by definition we

- * *
have 1 = A? (A?), yielding 1=k u? (y?). Since also
* * *

*
P (y,P p Py = Py = p 1l p . . .
;o (u5)s kg (vy) = wy (ey) o= k(uy (g uy)) which implies

—_D

? = % p?. Using this and the fact n is even implies

3 3 = M’E, .
Im t (M,E up) Tn Tp( Yp)

p(
Q.E.D.
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2.4
We conclude this section with some examples,

Example 2.4.1. Let 52 denote the standard 2-sphere with

cell structure consisting of 2 two-cells 01305 1 one-cell

o, and 1 zero-cell B. Let E be the frivia] Tine bundle over

52. Assume o is the equator and let g be reflection through

the equator. We consider two extensions 51= 32 of g to E

defined by

¥ 00v) = (rx,v)
(2.4.2)

gy (xv) = (rx,-v)

where r denotes reflection in S™, x ¢ S?, v ¢ R. Since

6 = <g> = Z,, there are two irreducible representations (1)

and (-1). We will compute T, and T, for each of the two
' 1 -1

extensions of g given above. We handle the 81 case first.
Let {vl,vz} = {618 1+-02£ 1, GIQ 1- 028 1}, {u1}= {c0B811,
and {wl} = {gBR1} be bases of horizontal Tifts. Then

'g‘;’l(vl) = -0,81 -0y 81 = -v, 'g‘fl(vz) = 0,81 + o 81 = v,,
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El(ul) < u; and gl(wl) = wy;. Then 31 has matrix representa-
tion ("1 9y on cZ(s2,E) and (1) on ¢}(s%,E) and c%(s%,F).
0 1

Computing the boundary maps with respect to the above basis

gives

az(vl) = 31(01 1+52®1)
= a1 + (-a@l1)
= 0

ai(vz) = (0B81) - (-aB1)
= 2wy

al(ul) = a(wl) = 0.

This gives rise to the two cochain complexes
: 1 1
_ -d d
(2.4.3) )} =2y L)

with dé = 0 and di = 2 for the representation (1) and

d-1 d:1
0 1 *
(2.4.4) {0} — {0} —== {v}}
with dal = 0 and dII = 0 for the representation (-1).
To compute the torsion, T ($2,E), of (2.4.3) take volume
1
*, 1y _ 1 _ 1 1 TR
forms ﬂ.(Uo) =Wy S uwpgs pg = i, Py =Wy T UpW, F Vo kil (uz)

and py = 1. Then from the relations
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*
1
pof\dé (pq) 2 n*(uo) = mowé
* -
py A diley) = mywy
ke 1y _ 1
p A T (ﬂ.t) - mzmz

we get my = m, 1 and m, 2. Thus T, (S°,E) 5 Clearly
2

) - (r, (sPE) =g

-
rr
L

11

1 and thu ST,E) =
P_1 S Tg_( ) Tpl
This shows that Tg is a finer invariant than the classical
Reidmeister torsion, T, since t = 1 for simply connected

spaces.

For the case of 32 we have the complexes

1 1

d0 d

(2.4.5) {0} = {0} B (v}
. 1 _ .1 _

with dO = dp 0 and
(2.4.6) {w;}——+ {ui} — {v;}
with da = 0 and dIl = 2, Then by a similar set of computa-
tions as above we have T, (SZ,E) = 1 and . (SZ,E) = %. It

1 -1
follows then that Tg(SZ,E) = 2. Thus the torsion t_ depends
on the extension-of g to E. -

Example 2.4.7. Our second example will be for X = Sl. Although

there is a more efficient way of computing the torsion in this
case (see Section 3.2} the technique used here will be

typical of other torsion computations (see §5).
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Let E, denote the flat SO(2) bundle over S1 having

holonomy given by

cos 27o -sin 2na

sin 2mwo cos 2ma

Suppose that S1 has Tength 1 and has cell decomposition con-
sisting of q one-cells, o 0_; j<q-1, and q zero~cells

oy 0 £ js<sqg-~1. Let g be rotation by % and assume each one-
cell has Tength %

Let El = (1,0) and E (0,1) be a basis for the fiber

2
at each point and e = (cos 2mab, sin 2mab), e, = (-sin 2mas6,
cos 2mo0) be parallel sections in the bundle. We can pick
the fo11owing-ba§es for the horizontal 1ifts of the zero and
one cells, namely, {o,8e;,0,8 e2,~-‘,aq_1ﬁ eys Uq-l,ﬁez}

for the one-cells and {ayf8e;, ay8 €pa o g e, Ogo1 Be,}
for the zero-cells.

The boundary map is

(2.4.8) uyqﬂei-ajﬁei 0<j<aqg-2 i=1,2
31(%839 = .
onO@Rae1.~o¢q_1ﬁe1. jJ=q-1 i=1,2
We extend g to Ea as follows
(2.4.9) aﬁiﬁR_Eei 0£j<qg-2 i=1,2
a%@%)= ;
oy B8R 18 j =qg-1 i=1,2
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(replace g. by o for the zero-cells) where

J
cos 278 ~sin 270 1 0
R = and I = .
® sin 278 cos 28 0 1

It is easy to verify with the above extension that E is of
finite order and 3°g = geo3d.
With respect to the bases given earlier the matrix

representation of g on Ci(Sl,Ea) has the form

: -1
i O 0 . . - . - - . - 0 O R - q—]. o
R -2 0 ' : 0
q ) .
RO . .
? q . . .
{ . . . .
. 0 . . . ,
: i . R - % 0 :
. ° . . . - . . - 'g._ O ’
| 0 0 0 R g | 2gx2q.

We need to work out a basis which gives an orthogonal

. AY]
representation of g. Let {vys Vo12rttVgo1e V-q-l} and
' - 1 1
{uys U_gs-+-slg 32 U_o_ 1} be bases for C,(S,E ) and C,(S7,E )
respectively where
g-1
vy = jio cj-@ R-mJ R( -i)e €1
q q
(2.4.10)
g-1
v, = jEO o5 B R 45 Rigog)e 2
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and up» u_, are defined by replacing 95 by o in the above

formulas.
g-1
" n
= I . . .
g(VE) o g(cJ@J{-Eg-RK -5)1 el)
q q
q-2
= h 0541 8 R_ o R_ oj R( _i)e &1
q q q
o 8 Rq—laR_ o(a-1) M(g-g+1)e ©1
q q q
q-2
= 00 ® R& el + JEO Oj_l_l 8 R& R_ OL(j+1) R(q—(J'I'].))Q, e
q q q q
= CoS q v, + sin q V_g-
A similar computation shows f
Yy ) = sin 2% 218
glv_,) = -sin g Yy tcos TV,

Thué ﬁhé matrix representation of g with respect to these bases has the

form

Y —
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We now compute the boundary map 81 with respect to these

bases.

al(vﬁ) = I Bl(ojﬁR_ o R( _$)8 el)
q q

... = X . . . - I . . .
j=0 0L-J"'l 8 R_ &g RKQ‘JJQ ! 3=0 UJ 8 R gi.giﬂlilg !
q q q

q q q q

= 'Eo aj+1 8 R“ aj R( 'jlﬂ e1 + o | B&iﬁ e1 - Uy
q q q

) Eo %501 B Ry Ro R ge1) Rigag-10®1 * % ® Rlata) &
q q q q

]

q-2 2ﬁ(2+a} 2m{ L+a)
= . + sin S =L
I a,,8R R(q-3—1)£ cos g & tsinTy ez)

8 e, -

2m(2+a)
q o 2 = Yy

g 8 e1 + sin 0

= (cos Eﬂé&iﬁl - l)uR + sin gﬂé&i%l u_,-

In an analogous way one has

2m{ i+a)
q L q =17

al(v_ﬁ) = -5in

Therefore we have the cochain complex Cp (Sl,Ea)
L
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g
* * dO %
fugs uZ, b = {vi,vi,}
where
d* = (R -I)t (t denotes transpose)
0 L+a P
q
for each irreduciblie representation Py = RQ.
q
Taking preferred volume forms mg = u, A U_y
w% = v, A v, and Pg = 1 and Py = Vg A v_gand using the fact
that C (SI,E ) is acyclic we have
. Py o .
2% . 2
pg A dg (py) = mgug
2
Pp = Mply -
- = - t = -
Thus my =1 and Mg det(R2+q I). det(R£+u I), and hence
q 9
T (Sl,E ) = 4 s1‘n2 n{2ta) . From this we also have
oy o q

2Tl

q-1 2 cos —=
T (SI,E ) = 1 (4 Sinz Eiﬂiﬁl) q
g G Q._-'O q
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3. Combinatorial Invariance for a Free G Action.

Suppose X is a finite simplical cohp]ex with flat
orthogonal bundie E over X. Let ¢ be a simplical automor-
phism of finite order such that g extends to a bundle auto-
morphism & and let G = <g> the group generated by G. It is
the purpose of this section to show that if G acts freely on
X then rp(X,E) and Tg(X,E) are combinatorial invariants. Re-
call it is enough to shovu'rp(X,E) is a combinatorial invariant where §
is a finite cyclic group by Propositions 2.1.10 and 2.1.16.

The basic idea is to construct a suitable bundle Ep over the

quotient X/G such that Tp(X,E) T(X/G,Ep). By the arguement
in the first section T(X/G,Ep) is a combinatorial invariant

and thus Tp(X,E) will be as well.
3.1

Let X be a simplical complex with flat orthogonal bundle
E over X. Let g be a finite simplical automorphism 6f X such
that g extends to a bundle automorphism which we denote as_E.
Let G = <g> the group generated by ¢ and suppose G acts freely
on X. Denote the quotient X/G-by X' and let 7 be the pro-
jection map from X to X' . We construct a bundle w(E) over X'

as follows. The fiber %(E)y over y will be the vector space

) Ex' Thus 7(E) is a bundle over X' such that G acts

XEW(y)
trivially on the base X' and acts via the regular representation
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tensored with the trivial representations on the fiber F(E)y.

Definition 3.1.1. With X and E as above we will say s is a

equivariant section of the representation Py = R£ if there

is a section s' such that

(3.1.2) §(s)(x) = cos %% s(x) + sin %? s (x)
and
(3.1.3) -E(s')(x) = -sin zgz s{x) + cos %%% s'{x).

The space of p equivariant sections of E do not coincide
with the space of all sections of some subbundle of E since
G does not act strictly fiberwise on E; however, the p equi-
variant sections of m(E) are the sections of a subbundle since
G acts trivially on X'. Deffne the subbund]e.Ep-to be bundle
whose fiber over y is the largest subspace of F(E)y on which

the action of G splits as the direct sum of subspaces on

which G acts by a given irreducible p(G).

Proposition 3.1.4. The p equivariant sections of E are in

one-to-one correspondence with the sections of Ep.

Proof. We begin by establishing a correspondence between

r(€) (the sections of E) and T'(7(E)). Define
S : T(E) - I'(T(E)) as

(3.1.5) S(s)(y) = ® s(x).
xen L (y)
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s(gi(x)) where we pick
1

We can write ] s{x) as

I & o

i
some X € w-l(y). S is immediately seen to be injective

since only the zero section is sent to the zero section.

To see that is surjective suppose s' e T(w(E)), s'(y)

H

(s1(9)5-- 556 (¥)), and take s(x) = s;(y) and s(g¥(x))
sk(y). Then 8{s) = s'. Therefore S gives a one-one cor-
respondence between T{E) and T(7(E)).

Now suppose s is a p equivariant section of £. The
claim is that S{s) ¢ F(E)p. To see this suppose s' 1is such

that (3.1.2) and (3.1.3) hold. Then

(gS(s))(y) = S(gs){y) = 0 (gs)(x)
Xem (y)
= ?1 (cos %%% s{x) + sin %%% s'(x))
xem ~(y)
= ?1 COS %%% s{x) + ?1 sin %%% s'(x)
xem ~(y) xem ~(y)
= €0S %%% ?1 s{x) + sin %%% ?1 s'(x)
xem “{y) xem “(y)
2m e 2l

= cos Ta7 S€s)(y) + sin 77 s(s')(y).

Similarly one has gS8(s')(y) = -sin %%% S(s)(y) + cos %%% S{s'){y).

Thus S(s) is a p equivariant section.

Q.E.D.
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Let C*(X,E) and C*(X',Ep) be the cochain complexes
consisting of the collection of horizontal 1ifts and C;(X,E)
the largest subcomplex on which the action of G splits as a
direct sum of complexes on which G acts by a given irreducible
p(G). Let HiLo be a g-invariant volume form for Hi(Cp(X,E))
then we get a volume form By on Ci(X',Ep) defined by

W*ui(hl""hbp) = ¥y p(Snl(hl,---,S_l(h }). MWith this

9 ) p
i : b

choice of volume forms we have the following proposition.

Proposition 3.1.6.

T, (X,E) = T(X',E ),

Proof. 1f h denotes the horizontal Tift of a cell in X we
have 3h = S(ah) since the boundary map commutes with the

. projection m. Together with Proposition 3.1.4 this implies
the complexes C;(X,E) and C*(X',Ep) are the same and hence
their torsions are equal.

Q.E.D.

Proposition 3.1.7. Tp(X,E) is a combinatorial invariant.

Proof. By Proposition 3.1.6 Tp(X,E) = T(X|,Ep). If we
take an equivariant subdivision of X then it passes to a
subdivision of X'. By Theorem 1.3.8 {(X',Ep) is a com-
binatorial invariant hence rp(X,E) is invariant under

equivariant subdivision.

Q.E.D.
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3.2

In Example 2.4.7 we mentioned there was a more expedi-

tious way to compute the torsion rp (S1
' £

the flat RZ bundle with holonomy Ra and S1 had cell decompo-

,E ). Recall E was
o a

sition consisting of q one-cells and q zero-cells. Also we
Had a g action where g acted by rotation of %%. We now use
the abdve procedure to construct the bundle E associated
the representation R % and compute T (S

A section s of Ea is a vector valued function on R that

satisfies the condition s(x+1) = R s{x). The extension g of

g sends s(x) to R- % s(x-+%). Suppose sg(x) is a section that
1
1 5 At = .& S / = 1
‘transforms via p,, i.e. g(sg(x)) R a sﬁ(x). Now G S-,

and as a complex consists of 1 one-cell o (of ]ength %) and

1 zero-cell a. Let F(Eu) be the bundle over Sl/G constructed
as before. S(Sz) is a section of F(Ea) which transforms via
the representation Py - Now notice

g-1

) si(x-ki%l)
Jj=0

It

S(s )y +3)

q-1

1l
&

jJ. 1
s, (x+L+=
sl d)

Cde

n
e
e |
—

]

Ry T(s (x+d))
q

i,

J
Rg R sg(x—+q)
q

]
&1

- L
J q

Ryg S(5, (¥

L0
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2

Thus F(E)p is a flat R™ bundle with holonomy given by R

2 o+l

q
Let {Vl,Vz} = {o‘®e1,o @ez} and {ul,uz} = {aB el,uﬁ 92} denote

bases for Cl(Sl,?F(E)p ) and CO(Sl,??(E)p ) respectively. The

2 3
boundary map is
o vy =8 (o8 e;)
= o Ra+2 el—fxﬁ e
q
= (cos 2m(ots) -1)Ju, +sin gﬂLgig’--)-u
q 1 q 2
= .cip 2mlots) 2n(ate)
Bl(vz) sin J up +cos q Uy, -
Thus we have the cochain complex
{u¥,u¥} Eg+{v* vyl
1°7°2 1272
where dO = (Rﬁ+a' I)t. Then as in Exampie 2.4.7 we have

Again let X be a simplical complex with flat orthogonal
bundle E over X. Let g be a finite simplical automorphism of

X and G the group generated by g. Let Y be an invariant sub-

complex of X such that G acts freely on X-Y. Denote the quotient
X'Y/Gu by X'. X' is to be viewed as a complex whose boundary
operator is induced from the relative boundary operator of the

pair (X,Y). Let =(E) denote the bundle over X' constructed as
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before, then we have the following proposition.

Proposition 3.3.1. Llet Tp(X,Y,E) denote the torsion of the
complex Cp(X,Y,E) where Cp(X,Y,E) is the Tlargest subcomplex

on which the action of G splits as the direct sum of complexes
on which 6 acts by a given irreducible p(G)}. Consider the com-
plex of hor%%onfal_lifts C(X',Ep) where the boundary is under-

stood to be the one induced from the relative boundary. Then

(3.3.2) Tp(X,Y,E) = T(X',Ep).

Proof. The proof is essentially the same as Proposition 3.1.6
except instead of using the boundary map we use the relative’

boundary map.

Q.E.D.

As before we have a consequence.

Proposition 3.3.3. Tp(X,Y,E) is a combinatorial invariant.

We conclude this section with a proposition that is ne-
cessary in the proof of combinatorial invariance when G does
not act freely. Let X, E be as before and suppose X1 is an
invariant subcdmp1ex acted trivially on by some subgroup H C G.
Let X2 be an invariant subcomplex of X such that X)Z( fxxl and

G/H acts freely on X,-X,. We emphasize that X' = 2N7z isan
1 72 G/H

open complex. For example if X is the l-simplex
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with ZZ action given by reflection through 091 X1 = X,

. Xl\X2 _
Xp = F(ZZ) = 0% and H = e we have X = &/ is the complex
“1
bo
with boundary aol = 04+ Then we can construct a bundle F(E)
XN\K / X\ X
over ! /G/H = 1 %/G as before. Using the proof of Propo-

sition 3.3.1 we have

',Ep).

Proposition 3.3.4. Tp(Xl,XZ,E) = 1(X
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4. Combinatorial Invariance.

In this section we prove that for X a simptical complex
and G a finite cyclic group acting simplically that Tp(X,E,u)
and hence Tg(X,E,u) and Tp(X,E,u) for an arbitrary finite group
G are combinatorial invariants. In fact we give two proofs.
Both proofs work by breaking X up in such a way as to have a

free action and then applying the results of the previous

section.

4.1

We begin with some notation. Let G, = {g ¢ G|gx=x} and

define for H a subgroup of G the space
(4.1.1) X(H) = {x ¢ X[Gx = H}

which we call the isotropy space of H and let
(4.1.2)  F(H) = {x e X|9X=X ¥g e H}

denote the fixed point set of H.
The next proposition gives various relationships between

the isotropy spaces and the fixed point sets.

Proposition 4.1.3. Let G be a group acting on a space X, then

(i) F(H) = U X(H")
! H2H
(i1) X(H) = Ho where ' = 0 F(HY)

F(H) - F

(i11) F(H)nF(H') = F(HHR').
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-

(1) Suppose x € F(H). Then x must have G, 2 H hence

x € U X(H). Conversely given x ¢ U X(H') we must

H'zH H'2H
have G, = H for some H 2 H, hence x ¢ F(H) © F(H).
(ii) Suppose x & X(H), then 6, = H and x ¢ F(H). Now x ¢ F
otherwise G, = H' for some H' 2> H contradicting the fact

X
that G, = H. Conversely given x ¢ F(H) - pH impties

G, = H thus x e X(H).

(iii) Suppose x e F(H+H'). Since H + H' D H, H' we have
F(H), F(H') 2 F(H+H') and consequently x ¢ F(H)nF(H').
Now if x € F(H)nF{H') then x is fixed by all products
of elements in H and H' and thus x s'F(H+H').
Q.E.D.

Definition 4.1.4. We say that H is an isotropy subgroup of G

if X(H) # ¢ and we denote the set of all isotrdpy subgroups

Remark. It should be remarked that the X{(H) are mutua11y dis-
joint, i.e. X{(H)nX(H') = ¢ for H' # H. We also have that
X = U X{H) with each X{H) having a free GI/H action. It is

Hel
this observation that is essential in what follows.

Definition. A subgroup HC G will be said to be of maximal

height if F(H) can not be written as the union of fixed point
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sets of subgroups properly containing H. Denote the set of

all such subgroups as M.

Proposition 4.1.5. M=1I.

Proof. Let J denote the set of all subgroups H D H. Since
( X(H')), F(H) = U_ X(H') and

H'FH

F'ro=_U F{H) = u(u
Hed Acd H'FA

X{(H) = F(H) - FH. The result follows.

Q.E.D.

- . 42

o

Qur goal now {s to give a filtration of the complex
C{X,E) coming from the lattice of isotropy subgroups. We
then develop a formula for Tp(X,E) using Proposition 2.2.4"
Jand this filtration. Upon examination of the relative com-
plexes obtained from the filtration we see we can split these
up in correspondence with the isotropy spaces X(H). Then using
the results of Section 3 and the fact that X{H) has a free G/H
action obtain the combinatorial jinvariance of To

Define Il to be the set of all minimal isotropy groups,
i.e. those groups in I which have no proper subgroups in I
and let Ij be all those groups in I that contain a group in

Ij-l as a maximal subgroup. For He Ij we say that H is at

level j. Let Xj = U F{(H). It is immediate from Proposi-
Hel .
J

tion 4.1.3 part (ii) and Proposition 4.1.5 that the Xj filter X

and thus we may filter the complex C{X,E) by the C(XJ,E). Now
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observe that G acts on Xj, for if x ¢ Xj then hx = x for all
h ¢ Hc Ij and since G is aBeTian we have ghx = gx = hgx
implies gx ¢ Xj' As before let Cp(X,E) and Cp(Xj,E) denote
the direct sum of the subcomplexes on which G acts irreducibly
by a given p(G), and by the above remark the Cp(xj,E) filter
Cp(X,E). |

At this potnt it will be convenient to make one more

observation before proceeding to our main lemma.

Proposition 4.2.1. CX5_1aXjB) ¥ 8 C(F(H),FM,E).

Helj_1

Remark. Let J denote the subgroups in Ij that contain H as

a subgroup. Then LT F(H) = U F(H'), hence =

< X,.
H'ZH H'ed J
Proof. This immediate from Proposition 4.1.3 (ii) and the fact
that the X(H) are mutually disjoint.

Q.E.D.

Remark. G acts on C(F(H),FH,E) by the same proof as given

earlier and hence C (X, 1,X.,E) & & ¢ (F(H),F1,E).
RN ES RN Hel, | °
J-

-Our next Temma which is the key ingredient in proving
combinatorial invariance gives the formula for Tp mentioned

previously,

Lemma 4.2.2. lLet X be a simplical complex with flat orthogonal

bundle E over X. Let g be a simplical automorphism of X which

extends to the bundle E and 6 = <g> the group generated by G.
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Suppose further that G is of finite order. Setting Fé - p

and TD(HE) = 1 we have

(4.2.3) T (X,E) = HEITD(F(H),F”,E)TD(HQ)

where Hg denotes the long egact sequence in cohomology obtained
from the short exact sequence 0 - C(F,E) ~ C(F(H),E) +
C(F(H),F,E) » 0.

Proof. Using Proposition 2.2.4 we have
! n. i
(4.2.4) T (X,E) = jEO'T(Cp(Xj_l,Xj,E))Tp(Hj)
where n denotes the number of levels and Hi‘denote the long
exact sequence in ‘cohomology obtained from the short exact

sequence
0> C (X5 pE)» C(XHE) » € (X5,X5 4-E) > 0.

Now using the decomposition C (X, ,,X..E) = & C (F(H),F.E)
prrj=17"3 Hel. P
J
and the fact that rp(& Cj) = Hr{Cj) we have that (4.2.4) can be
J J

expressed as

H
T (X,€) = 1 1 (F(H),F",E)t (H
P Hel P H

Theorem 4.2.5. Tp(X,E) is a combinatorial invariant.

H

Proof. As °/H acts freely on X(H) = F(H) - F we can use the

construction of Section 3 to construct a.bund]e Ep over
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X(H

X{H} )/&/H such that TD(F(H){FH,E) = T(X{H},Ep).

Thus 4.2.3 can be rewritten as
3 = Il ,E Hr‘
Tp(X )_ L t{X{H} p)Tp( H)
where each of the terms in the aone is a combinatorial in-

variant by Proposition 3.3.3.

Q.E.D.

Before giving our second proof of combinatorial invariance
we give an additionay app]icagion of Lemma_4.2.2. Let Xl and
X2 be two simplical complexes with flat orthogonal bundle E1‘
and E2 respectively. Suppose gq» 9, are simplical automorphisms
of finite order of X1 and X2 respectively such that 94 and 95
extend to the bundies E1 and EZ.
groups generated by 9ys g, are isomorphic. Then we have

Suppose further that the

X x Y{H) = X(H) x Y(H) and Fy (H) = Fy(H) x Fy(H). Denote by

Theorem 4.2.6. MWith the conditions as above

n Tp(Xlxxz}ﬂ*(El) R n;(EZ)) = HEI X((Ez)p)lq r(xl{H},(El)p)

+ x((E)) )Tn T(X,(HT, (E,) )

where X((Ei)p) denotes the Euler characteristic of the bundie

(E1.)p and Xi{G} is understood to mean Xi(G) = F(G).

Proof. Using Lemma 4.2.2 we have
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* * HH =« * . r
Tp(XXY,Trl(El)ﬁﬂz(Ez)) [ HGT (Fy X, )xFXZ(H) FXTFXZ,ﬂl(El)@ﬂz(EE)) TD(HH)]
Then as in the proof of Theorem 4.2.5 we can write this as
- * * r r

[HEGT(X {H}XXZ{H},(wl(EI)Q'HZ(EZ))D)TD(HH(Xl)ﬁ@HH(XZ))]
H#G
Then making use of the fact X(HE(Xi)) = 0 and applying Proposi-
tion 1.1.4 yields the result.
Q.E.D.
4.3

Our second proof of combinatorial invariance uses a Mayer-
Yietoris argument and is somewhaf more complex than the pre-
vious proof. We give this proof to point out an interesting
cancellation phenomenon that occurs but is not a priori apparent.

We start with a straightforward generalization of Lemma 1.3.10.

Lemma 4.3.1. Let X be a simplical complex with orthogonal

bundle £ over X. Let g be a simplical automorphism of finite
order of X which extends to the bundle E. Suppose further
the G = <g> the group generated by g satisfies condition §.

Let Xl,X2 be invariant subcomplexes of X, then

(4.3.2) Tp(xl,E)Tp(XZ,E) = Tp(X1 X2,E)Tp(X1UX2,E)Tp(H

M)
where HM denotes the long exact sequence in cohomology ob-

tained from the short exact sequence.

0 - Cp(Xl,XZ,E) + Cp(Xl,E) & C (XZ’ )y~ C (X UX,,E) ~ 0

25
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Proof. This follows as an immediate Corollary of Proposition

2.2.1.
Q.E.D.

This next lemma is analogous to Lemma 1.3.12 and is the

starting point to developing a formula like 4.2.4,

Lemma 4.3.3. Let X be a simplical compiex with flat ortho-

gonal bundle E over X. Let g be a simplical automorphism of
X of finite order which extends to the bundle E. Let G = <g>
the group generated by G. Then if H_i 1< 1 <2 are distinct

subgroups of G we have

A
I 1 T (F(H., teootHy ) LE)
m=1 11<---<1'm P ! m
m odd 1Silsl ~
(4.3.4) 1 (U F(H.),E) = T _(H)
Py 1 L p
I | T (F(Hi +e-e4H, ),E)
m=1 i <---<1'"1 P 1 Tm
m even Lgi <8
where
2 PR i A PR T
T I Tp(Hil 1_m-l mt+1 1 m=1 )
m Zien11<...<1m ' "
( ) ) 1sils£—m
4.3.5 T {H) = - - : , -
_ 0 [ Tyeeed o1 NS PR Y
I I . (Hil...jm 1 "m+l 1 m-1 )
LS FEITES A B
m odd 11, <0-m
000 IR PEERE 4
and H1.1 m-1'm 1 m-1 denotes the long exact sequence in

1"'im

cohomology obtained from the short exact sequence
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0~ C(F(Hi +...+H1 +H1 )n[F(Hi +"'+Hi +Hi JU---UF(H, +"'+Hi +H, )1,E)
1 m-1 'm 1 m-1  ‘ml b1 m-1 2
> C(F(H, +--o¥H,  #H, )E)BC(F(H, +-- ot W, JU---UF(H, +o.#H,  +H))E)
1 m-1 'm 1 m-1  ‘m+l 1 Tm-1
C(F(Hi +"'+Hi +Hi )U---Ui—'(H_i +-.-+H_i +H1'),E) -+ 0.
1 m-1 'm 1 m=-1 '3

Proof. Making the minor notational changes of Xi replaced by F(Hi) and
using the fact that F(H1+H2) = F(H1)11 F(HZ) the proof follows essentially
verbatim from the proof of Lemma 1.3.12.

' - . Q.E.D.

After giving a corollary to the previous lemma we wil1
state our two main lemmas. The combinatorial invariance of
T, and Tg-Wi11 thgn follow as before. We begin with some
H

notation for F .

Let G be a cyclic group, then G can be written as

ZP?I 6...0 Zp;k where Pysrspy are distinct primes. If
H is a subgroup of G then H = Zp{lg"'@ Zpikwhere 0 < rj < nj.
Recall that FH = IU F(H') = U F(H') where J denotes those

H #H H'ed

H' such that H is a maximal proper subgroup. Thus if

H=2Zt, 6...8 Zt,. and p denotes those p; for which
Pil1 Pily J
1 2
n: # r, then J consists of all groups of the form p?i ...pFi
J J 111 122

(Z_ ®-.-8Z_ ) where the Ej e p are distinct and

pal pJS n
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p?11...p?ig(z ®-..8Z_ ) means the group with factors
3

le Pjs
Zt. +1 i f . =_- -_. tl:
p11n i p1n pJq for some pJ and factors Zpi1n Z
h q n Py
q
otherwise. We denote by F_t. t. (Z B..-0Z ) the fixed
Ps1+4...p;1 -
j.l 1,0 p. P,
1 L. Jy Jg

point set of pfi ...pbi (z_ e...e2_ ).
1 p. D.

Lemma 4.3.6. Let X, g, and G be as in Lemma 4.3.3, then

% _
I 1 T (F,ts t. (Zp, ®...6 Zp. ),E)
m=1 -y <o o< e pi}n" 'pils J1 Im
modd . _. "
H 15,52 _
(4.3.7) T, (FLE) = 7 T (H
I Tt (Ft ...p:.;'is(ZZE 0.0 Z5 ) ,E)
m=1 j1<---<jm P i1 13 i1 i
m even ].Sjls,Q,

here H = Z Y 8.-8Z %5, 5 = (3.,....% #M
where pizl p115 p {pl pg} and Tp( H) denotes
s

the torsion term of the previous Temma with the Hi replaced by

Tt t.
P:1y e - apai .
111 is D

Proof. This is an immediate Corollary to Leamma 4.3.3.

Q.E.D.
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After stating our next lemma (whose proof we postpone
until the end of this section) we prove a lemma which gives
a formula similar to that of (4.2.3). The combinatorial in-

variance of Tp,Tg will then follow as before.

Let G = Z n,e..-8 7 nkwhere the Pys-rrspy are distinct

P Pk
primes. Suppose also that nl,...,ns>t, ns+1,...,n2<t, and
nﬁ+1,...,nk<t and recall ry = m?x{ri} with H = %{18"'@Zpﬁk'

In the succeeding lemmas we adopt the convention that

H _ ry _ My _
Tp(F(H),F ,E) = Tp(HH) = Tp(HH) =1 for H ¢ 1.

Lemma 4.3.8. With notation as above and hypothesis as in

Lemma 4.3.3 we have

2
1 Ji T(FZ + 6...8Z t ).E)
CoomEl dpceeedd PPy Py
1 m
m odd 1<
(4.3.9) — — : = I T ()L PR E) e () (H)
I I T (FZ ¢ 8...8Z t ),E) .,
m=1 11<...<im P il im H
mn even 1111“&
s
i il T (FZ t+1 ©...6Z t+1 ),E)
q=1 jl<...<jq o pjl qu )
g odd lsjlss
- .
il 1 T U%Zpt+1 au.ezpt+1 },E)
q=1 Jy<eee<j P dq J
odd 1 q 4
q 153,55

Lemma 4.3.10. With the hypothesis as in Lemma 4.3.3 we have
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G.3.11) T (XLE) = h TQ(F(H),FH,E)TD(HE)TD(Hﬂ)

Proof. The proof proceeds by induction over ry - The above

Temma follows by verifying the following formula and taking

r.=n where n=max{n.}.
H 1 1

(4.3.12) Tp(X,E) = [ 1 Tp(F(H),FH,E)TQ(H;)TD(HE)]

H
‘Het-1
%
i i v (F(Z .t ®...8Z.t ),E)
m=l i <ee.<i pil pim
m odd 1<, <8
I ( ),E)
It i vt (F(Z.t @...8Z t ).,E
m=l << P pil Pj
m odd . m m
1s1ls£

We check (4.3.12) for the case t=1. By the relative lemma

we have

Tp(X,E) = TD(F(e),Fe,E)Tp(Fe,E)Tp(HZ)

where e denotes the identity element in G and F& = F(Zp )U-o-U(Zh ).

‘ 1 k
Applying Lemma 4.3.6 to Tp(Fe,E) yields
= e : r M
Tp(X,E) Tp(F(e),F ,E)Tp(He)Tp(He).
I (F( ).E)
il I T (F(Z B...67Z ,E
m=1 11<...<1 p pil pi
m odd . n m
1s1lsk
2
I II v (F(Z @-.-067Z ), E)
m=l i< Pi, Pi
m even
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Thus verifying (4.3.12) for t=1. So if we assume (4.3.12)

for the case ry = t-1 then Lemma 4.3.8 completes the induc-

tion step.
Q.E.D.
We make two remarks. First one sees that the proof of
combinatorial invariance proceeds exactly as before using
(4.3.11). Secondly we remark that formulas (4.3.11) and (4.2.4)
are identical except for terms of Tp(Hﬁ)' This implies that
HgITp(Hm) = 1 and thus some very interesting cancellation must

go on that is not a priori clear.
4.4

The remainder of this section is devoted to the proof
of Lemma 4.3.8. We start with two counting problems which
are nhecessory in the'proof of Lemma 4.3.8.

As was the case earlier we need to partition the sub-

groups of G. If H = Zp{lﬁ"‘a ZPEKSEt ry = m?x{ri}. Let

Jy = {HeGlr =t} In the proof of Lemma 4.3.8 it will be

necessary to know how many times a subgroup in J or Jt

t+1
occurs in all the expressions FH for H in Jt' Actualiy a
sTightly more refined counting scheme is needed and it is
this problem which is addressed in the following sequence of
propositions.
The first counting problem may be formulated as follows:
t t S S }

Given A = {p ,"',P_i sp.l s"'sp.i
L g+h  ‘'g+h+1 g+h+q
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where the p; are all distinct, we wish to distribute them
J

between two boxes (the left box and right box) subject to the
conditions
(1) we use all the objects in A and we use them

only once

o (dd) at Teast one p? is in the left box
J

(1i1) the right box is not empty

iv) the p?_ and p?_ behave according to the rules

J J
a) p? , p? appears in the left box
i, 3
or J
b) you place a p?“l, p?"l in the Teft box and
] J
a p; in the right box.

J

Proposition 4.4.1. Given the situation described above there

are 2g+h+q - 2h+q - 1 states.

Proof. Since each Py has two states there is a total of
J

2g+h+q possible states. As we required that at least one
p? be in the Teft box we must eliminate all those cases in
i

which none appears. There are 2h+q states. Finally, since
we required that right box be nonempty we eliminate the one

h+g

case where this occurs. This leaves 29+h+q - 2 1 states.

Q.E.D.

Remark. In relation to our previous discussion this proposi-

tion counts the number of times a subgroup occurs in Jt+1 or Jt
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in all expressions FH for H Jt' As a simple example,

consider G = Z 5 ® 23 which has the lattice of subgroups
2

shown below.

™

Here J2 = {222{323’ 222}, J1‘= {szﬁlss 22’ 23}, and J0 = {e}.

If we consider the case H = 22 0] ZB we have g = 2, h = 0 and
g = 0 giving us 22 - 2O - 1 = 2 possible states. This agrees
with what one determines by direct examination of the Tattice.
We mentioned earlier that we actually want a more re-
fined counting scheme. This is necessary since in proving the
next lemma we will make repeated use of Lemma 4.16. 1In the
proof we will need to keep track of the number times the tor-
sion of given fixed point set occurs in the numerator and
denominator of an expression after use of Lemma 4.16.

Before stating the next proposition we make the follow-

ing observation. Given n objects to distribute between two
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1

boxes there are 2" ways of placing an (odd, even)} number

ofrobjects in the (left, right) box. To see this note there
n

are - L (2) ways of placing even number of objects in the
k=0

k even

. N n _
(Teft, right) box. Since 2" = (1+1)" = % () and 0" = (1-1)"=

k=0
n n S n
X (-l)n(k) and 2" = 2"+ oM = 2 & (E) implies -1 o (2).
k=0 =0 k=0
k even k even

It turns out we want to partition the aforementioned count-

ing problem into the following four Cases,

(i)  The number of pl in the left box is odd, the
i

number of objects in the right box is even.

(ii) The number of p? in the left box is odd, the
J
number of object in the right box 1is odd.
. .
i; |
number of objects in the right box is even.

(iii) The number of p in the right box is even, the

(iv) The number of p? in the right box is even, the
J
number of objects in the right box is odd.

Proposition 4.4.2. The number of states in case (1)-{iv) is

given in the following table,
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case g odd g even

g+h>0 q=h=0|g+h>0 g=h=0
(1) | @hE¥hty i | Ly | (28T (o 0
(1) | (27h @ 0| (2hHew 2
(1) | (@l | o (29 11y (29%-1) [y | 971
Giv) | (2971101 p9-1_q | (p9-1o1y(p9%h-1y 0

Proof. We give the proofs of (i) and (ii) for g odd and (iii)
and (iv) for g even and g+h>0. A1l the other cases follow

by similar reasoning.

Case {i) g odd

If g is odd then there are 29'1 ways of putting an odd
number of the p$. in the Teft box Teaving an even number of

the p? in the right box. Since we require an even number of

objects in the right box we must place an even number of objects

from the remaining q+h objects in the right box of which there

are 2q+h-1 ways of doing this. Finally, we exclude the case
t
'
empty. Thus there are (29—1)(2q+h-1) - 1 states.

where all the p are in the left box and the right'box is

Case (ii) g odd

t

There are 29'1 ways of placing an odd number of the Py
J

in the left box leaving an even number of the p? in the right
J
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box. Thus we must place an odd number of the remaining g+h
objects in the right box of which there are 2q+h—1 ways.
Thus the total number of states is (29—1)(2q+h-1)'

~Case (iii) g even

There are 29'1- 1 ways of placing an even number of the
p? in the left box where the case of putting zero objects is
J
excluded. This leaves an even number of p? in the right box
and so we must put an even number of the remaining g+h objects
in the right box. There are 2q+h-1 ways of doing this. Finally,

we exclude the case where all the objects are in the Teft box

yielding (29"1-1)(2q+h'1) - 1 possible states.

Case (iv) g even

There are 29'l- 1 ways of placing an even number the p?_

J
in the left box where we exclude the case of putting zero

in the Teft box. Thus we have an even number p? in the
J J
right box and must add an odd number of the remaining g+t objects

q+h-1

to the right box. Since there are 2 ways of doing this

g+h-1

there is a total of (29'1-1)(2 } states.

Q.E.D.

The second problem is a slight variation of the first. Let

+ +1 t
B {pt 1,---:P? % i s"':D? :"':p? :"‘:P? )
i f f+1 f+g f+g+l f+g+h
p . sttt Py }. Our goal once again is to place all
Tfeg+h+l f+g+h+q

the objects in B into two boxes subject to the following rg1es.
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(a) (i) and (iv) of the previous problem hold

and
{(b) Given a p§+1 you place p? in the Teft box
J J
and a P in the right box.

J
It is immediately clear that there are 29+h+q possible

states. Again we want a slightly more refined counting result
so we break the above states into four possible cases I,.-.,IV.
These cases are basically the same as before only we change

- t+1 t

the initial phrase to read "The number of Py "s Py in the
J

(left, right) box is (odd, even),... ."

Proposition 4.4.3. The number of possible states in {(I) + (III)

and (II) + (IV) is 29+h+q'1.

Proof. Since (I) + (IV) or {(II) + (III) is exactly half
the number of possible states the result follows.

Q.E.D.

Proof of 4.18. 1In order to make the notation less cumbersome

we will denote FH by F[H] in this proof.

Applying Lemma 2.3.1 to Tp(F(Zpt #...8 Ept ),E) with
i i

"1 m
the subcomplex F(H) yields

(4.4.4)y « (F(Z_ t 8...9Z t ),g) = (F(Z_t ®-..87Z_t ),
i pil 1.m 1 pim

r
F[z : B...0 Zp? ]’E)'Tp(HZ £ ®...0Z t )
1

P P
m 11 1

m
Thus we can rewrite the left hand of (4.3.9) as T.0 where
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% - ,
i I T (FZ ¢ ®..-.0Z + \,F[Z.+ ®-..87 t 1.E})t (" '
=l dp<eeeci P Pil pim)’ Pi] Pi Zt®...07 t')
modd Tisi i) Py
= —p
I i Tt (F(Z t 8---8Z t ),E)
el A<ena<iy P11 91m
m even 1:1142
L
Q= 1 i t (F[Z t 6...8Z_t 1,E).
m=l Ap<een<ip P07 Py pim'
m odd lsilsg

Consider the @ term. Apply Lemma 4.3.6 to each term in
£ and call the resulting expression 2y For terms rp(F(H),E)
appearing in the numerator of Rl with ry = t apply Lemma 2.3.1
using the subcomplex F[H]. Factor away the relative terms and
call the resulting expression 2,. Now for terms Tp(F(H),E)
appearing in the numerator of 2, with ry = t and such that
Lemma 2.3.1 has not been previously applied to it, apply Lemma
2.3.1. Factor away the relative terms and call the resulting
expkession 3+ Continue this process untill all terms with

ry = t have had Lemma 2.3.1 applied to them. 1In order to carry

out this process we need the following claim.

Claim 1. Every term of the form Tp(F(H),E) with Py =t

appears in the numerator of some Qi'
Suppose for the moment we have proved Claim 1. A similar
arguement shows that all terms of the form rp(F(H),E) with

ry = t+1 occurs in some ;- Let 9' denote the final expression
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after all the relative terms have been factored out and I'' the

factored out relative terms.

Claim 2
| 2
Q' = I n Tt (F(Zt ®.-.8Z ¢t ) ,E)-
m=1 11<---<im p pil i
m even liiléﬂ
lr‘ S oty
it il T (F(Z_ t+16...8Z t+1 )} ,E)
q=1 Jy<eee<i PP P
q odd 1 q 1 9
,lcjlﬁs
s
1 1 T (F(Z_t+1 ®.--8Z t+1) ,E) [
g=1 j1_<...<jq P p‘j]_ pJq
q even 1<j1<s
-.. V q

Given Claim 2 the Temma follows by taking the product

of T-7'.0".

Proof of Claim 2. By the above claims we know that every term

of the T&F(H),E) ry=t, t+l occurs in Q'. Thus it remains to
count how many factors of Tp(F(H),E) occur in the numerator

and denominator of Q'. A term Tp(F(H),E) appears whenever
t t Sy s

H=op; -<*pss p,lje-opsdp(Z_. 6---8 Z_ ) for some subgroup
fr i T T Py
m
H = Zpg @-.-ezp§ Gzp§j1®---®lp§jm. By examination of (4.3.7)
1 n 1 m

we see that TD(F(H),E) is in the numerator when r is odd and in

the numerator when r is even (PH=t). Thus we need to count
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the number of possible ways H can be represented as above
taking care to count separately the cases when r is even or

r is odd. This is precisely the content of Proposition 4.4.2,
cases (i) and (iii) count terms is the denominator and cases
(ii) and {iv) count terms in the numerator. We must sub-

tract from cases (ii) and (iv) since we removed a factor of
TD(F(H),E) to apply Lemma 2.3.1 to when obtaining Q'. A
similar discussion applies to subgroups with ST (t+1).. Table

I complies the data for the various subgroups.

- Q.E.D.

Proof of Claim I. After the first stép all the terms of the

t & Z 6--.8 Z

p p
Tm kl kq

i = t A,
form Tp(F(H),E) with H Zpil ® ®Zp

m and g odd appear in the numerateor. After the second itera-

tion one gets all subgroups of the "form H = Zpt @...@Zpt &
i i
1 m

z2 6...0Z.2 Z, 8--.8 Z_ m odd, hold q even or h even

Zt ®.--8Zt OZ 6-.--8Z Z &..-67Z O6Z 6..-8Z h odd
ot o ¢ o ( b 0 ) h odd g even

P P p
. T T Jq | In Tk Kq
H:
Zt 6.-8Z ¢t ®Z 6-.-0Z 67 (Z ®.---6Z 8Z 6---8Z )heven
\ps ps P p: -~ “p, ps p: P p
i T N In k1 g In kq kq g even

for instance. After the next iteration one has the remaining

subgroups of the form Zpt ... 8 Zpt & Z 2 a“.$1p@ 82p 6...67Z

p N
T T 3y In Tk

Pk
_ q
Ss1ince
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: H = Zpt @---@Zpt 6Z 2 &---0Z 2 (Z 9.0 Z ) for g odd.
. i i
g

Now using induction and the same process outlined above the

. result follows.

- Q.E.D.
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5. Further Examples.

In the previous section we developed two formulas for the
torsion Tp(X,E) in terms of the torsion of guotients of the
isotopy spaces. Here we compute explicitly Tp and 7_ for two

g
examples directly from the definition and from the aforemention-

ed formuias.

5.1

For our first example let X = disc = {(x,y)|x2+y2£1}
with E the trivial R2 bundle over X. We give X the cell de-

composition consisting of g two-cells {GO,---,oq_l} 2q one-

cells {aol,---,uzq} and q+1 zero-cells {80,---,Bq+1}. Take
o, = {(rle) 0srsg1l 2%& < g < Eﬂi%ill}_ The following

diagram will serve to define the % 5 Bi'

Z . Let § denote the

Let g be rotation by %%. Then G = <g> q

f R,e,
q
2 R.e where oy @ e

. . . "y
extension of g to E and define g(oﬂﬁe) Oy 41

E(agﬁ e} = o 8 Rie, and E(B£+1® e) =R

q
denotes the horizontal 1ift of a two-cell,

2+1 2+1

O |

0y # e the 1i7Tt of

a one-cell,.and B, 8 e the 1ift of a zero-cell.
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Taking {vg.v_gs=- sVq 1oV gopds LUgatgororalprg 1)U p(g1)}

{WU’W—O’Wl’W-l’wq’w-q’WZ’w-2""’wq-1ﬂtq-1} as bases for C,(X,E),
CI(X,E) and CO(X,E) respectively, with

g-1
vy = jEU oj 8 R-jz+j e,
q
(5.1.1) |
q-1
V_£= JEO og. 8 Rdqu_. 82
q
g-1
Uop= i=0 23 8 R_j +j e
q
q-1
“o2aT Ty %2y P Rojaeg %2
q
(5.1.2)
q-1
YT (I c25e1 B Rgaeg @
q
q-1 .
o T B agen & Rigeeg o
q
-q_l
My T jfo By B R_jp45 @1
q.
g-1
W_£= JEO B,Q, B R—‘]Jl+j 82
(5.1.3) q
wq = Bq+1 8 €
W_g = Bq+1 8 e,

where 0 < £ £ g-1 and -j2+j is taken mod g. Then with respect

to these bases a has matrix representations given by




and

I

0

L=

O [

on C

77.

on CZ(X,E)

d

on Cl(X,E)

(X,E)

as seen in & manner similar to Example 2.4.7.

|
|
%
?
|
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We now compute the boundary maps P CZ(X,E) - Cl(X,E)
and 3, : Cl(X,E) -+ CO(X,E).

1
g-1
82(v£) = .§ az(cj) 2 R-j2+j e .
j=0
q
g-1
= jEO (a2j+1+azj+2 azJ) 8 R_3£+j e
q
g-1 g-1
T lo Yager P Rogeeg BT o %2ge2 B Rgueg o
q q
q-1 -
- B0y BR o4y &
J=0
q
q-1 .
= U2£+1 + .EO 0(.2j+2 8 R_32‘+J el - UZ.E'
q
Observe that
q-1 q-1
x . B R . . e, = I . 8 R R . -
320 “2j+2 LS B B “2j+2 -17-ja+i+l T
q q q
n‘" .—
o1 R"l g(uzg) i=1
= = q
Ro1 Bo v2ge2 ® Rojeegen @
q q n _
R"l g(u_y,) i=2
q
e 2n(4-1) . 'zw(g-l) ' _
cos 3 Uoy + sin 3 U_oy i=1
=<
.o2m{a-1) 2n(8-1) -
\ sin 3 Us o + c¢os q u__22 i=2
and hence
_ 2r(&-1) Lo 2m{-1)
az(vﬂ) = {cos = -1)u2£ + sin g Yoo R PYIRE
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A similar computation shows

m _ean 2m(8-1) 2w(2-1) _
BZ(V_R) sin : u,, + (cos q Lu_p, * Uo, o
g-1
3 luy,) = jEO Bl(azj) 8 R_j,45 €1
q
] q-1
- .E (Bq+1 BE) 8 R"j£+J el
q
q-1 q-1
= 320 32 8 R-j£+3 e1 + jEO Bq+1 8 R—j£+3 e1
q q
v, L#1
W, + qwq L=1 .
Similarly one has
“W_, L1#1
a1{u_pe) =
-W_, * v, 2=1
g-1
31(U22+1) = jEO 31(@2j+1) 8 R‘j2+j El
q
q-1
"2 (Bga17Bg) @ R_5p45 &
q
q-1 q-1
I o Boey R yeey 17 BBy BR 058
0 Jj=0
q q
(cos 2“(3'1) L)w, - sin 2“(3'1) W, 271
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Again a similar computation yields

. o2m(e-1)

-sin w, + {cos

q 2 q A
8,00 5549 = '

2

Let C; (X,E) denote the direct sum of the subcomplexes
2
on which G acts irreducibly by R,+ Comparing T (X,E) =

g
q
T(C; (X,E)) splits into two cases, 2#1 and 2=1. Explicitly one has
. .

the cochain complexes and their boundary maps below.

Case 2#1
2 2
(5 1 4) { * W* } _‘_E[.Q)_{ * * u* u* } d]_ { * * ]
-1 WpoWoy A A I R TES RN Y B VerVog
- o1 -y
Bt = ¢t = : and at = g% = (R ~I)t I
1 c 0 t 2 C 1 2-1
Py (Ry_q-1) Py q
- q -
Case =1
' 1 1
(5.1.5) {w¥,w*,,w",w* —Eg+ {uf,u*,,u¥,u*,} —El+ (v¥,v*.}
N - 1, _13 q, _q} 23 _29 3! _3 13 __1
_ -1 qI
t I t Y [
all dj S d1 0 I]
C 0 0 C
51 Q1
_ 2,.0 *
In the case £#1 choose w, = W, Aw_, e A (Cp (X,E})
L
_ 4,.1 * :
Wy = Upy A U_5p > Upgoyq A U_popq € A (CDR(X’E)) and

2,.2 * . -
wo ve v, e (CpR(X,E)) . Then taking p, = w,,
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pl = uzAu_zs po-=1 we have

L * o*
pOAdO (pl) dD (uzﬁu_z) = WRAW-Q = Mgy

) .
U hu_,Ady (vﬁﬂv_g) = U hu_shughu_5 = mywy

.Q,*
pl dl (02)
i

2 L
Py dy (P3) = Py = Wy = MW,

This gives mg = my = m, = 1 and ©. (X,E} = 1. An entirely
Py
similar analysis shows that T, (X,E) = 1 and hence Tg(X,E) = 1,
1

In Section 4 we derived the formula

_ ; . .
(5.1.6) Tp(X,E) = I T(X{H},Ep)Tp(HH).

Hel

It is our intention to use (5.1.6) to recompute'rpéx,E)
for the above example.. In this example ther are only two
isotropy spaces X(e) and X(Zq) = F(Zq), consequently (6)

reduces to

(X.E) = t(X{e},E )T(F(Zq),E)T (")

T
Py ) pre

Since F(Zq) equals a point T(F(Zq),E) = 1. Thus it

remains to examine the terms Tp(Hg) and T(X{e},Ep ). We begin
2
with Tp(H;). The exact sequence Hg is

0 > 0% (x,pt,E) » HO (X,E) - HO (pt,E) - H! (X,pt.E) -
Py P p o

L 2 L

2

t,E 0.
pg(p ) -

HY OGE) = HE (pt,E) » HZ (X.pt.E) = H® (X,E) - H
p o Py Py

L 2

There are two cases to consider &=1 and 2#1. Examinat{on

of the complexes {5.1.4) and (5.1.5) shows




W (XL,E) =< 0 i=1 W) (pt,E) =< 0 j=1 |
p,Q, RS pQ, i
0 J=3 L 0 j=3
for #1 and
-
R®  j=0 RZ  j=0
HY (X,E)} =€ 0 j=1 HY (pt,E) =€ 0 j=1
Py Py
X 0 j=3 0 j=3
for 2=1.

The relative complexes C; (X,pt,E) are given below along
2

with their appropriate boundary maps

Case 2#1
dﬁ d%
*  * r 0 * * * * rl * %
(5-1-7) {WJZ,’W-,Q,} _""_ {UZ,Q,’U—ZQ,’UZ,Q,'F].’U“Z,Q,‘{“].} — {Vﬂlsv_ﬂ}
1 i .
L _ L _ t
rdO = . and rdl (Rl—l 1) I
(R/Qn-l —I)
by w
Case 2=1
dl gl

(5.1.8) {wh,w* 3 B0 fud,uf, ul,uty) L

{-1

i

Y
— s

Y 1]
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This implies

0 i=0 r'0 j=0
HY (X,pt,E) =% 0 j=1 271 WY (X,pt,E) =% 0 -1 .
) . Py
0 j=2 0 j-2
L
For 2#1 fp (Hg) = 1. - For %=1 we have the long exact sequence
2
2 2

0+ 0-+R°“" LB R +0+0+>0+0+0=0=20 where

the homomorphism i is induced by inclusion ind equals the

identity matrix which gives t_ (Hg) = 1.

1
Finally we are reduced to computing T(X{E},Epﬂ). X{e)

equals the disc minus its center point and X{e} = X(‘c—‘)/G is

also equal to the disc minus a point; however, the resulting

chain compliex consists of 1 two-cell, 2 one-cells, and 1 zero-

cell,
B0
*1
The bundles Ep are R2 bundles with ho1on0my‘R£_1. To
see this recall n(E)y = @1 E, where m : X(e) + X{e} and

xem ~(y)

y ¢ X{el}. Then F(E)p = Ep is the subbundle of T(E) whose
4 A




84.

sections transform bj:pg. If s(x) = {%x,v) € T(E) then
y. Thus g(S{s{x)) =

S(s{x)) = (y;v,Rlv,---,R 1v) where m(x)

ES q-1
q q
(y,Rﬂv,Rgv;--akﬂf)and setting this equal to R&S(s(x)) gives
q q q g
Rls(s(x)) = Rgs(s(x)) and hence S{s(x)) = Rl_ls(s(x)). There-
q q : q
fore, Ep is the flat R2 bundle over X{e} with holonomy Rﬁ-l'
,Q: = =
q

So we consider the two cases #2=1 and 2#1. For 2=1
let {Vl’VZ} = {ooﬁel,ooﬁez}, {ul,uz,u3,u4} = {azﬁel,azﬁez,
ulﬁel,alﬂez}, and {wl,wz} = {BO@el,BO®e2} be bases for

CZ(X{e}’Epz)’ Cl(x{e},Ep ), and CO(X{e},Ep ) respeFtive1y.

) %

We have

82(V1) = Bz(coﬁel)

oy 8 ey - oy 8 e1 + a2'® R 1 e1

q
= ug * ((:05(21T 2'1)) —l)u1 + sin Zﬂéﬂ'l U,
and in a similar manner obtain
32(v2) = Uy - sin(gi—%lil)u1 + {cos gﬂLélll —1)u2.
ay(ug) = =B B &y = vy | _
21(up) = =By 8 &5 = Wy
3(ug) = - By 8 ey = (cos Zﬂi%:ll —1)w1-¥sing££%:l)

8o B Ry &
g
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The above gives the following cochain complex
d* d*

{wy,w;} 0, {uf,u;,ug,uz} N {v§,v;}

1 -

L _ L _ t

d0 = . and d1 (Rl‘l,,l) I
(R,Q..-l "I) g
Jouss o

which we observe to be the same complex obtained in (5.1.4).

This gives then T(X{e},Ep } = 1 and combined with our previous
1
observation that v (#') = 1-that t_ _(X,E) = 1. A similar
e © P
computation for £=1 shows 7/ (X,E) = 1.
A 1

5.2

3

Our next examb1e will be for the case X = S” and E the

flat R2 bundle over X. Let (zo,zl) be complex coordinates for

2 3

L, then S~ = {(20’21)|(ZO)2 + (zl)2 = 1}. Define g by

21

g(zo,zl) {e 20’21)’ then G <g> Zq and F(Zq) ST,

To get a cell structure on 53 for which G acts cellularly first
stereographically project s3 onto R3 from a point (say (0,i))

on F(Zq). Letting z. and identifying £Z with

i T %es v Mg

R via sending (zn,2¢) to (XnsXqsX,,X,) We have the stereo-
0’71 0*71°72°73 % x .

graphic projection map ¢((xy,X ,X55%3)) = (1_2 1 2y,

Thus

3 1-x3, 1~x3

9(9(zg>2¢)) = (——
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- —y
r 21 . o2m 1 X0
CcoSs i sin ] 0 T X3
X
.2m 2n 1
sin = cos 0 T-x,
X
2
0 0 1 —
» _ _1-x%r

and the induced action of g on R3 is rotation by %% about

the z axis. Using cylindrical coordinates (r,8,z) on RS,
define py = {(r,e,z)|ggﬁ I gﬂigiil}for 0sk<gq-1.

Taking ¢'1 of the Py gives a cell decomposition of 83 con-
sisting of g three-cells, g two-cells, 1 one-cell, and 1 zero-
cell for which G acts cellularly. Denote the three-cells as

Zgsteratg p the two-cells by oq,-++,0,_ ¢, the one-cell by g,

q_
and the zero-cell by og-
Taking bases of horizontal Tifts {vo,v_0 ""’Vq-l’v-q-l}’
3
{UOQU_O:"'auqau_q}s {q1:W_1}s and {yl,y_l} for CB(S ,E)

62(83,5), cl(SB,E) and CO(S3,E) respectively where

q-1
Vo s B Ly BR 045 8
Jj=0
q
q-1
J
q
g-1
u, = %o, B R_jeti &1
j=0 q
g-1
u_2= .§ Cj ® R_52+J €5
j=0
q
Wy =8y B8 esw =Byl




With respect to these bases 3 has matrix représéntations

-y

{

Hl

L3 |

q 5

e -~

on 63(53,E) and 02(53,E) and R; on

q

01(33,E) and 00(83,5). We now compute the boundary maps with

respect to the above bases

g-1
33(v, ) = %

o 93(23) B R_.,p: €

Qo
o

—

-

]
=

—

1

0 otherwise
q 8 e, 2=1

0 otherwise




From the above relations we have m0=m2=m3=1 and my = det(g g)=
Thus ©_ (S3,E) = J@.
01 q
Compiting the above yields
2mTh
2T 2 cos —=
2 cos — q-1 - q
(4.2.3) r_(s3,8) = (L) 977 (g sin?(nli=Lly)
g q2 2=0 q

L#1

To compute T, (53,E) using (5.1.6)we notice as before there
2
are only two isotropy spaces X(e} and X(Zq) = F(Zq) and there-

fore

(5.2.4) T (s3

JE) = t(s3{e},E )r(sl.E)r (u").
Il p

9 Py &

We begin with the T, (Hg) term. The exact sequence

%
Hg is
0 » 12 (s3,s1,E) + w9 (s%,E) » WO (stiE) » D (s%,stE) -
Py Py Py Py
n:o(sS,E) » HE (st,e) > K2 (s3,st,E) » w2 (s3,E) - w2 (shE) -+
Py Ty Py oy Py
i3 (s3,shey = wd (s3,e) - w3 (sl,ey - 0
Py Py Py
Examination of the complexes (5.2.1) and {(5.2.2) shows
0 j=0 ) R? j=0
. O j:l . J:]_
W (s2,g) g (s3.8)
Py 0 j=2 P1 j=2
7l 0 §=3 R: =3

For H%Q(Sl,E) we note that since E is the trivial RZ

bundle and § acts ] 1 via py that
, 3




R j=0
) (st,e)
Pl
R? j=1
and Hg (s',E) = 0, j=1,2, 2#l.
£
The relative cochain cemplex has the form
{0} + {0} » {u*,u* }rgg* (v¥,v* 1 where _d% = (R -I)t Thus
I ) 27 -4 e T2 g-1 "1/ I0US
q
‘o j=0 o =0
0 j=2 ' 0 i=1
H (s3,s1,E) =< i (s%,st,E) =¢ )
Py 0 j= Oy R i=1
P#1 _ )
L“0 j=0 @% Jj=3
It is immediate that T (HE) = 1 for 2#1. 1In the case
. £
£#1 we have the complex
i¥ 3 i3
0+0+R: SR> 0>0>RE IR 05050 SRZ 5 0 0.
Since 18 and 13 are induced by inclusion 12 = 3 = 1I.
The map 34 is the connecting homomorphism between Hé ( ,E)
_ 1
and Hg (53,51,5). Since 3, is an isomorphism and 32( ) =
L
_ 9 0 .
q B B e, and az(u_ﬂ) 1 q By 8 e, we have 9, = (0 q) This
gives that t_ (47) = =5
.pl € q
Since we remarked earlier that T(Sl,E) =1 it remains

to compute T(X{e},g_. }.
Py,

and when we quotient by G we again get Rs-{z axist.

90.

¢{X{e)) is equal to R3+{z axis}

Therefore
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the resulting chain complex consists of 1 three-cell (ZO)

and 2 two-cells (00,01). The same arguement used in the

2

previous example shows that Ep is a flat R™ bundle over

L

X{e} with holanomy Re_1-

q
Setting (vy,v_,} = {25 8 e}, 25 8 e,} and {u ,u_q}
{co 8 €1, Jg 8 e2} as bases for the horizontal Tifts, the

boundary map with respect to these bases 1is

% - 2r(9-1) .o 2m{e-~1)
83(v1) {cos 3 -l)u1 + sin 3 u_q
ag'(v ) = _S'inzl(_ulu + (COSM-I)U .
3V -1 q 1 g -1
For ¢#1 and
1 _
83(v1) = 0
1, -
33(v_1) 0
for 2=1.
The cochain complexes are then
d3
* * r * *
{ulau_l} "—_*{V].:V__l}
[ t 1 _ ..
where rdZ = (R -1)" and rd2 = 0. Thus for 2#1 this is the

¢-1
| 2
same complex as (5.2.1) and T(X{e},Ep ) = 4 sin (EL%ill). For
. 2
L=1 clearly T(X{e},Ep ) = 1. Using (5.2.4) gives

'
(s3,E) = 4 sinz(“(éﬁl) for 141 and ©_ (s3,£) = L for g=1.
')

T
Py
This agrees with our previous computations.
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5.3

For our final example we will take X = s® and E to be

the flat RZ bundle over X. In Section 4 we derived two

formulas for the torsion and by comparing the two noticed

A

that the product of the Mayer-Vietor is terms rp(Hﬂ) equals
one. We will check this cancellation explicitly in this
example.

Let (20,21,22) be complex coordinates of E3, then
3 2 2 2 .
e Jzgl™ + [zq]" + 1zz| = 1}. Define

e
2T 2 i
9(20’21’22) = (e 9 Zs€ q 21’22) where p and g, are assumed

{(20321522)

Jote

to be relatively prime, then G = <g> = Zq & Zp and

2 2 3

F(Zq) = {(ZO’ZI’ZZ)I Izll + |22| =1} = s,

- 2 2 _ &3
F(Zp) = {{zgo2952,) ] |zgl" + |2,1% = 13 = s7, and

- 2 _ 41 _ 1

F(Zq@ﬂp)-{(zo,zl,zz)l tz,|" = 1} = $°. To get a cell struc-
ture for which G acts cellularly first stereographically pro-
ject s® onto R from a point (say (0,0,i)) on F(Zq$ZZp).

. _ . . e 3 . 6 .
Letting Zj = x2j + 1x23+1 and identifying €7 with R” by sending

(Zn527525) t0 {Xqs-+-sX.) we have the sfereographic projection
0*°1°%2 0 5

_ XQ Xq
map ¢(xg,--->Xg) = (Tfrig,..., Tffgg). Thus ¢(g{z4,2;,2,))

3 ¥ ©x. 7
2 .2 0
co0s — -5in — 0 0 0 — |

q q 1 - Xg
.2 2m
—_— — 0
sin 3 cos a 0 0
0 0 COS %g -sin %; 0
0 0 sin 21 cos~EJI 0
p q X4
8 0 0 0 0 0 T —y
sy L .




Letting (yl,---,ys) denote coordinates for RS we see the
induced action of g on R5 is rotation by %f in the Y1¥o
plane, rotation by %g in the Y3¥y plane, and the gg axis
is fixed by the action of G.
' X 5
Now take coordinates (rl,ﬁl,rz,ez,y5) for R” where

Yy = 1 cosef’yé =ry 51n91, yg r2c0582 and Yo = 1y sanez. Set

_ 2mk 2n(k+1) 2wa _. 2a( 2+1)
Pio = Urps®argsbp.yg) [ 50 € 0p & S0 57 < 8 < 25—
- . 2nk 2nt 2r{2+1)
U,o = Hrps0psrpa8puyg)| 8y = 505, 5= 5 8y < S0==s)
= - _ 2wy 27k 2w {k+1)
Qk’ {(r13815r29623y5)[ 62 - P 3 _q'_ S el = —q—_}
- ’ _ 2wk _ 2714
Riop = (Urpe0qampadpuygd] 0y = 507, 0y = 2=
Ry o = ((r1.8;4r.0,,y:)| 214 5 o s 2u(2tl) =6, = 0}
0,2 1°91: 7292255 p - Y2 p 1 1
= i} 2nk 2m (k+1) _ _
Rk,o {(Y‘l:el:rzsezsyB)I q S 91 E q s rz - 62 - O}
- _ 2mh < _
Sg,p = 1lrs00.7r5.0,5¥5)] @, oy = 0y =0
T = 7 = _21Tk = =
Skso {(rlselsrzaezsyS)i el - q F] T2 82 - O}
T = {(ry,0,,r9,8,,y:)] 8, =1y =0, = r, = 0}
and let .o = o7 NP, )y 40 871, ). 40 = 71T, )
59k, 2 k,o'? 49,9 k,o’/° 4%,9 = 9 )
-1 _o-1 o _el,=
3%, = ¢ (R o )s 300 0 = 07 Ry 0)s 30, g = 0 (R o)

-1 _
29K,y = ¢ (Sg )5 530 = 87 (S g)s 10 = ¢7H(T), and Tet

00 denote the zero-cell. The above is a cell decomposition



94.

on 85 for which 6 acts cellularly.

Taking 3 to be the extension to E given by g( Re) =

)
8 R 1@ where 0 < j £ 5 and jgk,g 8@ e denotes a

pq
horizontal 1ift of the cell jgk .- In order to write down

%k+1,0+1

P
bases for the ij(SS,E) it will be convenient to re-index the
cells N 4% .0° 4%, and 3%k, 0" Instead of indexing the

over Eq @ Zp we would like to index them over qu such

jok,ﬁ goes to jGi then jgk+1,2+1 goes to jgi+l‘ In

other words we seek a homomorphism y : Zq 8 Zp > qu such

%K. 1
that if

that

qu : Pq

he above diagram commutes where ¢(k,2) = -(k+1,2+1) and
¢Yi) = i+1., By the Chinese Remainder Theorem there exists
integers a and b such that a = 1 modg,a = 0 modp and
b= 0modqg, b =1 modp where a and b are unique mod pg.
Taking w(k,2) = ak + b2 we have desired homomorphism. The
inverse to ¢ is simply given by taking i to (i,1) where in
the first coordinate i is taken modq and in the second modp
which we will write as (1q,1p).

Before giving bases for the various Cj(SS,E) we give

the boundary maps for the various cells
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8059 o) = 4%aq+1,0 " 4%.a T a%k,e+1 " 4%,
3040 o) = =3%a1.0 * 39,0 * 3%,0
3040k o) = 3% .g+1 = 3%.2 ¥ 390,31

339 ,4) = 2%,0 " 2%,¢
2Uogz+1 © 29,2
. 9039, 0) 7 29%+1,0 = 2%,0
{59y, ) = 19
339 o) =1%
0

Q2
-t
—
a
(]
S
|

0

Take as bases for the horizontal 1ifts {5Vm’5v-m}
va v q q n P
0V 2¥om a"m? 2%-m?> 3V 3¥ome 3¥re 3Y1pe 3Vs 3Vishs

q q P P
{2vr$ ZV-Y" ZVS’ zv_s}s {lvl, 1V_1}, {Ovls OV_l}, ‘FOI"

Cj(SE,E) 5> 3 20 respectively and where 0 < m < pq-1,

0 <r=<qg-1, 0£s < p-1, and

_ Ppg-1

i Tk 3% 0 Reamet €

P
0q-1 3¢ j<5

$Vem 7B % B Rlimed @2
T

_pg-l

' T LI 4% B Riimei @
P

- pa-1  _

gVom T LI 4% P Rlimed %2
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g 9l
Y = I .g f R e
J'r k=0 J K»0 -pkr "1
pq
g q-1 _
. = 7 . B R e
JV'Y‘ k=0 Jckso “M 2
Pq L
- ..1 J = F
_Vp = pZ . g B R e
J's g=g 4 0,% -g4s 1 7
pq
p p-1
. = ¥ o] 8 R e
JV'S 2=0 J 0,2 'gﬁ 2
pq
o
1V1 T 1% 8 &
1Vo1 %1% 8 &
oY1 " 0% ® &
0¥-1 © % ¥ €;-
Setting
. ~ ] -
; 3
R —
1 Pq
pq ] *
le .
_ pg B = ’
A= : R1+r9
" P
. R "R
pq-1 1+{(g-1)p
i Pq | Pq |




-

A

\
=1 1o 5l

map w

2(5V,)

g has matrix representations

on'c5(55,E)
0 5
on C4(S LE)
A
0 0
5
B 0 on 63(3 LE)
0 _
0

on 02(55,5)

(]

and Rq1 on Cl(SS,E) and CO(SS,E). We now compute

h respect to the above bases.
__,Ppg-l
=l Z 59 8 Rojpeg &)
i=0 ———
pg-1
= 3( z o..®R..e1)

97.

i
i
[
.
l
!

%
the boundary ‘
|
|
\
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pq-1 _ _
= o aTien,s e, T %hen T T,0) 8 Rl ®
pq
Pg-1 pg-1  _ -
) iEO 49941, 1 8 R im+i iEO 4% ,i+1 8 Roimei " a'm 4vm .
Pq Pq
pq-1 . pg-1 _ _
(20) - 120 4%i+a R-im+1 iEO 499 +b 8 R-im+i " 4Vm T 4Vn
Pq - pq

where the Tast step follows since (1,0) = a and (0,1} = b via

Y. From (20) we have

.. p9-l _
a(svm) - 150 4§1+a 8 R-(1'+a)m+(1'+a) Ra(m-l) €1 " 4'p
Pq pq
pg-1 o
. Pk 4%+h ® RoGiabyme(ieb) Rb(m-1) ®1 7 4¥n
pq Pqg
_ 2ra{m-1) . 2ra{m-1)
= {(cos 54 -1)4vm + sin g PR
2rb(m-1) _ — . 27b{m-1) =
+ {cos T 1)4Vm + sin ~pq A
Similarly one gets
‘  ein 2ma(m-1) 2ma{m-1) _ ,
3(5v_m) -sin ==, A (cos 54 1)4V—m
-
.oo2mb(m-1} 2mb{m-1) .y =
-sin 55 WVt (cos 54 1)4V-m'
pg-1
oyvp) = 3CE 494 B R gpey o)
Pq
_ pg-1
B 8(120 495 .4 8 R im+i el)
pq
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pq-1
= I (395 44173%,1%3%,2) & Rigpey &
i=0 —_
pq
_ pg-1 Pg-1
= E 3% ie1 B Rigpei &1 7 0 39,5 B Riipei &
i=0 i=0 ——
pq
pq-1
*r 3%0,1 % Rlimet o1
Pq
Pq-1 pg-1 pg-1
. = P ® R 10 E0 3% O Rt 2 3%0,1 ® Raamet @1
_ Pq Pq Pg
-1
_ 2nb(im-1) _ .o 2rb(m-1) Pl
(cos 5 1)gv. + sin g 3Ven * 120 0.1 8 Rlimei €1
i - ' : pq
Examining the last term in the above expression we get
pq-1 p-1 q-1
o P, O Rgnes T Zoa%,0 8 CE R (pieey(nen) 1)
Pq ‘ Pq
)g)’
q-.l . -
To evaluate the sum 'EO R-(pj+£)(m-1) we need to consider two
J
Pq
cases. First we suppose that m = l+gqs. Then
q-1 q-1
z . = X s
sog -leite)(m-1) T o R-(pi+e)(as)
Pq pPq
q-1
Pq
. = R qes
Pq
If m#l+gs we have
q-1 q-1

Zo Relpgtn) (n-1) = Reglmonf B0 Rog(meny) 7 O
Pq q

Pq
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. Thus
2rbs . 2nbs p -
(cos o —1)3 1+qs + sin 5 3V-(1+qs) + q(3vs) m=1+qgs
) (n-1) (n-1)
2rbim-1 . 2rb({m-1 ,
fcos 5 1)3\1m + sin ———Eam—T 3V_p otherwise.
Similarly ;
. onbs 2mbs p ]
=SNS5 Vi4gs + (005'75“ 1)3v*(1+qs) + q(3v S) m = 1+qs
el (n-1) (n-1)
. 2rb(m-1 Zr{m-1 .
sin b Vot (cos oq 1)3V-m otherwise.
f 2rar 2rar
-C0S +1)3v1+pr sin a3V~ (1+pr) + p(3vr) m = l+pr
o0 ) =<
E-cos gﬂﬁéglll +1),v sin ZFapﬁ'l 3Y-m otherwise
P i
sin ggﬁf 3V1+pr + (-cos ZEar +1)3V-(1+pr) + p(SV?r) m = l+pr
ol ” (1) 2ra(n1)
s 2ma(m-1 2mal(m~1 - .
sin g 3V, * (-cos g +1)5v_m otherwise.
' pg-1
g =302 507 8 R gy ©p)
Pq
_Pg-l
T E 3%, O R &
pq
pg-1
- (293,07 2%,i) @ Riimi ©1
Pq
pg-1 pg-1
- 120 2%1,0 Roimti &1 iEO 290,14 B R imei &1
Pq Pq
q-1 p-1 _ p-1 g-1
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- Q-1 _ )
p REO 2% .0 3 R_ ke €1 m = l+pr
Pq
p-1
. = -q QEO 200,2 B R_ s & m = 1+qs
_ Pg
o
. 0 : otherwise
.
- p ,vd 1+
m = r
. 2'r P
.
. = -q 2v2 m = 1+qgs
. § 0 otherwise . _ )
- Similariy one has
. p ZV?r m = l+pr
. a(3v_m) ={-q ZVES m = 14gs
. ~
i .
. 0 otherwise.
o
i q ’ q—l - .
. gve) = 20T 39,0 8 Ropey &)
Pq
-1 _ —
- k50(2°k+1,0' 29%,00 & Ropir €1
Pq
_ q-1 _ q-1
; T E 2%ken,0 % Ropke 1 7 E 0 2%,0 B Ropke
- Pa Pq
q-1 _ q
T B 2%e,0 B Ropenye Re Bt 2V
; Pq q
= Hﬁ q 3 ,gjf_ﬁ q
. (cos q '1)2Vr + sin T 2V-r
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Similarly one has

1]

9y = _eip 210 9 2nr q
B(BV—r) sin =5 Vot (cos 3 1)2V-r
- p - 2ms P . TS P
. 3(3\/S {cos v 1)2v + sin N oVl
.
Py = _giyp 218 P 2ms _ P
3(3v_5) sin =5= v + (cos : 1)2v_s.
q Q-1 _
. Wave) =0l 5% 0 8 Ropie &)
Pqg
q-1
= I o, 8 R e
g oo 170 ° "-pkr ©1
. Pq
g-1
=19 8 (2 Ry, ep)
k=0 —_—
. q
: ré 190 B €y r=0
0 | otherwise
9 Y r=0
0 . otherwise.

Similarly one has

i q 4V r=0
. G 1°-1
0 otherwise

P 1Yy s=0

ﬂt 0 otherwise

E P yV_q s=0
3 v =
2°-s 0o otherwise
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Finally a(lvl) = a(lv_l) = B(Ovl) = B(OV_l) = 0.

To compute the torsion T, (SS,E) we will consider four
m

cases; m =1, m = 1+qs, 1 < s € p-1, m = l+pr, 1 s r S q<1

and m not any of the above. For R 1 ie. wherem =1 or

Pq
r = s = 0, we have the cochain complex
1 1 1
d d * * * * d
* * 0 * * 1 g g p p 2
(5.3.1) {ovis o¥0q = (v v = Lovg s ovige p¥p o Vgt —
1 1
d d
* * q* q* * p*, 3 * * s 4
{3¥]> V210 3¥0 > 3¥o00 3Y0 » 3¥oor — 7 aVis 4Vipe g¥10 g¥ot
{v*, v} Eé+ {0}
5°1* s°-1
with
0 0 ql
dé =0 d=[0 0] dy-
0 pl 0
pI  -qi ql
dy = 4 =
0 0 pl
S 000 1
where I = (0 1) and 0 = (O 0) except in d5.

5 .y . o2 .
T (S7,E) = ——— where the m., are defined by the follog-
°1 my M3 !
ing equations.

*

poﬂdé (py)am™ (1)

1*
plAdl (pz)

1

=]
—

=
)
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1* _

poltd; (pg) = myu,
1* _

pghdy (py) = myu,
w

o4hdy (pg) = myu,
*

p5Aﬁ (us) = Mpwg.

. - - ~ *
With the preferred volume forms wy = 0V1AOV—1 = T (uo)
= = 9 q p P,
b = Yihyvoge W ® p¥g 2¥igheYo MVio

= q q p p = o o
Wy = gVyhaV g AaVahaV ghaVihaVi g wy = gvihy ARV g5

- _ ok . - -
we = g 1A5 =T (us) and taking Py = 1, g =W

= = q q = =
P3 3v1A3v_1, 0y 2v0 oV g ° 1, and Pg 1‘ we get

2 2 22

my = 1, m =97 My =g, My =pqg,m= 1, and mg = 1. Thus
Tp (SB,E) = -"ZLE .

1 P q

Now suppose m = l+pr 1l < r < g-1, then we have

the cochain complex

dr dr * q* dg q* q* dg
(012 10 = (s 8 e (] Lipr: Vo(143r)7 3Vr > 3o T
Jr
v }4{ 12 0
4V14pr> &Y (1+pr) 4 1+pr’ 4 -{1+pr) 5 1+pr> 5" (1+pr) '
with
ro_ t
d; = 0 [(R£ - 1) 0]
q
4 - 0 0 dr i pl
3 £ 2
(-R. + 1) pl (R, - 1)
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where we have used the fact that a = 1 mod q and b = 0 mod gq.

(s5.£) MgMoly
T SY,E) = where the m, are given by
pl+pr mymam, i
Y'*
pohdy (p3) = myw,
r*
pahdy (py) = myug
r* _
pahdy (pg) = myuwy
Pg = MgWg

and my = my are trivally equal to one.

With the preferred volume forms wy = vaA

q
2 A

= a, 9 = v m
“3 3V1+prA3V—(1+pr)A3VrA3Vr’ “g 4V1+prA4v-(1+pr)A4V(1+pﬂA4V-(l+pr),

wg = 5V1+prA5V-(1+pr) and taking P Wg >

Pa T a¥14prfaY-(14pr)? P3 T 3V1eprtaVo(repr)s P2 T 1 we get

Mg = 1, my, det(si - 1), my = p°, and m, = p-. Thus
q
5 -
T (S,E) = det(Rr - I).
P1+3r L
g
For m = 1+gs we have the cochain complex
ds ds o d « % dS
0 1 p pTy 2 * * p pTy 3
103 == (08 = v s Vit = 19¥9ugs 3V-(14qs) 3Ys * Vot T
ds ds

4

* * —% —% * * 5
"{4V1+qss 4V-(1+qs)’ 4V1+qs’ 4V_(1+q5)} —r {5V1+qs’ 5V-(1+CIS)} — 0

with

=0 dj=[0 (R - 1%

]




- )t r
(Ré L) q1 -q1
P
ﬁ d> = 45 = .
e p —

Then a computation similar to the previous one shows that

5

(S7,E) = det(R, - I). -

Tp
1+qs =
a P

Finally for m not one of the previous cases we have the

cochain complex

dm dm dm dm dm
O * 3 * * —* T 4
m
* }d5 0
o {5Vm’ 5V-m -
with
. m ' t t
o . _ -
) d5 =0 [(R m l) ) (Rbgm-l) - I) ]
N Pq Pq
e -l
(Ry (1) ~1)"
m _ Pg
d3 . .
(-Ry(m-1) * 1)
i P _

With preferred volume forms wy = 3va3v_3,

Wy = 4va4v 4vmf\4v , and wg = 5VmA5V and taking

1 yields Mg = My = My = mg = 1

1

o5 = W5 Py = gVphgVope AN e3

i
[y
.

and my, = my = det(Rb( 1y - I) and thus Tpm(s_,E)
pq

In summary we have




We

cochain
complex

For m=1
(5.3.4)
1
where d3
The
(5.3.5)
form =

(5.3.6)

for m =

and

(5.3.7)

for m=1,

As

and ¢1+pS(F(Zp)UF(Zq),E) = 4 sinz(%g) where r,s#0.

begin by computing < (SS,F(ZD)UF(Z

o 5.
complex c* (SS,F(ZP)UF(ZQ),E) is identical
m

in(5.3.1)for mfl hence T_ (Ss,F(Zq)UF(Zp),E)

m
we have the cochain complex

a dt

* * — g 4 *

* * 3
{3Vl, 3V_1} _""{4\/13 4V_19 4V13 4V_1} — {Svl,
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The relative

to the

= 1 for m#l.

)
5Y-1)

= 0 and d: = 0 and hence T, (SS,F(ZP)UF(Zq)sE) = 1.

4 1

p

relative cochain complex C; (F(Z )UF(Zq),E
1

r
* * d * *
q q 2, q q

Lovis ovld v 01

l+pr, r#0,

ds “* *
p*  p¥y T2 q q
1+qs, s#0,
1 1
d *
* * 0 * * 1 q
{ovis oviqt — {yvis v fovgs v
* * % *
g q p D
{3vg » 3Vip» 3Y0 @ 3Yio?
ro_ t s _ _ t
where d2 = (R£ - I1)°, d5 (Ri 1)-,
q p
d% = [91} | and d% = 0.
ql

in (5.2.1) we have 11+pr(F(Zp)UF(Zq),E) =

) is

. 2.TP
4 sin (q )

For m=1




(5.3.3) 1 (s°,) =

-ﬂ m=1 r=0 5=0

=
wn
—r o
5
N

I-\.

|~
S
=

It

l+pr 1 <r <q-1

4 sinz(ﬁf) m = 1+gs 1 <s < p-1

1 otherwise.

In Section 4 we derived the formula Tp(X,E) =

It (F(H),FH,E)T (H;)T (Hg). We will use this formula to
Hel P P P
recompute the torsions T (SS,E) and show directiy that
- m
m
T (H.) = 1.
on €

By the formula in the previous paragraph we have

5 _ 5 r
rpm(S ,E) = rpm(s ,F(Zp)UF(Zq),E)Tpm(He)rpm(F(Zq),F(Zpﬂizq),E)
r r M
Tpm(HZq)rpm(F(Zp) ,F(Zp Mq) ,E)Tpm(HZp)Tpm(F(Zp Mq) ,E)Tpm(ﬂe) .

To reduce the number of different computation we use Lemma 4.6 applied

to X = F(Zp)UF(Zq). This gives’

T, (F(Zq) JF(Z

r r
_ p 82 )sEd (i LN (F@Z,),FZ,8Z ).E)c, (Hz ).

m Tq m m TP

v (Fz_eZ ),eE) =t (F(Z_)JUF(Z ),E}. Thus we can rewrite the above
oy P4 oy P g

expression for T, (SS,E) as
m

5
(s ,F(ZP)UF(Zq),E)TD (FCZP)UF(Zq),E)-

T
m P

m
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we have preferred volume forms Wy = oY Agv_qps

010

. N T T T _ .9, .9 PhyP
1= 1Y1h1Vore 0 T oVolaVig oVoloVipr W3 T 3VohaVige 43YohaVig

w
* - * = (. q r - q P
i (UO) Wys T (UZ) (-p 2V +q ZVO)A( P oV _ g t g ZV-O)’
* = q q p p : = - 9 ol
m (U3) 3V0A3V 0A3V0A3v_0 and taking o, L, po=ovphyvligs
Py © 1, and Py = 1 gives My = mg = 1 and mo, = my = q2. Thus

Tpl(F(Zp)UF(Zq),E) = 1.

Since the complexes C (s°,E), o (SS,F(ZP)UF(Z Y ,E)

m m 4
and C; (F(Zp)UF(Zq),E) are acyclic for m#l we have
m
T, (Hg) = 1 for m#l. From the complexes (5.3.1), (5.3.4),
m
and (5.3.7) we have
’f'
C 2 2 .
R ji=0 R Jj=0
0 Jj=1 0 j=1
. 2 .
: 0 j-2 . R j=2
5 - J .
HY (52,€)=< Hd (F(Z_ WUF(Z ),E) =<
! 0 =3 Ppr P 9 <‘R4 j=3
0 j=4 0 j=4
R®  j=5 0 j=5
“ e ~
0 j=0
0 j=1
HY (s®,F(Z UF(Z.),E) = < 0 =2
°1 P 4 2
I RE j=3
RY  j=4
i R?  j=5
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Therefore Hg is

, 51 32
2 1« 2 2 k2

0—R* 3R -0 —0—0—0 —0 —RE SR? o g — p* % Rp*

2 V% 2 .
—+~ 0 = 0 —R® —R"™ — 0 where i, = 1 and

. . 0 ql
*_ ‘k_
82 = 31 = =]
, pI 0
f since a4(,v;) B, aa(4vy) = 0 gvP0s 240, 7)) = p gl
. Thee dglaVy 9 3Vp: Y4'4Y-1 9 3¥Igs 34{4vy) = P 5vg,
é; | " q g p
gi 94(qv_y) = P gvgs and 3(5vy) = p ,vg - 9 LV,
; _ q q Py o 1
é; 8(3v_1) P-oVig = G 51, Thus Tpl(He) p2q2 .
. It remains to compute T, (HE). From the complexes |
. ' 1 R 1 |
(5.3.8) {.wv*, v* 3 -Qr ¥ g El+{ VQ* vq*} Ei-2-e~{ vq* VQ*}
. T 01 0°-1 1'1° 1°-1 2’0 ° 2°-0 3’0 2 0°-0
- and
1 1 1
d d * * d *
/ * * 0 * * 1 p p 2 PI p
. (5.3.9)  {gvps v2pd = 0vTs (vIgd = {pvg s pvIgh —>lgvg > gvigh
. where
.
. dé = 0, d% = ql for (28) and pI for (29), d% = 0 we have
-
. ¢
- 2 .
R j=0
0 J=1
. . 0 j=2
J _ uld -
- H F(Z _),E)} = F{Z _ ,E)~
(FZg).8) = W) (FZB)=Q Ly
0 j=4
L‘0 j=5




Hg is the long exact in cohomology given by

i i i i
— H (F(ZZP)UF(Z/-q),E) — 1 (F(Zp),E) & H (F(Zq),E) — H (F(ZZp Mq),E) — 0

and hence by the above HZ is

i 4

J 1 o,
RE AR p2 g 0 >RE% 00 —0—R*BRY 000

My _
and hence Tpl(He) = 1.

Thus by (5.3.3) we have

‘/
1
=1 r=0 s=0
2 2 m
Pq
5 | 4 s1n2(E£) m = l+pr r#0
T (S7,E) =4 q
Pm
4 sinz(%g) m = 1+gs s#0
1 otherwise
"

which agrees with our previous computation.
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