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Abstract of the Dissertation

Surfaces of Constant Mean Curvature One

in Hyperbeolic Space

by

Gary Lynn Kerbaudgh

Mathematics
State University of New York at Stony Brook
1985

This paper investigates surfaces of constant mean cur-
vature one in hyperbolic space. By a correspondence of H. B.
Lawson, these surfaces are strongly related to minimal sur-
faces in Euclidean Space.

The study begins by defining for each mean curvature
one surface, a pair of Gauss maps. In the minimal surface
‘case, these Gauss maps are defined but are coincident. Com-
félex analytic techniques are alsc introduced by means of
. Bryant's holomorphic lifting of these surfaces to null
‘curves in SL(2,T). Here the twistor techniques of N. Hitchin
a;e employed to obtain an explicit "Weierstrass representation”

' these curves in terms of two holomorphic functions (the



Gauss maps). This representation is then used to examine
the global‘behavior of these surfaces, which differs
dréstically from that of minimal surfaces. Interestingly,
finite total curvature is shown to be no restriction on the
asymptotic behavior of these surfaces, nor is it gquantized,
as in the case of minimal surfaces. It is also shown that
the only polynomial null curves are horospheres.

Finally, numerous examples are constructed and studied.

Surfaces of finite total curvature are generated that have an

arbitrary finite set of points in their asymptotic boundary.




This paper is dedicated to my mother.




Table of Contents

~Pages
Dedication

A. Acknowledgements ... u it nerrneeseaanennnan vii
I. TNEYOAUCELION v vvverenenrnennenneennesaenenans 1
81 Hyperbolic Space .ieeierescansaancncanaannss 4
§2 Surfaces inZH3 andim; N A
§3 Weierstrass Representation .......ieeeeeees. 27
§4  TWIStOTr THEOLY vervenesenrnecnnesnsnanssnes 33
§5 Twistor Theory in@m; -
56 Immersion Theorem R LR R R R PR PP 57
§7 Holomorphic Lifting .eeeecesesccasaanssassss 6l
§8 Polynomial Null CUIVES .vicvececcscacoaoecnas BO7
§9 The GAUSS MAPS «vecevesvacsasasacsacnnaocnsas 11
510 The Main THEOTYEM .veeeerececensessnsnncenaes 76

11 EXAMPleS cuevevescsacssscansnensnnssssssssss 89

REFErENCES v ittt eeusesesnasnsnenscssennnnnnea 37

vi




Acknowledgement

The author delights in taking this opportunity to
express his gratitude to the faculty and staff of the
Mathematics Department of Stony Brook for providing an
incomparable atmosphefe for research. A special ex-
pression of gratitude is due Professor H. Blaine Lawson,
whose unfailing wisdom and support have made this work
not only possible, but gquite pleasurable. Also, special
thanks are due Professor Claude R. LeBrun, for his sage
consultation and support, and to Mrs. Lisa Koch-Sen for
assistance in the refinement of vague ideas. The author
would like to express respect and gratitude to Mrs.
Estella Shivers for transforming this manuscript into
intelligible form. Finally, the author expresses thanks

for things too numerable to mention to Mrs. Mildred A.

Kerbaugh.




Introduction

One of the most useful and widely applied endeavors of
mathematics is the study of extremal problems, that is, the
search for configurations of a system on which some important
scaler quantity assumes a critical value. Hamilton founded his
theory of classical mechanics on extremal principles and it
was once remarked to the author by a physicist, that all of
physics could be couched in these terms. A corresponding
branch of engineering is optimal control theory, and the name
alone suggests the potential-value of sﬁch techniques. The
theory of smooth problems.in-optimal- control is even sometimes
expressed using the notation of Hamiltonian classical mechanics,
‘so techniques in this area have some potential for direct
épplicability.

We are concerned with a multi~dimensional version of

this subject for which the scalar guantity is area, i.e.,

the study of surfaces in space on which the area functional
sgumes an extreme value over some restricted class of
imilarly defined surfaces. The simplest problem of this type
th&t of two-dimensional surfaces in three-dimensional
clidean space. A beautiful resolution of this problem was
éﬁ by Weierstrass in the mid-nineteenth century who trans-
'méd the problem to a particular complex analytic setting
f.:the minimal surface equations reduce to the Cauchy-

nn equations. Such an approach to problem solving is

1.




the central theme of a school of mathematics founded by
Roger Penrose called twistor theory. There is an account

of Weierstrass' theory in twistor terms and this paper es-
sentially applies that theory to a closely related problem,
resolving it in a similar way. The original move in this
direction was by'Roberf'Bryant and the results of this paper

are an extension of his work.

It has long been known that a particular perturbation

of the minimal surface equations in euclidean space were the

equations of surfaces of constant mean curvature in spaces

of constant sectional curvature. The cases of constant neg-

tive sectional curvature are rescalings éf hyperbolic space
tgnd it is-the problem of representing surfaces of constant
‘mean curvature one in hyperbolic space that this paper
iddresses.

We begin with an expository account of hyperbclic space

and then develop a theory of surfaces in euclidean space and

hyperbolic space that is tailored to our particular needs.

In these terms we give, in Section 3, a brief account of the

rk of Weierstrass. That account centers around the applica-

n of techniques of complex analysis to the problem and

ereby motivates a change of setting.

In Section 4 we present some of the main tools of twistor
eory and use them to describe three-dimensional twistor

ory. Then in Section 5 we again present the work of

trass, this time in twistor terms.




In the next two sections we specialize to hyperbolic

space, first describing the association between minimal
surfaces in euclidean space and mean curvature one surfaces
in hyperbolic space, and then presenting Robert Bryant's

results. We foliow with a theorem on poiynomial solutions

and then, in Secticon 9, describe the Gauss maps 6n which the
twistor theory is based, in Bryant's setting. -
In Section 10 we present, in thiee different ways, the
main result, which generates a surface of mean curvature one
in hyperbolic space, from a_pair of ;rbitrary holbmorphic
Gauss maps. Then in Section lirwe use a version of this
result to show that one of the above Gauss maps, when defined
at a singularity, describes the asymptotic behavior of the
surface at that singularity and then we examine examples
which illustrate some of the important properties of these

surfaces.




Hyperbolic Space

The central setting of this paper is three-dimensional

Hyperbolic space, which will be denotedZH3. The name was

given by Poincaré, who studied Hyperbolic space as one of the

first examples of non-euclidean geometry. Since complex
analysts consider straight lines in the complex plane T, to be
simply a special kind of circle, that is, one containing in-
finity, it seems natural to consider a geometry where circles
replace straight lines in Euclid's axioms {weakening the paral-
lel axiom, of course)}. The result is called Hyperbolic geometry
and, as the literature concerning it is extensive, we shall ke
content with a brief description noting pertinent objects.
In'ﬁodern mathematics,IH3 is the three-dimensional space
form of constant sectional curvature -1. If we denote R(1l,3}

as the 4-dimension real vector space equipped with the Lorentz
norms:

k3
and the Lorentz metric, which is the polorization of the Lorentz
brm,‘thenJHB can be represented as the submanifold of points,

} such that

IR =1, %, > o,

th the induced metric. Because, like the sphere, this sub-

nifold is the level set of a non-degenerate quadratic form,




it is often referred tc as the pseudo-sphere. It is a
Riemannian manifold because the tangent space is space~like;
that is, the induced metric is definite. The induced con-

nection has constant sectional curvature -1, and in this con-

nection the geodesics also resemble those of the sphere in that

they are given,as point sets, by intersection of the pseudo-
sphere with two-planes containing the origin. Unlike the sphere,
however, this manifold is complete but not compact. The vectors
;in Minkowski space, R(1,3), whose Lorentz norm vanishes, are
called null, and the set of suéh_points“is referred to as the
'light cone. The pseudo-sphere approaches the light cone
asymptotically; indeed from a sufficiént distance from the origin
£hey would appear indistinéuishable. This can be made more pre-
cise. In a paper, [Eberlein-Q'Neill], Eberlein and O'Neill de-
ine the asymptotic boundary of a hyperboliﬁ manifold to be the
ét of equivalence classes of geodesic fays, where two rays are

dentified if they remain a bounded distance from one another.

rom the above definition of geodesics, it is not difficult to
ee that the two~planes associated with some equivalence class
uid all contain a single line in the light cone. Hence the

jgctivized light cone can be identified with the asymptotic
ﬂéary.

There is another important difference between the sphere
the pseudo-sphere, that is, the existence of submanifolds

pseudo-sphere which are flat in the induced metric.
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These are given as point sets by intersection of the pseudo-
sphere with affine null hyperplanes and are called horospheres.
Such a null hyperplane defines a unique null direction and it
is possible to show that the geodesics defined by the unit
normal vector to the horosphere at each of its points are all
contained in the -equivalence class defined by that direction.
Hence the horosphere has a unique point in its asympotic
bpundary. This characterizes them completely among embedded
ean curvature one hypersurfaces ofiH3 [Lawson, DcCarmo].
Another representation of hyperbolic space, one of two
tually due to Poincaré, is the upper half-space. This model
nsists of points inimg such that X > 0, equippéﬁ with the

tric induced by the norm

2,2, .2 .
52 (xl+x2+x3) _ dsz/
"XE = ) = XZ .
x3 3

m the obvious symmetries of the metric, it is clear that
ical lines are geodesics and horizontal planes are horo-
res. These, however, correspond to the family of horc-

res and equivalence class of geodesics associated with

e point in the asymptotic boundary: the vertical one.
maining ones can be gotten by "rotating" the picture by
ment of the group of iscmetries. For a detailed treat-

£ this the reader is referred to [Ahlfors, 1].

Just as S0(4) restricts to the sphere as the orientation-

ing group of motions, similarly the connected component
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of the identity in the Lorentz group, called the proper Lorentz
group and denoted SO(l,3ﬂ;restricts to the pseudosphere as the

orientation-preserving group of motions. As with the sphere,

the stabilizer of a point is conjugate to 50(3}, the subgroup

of spacial rotations. For details of this and the following re-
présentation of the action of the isometry group 6nIH3, the
reader is referred to [Ahlfors, 1}. To display these motions}5f

it is necessary to consider the upper half-space as being im-

bedded in the quaternions such that

Xq > 0 and X, = 0.
Then for y = {2 g) € SL(2,C), z & quaternions such that
3 > 0, x4 = 0
. - -
v{z) = {az+b) - (cz+d} = (cz+d) ~{az+b).

a the spin representation. The above representation does

“restricts to—the boundary as a M8biug transformation. In
tcular, the boundary inherits a conformal structure, that

.l' We may also restrict cur attention to vertical planes,




in particular, one whose Xy %, coordinates are zero and which
contains the Xq axis. This plane is not fixed by the full ac~

tion above but is invariant under the action of SL(2,R). Under

the action of the real group, the gquaternion j behaves like the
complex 1 and we can again understand this action in terms of
M8bius transformations. Furthermore,,this picture can be
rotated around the x3 axis, so from this and the fact that fixed%x
‘point sets of isometries are totally geodesic, we see that hemi- .
fspheres meeting the boundary orthogonally are totally gecdesic.
‘Also, since a M8bius transformation takes vertical straight

lines to circles and because horospheres have a unigue point in
their asymptotic boundary, it follows that horospheres are
euclidean spheres that meet the boundary tangentially.

Finally, to give an idea of how complete a picture these

tructures give of hyperbolic space, we note that the above

jects can be used to define the map relating these twc repre-
entations. Horospheres can be grouped intc families according
ftheir point at infinity. For instance, the horizontal planes
the upper half-space are the family associated with the ver-
"al point at infinity. In Minkowski space, horospheres come
fjintersections of:]H3 with affine null hyperplanes and their
ﬁ at infinity is determined by the null direction. Hence
amily of horospheres torrésponds to—-a family of affine null
_planes, all having the same null direction and intersect-

'he time axis on the positive side. Given this picture it
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is possible to visualize the following map. If we choose the
null direction to be ﬁ = (1,1,0,0}, theﬁ the following is an

isometry from the pseudosphere to the upper half plane which

associates the two families of horospheres:

X {(xo,xl,xz,x3)|xo ®]=X5-x] l}F*{<x,n>,x2,x3)

where <,> is the Lorentz inner-product.
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Surfaces in IR3 and 1-13

We now establish notation and describe the geometric set-
ting in which we will be working. For calculations,we will find

the representation of JH3 as the pseudo-spherre in Minkowski space

to be the most tractable representation, and we will also
be talking about minimal surfaces in euclidean space, so our

irst order of business is to describe the geometry of the
linear spaces 31,4 = R(1,3) and JR3.
JL4, Minkowski space, is the vector space JR4 with co-

i:dinates that we will denote (xo,xl,xz,x3) and a pseudo-

emannian metric induced by the norm

will also consider it to be oriented bv reguiring

!_‘_idxlf\ dx,Adx, to be positive, and time oriented by letting

-}

dx > 0

spond to the positive time direction. We can therefore
fy a subbundle cof the principal bundle of pseudo-ortho-
I frames with structure group 0(1,3). This bundle has
cted fiber and will be called the principal bundle of
ed, time~oriented pseudo-orthonormal frames -and will be
-'é@i__'SO CIL4)°. It has fiber {30,31,52,53},

. ( 1 a=8=0

<e,"é'B>=<—l a =8 >0
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L - - - Q wt
A
eerl e2/\e3 > 0 and dx (eo) > 0,

and structure group which is the identity component of the full
Lorentz group, 0(1,3), and is reduced from 0(1,3) by the re-
quirement that transformations preserve the above orientations.

This structure group is often referred to as the Lorentz group

and will be denoted by
so(1,3"

where the arrow refers to "time orientation.preserying.?

This action is free and transitive (by Witt's theorem) so
the frames can be identified with elements of the group in a
one-to-one fashion given a choice of pseudo-orthonormal co-

X on Minkowski space. One associates the frame

CL’
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wihich satisfy the structural equations

de = =w A mY .
a o

Since points in the pseudo-sphere correspond to time-like

. - . . 3
unit vectors,eo, we can write the metric on H™ as

d52 = wg 2 w

: o
a

We have more structure associated with this group. The
.group 80(1,3)+ has a 2-fold covering, called the spin covering,
by the complex group SL(2,I). To describe this covering we
mist represent Minkowski space as 2x2 Hermitlan matrices, the

correspondence heing

= tr{aB“°) A,B Hermitian.

- refers to the cofactor matrix of B. Therefore, for every

gAg”, A Hermitian and g* = Et, is Hermitian conjugation,

Hermitian. Because det(g) = 1, the cofactor matrix is the
se, so inner products are preserved. Hence each g corres-
to a Lorentz transformation and it can be shown that the

el is +Id. While the explicit form of the co#ering is
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inconsequential to us, we observe in passing that the cover-
ing is quadratic.

Of significant consequence, however, is the relation-
ship between Lie algebras. They are isomorphic and the left

invariant connection form of SL(2,L) is

3 . 1. 3 L. 2 . 3

wy + iwy (wo+1w2) + l(wo—lwl)

\ 1.3 2 '

~ , . , 3 3,., 2 .

\(wo+1w2) 1(wo 1wl) - (wo+1wl)

given in terms of the connection forms defined above for SO(l,3)+.

We therefore have an almost complex structure on SO(l,3)¢

- which 1s integrable.

Given the spin representation, we can make more precise
our description of the action induced on the boundary by an

sometry. Let us denote the future-pointing nappe of the light

one by

1 the above representationﬁN3 corresponds to 2 x 2 Hermitian

itrices with determinant zero. Because the column vectors
: [, R}
dependent, such a matrix can be written as 7 -C* where

(,,2,) T4+, € €, is a spinor. Such a vector in mz is
1 1772

erefore an element of the asymptotic boundary,:N3/ - de-
_ R

nes a spinor up to complex multiple. This identifies
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the asymptotic boundary with mpl and represents the action
induced on the boundary as the action of M#&bius transforma-
tions on EEJZ 1f we normalize y EINB such that dx°(y} = 1,
then each element of that unit sphere determines the class of

spinors
rgal i

where =P is obtained from that sphere by projecting stero-

graphically from the pocint (1,0,0,1). The above spin repre-

sentation will play a major role in our development of hyper-
bolic surfaces of mean curvature one.

- This development will parallel that for euclidean minimal

, surfaces, so we wish to present that theory in terms that will
- elucidate the relationship. For that we will require a frame
bundle on Euclidean space comparable to the restriction to the

pseudo-sphere of the bundle SOGL4)° over Minkowski space. A

comparable way to viewﬁm3 is as an affine space and the com-

parable bundle is the bundle of oriented affine orthonormal
ﬁrames, ASOGR3), with structure group AS0(3), the group of
uclidean motions onﬁR;. This group is well~known to be a

semidirect product of S0(3) andZE3, and the Lie algebra is

lgebras. A frame in this bundle is a position vector in:R3,
(vé,vg,vg) and an orthonormal frame {$i} i=1,2,3 such
Hat§@§2A§3 > 0, where the frame is considered to be based

~the point 35. We also have the connection one-forms
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av_ = vie; i,9 =1,2,3
av, = ¥.03
i j i
and structural equations
1) a8l = -edne¥ 1,5 =1,2,3
I - adpek
2) dei ak ei

where the latter equations are the structural equations for
50(3). We find, therefore, that the bundle of orthonormal
frames is simply the subbundle corresponding to Vo = 0.

We will extend the notion.of adapted frame (see Kobayashi

and Nomizu, vol. 2) to this affine bundle. Given an immersion

of a2 two-manifold intoim3,

and projection T,
_ e e —_—
ﬂ({vo,vl,vz,VB}) P*{vi,vz,v3},

educing the bundle of affine frames to the ordinary ortho-
ormal frame bundle, we define an affine orthonormal frame

to be adapted along Woif
3) W) =9 (p) peM

4) w(u) 1s adapted in the usual sense.

is is a principal bundle on M with structure group
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0{l,R) x 0(2R}). If we denote the pullback to M of the con-
nection one forms by the same symbols, we have
as® = st @ ol + 02 2 82,
o] o 0

because from 4) we know that

= e .3, _
5) wh{el) = 0.

Therefore, T*M is spanned by {ei,ai} and the induced area
element is dA_ = eé Aei so we have the following eguations

W .
for the second fundamental form of W:

3 1
9 B B \ 2
o L [f11 P2
3 = 2
%2 \Pa B22}80

!

The mean curvature H, of the immersion is the trace of the

. second fundamental form, hence, H = Bll+B22° “Minimal surfaces

are surfaces such that H 0.

Further, by the structural egquations and 4) we have

8 8
1L P12)l,2

= _KdA I
Bop  Bayg) O

87485 = -det

W
[palR 98}
[ X0 R VY]

2_ .2
a87=-8319

where the last equation is Gauss egquation for hypersurfaces.
L 1is also known (Chern 1) that locally one can find iso-
thermal coordinates and a complex parameter z, so that,
pbssibly after passing to a 2-fold cover, M is a Riemann

surface with local parameter z, and
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ds® = 2F[dz{2.
Given this, we define a one-form 6 = ei + ieg and a function
f = Bll_H"iBlz' 6 is holcmorphic because of the isothermal

coordinates and the structural equations. If H is constant,

f is heolomorphic by the Codazzi-Mainardi equations for hyper-

surfaces. Because Minimal surfaces satisfy Bll+8225 0 and of

'course,(by eg = deg = O) 812 = 821 so £ = Bll-iB12 and we de-

fine n = Bé-ieg = f& so n is holomorphic. It is worth noting
for later reference that S0(3) has a spin covering by SU(2)
and the connection one-forms 1) for S0(3) lift tc an SU(2)-

valued form

Now because Adh, where h & 80(3), preserves the Lie algebra

of the translation group, a connecticn on AS0(2) restricts

to one on S0(3) by Proposition 6.4 II of Kobayashi and Nomizu.
Thus the distribution defined by B is integrable in S0(3),
although this can be computed directly from the structural
quations. The integral curve is the adapted frame

.the surface defined by 36. The form B will appear

n the verification of Robert Bryant's theorem.
From the structural eguations we have

2

= -1 A
de 181 8
2
= 1 A
dn 181 n
2 _ (1 ol i - -
del = =K( /2)8A8 ( /Z)nﬂn .
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We can now prove the following proposition:

. — w
Proposition. If vy od M +ZR3 is conformal for a frame, {Gi},

adapted along W : M‘+]R3, then W is minimal or totally umbilic.
Proof. Conformality of this map for an adapted frame implies
<dv3(el), dv3(e2)> = 0

= 2F812(811+622) =0 . I ﬁ

If ﬁ is not minimal then 812 = 0 and , - . i
<dv3(e1), dv3(el)> = < v3(e2), dv3(e2)

implies Bll = 822 = =C for real c.

Then n o= co
- L a LT N . a2
and dn = lelﬂn = —lcelAe = dc“m—lcﬁlAe
so dcw = 0 and ¢ = constant on connected components of M.

—h L [ +
We remark here that v, 18 the traditional Gauss map for

. 3 . . ..
a surface in R and is anti-conformal for minimal surfaces

because of the negative sign in n. The search for a Gauss map
that was anti-conformal on surfaces of constant mean curvature
one initiated this research.

We conclude our discussion of surfaces in euclidean
Space with a result that will be needed in the discussion of

the generalized Gauss map of minimal surface. We will need
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some background.

s . . - : n .
Definition. Given an immersed hypersurface in R, we define

the second fundamental form of this immersion to be the
. normal component of the covariant derivative. |
Specifically if the immersion of an n-1 manifold in R™ - |

is given by

—
We:M-rE
_L- 3
and X is a section of
W RY ,

then the standard metric on R® gives a splitting of this bundle

into tangent and normal bundles
WTRY) =™ e (W (rrR)Y
with the corresponding projections denoted
=T =N

X = Xt + %V,

E . ——
Therefore, given vector fields x,y on M

II(X,7) = (vkjr‘)N.

It is a well-known fact that if the immersion is isc-
etric then, denoting the induced connection by 7, and the

andard euclidean connection by V, we have

X X
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some background.

L , . - . n .
Definition. Given an immersed hypersurface in R, we define

the second fundamental form of this immersion to be the

normal component of the covariant derivative.

Specifically if the immersion of an n-1 manifold in R"

is given by
5
W M- RY

—
and X is a section of

T RY ,

then the standard metric on R" gives a splitting of this bundle

into tangent and normal bundles
WITRY =m™e (W (rEMY
with the corresponding projections dencoted

X = X5 +%7,

o -
Therefore, given vector fields X,y on M

IR, = (vi&‘)N.

It is a well-known fact that if the immersion is iso-
metric then, denoting the induced connection by ¥V, and the

tandard euclidean connection by V, we have

A
g
b
=
3
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We will also need the following:

Definition. If {éi} is an orthonormal frame on M then we

define the Laplace-Beltrami operator as
af = 1871 g, a

i=1 171 e

Finally, the mean curvature is, of course, the trace of the

second fundamental form. We can now give the following:

Proposition. If we consider the individual coordinates of

Wo: M« R as functions, (vé,vg,---,vg), then

“AW = the mean curvature wvector

Proof. tr IIT =2 II(g.,gi)

This shows that the coordinate functions of a minimal

surface are harmonic. This will be useful when n is three
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This will show that the Gauss map for minimal surfaces is
holomorphic with respect to the complex structure‘associated
with z.

As promised, we will now give the parallel theory of
surfaces in the Minkowski pseudosphere. We have already
discussed the pseudo-orthonormal frame bundle and have given
its structural equations. We now define adapted exactly as
before: Given an immersion of a 2-manifold M into the pseudo-

sphere,

X : M Ed C ®r(1,3),

¢

we call a pseudo-orthonormal frame {éa} adapted along M

X(p) = ‘éo(p) peM

—

where we identify the tangent space of each point of R(1,3)
with that of the origin. Again we denote the pullback of
the connection forms by the same symbol and note that for

adapted frames

1 2 2
ds™ = w_ 8 wo + mo 2 wo

1, .2 _
dA, = mOAwO = area form,
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and since T*M is spanned by {wi, wé} we have

3 /n Byt wt
) w ;W
7) 1 { hll hlZE © » Where, by dw3 = 0, h12=h21.
3 721 22/ 2 o
w5 o
S0
2 2.3 2 2 1, 2
= - A - A = - i h
dw] = -wyte] - o fwg = (1+h], by hyolegtes
and
— 2 -— -_
K = (l+h12 hllh22) Gauss curvature.

. 2 . -
Also as before, we will regard M° as a Riemann surface
with induced orientation and conformal structure, and denote

the compatable local coordinate by
z = X+iy

with

ds® = 2F|dz|2.

‘We define w = wi + iwg, which is holomorphic when the adapted

frame agrees with the complex parameter, and we write

|
ja

11~ 1 - ih22, which is holomorphic when X has constant

mean curvatue 1, again by the Codazzi-Mainardi eguations. Hence

v 11 L 2,2
— - n-= fu = (mo+w3) - 1(wo+w3)

L5 of type (1,0), that is, holomorphic. We must then interpret

its meaning.
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For hypersurfaces in Euclidean space we know that the

second fundamental form is a section
II ¢ H° (M, T*MQT*M @ NM),

where NM i1s the normal bundle pulled back from the adapted
-~ frame of2m3 by W. Because this bundle is a line bundle, with a
metric pulled backfromﬁm3, we can raise and lower indices. ;

Therefore, in the presence of an orientation, which exists

globally on at worst the 2-fold cover of M, we can define the

map

A : TM - TM

e — .Y
by : Alx) = V‘VS' X e ™
X

= . - - L]
where v3 1is a well defined choice of unit normal. We have
mentioned that we can consider M as a Riemann surface and,
using the complex parameter, we can consider the map A, to

be a complex valued one-form. If {éi} are adapted and §1A;2

agree with the orientation, then this form is exactly
_ 1, :.2

= —+187
n o= 83Ty

The beginning of my research on this problem, and the reason
£hat I felt that it would have a nice resoclution was the dis-
overy of a conformal  Gauss-map- for constant mean curvature
immersions in:H3. That map is similar to the above map but
1s induced from the covariant derivative of 36 + 33 and

is exactly
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Y= (wgtez) + ilwi?d),
and from what we have shown this map is anti-holomorphic.
The alert reader should immediately object to the confusion
caused by redundant use of symbols, but we will show in the
verification of the immersion theorem (which asserts that
either of the above constaﬁt_ﬁéanhéurvature immersions induces
an isometric immersion of the other type) that, for these pairs
of maps the above functions and forms coincide when pulled back
to M, where similarly named.

To substantiate this similarity, we verify a series of

equations analogous to those_satisfied_ by n. From the Gauss

equation for hypersurfaces we have

and from the structural equations

dw = —iwiﬁw

d% = iwiﬁﬁ

dwf= -x(*/ ) uii = A/ )md .

We now have enough show that conformality of the hyper-

bolic Gauss map, 35 + 33, is nearly equivalent to the immer-

sion having mean curvature one.._We_ ndte that it also parallels
the case for minimal surfaces (see Lawson's thesis). We pull

- -
ck the Lorentz metric via e, + e, to
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do

<d{§0+§3) ,d (EO+“<=_‘3) >

1, 1,2 2

(w +m ) +(m +iy 3)2

= (w

1 1 1 2.2
o'hll‘“o'hlzUJ ’*‘“ hyywo-hyou])

2 2.1 1 1.2
=(1-2h) ; +hT +h] )0l B w +2h , (hy +ho o =2)u] @ w2
+(1- 2h22+h§2+h )w g w2, -

so by Gauss' equation and the definition of mean curvature,

2

8} do

2 ) SN 2.2
+ [2(H"-H) —K+(h22-nll) (H—l)]“’ogwo

{2(H2'H)-‘K]d52 + {H-1){ (h

1. 2 2.2
ll-h22)Hwo@wo) -(woﬁwo]

2. 2
+ 4h12woﬁwo} .

Hence we have the following proposition:

‘Proposition. The map 25 +'33 is conformal if and only if

 § is totally umbilic or has mean curvature 1. For H = 1 the
result is clear. When H # 1 we have that h,, = 0 and

= h22 = ¢ for a real function ¢ and

321

{(l+clw.

3ei

Therefore, d i % = —i(l+c)m§ﬂw==dcﬂw —i(l+c)w§ﬂw

50 dc = 0 and ¢ is a constant. Also, from

1.1 2,2 21 2

(w +w3)ﬂ (w +w3) = (H-l)‘w Ap© >0

2 1 1 1 P
[2(H"~H) =~ K+(hll-h22) (H—l)]wo L wg * 4h12 (h-l)wo 5] W
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Ed e 1 3 . k) 13
we see that eO + e3 preserves orilentation in the umbilic case.

Note. Not only is this in complete analogy to the case of
minimal surfaces, but we have alsc shown that K < 0 because
H = 1 above implies d02 = —Kd52_2 0. However, once we have
established that n = % and f = %, we will have most local
results from minimal imméféionsﬁautomatically. We will need
the above formalism to verify Robert Bryant's theorem, but we
will take a little more advantage of the equivalence of the
above forms. The author would like to express his gratitude

to Bryant for the notation of this section which spares the

~reader exposure to the author’'s original coordinate dependent

computations.
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Welerstrass Representation

Let M be a connected two manifold and define a minimal
immersion of M into R" as an immersion whose mean curvature
vanishes. We have shown that this implies harmonic coordinate
functions. It is also known [Chern 1] that there exist iso-
thermal local coordinates (x,y) such that the metric induced

on the manifold M by a minimal submersion,

has the form

as® = 2F|dz|2

.where z - Xx+1y. Since transformations between such co-
ordinates are either conformal or anti-conformal, it feollows
that orientability is the only obstruction to covgring M by
conformal atlas. We will therefore pass to the oriented
ﬁouble cover and henceforth assume that M is a Riemann sur-
éce, conformal immersed in:R3 by X.

In these coordinates, the Laplace~-Beltrami operator has

a particularly nice form given by

A = i; where 4 . %(B/BX - i a/BY).

a
dz dz dz

H b

can- express the fact that the-coordinates are harmonic by

4 4
dz dz

»)
n
o

2)

1s implies that the map into m3 given by
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. N

roj=

. =4 X - ix
3) > = = (xx le)
is holomorphic. This map determines the induced metric in

the usual way by

= 2
gll = I XI = 2F
g22 [Xyl = 2F
91, = <EX’§§> = 0.

These equations are used to show two important properties

possessed by this map:

litn
1D
e
bn
b

2
4) ® X 8% = 0
5) o} = F

'quation 4) follows from

'o describe the range of this map it is necessary to determine
the effect of coordinate changes. If w represents a holo-

orphic change of parameter so that

X(w) = X(w(z)) then

y = d -3 ——i* -.d_.‘f.q, = -g'-w-
6) 0(z) =g XAw(z)}) = - X(w) 37 = ¢ (W)
®(z) is a well-defined map into cp™ .  1f we consider

zfthen we have a section of the cotangent bundle.
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In either case, equation 4) is independent of co-
ordinates, so ¢ takes values in the projective quadric

Qn_ZIZZPn_l defined in homogeneous coordinates by

This quadric is the base manifold of the bundle which will
be ocur twistor space, so a better understanding of its geo-

metry i1s in order.

The gquadric, here, represents the Grassman manifold
of oriented 2=-planes in R"?. This interpretation is repre-
sented by a construction similar to the above. Given a
2=-plane inLRn, choose 2 orthogonal vectors of equal length
that span the plane, say X and ¥, and consider the vector

X - i¥ ¢ @.-o- Any similar basis is a linear combination

of these given by right multiplication by the matrix

r [cos 8 - sine}
sin cos 84 °

his multiplies the complex vector by rels and the map is
. well-defined. It can be shown to be a diffeo-
with the Grassmannian having the differential
of the homogeneous space

S0{n})
T S0(2) x s0(n-2).

The base manifold of our twistor space for:R3 will be

of positive directions, i.e., the 2-sphere. This
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is clearly dual to the Grassmannian of oriented 2-planes in
E;, with respect to the standard metric. Actually because

e
of the minus in our definition (¢ = §§) we change orienta-

d
tion but holomorphic is easier to write and we only mention
the traditional Gauss map so we shall adopt the above de-
finition for the Gauss map of a minimal surface in R". Also,

because the Gauss map 1s holomorphic and the above duality is

an anti-conformal diffeomorphism forZRB, we have that

Proposition. A surface inZlR3 is minimal if and only if its

traditional Gauss map is anti-conformal.

We will give a different proof later. More can be

—y

said however by looking at %% dz, a section of the cotangent

bundle.

Proposition. Given a set of non-vanishing holomorphic dif-

ferentials on M, satisfyving I (9ddz) 2 o 0 ard having purely imaginary
periods, there exists a minimal immersion into R with this

section of the cotangent bundle as the generalized Gauss map.

Proof. The map i(z) = 2Re{f§¢dz} is well-defined and has
fharmonic coordinates, hence is minimal.

This integral gives a useful way toc construct minimal
éurfaces-iniﬂn;~"This can be coupled with-a nice characteriza-
tion of curves in Ql to produce a powerful tool to construct

G . o . 3 .
inimal immersions in R~, due to Weierstrass.
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1f ¢§(Z) + ¢§(z) + ¢§(z) = 0 then
¢1+i¢2 _ ¢3 _
—_ = —_— = g(z)
B P17R%
f which imply
2 . 2
. . l-g i(1+g®) .
¢1 . ¢2 . ¢_3 ; H 3 T g.
?3
Letting /g be h{(z), we obtain
2
X = Re{f¢ldz} = Regfigﬁ— h dz}
; L2
y =,Re€f¢2dz} = Regfill%E—L h dz}
7) z = Reﬂf¢3dz} = Re%{gh dz}l.

This is referred +o

as the Weierstrass representation.

However, he obtained a lesser known. representation by con-

sidering g as a local parameter.

points where g’ (z)
crete set of points.

h(g-l(u)); that is,

f ree

Then integration of

8)

Finally, more

he minimal surface,

This is possible away from

0, which is, except on planes, a dis-

Also, let f be the third integral of

=

hig™t(u)).

7) by parts yields the formulas

Re{%(l-i-uz)f"(u) +uf’ (u) - £(u)}

Re{%(l+u2)f"(u) - iuf’ (u) +if(u)}

Re{uf’(u) - £’ ()}

than providing a good local parameter for

the function g has geometric significance,
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which will be of fundamental importance in the twistor theory.
First, we combine eguation 5) with the derivative of the
Welerstrass representation, which in light of the conformality

of the immersion, implies

1

.

l -
P = arg)Hn)? =FIX  « 7

.
—

yﬂ-l, which ?

we will call N. From the definition of & in 3) we find

The traditional Gauss map is given by (i%xiy).ufxx

il

¢ miz@+alal P inl?, 2e-3lg1D 0%, fa-1gi?) |n|?

Lom (120 = 22 E e 2= 202
2[(5(g+glg] “+9+qlgl|n] %, 3(9-Flg] “-F+alg| %) |n] %,

s1-lgl % nl?)

1

(1+]g|%) |n[? (2 Rrelq}, .2 Imig},|g]2-1)

so N =-—L—(2 Refq}, 2 Imig},|g[3-1),

1+ g
which shows that g is sterecgraph projection of the traditional
Gauss.map. We must notice from the third coordinate that this
stereographic projection is anti-conformal. Therefore, our
Weierstrass representation 8) has a standard Euclidean co-
rdinate of EEJ'as its parameter. This will be the point of

eparture for our twistor theory.
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Twistor Theory

It is clear that complex analysis plays a central role

in the theory of minimal surfaces.

In fact this represents

one of the earliest interactions between complex analysis and

differential geometry, two fields which, until recent years,

have not enjoved extensive interaction. That, of course, has

changed drastically, culminating in the solution by Atiyah,

Hitchin, and Singer, of the self-dual Einstein equations in

four dimensions.

In as much as geometry evolved from contem~

plation of the world around us, it should not be at all sur-

-- Prising that these deep results-have their roots in a recent

exciting interaction between complex analysis and physics:

twistor theory.

For a long time the major role of complex analysis in
physics was confined to Jquantum mechanics, with most other

mathematical descriptions of space~time being based on real

manifclds. However, the different disciplines of physics are

inexorably bound together through the world they attempt to

describe, and it has long been the ultimate goal of all who

endeavor in this art that the whole of physics be described

in a unified way. Toward this end, it was the feeling of

Roger Penrose, and now many others, that any unification of

qﬁantum mechanics and space-time gecometry should be based in

an essential way on a complex structure. Indeed, his move in
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this direction seems quite natural in light of the aforemen-
tioned ultimate aim, for in the "fuzzy" realm of quantum
mechanics, the most difficult mathematical definition to
justify, the "point," is at the very foundation of the theory.

If we are ever to understand the world that we see, we
‘cannot lose sight of the fact that our experience is an inter-
action. Penrose bases his construction on the thing that we
depend on to bring us information, the light ray, and his con-
struction impresses us as the only one that incorporates our
mode of perception into its basic foundation. In Penrose's
description, the base space is like a web of information
carriexs, with each point being a light ray, or a null geodesic.
The "points" of Minkowski space become "viewpoints," the pro-
jective sphere of light rays passing through that point. The
. geometry of space~time can then be described in terms of change
of viewpoint, deformations of that celestial sphere.

Though we hope to have piqued the interest of all readers
with any philosophical bent, we cannot hope to convey any more
of the foundation of the theory that has blossomed intc an
extensive sector of mathematicé. We must instead proceed with
4 development of a geometric side of twistor theory, and we
féel that it will serve as an excellent examp;e to improve
1§tuition in this areé; as it takes place in three dimensions.
Ogt of the study of time-invariant self-dual Yang Mills equa-
ions, there has grown a twistor theory for three dimensions.

deed the twistor space of:R; (whose Cauchy-Riemann equations




35.

can be shown to be equivalent to the minimal surface equa-~
tions in:R3) is the quotient of Penrose's original twistdr
Space by the action induced by the complexification of time
translation. The twistor space for three-dimensional Einstein-
Weyl complex manifolds is a complex"surface on which there is
a complete system of rational curves, "celeétial spheres, "
having normal bundle 0(2). 1In oxrder to see how they generate
the geometry of the three manifold, we will need a couple of
theorems due to LeBrun. To a2 gecometer they might seem back-
ward: they describe how the’séiutions to cértain equations
generate those equations, but that simply reflects the dif-

o

ference of the twistor viewpoint. To develop those theorms,

which are quite elegént, we will need a couple of theorems i-i
by Kodaira, which are the source of the power underlying
that elegance.

We begin with a brief glossaﬁy of symbols:

CE will mean E %R C where E is a real bundle

T'M will refer to the holomorphic tangent bundle,

which is the subbundle of complex valued
derivations of complex valued functions that

vanishes on anti-holomorphic functions.

PE is the bundle is the bundle E minus the zero

section, modulo multiplication by non-zero
complex numbers.
¢ is the sheaf of germs of holomorphic functions on

a complex manifold.
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C¢(m) is the line bundle of degree m oank Oor possibly
restricted to a holomorphic projective subvariety

U(E) denotes the sheaf of germs.of holomorphic sections
of the holomorphic vector bundle E

({m) denotes @(E) for a holomorphic vector bundle E + M
whose fiber over p € M is 0(m) over a:IPk or pro-

jective subvariety thereof.

The first Kodaira theorem is one on which much twistor
theory is based but we can only sketch the proof here.

(c.f. [Kodaira 1].)

Theorem. Let V & W be a compact complex submanifold of W
whose normal bundle N, satisfies Hl(v,ﬁTN)} = 0. Then V
belongs to a locally complete family of such manifolds
(Vp,psM} for a complex manifold M and there is a canonical

isomorphism Té M= H°(Vp,01N)).

Sketch of proof. ZKodaira works in local coordinates on W

and uses coordinates of H°(VO,3{N)) as coordinates on M. He
assumes the defining functions of nearby compact submanifolds
. to be expanded in power series in coordinates of M with co-
‘efficients in holomorphic functions on V. Hence differences
of these Taylor coefficients. on overlaps are l-cocycles on
the nerve of the coordinate neighborhoods with coefficients
in O{N). The vanishing condition guarantees correction

functions on each neighborhood, for each order, producing
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power series that agree on overlaps. A previous result of
Kodaira and Spencer (see [Kodaira and Spencer 1]) verifies
that those corrections can be made on a compact manifold so
as to ensure convergence near V. The choice of coordinates
for M also shows that the above family is maximal.

The second theorem is on ﬁhe rigidity of éomplex struc-
tures under deformations. By a deformation of a compact com-~

plex mainfold M & W, we mean a proper regular holomorphic map

between complex manifolds, @ : W+ U such that M is biholcmor-

phically equivalent to § *(x) for some x in U. By proper we
mean that the preimage of a compact set is compact and re-
gular implies that the Jacobian maintains maximal rank. We
seek a criterionuﬁor determing the existence of a neighbor-

hood V of x such that
w™ (V) = v x M biholomorphically.

In that case the deformation is said‘to be trivial. The im-

portant point for us here is that this conditicon is local in

U but global on M. Alsc worth noting is the fact that the

corresponding condition in the differential category always

holds, hence the terminclogy "deformation of complex struc-
ures."

Kodaira and Spencer denote by B the sheaf ¢(T'M) and

btain the following result (see [Kodaira and Spencer 2]).
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Theorem. If Hl(H) = 0 then small deformations are trivial,
that is, for any deformaticn, 3 : W > U of M= &(x)<: W,
then there exists a neighborhood V of % in U such that

Shv) = v oxom biholomorphically.

Sketch of proof. Kodaira and Spenéer start with the exact
sequence defining thé-ﬂormai bundle and then consider the
corresponding sequence in which the normal bundle is replaced
by the canonical 1ift of T'U. They then consider the sheaves
of germs of holomorphic sections of these bundles and consider
the corresponding long exact sequence of sheaves. By passage
to the direct limit over x, the above vanishing condition is
seen to imply the vanishing of the limit coboundary operator.
Because all sheaves considered are finite dimensional modules

~of ¢, for open v C U, the authors infer the vanishing of the
v

coboundary operator on germs of sections over some open set V.
There is then a short exact subsequence for hblomorphic sections
over V and it is then a2 simple matter to lift exp to a function
from T;V X M to m(V) to parameterize the trivial deformation.

At this point I feel it worthwhile to quote the sage

"One can think of a Cech cochain with coefficients

o8 as-an"infinitesimal#change“in_theutransition functions

 ich define M as a complex manifold, and factoring out by
oboundaries just removes the ambiguity of infinitesimal changes

holomorphic coordinates; thus the theorem can be thought of
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as sayiné that there are no small deformations of M if there
are no infinitesimal ones." -

Kodaira and Spencer also develop a similar theory on
deformations of complex vector bundles but in the sequel we
shall only need to considerﬁdefofmations of the bundle struc-

ture over a fixed base. In this céée the deformation is de-

fined by

where

E + $_l(y), yeuU
are the bundles to be deformed and
W =M x U biholomorphically.

he latter fact is crucial, as the tangent bundle of
W splits canonically, and deformations of the base can be
assumed to vanish. Kodaira and Spencer work with principal

bundles since derivatives of the bundle structure take wvalues

in the Lie algebra of the structure group, and in this setting
the coboundary map of the previous theorem, which essentially

mods out by coordinate changes, lifts to a map taking values

in the sheaf of holomorphic sections of a bundle whose fiber
is the Lie-algebra-of the structure group. In the case of

eformations of vector bundles, then, the triviality condi-
tion specializes to the vanishing of Hl(EQE*), since the

Structure group is GL(n,C). This and the previous vanishing
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condition will be referred to as rigidity. Let us now verify
a few vanishing results.

We will be working with line bundles on:Pl, which are
of the type 0(m) where the m + 1 global sections of 0(m) (m>0)

can be represented as the homogeneous polynomials of degree m.

For 'ilnstance, consider TﬁPl, the tangent bundle of:Pl. If v
is a global holomorphic vector field then
= d _ 1
v = a(z)dW where w = z °
Let a(z) =1 a.z' and b{w) = i biwl,
i=0 1 i=0
=p 32 ., 1
then a==»> el b 5
w
= i_ 2 1
S0 ui:o aiz AR bi zl r
implyin a=a + a.z + a 22 = b, + b,z2, + b 22
HpLying o 1 2 2 1%1
and ﬂPl = 0(2). We will alsoc need a portion of Bott's rule:
. +m-
dim B°® ,0(m)) = (M) 55 g
dim HpﬂPn,O(m)) =9 n>p>40Q

Clearly -then;-a normal bundle -isomorphic to 0(m) for m z 0

atisfies the hypothesis of Kodaira's theorem. We will even-

Ually be concerned with normal bundles isomorphic to 0(2).
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From Bott's rule, we have the following:

Corollary. If Q{::Pn+l is a non-degenerate quadric, then
HY(Q,00m) = 0 if n s 2 ms o.

Proof. This follows direétly from the long exact sequence

induced by the following short exéct sequence

1) 0 + &(m-2) sﬁ(m) EO’Q(m) + 0

where g is multiplication by the defining function and p is

restriction to Q. This implies Hl(Q,UTnU) CZ.HzﬂPn+l,OTm-2)).

Now we need to verify the rigidity of two bundles.

I) TﬂPn. This bundle is described by the short exact

seguence

0 - %n—’i» (a+1) 01} » T'B_ - 0

where A multiplies a holomorphic function (constant) by the

n + 1 homogeneous coordinates onﬁPn. Bott's rule implies that

'HlGPn,&11)) = HZGPnW) = 0 so from the induced long exact se-

. 1
‘Quence H GPn,O’(T’TEPn)) 0.

II) T’Q where Q is a quadric hypersurface in:@n. Let

T=0®,| ), and let N = T/170 = 0(2) be the sheaf of
olomorphic sections-of the normal-bundle of Q. The short
Xact sequence defining N induces the following long exact

eguence:

0 - H“(T'Q) > H°(T)-E*H°(N) - Hl(T'Q) - Hl(T) e
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As in the above example T is given by
0 - &fr+(n+l)6ﬂl) =T+ 0

so by the corollary to Bott's rule, Hl(T) = 0. From the fact

that SL(n+1,C) acts effectively onp_, H°(Pn,T) x1(n+lg).

On the other hand SO(n+l,Ei acts effectively on Q, so

H°(Q,T’Q) = Xo(n+1,E) and the image of ¢ has dimension

(n+l)2 -1 - (n+l - (n+2

while by 1) H°(N) can be identified with the symmetric

_{n+l) x (n+l) matrices modulo the defining function of Q and 5

n+2

also has dimension ( 5 } - 1. Therefore u is onto and

wh(rrQ) = 0.

We mention that this verification of the above well-

{known results, and the following two theorems come From the

hesis of LeBrun.

We will now define two structures on complex manifolds
hat, although common, will not be given the standard defini-
ions due to the manner they are arrived at in twistor theory.
e first is the conformal structure. ?
The conformal structure of a complex manifold M is an
quivalence class of holomorphic metrics on T'M under the
quivaltence-relation of-multiplication-by hon—vanishin§ holo-
rphic functions. Such a metric determines in each tangent
Ce a non-degenerate quadric cone of null vectors, that is,

ctors V, such that g(?{?) = 0. This is clearly independent
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of the choice of representative metric, but what is not clear
is that such a holomorphic prescription of quadric'cones in the
tangent space of M defines a conformal structure.

Here we define a conformal structure to be a holomerphic
guadric subbundle Q, of PT'M. By this we mean a complex sub-
manifold of PT'M that intersects each fiber in & non-degenerate

guadric.

Proposition. Q defines a holomorphic line subbundle of

f*M)@Z, © being the symmetric tensor product, hence defining

a conformal structure in the usual sense.

Proof. By the rigidity of the quadric, Q has the structure
of a holomorphic fiber bundle, i.e., local trivalizations.

Over such a region V, consider the exact sequence of sheaves

on PT’'V

0 - IQ(Z) - O(2) E 05(2) + 0

which describes the ideal sheaf of Q of homogeneity 2. p here
estricts to Q; that is, annihilates stalks over points not in
Q. Now since Hl(Q,ﬁ) = 0, the restriction of the Hopf bundle

© Q over V is biholomorphically the Hopf bundle restricted to

:X V, so by the Kunneth formula

H°(&Q(2)) B (@xV,0(2)) = B°(V,0) & HE°(d,0(2))

T

2t hrcw, e
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while for similar reasoning for:Pn instead of ¢

HO(0(2) = (A8 po g oy

Therefore p has a kernel acting on global sections over V, any

element of which is a local representative metric of the con-

formal structure. Hence a conformal structure in the usual

sense is equivalent to a holomorphically varying prescription

of non~degenerate quadric cones in the tangent bundle of a

complex manifold. We wish now to examine projective structures.

Projective structure usually refers to an equivalence

‘class of connections, where two such are associated if they de-

fine the same geodesics. In the same spirit as before we might

lope to define the structure in terms of the geodesic. Here we

111 define a projective structure on M, as a collection L of

omplex curves (inextendable immersed connected complex 1~

énifolds) such that over each point (6,¥) « PT'M there is a

—
nique curve with v as its tangent direction, and such that the

eésulting foliation is holomorphic. We will refer to the curves

L as geodesics.

Oposition. On a complex manifold M with a projective structure,

Y any coordinate neighborhood one can find Christoffel symbols

*h that solutions of-the geodesic-equations parameterize the

of.

We first claim that the equivalence classes of such
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Christoffel symbols are described by the exact sequence.

2) 0+ 0SB0

3 _ ) . 3 -

where a(f)(Yi /Bxi) = (yif(yi /axi), ,ynf(yi /Bxi))f s ().

Given a Christoffel symbol and a point (p,?) e T'M, f£ind the

ccfresponding geodesic, £(s), and 1lift it to the tangent bundle.

2

The Christoffel symbol would equal g—é. A different Christoffel
ds

symbol giving that curve lifted to the game point would

differ from the first by

a’e _ g% _ d% _ 4 dtds, _ ae d®s _ o (2% (at)) (X
s’  ae?  gs? OE\ds'at) T @t 2 dt

where the use of ¢ implies passage to PT'M which is justified

by the linearity of £%.

Finding a holomorphic section of n®{2) on an open set

in PT'M is known to be possible because it is possible to

straighten out the foliation, L, in lgcal cocrdinates such
2

hat 2y parameterizes the curves and 5 £ g L works, but

dzl
here is no guarantee that this is even an algebraic function
tangent directions of M. However, we know by our vanishing

esults, that over a Stein coordinate patch V in M

1 1, _ ol =
HO@TV,0(1)) = B (VxB__;,011)) = B (®__,,0(1) 8.0 =0

by the long exact sequence associated with 2),

r

0 - I'¢(l} — nrd(2Yy =— TC + 0 + «ae
Qs B
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the above local sections of n@(2) can be patched together to

form a global section of nf(2) over V. This is. then quadratic

on the tangent space and can be uniquely associated with a sym-

metric bilinear form whose components are Christoffel symbols g
which locally, in M, define the gsystem of curves L.

Now that we have shown how to construct the standard
analytic structures defining conformal structure and projective
structure from the geometric objects they define, let us look
at the way in which twistor theorists arrive at these geometric
objects. We will be concerned with three-dimensional twistor
theory which, in our cases, describes the geometry of certain
three-dimensional spaces in terms of rational curves on a éur-
face. Let V be a compact holomorphic complex one-submanifold
of a complex two-manifold, W, whose normal bundle N is iso-
@orphic to #(2). Kodaira's theorem then applies and V belongs

to a locally complete family, VP, Parameterized by a 3-dimen-

Sional complex manifold M such that
T'M 2 H°(V_,N_).
P ( P P)

We first define the conformal structure on M by specify-

ng the null cone of TéM as elements of HO{VP'NP) that vanish

Some point with multiplicity 2. Since N = 0(2) a section
_given in terms of homogeneous coordinates (zl,zz) on V

iazg + bzozl + czi S0 cur vanishing condition is equivalent

he vanishing of the discriminant

bz‘— dac
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which defines a quadric cone and therefore a conformal struc-

ture.

Now pick a point p ¢ M and a direction in

T'M = H°(V_,N ).
o PP

By the isomorphism that direction is a one~dimensional space

of quadratic polynomials and can therefore be specified by the

two roots Yir¥s- To find a corresponding curve in M we use the

algebraic geometric technique of blowing up a line bundle at

points (see Griffiths and Harris). The biow—dp of the line

bundle 0(m) at a point éroduces the line bundle 0(m-1) so in

the case where Yy # Yo+, blowing up the surface W at points
n,
Yy and Y, C Vp C W produces a new curve Vb which is the 1lift

A, o
of Vp i1 a new surface W, such that ¥V now has a trivial normal

bundle in ﬁ.

Kodaira's theorem now guarantees a l-parameter

family of such lines which, for homoiogical reasons, all inter-

sect both exceptional divisors, that is, projected back down

to W, they all pass through y, and Therefore, the tangent
1 Yae

vector to this family p corresponds to a section of the normal

bundle that vanished at ¥, and Yo

hence is the prescribed
direction.

If Y1 = ¥, we blow up W at ¥i to get a new curve-

Ny %
zb in W and then blow up W at the intersection of Vé, with the
¥ 0y
: n N
exceptional divisor.

The new curve Vp C W again has trivial

ormal bundle, thus defining a 1

~parameter family of curves

whose projection back to W to curve that all meet VP tangentially

'gy. Hence they meet each other tangentially so the tangent
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vector to the curve at every point q, corresponds to a section
of the normal bundle of Vq which has a double root. This shows
that the tangent vector to the curve is everywhere null.

Having now generated a distinguished curve in M at all
points p and for every direction, we use our previcus result
to assert the existence of a projective structure on M for
which these curves are geodesics. Further, because curves
starting in a null direction remain null, we have compatability
bétween projective and conformal structures on M. Hitchin goes
on to show that there is a distinguisﬁed affine connection with
the projective class which preserves the“conforma%‘structure
by showing the three manifold M has a Weyl geometry. However,
- our examples are the simplest, being the only two correspond*

. ing to rational curves on compact surface and the choice of

‘the above structures will be obvious.

Both of our examples are quadric cones in P The first

3
example is the degenerate cone

- 2 2 2 _ a1

Hyperplanes omitting the vertex (1,0,0,0) then cut the cone in
auplane conic. Because two such planes intersect in a line

_hich meets the cone at two points these curves have self-inter-
ection 2 and hence a normal bundle 0(2). If we parameterize the
yperplane sections by the dual space,:@?, then by the omission

f the vertex, we may find euclidean coordinates on the entire parameter sapce M,
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such that M = E3. Indeed the corresponding conformal struc-
ture is flat. We will go further into this example in a later
section.

The example which is our twistor space is the non-singular

guadric Qz,inZP3:

W2 @)% (zy0215:2500255) e Palzy 2,, - 252, = 0},

so W EZPl X Pl and we put coordinates on this quadric via the

Segre imbedding,
(lrgl) x (lrgz) - ("gltglgzr“lfgz)

and again choose the rational curves to be non-degenerate hyper-
plane sections, which we parameterize byiwg\gz. If we use the

_isomorphism provided by the above quadratic form to relate:P3

and its dual, our rational curves are given by,

{ - -z = !

£11927%12

Hayrgy)lay - 719,725,

0, det(zij) # 0}.

3y a reasoning similar that above, these curves have normal
undle 0(2). The non-null geodesics are described in terms of
Wwo null directions, not orthogonal to each other, as the set
£ - hyperplane sections vanishing at exactly those null direc-
.Ons. With the above isomorphism these_can be identified

ﬂEh the pencil of directions orthogonal to the span of the

ven null directions. If one identifies:P§\62 with
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SL{2,C) = {(211,212,221,222)|211222—212221 =1},

then the holomorphic metric induced by the quadratic form
associated with det(zij), is the Cartan-Killing form for
SL(2,C). Since this metric is bivariant (left and right in-
variant) the group homomorphism exp and the geqqgsic flow exp
coincide. Because SL(2,C) is an affine guadric, its geodesics
are intersections of the affine quadric with 2-planes contain-
ing the origin.r Indeed, because a matrix satisfies its own

- characteristic polynomial (quadratic for two-by-two matrices),

:the power series for exp reduces to holomorphic combinations :

of position and direction. 1In fact, for null vectors the Cayley-

By the definition of the tangent space for an affine quadric, ?
ﬁhese two vectors are orthogonal and the defining gquadratic
ﬁprm induces a degenerate conformal structure on their span;
hat is, they span a null plane.

Hitchin describes another structure that exists in three
imensions and has a nice realization in the present example.
akea Vo’ a curve in a complex surface W, with normal bundle
2), as before. Choose oanO a distinguished point v and

n
w up W at v. Vo_then lift to a curve Vo with normal bundle

). By Kodaira's theorem we have a net of curves, containing
corresponding to a surface S, in the parameter space of de-

Imations. A tangent vector to S at the point corresponding
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to VO, corresponds to section of thernormal bundle of Vb that
vanishes at v and some other point vy The geodesic in that
directicn will, by constrﬁction, correspond to curves passing
through these two points, so the geodesic remains in S. This
reasoning, applied to other peoints of S, shows that it is total-
ly geodesic. Further, since all tangent directions of S cor-
respond to sections of a normal bundle that vanish ét vV, the

quadratic form representing such a section, factors into
(zo-vzl)(azo+8zl).

Therefore, the conformal structure degenerates on this plane

so that there is a unique null direction in the tangent space
to S corresponding to sections of a normal bundle having a
idouble zero at v. In the case of SL(2,T), each such surface
1s the intersection of SL{2,f) with a null hyperplane; hence
the degenerate conformal structure. Each surface is feoliated

v a pencil of null geodesics corresponding to a Schubert cycle
f null 2-planes containing the null direction and contained

h thé dual null hyperplane. These 2-planes osculate the null
adric in IP3 c G:4 to first or&er, s0 in the large, the space

£ null geodesics on SL(2,T) is parameterized by excising
erticle and horizontal directionsVfrom:PT’UPlein i.e., by
‘PPN U ) .

In a sense, the above observations constitutes half of

# problem, but a closer loock at the twistor resolution of the
nimal surface equations in2R3 will be required to ﬁotivate the

mainder of the solution.
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Twistor Theory in R

3

The interaction between complex analysis and gecmetry
has taken tremendous leaps in recent years. 1In fack, Nigel
Hitchin has said that the aim of twistor theory is "to encode
as much of mathematical physics as possible in?q_holomorphic
form and there torely on the gecmetry, supported only by the
constraints of the Cauchy-Riemann equations, to provide a
description of the universe" [Hitchin 2]. He likes to
point out, however, that this approach is by no means new.
Welerstrass did essentially this when he gave a construction
qf minimal surfaces in terms of one hoiomorphic function. It
turns out that this solution, in twistor theoretic terms, is
the flat version of ours so we present here, Hitchin's version
of the Weierstrass representation.

The space of oriented geodesics in1R3 can be para-

3 1 A + . ==
meterized by a unit tangent vector u and a pesition vector v

which is the point of the geodesic closest to the origin.

—t
The latter requirement not only determines v uniquely, but
foreces v to be perpendicular to u. These conditions describe

the tangent bundle of the two sphere. We denote a para-

meterized geodesic by y(t) and a variation of this by v(t,s}.

If'we-consi&erﬂﬁ“and~$~to_be‘functions of s and denote 8/Ss

as "." then
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and the normal component of the Jacobi field is

o L Y =y =
(°/3sY) = tu+v = (v.0)T.
If we, on the other hand, consider y(s) to be a curve in T(Szhgiven/

— - '
by (u,v), then the tangent vector to that curve is

(W, v - (¥-Wa)
where the above 'splitting of TT(SZ) is that induced by the

flat connection on:R;. We define an almost complex structure

for T82 by

J(E,?-(?,H)§) = (uXﬁ,VXU-(v,G)G).

With the benefit of this splitting it is not hard to see that

the above almost complex structure is that of TﬂPl, as it is

well known that

. al
Pl = 57,

Henceforth, we will describe our space of geodegics as TﬂPl.
We will now describe the global holomorphic sections of

this bundle. We denote by P, the section of T’]Pl correspond-
X

ng to thé set of lines through the point X e:RB. Because
“here is a unique line for each direction this defines a
ection and because the nearest point to the origin varies
moothly with direction, this is a smooth section. Further,

he second component of the velocity of a curve in TUPI,
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contained in this section, is the velocity of a curve obtained
by intersecting the corresponding lines with a fixed plane
orthogonal to the line at which the velocity is taken. There-
fore, the section is easily seen to be holomorphic. In gen-
eral, if £ is an euclidean coordinate onﬁPl, then we showed -

in the last section that TﬁPl is the line bundle 0(2) so

sections can be represented by

- 2 4
s(zZ} = (az°+b +c) a -

To characterize sections of the form P, for some %, we
X

notice that such sections are fixed by the map that reverses
orientation of the lines, which is given by

. —
T(a,v) ¥ (-u,v).

This 1lifts the action of the negative of the antipodal map

o, which is given in terms of [ by

alz) = -z -

Therefore T is an antiholomorphic involution on the sections
of T'3Pl and so defines a real structure that identifies sec-
tions of the form P_ as real sections. The constraints this

X
mposes on coordinates {(a,b,c) are

b=b and a = -¢ .

We may then represent P, for ; = (xl,xz,x3) EZRB as a
x .

real section by:
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S(T) = (lxp+ixg) = 2250 = (x;-ix,) 02 Yag

In the last section we found the conformal structure to be

given by the cone of sections that have a double zero at some

point. This is equivalent to the vanishing of the descri-
minant,b2 - 4ac,which is a quadratic form and hence a repre-

sentative metric of the conformal class. In terms of the

complexification of the above coordinates X ¢ m3, this form

is simply the extension of the standard euclidean metric to E3
holomorphically, so our conformal class is flat. We remark

that the above representation of E3 is the complexification

of the Lie algebra of SU(2).

We can now prove the main result of this section.

Theorem (Hitchin). Minimal surfaces inﬁR3 are in one-to-ocne

correspondence with holomorphic curves in TP.

Proof. Given a minimal surface, we add i times the conjugate
harmonic function of each coordinate to that coordinate, which
by the Cauchy-Riemann equations and the formula for the gen-
eralized Gauss map produces a holomorphic null curve in E3.
Through each point in the curve Passes a unigque tangent null
hyperplane orthogonal to the tangent direction. If we denote
the null curve by f(z), where z =_x+iy, then the null direc-

tion is

(Re{i’})x + i(Re{i‘})Y
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and the unique real direction orthogonal to this is simply
given by (Re{f})x x (Re{i})y. Therefore, the intersection
of this null plane with the real slice is a geodesic whose
direction is given by the traditional Gauss map so we have

a holomorphic curve in therﬁwistor space.

Conversely, given such a cur%e, we may represent it in

local coordinates, away from points where tangent to the curve

is vertical, by a holomorphic function
- o= £().

The equations for a section that osculates this curve to second

*

order at ¢ are

a + bt + cz” = £{)
b + 2cz = £'(z)
2c = £ (¢).

The corresponding curve in m3 is given by

(£-CE +%C2f” , £ - Cf",-J-z‘-f") i

In standard euclidean coordinatesgiven above, these equations

become

i
o
]

e _J-_ - 2 e r_ w
1= Re(5(1-27)E£" +Tf'-£) |

=
il

, = Re(- %(1+C2)f" +iCE’ - if)
Xy = Re (CE" - £7)

which, from a previous section, is exactly Weierstrass' later

representation of minimal surface.
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Immersion Theorem

We give a local, intrinsic characterization of the
metrics on Riemann surfaces that can be realized as metrics
induced by a minimal immersion of the surface into R7. This

is the well known Ricci condition, but we present part of a

generalization that shows that such surfaces can also be im-
mersed as constant mean curvature one surfaces in Hyperbolic

Space. For the full generalization see [Lawson, 3]

Theorem. Let d52 be a C3 Riemannian metric defined over a
simply-connected Riemann .surface §. Suppose that the Gauss
curvature of this metric is negative and suppose further

that the métric satisfies the Riccei condition, that is,
ng = =K d32

is a flat metric. Then for c = 0,1, there is a 2r-periodic
family of iscmetric immersions of constant mean curvature c,
into the three~dimensional space form of constant sectional

curvature -c. Moreover, given such a surface, its maximal
eXtension is contained in the family for parameter value

8, 0 < 8 <7, up to rigid motions. !

Proof.. We assume, for now, that-§ is not cet. By the |
Koebe Uniformization Theorem, then we can assume § to be

the plane or the disk, and we can assume isothermal co-

ordinates, the metric being given by
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d52 = Fdz.

"\
The Gauss curvature of d52 vanishing implies

A log(—KFz) = 0,
which, in turn implies existence of a holomo

rphic function,

unigue up to rotation and globally defined, with

|f[2 = RF2.

The important observation is that this function is essentially

the second fundamental form. Specifically, let

/Re{elef}-kcF Im{elef} \\
.. = :
ij i

l -
\ [ *
\Im{elef} -Re{elef} + cF/

Immediately we observe
_ 2
1) det[I] = (c-K)F<,
and some computation verifies

2} Hij;k = 1,

where semi-colon refers to covariant differentiation.
Equations 1) and 2) are Gauss curvature and Codazzi-
‘Mainardi equations for hypersurfaces in a space of constant

curvature. These are well known to be integrability condi-

tions for the existence of a surface realizing the given
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What we have done to the second fundamental form is to add

the metric to it so,

/ by hlz\ 1817 By,

1-

12 22 812 811

In particular, we have shown
a, Y]
4) n =n £f=£.

Concluding, we have shown that a simply-connected
Riemann surface with a metric satisfyving the Ricci condition
can be isometrically immersed both as a minimal surface in
Es or as a surface of constant mean curvature one in hyperbolic
space. Lawson actually shows considerably more and we refer
the interested reader to {[Lawson, 3]. Also, we note that
because we assumed the above metrics to have negative curvature
our exclusion of EEJ' was not restrictive. FPFurther, from
equation 4) we have identified the important holomorphic forms

in both settings. These forms will be central in the verifi-

cation of the results of Robert Bryant.
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metric and second fundamental form (see [Spivak]). Because
we are dealing with hypersurfaces, the metric and second
fundamental form contain all of the information about the
ambient connection, so for each radial direction in a global
coordinate system, we define a curve in the Lie algebra of
the structure group for the bundle of pseudo-orthonormal

frames. This gives rise to a system of eguations
3 x @) = Al xeel?),

where the column vectorsof X are an adapted pseudo-orthonormal
frame. 1In particular, the Ffirst column of X,ié = gb’ is the
desired immersion. |

Because:H3 is homogeneous, this frame bundle is a group
and equation 3) can be expressed in terms of connection one

forms. When ¢ = 0 we get egquations of a minimal surface in
3

R™ lifted to the bundle of affine orthonormal frames. In
this case eé + ieé =0 such that

6R6 = 2F]dz[2,

Bi is determined intrinsically from Christoffel symbols, and 63

come from the second fundamental form. When c = 1, we have the

same metric so
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The Holomorphic Lifting

This is the appellation modestly suggested by Robert
Bryant in response to our references to the Bryant Lifting.
His reason was to avqid the physicists' tendency to name
everytg;pg thgt moves.after someone. Maybe, in the spirit
of Banach, he should call it lifting B.

In the last section we verified the existence of the
desired immersion by demonstrating a map of the surface into
the structure group of the bundle of pseudo~-orthonormal
frames which correspond to adapted frames. It is the mar-
velous observation of Robert Bryant that there is a lifting
to the same group which is not adapted but holomorphic. In
fact, we can find complex coordinates on this group by
1ifting to the spin double cover, SL(2,IT). There
one has, as with minimal surfaces, a holomorphic resolution
to the problem. The resolution for minimal surfaces is a
holomerphic null curve in E3, the complexified translation
group. The translation group moves an initial frame around
by parallel translation and a rotation is required to make
the frame adapted at other points of the minimal surface.
Interestingly, exactly the same rotation is the difference
‘between the holomorphic and-adapted frames for the hyperbolic
surface. Although this is not fully accounted for yet, we
present Bryant's proof in terms that emphasize the similarity.

As his paper is quite beautiful the interested reader should
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refer to it.

As this result is true up to isometry we will take the
liberty of fixing an initial point. 1In terms of the repre-
sentation ofIL4 as two-by-two Hermitian matrices and the Spin
action of SL(?,E) described previously, we will consider =

-projection from SL(2,T) to:H3 S

SU(2) + sL(2,T)

¥

HB

corresponding to the orbit under the spin action of the point
(1,0,0,0) = identity matrix. Hence the projection is given

simply by
g~ gg*, g e SL(2,T).

Theorem (Bryant). Let M be a simply-connected Riemann surface
endowed with a metric satisfying the hypothesis of the
immersion theorem of the previous section, and let

= 3
XO T M>-EHT,

be the conformal immersion of constant mean curvature 1 generat-
ed by that theorem. Then there is a lifting to a holomorphic
curve in SL(2,C) which is null with respect to the Cartan-
Killing form (given on SL{2,T) by‘determinant) such that the
following diagram commutes.

SL(2,T)
1 gg*

MT—2 _,j

b 4
X
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Conversely any such holomorphic null curve in SL(2,C) pro-
jects to a surface of constant mean curvature one in hyper-

bolic space.

Proof. We first prove the converse. This projection is known

to be conformal on null curves so we indeed obtain a smooth

—

|
surface ?6, in the pseudosphere. Let 26 = e, where {ga} is ‘

an adapted frame. In a calculation similar to that done pre-
3

viously for R

AXO = eo-l-He3

where H is mean curvatura. However, because Y is holomorphic,

with respect to a complex parameter z,

=%

=y = 2 vy,

> 2
AX(z) = =
3?7 F

Rl

which is a null vector inim4. Because the frame is pseudo-
orthonormal this implies H = 1.

Given a constant mean curvature one immersion fg, of
M into:HB, we seek a holomorphic curve which then necessarily
must project conformally into JH3 - It can be shown that for the pro-
Jection to restrict to the curve conformally, the lifting must be mull. For such
curves, if we pull back theIH3 metric to the Lie algebra,
®1{2,C)- = m§ we .get the standard Hermitian norm on EB. The
left invarient one-form restricted to a holomorphic curve

is holomorphic so by the rigidity of holomorphic maps into

t? with préscribed Hermitian norm, the curve in x1(2,C)
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corresponding to a holomorphic lifting would necessarily be
the generalized Gauss map of the associated minimal surface.
However, we wish to present Bryant's proof of the theorem
in terms that will emphasize the relationship between the
holomorphic and adapted frames.

In the notation used previously, wﬁere the pullback
of the connection forms on the bundle of frames, to the

Riemann surface is denoted by the same symbol, the Lie algebra-

valued one-form‘corresponding to an adapted frame is given by

From the identities, ﬁ =n, £=f£f and 6 = w, cobtained from

the immersion theorem, (see that section}) we have that

= 0 1y _ 0 1
1) Q=8 + ZM(O 0) =8 + 28(0 O)

Let us denote the solution of the equations that these

forms generate by
X : M+ SL(2,0),

which corresponds to an adapted frame on the surface in:H3.
This is actually the solution to the equations described in
the section of the immersion theorem. In order that X and

Y project to the same surface, it is necessary that

-1

X = ¥Yh
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for
h :M - 8U(2).
It was Robert Bryant's beautiful observation that h
solves
2) h™lh' = -3 -

which means that h is the lift to SU(2) of an adapted frame

of the associated minimal surface in2m3.

Therefore by 2)

0 0
= (xa™hH tnh
=hytyntlig
and so
-1,, _ -1{0 1J
Y "Y' = 26h {0 0 h
- %10 1
= 26h {; O]h .
This is the spin action of SU(2) on u(2) s:RB, which is
isomorphic to the representation of S0(3) onJRB, and is

extended to m3 via multiplication by a complex-valued one-
form. But the curve in S0(3) is just the turning of the
adapted frame of ‘the "associated minimal surface and the one-

form is one such that

ds

il

gQeo
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hence this is exactly the generalized Gauss map of the

minimal surface. 1In particular, this is a holomorphic curve
in the Lie algebra of SL(2,E) which is null, since the initial
vector is, so ¥ is a holomorphic null curve having the original
immersion as a projection.

We have shown that premultiplication by a rotation, trans-
lation by a null curve in a complex Lie group, and then pro-
jecting onto the real slice conformally produces an adapted
frame in two different settings. As much as is known about
this situation, we feel that there is more to learn. The
role of h in particular is not well understood but the twistor
theory sheds much liéht on the rest; indeed, Nigel Hitchin has
conjectured-a generalization.

We conclude this section with a couple of remarks, both
of which are due to Robert Bryant. First, the holomorphic
lifting is unique up to a constant, for the kernel of the
projection is SU(2), so the difference of two such liftings
would be a holomorphic curve in a purely imaginary slice,
hence constant. Secondly, we assumed simple connectivity
but in absence of this, by continuation we still get a holo-
morphic lifting, defined on the universal cover and giving

a representation of the fundamental group in SU(2) in the

natural way.
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Polynomial Null Curves

It was shown by Lawson and Do Carmo [Lawson and Do Carmo 1]

that a complete embedded hypersurface in H" of constant mean

curvature 1 with exactly one point in its asymptotic boundary,
must be a horosphere. We have a similar result in that direc-
tion and we believe that more can be shown. A polynomial null
curve would have a single point in its asymptotic boundary but

would not necessarily be embedded or even immersed. Let us

give definitions,

Pefinition. By a polynomial null curve we will mean a two-by-
twoe matrix of polynomials, P(z},
/P11 () P12(2)

P(z) = such that det (P,

lj) =1
21(z) P22(z)

in SL{2,T), such that the restriction of the Cartan-Killing
on SL{2,L) to the curve vanishes. In other words, det{Pi.(z»= 0.
We will view the matrix as a pair of row vectorsand will ex-

pand these in powers. Therefore, if a; and bj denote constant

row vectors, we have

/ao+al'2 +a222 -{----"‘anzk
P(z) =
2 n
bo-i-blz-i-bzz + bnz
-al-+2azz +---+1‘1&tnzn-l
and P'{z) =

n-1
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Now because the nullity condition extends across the
singularity and because the addition of a multiple of one
row to another is an isometry in the Cartan-XKilling metric,
we may assume, without loss of generality, that bn = 0. In

order to examine the determinant in more depth, we will denote

a,
det(bl] by §
i

ij

In those terms we have

det(P(z)) = &, it - y?P-1 max(k,n-1) . 2ZF
ij=0 13 k=0 j=max (0,k-n) ¥=3.J
and
n = 2n-1 max(k-1l,n-1) _
det(P'z) =% _ ij6.ztT372 o5 5 (k=31 38, _, , 272
ij=1 1] k=2 j=max (1,k-n) Jr1

which, by the conditions on determinant, imply: E

max (k,n-1)
z

§_ =1, 8 . s
j=max (0,k-n) k-=3,]

and
max (k=-1,n~1) )
T, (k=3) 38, . .
J=max(1,k-n) k=33

Therefore, when X = 2n-1 we can infer that

when k = 2n -2 we find:

i

2
n-=1l,n-1 "~ 6n,n—2 and n(n—2)6n’n_2 (n -2n)6n’n_2

= (n2-2n+l)6

n-1,n-1
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hi . . - _ - _ .
which implies bn-2 Bzan and an—l Ylbn-l aja, if Bl # 0.

We are now prepared for the induction step.

Suppose now that all § terms in equations corresponding

to k = 2n-2 are zero for £ 5 i - 1, that b._p = Bpa, for

s
1A

i - 1, and that R o a, if 81,82,"', or Bm # 0

for m £ 1 - 2. BAlso assume i < n. Then K = 2n -1 implies-- -

2 =0=3""" (k-4)4¢
j=n-1i k_jrj B N jzn—i( -3)3

k-j,j'

Let Bs denote the first non-zero 8. Assuming s < i implies

a =g a for r < 1i-s-1
n-r rn

and Sk—j 4 =0 for J = n+l-s,--+,n-1 by the definition of
I
¢ and s. Also §,__. . =0 for j =n-i+1,-**,n-s-1 since

k=j = n-r 2 n-i+ s+l implies that j < k-n + i-s-1 = n-s-1

i _— 0] [ . - 4 —
and a _._ = a.a for these j's while b _g = Bpa, for L < i-1.

Therefore, in the equation for K = 2n-i, we have that

{(k-n+s) (n-s)§ + (k-n+1i) (n-1) 8 = 0

K=-n+ s,n~s k-n+i,n~-1i

=0= 6k—n+s,n—s + 6k—n+i,n-i'

This shows that these §'s are zero. If i = s there is only

one term, which is then zero, and if i < s then §'s are

zero by definition. Further, 6k—n+i,n-i = Gn,n—i implies
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The Gauss Maps

With the lifting of a surface of constant mean curvature
cne to SL({(2,T) as a holomorphic null curve, we have a tremen-
dously powerful tool which we will now exploit. We first
need -to find a representation of our hyperbolic Gauss_mgp in
this new setting.

In the last section we gave a repreéentation of this

Gauss map that used the holomorphic lifting, specifically

...d_ -ﬁi_ YY = 2 Y’Y'*.

— - _ - _E
o T o3 T 0 TF A 2 F

fo) 3

o

Recalling that this projection is simply the orbit of the

vector (1,0,0,0) under the spin action of SL(2,T) onim4, we
are led to consider the projection of Y’ in terms of an ac-
tion oniL4 of the group 51(2,&). Specifically, we will let
~a constant null Y’ act on.‘iL4 by the natural extension of the
spin action to #L(2,C) and determine the image. Because the 1
Lorentz metric on 2x2 matrices is given by determinant, which ’
vanishes on Y', we see that the image lies in the null cone.
Because it is a linear subspace and since we know the image
for one point, we conclude that the image of this map is

]R-i'(feh0 +;3 ) or |

) . N
[eo+e3] g GR+ .

In particular, we see that the projection of yry™L determines

-1

tyry™hy (pry iy *

] = [Y'(Y'lY‘l*)Y'] = [85%33].
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and 6k-n+s,n—s = 6n—i+s,n-s =0 impliggj}fﬁ

a =oaa forrs i-s,”

that is, a o_a

n-i+m+l — %p ﬁ if 61’82""’ 0r B;F# 0 for m < i-1.
We have, therefore, verified the induction hypothesis for

i. The process stops when max{(0,k-n) = b, for then det(P) has

a én,O term that does not appear in det(P’(z}). However, if

we consider it as being there with a coefficient of 0, then

the above machinery works on more time, giving 6n,0 = whic@

implies b_ = B,3, and we have then shown that

n r ’
ao+(Er=l G Z )an
P(z) = .
\ (£ BagZla, /
\ n-1 r B, . .
Finally, det(P(z)) =1 = (F 0 Bn_rz )det(a ) implies that
= n

s0 if we change basis so that B,a, = (1,0) then we see that
A\
P(z) = (G(Z) 1) )
1 0

which is a horosphere.
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Now we look at the Lie algebra of right invariant vector
fields on SL(2,E), which is also isomorphic as an algebra to
3 with a vector éross-product. The preimage of a line in
the light cone under the restriction of the above projection

to the Lie algebra is complex line in yL(z2,T) = E3 which isg

clearly null. 1If we projectivize

liz

r(zl{2,C)) =P

2

then the preimage of the projectivized light cone is the null
quadric Qlt::Pz. Both these spaces are diffeomorphically two-
spheres and from the explicit representation we will obtain,
the projection is an isometry with respect to the Fubini-
Study metric on:Pz and a spherical metric on the projectivized
light cone.

First we give the map between IPl and QlC P x1(2,T),

[ 2]

=g g

[1.9,1 = 2 21,
Y

which is the rational normal curve of degree two and hence
a biholomorphism. If we represent the projectivized light

cone as a unit sphere
) (lrxlrxz IX3)

then the composition of the above map with the projecticn
can be expressed by

X.=1ix
2

1

g, = — ’
2 1 X3
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which is simply a stereographic projection. So the pro—-

jection is a biholomorphism from QZCZ]P(:l(Z,E)) to the
projectivized light cone represented as a sphere with the

usual complex structure. Therefore, the velocity vector of

the lifted null curve in "space" coordinates (right invarient
coordindtes, see [Abraham and Marsden]) is exactly the hyéer—
bolic Gauss map. Now let us examine the velocity vector in
"body" coordinates (left invarient coordinates).

The Lie algebra of left invarient vector fields is also

obviously iscmorphic to E3. Furtﬁer, bebaﬁse SL(2,T) ié

acting onIL4 on the left by isometries, the metric on M in-
duced by the immersion in:ﬂ3 is left invarient. Explicitly,
we represent an element of the null cone with respect to the

Cartan-Killing form on SL(2,L) as metric on M induced by the

2
fl .
-1 g,
ilmmersion intoZHB. 'If we denote the induced metric on M by
2
ds® = 27 |dz|

then a calculaticon shows
2 2 2‘
2F = |£;|“(1+]qy D)

which is simply the matrix norm on Y_lY'. The alert reader

will also notice that this is exactly the formula given for

the metric of a minimal surface in terms of the functions in
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the Weierstrass representation. This is of course no accident
for as we have pointed out several times previously these are

the same functions! Specifically
fl = h and 91 = 9,

where h and g are the functions given in the Weierstrass re-
presentation of the associated isometric minimal surface, up
to rotation.

We would now have as powerful a tool as the Weierstrass
representation but for the fact that "integration" of a curve
in the Lie algebra of a group is not quite as easy as integra-
tion ofim3—valued forms. We can however, almost reduce the
problem to vector integration in E4 with what we have. If
we express the right invarient one-form on SL(2,L) restricted

to the curve (space coordinates) by

g, (92)2‘3
2 -1 9, /

then a calculation shows that we can represent Y' by

vrv~l o £

92 919

-1 g; /

\ 1

If we projectivize this vector we cbtain a curve in the
quadric QZIZ:P3. This gquadric is well-known to be isomorphic
toiPl X Pl and indeed the above representation in terms of g's

is exactly the Segre imbedding of P x Py into:ﬂ?3 as Q,.

1
Further extensive calculations yield the relations
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2 _ .2, 2 2 _ 2,

£ = £5 gz{gl) and £, = £, Ei
2

97 (g,) 93

which imply that

r roo_
Fo9p = £19; = £ -

where this f is KFZ, the function that determines the second

fundamental form. Unfortunately this is still one equation

short of determining f3 and allowing us to generate the curve

by integration. For determination of the unknown factor we

will need the twistor theory we have developed.
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Main Theorenm

It has long been known, {(see [Lawson 11) that minimal
surfaces of finite total curvature have interestingly well-
behaved Gauss maps. It is a theorem of Osserman that a
Riemann surface that igﬂgpmplete with respect to a metric
of finite total curvature is conformally equivalent to a com-
pact Riemann surface punctured at a finite number of points.
He also showed that the generalized Gauss map of a minimal
immersion into Euclidean space that induces a complete metric
of finite total curvature is algebraic and therefore has re-
movable singularities at the singularities of the metric.

It was at one time the hope of Lawson, Bryant, and the author
that a similar theorem could be proved for hyperbolic space.
It is a consequence of the main result of this paper that
quite the opposite is true. Finite total curvature imposes
no restriction whatever on the hyperbolic Gauss map. Indeed,
the Gauss map can be specified completely independently of
curvature.

We need now to establish some formalism. We will prove
the main theorem in the complex vector space m4, equipped with

nondegenerate quadratic form A,

tiet, | (z 4, Az D)

1172%127%217%53) =2z e C 211%227 219297 1>

The solutions will be contained in the affine quadric:

SL(2,L) = {Z ¢ mé]A(?{?) = 1}.
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Derivatives of the solutions will be curves in the null cone
Y 4 - A
N =1{z ¢ C°|A(z,2)= 0}.

The theorem will be verified by examining the projectivization

"of the above spaces:

. 4, _
1 %P, 20, sP(N) CP(E) =P

14

3
To use the projectivized results we need the following:

Note. Given a holomorphic curve ¥ : M +2P3\Q2, we can lift

uniquely to a holeomorphic curve &, in PSL(%¢)=SL(2’E)AE2'
For |z| < ¢ we represent ¥ by

fwll(z) ¥i,1(2)
¥(z) ={ |
lWZI(Z) sz(z)J
+1

where A(¥,¥) # 0. Then 0(z)

(VE(¥,91)¥(2z) is holomorphic,
since VA{-,-} is holomorphic. We recall the definition of null
curve in E4 as one whose tangent lines are all null, i.e., in
term of a local parameter z

A(e’(z),%’(z)) = 0.
If we 1lift A to the exterior algebra A*m4 as the linear

extension of

A(Vl/\"'f\vkawlA' "A‘Vk) det (A (vl'w:}) ) ’

defined on simple vectors, we can define the projectivization

of a curve [¥(z)] C.P3 to be null by requiring that
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1) BCYAY WA = Ay, v)a(e ) ~ Ay, vy 2 =g,

[1¥]

One easily checks that this condition is independent of local

parameter and homogeneocus representation, V.

Proposition 1. Where A(Y,Y) # 0, 9(z) is defined and o(z)

being null is equivalent to [¥(2)] being null.

Proof. Taking the derivative of A(2,9) = 1 implies A{(d,9")y = O
and the claim then follows from 1).
--We remark that if A(¥,¥) = 0, [¥({z)] is null while no

such cecncept is defined for a homogeneous representation, ¥.

For this nondegenerate quadratic form we can define a

"Hodge duality operator," =+ by

* ¢ ATDY ~ An-kmn

-l Y EE NN LY kn
vAixw = (v,wuw v,w e ATCTT,

. n . — — , .
where w e A"R" is elA---Aen for any oriented orthonormal basis

of €%. That this map is well-defined is verified exactly as ‘

in the real case. We also define the span:

k.n

span(w) = {Ve € viw=0} me 4 T,

m

—
Note. span(w) is a linear subspace of T" of dimension k or

less. For simple vectors ﬁiﬂ---ﬂﬁk,
span(wl. wk) = span/ Wi ),

the span defined here coincides with the usual definition.
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Lemma 1. Let S & ¢ be a k-dimension subspace of Co. There
is a basis {Ei} of T" s.t. span(gl,---,ék) = s.and the columns of

A(gi,gj) are a permutation of those of the identity matrix 1<i,jzn.

Proof. If A is nondegenerate on S then one diagonalizes A on
S and extends to an orthonormal basis via Witt's theorem.
If A is degenerate, one again diagonalizes A on § with respect
to {él""’ék} such that span(gl,---,gi) is isotropie and

{€i+l’."’ak} are orthonormal. Let

n— = ..“
L =7 lepan(ei+l, ,ek)

and note that by Witt's theorem 4 is nondegenerate on T.
Therefore, because an isotropie plane in S, has dimension less
than or equal to half the dimension of S there is a null vector,
ek+l’ such that A(el,ek+l) = 1. Because A is nondegenerate on
span(gl,§£+l), it is nondegenerate on T’ such that

T =T/ QLSPan(EH'§:+1) S0 we repeat this procedure until the

k
{el,"',gi} are exhausted. Then

il

see,0

—

T =R lepan(gi,---,e

)y

i’Ck+1” k+i

such that A is nondegenerate on R so by diagonalizing it there,

we are done.

—

T he o AT Er N P |
Lemma 2. span(*(vlﬂ vk)Lispan(vl 1) -

Proof. Let fEl,---;Eh} be a basis given by lemma 1 for

S = span(?lﬂ---ﬁ$k). Note that
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sPan(*GlA".A;k)) = span(*glﬂ---ﬂék) = {Us En!ﬁﬂ(*glﬂ---Agk)==O}

I

{Gecla (WG, 8 h - g,) =0 VYge pRighy

Because of the definition of the EJSf ) -

>z cean® 2 Aeeaaz, ...
g = ek+lA Aek+iﬁeqq_ A {\__Aek
. . — — -
implies U | e if a(e_,2 ) = 1 and letting
g =2, Aeeede  N..u13 Az e <
ER WS LU NepitC g mhey
h .} - . - -
shows u | e if A(em,em) = {,

Proposition 2.- For ﬁ“e“ﬁkmn span (*w) Cf(span(ﬁ))i.

Proof. Let {?l,---,gk} for 0 £ 1 £ k¥ be a basis for span(ﬁ)
of the sort guaranteed by Lemma 1. With respect to such a
basis, w is a sum of simple vectors which are pairwise
orthogonal with respect to the lifting of A. Therefore,

since.

span (+w) (T ecUNrew = 0}

= {4 e €?A(@NG, W) = 0 Yq & AR lg™y

if UAG is orthogonal to w it is orthogonal to each component.
Then the same reasoning used to finish Lemma 2 shows T is
orthogonal to the span of each component.

The geometric interpretation is clear; we can express

kmn as a sum of k-planes so that span,

‘a nonsimple element in A
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as defined here, is the intersection'df those planes and the
span of the dual is the subspace orthogonal to those planes.
We could then define a Span that would be the span of all
the vectors in these planes as the orthogonal space to the
span of the dual. Howéﬁer, because we will be concerned with
associated curves, which are siﬁple, we will henceforth use
the term dual to mean both the dual form and the orthogonal
space that it determines.

We will continue to denote a holomorphic null curve by
Y : M » Sﬁ(Z,E)fnoEing now that the projective class of this
curve (Y], is also a null curve. Let §'be the projection of

Y into:H3. We will use an euclidean coordinate on P

# 1 and
thereby refer to the Gauss maps as 9, and =2 determined by
- X
-1 ~g (g;)
[y ly,] - 1 1
=g 91 i
- 27
- =g, (g,)
vy ™ty o= | 72 ¢
e 92

projectively. We can now state the first version of the main

theorem.

Theorem 1. Given a Riemann surface and two meromorphic
functions having at worst simple poles, there is a null curve
in SL(2,C) which is holomorphic where dg, # 0,% and

having the projective class

-1 gl
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as its tangent direction. Further, the curve is locally an

immersion near points satisfying
-1
{gl°g2 (2} # 0

where {f(z),z} is the Schwartzian derivative, (f/f) - %(f/f)

and z is the coordinate of the range of gi.
Proof. The curve is given by

-9'2 — —_— . o

< L - - —. - T—_ ‘-!
§,/%2 */3_2_ 2192799 /92 | __glgz/iz._ i,
-1 g g . l
= I i —
s g —— M + - .

\ 22 g, ¥ 92 g, V92 .

Verification is left to the reader.

Remark. We have shown previously that the ratio of spherical

area of 9, and the induced metric area on the Riemann surface

is the curvature of that metric. Although a similar theorem

would be nice for the hyperbolic Gauss map, as we mentioned

the sphere at infinity inherits only a conformal structure.
Now a choice of origin in:H3 determines a representative
metric and then the theorem has meaning but is only true at

the origin. However, there is a bound on the degree to which

the theorem fails, which is an increasing function of distance

to the origin. Knowledge of the rate at which a function goes |




8 3.

to infinity can give some control on total curvature. Con-
versely, knowledge of both Gauss maps can give information
about distance to the origin. For instance, if ;5 is the
projection of Y into the pPseudosphere and X° the time co-

ordinate on the ambient Minkowski space then

1 =
~— g 2
dx®(7) = Te, v 21°.
91

We will show the existence of the null curve via twistor
theory so we now describe our twistor space in more detail.
As we have mentioned the twistor surfabe,for'a_£hree—dimen~i
Sional space of constant curvature is the space of geodesics
on the three-manifold. For:H3 represented as the pseudo-
sphere inim4, geodesics correspond to intersections of the
pPseudo-sphere with time-like 2-planes in:E4. We orient the
geodesics and parameterize the space of geodesics by specify-
ing the geodesic by its ordered "endpoints, ™ that‘is, the inter-
-Section of the 2-plane with the null cone. The space of
geodesics is then parameterized by the product of spheres,
minus the diagonal, and the conformal structure inherited by
the boundary is exactly that which makes the parameter space
conformallyﬁPl X Pl. This can be seen more directly in the
complexification,:ﬂ:.4 %R €. The 2-planes are the intersections

of null hyperplanes with the real slice, where the null direc-

tion dual to the hyperplane is not real. There the parameter

space Qz\{]Pl_LL]Pl) TPy x P\ UPllLIPl) - These considerations




85,

osculating hyperplane. 1If we lift the given curve to #’the

curve is given irrespective of lifting by
[«V AV AT .
In E4 the derivative of this dual curve is tangent to
i e e, —e - e
*(VAVI AT +£F5 4T ) vy,

This is a simple vector for all & which, by the nature of
the Hodge dual, is for every t, orthegonal to ¥ A¥V’, The
first order osculating plane is then *{VA¥'), which can be

written as VA (# (VAT AT")).
Theorem 2. Given a holomorphic curve in
JPl XJPl z Q2E: ]P3 EIP(::}l(Z,G!))

then, away from points where the original curve is tangent to
cne of the factors of:Pl XZEl, there is a holomorphic curve
in PSL(2,T) whose derivative, where non-zero, is the given

null direction.

Proocf. Using the notation of Proposition 3, by what we showed

at the beginning of this section, where *v A ¥/ AT” is not

null, the desired curve is

rof—

EAGTAT AT, «TAT AT (T AT AT,

A’ e .

If xT ATV A¥"” is null then we have shown YA/ AV is. The
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determine the complex structures that we will examine but not

the representation we'will give them.

n

Specifically we will examine m4 31(2,m) with non-
degenerate guadratic form A which is the polarization of de-
terminént on ﬂl(2,¢). SL(2,T) is the affine quadric de-
termined by Alg,q) = 1 and:H3 is the real slice deﬁermined
by the anti~holomorphic involution, Hermitian transpose. 1H3
is the image under exp of the real part of the Lie algebra
SL{2,C) and such elements of SL(2,C) are described in terms
of the corresponding Lorentz transformations as "boosts."
We will consider the ;mojecthdzatﬂmliP{gl(Z,IB * Py with null
quadric Q2 EIPl b Pl,of A, with the biholomorphism being given

by the Segré imbedding

"'gz glgz-l

[1,9,1 x [1,9,] » . Ll
_ 1

The use of 9, and g5 here is not accidental and connects the

two main theorems of this section.

Prcoposition 3. Given a holomorphic curve in

]Pl x]pl = @, C 11?3 sIP(:gL(Z,G:))

there is a holomorphic null curve inIP3 whose first order
osculating plane is at each point spanned by position and the

null direction determined by the given curve at that point. -

Proof. The curve is given by the dual of the second order




determinant defined by the above iifting of A implies
A(F,¥) =0 or A(R,37) = 0. By differentiating A(¥,¥) = 0
we find that A(?’,?’) = A(?,?”) SO we have that A(?’,@’) = 0.
Therefore the first order osculating plane, span(x(vAv’)) is
isotropic and the original curve is tangent to a factor as
promised. T

It is possible to compute this curve explicitly. From
equations 3) in our twistor section, describing the restric-
tion of hyperplane sections of 0(1) on P, restricted to QZ’

it is obvious that the intersection of a non-null hyperplane

in:P3 with @ E.Pl X Pl is the graph of a MObius transformation

fromiPl to:@l. Where the given curve in QZ EZPl xZPl is not
tangent to one of the factors, it can also be locally repre-
sented as the graph of some function n, from:ﬂ?l to.Pl. The
second order osculating hyperplane is then simply the graph

of the MSbius transformation that agrees with n to second

order at each point. Thisg generates a curve in PSL(2,T)

which is the same as that found above. It is given locally by

/- _— e , n°1’1" -
/ —§~%— + 7 "+ z ———— - n |
7 2n

t {
_ﬁy. £

/

i rnr re _‘.’

nf l + 2 g L .ll;

2 n V4

where z is the argument of n(z}. A simple but exceedingly

messy computation shows this to be equivalent to our

preceding representation for n = glog;l.
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Finally, we verify the claim made in Theorem 1 concern-
ing the vanishing of the derivative of this curve. Interest-
ingly enough, as with every other tool of this section, we
find another way of generating all holomorphic null curves
in SL(2,C). The Schwartzian derivative is a known invariant
of Mobius transformationé, which of course is zero for 2 MObius
transformation. Hence, one might ask if it in some way
measures the deviation of a function from the osculating
MGbius transformation. Since the derivative of our curve is

exactly this deviation, we are in a position to make that

characterization.

As previously mentioned, the Schwartzian derivative of

n(z), with fespect to z, is given by

1l .2

rs Ir —— —

{nrz} = ('TJ_ " - "]; ( n'_’)z = \/T‘,r d (\/r}'
n’ 2 1] dz2

In our case n = glOg;l and we will denote {n,z} = 2g. To
the fanciers of the Schwartzian it is well known that (see
[Goluzin 1]} if Wir W, are two independent solutions of an

associated second order differential equation
2) w gw = 0

then n =

Y1
= satisfies {n,z} = 2q.

2
By Abel’'s formula the Wronskian of solutions to 2) are con-

stant, which we normalize to be 1. This implies

1
‘ﬁ_= /nr and W, = Jnr .




Therefore,

the Wronskian matrix of these solutlons lS a

holomorphic curve in SL(z,C).

Though this curve is not nullj

itself, nullity is surprisingly easy to obtain. ConSLder

, L
_— W, Wl ZWl ]!
w’ - ’
T2 Mo T AW

This alteration Clearly does not affect the determinant but

observe what it does to the derivative:

\

w! Wl = w! ~ s

1 17V T A

W’ |

]

" o r !

_ . \Wz W2 T Wy T 2w, /

!-wl ZW

i
\-WZ zwzf
Since the Wronskian of solutions does not vanish, the de- T

rivative of W is non-zerg when {n,z} is non-zero. Another i

simple but messy calculation shows that W is exactly the

!
curve presented previously. Thus the derivative of our

null curve vanishes precisely when

{gloggl,z}




Examgles

We have shown that restrictions of curvature impose no

restrictions on the hyperbolic Gauss map, which is possibly

the most marked difference between the hyperbolic and Euclidean

cases. 8o now, after having spent most of the paper exp101t—

ing the similarities between these situations, we conclude by

using the results to generate examples that demonstrate some

of the differences. We also generate branched surfaces with

i any finite number of points in their asymptotic boundaries.
We dévelop some formalism that will allow us to talk _

about the asymptotic boundary. At the end of the last sec- |

tion, we showed that two independent normalized solutions,

Wy W, of the equation
w” + qw = 0,

generated holomorphic null curves of the form

r

Wl - ZWl

r - ’
W2 W2 ZW2

When projected to:H3, by gg*, the result is

r

W —_—r —
% o T @) R
g el 12, )

1 2 wl

- 12 L
(l+zz)(le| +lw2[

where the matrix R(z) goes to 0 in two cases. The first

case 1is curves for which




2 2
o112 + Jo, |
12

2
wil? + |wy

is bounded as z goes to infinity. Then R(z) consists 6fzférms

of order z_l. The other case involves poles of w; and Wy Then

w’ terms dominate w terms by one order and R contains terms on

"the order of

2
Qwy [7 + fwy %)

2
([wil + |w

which goes to zero at a pole.

In these-cases the limit of the projection in the asymptotic

boundary of I-13

r given in terms of homogeneous coordinates on

Pl described earlier, is

r r
{wl,wz}.

It is worth noting that while we will find that in most cases the

limit is given by the value of %he hyperbolic Gauss map, that

map is always given by |
[Wllwzl 4

which, a priori, would seem to have little chance of

being the asymptotic boundary.

We now consider two solutions that are natural in our

setting but are due to Robert Bryant. The first is generated

by e 2 and corresponds to a constant Schwartzian. It is given

by |




(l—z)ez.

zZ
e /2

—e-z/2 (l+z)e_z)

The left invariant one-form restricted to the curve is

2) /z —222‘\
dz

-/

/

o -

and the hyperbolic Gauss map is given by

2z

[1,e77].

From 2} we see that this immersion is isometric to Enneper’'s
surface but the hyperbolic Gauss map c¢learly has an essential
singularity at the boundary. This solution corresponds to

Wy = e? and Wy = e_z} which is an example of case 1 in our
discussion of asymptotic boundary. Hence, the curve itself
comes arbitrarily close to [l,ezzl for large z, so the entire
null cone is in the asymptotic boundary of this surface.
Clearly this is not an embedding.

z2u+l

The second example is generated by 2zt = >0,

r # 1 and is given by

1 /{u+l)zu uz_(“+l)

nz (u+1l)z "

The curve for negative r is a reflection of the curve for

positive r and r = 1 generates a constant. These are beautiful
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examples, all being surfaces of revolution, and Robert Bryant
does a thorough analysis of them so we quote here just the
results. We feel them to be guite necessary to include here

because we feel that their behavior at infinity might be a

model for all surfaces that approach a single boundary point

at a pole. T

The projection of these surfaces can be written in the

form
u+l H/z ((ZE}U o \ Jusl T
1
2L\ 4z u+1/ \ 0 (zz) 7 U/E u+l

which shows that the projection is single-valued even though
the lifting is multivalued. Bryant computes the metric and
finds that the total curvature is =47 (2p+l), which is clearly
not quantized as it is for minimal surfaces. Bryant also
finds that these surfaces of revolution have profile curves
that are embedded for f% < u < 0 and have a single self-
intersection for u > 0.

The next most logical examples to consider are solu-~
tions generated by polynomials. We will consider only poly-
nomials whose derivatives have simple zerces; that is, the
branch points of'the map all have multiplicity one. We will

denote the polynomial by n(z) and its Schwartzian derivative

by 2q = {n(z),2}. In order to describe asymptotic behavior

we will need to consider solutions of
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W'+ qw = 0,
which are given by

1, = -
3) wy = "//n", W, = 11
_.]_ "l

2
’ = =!-n"/ ’ ro_ wa Tm"*Z(T]')
and wl Yn 2n’), W2 = n ( on )

We now ask how thé solution behaves at zeroes of n’. Because
this implies that the corresponding graph is horizontal, the
null curve and its projection go to infinity. From the dis-
cussion at the beginning of the section, we must determine
which terms in 3) dominate. However, we can ignore the
common factor and otherwise Wy and w, are finite, so the

point in the asymptotic boundary is

r

r) 2]
1 7

w!
IW;I = [1r Z/W’] = [lr ﬂ‘z'"(-n'—-

[w 1 -

[, nl.

From the same formula we see that at the polescf n', wi and
w; again dominate and the limit in the asymptotic boundary
is [0, 1]. However, if n’ has a pole then n goes to in-

finity so we agaim have the limit in the boundary tc be [1, N].

In particular, we have shown:

Proposition. Given a holomorphic null generated via our tech-

nique from a meromorphic function on:@l,the limits in the

asymptotic boundary of singularities of the projection toZH3

-




94 .

are given by the values of the hyperbolic Gauss map at the
singular points of n’.

By the addition of a small linear term it is possible to have the
polynomial n take distinct values at the singular points of

r

1 so we have produced branched surfaces of constant mean
curvature one which have an arbitrary finite number of distinet
points in the asymptotic boundary. Also, because we ére not
concerned with location of the singular points in the domain

of n, we have considerable freedom in locating these points in
the boundary.

In.an effort to eliminate this branching, we have sought
functions &hose Schwartzian derivative does not vanish. To
this end we have found functions that generate immersions of
Pl, punctured at an arbitrary finite number of points. How-
ever, the behavior of the immersions is not yet well under-
stood because we know n’ but not n. These surfaces are gen-—
erated in the fashion used at the beginning of the Main Theorsm

section, using two Gauss maps. They are

1 (z"+1) 4 30¢ 9,

The integral does have periods so the behavior of this func-
tion is hard to characterize. This integral is of the type
in the Schwartz-Christoffel formula, which describe maps

from the disc to circular polygons, but the polygon corres-

ponding to this example has all of its vertices at infinity.
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The symmetry of the situation suggests that the periods of
94 give rise to representations of the fundamental group in
S0(3) that are cyclic but this is not yet known. However,
it is known that the Schwartzian derivative does not wvanish.
To compute it we use a composition rule

[{51,2} *{gz,z}]
2

o “1 =
{gl g2 IX} -

(g3) x = g,(a)

We note that from thisg formula, the Schwartzian derivative
takes value in the line bundle 0(4) oniPl."The Schwartzian

»Qf the above functions is o v

%

n, n-2 . _ n
_ ARz (1 - 4n% - an'- 3
(z2 + 1) 222
(2n - 1)2g4n~4 1
, *12m - 1)
n-2 )
= -4()) -2 . ]
(2n-1)% x%(x?/(2n=1) | 4|

which, on 0(4), does not vanish, even at singularities. We
mention that similér functions were used by Meeks [Meeks (1)]
to generate new minimal surfaces.

Finally, we close by elaborating on the statement by
Bryant that numerous examples may be found via the techniques
of algebraic geometry. One technique is as follows: Given
holomorphic null curves in EB, which correspond to minimal
surfaces, we can map them to null curves in the affine quadric

of a one higher dimensional space via stereographic projection,

which is conformal in the standard holomorphic metric.
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Specifically: compactify E3 as the image of a euclidean
coordinate chart on2P3, then embed this as a hyperplane in
P4. One then stereographically projects onto a nondegenerate
quadric minus two lines and then the image of this quadric

by a euclidean coordinate chart onto m4 is exactly the affine
qﬁadric. The drawback here is that most null curves in EB
are generated by the Weierstrass representation and have
imaginary periods. It is not yet clear exactly what con-
ditions guarantee that surface would be well-defined after

the projection intoZH3. Clearly, however, there should be

more examples, so this area of research should still have

considerable room for expansiom.
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