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Abstract of the Diszertation
On Cohomology of Kleinian Grouns
by
Dipendra ﬁhan&rm Sengupta
Doctor of Philosophy
in
Mathematies
State Uniwezaity-af Néw York at Stony ﬁré&k
1884
Let T be a non-elementary Finitely gererated Pleinisn
group with region of discontinuity Q. TLet g he an integay,

g = 2, Tha grour [ acts on the righi cn the vecetor spacao

ﬁaq 5 of polynonialsef deyrec less thin or equal te 2g — 2
J‘./. -y

via the Richler acticn, The corresponding eohomology group

2e-2

- . 1
cohomology wlesses iz deanoted by 7Y fT;ﬁ@q .3 e Denote by
EA ¥ R A

. 1 )
is dencted by B (7, Yo Tha subspnce of parabolie

Eq{ﬁ,r) the sproe Of cusp foums for T of weight (<247,

Ders intzoduced an anti-lincar map

g

d

B

v

o L :
: Aq(ﬁm) = POT(T, N, )

o

[N
2l
el




and proved that this mapping is injective.

We try to determine the class of Kleinian groups for
which the Bers map is surjective. We show that the Bers
map is surjective for gecmetrically finite Function Yroups .
Nakada proved this resvlt for g = 2 in 1976, Our main
theorem gives the foliowing characterizsiion of geometrically

.

finite function groups:

Let T be a non-elemsntary finitely generated Kleirian

group with an invariant component. Then T is geometrically

]

I—J

|
|
finite if end only 1f the Bers map is surjective for one
{hence all) g 2 2 with the exception of g =3, 5 o0or 7., For
g = 2, 5 or 7 the Bers map is surjective for scome Kleinian
groups which are not geometrically finite,
' 1
= dim PH 1 + Nig
) (ol ) + W)

We also prove dim Hl(?,n
for finitely generated function groups T (where N{g), the

2¢1-2

number of ineguivalent g-admissible parabolic fixed points

for T).  Xra proved the same equality for gecmetrically

h]

finite groups 1.
As an agpplication of the abov: equalitv, we reprove = '

theorem of Maskit on inequality involving the dimension

of the space cof cuzp forms supportad on an invaviank




component and the dimension of the epace of cusp forms

supported on the other components for finitely generated

function groups.
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Introducition

There are a number of theorems on the structure of
finitely generated Kleinian groups whose proofs depend on
the cohomoiogy theory introduced by Eichler for Fuchsian
groups. Foremost amonyg these are Ahlfors' finiteness
theorem [1] and Bers' area theorem [37. Recently, Sullivan

{207 used cohomology to prove that there are Ffinitely many

Aely

|

conjugacy c¢lasses of maximal parabolic subgroups For fin
generated Kieinian groups. More recently, Kra (127 proved
theorems on vanishing and bases for cusp Fforms using the
eohomclogy machinery. Also, Gardiner and Krz 8] derived a
cochomclogical condition for stability (to be defined in
Section II). They proved that finitely cenerated Kisinign
groups are both quasi~conformally stable and guasi-sbtable if
the Bers map is surjective for g = 2. Sakan [19] proved that
thisg oondition isg aiso neressary. Marden_[l4j show=d, using
3-manifolds, that a finitely generated Kleinisn grcup without
torsion iy botﬁ quasi-stoble and quasi-conformally stable if
it is geometrically finite. 7Then by Sakan's theoreﬁ, wea
conclude that therEars map 15 surjective for g = 2 for torsion
free gecmetrically finite groups. On the otherband, the Bers

map is not surjective for degenerzte groups; these are finite-

o

1y cenerated Kleinian groups which are nob geometrically finite.

ki




Now it is of interest to see whether the Beras map is
surjective for all g 2 2 for geometrically finite groups.
The affiruwative answer of this question will provide us
with a new structure theorem for pa%abolie cohomology
groups, and for g = 2, it will imply that all geomaetrically
finite groups sre quasi-conformally stable.

Tﬁe study of cohomology theory zre of interest, since
it may reveal further information about Kleinian groups .

In this dissartation'wé have mainly studied Eichler coho-
mology groups. We have shown that the Dars map is surdective
for all g = 2 for geomefrically finite function groups. Nakada
[18] proved the same result for g = 2 in hie study of guasi-
conformal stability of such groups.

In Section 1, we give some preliminary definitions and
statements of some ﬁnown results concerning Kleinian groups
and their automerphic forms. Section 2 is devoted to coho-
molggyrthaory and the structure of these cohomoloyy groups.
in Secticn 3, we give a list of the dimensiong of the ccho-
nology groups for all elementayy groups. In Seotion 4, we
shiow the surjectivity cf the Bers map for geometrically
Tinite funciion groups and we also give ¢ new characteriza-

tion of such groups. We obtain a formala for the dimension




of cexrtaln cohomology groups for finitely genesrated function
groups. In Section V, we give a new proof.of Maékit's theorem
on inegualities involving the dimension of the space of cusp
forms supported on an invariant coﬁponent and the dimension

of the space of cusp forms supported on the other components

Tor finitely generated function groups by using our coho-

mology machinery.




SECTION T

Preliminaries.

In this section we summarize some basic facts in the
theory of Kleinian groups and thelr automorphic forms, The

material in this section is presented in details in Kra {107,

§1. We shall be studying graups I" whose,elemnaents are

MBbius transformations; that is, mappings ¢f the form

- 1%, ad-be = 1,

o
N
S

M

Y

e

{1
N

Henca, the elements of T' are conformul self-mappings of tha
extended complex plane € U {e}.

et T" be a subgrbup of the group of all MObhiuvs trans-

formationg, Then for =z € ¢© U {w},we let Tz denote the

stablizexy of z; that is,

ity

T =1{y €T vz = z).

z

We shall say that I’ is discontinuous at =z if

(i) Tz is finite,and
(1i) there is a neighborhood ¥ of z such that

v(U) = u for all ¥ ¢ F? arnd
Y{U) N Uis empty for ¢ € ?_rz,

We. get = ) = {z €0 U {w}; " is discontinuous et 2z}, ond

call @ the region of discontinuity of I'. The group I' is




called discontinuous if (I is not empty. The limit set A is

defined by

A=g U (=} - 0.

Obviously, {t iz open, I'~invariant (Y0 = Q, all y).
It can be shown that card A= 0,1,2 or », If card A £ 2,

then T is called elementary: otherwice it is c¢alled 3 (non-

elementary) Xleinian group. For a Kleinian group A is a
closed, perfect, nowhere dense subset of ¢ U {«},
All elementary groups are known. We shall give a com-

plete list of all elementary groups in Section III. These

are 21l the discontinuous groups with = € e}, ¢, ¢f0} = ¢®

SRR HERIC ST bR

up to conjugation. We can classify the elements of I' accord-

ing to thz following scheme. Define

tracezv = (a+d)2. If ¥y # Identity, we call ¥
eliiptic © 0« tracezY < 4
parabolic & trace2Y = 4
loxodromic @ tracezy £ [0,4]
Thoge loxodromic elements ¥ with tracezy » 4 are called-hyperw
bolic, An elemgﬁt is parabolic if and only if it has one
fixed point. It is easy to see that

¥y is loxodromic e Yy is conjugate {in group of

Mébius transformation) to z = 2z, |k| > 1,
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Y ié hyperbolic & v is conjugate to z - Az, A » 1

Y is elliptic o y is conjugate to z - iz, In] =3, a5
and v is parabolic o Y is conjugate to z = z+l,

A component 4 of [l is called & component. of T. Two

distinct components, & and Al' are called eguivalent if

Al = y({A) for s¢me vy € T, The éugbnizvev T = {yér;

b
A is called invariasnt. A Xleinian group with an invaviant

Y(A) = A} of A in T is again a Kieinian group, T¢ P, =P,

component iz called a function gvoun.

- Assume T' is Kleinian., The quotient Q{T)/% has a canonical

-»

- complex structure so that the projection map ¥ Q(ﬁ}-@ﬂ(?)/f

is holowmorphic and ﬂ(?)/r ig a disjeiat unicn of Riemann
surfaces Ai/Tﬁ : Wwhere A1,A2,c@¢ ig a mawimal liet of @i -~

valent components of 1.

We shall say that T is of finite tywe {ox /T iz of

finite type) if

(i) the list of inequivalent cowmponents of (/T ig Finite;
(ii) thé mepping w oz 0 = O/T is ramified over at mose
finitely many points.
(iii) for each i, there exists a compact Riemann surface

8, = (&, /T ) of gerus g, such that &, -(Ai/FA )
o’ A,

consists of a finite number of pslntso




We shall assign a ramification number o to each of the

oints p € S, - (A,/ .
P 3 p % { 4 Tﬁi)
Let I = (g;vl,...,vn), where g is an integer 2 O and

R S

2 s Vl Leoo® vn = m(vj is an integex = 2 or v, = =}, Let

J
k ke the laergest integer ¢ n such that %( < o, We shall
say that Tﬁ {or Ai/rA ) has signature ¥ _if
i i :

{i) Si has genus g,

(ii) the domain Ai contains exactly k ineguivalent
elliptic fixed points of order vl,ﬁi,,vkﬂ

respectively, and |

(iii) Si - &i/Tﬁ congists of precisely n-%X points,

The following is proven in Ahlfors [119.

Lemma 1.l. YLet A./TA = 5 - [p} where Si ig a Riemann surface
S i"TA, i
i

and p € Sia 1f there iz a punctured neighborhood M of p such

that 1 is unromified over M, then there exists a pacabold i

element y & P&
i

transformaticn A with the following propertisg:

with fixed point ¢ € A, and thers is a Kobiug

3 -'1
{i) A(») = ¢ 2nd A “eyea(z) = z+1, z €@
{ii) ﬁ_l(Ai) contains a half plane,

v, = {z € #; Imz>c) for scme ¢ » o,

{iii} two points %y and z., of A{Uﬁ} are eqmivalent undey

- . kd n ) i
Té if and only if I { (zl) 0¥ stmae integer n, aud
i L)




i

8

{iv) the image of A(Uﬁ} under i isa deleted neighborhood

of p, and is homeomorphic to a punctured disc.
AL We shall
i

also say that the parabolic element y corvesponda to or is

o 87

The point p will be called a puncture on hi/T

deternined by the punctnre p € A./rA
bR N

1

One of the msin resultsin the theory of Kleinian groups

L]

is Bhlfors' finltensss theorem [1]: A finitely gensrated

e

Kleinian group is of finite tyse.

But there are also infinitely generated grouwws of finite type.
Ifl? is Kleiniau, and if-th&re is a eircle € in the

extended cowplex plane {a straight line is a cirele throvgh w)

such that the intericr of € is fixed by 1", then T" is cailed

&

Fochsian. In this casé'h CC, If A=C, Tis ealled of the

first kind; of the second kind otherwise. Hence, by defini-

tion a Fuchsian group of firet kind has two simply-connected

“invariant components,

A quasi-Fuchsian growp is a gquasi-conformal deformation
of a Fuchsian group: that is, for a guasi-Fuchsian group ¢, there

exists a Fuchsian group T and a quasi-conformal mapping

.
wTw ,

w oz é - & such that G

i




§2. We now consider the action of the group of MObius trans-
formations from a different point of view. TFor this, let

2 . .
H = {(z,t): z €@, £t »0) and z = x+iy, %,v € R.

We define the line element ds” = 5 . The hyper-
2 :

. . 3. .

bolic metric ¢ on H  is given by

L]

plp,p') = igf IYcis over all smooth curves y joining

3

2 _ dx2-+dy2-%dt2
p to p' in ®”.

It is well known that the group of MSbiug traneformation act

on the hyperbolic 3—5pacefﬁ3 as the f2ll group of orientation

preserving isometries.

' . - . 3
Let T be a Kleinian group. Let § be either O{(m) or ®~ .

By a fundamental domain w for T in § we mean an open subset
of § such that |
{1} _wheﬁevér Yé = ( for some vy € 7, =2 € w, £ € w,
then vy = id,
(ii) for every point ¢ € 8, there is a Yy € ™ and

az € ciw {the closure of w in 8) such that

Yz = {, and : )
= . .. . -
. (iii) w is locally finite: that is, eacn compact subset
. of 8 intersects only a finite number of images of cdw.

it is well known that a fundamental Jdomain exists for avary

Kleinlan group. For reference, see Bearden [2].




Let T' be a Kleinian group. We wish to construct a

fundamental domain for the action of T' on hyperholic 3-space.

There are various methods of such construction: one of the

standard methods follows:

3 . . .
Let X5 € 1" be any point which is not fixed by anyv ele-~

ment of '\ {I}. Define the Dirichlet region for I iniHB with
|
centre x by
o o
D = {x €@ splx,x.) < plx,v(x)) for all y € I'\[rl.
Xq 0 ¢!
D is a fundamental domain for I iniH3. Note that D iz the
*o *o
intersection of the half spaces {x é?ﬂogo(x,xo) < p(x,'f(xo)}]p

v € "{1}. Thus D is hyperbolic convex.,
O

A convex polvhedron P iniH3 is defined as the intersec-

tion of countably wany half spaces Hi with bounding hypexr-
prlanes Si such that any compact subset 0f:ﬂ3 meets only
finitely many of the Si? The intersection of Si with P is

called a gide of P,

 Iel T be a Kleinian group, The convex polyhedron P is

called a fundamental nolvhedron for T in2H3 if P is a funda-
mental domain for T in:H3 and if the gides of P are pairwise

identified by elements of I'. Note that the Dirichlet region

defined earlier 1s a fundamental polyhedron. We close this




i1

discussion with a definition., A Kleinian group I’ is caliled

geometrically finit

ed fundamental
polvhedron in:ﬁ3,

A geometricelly finite Kleinian group T’ is finitely

generated. But theve are finitely genersted Kleinian groves

which ara not getmetrically finite,

$3. We introduce an operator

on functions gs follows., 1f

A is a M8bius transformation and 2r,2m € @with nm € %, then #or

. \ ", . , -1
every function £ on & domain D, we detine & function on £ (D) by

)

(2 W E(2) = £@na (2) AT o™
DM

. & ®
Abbraviate Aﬂ,@ by‘An .

Let T’ be a (ncnwelementary) Kleinian group and iet D ke an

invariant union of component of the region of discontinuity

Lof Ty Let KD{z)dz be ‘the Poincare metric (that is, unique complete
conformal Riemannian metric defined on each component: of D

wilh constant curvature ® -1, por example, for D the upper

nalf olane, A(z) = (hnz}_l.z €D).

To define the analogue of the Poincard metric on 0 for

elementary groups, we let

Mz) |dz]

be defined ag follows,

!f.\}
|

For Nl = T_U‘{m}, we set A(z)




and for O = €, i(z) = 1, for all = € €. We require that
A{z) lldzl- be & conformal invariant. Thus for f = z+{07,
Az) = lzj"l, z € &-{0}.

Let g # 2 be a fixed integer., A holomorphic function

~%@ on D is called an automorphic Form for ™ off weigit (-2q) on D

if -

qup =@ for all v €1, .

An automorphic form g of weight (-2g) on D iz called integrable

if

[I 22" Yeg(z)aznaz] < «.
D/, ‘

We dencte the Banach space of integrable automorphic forms on
D by .Aq(D,I“) .

The form @ is called bounded if
SUP{?«.(_Z)—q]@(z) 'y z € D} < o,

The Banach space of bounded automoxphic forme on D is denotad
by Bq (D1},
For & € Aq(D,I“} and ¥ 6f'flilq(D,.I‘), we define the Petersson

scalar product by

<085, = 11 302 ()T (3 azhdn,
D/F

It is well known (see, for example, Kra [107) that the

Petersson scalar product establishes an anti-linear topolocical
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isomorphism between Bq(D,T) and the dual spdce of ﬂq(D.T).

If D/ is of finite type, and &I,Aq,o..,A? be the complote

list of inequivalent components of D, then

i

B (D, T},

A (D,T)
q

Bq(D:T‘) = @B (A-fT‘

and dim B_(A,,P, } = (2g-1){g.~-1) + & [q__mwﬁuqs
qg 1 Ai i PESi L {p)

where [x] is the iargest integer =x, 4(p} is ramification
g _

number of p and [g-3 1] = g-1. )

Classically, these automorphic forms are called cusp

forms. Whenever T is a finite type we don't distinguish

between Aq(D.T) and Bq(D,F). We will, in this case, use

the notation Aq(D,T) for the space of cusp forms,




SECTION I7T

Eichler Cohcmology of Kleinian Groups

In this section we will describe Eichler cohomology and
the structure of these cohomology grouvs, Materiazl of this

section is well known. It can be found in Kra fio].

%

§1. Let g 2 2 be an integer. Let H9q~2 denote the vector

space of polynomials in one complex variable of degree
< 2g - 2. Let I“be a Kleinian or elementary group. The

group T acts on the right on ﬂ?q—z via Eichler action

(2.1) pey = y¥ v € 1.

P e,

g-2°

_, it

Thus to verify that (2.1) defines an action of I'on T,
4o

suffices to verify that for every MOhius tranzformation v in ™,

*
(2.1) ) Ylmq : quﬂz <> ng_z.
az +b

Let vy(z) i

with ad ~be =1, and let p(z)'n 2", Then

Thus p-yé{ﬂzq_z whenever n <2g -2 {that is, whenever p(Equnzja

A mapping

is called a cocycle if x{ylnyg) = X(Yl)'y?-+x(y?), v Y, € 1.

ll
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Such a cocycle is ccboundagyliﬁ_
%1 = By =P, ¥ €r ?
for some fixed p € Hzé_z; ' |
ihe (first) c@homclbqy space HE(F;H } ig defined as

2g-2

the vector space of cocycles, dencted by Zl(rpﬁ?q_z) modulo

%

the vector space of coboundavies, denoted hY_Bl(r,ﬂzqmzj? ;

e s 1 .
ffth&t s, g.‘?'?2q"2)/§l(r ; ) = %,{Ffp2q~2X° i
o Wrag- e =

1

‘Let B be a Mobius transfoxmation,mmi? = B TB. Then conjuga -

. ~1 . 1, -
tion by B induees an isomorphism between H {T,ﬁzqmz} and
Yo The mapping is determined by sending the co-

cycle ¥ into the cocyele Q where
A -1 , -
(2.3)  X(B ToveB) = X(y)eB = B;wqx(v). Y € T.

Lowmyn 2.1. LIE£ T is non-elementary and genersted by N elements,

) £ (20-1}{®-1) for g = 2.

| . )
then din H ‘Ffﬁzqﬂz

PE

Egqualities hold whenever T' is a free group on ¥ generators.

o - ~
. Proof. Since a cocycle is uniquely determined by its values

on the generators of T, the dimension of the space'of cO-

eycles £ (2¢-1)W, and is exactly N{2g-l) for a free group‘wiﬁh

N generators. %Yo compute dimension of Bi{r,ﬁ2é 2) it suffices




16
& ¥ - - 1 ” ] . L] .'._!,
'to show that the map from qumz to B (T,qu_z) is injective,
Assume that there is a p € HZ; 5 such that

) . _
(2.4) pvz)y' (2)7"% = pla),ver, zct.
Clearly deg p » 0. If p vanishes at Zor then by {2.4) p also

vanishes at Y(zo} for all vy € T'. Thus p has infinitely many

zeros (because T' is non-elementary), and hence p = 0, Yhove-

fore, dim B (T, } = 2¢g~1,

22

The above lemma is known and it can be found in Xra {1017,

Remark: For elenmentary groups, dim Bl(r,ﬂ

_2q~2) is not always

2q-ml as we will sse in Section ITI.
We will see that the paraballc elementv of P play s sxgw-

nlflcant role in the cchomology theory. They determine

distinguished cohomology classes.

Definition 2.1, Let A € " be a parabolic element. A cocycole

X is parabolic with respect to A provided there is a

v € Hzéwz such that.

Y(A) = veA - v,

A coeyele is called Ear&bollc if it is perabollc with ves-

pPoact to gll parsbolic ei&wcnts T: whl?e it iu called &npaW3ﬁ01?c

if it is parabolic with respect to every parabolic element in

T determined by a puncture on A/T (where A ig an invarisne
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vnion of ccmgoneits of T). The space of parabolic cocyvcles

)

{xespectlvely, b-parabolic) is denoted by le(r,ﬂzq_z

: - L .2
(respectively, ?Zb(r’32q~2)°. We denote by PH (1 2 2)

(respectively, PHi(T,ﬁ Y}, the space of parabnlic

2¢-2
cohomology {respectively, Amparabclic echomology) ; that is,

2q-2 ) (respectively, PZ (F,E }/B (T, T 235;

PzH(r, 0, )/Bl(r,n
Hote that {2.3) shows that parabollclty of cohsmologg olas

is invaxrxiant under'eonjugatlcn.

§2. Next, we des&rlbt an analytic way to obtain the elements
of u' (T. 2q-2)° Wo assume that T is a finitely generated Kleinian
group wxﬁh at 1east cne llmlt po;nto {The discussion for

ilult? elem¥ptary groups is not necessary becaues of Pro-

pesition 3.1.)

For ¢ € Aqiﬂ;?), o= szzqiﬁ is ealled a canonical

~generalized Beltromi differential for T" : this means that

*

2.5
(2.5) Yi-q,1

and

u“"u; all v € p

_ 2-
lu] £ constant 2°7Y,
A continucus function F on € is called a potential for

pProvided

(2.6} Flz) = o(lzlzq"g), zZ + w




Ap
and (2.7) 'g:%: w )

in the sense of ganeralizad.derivatives, Such a potential 7

is said to vanish. at o 1f Fz) = o(i !20 -2 Yo 2o m,

'.‘i.‘h@_ Follm)nng is due 0 Bers [3] {Ahlfors {1] for a=2),

Lemnz 2.2. Tet g ® 2, and g € Aq(ﬁ,?}. If {al"°“a2q—lj__

are {2g-1) distinct points in é, then

- - 22
Po) = ot B Tg-y) J'.f L _eld) d¢ray
o " | 2ﬁ}‘- (guz)(cna ,aeoigudzq_l)
is the unique potential for X _2(:;?5 that vanidhes at

akg k = 1#2;30_0,2q“1a

conventiom We may a'i.“ic;w a, = v for some J. In that case we

*,

w:.,ll omit tems of the form (z - m) and (€ - ea)a

Por Y € I‘, we defme

. 1
{2.8) sc‘;(w(z)gm(z))v'(z)' T-F2) = x(v) (2), = ¢ .
Using (2.5) and an application ()f chain rule; that is,
& * - y * - BF g "

‘“‘“(Y Y =y

F) =
a“" - -—q --qgl as luq ..,M

we see tha'«” ){(Y) is entlres By virtue of (2. 6}.

xm (2) - o(izl?q 2y 7 o

gnae —g(?} € ng__z,




(2.8) defines a cocycle whose cohomology class

3ﬁ(¢) depends ﬁot on ¥ but only on u. e*{m) ig a
parabcllc cohmmology claaa;for all @ 6 ﬁ {Q, T)a To see thig,
let A &g F be a parabolic element. Since parabolicity of |
cdhcmalogy classes is invariant under conjﬁgation, we may
assume that A(z)lm z+1, z € E. Choosze a potential F for

%p that-véh;shos at =, As we‘swid earlier; 2 :

pot@ntlal F is sald o vanish at ‘e if F(z) = o('zlzqng), LA |

7L:z—-zq

Thus we conclude that

%(B){z) = G(lzizq"‘?), Z < e,

Hence ¥%(A) (z) has degree & 2¢g -3, But for every polynomial

OF degree ¢ 2q-—3, there is a polynomial v € ﬁz&_z such that

. 1 .-
+ - -, F fy ™
v{z+l) . v(z} x(A)(z), z € &, Hence ﬁq(@) € 2H {‘p.zqu?,r
S0 we obtain thls way Ehe Berg_ map

8 : A (Q,T) » PEY (T, 0. ).

a q . - 2g-2
The map S; is antilinear and gnjectivge

whi& ze&ult iz due to Ahlfors [1? for q= : 2, and to Bers
[33 for q - 2 for finitely qeheratcd (nan—elemenpary) Kleinian

groups. The_extension Lo elementary groups with at least one

limit point can e found in Kra [117.




We shall call Bé(m) the Bers cohomology class of
tp € Aq(ﬂ,r). We will see in Section IV {our main result)
that every parabolic cohomology class is the Bers co-
homology c¢lass of unigque o € Aq(ﬂ,f) for geometrically

finite function groups.

§3. We will now see that there is anothegr way to construct

‘cohomology classes. For this we need the

Definition 2,2, A holomorphic function F on [ is called a

(holomorphic) Eichler integrzl of order 1 - q'(on {i for the

Kieinian or elementary group 1) if

) * '
. — T e .
{2.9) vi{y) = 1 F € H2 all vy e 7

-t
Note that in the definition, for fixed v € T, %(y) is the

same polynomial on each component of T.

Let qu"l denote differentiation 2g - 1 times. As a

consequence of identity

2q-1 2q-1
(2.10) D™ oy = yIop™T, y e,

~due to I. Bol, we conclude that qu_l maps Eichler integrals of
order (1—q) into automorphic forms of weight (-2¢g). 2 holo-

hic Bichler integral F defined on 0 is called bounded if
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21
(2.11) w=D0"T"p ¢ 5, (0,1).

If I is a bounded integral, then the pro&ecti@n of o to

/T has a pole of order < q -1 at each puncture of O/7.

If instead of (2,11), we require that » has a polé of ovrder
< g at each puncture of /T, then F is called a quasi-
bounded {(homomorphic) Eichlep integral.

The space of bounded Eichler integrals modulc T

2g~2
b , ;
will be denoted by El q(Q,f). Similariy, E;_q(ﬂ,r) denctes

the space of guasi-bounded Eichler integrals modulo ﬂ?quz“

The construction of quasi-bounded (bounded) Eichler
integrals is difficult. Recently, Sullivan has shown in
[20] how to construct such integrals. Kra [11] incorporated
Sullivan's construction into structure theorems For the

Eichler cohomology groups Hl(rgﬁ _2) and PH}“(I“,I‘[2 Y. and

q-2

have shown that one can construct a basis for the space of

20

el

quasi-bounded Eichler integrals, Ei_q(ﬁ,f) for a {non-

élementary) finitely generated Kleinian group T'" if one stacts

Lde

with a group T' for which the Bers map is surjective. This
also suggests that one should determine the class of finitely

generated Kleinian groups for which the Bers map is surjective.

This may lead to a better ﬁnderstanding of Eichler integrszls.




)
]

We use (2.9) to define a map

c 1 :
: B a,
{3 Llnq( T) »H (T,qumg)

for Kieinian group . BAhlfors (also Kra 87} has proved
that the map & is inijective for T of finite type.
We shall call 4 the period map, and #(F) the Eichle

cohomology class of F € EC

Log (T

Theorem 2.1, Let T' be a Kleinian group, and A an invariant

union of components of its region of discontinuity such that
A/T is of finite type. There exists a canonical anti-linear

surjective mapping

1 .
By * B (T.qum2) -+ Aq(A,r)

such that g OB* =id on A (A, T), g = 2.
a d d

Proof. Kra [8].

Now we can state the structure theorem for Hl{r,ﬁ ﬁz) and

29
1 .

P AT, ) due K .

H (1 ﬁ?qmz ue to Kra (8]

Theorem 2.2. Let T be a Kleinian group, and A an invariant

union of components of its region of discontinuity., If A/T is

of finite type, then for g = 2, the following iz a commutative
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diagram with exact rows:

B”

b . o 1 a
. ) 3. —_ i) J—
0-—~*Ll_q(ﬁ,1)~*—~¢PHA(FyN2q_2) —a_(4,T) 0
id
g

c . 1

O 5 (A:F)MH (I‘tﬁ )_-_—“"*A (A;T) “_"_""’Ow
1-g 2q-2 q

t

Corollary 1: {Kra [8]). Under the hypothesis of the theoren,

every cchomology class p € Hl{r;ﬂ “2) can be written uniquely

29

as . .

p = Bgim)i~a(f},

where o € Aq(A,T), and T € Ezﬂq(A,T). Furthermore,

1 . . b
p € PH&(F,qu_z) if and only if £ € Elnq(A,F)a

Corollaxy 2. (Bers [3] and Kra [81). Let I be a finitely

generated Kleinian group with an invariant component A. Then

dim a_(0,7) = din PH?;(I“,.II

2q'.‘2) < 2 dim Aq(A,T}

and dim A (L, 7)) < dim Hl(r,ﬁ Y £ 2 4 (A7) + n,vwhere n is
q 2g-2 q

the number of punctures on A/T. Furthermore, if A is con-

nected and simply-connected, then

dim PHl(F,U

A } = 2 dim Aq(é,?),

2gq-2
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(1) If " is a finitely generated degenerate Kleinian group
(with connected, simply comnected region of discon-

tinuity) then B; is not surjective., In fact, in this

case

2q”2) = 2 dim I%q(ﬂ.I‘) .

dim PHY (T, T
Greenbery [6] showed that degenerate groups are not
geometrically finite.

(2} wWe will improve the first inequality of éorollarylz

in Section V. Maskit {16] proved similar result,

Let A be a component of O for a Kleinian group T'. An

Eichler integral F € E?

2¢-1

_q(A,F) for a Kleinian group T is

called trivial if D F = 0. The space of trivial Eichler

- R ' 0
2q-2 1s denoted by Elm

ing theorem has been proved in Kra [8].

integrals modulo 1l Q(AgT}. The follow-

Theoxem 2.3, Let I’ be a finitely generated Kleinian group

with an invariant component A, If Q - A is non~eupty, then

1
{14

written as the sum of a Bers cohomology class of some

for g =2 2, every cohomology class p € PH (T,ﬁgé_z) can be
p € Aé(ﬂ,r) and an Eichler cohomology class of a trivial

. . (4]
Eichler integral F € El

Q""Z\; 1 &
q( T
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Coroliary. (Xra [8]). Let T be a finitely generated Kleinian
group with two invariant components A and O - A, Then for

q & 2,
1 . R % |
PH (T'nzq—z) = PHQ(T".-HQq_“z) = PHA(T.quﬁ_z) = Bq(Aq(Q,?)},

Hence by the corollary, the Bers map is surjective for a
finitely generated Fuchsian or quasi-Fuchsian group of the

first kind.

§4. We close this section by giving definition of S£abi1ity
of a finitely generated Kleinian group T due éo Bers [37.

Let G be the group of all MObius transformations. Let
T be any subgroup of G. We denote by Hom({(T,G) the set of
ali homomorphisms of T into G, A homomoxphism @ : " » @ is
called parabolic if traceze(y) = 4 vhenever v € T is parabolic.
We denote by Homp(r,G) the set of all parabolic homomorphisms
of T into G,

Let T be a Kleinian group, and let w : € U fo} o Y {o}
be a quasiconformal self-mapping of the Riemann sphere. We

. . . . . -1
say that w is compatible with a Kleinian group T if whw ¢ G.

1f w is compatible with T, then the mapping

T3 Y=0(y) =wyw?cag
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. . . - , -1 . - .
is an isomorphism of 1% into wlw and the isomorphism € is

a gquasiconformal deformation of ' We denote by Homéc(?,G)

the set of all quasiconformal deformations of the Kleinian
group T° into G. We have Hoch(r,G) < Homp(T,G) < Hom{r,q).
Let T" be a finitely generated Kleinian group with z system j
of generators {Yl,..o,vN}. Then an elem?nt & € Bowl(r,G) is

, . . N N .
uniquely determined by (e(yl},...,e(ym)) € G, where G is
the N times product space of G. We define the set

X(T:Yl'..e’yﬂ) in GN SuCh that

N o "
X(I“?Ylno.;YN} = {(Q(Y-i):e-ore(YN)) € G ;0 € HOW(I‘.G)}-

Now we identify an element © ¢ Hom(T,G) with
(@(Yl)re--aG{YN)) € X(?;Yl'f‘°'YN) and we regard E(r;yl,,o,,ymj
as Homi{T,G). The cbrresponding spaces for Homb(?,G) and

.. N . .
Hoch(f,g) in G~ are denoted by Xp(f:yl,e..pyﬂ) and

qu(r:yl,..,,vm), respectively. We define stsbility of

as follows: A finitely generated Kleinian group T is said
toe ke quasiconformally stable if there exists a system of

generators {Yly.@.,vm} of 1*~and a neighborhood U(yl,.u.,vﬂ)

of (y],...,YN) ¢ GN in GN such that

(F?Y' reoo;YN) ﬁU(ercaarYN)a

XP(T:Y]_,-..'YN.) nU(Ylfn-»rYN} quc 1 |

We say I’ is guasi-stable if there exists an oven naichborhood
o} i o)




27

U(Y},"”'YN) of (yl,..,,yN) € gY such that U(Yla---aYN) N
X&c(r?yl""'YN) 18 a complex analytic submanifold of
dimension g(r)+3 of U; where o(I') = dhnAz(Q,v)-, With
these definitions of stability thelfollowing two theorems
will give connection between stability and surjectivity
of the Bers map.

Theorem 2.4, {Kra and Gardiner [5]): Let T" be a non-elerentary
1

finitely generated Kleinian group. If s;(Az(Q,T))==PH (r,0.),

2

then T" is both quasiconformally stable and quasi-stable.

Theorem 2.5. (Sakan [19]): ILet T be a non-elementary finitely

generated Kleinian group. If T is both quasiconformally

2

stable and gquasi-stable, then Bg(Az(wa)) = PHI(?,H ).
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SECTION IIT

Cohomology of Elementary Groups

),

In this section we will list the dimensions of Zl(r,nzq_z
1 1 ' :
itz ' s I'w T
Pz (T,H2q_2} and B (T;ﬁzq_z) for elementwry‘groupq T hese
will be very useful in our discussion in the next section.
The classification of elementary groups can be found in Kra

and Farkas [13]. The computation of the dimensions of the

above spaces by different methods also appears in Kra [11].
§1. For an arbitrary T, let
qu_z(T) = {v € qu_z: vey = v all y € T}

represent the fixed point space of ' If T is non-elenentary,

then we have proved in Section IT that ﬁzq_z(r) = {0} for
g ® 2, It is clear that the Ffixed point space of T is same

as the kernal of the map

defined by B(v) = vey-v,

1 _ .
g 1 * 1= - - 31 =2 .
So, dim B (T.qu_zf (2g-~1) ~Q@im H2qm2(f) for g=2

For an elementary group I with the signature (g:vl,v2,.,.;y§
no 2
we define the number Nr(q) by (2¢-1) (g-1) + & [q'”vZ] .

J=1
Propogition 3.1 (Kra [11]. Let I be an elementary group

[
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and g €%, g * 2, The dimensions of the cocycle spaces
1 1

P ; imensic F the
z- (T, qu_z). z7(r, H2q_2) and the dimension of the space
of coboundaries Bl(r'nzq~2) are given in the following

table:




o 0 1-bg T-57  SSTMISUIO  [-bgl
- (e'e’eg) g-bz. Z-bz  {gpowyi=h g-bg STTCqRTRd
T 1-bg bz (cromjosb  T+bzf 7 wex Jo uoTsusyxe-fyg
0 _ 1-bz - 1-bz  ssmmriepo  1-by)
- (75/240) z-bg z-bz  (ypowj b z-bg OTTOcqRIRd
T 1-bg - bz (vrowjosb  T+bz] 7 wwex Jo uorsustxe-Tog
0 1~bz -5z ssmmasimo  1-bg .
I- (@'¢‘zioy - . Z-bg. - z-bz (9pow)1=b  z-Bz orToqexed -
1 T-bz | bz (9powgsb  1+bz{ gz suex Jo uoTsusaxe-Sg
- (@z1240) z-be. ¢-bz  esmumpo  g-b oTToqer=d
0 1~bz I-bz  (zpow)o=d  ‘bzj 1 suex jo uoTsUSIXR-C

sdnozb STPUETI] uespliong

0 (—171) - Z-bg 1-bz bz orToqexed 7 smex
(T >urex)
2o i- (w'wl() -br Z-bz 1-bz dnoab oTToqeTed T
= bl+ g Ic :
W z 7/ =5 aTxsyn s c o ¢ - sdnozb
- Bl+E-Bl+{I-Dg)-  (a'c‘zi0) 5 bl+lg- Eiw.lﬁ £~ Bl+IE-pl+E-p] UOTAR3OT PITOS
- Bl E-ples(1-bg)~  (w'z'z40) Z-bl+&-ple [E-pl+IE-plz dnozb u Texpeyr
5 B 5 b b 5 |
[§ - B2+ (1-Bz) - (wéuip) E-plz | 5-plz (e>uzzy'g o
Byl J 30 z-bz, , z-bz... A A dnoab Su3  BHuUTCd STWIT
(B)In B o rne ) za ) 2 o o BT

JO uoTsuswIg
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(®) N

(pPNUTIUGCD)

(¢'z’z'e0)

g 30
SINIeubTS

drnozh

z-bz ssmrmpo z-bg | TRIPSUTR-STAnop

1-be  (zpomosb By “msly

¢-be | 1-be Yz + 7

z-bz T-bZ OTT0A0 oTWOIPOXOT Z

Z-57 z-bz SSTMIS0 7By OTToqRIed 7 suel

1-bz bg (zpomgsb  T+bz[ 3O uoTsuee-ly
z-bT._, T-0g_, z-bz_, dncab ey sautod T
Y I e | 4 D 2d N G r.cHN 10 oumy 20 ToqmN

JO UOTSUDWT(Q
S T




Remark. Observe that dim le(r,ﬁ Y = {2qg-1) + ﬂr{q) for

2q-2
all elementary groups T

Proof, The proposition is established by a case by case
examination of the list of elementary groupd.

Let T be a finite group, and let % be a cocycle for 7.

L %ly), where |1l is the cardinality of 1.
yer

Then F € ﬁoq;z (because T is finite), and for A € T

1
From F e - o1
ir

FeA ~F =

*

1 .
- { % 0ylen - 2 %(v)) .
IT] ver yer .

L
!

'!%T £ (lyon™l) eney(y))
YET :

= - Té""T B (0¥ =% (A) =% (Y)) | ;

yer

g

- T?%T 5 (-%(a)) = x(a) .
YET

This shows that every cocycle is a coboundary. Therefore,

dim Zl(rﬂﬁ } = dim Bl(r,ﬂ Yo ‘ | |

2q-2 2g-2

To compute the dimension Bl{r,ﬂzq

as a holomerphic (1-g)-

2) for finite groups
we W view an element v € I
L ay ) & 2q_2
differential v(z)dzlﬂq on & U {w}, If v iz T-inverisnt, |

V{z)dzlmq projects to a holomorphic {l-g)-differentisl on

¢ u ﬁm?h;a At the image of an elliptic fixed point of |

order v ¢ the projected differential has a zero of oxder
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. . 1
2 -(-q) (1-3],

Hence the dimension of ﬂzémz(F) for a finite group T of

signature (0;v,y) is

(2g-1) + 2[(1-g) (1 -7,

and for a finite group T° of signature (O;vl,vz,v3) is
.- 3 - ]
(20-1) + % [(1-a) (1 -]
3=1 j

Therefore, for the Ffirst Case,

Q“2)

aimp’(r, 1, =-2[(1-q) (1 -3

i -1
(2g-2) -2 [%"-]

if

=20 -]
and for the second case,
3 7 "
- 1 ~ — - g_
din B (I;nzq_z) N.Eltq vi].

Now let I" be a rank 1 parabolic group then T is conjugate
to a group genexated by A(z) = z+i.

If v € qunz and is invarisnt under A then v(zil) = v{z).
Thus v is periodic and hence constant. So dim qumz(F) = 1,

Let " be & Z?

2

-extension of rank 1 parabolic. group then by con-
jugation I' consists of mapping {z=%z+n}. We know that only
pelynomial invaviant under z - z+1l is a constant pelynomial,

say v,. Hence v_ is invariant under T if and only if

]

i
v
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g 2 1 {med 2), So
L1 '
dim B (T‘;I‘Iq ) = 29-1, g¥1 (mod 2)
= 20-2, g21 {mod 2).

kvery rank 2 parabolic group T' consists of {m+g4+n + a7},
Im T » 0 by conjugation, Cleaxly, vo is the only polynomial
invariant undexr the group T. Hence dim %2{3_2 {r) = 1, Sa
dim Bl(ﬁ ngqﬂ_g) = 2q-2. Every Z, ~extension of rank 2
parabolic group T consists of {zﬂéz +m+nt?, Im 'f ﬁa(‘)- by con-

jugation, Clearly vo is invariant wnder T if and only if

1 (mod 2), and

i

a2l (mod 2} . Hence dim ﬂzq_'z(r‘) = 1 if ¢

dim qu__z () = 0 otherwise.

BEvery Z. —extensionofarank 2 parabolic group (n=3,4 or 6}

is conjugate to a group T generated by

2mi 2ri
n - [y
A{z) = e  z, B(z) =2Z+l, C(z) = z+e O ¢ (073,4 or 5},

Clearly Vo is invariant under " if and only if it is invaxyiant

under A, Buk vo is invariant under A if and only if

qal (mod n) (n=3,4 or 6),

f1
o

Hence dim I, (1) =1 if q=3 (mod n), and dim Bygma M)

otherwige,

Finally, we consider a group T with two limit pointe.
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Hence I' contains a maximal cyclic subgroup generated by a

loxodromic element. We can assume that A : z = Yz, 1l] f 1

_ : 2q-2 P
is the generator. If p € H2 Y plz) = ¥ a.z' is in-
q 5=0 3
RN A
variant under A if ¥ aj(l—K Yz- = 0. Thus an
3=0

arbitrary polynemial invariant under A is given by

plz) = aq_lzq_l. So the fixed point spate of A has dimen-

sion 1 and is generated by zq»l. If T is not itself z loxo-

dromic cyclic group, then the additional generators for cther

groups are

. 2mi/n
%, +Z5M1 oz s et / z (2sn <o)
{
za*Iﬁb : oz 2 L/
. 2ni/Mm
double dihedral group: 2 =" /iz, z = 1/ (Zenac),

Clearly zq_l ie invariznt by the additional generator for
the group Z +:zn.. For the rest of the groups, z% *

is invariant under the additional generators if and only if
g is cdd. Thus we have completed the computation of

dim Bl(?,ﬁqqaz) for élementary groups T. -

L .




SECTION 1V

Surjectivity of the Bers map

In this section we will show the surjectivity of the
Bers map foﬁ geometrically finite function groups. Thisg
is the main result of our thesis. Nakada [18) proved tﬁis
result for g = 2. The plan of the proof‘is same as Nakada's
[18]. We have seen that the Bers map is surjective.for>finite1y
generated quasi-Fuchsian groups (of the first kind). Also,
we have computed the'&im@nsion of che space of parsbolic
cohomology classes for elementary groups. Finally, we use
the fact that a geometrically finite function gyroup can be
built up by combination theorems From éuasi—Fuchsian and

elementary groups to complete the proof of the main result,

§1. We begin thig section by giving statements of combination

theorems. For this we need the following Jefinitions,

Definition 4.1. IXf T is a non-elementary Kleinian group with
a simply connected invariant component Ao’ then there ig a

conformal map 4 from AQ cnto the unit disc. A parsbolic

element v € ' ig called accidental if w@wém_l is hyperbolic.

Definition 4.2. Let H be a cyelic {perhaps trivizl) subgroup

of a Kleinian group I'. The interior B of a closed topological




disc is called a precisely invariant disc under H if

W(B-A(H)) = B-A(H) for h € H ang Y(E-ME) ) A (A ) )) is
empty for Y € I'-H, where B is the closure of B, A{H)} is the
limit set of H and B ~ A(H) =a(r).

The following two theorems of Maskit [16] will play an

important role of our discussion in the rest of the thesis,
L ]

Combination Theorem I, ILet H be a eyclic subgroup of both the
Kleinian groups rl and Tz. For i = 1,2, let Bi be a precisely
invariant disc under H, Assume that B1 and Bé-have COmmon

boundary C, and Bl N 32 is empty. We alse assune that if H
ig parabolic, then H is its own normalizer in either Tl or

Fz. Then
(i} 71, the group generated by Pl and rz, is Kleinian;
(i1} 1 is the free product of Tl and rz with amzl-
gamated subgroup H: A |
(iii) Q(P/P = (Q(Tl)/Fl-Bi/H)lJ(Q(Tz)/T2-Bz/H), where
{ﬂ(rl)/z“l =B, /E} N {n(r‘zi/rz ~B,/Hl= ¢ NaE) /Hy

{iv) every elliptic or parabolic element of " is con- L

" Jugate in I' to some element of either Tl or Tz’

Combination Theorem IT. Tet H1 and H:2 be cyclic subgroups : o

of the Xleinian group ?1, For i = 1,2, 1let Bi be a precisely
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invariant disec under Hi' and let Ci be the boundary of Bi.

We assume that Yfﬁi) N B2 is empty for all ¥y in 1T Let

lﬂ

rz be cyclic, generated by £, where f(Cl) = C f(Bl) N B

27 2
lf = HZ' Let T" be the group generated by

. -1
is enmpty and £ "H

rl and TZ‘ Then

(i) 7, the group generated by Fl and f is Kleinian:

(ii) every relation in T is a consequence of the

relations in Fl and the relations fmlHlf = HZ: | f
(111)‘ /T = ﬂ(rl)/Tl - (Bl/HllJB2/H2):'where .
(Cl ﬁQ(I‘))/HJ is identified in (T /T with :

-{CE ﬂﬁ(f))/H2e

(iv} every elliptic or parabolic element of r is ] é

conjugate in T to some element of Fl.

In Combination Theorem IT, the transformation f isg necessarily é

loxodromic.

A basic group by definition, is finitely generated
Kleinian group that has g simply connected invariant QO -~ : i

pPonent and contains no accidental parabolic transformations.

A basic group is either elementary, degenerate or quasi-

Fuchsian (ficst kind). See Maskit [16] for details.

Let T be a non-elementary finitely generated function

group. In [16], Maskit proved that there is a collection
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rl,...,FS of basic subgroups of Ty s0 that T" is formed from
?1""'Ts by s -~ 1 applications of Combiration Theorena I, and
say t applications of Combination Theorem II, where in each
step the amalgamated subgroups or the conjugated subgroups
are trivial, elliptic or parabolic eyelic.

Maskit [17] also proved that startiﬁg only with the
elementafy and quasi-¥uchsian groups (th;t is, excluding
degenerate groups) as basie subgroups and using combination
theorems as above, one obtsins geometrically ﬁinite funiction
groups. Every such group can be constructed in this manner,
We finish these discussions by giving the following defini-~

tions and a theorem of Maskit for future reference.

A subgroup T' of T is called a factor subgroup if ' is

a maximzl subgroup of T with the following properties:

(i} The invariant component of "', which contains
the invariant component of T; is simply connected.
(ii) 1If y € 1 is parabolic and the fixed point of v
lies in A(1''), then vy € 7',

(iii) T’ contains no accidental parabolic elements.

With this definition the following has beeh.proved in Maskit :

f16].

Theoxrem 4.1, Every factor subgroup T' of & finitely generated
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function group T° is conjugate in T" to a unique - basic subgroup -
of 1.

Now we will state our main theorem as follows:

Let T" be a (non-elementary) finitely qeneratéd
function group and let T be constructed from basic subgroups
Fyeeeer¥y of T' (with the exception of the signatures
(0:2,2,2,n), 3 s n < » or (0;2,2,2,2,2), for degenerate bagic
subgroups), by using Combination Theorem I and II. Then I* ic

geometrically finite if and only if )

et (1, Tygep) = B (A (AU, T) for one (hence all) q » 2.

§2. PFirst we derive a formula for dim le(r,ﬂzqmz) in terms

) L - v 1, - .
of dim pz (Tl”n2q~2} and dim PZ (12’ﬁ2q~2) for argroup " which
is generated by its subgroups rl and Pz by application of |

Combination Theorem T.

To this end, we need the following lemmas: |

Lemma 4.1. Let T be z Kleinian group and Fo be an elliptic

cyclic subgroup of the group . Then the map ?

1 1.
Y : 2z {r;nzq_z) Pz, )

2g~2

r is surjective.

defiried by ¥(p) = p|
- O

Proof. We have already shown in Section ILI that for finite
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elementary group every cocycle is g coboundary. Let e, be

a cocycle of To. Then there is a polynomial v € n2q—2 such

that
po(v) = ve.y-v for vy € L

Then P, can be extended to an element §; of Zl(r,ﬁ '_?) by

2q

ﬁg(Y) = yey-v for vy € I.'
Hence the map Y is surjective,

Lemmas 4.2, Iet T’ be a Kleinian group and ro he a parabolic

cyclic subgroup of the group I'. Then the map

) - pzi(r, M, )

1
Y : Pz (F,H2' 2q-2

-2

defined by Y(p) = p‘? is surijective,
o)

Proof. Since ro is parabolic cyclic, we see that le(TO,HQH

proceed as in Lemma 4.1.

Theorem 4.2. If I is a (non-elementary) Kleinian group gene-

rated by finitely generated subgroups rl and Tz by application
¢f Combination Theorem I and if H = rl N Fz is elliptic or

parabolic cyclic or trivial, then

. 1 ' ; 1 - * '
- +
dim PZ (r,nzq_z) dim Pz {ri'ﬂ2q~2) dim PZ (Fz.ﬁzquz)

. 1 ..
- dim P20,

(s b
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B . 1 1 | 1
N . b o s )
Proof efine PZ (r,nzq_z) = PZ (rl,ﬁgq_2 X PZ (rz,n2 )

o’

by é(p) = (Plapz); pi = plr ’ i = 1§2¢
i

Observe, & is linear and injective..

Since T' is generated by rl and ?2 we now coﬁsider the
mapping

£ 1 : 1 1 1 .
: i * 5, e i
¢ : {Pz (rl,n2 _2) X PZ (12,32 _2)]/@(P? (I‘,n2 "2})F9Pz (H,Jz_nz)

deflﬁed by g(f(pl,pz)?)m pl'H - p2|H, where {(pl,pz)} is a
representative of equivalence class. Clearly, the mapping
g is well defined and linear.

Let p € le(H,Hzé_z), then by Lemwa 4.1 and 4.2, p can

be extended to a parabolic cocycle of P € le(ri'ﬂ?q {i=1,2)

;
-2
such that pi'H = P. Hence,

3({(2p1,p2>]) = 2p, |, - p,l, = 2p-p=p.

Locd
This shows that & is surjective.
Lovad

Néxtf we shall show ¢ is injective, ILet g({(pl,p?)]) =,

Then

Let rl =¥ 4+ L H a“ ang P =1 + g H bB be the right H-coset
s g :
decomposition of ?l and T', respectively. Then for any ele-

ment ¥ € T, we have a unique representation

YthYio""o Yti
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Furthermore,

where h € H, and ¥, is some aa or gome b
: i

o

Yi and Yi+1 are not contained simultaneously in the sazme

We define the mapping ¥ : T - H2q~2

X(Y) = ph) = (vj0.moy,) + 'pil(vl)owzo...wt)

+ps (Y2)°(Y30..¢0Yt)+...+pi (v.),
2 t
i = 1 i 3 =2 - 1 -
where .71 1 if Yk € Fl' and i 2 if Yk € PE.

We will show that %, defined as above, belongs to

pzl(r,n2 o This will show that

q-2
- 1 . ,
(Pl;P2) = (%) € ¥(pz (T'H2q—2})' that ie,
{(pl.p2)3 = 0,

Thus the mapping & is injective. Therefore, & is bijective

and consequently we have

NP D oyt !
dim([ez (1l,n2q“2) X PZ (rz,nzq_z)]/ﬁ(Pz (F,H2q"9J))
S |
= dim pz7 (H,H2 ).

g-2

The desired equality follows from injectivity of %. mwo prove

Y € le(r,nzq_zj, first we will show that ¥ is a co-cycle

of 1.
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Take one more v' € P and let yv' = h'oy;

unique representation of v', By induction on t, we verify

1
L R be a
Yg PE

that X({vovy') = x(y)ey' +%(vy").

are nolt contained

In fact, if £ = 1, and if Yl and vi h |

simultaneously in the same ri: éay Yl ig in rl and yi is in
rz, then hoyloh' = gbam for some aa € Tl and ﬁ-é H. So | 7 é

YoY'm ﬁoa_ oy

‘ov'le oy’ Co !
m l e ® 5 S. . H

Hence by définition of X, we have ' _ - |

I'_'.:: ‘ -'7‘i| s
%{yey') p{h) - (a °Y1°Y2°~oe°Y +‘p1(aa) (vlovzo..oovs)

. ! * ! * s a ! h ! - ' o & w ' +ns.+ | ! -
*p,lv)) (v,000m0y ) + Py ¥y e v o oy} s&l(vs)

. g | 1 . 1, ' 7 |
= P H i
Since a, h Ohoyloh and since Py € (Tl,ﬂzq_z)

we have pl(aa) = mp(ﬁ)-fgﬁlohOYloh') + p(h)=(y10h'}

+ pl(Y13-h' + pth'),

Therefore, X(yoy') = p(ﬁ)-(ﬁ'lo-hovfh'oviw'o...o'v;3 I

. ~ N.._l 1 . ) ' . ] ¥ . [ t \
+ {~p(h) « (1 ohoy,oh ) +p(h) (Yloh )+plfvl) h +p(h')} {vlo zoaaawsl L

+ pz(vi)°(y;°-e-°v;)+pi(vé)-IVQO-.-OY;}+---+pi (v!)
1 7 |
1

1 ‘ :
+ p(h') . (y! cyzo._.oY NE p (Y } e (v} o...oy )+pl(y Yo (v ...oy;) . i %

= p(h)-(v.Oh'Ovi0v;° o' )4p1(v )e(h'oy °Y2°o--°Y;)

tooatp, (v L  |
i ‘g -
1
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= ph) - (vyoy ) 4py (v,) oy 4 (y")

= {p(h)'Yl+pl(vl)?-Y'+x(v')

= % {y) ey Hnly'). | :

Similarly we can prove that ¥{voy') = x(y}-y‘-&x(y'), when 3

and vy.

p are contained simultaneously in the same ri“ This step

[

is left to the reader. Now we assume that % {yoy") =% {v)«v'+x(v")

holds for v = hole..movt and y' = h'oyio...ovs.

Let ¥ = hoylo...oyt+l be a unigue representat%on of ¥ € 1.
L]
1

L

1
¥ ! = e o e h ' a8 s ! -
Yo hoYlo oYto oadPYzo oYS

If Ye 41 and Y. are contained in the same Fi, say

' o - _‘ l Ll
I'.+ then Yt+.°h oy, = hoam for some am € 11 and h € ¥H, 80

1

Hence by induction hypothesis, we have

¥

(s ] . . 1 t i 1 1
x(voy ) = x(hovlose-ovt) (ﬁoaﬂpvzo..eovs)-+x(h°aﬁfv2°.e»ovq}a

5o, by definition of %, we have

Lad ] - Y, ""1 ° “‘l
}Oey) = xthoygo ey v m Py (Yeyy) Yoy )

Lag [ ¥ 2 ] ]
. o ca + . .s
(hoaéwzo 0y )+p(h) (a@ovzO oy}

"

i

FPylag)  (vye w0y )4p, (vy) e (yfon oyl

+'e - o+pis (Y;) -

. Pt
Since a =h oy

1
oh'oyi and since = € Z (EfHZq )

t+1
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we have
(a_ ) = - ﬁ)%ﬁd‘ hloy!) +p., ¢ Yeh'ow)) +o' )yt ol (v
pliau’ o p Gyt_i_lo OY1 pl Yt"i"l o\(l oD Yl pl Yl -
Therefore, .
X{YovY) = x(V) -y +x(v").

and v! are not

Similarly, we can prove the above if Yt+5 1

contained simultaneously in the same T, . Therefore,

X{voy") = x(y)-y'+x{y') for any v and y' in p. | Cy

1 oL HE
P . T =]
(T ﬂzq ) O prov

50, Y% defined as above belongs to 7 o

¥ € le(r,ﬂ }, let v € T be any parabolic element. Then

2q-2
there exist a parabolic element ' € Ti(i==1 or 2) and an

element ¢4, € [ such that y = aioviomgl. From the definition o

* |

+ - "k _ N !

of %, we sece that xlri pi € P7 (Ti'Hunz) and x(yi).lv Yi v

for some v € H2 « Hence we see that

q-2

-1 =
K(Y).__K(“1°Yi°“i ) | - g
o . -1y L.l -1 '

1

- -1 - IR
= X(ai)°(yio&il)-%(v=vi"V)°ai (e ) R

e | -1 -1 ' -1 -1 -1
= "k(ai ) (aiovio&i )-F(v-@i ) (mioviomi )-wv-c::i 4—x(mi }

-1 -1 -1 -J.
= . PRYAE . oY - e +
x(&i Yoy k(v & o - v o, x(ai )
- s - ~1 _ -1
= wey-w For w=v &i x(mi ).

Therefore, we obtain v € leir.ﬂzq_2)-




-or trivial.

Remarks:
(1) The above arguments also appear in Nakada f187.
. 1 !
(2) Note that dim pz (H,H2 2) = 2[9 = ) where v (1 £V <o)
qa—n

is order of the cyclic group H. Tor a parabolic cyclic

' g
group H, v is regarded as » and [9 - ©] =g-l., When H is

trivial, v=1. 1t is clear that dim PZl(H,qu"?)==O in

this case. We will make use of the avove fact often in

this section,

The following is a simple‘observation that follows from

the proof of the Theorem 4.2. It will be heeded for our

discussion in the next section.

If " isg a non-elementary Kleinian group which is genarated

by finitely generated subgroups F and r by application

of Combination Theorem T and if H-—F rﬁr is elliptic or

parabollc cyclic or trivial, then

. ' . 1
(T >
dim 7t (r,ﬂzqmz) dim % (Fl.ﬂ2q ) +dim 2> (T2 2q 2)

: 1 :

The above inequality is equality if H is elliptic cyclic
Our argument of injectivity of % in Theorem

4.2 als® holds for this setup, % is also surjective if

I is elliptic or trivial,

Next we derive a relation between dim le(r,ﬂ? ) and

: S hap4
. qumz) for the group r which is generated by its

T
i
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subgroup fl and an element f by application of Combina-
tion Theorem II. We can state the following theorem in

a more general manner.

*

Theorem 4.3, Let T be a (nonuelementary) Kleinian group which

is generated by its finitely generated sﬁbgroup Tl and an

element f£f. ILet Hl (or H2) be an elliptit cyclic or parabolic

cyclic or trivial subgroup conﬁugate in T but not in rl' If
evefy relation in T" is a consequence of'a relaﬁion in r, and
the relation of fmloﬂzof = Hlf and avery elliﬁtic or para-
bolic element in I' is conjugate in T to an‘eiement in T then

lf

1 o | : ' R |
i ' zd P + iniad - ." PJ r -
dim PZ™ (T qu_z) im Pz (rl'anm2) (2g-1) ~dim PZ (Hz quﬂz)

Proof. Since f is loxodromic, and since every cocycle ¥ of
1 . . .
Pz (<f>,ﬁ2q_?) can be uniquely determined by an arbitrary

choice of %(f), we conclude that dim PZl(<f?,H2 ) =2qg -~ 1. | :

q-2

Also observe if ¥ ig a cocycle of T. and v € ﬁ2 then

1
{X,v) defines a cocycle § for T with ?]rl = x,g(f) = v if and

q-2"

only if

X(hz)'m v-(hlofhl)'*X{hl)-fmlw—v-f ; where h. and h. are

1 2
generators of Hl and H2 respectively. Seé for example, Weil [217,
Moreover, if X is parabolic cocycle of Ty then ¥ is also

parabolic by the same argument as in Theoremn 4.2, Also, we can

define a linear and injective mapping & as in the proof of

T




Theorem 4.2,

) ox U

1
B PZ (T,
g-2) ¥ PE Ty, 2¢-2

@(;) (X,v), where § = il? {that is, % is restriction of

1
§ to rl) and v = ¥ (f),

Using the mapping ¥, we consider the mapping

. 1, 1 ‘ 1
@ H r i . 23 p e )
LPZ (rl,vzq_z) X qum2]/®(97 (raﬂzq_z)) - PZ (F_,g.rlzoﬁ,_2

defined by 8{ (%,v)} = p, where
p{h.) = v.(h af_l) + % (h )-fnl-—v.f"1-x(h ) for
25 L } 1 2

hl = f—lohch'é Hi; ItAis easy to see that p € PZl(Hz,H qﬂz)and S
is wellmdefinéd and linear. To show that the mapping ¥ is
injective, w2 assume gf(x,v)} = 0, Thusgs we have

p(hz) = v._(hlof"l) + x(hl)offl - ver Tt x(hz) = 0. Hence,

there exist an element § € le(r,ﬁzqnz) such that

= ¥ and Q{f) = v which shows that {{y,v)} ¢ é(PZl(r,ﬂzd_O}): |
1 =

+

that is, ¢ is injective.
Next we shall show the surjectivity of 3. Let p and

)

N
_‘2} and Pz (Iaﬂzq_z

. ) . 1
xl be arbitrary elements of pgz (Hz,ﬂzq

respectively.

For hi ¢ Hj(i=l,2) we see from Lemma 4.1 and 4.2 that

R B TR

2

Pihz) 2= unhz -1, xl(hl) =W, oh {h ) = w2~h2 - w
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1'% € Tygear

Now, for h, € H, (i=1,2) and foh of"l = h,,
i i 1 2

for some poiynomial u,w

we have

w.) + {w_.*h, -w_}

p{hz}.f,-, (h )-+x1(h2) f = (u-h ~u) E-—(w1 1 vy 2 Py~V,

uo(hzof)-u'f-(wl-hlmwl)-fwgo(hzof)*fwbwf

it

- — L] — 2 —- + L " - Ty o
e lfohy) et - fwy by -wy ) S (£ohy) —w,-£

Ty

L

(uo ~w1+w20f)-h - (gff—wi

Sg# ,th,u.fffwlfFWZQf € ﬂ?q_z Then we have,

p(h )£ ¥y ) o+ X, () £ = veh

1~V

Hence p(h,) = Ve(h Of" )-—vaf" %y (h )af-l-wxl(hq)e

Thus, we have é({(xl,v)}) = P thqt is; ¢ is surjective.

Ccnsequently. dlm([PZ (P ]/

z)xn

2 2q -2 @(Pé {P,

2q 2))

)

=Vﬁ1m_?z (Hszunz

From the injectivity of &, the equality of the theorem follows.

(1) Tﬁélabove argument is similar to the argument which
| appeared in Nakada [187. -
(2) IfT is é (nén;elementmry) Kleinian grouw which is

generat@d by its flnltely generated subgroup Fl and

an element £ by application of Combination Theorem II,
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and if the group Hl {or Hz) is elliptic cyeclic or

parabolic cyclic or trivial, then

1 1
» IS E L] 2
din Z (T,qumz) dim 2 (llan -5

- . 1
2q~2)_+ (2g-1) ~ dim 2 (HZ'nzq ),

.

The above inequality is equality if H is elliptic cyelic or

trivial.

§3. Let T be a non—elementary finitely generated Kieinian
group. TLet {A ,..Q,AL} be a maximal set of inequivalent

k
components of 1. Then Q(I')/T = & A, /I" = 51'+Sz+°““+si»f
i=1 8 ' -

| where Si = Ai/rA.' For each i, let (gi:vil’°"'”in., be the

signature of S {that is, Of,TA }. Recall that dim Aé(Q,F)
n, i ‘
k ) .
q..mm_]] For an elementary group
- -1) +
2 {(2g-1) (g, -1) Tf vy

e

i=] i=1
T with the signature (q:vl,..&,vn), we uge Nﬁ(q) in place of
dim Aq(n,r). We recall from Section IIT that N (q)
_ n 4 .
(2g-1) {(g-1) + ¥ [q‘“vi} for an elementary group T with
i=1

signature {(g;v ,.u.pvn). Under this convention we have

1’

the following lemnmas:
Lemma 4.3, If I’ ig a Kleinian group (non-elementary) which
is generated by its finitely generated .subgroups T, and ?2

1

by application of Combination Theorem I as stated in the

beginning, and if H = T1!7F2 iz elliptic eyelic or parabolic

[
!
|
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cyclic or trivial, then

dim Aq(ﬁ{r),r) = dhnAq(Q(Tl).Pl)'FdﬁgAé(Q(r),Tzl

- g
+ (2(1“3:) "‘2[q U}v

where v(l £v =) is the order of H,

Proof, Case T:

T, and T, are both non-elementary.

. -FQ‘!. (= : L ] *
Let Q(Tl)/rl = Sll +ql and_ﬂ(ry)/rg == u21+ +S'm
Let (gl

.

. $ . o § = .
,wil.,..,vik.) be the signature of oli(l 1,2...0n) and

Q

Zi'uil'°"’uik£) be the signature of Szi(l*l,a..dnio

Since the precisely invariant disc-Bi(iﬁlgz) under H

will be contained in some component of Fi' we assume firs

o
that Bl/ﬁ g

similarly. Assume that H is cyclie group of order v. Then

H

s

s trivial or parabolic whenever v=1lor e, let v=v

ltzwuls
for some t(l.ﬂt,skl)'and s{lc<s sk&). We may assume that

\Y

= M1 T Ve

Then by Combination Theorem I,

= +¢.0 ODDA’~
o(m) /T s +sl2 +sln +822+ S:am

where S is a surface constructed topologically from Sll by

removing two punctured discs Bl/H and Bz/H {when H

or two discg B.

their boundaries. Thus we have, - -

k x
1 q 1 a
r [9- R e

G2 : J Jz=2 1]

dinLAq(nir),r? 7 (2q~1)(gll+921~1) +

< . y 15e e 2
11 and Bz/ﬁ 521 The other cases can be proved

is parabolic).

l/H and'Bz/H (when H is trivial) and gluing along-
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k,
n N
+ 2 {(2¢~1) (g, ,~1) + 5“ [q“;"'-ﬂ
.
r - ki q
5“ £(2q 3)(@2i 1)+ 5.:‘ [q...__. 11
- L,
= % qu Nlgy -1+ 2 [T 5]
or gl =1 . iy
nl Y l } 'ql
* 3 {(2q-1) (g, -1} + % [a-~ Il 1+ l2g-1) - 2[9- )

' . , . ' N D
; s - - L R
TR R T) + ain A A )+ e - 19,

Case TI: Ty is elementary and I, is non-elementary.

Lest Q(Tl}/f = 8 and Q(P )/. =8 4...+8

. 11 21 777 Tant |
Let (g, lgoo,v ) be the s:gna+ure of Silranérfgzi;u 1,.°¢L 1)
be the sxgnature of s, (1“l,ze,.n).
Follawxng Case I, we have
dim A (1), 1) = (2q-1) (g+g,, -1) + z [q...,g; + 'i: Eq“f ]
S e |
‘ o o k, i
o | i q i
4t ’z': [(2q--1) (g 1) R (€ ey
2 "‘i; - i
A=2 T ge=1 ij

k
(.aq-l) {g-1) + ¥ [q-w——j + z‘ f2q-1) (‘321“1’

fe=1 ”; cim]
s
.. -l =8
+ % EQq,m"“J}-P(Eq“l) mth —«J

= N, (q) *‘“dlm ss (f‘m‘ ),r ) + (?q -1} -ZLq“"“j
Iy
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Case II1I: rl and P? are both elementary.,

In this case, H is either elliptic, cyclic or trivial. We

May proceed as in the above cases,

Lenma 4,4, If T ig a (non-elementary) Kleinian gr

oup which

is generated by ite finitely generated subgroup rl and an

element £ by application of Combination Theorem II as stated

in the beginning, and if the subgroup Hl.(or H2) of Fl is

elliptic eyclic or parabolic or trivial, then

3 . g
i { = di -1} — of
dim Aq(m'l“).r) dim Aq(ﬁ(rl),rl) + (72q 1) - 2f v,
where v{l =sv <o) ig the order qf_Hl'(or Hz).-

Proof. rl is either nonelementary or elementary., In case

©f elementary, Hi(i=l,2) is either elliptic cyelic or trivisl.

Let Q(r)/ry = s, S1n

Let (gli;vil"“"vik.) be the signature of 3 C{i=1,,..n).

i |
: : : . |
Let Bj-and B2 be the Precisely invariant discs under Hl and H?
. ) F
respectively. Ws assume that Bl/Hl and BQ/HQ both are subsets |
of §

11° The other cases can be done similarly,

Let Hi(i21,2} be a cyelic group of order v{lsvs=), Then

= = ’ 8 L : o b e .
v Vig T Yy, for some t and (l.st:skl,l.ss <kl,t7 S). We

it

may assume that v = vll' Vlz“ Then, by - Combination Theorem II,
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QI /T = S48, _+...48

12 in’

.

where S is a surface constructed topologically by removing

two discs (possibly punctured) fromlsll and gluing along the

boundary curves (adding a handle). Thus we have,

el

~ (9 - 5
dim Aq(ﬂ(f).f) = (2q-l)(gll+l~l) + T E Ty

i=1

q
+ (2g-1) - 209 7§

q -9y
= dim A _(9(r)),T) + (2g-1) - 2l vj.

Here, for our convenience, we record an observsation made in

Proposition 3.1.

Lemma 4.5, Let Po'be an elementary group. Thern,

L _, ‘ .
dim PZ ,H = N + . =L} .
im (Ts 2q~2) ro(q) (2g-1)

Next, we shall establish the following theorems which

are essentizl parts of the proof of the main theorem,




Theoxem 4.4. Let I be a Kleinian group which is genervated

by its finitely generated non-elementary subgroups Tl and

T2 by application of Combination Theorem I. Assume that

H= lf\? be elliptic cyclic or parabozlc cyclic or thVLal
Then PH™ ff;ﬂ q_v) (A {ﬂ(?) P)} if and only if
PH (T.,qu 2) = (A (n(*.) T, ), for i=m1,2,

Ir r ig formed by two elamcntary subqrgups Fl and Tz

by Combination Theorom I, then pt (T, 2q«2) = ﬁ (A (ﬁ(r),T))
If T is formed by a nen«elementary subgrcup TI and an elem_

nentary subgroup Tz by Cowbination Theorem I, then
11 s (A(Q(F),T‘)} if ond only if ral RTINS

(I\‘P H q_‘uz

2g- 2)
m aq (_Aq (_sf!(rl) ,rrln .

Proof. Case T Tl and Fz are both ﬂenmelementary,

Let v(l vsﬂw) be the order of H, First, we assume that

el (P..qu 2) == ﬁ*(A"(Q(F,}yT ), for i = 192. Ve have,

.}

dlm PH (r, 2q 2’_? dim pH' (Tlgﬁz 2) } dim FH (T qufz

+ (2Q*l? - 2[@-433_
. o L 3 N
sirceesn 0Ty ) = asn n (00,07, (e,

: = L T + m oA (D )
ve have¥¢1m.P§.‘?,n2qm2) dim Aq(n(rlé'"lg .dlm Aq{w(?%{izz?

G
-t Qe -20a7 gl
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2qn2)

J = B (A (2’2(1‘),1}

Hence, from Lemma 4,3, we have dim PH (F,
= dlm 31 {ﬂ(?) T)? that is, PH (T, 1 2q
by usxng the 1njectivity of the Bers map.

Conversgly, we assume that PHl{F, B (A (ﬂ(?) T)).

2 2
If PH (T.pnzq 2} %dﬁq(hq(QGFi)fTi})‘.for_some lf uay 3fil,
-‘?"’a" dim Bir(ry. M, ) > din Ay BTy Yryd

Therefore, from Theorem 4.2, we have

-2’

N ] 1
.flm Pﬁ {r,ﬁzq_z) dim PH (TI,HQ 2) + dim ?3 (rz,n
qg-9
+ (QQ“l) - QEJ ,gj
MA@ +din A (a(r,),T,)

+(2q-1) ~2[a~3

Again, from Lemma 4.3@ right hand 31de of the above inequality

is equal to dim A (n(r),r) Hence

aim PHYTVTL ) % dim a oy, ).
N o 2g-2" q .

This contradicts our hypothesis, So PH (T ﬂzqnz)
% .
A (G ), 1) for i=1,2,
Pq(R8(ry) ) ‘
Cgse T, Tl and F2 are both elementary.

Let v(l £vg®) be the order of H, By Theorem 4,2

we have

. 1 : . 1
dim PH .(I‘Bﬁ‘q ) _2) +dim Pz ('?Z'H_Eqwg

209 3 - (e




Bﬁt, by Lemma 4.5, the above inequality reads,
. . a
(@) + 8 (q) + (2g-1) - 2[¥ =]
T ¥
o
On the otherhand, dim aq(ﬂ(r),r} = NF -+Hr + {2g-1) - 2[9- 3]
. ‘ 1 . .
by Lemwa 4.3, Comparing the above two ggualiities we have.

. 1
P
dim PH (F’ nzq—w2

+ h s, - L) 1 o,
dim Aq(,ﬁ_(l_)_’m dim Pf; .{17., Ilzq

. 1 .. |
that e PH (T, 11 ) A (Q(r o LE»
at is ( 22 Bq( g { ), ?_

Case 111, Ty is non-elementary and r, is elementary .

Using Thecrem 4.2 and Lemma 4.5 we have

2g~2

i BEY (LI ) = aim ol ) 1) - 204
asm zat(r, 1 = dim B (P, ) +qu2 () + (29-1).~ 209~ 31,

”On the otherhand, by Lenma 4, 3, we hﬁve
dire {mm,r‘) = dim A (Q(r, YoTy) +u, w Hag-1) - -[9-33.
2
Now, it is easy to see from the'above two equalities that
) o - = . l ~ ) r g +
dim Aq{ﬂ(;l).rlﬁ dim PH (Il,ﬁzq_g) if and only if
dim PHI(R, {1

2g-2° dim ﬂé(ﬂif);P)e This completes the proof,

Theorem 4.5, Let T be a Kleinian group which is generated

by its finitely generated non-elementary subgroup Tl and an
element £ by application of Combination Theorem IT as stated
in the beginning. &aAssume that H1 (or H2) be elliptic ecyclic

Or parabolic ecyclic or trivial,
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then
PE%(F,HZq_z) W.Bg(hq(ﬁ(f),T)) if and only_if

PHE'(I‘}H ) = g¥(a (agr,),r.3.

. 1 2g-2 q g TR A

In the hypothesis, if 1"3 is elementary subgroup then

i ‘ W, -
PH™(T, ) o= t v .
(T,quuz), ‘Eq(Aq( r ) r_}‘”

Procof. Case 1. rJ is_nonwelementary

Let v{l 2V £ e} be the order of Hl' From Theorem 4.3, we _

have, ‘ :
dim PHl{F;H T ) = dim pal(r. ,n )-+(2§-3)-etqm~33.
L 2g-2 ' fT2g-2 R
On the otherhahdﬁ by Lemma 4.4, we have
L Coas ) )+ (2gel) - a(a- 9]
din Aq(ﬂff)af)r dim Aq{ﬁ(rl)grl> (?q 1) -2(9-2]

It is clear from the above two equalities that

]

dim Aq(ﬂ{?ﬂ?r dim py* (r. 1 2q 2), if gnd only if

B

) C- . 1
dim A Q) T) = dim Pm Tyl n) -

QQ e II. r& is elementary,

From Theorem 4.3, we have

dim PHl(F,H, ) = 61m le(? H 2[q 33,
o . q w? v

IHence, by Lemma 4.5, the above equality becomes

T T ) 1) - 2fa~g
dim PH (_f. qu‘_z) er_(q) %fgq 1) 2E§i a1
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On the otherhand, by Lemma 4.4, we have

- - g
dim 2_(Q(1),T) = N, (q) + (2g-1) - 2{%F - 37,
a ry

Comparing the abova two equalities we have,

~2

dim A (T),T) = aim Y (P, ).
a 2q

Hence, by injectivity of the Bers map, we have

™ . - l ..
Bq(Aq{m(r).r) = PH (anzqmz)a

§4. Let I be a (non-elementary) finitely generated Ffunction
group, Then, as we stated earlier, we can cnﬁstruct " from
.basic.subgroups in a finite number of stepz by using €om-
bination Theorems I and TIT where, in eéch step, the amal-
gamated subgroups and the conjﬁgated subgroups are trivial,

elliptic cyclic or parabolic.

Exceptional function groups: & finitely generated function

group I" whose all degenerate basic subgroups necessarily
have signatures (0:2,2,2,n), 3 £n < » or (0;2,2,2,2,2) is

called exceptional; otherwise, non-exceptional.

By definition, exceptional groups are not geometrically finite.

Now, we can prove our main result stated in the beginning of

the section which is formulated as follows:

[N

Theorem 4,6. Let 1° be a non-elementary and non-exceptional
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finitely generated function group. Then I is geometrically
finite if and only if PHl(T,H ) =8 ((r),™) for one
_ - 29-2 a g
(hence 2l1) q = 2.
. . L
If " is exceptional then PH™ (T, T ) 2 8% (A (), T)
| 2q-2" % q g

for all g = 2 except g =3, 5o0r 7.

Préof; First, assume that I' is geometri¢ally finite. Then
T" can be constructéd from elementary and guasi-Fuchsian basic
subgroups by using Combination Theorems T and II. Let
Tl,rzg...,rs be either elementary or quasinuchsian basic
subgroups of I" from which r'hés been constructed.

For a quasi-Fuchsian group ri' we have
dim Pfil(i‘.;l‘l T ) = dim a ((r,),T,)
. ifT2q-2 g it
1 _ *
(see Corollary of Theorem 2.3). So PH (Ti,nzq_z)-Bq{Aq(ﬁ(E);Ti))
by the injectivity of the Bers map.
As mentioned already, in each step of. using Combinaticon
Theorems I and IX, the amalgamated subgroups are trivial,

elliptic eyelic or parabolic cyclic, Therefore, by Theorem

4.3 and Theorem 4.4, we have,

1,. s : ,
PR, ) = s;mqm(mm for all

On the otherhand, assume r, is not geometrically

Then for some i, Fi is a degenerate basic group,
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Ti has no accidental parabdlic element. Hence we have,
aim pHO(r,, 0.7 ) = 2 Qim A (Q(r.),r.)
i""2gq-27 g it

{see Section I11). .

For a Kleinian group Ti with signature (g:vl,,..,vn)

and g = 1, dim Aé(Q(Ti),?i)_> O for all g = 2. Assume ‘hat

Ti has signature {O:vl,e..,vn). Ifn = %, we observe that
6

9 - V.1 is always positive.
=1 '

Thus we cdnsider only the cases when n < 5, But we know that

dim Aq(ﬂtri),ri) = ~(2¢gq-1) + ;

a degenefate group cannot be a triangle group (that is, a
Kleinian group with signature (O:vl,vz;v3)) By-a result of.
Kea [ 97, Hence we reduce the case n < 5§ +o two cases n = 4
and ﬁ = 5. Since for é given n, dimension does not decrease
when ramification number increases, we need to check only
therlowest pefmissible signature in eacﬁ case, The foliowing

table will clarify the rest of the cases:

Signature of the group T dim Aq(Q,F}

{(0:2,2,2,3) positive except for g =
(0:2,2,2,4) | positive except for g

(G:2,2,2,n) {5 <n g») | positive except for ¢

(0:2,2,2.2,2) ‘positive except for g
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Hence, dim'AQ(Q(Ti),Pi) # 0 for a degenerate basic
subgroup ri cf a nonexceptional group 1°,
, ) 1 : _ . '“
Therefore, | dim PH (ri'HQq-z) » dim Aq(ﬁ(ri),li)
for all q = 2,
Hence by Theorem 4.4 and Theorem 4.5 we have, |

N R or a o
dim PH (l’ﬁ2q~2) » dim Aq(ntr),r) for a g = 2,

*
2) ? ﬁq(Aq(ﬂ(F).T)) for a q = 2,

This completes the proof.

So, - put (r.n 2q

Rémarkﬁ There are many examples of (non- functlon) qecmarrlcal_
ly flnlte groups for which the Bers nmap is surjective., See L
for example Kra [107. But, at present, we do not have the
answer whether the Bers map is surjective for all geometricsl- [

ly finite groups,

§5. Now, using Theorem 4.2, Theorem 4.3, Lemma 4.3 and Lemma

4.4 we shall obtain a formula for the dimeunsion of the space
of parabolic cohomology classes and a formula for the dimen-
sion of the space of cusp forms for non-elementary finitely

generated function groups,

Proposgition 4.1, L&t T be a non-elementary finitely generated

Kleinian gyroup with an invariant component. oLet T be
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constructed from bhasic groups rl,..orq by ‘s -1 applications

of Combination Theorem I and say, t applications of Com-

bination Theoren I1, where in each step the amalgamated

.

subgroups and the conjugated subgroups are trivial, elliptic

- or parabolic cyelic, Then
. 1,
dim PH (1,1

8
. L  (2e-1) (£~
2q-2' = iEldlm Pz (Ii'nzq—z) F(2g-1) (£-1)

g+t ~1 o

and

. . S -
dim A (Q(T),T) = ¥ dim A () ,T,) + (2g-1) (s+t-1)
: dq i-'zl g . kN 1
s+t -1 ¢t
| -2 v (%7 gs
J i=1

In the second equality we replace dim Aé(ﬂ(?i),ri) by NF ’
i
The v, (1l v, c=)
i i

when ri's are elementary basic groups.

ar

e the orders of cyclic subgroups used as an amalgamated

anad conjugated subgroup in the (s+t-1) application of

Combination Theorem I and Combination Theorem II,

Proofi, The First formula follows by using Theorem 4,2, s - 1

times and Theorem 4.3 £,times.

Similarly, thée second formuls

follows by using Lemma 4.3, 5 -

1 times and Lemma 4.4, ¢ times.
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gggéggg_ 5ince Tig-amrs are basicwsubgroups of I', these are
either elementary, degenerate or quasi-Fuchsian groups, 8o
dim le(rifn2é-2) areall known fox thaée groups in terms of
the sigﬁature of Ti.VVHence the dim PH%(Tenéé_z) can be com-

puted in terms of the signature of Tlp Fgw..Jé by the above

formula. Similarly, we can comnpute the dim A%(Q(T),T) in

terms of the signature of Tl' Téu.oﬁé.
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SECTION v

Equalities and inequalities

The main'purpose of this section is to show how to
thain some results of Maskit in [15] and [167 on in-
equalities involving the dimension of the space of the
cusp forms supported on an invariant compohént, and the
&imension of thersﬁace of the cusp forms supported on the
other components of finitely génerated function groups by
using our cohbmology machinefy.

To this end, we first establish some equalities BetWeen
the dimension of various cohomology spaces of finitely gen-
erated function groups. The Maskit inequaiities are simple
conseéuence of these‘eéuélities. We will see that the para-
bolic fixed points play aﬁ important role in proving these
equalities. We begin this section by describing the struc-

ture of stabilizers of pParabolic fixed points of a Kleinian

group.

§1. Let " be a Kieinian group. Let x € A be a parabolic

fixed point. We let

P = {v € T v is parabolic andg yx = x} U {11,
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{1} denotes the iﬂéntity element of T,

Recall, ﬁy = {vy ¢ T vyx = x}.

'S

Thus Px 12 the parsbolic stabilizeg of x znd T& is the

sﬁabilizer of ®x. The group Tx ig an elementary group with
one linit point, and is therefore, a finite extension 6f the
maximal rank one.or rank two pavabolic subgrcup Pxﬁ So Tk

is generated by F_and an elliptic element of order n (we say

that rx ig a anextension of PT), Here n=1 or n=2 if Px ig

eyelic, én& n=3%, 2, 3, 4 oxr 6 if Px has vank 2.

Foxr q € Z, g 2 2, we say that x is g-admissible

provided q ® 0 (mod n),

Thls definition is due ‘o Kra. With this definition the

following was proven in Kra [11]:

Theorem, Let T° be a geometrically finite Kleinian groupﬂ
Then for g = 2,
dim BY(r N, ) = aim pwi(r,n ) +N{q),
2g-2’ T 2g-2

where N q) is the number of Fmequlval@nce clagses of g-admig-

sxble parahollc fixed points of T.

We will show that this also holds_fcr some Kleinian groups

that are not geomatrically finite. As an example we will

establish the following:
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Theorem 5.1l. Let T" be a (non—élementary) fiinitely generated

function group. Then for q = 2,

dim Hl (I‘. 11

. 1
2q“2) = dim PN fr,n

2q_z) + Ni{qg).

To prove the theorem we nesd the following lemmas:

Lemma 5.1. Let I'be a finitely generated Kleinian group.

Then for g = 2,
dim Hl(f T, .) < dim PHO (7,0 ) + N(é).
" 2g-2 fTag-2 *
Proocf. Kra [107, '

Lemma 5.2. Let T be a finitely generated function group.
Let T be constructed from the basic subgroups Tl,..,,TS by
the apélication of Combination Theorem I and Combination
Theorem II. Then every szextension of a rank 1 parabolic
subgroup or every maximal Zn—extension (n=1,2,3,4 or 6) of a

rank 2 parabolic subgroup of T is conjugate to an elementary

basic subgroup of T,

Preoof. Let Tl,rg,,..rs be the basic gubgroups of T, and F
is constructed from rl,F?,.,,TS by application of Combina-

tion Theorem I and Combination Theorem II (as it was stated

in Section IV), where the amalgamated subgroups and the con-

jugated subgrouns are either elliptic cyclic, parabolic

¢yclic or trivial.




We recall the definiticn of a factor subgroup of T

given in Section W, Then it is easy to see that every

-—

n
extension (n=1,2,3,4 or 6) of a rank 2 parabolic subgroup of Tis, by

Zz—extension of a rank 1 parabolic subgroup or avery maximal o

definition, a factor subgroup of T. Now by Thgoreml4¢1, each
such subgroup is coﬁjugate to a unigque b§sic subgroup used in
the construction of f. In fact this subgroup is conjugaﬁ@

to an elementary basmc subgroup. This follows from the standard
fact that qua%x«?uchsian groups and dagenerate groups <an not

contain such a8 a subgroup.

Lemma.s e3. Let 25 be_an elementary group. . Then

. 1 .,
dinm 2 (ﬁ@, 2~ 2) = dim PZ (nﬁ,nzq_z)fﬁnumbgr éf g-adnissible

parabolic fixed points of Tb.

Proof. Without loss of generality, we ean assume that Y is
an elemwentary group with one Limit point,
- Then the 1émma follows from the list of the dimensions

for elementary groups {see Proposition 3.1) and hy the de-

finition of p g-admissible parabolic fixed poiat,

Proof of Theorem 5. 1. By Lemma 5,1, it suffices to prove

that for a finitely generate& function group T°, dim Hl(T,ﬁzqmz‘

; ,
> a3 - + .
¢im Pﬁ FrFHEQ“Q) i),
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Let ’i“l. 2,,.;,;'["5 be the basic subgrqups of T from Which
T' has been constructed, Then the I‘l,r‘z,.“,l‘s are eithery
quasi-Fuchsian groups (of the first kind)}, degenerate groups
(without accidental parabolic elements) or elementary groups,

Let us assume that T is formed from o 'FZ"’””FS by s -1

applications of Cembination Theorem I and t appilications of
Combination Theorenm il. We reorder the basic subgroups

1"1, I‘z,.-,.,,j;; 80 that T‘l,.,;;;rp are the quasi-Fuchsian and degenerate
_b""*Si" subgroups and Y‘p +l,,“;f‘s are the elementa}ry basic sub- |
groups, |

Now we recall the following two facts which were obsevved

at the end of the proof of the Theoren 4.2 and the Theorem 4,3,

(1} Let T be 2 non-elementary Kleinian group which is
genexvated by its finitely generated subgroups I“l and
1“2 by application of Combination Theorem I znd if

H = 1‘1 ﬂi‘? is elliptie, parabolic cyclic or trivial,

then

.1 N | N
2 , -4 I )
d}m Z7 (T, ﬁzq_z? dim z7(r ,’qu__ﬁ) +dim 2 (Tys 2q-2"

—di‘l‘ﬁ Zl(ﬁ,ﬁz ’-n)“‘

R

Note that dim Z“p“(iH,II2 ) = 2g~-1 for H parabolic cyclic,

a-2

= 24 -,%?fi for H elliptic cyelic
of order V; 1€V <e,

T
i
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(2)  Let Ph@fanon-elementary Kleinian group wiaich is 4 i

denerated by its finitely generated subgroup Ti

and an element £ by application of Combination

Theorem II and the subgroup Hl {or H2) in ?1 ig

elliptic cyelic, parabolic cycelic or trivial

then

aim 2,01 ) 2 ain zl(r .1
2¢~2

1
- 2 (7 -1 ; i
qu:?.) P {2q~1) amg (H,

quz’

Now by using Fact (1) s -1 times and Fact {2) t times

Cinductively we coan write

1 8 1 ‘
rg » a & ¥ -
(5.1) dim 2 (F:qunz) £ dim % (ri,qu_g)-k(zq ij+
. . . X i=3 . _
rf‘

P e
“(2(§f‘“1)rl - & 2[q ';;"‘i’jp

izl i

rl is the number of times we anplied COmbinétion Theorem I and
Combination Theorem IT where the amalgsmated subgfoups and the
conjugated subgroups aré all parabolic gyclic. and r2 is the
number of times we applied Combination Theorem I and Com~
bination Theorem T3 where the amaluoamated Subgraups.and the
conjugated subgroups are all elliptic cyelic of ordex |

vi 21, i= 1,2h.9£2.

Similarly, we can write dimensiocn of PZ;{T.ﬂzé_z) as

fellows {as we did in Proposition 4,1).
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8
(5.2) aim pzY(r,1_ )= % Qi Pz?gri,nzq_z)-%(zqml)t

i=]

ii

.rz
pX
=1

-X “2)
_1(2q 2) 1

2[q = ;g'ﬁn -
i

How we write {5.1) as follows:

. P .
1 . 1

5a i 1 = ; r, . n

(5.3) dim 2 W’zwﬂ) iiém1z{%'zwﬂ

)

g 3
+ ¥ dim 27{r
i=p+l

i'FZqHQ)

s

' " <
+ (2q-1jt - (2g-1) e, - £ 2[T ~ 24,
| ' 1 i \

We know that {sece, for example, Corollary 2of Theorem 2.7 in

Section 2)
y . i = s i ) -
(4.4} dim 2 (Tipﬁzq_z} dim P7 Fri,ﬁzqwz)-ini, 1= 1,20c00sD

where n, iz the number of Pinin&quivalent parabolic fixed

points for Ti, i=1,20..p.

Also, from Lemma 5.3 we have for elementary Fi

t 3 1 T =d1 1 { =
;5.5)  dim Z,(Ti’ 2q-2}' dim pZ (ri,nzq_z)<+ri(q)(1~p+1a,ws)‘

where'ri(q) is the number of g-admissible Fixed points for

ri (i@"”lﬂ . @,S) e

Using the result of (5.4), (5.5) and (5:2) we obtain from (5.3),
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: L p
(5.6)  din zl(r,nzq_z) > dim lezr,nzqq ) + T

¥ow we know

dim Hl(r,n2 )

\ 1 E \ 1
dim Z (1,0 _2) - dim B (r,ﬁzqmz

q-2" 2q

and 'dim PHl(T,H

2q-2 ).

. 1 ' . 1,
} dim Pz (Paﬂzq_z) - dim B {P;quuz

Also, we know that ™ is non-elementary, so the dim Bl(r‘,l'{gq_2

= 2g-1. Hence (5.6) becomes

1 o e 1
din H (F;ﬁzc_?) = dim PH (r,ﬂzqq

Now we will show that

p s
(5.7) En, + . % 1 (q) -r
i=1 % i=pag * 1

is exactly the number of T-ineguivalent q—admissible_parabolic

fixed points.

We know by the conclusion of the Combination Theorems
that every parabolic element of T' lies in a conjugate of the
basic subgroups Fi(i=l,2,...,s). Now it follows by Lemma 5,2
that the number of distinct conjugacy classes of maximal
parabolic cyclic subgroups or rank 2 parabclic subgroup of

are atmost the sum of the number of distinct conjugacy classes
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of maximal parabolic subgroups of the basic subgroups
Fi{i=l,2,,..,p) and the number of elementary basic subgroups
with one limit point.

We reéall‘that n, is the number of distineot conjugacy
‘classes of maximal rarabolic cyclie _subgroups of F (i=1, 2¢cenep).
It 1s clear by the ConClUSlOH of the Comblnatlon Theorems that
each of these conjugacy classes is actuaily a conjugacy class
of " if no cyclic subgroup of the Ccorresponding conjugdcy
class is used as an amalgamated subgroup or conjugated sub-
groups in one of the combinations. But the conjugates of
parabollc cyelic subgroups which are used in the appilcatlon
or Combination Theorem I are either contained in two non-
elementary basic subgroups or in g non-elementary basic sub-
group and a Zz—extension of rank 1 parabolic basic subgroup,
On the otherhand, two non-conjugate parabolic cyclié subgroups
of a basic subgroup (necessarily non—elementary) used in the
application of Combination Theorem 17 are conjugate in T
by the Coneclusion of the Combination Theoremn,

So, the numbers of distinct conjugacy classes of maximal

Parabolic subgroups of T is exactly ( % ni + number of
‘ ' “ie]

elementary basic subgroups‘with.bne limit point - rllq




Our proof now follows by observing that number of distinet
conjugacy classes of maximal parabolic subgroups of 1
is equal to the number of T=inequiva1ept parabolic fixed
points.

As an application of fhis_theorem we canlfind the
dimension ofr@he space of guasi-bounded ?ichler integrals
for geoméﬁrically finite function grdups. The following

is a special case of Corollary 6.2 in Kra [117.

Corollary. Let " be a geométrically finite fﬁnction-group.

Then for g = 2,

2.2} we have for q = 2,

N . - . o | ,
(5.8) - dim H (1_,112(1”2) = dim Aq(ﬂ(j[“),l“ +dim El“q{Q(F),P).

Since 1 is geometrically finite, we know from the result

in Section IV

. 1 W s
(5.9) dim PH (I"quuz) = dim ,Aqm(r‘),r),

The cornllary follows from (5.7), (5.8) and the theorem.
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. . ‘ .
Remark: ¥From Kra [11] one can describe a basis for I , (T

for this class of Kleinian groups.

§2. lLet T be a. finitely generated function group with an
invariant component A. Now we want to observe sowe simple

facts coﬁcerning dimensions of PHi(r,H2 ), PHI(F,HE_

q—2)

-2
and H (1, 1T ). '
24-2

To this end, we establish the following:

Lemma 5.4. Let N, {q) be the number of g-admissible T-
equivalence classes of parabolic fixed points correspond-
ing to the punctures of A/T.

Then for g 2 2,
‘Qim BUD,M, ) = dim PRI ) 4N (q)
im rlogen? m ALy Der-2 q\as-

We follow the proof of Lemma 5.1 given by Kra [11]. Wwe will

use the following two facts (established in Kra f127) in the

proof of Lemma 5.4.

Fact 1. (Kra [11]). ILet T be a Kleinian group. Let % be a
Hzémz—cocyéie. Let A € T be a parabolic-element with the
fixed point a. Then ¥ is parabolic with respect to A if

and only if %(a)(a) = oO.
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Fact 2. (Kra [127]). Lot ?5 be a rank 2 parabolic group of
MObius transformations. Let A and B generate T,- Let X be
a cocycle for be Then ¥ is parabolic with respect to A if

and only if it ig parabolic with réspect to B,

Proof of Lemma 5,4. Let k be the number of T-egquivalence
c¢lasses of parabolic fixed points corresponding to the

punctures of A/P.

We assume kK » 0. We choose bl,b2,...,bk, a maximal set
of inequivalent parabolic fixed points in A cérrespbnding to

the punctures on A/T.

Wé replace T by g conjugate group (if hecessary) so that
bj € C, 9§ = 1,2,.,f,k. Epr each j, choose Bj € " so that Bj
s parabelic and fixes bj (that is, Bj € Pb,)° |

We construct a map ’

L
H -3
e : H (I‘%I‘I2 2) T

as follows:

Let X be a cocycle representing an element of Hl(r,nzq_2)a

We define

= XE) B X () )

e{¥)

We first observe that for a coboundary ¥ e{¥%) = 0., Hence




e is well defined on cohomology classes, Next, e(y)

q-f" {Consequences of tha flrs_ff $:

fact stated in the beginning of thig artlcl@,) Hence we

if and only if ¥y ¢ PHi(T,ﬁ

Proved

1 . 1 :
1 = ¥ + k.
dim H (r,ﬂ2qm2} dim PHé(P,ﬂzqqg)

To completes the proof of the lemma we recall the
definition of g-admissible parabolic fixed points as well
28 the parabolic stabilizer P and stabilizer Fx of a
parabolic fixed point % € AT). Let ¥ be a cdeyclie for T,
Then %i defines a cehomology class in H (Tﬁ qu 2) Thig
later spgce is trivial (from the list of the Aimensions of
cehomology space for elementary groups in Sectlon III),V

whenever = isg not g-adnissible, Hence we have strengthun

the above inequality of the lemma,

Iemma 5.5, Let Nﬂ(q) be the numbers of g—-admissible
T-equivalence classes of Parabolic fixed points which

a0 not represent: punctures on A/T.

1 1
T3 2 ) c : 4 B °
Then for g = 2, dim p;iA(r, ﬁzq-:z? < dirm P_H _(:r‘., nzq-z) FN(a)

Proof. Let k be the number of T-equivalence classes of

barabolic Ffixed points which do not represent punctures
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on A/T. Assume k 0. Choose bl,.“',bk as in Lemma 5.4,

We construct a map

1 k
e : PHA(r.qu_2) > ?
by following Lemma 5.4.
Let ¥ be a cocycle representlnc an element of PH (1, 1 ).

2q~2

- We define

X = (X(E) B wm) ().

Observe that e(X) = 0 if ang only if % € PHl(Trnpq_z)o

The rest of the proof is exactly the same as the proof

Of Lemma 5.4,

We observe that Lemma 5.4 and Theorem 5.1 gives us
dim PHY (M) e aimoprl(p, ) 4N (q).
A" age2” * T 2q-2 o™

'Combining Lemma (5.5) with the above inequality we have

the following:

Theorem 5.2. Let I be a flnltely generated Kle:nlan group

w1th an invariant Component A. Then for q 2 2,

. .-‘ Tl' R 7
(5.10) dim P&A(F.qu_2) dim pr’ (r, mg)-+No(q)'

We recall that N (q) is the number of! r—equivaience classes

of parabolic fixed points vhich do not represent punctures




on A/T.

It pow follows from the proof of Theorem 5.1 and"

Lemma 5.2 that

these are g-admissible parabolic fixed pointg

of the conjugacy classes of znnextensions (n=1,2,3,4 or 6) of

a rank 2 parabolic basic subgroup and g-admissible parabolie

fixed points of gz parabolic cyclic subgroup used as an

amnalgamated or conjugated subgroup in one of the combinations,

We observe that the parabolic fixed points of szextensions of

& rank 1 parzbolic basic subgroup do not represent puncture on

A/T if the parabolic eyeclic group of this group used as an

amalgamated subgroup in the application'of Combination Theovem I,

§3. Now we can prove the inequalities referred to in the

beginning of the section which is stated as follows:

Theorem 5,3, (Maskit [15T).

Let T be a finitely generated
Kleinian group with an invariant component A, Let A, A ,,.wb

be the complete list of 1nequ1valent component T,

1’\

"Let

be the stabilizer of A, for i =1,2,...p. Then
Ai i

P
(a) for g = 2, dim A {4, T)-— L dim A (A, ,F ) = N (q)
. i=1 p 1
(b} For gq=2,4, oo, dim A (4,7) - T dim A (A.,r

) =%k,
i=] Ai

where k is the number of P—equlvalence classes of oarabollc

fixed points which come from the conjugacy clasweo of maximal

parabolic cyclic subgroups or the conjugacy classes of Z

extensions of rank 1 parabolic cyelic subgroups and do not




repregent

{c)

kl is tpe'

the conjﬁgéEYi_

cyclic'gféup:}fﬁ:

(&.)_.:'..:_:‘f"dr qé 2, Area (A/I‘) - Zf Area (A /T, ) 2 0.

i=1 51

A1l the lnequalltleslare equalltxes whenever T is geometrics ally

finite functlon group w1th & simply-connected invariant com-

Ponent A,
Proof, Ths proof lS a 51mple appllcatlcn of the Theorem 5,7

ot e = P

and the structure theorem of cohamclogy group., We know

that dim PH (I",II ) S ZdLmA (A,T) by the torollary 2 of

Theorem 2., 2, dnd dim PHl(r, “?) 2 dim Aq(ﬁ,r) by injectivity
of the Bers map,:

With the help of these two facts and the equation (5.10)

of- the Theorem 5,2 it now follows that

_ ' L _ :
2d1.mA (4,7} =2 dz.mPH (I‘, qmz) =dim PH {Ffﬁzq_z)‘ + N_(q)

dlm A (fo)'+ N, (g}

=dim A (A,r)-ﬁ L dim A (A ,TA ) + N, {q)
i=] i '




herefore (a) follows:from above.

Observe Lhat for a'geometrlcally finite function group

w1th a 31mp1y connectedzlnvarlant component A, dim PH”(r,nzé 3)

= dim A (O,T) (from_the result of Section IV), and

dim PH (r, Zq;é)_;;z_dlm A (4,T) (from the Corollary 2 of

Theorem 2.2),

SQ_ln;thlS case, equality holds in {a).

For (b), we can prove more than we otatéd is clear

that the left hand 51de of (b) is at least the number of

Tmequlvaience classes of 2—admlsslble parabollc fixed points

But k' is atmost the number of - equivalence classes of
2-admissible parabolic'fixed points,

When g is odd}(c) fo110ws from (b) by 1eav1ng out kl

nunber of fined p01nts coming from the conjugacy classes

of ZzwextenSLOns of a rank 1 parabolic,

Inequallty (d) follows from either (b) or (c) by divid-
ing by q and tdklng the llmlt

Eguality in (d) holds whenever equalities in (b) and

(¢) hold., sut equalities in (b) and {c) hold whenever

equality in (a) holds.

To see this we know that equality holds in (a) whenever

I' is gecmetrically finite function group with a simply




connected invariant component. Then that T" cannot contajn. =

a rank 2 parabolic subgroup, so every g-admissible parabolic

fixed points are 2-adwissible, either coming from rank 1
parabolic eyclic groups or Zz-exteﬁsions of such groups.
Hence for an even q,'No(q) = kK, and for an odd s

NO(q) = k -‘klo
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