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In the papers by Cheeger [ 3 ] and Muller f141 it is
shown that for a closed Rieﬁannian manifold, the Reidem-
eister torsien T equals the analytic torsibn T. This
thesis represents the initial portion of an attempt to
| generalize this result to singular spaces (i.e. pseudo-
manifolds} equipped with suitable metrics. The starting
point for this generalization is based on the work of Goresky
and Macpherson [ 9] and Cheeger [ 47, [ 51, [ 673, 7The s'f-:eps
carried out so far (and éeécribed below) indicate ﬁhat such
a generalization should indeed hold.

For any pseudomanifold %" we define an invariant Ivﬁl i

parametrized by the perversity p. This invariant is analo-

gous to Whitehead/Reidemeister torsion and ie a combinatorial

iid




. . n . . 33 .
invariant., When X iz a manifold ITP = 1 for any perversity

P. Let p,q be complementary perversities. When n is even,

%JTP-+&u7q = 0: when n is odd mawp n—&ﬁfafnuality}. However,
examples (the simplest of which is S(P33P3)) show that I#ﬁ
is distinect from the usual Reidemeister torsion and is a
finer invariant.

We begin our study of the analytic torsion T by con-~
sidering manifolds with isolated metrically conical singu-
1arities; Km+l = Mm+l U Co,l(Nm)' Since for éuch spaces
- the asymptotic expansion of the trace ﬁf the heat kernel can
contain logarithmic terms it is necessary to show that T is
actually well defined (i.e. finite). It is then a formal
conseéuence that T satisfies duality, i.e. when m+1 = 2%k,
it = 0, | |
‘These results indicate th;t the analytic torsion inT

should equal the Intersection R-Torsion

ErnI'rm +f«3nITn , .
2

in this casze also.
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C. Introeduction

Let K be a finite connected CW-complex and ¢ a flat
orthogonal bundle over K. Let C(¥,e¢) denocte the cellular
cochain complex of k with coefficients in the bundie e (as
in [17]1), and let hi(e) be a basis for the cohcmology group
Hi(K,s). Associated with the qochain complex C(K, t) and the
preferred choice of basis h*(e) in ccheomology, there is de-
finedla'toéological inﬁariant; the ﬁeidemeister-Torsion
{briefly R-Torsion) denoted T(K,e,h*(e)),

Iﬁ'particular, let K = M be a closed manifold. With
respect to any triangulation or éell structure of M the.
torsion 7(M, ¢,h*{c)) is defined and satisfies a duality con-
dition analogous to Poincaré duality, i.e. whén n is even
ur (M, e) = O,

For & closed Riemannian manifold MF; by Hodge theory of
the Laplace operator Ai on i-forms, we have that the space
of harmonic i-forms with coefficients in the flat bundle ¢
'is isomorphic to the de Rham cohomology of closed i-forms
modulo exact i—f@rms vhich is in turn isomorphic to the co-
homology Hi{M;si with coefficients in the bundle :. Using
the globalrinner product on the space of harmonic i-ﬁorms;

B i .
we can choose a preferred basis for B (M, e) coming from an

1.




orthonormal.basis of harmonic iufofms. With these preferred
choice of bases n* (s), it was shown in Cheeger [3] and Miller
{141 that the R-torsion T(M,ﬁ h* (e)) equals the analytic
torsion T(M, ¢).

The analytic torsion T(M,e) is an analytic invariant
constructed out of the eigehvalues of the Laplacian as
follows. By the functional calculus for elliptic operators
on compéét manifolds (as in Gilkey [8]) we can form powers
of the paplacian A;s. ?he zeté funetion on i-forms is then
defined as gi(s) = trace(A;s). The zeta function is a mero-
morphic function which has an apalytic continuation to the
whole complex plane, and is well defined at zero, The
analytic torsion is then defined to be the alternating sum
T(M, &) = E (-1) 1gf(0}; Since the ; 0pera£or is an iso-

i=0 +
morphism from i-forms to n-i forms we have that the analytic
torsion satisfies a duality condition énalogous to Poincare
duality; i.e, wﬁen n is even 2T (M, ¢t} = O,

An extension of the theory of the Laplace operator to
singular spaces (i.e. pseudcomanifolds) e%ﬁippea with suitable
metrics, was made by J. Cheeger in [41,-[5]; {6]. an n-dim-

ensional pseuvdomanifold is a compact space X for which there

exists a closed subzpace ¥ with dim{¥) £ n-2 such that X -%
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iz an n-dimensional oriented manifold which is dense in X.

In particular, the functional calculus for the Laplace

operator was developed in (41, [6]l. For a manifold with
isclated metrically_conical singularity, thé asymptotic
expansion of the trace of the heat kernel e—Ait contains
a logarithmic term Which_implies that the zeta function on “%
i-formz has a pole at s = 0, However, when we take the

alternaﬁing sum g (—l)i'igi(s) the contribution -from the

i=0
logarithmic terms cancels out and we obtain a finite, well

defined expression for the analytic torsion T(¥,e). Since the
* operator is an isomorphism from i-forms to n-i forms

the analytic torsion satisfies a duality condition analogous

* L . . N . . .
to Poincare duality in this case also, i.e. when n is even

it (X, e} = O,

Furthermore it was shown in [5] that the space of closed

and co-closed Lz harmonic forms on X with coefficients in a

flat bundle ¢ over X is isomorphic to the 1.2 cohomology of X

‘with ceoefficients in e. However, the L2 cohomology groups of

X were seen to be isomorphic not to the usual simplicial co-

homology groups of X but rather to the dual of the middle

. *
Intersection Homology Groups (IHm} (X) of Goresky and

Macpherson [91,
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In Goresky and Macpherson [$], for any P.L. pseudo-

P

manifold Xp, Intersection Homology Groups IHi are defined,

parametrized by a multi-index p denoted the perversity.

The Intersection Homology Groups are defined to be the

homology groups of a subcomplex ICP(X) of the simplicial
chain complex of X {over all triangulations of X) where

IC?(X) are the '"i-allowable chains' with 'i-1 allowable

boundary.' The allowability condition is a restriction on

the dimension of the intersection of the chain with the

singularities of X. For the middle perversity

0 o= (0,0,1,1,2,2,...} the dual of the Intersection Homology

—

Groups (IH?(X))* are isomorphic to the Lzmcohomology grow s.
For complementary perversities E}é'tﬁe Intersection Homology
Groups satisfy a ‘'generalized Poincagé duality® i.e. the
Intersection Homology Groups IH?L II—Ia are paired in comple-

mentary dimensions,

Since the usual R-torsion for a CW-complex does not

‘satisfy duality for pseudomanifolds, it was reasonable to

expect that the analytic torsion T{X, &) should be related

to a combinatorial/topological invariant analogous to the

R-torsion which would satisfy duality for pseudomanifolds,

based not on the usual simplical/cellular chain complex of X
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but rather on the subcomplex Icm(x) of allowable chains with
allowable boundary. |
In fact; we use a finitely generated chain complex &Ekx)
analogous to Icﬁkx) to define the Intergection R-torsion
, ITP(X). In partlcular for the mlddle perver51t1es
= (0,0,1,1,2,2,...), § = (0,1,1,2, 2,...) the dual of the
Intersection Homology Groups (IHI(X,e)) . (IH (X,e))
isomorphic to the Lz—cohomology groups which are in turn
isomorphic t§ the space of closed and coclosed Lz-harmonic
forms. Wé can then make a preferred choiece of basis for
(IHTkX,e))*, (IH?}X,&))* coming from an orthonormal basis
of Lz;hérmonic forms and we are led to expect that with this
preferred choice of basis the analytic¢ torsion InT (X, e} should

rb —

' equal the Intersection R-torsion faIth + fnTrn
: >

The main difficulty that arose in working with the chain

*

complex R® (%) was the following., Tet §i be an i-chain of
a.ﬁm, i.e: §, is a (5,1) allowable chain with (B,i-1)

allowable boundary. Then in proving combinatorial invariance

b

for I+ it is crucial to be able to express gi as a sum of

€.ur i.e, &, = 2 & . where B, is a (P,1) allowable chain
i3 8 i $h ij : .
with (p,i-1) allowable boundary which has simply connected

upport. Our initial attempt was to break up Ei into such
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pieces by :Fstricting §i to simply connected pieces Nj'of
Fhe pseudogamifeld X. The restriction §i N Nj is certainly
an i al}owable chain, Bgi = T a(gilﬂNj). We know_that agi
is i-1 allowablef Howevgr, this doeg not mean that a(gi(wnj)
is i~1 allowable, because it could happen that a(girwuj) con-

tains some i-1 chain gi— which is not allowable but which

1
.cancels with the boundary of.some other pigce B(gisﬁuk),ksfj.
This is the reason that the attemptlto express gi as a sum
of i-allowable chains with i-1 allowable boundary which have
simply éonnected support, fails.

Hlowever, there are two distinct methods bf which we can
resolve this difficulty. The first method, following the
approach of J, Cheeger in [5] is to construct the torsion
Iwﬁkx;e) iﬁductively using a handle decomposition and Mayer;

Vietoris argument,

Let hn = C{Ln_l) be an n-dimensional n-handle of xn {as

in [5]) where t?7% is the link of a vertex of X° and C(Ln—l)

denotes the cone on Ln-l. Then ¥° = h° U Zvl-l where

n-l _ n-1

e Nz L - Let §i be an i-allowable chain of Xn with

i-1 allowable boundary, Then we have that §i N hn is i-allow-

able and that 3(%; Nh ) is i-1 allowable; similarly ginzn'l_

is i~gallowsabls and a(iiIWZnhl) is i-1 allcowable: =0 also
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Qi N Ln_1 is i-allowable and B(%iTTLn—l) is i-1 allowable.

Thus we have that the following Mayer-Vietoris-sequence is

a short exact sequence

0=+ rRPa™h »Pm™ o &™) &P (X) » 0

and therefore ITP(X) = ITP(ZD4?+ pr(hn) - ITP(Ih) + T(ﬂn}
where W is the associated long exact sequence in homology.

Similarly ITP(Zné5can now be expressed in terms of

ITP(ZRHZ). ITP(hn_l), ITP(Lnul) and T(ﬁn“l). We may continue

inductively until we get to ZO which is just a disjoint union

—

of pieces isomorphic to In. Thus we get a formula for ITP

P on the links: ITP on the handles and thé

in terms of It
torsioh of the associated long exact sequences in homclogy.
The handles.are simply connected and thereforé the tofsion
has a purely homological interpretation, The links are
pseudomanifolds of lower dimension, and the torsion oflthe
long exact se;uence is also purely homoiogical. Therefore,
using the handle decomposition, and using inductive argumernts
we are able to prove combinatorial invariance; duality and
independence of stratification for ITE.

The second method is to use a subcomplex of’RP(X) using

the family of basic sets {Q?]‘defined in Goresky and Macpherson
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fol. We construct the chain complex SP(X) where S? (X) is

o

the i-chains of Q? with boundary in Q?_l.

SP(X) also givés the Intersection R-Torsion ITP(X).

The torsion of

The basic sets are analogous to the Poincare dual cells,

1

in fact possible to express %i as the sum gi =¥ gi

If gi is an i-chain of Qg with boundary in QE_ then it is

where

jl‘

£.. is an i-chain in Q?, 3% . is an i-1 chain in 9oF . and
ij i 1] , i-1

—

gij has simply connected support. It is then possible to

prove combinatorial invariance, duality and independence

of stratification for ITP

directly, using the chain complex
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1. Review ©f Whitehead/Reidemeister Torsion
We begin with the required algebraic theory. We then

racall the definition of Whitehead/Reidemeister torsion for

finite CW complexes and smooth, compact manifolds respect-
ively and describe its characteristic properties. Our basic

reference is Milnor [121.

‘Definition 1.1 The Whitehead qroup of a ring A. GL{n,3)

denotes the group of all nonsingular n X n matrices over A. , }
Identifying each M € GL(n,A) with the matrix (g 2) € GL{n+1,3)

we obtainm inclusions GL(1,A) < GL{2,A) c.... . The union is

called the infinite general linear group GL(A).

A matrix is elementary if it coincides with the identity
matrix except for one off-diagonal element, The subgroup

E(a) < GL(A) generated by all elementary matrices is the com-

mutator subgroup of GL(A)., E(a) is a normal subgroup of
GL{:) with commutative quotient group, the Whitshead group

'Kla = GL{a}/E{nr).

Let {-1]leX A denote the element of order two correspond-

1
ing to the unit {(-1) € GL{1,A}., The quotient Kln/{o,t-llj

is denﬂted_ﬁ}h and called the reduced Whitehead group of A,

Exanmples

1. For the ving of integers Z, ﬁﬁz is zero, | ;
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2. For the real numbers R, Kl

the multiplicative group R+ of positive reals.

R is isomorphic to

A specific isomorphism is given by (aij) - ldet(aij}l.

Definition 1.2 The whitehead grcup whi{n) of a group., Let "

| be a multiplicative group'and Zn thé integral group ring of n.

Then 7 is contained in the group of units U(Zn) = GL(1,Zm)

€ GL(Zn). There are homomorphisms m - Kl(Zﬂ) - EiZﬂ. The

¢cokernel ﬁi(Zw)/image(ﬂ) is called the Whitehead group of m,
Let F be a free A-module and let b = (bi,ecueusby),

¢ = (cl,;....,ck) be two different bases for F. Then

c, usz:aijbj and-(aij) € gL(k,A}). The corresponding element

of 'ﬁiA is denoted [¢/b].

Definition 1.3 The torsion of a chain complex of free A-nodules,

= ? crsee i
Let Cn Cn_1 -+ Cl - C0 be a chain comnpiex of free

A-modules such that the homology modules Hi(c) are free. Let

<, be a preferred basis for Ci and hi a preferred basis for

HiC. Let Bi bé the image of the boundary homomorphism

o * C, -> Ci and let Zi+

i+l be its kernel, We assume that

1

~each Bi is free, and choose a basis bi for each Bi. Using

] siens O C B, © Z, € C, vwher = H, % B
the inclusions i i i e Zi}ﬁi H., ci/"zi is1

combine to give a new basis

we see that the bases b,, h., b,
S i i i-

1
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b.h.b, for C.. We define the torsion T € K, {(A) of the chain
iii-l i _ 1 _

n 3
conplex C as v = ¥ (—1}l[b.h.b. /e.l. This does not depend
, i=0 iii-1""i

on the cholce of the bi since choosing different bases bi we

n ipmy o= n i |
have i20(-1) (bbb, /e ] = izo(“l) ([bihibi~1/°i]’

+ [bi/bi] + [bi_lfbi_ll)

where the last two terms sum up to‘zéro.

we étate the Algebraic-SubdivisiOn Theorem which is a
basic tool for comparing thé torsion of a chain.complex C
with the torsion of a “filtered” chain compiex C obtained
from C as follows. The proof may be. found in Milnor [1217,

Section 5,

(0) (1)

tet ¢ c V) o .. .c®

= C be a filtration of the

chain complex € by subcomplexes such that Hitc(x)/c(l‘l)) = Q

(\-2) _ o (A-1) ™)

for i #¥ \. The inclusion C cc gives rise

to the exact sequence O = C(l—;)/c(xmg) - C(l)/c(l_z)

- c(l)/cil-l) -+ 0, and the corresponding homology exact

sequence ..... O »Hk(cm/c”‘"“)a-’-‘-»ﬂ ¢ o O-2)y o

A1

We define a new chain complex E'by setting C ==HX(C(X)/C(1'1))'

A




12.

where the boundary hemomorphism ax : E& > Ei—l is obtained |

from the homology exact sequence as above,

-

The heomology groups HiC are canonically isomorphic to

the groups HiC. Suppose each Cix) £k~1)

/C

. preferred basis c;' such that c, is free with basis

o} . _ : -
L= c,c%c?...c? and suppose C, is free with preferred basis
i iii i A

is free with

E%. Then we have
Theorem 1.4 Algebraic Subdivision Theorem., If each quotient

(k) o t-1) has torsion T(C(k)/c(khl) equal to zero

/C

then T(Cf = r(C).

complex C

We will also use the following result. Consider a short

]
eXact sequence O » C ~» C = ¢" - 0 in the category of chain
- complexes and chain mappings. We will assume that the modules
Cf,C:,CT are free with preferred bases c.,c.,c. which are
1 2 1 i 17 A .

> s ]
compatible, in the sense that Ci = c,C.. Then we have
: i

Thecrem 1.5, 71(C) = T(C') + 1(c") + (M) where ¥ is the‘long
‘exact sequence in homology associated with the short exact
seéuence of ¢hain complexes.

The prpof may be found in Milnor [12}; Section 3. We
also give here a useful formula, the proof of which can be

found in Cheeger [3], Section 1.
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Let F

"'}F "’qcou-)F
Fn n-1 0

be a complex of free abelian groups and set Ki = Ri ® R, We
then obtain a complex of real vector spaces K and with a choice
- of preferred basis for Ki;Hi(K) coming from integral classes,

the torsion of the complex K is given by

Ok +1
= o e

o

(1.6)
2k .

where Qi represents the order of the torsion subgroup of the

homology group Hi(F)'

Definition 1.7 Whitehead/Reidemeister torsion for a finite €W

complex, Let K be a finite CW-complex and let C(K) denote
| the cellular chain complex assoéiated with X, i.e. Ci(K)
islfhe group qf iucellsjei of K. Let ﬁ denote the universal
covering complex of K, and 7 the fundamental group of K,
™ acts on ﬁ as the group of covering transformations and this
action is cellular. Thus each ¢ € n determines a mapping
s iRt

Next; let c{ﬁ) denote the cellﬁlar chain compléx as-
sociated with Q; i.e. Ci(ﬁ) is the group of i-cells of ﬁ.

With respect to the action of m, each chain group Ci(§) is

a free Zﬂwmodnle, generated by the i-cells e, of the complex K.
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We pick a preferred basis for Ci(ﬁ) as follows. Let

ei.....e? denote the i-cells of X. For each eg choose 7

representative cell QJ for Q lying over ej Then

'(e..e ,...,Q ) is a preferred basis for C (ﬁ). We agsume

that the homology groups Hic(ﬁ) are Zn-free. Then with a

choice of preferred basis ﬁi for Hic(ﬁ) the torsion of the

A .
chain complex C(K) is defined to be the Whitehead torsion

-rw(K) € i('l(Zn) .

When the homology groups HiC(ﬁ) are not all Znrn-free
the Whitehead torsion is not defined. However, by a change
of rings we may work with analternative form of torsion which

is always defined, the Reidemeister torsion.

View C(ﬁ) as a chaln complex of Rﬁ-modules. Let
£ : T O(n) be an orthogonal representation of the funda—
mental grmup. Then & makes R into an Rn-module and the
chain complex def;ned by setting Ci(K,é) = Ci(ﬁ)]gLRp is a
chain complex of real vector spaces. We have a éreferred
-¢hoice of basis for each vector space C, (ﬁ,g) given bf
xkfgej} where {xk] is an orthonormal basis for R” and {ej?

the preferred basis for Ci(K). With a choice of preferred

basis in homoiogy denoted h_{e) the torsion of the complex

of real vector spaces Ci(K,c) is a real number and will be




denoted¢(K,e,h*{t)).

Equi&alently we can use the complex of dual vector
spaces Ci(K;e) and given a preferred basis in cohomology
denoted h*(a) the torsion T(K,e,h*(e)) is defined.

The Whitehead/Reidemeister torsion is a combinatorial
invariant; i.e. invariant under subdivision of the CW-
complex K. The proof may be found in Milnor [12]. In
Chapman.[zl it is shown that Whitehead torsion is a topo-

logical invariant for compact, connected CW-complexes.

Pefinition 1.8 Whitehead/Reidemeister torsion for a compact Rie-

mannian manifold. Let M be a compact Riemannian manifolid,
We define the Whitehead/Reidemeistar torsion to be ths
torsion of the cell complex determingd by a cell structure

of M,

In particular for the cochain complex cl(M‘e) by Hodge

theory we can identify the cohomology groups Hi(M,s) with
the space of harmonic forms with coefficients in the flat
‘bundle determined by fhe representation €. We can then
choose a preferrsd basis in echomology h™ (¢) coming from an
orthonormal basis of harmonie forms. With this choice of
preferred basis in cohomolcgy it was shown in Cheeger {31

and Muller [14]that «(M, ¢, h™ (e}) equals the analytic torszion
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T(M, ¢).

The Reidemeister torsion satisfies the following char-

acteristic property. Proofs may be found in Cheeger [3],

Milnor [13].

Theorem 1.9 Duality. Let M” be a closed even dimensional
orientable manifold. Let {hi} be a basis for [Hl(M,e)} and

[h:] the induced basis for {H™ (M, ¢)*}. Then if

- i, n-i . . . o
li : (Hl(M,e))* - H l(M,e) is the isomorphism of Poincare

duality and kf( .} = h* we have nr(M,e,h.,) = O,
i n-i i i

Remark 1,10, When X is not a manifold, the R-torsion T(X, ¢)

does not satisfy duality. 1In Section 2, we construct a gen-

eralization of the R-torsion for a class of singular spaces,
i.e. pseudomanifolds, denoted Intersection R-torsion It. It

recovers dvality for the class of pseudomanifolds.

Bemark 1.11. When X is a manifold It = 7, In Section 2 we
will prove combinatorial invariance, and duality for It.
Since It = 7 fcr-manifolds; the proofs in Section 2 can be
regarded as proefs of combihatoriai invariance; and duality

for the R-~torsion 1{M, ¢} for manifolds as well.

Remark 1.12, The Whitehead torsion TW is invariant under

"simple homotopy equivalence." For details we refer to
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Rourke and Sanderson [16]. For example C(X) (the cone on a

complex X) has the simple homotopy type of a point. There-

fore, TW(C(X)) =0, t{(C{X)) =0,
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2. Intersection R-Torsion for Pseudcmanifolds

We begin by recalling some facts from the Intersection

Homology Theory of Goresky and Macpherson [9] and then pro-

ceed to define the Intersection R—torsiqn I, We then

d

- prove combinatorial invariance, duality and independence of

stratification for ITp

using a handle decomposition of the
pseudomanifold following the approach of J. Cheeger in [5}.
We then give a different proof of combinatorial invariance,

duality and independence of stratification using the family

of basic sets {QE} defined in Goresky and Macpherson [9],

Definition 2.1. A pseudomanifold of dimension n is a compact

P.L. space X for which there exists a closed subspace ¥ with
dim(Z) € n-2 such that X-% is an n-dimensional oriented mani-
foliAwhich is dense in X. (Equivalently X is the closure of

the union of the n-simplices in any triangulation of X and

each n-1 gsimplex is a face of exactly two n-simplices.)

A stratification of a pseudomanifold is a filtration

by closed subspaces

= o X = = = Deas=D 3 =
X Xh n-1 X-n-—2 2 Xn-3 ¥1 XO

such that for each peint p € X, - X

i-1 there is a filtered

space V = Vn :_vn p A | v, = a point and a mapping

-1
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Vv X BT +X which for each j takes Vj x BT p.4. homeomor-
phically to a neighborhood of p in Xj (where B denotes
the i-ball). Thus if X, - X,

i i-1

fold of dimension i and is called the i-dimensional stratum

is not empty it is a mani-

of the stratification,

Definition 2.2 Piecewise linear chains. If T is a trian-

T
gulation of X let C_(X) denote the chain complex of simpli-
cial chains of ¥ with respect to T. A P.L. geometric chain
. - . T . . L .
is an element of C, (X} for some triangulation T; however, we

identify two P.L. chains ¢ € CE(X) and c¢' € CE (X) if their

canonical images in CE coincide for some common refinement

T" of T and T'. The group ci(x) of all P.L{_geometric chains

is thus the direct limit under refinement of éhe CE(X) over

allitriangulations of X. _ |
1 ¢, ¢ digx) define |8 | (the support of ) to be the

union of the closures of those i-simplices ¢ f;r which the

coefficient of @& in §i is non-zero.

Definition 2.3. A perversity is a sequence of integers
D o= rosn 15 = | = 7 - -
9] (pz.ps, _ fpm) uch thatlp2 0 and Pryy = Py OF Py 1

If i is an integer and ¥ is a perversity, a subspace Y € X is

called {p,i) alliowable if dim{Y) < i and dim{Yﬁxn_k) <i —k+pk
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for k =2 2. Define IC?(X) to be the subgroup of Ci{X} consist-
ing of those chains §i such that |§i| is {p,1i) allowable and
(38| is (F,i-1) =llowable.

The i} Intersection Homology Group of perversity p

— h ‘ ,
denoted IH?(X) iz the it homology group of the chain complex
p
IC*'(X) -
In order to define the Intersection R-torsion we need

to work with fimitely generated chain groups. To do this we

use the basic setsxRE,'referred to in Goresky and Macpherson

{9], section 3.

Definition 2.4 Basic Sets RE. Let X be a pseudomanifdld

with a fixed stratification., ILet T be a triangulation of X
subordinatg to the stratification, i.e. such-éhat each Xk is
a subcomplex of T, Let Rg.be the subcomplex of T' (first bary-
centric subdivimien of T) consisting of all simplices ﬁhich

are (p,i) allowable. We have that IH? = Image H.(R?)-éH,(R? }.
i i7i i i+l

—

Definition 2,5 Imtersection R-Torsiocn I+F. Tet RP (X) be

the chain complex defined by setting ﬂ? = Hi(RE,RE l)'
. . | -

. .th . . .
This 1 chain gwroup is in one-to-one correspondance with

simplicial chains e, such that |ei| < R? and [aei| c R?

1
It is a free abelian group generated by finitely many chains
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[ei}. The boundary map ai s R? - Rp -1 is obtained from the

. — 9. o
1
homology exact sequence ¢ - H.(R?c P l)—‘“"—‘Hl l(Rf 1)"“-->

The homolegy group H QP(X) is canonlcally lsomorphlc to IHp

Let Q denote the universal coverlng complet of X, and let

Ap
' Rp denote the lift of RP to Q The fundamental group of X,

denoted 7, acts on ﬁ as the group of covering transformations,

Thus each ¢ € r determines a mapping G-RggR, Next let &P(X)

be the chain complex defined by setting R? = Hi(ﬁg,ﬁg 1).
With respect to the action of 1 sach chain group Ri(ﬁ) is a

free Zr-module generated by the 1ifts of the chains {eg},

A
RE(X) is a chain complex of free Zm-modules. When the homology
groups H ﬂp(x) are all Zn-free we can define the Intersection

Whitehead torsion ITS (analogous to Whitehead torsion).

: P,A
"We pick a preferred basis for RP(X) as follows. Let

tai'_,...,e:l dencte the 1—cha1ns of Rp with boundary in RE 1°
k Ak Ap
For each e, choose a representative chain el of R lying

k AL A ‘ AJ A
over e,. Then i@i,ez,...,e ) 1s a preferred basxq for RP(X).

A
With a choxoe of preferred baals h for the homology groupb
H, (&p(x)) the torsion of the complex RP(Q,e ﬁ } is defined

tc be the Inter@ectlon Whitehead Torsion It

Ee)

of X.

ITP(X,e A ) € wm(m.
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. L - =4 A .
When the homology groups Hiﬁp{x) are not all Zn-free the

Intersection Torsion Iwg

is not defined. However, by a change
of ringe we may work with an alternative form of .torsion which
is alwafs defined.

View RE}Q) as a chain complex of Rnemodules. Let | -
s ; m =+ 0 0(n) be an orthogonal representation of the fundamental
group. Then ¢ makes R? into an Rm-module and the chaln complex
deflned by setting RP(X g) = Rp(ﬁ)]? R® is a chaln complex of
real vector space RP(X,s) given by {thﬁej} where {Xk} is an
orthonormal b351s for R®, and {ej} the preferred basis for
Rp(ﬁ). With a choice of preferred bas;s in homology deno*ea
h (s) the torsion of the chain complex &p(x,e) is a real ' i

humber and w1ll be denoted I? (X, ¢ h*(c)), the Intersection

R-Torsion of X,

Equivalently we can use the complex of dual vector spaces - %.
1 (X £) and glven a ch01ce of preferred basis h* (e) ITP is de- -
fined. 1In partlcular by Hodge theory for pseudomanifolds (the

reference is Cheeger (51), we identify the cohomology groups

—

H (X €) w1th the space of Lz-harmonlc forms with coefflc1ente

in the f£lat bundle determlned by the representation e. We can ?'1

_then choose a preferred basis for mH (X, e) comlng from an

orthonormal basis of LGharmonlo forms, With this chpice of
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preferred basis in cohomology the Intersection R-Torsion
ITﬁ.iS related to the analytic torsion T(X,e),

Next we describe the handle decomposition of a pseudo-.
manifold X" and obtgin a formula for Iwﬁkx,e)'in terms of
the Intersection R-Torsion of the handles; links and the
associated long exact seéuences in homology. This formula
will thgn be used to pProve combinatorial invariance; duaiity

and independence of stratification for ITP(X,t).‘

For i » 1, by an n-dimensional i-handle we mean a pseudo-

n-i -1

manifold which is homeomorphic to I X C(Niﬁl) where Ni
is a pseudomanifo;d of dimension i-1, C(Ni—l) denotes the
cone on Ninl and I denotes the closed interval. 0 and 1
handles are homeomorphic to i

| . Let T be a triangulétion of X" and 7', T" the first and
secon@ barycentriec subdivisions of T respectively. Let xo be

the barycentre of a zero dlmen51onal 51mplex co of T, i.e.

-1
%. is a vertix of T. Let L be a star of x_ in 1" » Then

0 o T Ry S T o

X +IL

10 xo {(where » denotes jOln) is a nelghborhood of xo homeo-

morphlc to C{L ) and is an n—handle denoted hx . 'Similarly
0 ' 0

for any othpr vertex xo of T wa have the associated n-handle

_h:. . The set of nJhandles is denoted {h i i= l,2,...,kn}.

o -
Next, let x, be a barveentre of a one domensional simplex Gl
vk
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of T. Then %, has a neighborhood in T" which is hemeomorphic

n-2 n-2
to I X C(Lx ) where Lx is a pseudomanifold of dimension
1 1

n-2 in T" and is by definition the link of the simplex o, .
n-2, . | n-1- '

I X C(Lx ) iz an n-1 handle denoted hx- . The set of n-1

S | - S |

handles is denoted {'h'j"llj=1,2,...,k 1. similarly let

n-1""

x, be a barycentre of an i dimensional simplex @. of T. Then _ |

X, has a neighborhood in T" which is homeomorphic to

I x C(Lz;l—l) where L:—l_l is a pseudomanifold of dimension
n-i~1 and is by definition the link of the simplex o, in 7",
Il % C(Ln-l_l) is an n-i handle and denoted h:—l. The set of
X5 ‘ | i
. . n-ig,
n-i handles is denoted {hj l3==1,2,...,kn_i}. i
k
n n n-1 n N n n |
Let 2 =X, Let % =X - int{( U h]} (where int h. |
) 1=y J J - L
J= |
denotes the interior of the handle h?)' |
kn ' kn 1
- - - |
tet 2°7% = %" - ine( U BY Y mMl ;
j=1 1 =1 7 |
and similarly
' k k
k k - -] .
i n noo n-1 n-1 S 2 hn—z nul 1 hn~1+1)
Z2 =X -int{ U h, U h', 3 "‘,_1 j o |
j=1 3 j":l J =] J= |

Then we have that hg nztl e homeomorphic to L?"l ‘ ‘ : é-

. o n-1 -2, , n-
for each j. Similarly h nz" 2 is homeomorphic to I % L 2

2

3
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n-i n-i-1

for each j. So alsc hj Nz is homeomorphic to
iy ritl

Now let X be a pseudomanifold with-a fixed stratifica-
tion and let T be a triangulation subordinate to the strati-
fication, T' and T" first and second barycentrlc subdivisions
Of T, Let X" have a handle decomp051tlon as descrlbed above,

the n—handles are {h |]~—l 2,...,k } w1th associated links

lg =1,2,..0,%, 1 then n-1 handles are [hJ Ij=1,2,...,k _l}
with assoc1ated links {LJ 2[3-—1 2,...,k ? and similarly the
i handles are {h l]-—l 2,...,k } with associated 11nks
; kn kn-1 n -2
1 1']""1 2,.-.']( 1 Zl = X - int( U h, U hn 1 U
X j=t 7 =1 3 4=
n-1+1_ . . 1 ‘ ' B .
P U hn—1+l) and h1 naz'" is homeomorphic to In*lx _ILli{
j"-.'.“.]_ ' .

- Let Rp be the basic sets w1th respect to the triangulation

T’ of X Let g € H (Rp f l)' i.e. €i is a (p,1i) allowable

chain of x" whoserboundary is (Eli-l) allowable. <Consider

. . . . ' n .
the restriction of §i to the interior of an n-handle h |, il.e.
| *o
. n n . R .
£. Nint h . Then handle h has an induced stratification
i X _ X
0 , 0 _
from the stratification of X which is the cone strat1f1cac1on,

4 = -
therefore ai‘ﬂ int hxo xoiﬂ“ml where niwl is a (p,i-1)

allowable chain. fThus £. N int hn
: _ i X,

is a (P,1i) allowsble chain
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with (p,i-1) allowable boundary.
A one-dimension pseudomanifeld L' is a disjoint union

of circles. The restriction of € to a set of the type
n-2 '
L' X I is therefore (P,l) allowable with (P.l 1) allowable

boundary.

Suppose that the restriction of §_ to a set of the type

L’ X In_j“1 is (p,l) allowable with (p,i-1) allowable boundary.
+
Then on a set of the type LJ 1 X n £

i+ _
§i n hJ 1 is of the type x*ni-l and therefore is (p,i) allow-

, on the j+1 handle hi '

able withkiﬁ}i—l) allowable boundary, and the rest of the set

n-j=1

is of the type Ll ox 1 and therefore by the induction hypo-

thesis on this piece also the restriction of Ei is (P, 1)
allowable with (p,i-1) allowable boundary. .Thus the restric-
n-j .

. ‘ i+ — . —
tion of gi to 17 1 X I is (p,i) allowable with (p,i-1)

allowable boundary. This implies in particular that

§i N Lﬁnl is {p,i) allowable with (p,i-1) allowable boundary.
O .
. _ 3 n _ . _
tet 207 = x" = U 1", Then 2L = P _ n; &" = n"),
3 .| k=1 k 1 1 1 X5
Now £ = € Nint h® + € a4 g p 0L
i i %, i Xy i Xy
and 3%, = 3(Z Nint K ) + 3(2. 01"y & aqg. nz™ Y,
i Ui X i %, iy

Therefore 6(§if1zn-1) is (p,i-1) allowable, and therefore

Y oy Y -1 - -
o + /PN - Rp(hij @ ﬂp(zi Y o @P(Li L oo
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is a short exact sequence of chain complexes which implies

by formula (1.6) that

In ITP(Xn‘, g) = I I'rp(h;.l, e) + In ITP(Z;hl, g) -in I'rp(Lr]?_l) +on1 (H;-l)

where n? is the associated long exact sequence in homology.
By exactly the same argument we obtain that

BnI'rp(Z;_l—l, ) =01 b thg, e) +n pr(zg-l, £) —on TP(LI;—I) +0n -r()ig) .

and so on,

Therefore we can write

I k_ k,

tn 1P (x ,e) = S'lﬂnI'rp(h e) - rmfrP(L ,e) + ?P/n'r(H )
i=1 i=1 i=1
+ 012 (2"T, ¢

We can now repeat the argument with the n-1 handles

{hl ,hz ,...,hk 1 to obtaln the result that
- n-1
x k k
— _ n-1 : n-1 n-1
cnI-rp(Zn 1, g) =% I'rp('hn 1' e} - T o ITP(L . e} + % oIn fr(}in 1)
i=1 - i=1 i=1 ‘
+%I¢P(Z 2, €). |
Similarly _ . . |
k ' k
n-2 n-2 5 n-2 n-2 E kn—7
EnI'r (2 180 = £ fnin (hi 18 - T g (L. ,a)+ ) Pz"z'r('ti
i=1 i=1l i=1

-?- anI'rp(Zn_B, £}

and so on.
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Thus we arrive at the following formula for the Intersection

R~Torsion ITP(X,E).

n -
Formula 2.6. w!ITP(X JE)= % ﬂ1ITp(h2,e)‘+ b sz¢P(h2 l;E)
. ) ' i=1 i=1
kn—2 5’ kb 5.0
+ I fniq (h .a)+...+ EP/nITp(h.,E)
. . i
i=] i=]
k
kn kn 1 — n-2 5 n- 2
“{ St p(L.s)+ T fnreP (L .e)+ by GnI P(L , €)
i=1 i=1 i=1
k0 E o
+ooo+ Ei”/hIT (L.;E)}
. i
i=1l
Ky k-1 LSNP ko
+ ¥ opnru® )+ X MTW )+ X %Tm Lhuzwnlu)+%1#%z)
i=] i=1 i=] 1-1
Theorem 2,7 Combinatorial Invariance for I%P(X,e) Let Xn be

@ pseudomanifold with triangulation T and T', ™" first and

second barycentric subdivisions of T.

p.A
Let RP(X T',e) be the

chain complex with respect to T'

s With tor51on ITP(X 7" ,e).

Let S be a subdivision of T', Then 1P (X,S,s)

= ITP(X T’ s €)a

Proof. The proof is by induction, using formula 2.6. For

n=1,

—_—

any closed pseudomanifold is a disjoint union of circles

so that 7 = ITP is defined and is a combinatorial invariant.

Suppose that for any closed pseudomanifold o

f dimension ¢ n-1

ITP is a combinatorial invariant.
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Let X be an n—dlmens:Lonal pseudomanifold w1th trlangula—
t:.on T and a handle decomp051t1c>n as described above, Then

| 1
by formula 2.6 . '

|
, k k ' : |
' n-1 |
BnI'rp(x Je) = z w1 M%)+ F o P(h“ Lo -
1 4 i=1 K .‘ . I
kn"z I_) n ko .s

MR Ll VR T Eﬂﬂl"rp(h pe) 1
i=1 S i=l |
. : . k . |

- ZBnI'r (L » €) + z EnI'r (L , ) + 2 nIT (L . E)
i=] ‘ i=1 _ i=1 |
. |
ko
+.¢-+ EEnITp(I;.'E)) 1
. i : |
i=1 , : 1

k
kn L kn—l o 2 k |
+ Tor@M,)+ ¥ an'r(H )+2 Bn'r(li ...+‘L‘£n-r(1! ) J
. i .

i=1 i=1 i=1 - i=1 ‘

+ fn ITP(ZO) .

The handles h? are simply connected Therefore, € restricted

to h:l ig szmply the tr:wlal flat line bundle R and I'rp(h s R)

-

can be written (by formula (1.5)) as
ﬂntTp(hi:R) = E(—l)k

where Ok is the order of the torsion subgroup of IH.k (h,,z) .
S:ane the TIntersection Homology Groups IHP

invariants s0 also is. in ITp{,hg_,R) . By the induction hypothesis

o

are combinatorial 1
i

|

\
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x¢p(Li,e) is a combinatorial invariant. T(HB) is purely
homologlcal and therefore is a comblnatorlal 1nvar1ant
Therefore, u51ng formula (2 6) we observe that %:pr(x e €)

is also a cembinatorial invariant.

Theorem 2.8 Duality for ITP Let e be an n dlmenslonal - |

pseudomanigold. Let fhp} be a basgis for IHP(X g). Let

* 3 IH? » dg"” denote the 1somorphlsm of generallzed

Pozncare duality. Suppose x : {hp] - {(hq ) *1. Then we

have the following

1) When n is even szT (x.e)-+m117q(x,a) = Q. g

2). When n is odd &1ITP(X,s)=SnITq(X,e).

. Proof, The proof is by induction using formula 2.6. For

n=1.we have that a closed pseudomanifold is a disjoint
union of circles, IF = T and duality is true,
Suppose duality is true for pseudomanifolds of dlmen31nn

£ n-1. Let X° be a pseudomanlfold of dimension n. We have

that Zo is a disjoint union of sets homeomorphic to 1 so

that dvality is true: l.e.

- : N o _ ,
&zITp(ZO,e) + MIITq(Zo,éz 8} =0, n even

&:ITP(ZO,e} = ﬁ:ITq(ZOFBZO,e} n odd.
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Suppose duality is true for z"; i.e.

2n ITP(ZJ‘, g) = -n nq(zl,azl, €), 0 even

in ITP (Zl, £)

n qu{zl,azl, £), n odd,

" .
- Consider h;,' 1 U Zl

anITp(h;+l Y6 =ta1rP (2T, &) +nTeP (h e -cnITP(L_’:, £) +fm¢cu;)

E/nI'rq(h; a(hl+1UZl).a) = anTq(h;+ vzt 3zt ’J‘ €)

= QnITq(hl thl,azl,;) + enqu(L;,e)

: = . _

=%I'rq(z agt Y,oe) + nIn q(h; 1,1.],5) + ﬁnI'rq(L , &) +in T(u ).
We will consider the case of n odd and n even separately.

1) n even

- I'TP (Zl, £} - 0n iwq (231, azl, £) (by induction hypothesis}

| B, i+
tazeP (h; l, g) = ~nInr q(h;"'l j) (by duality for IH,)

B, i q,.i . : .
nlr (Lj, g} = It (L],e) (by induction hypothesis)
@nT(H;)' = -P/n'r(ﬁ';'). (by duality for IH,)

+1 . i+l

,€e) = _-an'rq(zl . 37 . £) and for i=n-1

‘ = .,
Therefore, Em.‘f“rple,l

= — — |
1P (x7, ¢y = ~2r1r UK, e, e P (7, ¢) + iz, o) = 0.
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2) nodd

QIITP(Zl,e) = ﬂnlxq(zl,bz . €) (by induction hypothesis)

l' I+ l' .
@alfp(h;+l,e) = Banq(h; l,L;,e) (by duality for 1H,.)
P, i g, i e . .
n It (Lﬁ;E) = ~{nlr (L, £) (by induction hypothesis)
~ J _
i Mo _ . :
bn r (W) = miT(Hj) . (by duality for IH,)
J

B, i+l T, il . i+ ' |
Therefore, WIITP(Z% l,e) = BnIquzl l,azl 1,5) and for i =np-1
o IR (X", e) = tn 109", ).

Theorem 2.9 Independence of Stratification for ITP(X,E)

ITp(X,E) is independent of the stratification used to define it.

Proof. Again the proof is by induction using formula 2.6.

. For n=1 any closed pseudomanifold ig a dlSjOlnt union of

—

clrcles 50 that r = ITP is independent of stratification.

Suppose that for any closed pseudomanifold of dimension < n-1,

I?P is independent of stratification. ILet X be an n-dimen-

‘sional pseudomahifold with handle decomp031ulon. Then formula

(2.6) is appllcablp for ITP(X £).

3 p,j, _ 1 k
On the handies h-, GﬂIT (h7) = ©(-1)
1 i k=0 :

n
yﬂOk whe?e Ok

—_—

is the order of the torsion subgroup of IHi. Since the

Intersection Homology Groups are independent of stratifica-

tion so0 also Tp(hj

s

5

s R},
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By tho induction hypothesis ITP(Li;E) is independent
of.stratification. T(Hz) is independept of stratification
because the Intersection Homology groups are independent of
stratificétion.

Therefore, using formula (2.6) we observe that ITﬁan,E)

is also independent of stratification,.

Remark 2.10., In Goresky and Macpherson [10] it is shown that

—

the Intersectlon Homology Groups 9= (Y) are topoloolcal in-

variants, In the same spirit it is reasonable to expect that

the Intersection R-Torsion I+t is also a topological invariant.

although we do not prove it here.

n ., .
Theorem 2.11. When X is a manifold ITg =

-—

W ITp =.T for

every perversity p, where Ty’ T 18 the usual Whitehead Reidemeister

torsion for compact manifolds as in Definition 1.6,

Proof, When Xn is' a manifold it hag a stratification with one

strata, the whole of Xn. Let T be a triangulation of Xn.

Then T is subordinate to X* and the complex RE of (E,i)
allowable simplices consists of the i—skeleton Tt of the first

. s . L
barycentrlc subdivision T° of 7,

Thus the chain complex

(X) coincides with the simplicial chaln complex of (X ,T")

as in Deflnmtlon 1.6 and pr(\} = TW(X)p ITP(XJ = 7(X).
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We now comstruct another chaim complex sP using an
alternative family of basic sets {Q?] defined in Goresky

and Macpherson {91, Section 3. We will show that the

torsion of the complex sP also gives the Intersection

R-Torsion ITP. The complex sP is used to give ancther proof

of combinatorial invariance, duality and independence of

stratification For ITP(X).

Definition 2.8 Basic Sets Q?. " any pseudomanifold. T any

. . n . . NP
triangulation of X . T' the first barycentric subdivision

of T. For each perversity p and integer i 2 0 define the

function LE as follows,

]

tPoy =i, 1P(1) =i - 1, P (n+1) = -1
1 1 A .

’

and if 2 £ Cc % n set

-1 if i -~ ¢ + pc s -1
) e
L>(c} = {n - ¢ ifi-c+p 2n-c¢
i’ _ c
i-c+ pc otherwise

sie) = I; (e) - LY (c) (which is O or 1). Define Q] to
be the subcomplex of 7' spanned by the set of barycentres

of simplices

A
(cla € T and .AL?in-dim ¢) = 11,

Then we have that Q

fre ?'UI

. . e . F t
15 an i-dimensionzl subcemplex of T
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such that
P_ B 5. P i
= = :OOOD Q. D - Dn-.D -
X=0 29, 17 % o
' p_ P. i3
We also have thatIH. = Image H_{(Q°) - H. (0 .).
1 i1 i Ti+l

Example 2,13, Basic setsg}? for the middle perversity

m = (0,0,l,l'2g2'oco)

Let X" be a pseudomanifold of even dimension n = 2k,

Let T be a triangulation of Xn, and let T' be its first bary-

. s m .
centric subdivision, 'I'hen_Qi 1s the i-dimensional subcomplex

of 7' obtained as follows:

Span of barycentres of simplices of dimension

n

n‘4, n~6,..-...-..... 6'412

n_4' n“6,....-a..o... 6'4,2,0




Q2+2 n‘ n"l, n—2' n_4, n~6,..-...-..... 6,4'2'1,0
QE+3 n, n"lf n“2, n—4l n_6'oooo..o--000 6’4’3;2'110
Qi+4 n, n“ll n—zi n-4l n“610¢cnn-ooo¢¢- 6'5,4'3'2'130
- |
Qﬁ_l n' n“l; n—2, n_4' n_sp n_spooao;o- 6.5,4;3;2'130
o . m, n-1, n-2, n-3, n-4, n-5, n-s,.. 6,5,4,3,2,1,0

Let X° be a pseudomanifold of odd dimension n = 2k +1.
. . n . .
Let T be a triangulation of X and let T' be its first barv-
centric subdivisi n. Then Q? is the i-dimensional subcomplax

of T' obtained as follows:

Span of barycentres of simplices of dimension

n !

% | | |
m P
Ql- n, n-1 . ’

|
Q3 n, n-1, n-2, n-4 P
— .
m |
Q 1’1, I'l"-l, n""2; 1‘3."-4,. 1’1"6,.:-....-».-»-- 535 _ L l‘
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Q, n' n“1¢ n"z; n“4' n*Gp--'00060000005;3'1

i+l
Q2+2 .ny H“R,'n—zg n—4p n"6'00-0c0-0.00n05'3'1'0
Q:+3 n' n-ig n_2'.n-4' n—6,..-....o.....5,3,2;1,0
Q$+4 n, n“lm-n—zg n"4; n—6'oo-oo--.a...-5,4’3;2,1'0
. __
Q:_l hl nmiw'nﬁzl n“4' n—5' n—époooe-0005'4;3'2'110
Q:: n, n-1, n-2, n-3, n-4, n-5, n—6....5,4,3,2,1,0

Lemma 2.14.  Let X° be an nmdimeﬁsional pseudomanifold with
fixed stratification. Let T be a triangulation of X° sub-
ordinate to the stratification and T' the f;rst barycentric
subdiwvision of T. Let the Qg-be defined with respect o a

ity 5. re BB, . N
Perversity p. ket gi € Hi(Qi,Qi_l), i.e. £, is an i-chain

i
supported in Q? such that asi is supported in QE 1° Then
i -
k ' oy
E. =B E | whewe . . is an i-chain of Q? with bkoundary in
1 . 1,3 1,7 i
J=0
P ena | .
; simpl onnacted,
Qi—l an !gi,jt is ply c . acte
Proof, Q? T is the i-1 dimensional subcomplex of T’ spanned

by barycentres of simplices of T of dimension

n, n-1, qz,q3,q4,m..qi"1 and Q? is the i dimensional sub- ?’1

complex of T' spenned by barycentres of simplices of T of
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' R
.qif Let gi G,Hi(Qi'Q' ).

dimensiaon n, n-1, UprQyrdyreenrd, i1

4 1
i.e. & isan i-chain of 0¥ with boundary in b |+ et

xl,...,xj be the barycentres of simplices of T of dimension

.
q; such that gi n Xy #¥ 0. Let ka be the'st;r of x in Q;

and let xk*N {where * denotes join) be a neighborhood of X,
3 _ - | ‘
in in Then §i = kflgi n xk*N . Consider gi n xk*N and ‘

denote it {ilk; Then since !i is i allowable, certainly its

’
restriction §i K 1S i allowable.
r

—

ig contained in QE and therefore is i-1

Claim. 14 1

ik
allowable.

contains an i-1 simplex of

For suppose not. Then 3%, .
) i,

the form X P where p is an i-2 simplex in N . But

3 J : |
E. = T g,y and agi = I 3f, g+ But if 3%. . contains a
Poog=1 k=1 ¢ o

simplex of the type X.p then x.p cannot be cancelled by the o

boundary of any other piece of the chain gi' 4 # k because
r

.{‘l
a z ] [ . e ) v a ) o
‘ gi,L is dlSjOlnt fromrpxl Therefo;ef if gi,k contains a

simplex of type pxi then agi also contains the simplex PX. .

pxi z Qﬁ 1° But this contradicts the fact that §i is an

The claim

i-chain in QP whose boundary is in QE 1° :
. i i~ |

follows. .
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Definition 2.15. The complex S'(X). Let SP(X) be the chain

complex defined by setting SP(X) = H (Q..Q ). This i-th

i-1
chain group is in one-to-one correspondence with simplicial
chains fi such that !f.' c Q? and ‘Bf.[AC Q? 1t It is a free

- abelian group generated by flnltely many chains {fj] with con-.

tractible support as in TLemma 2.14, The boundary map

ai : S? - SE 1 is obtained from the homology exact sequence
~ 3,
vee Hi(QE'QE~1)_£q H, (Qp ) Feee . The homology group

H S {X) is canonically lsomorphlc to IH?

Let Q denote the universal covering complex of X, and let
D A
6? denote the lift of QE to X. The fundamental group of X,

A
denoted m, acts on X as the group of covering transformations.

: ‘ N A
Thus each o € 1w determines a mapping . o : QE - Qp Next let
A*' 5
(X) be the chain complex defined by setting Sp(é)'“ i QE,&?_E.

With respect to the action of m each chain group S.(X) is a

free Zm-module generated by the lifts of the chains {f }: and

A _
p{x) is a chain complex of free Zm-modules. When the hemology

sroups HiS (X) are all Zm free we have

Theorem 2,16, T{Sﬁkgj) = T<&p(§}).

Eroof. We use the formalism of the Algebraic Subdivision

Theorem 1.4, oLet C denote the chain CompleX:Rp(Q), We will
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. . 1
construct a filtration of C by subcomplexes C(O)c:c( )CZC(E)

=P C(n) = C such that the associated chain complex c given

PY E& - HR(C(X)/C(l-IB can be identified with the chain com—

p A
plex SP{X). We will then show that the hypotheses of the
Algebraic Subdivision Theorem are all satisfied. We can then

conclude that

T(C) = 7(C) i.e. T(RP) = T(Sp) = ITP. The construction
follows.,

(n) =- 35 A

Recall that ¢ =C (X) is the chain complex given

—"

r (P8P ) g (&P ,ﬁf_z) e m (RE)

n n n-1 n-1 n-1

- Next we introduce the following notation. wLet R? 3 denote
r

the subcomplex of T' consisting of all {P,3j) allowable simplices

of T' contained inside lQ?I. i < i, where !Q?{ denotes the

. \ P A
underlying topolegical space of the complex QE(T). Let Rf 5
!

denote the corresponding subcomplex of Q. Now we construct

the filtration of C = C(n) as follows.

C‘n_l)‘is the subcomplex of ¢t given by
AP Ap Ap AB )
’ *e e H

n-2
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and similarly C(l) is the subcomplex given by

Ap Ap
b ) “Peeeuy H (ij- )

H (ﬁﬁ R R
i,i’ i-1774,i-2 01,0

A
. ) »H, (RP
1 1,

for 0 £ i £ n, We claim that this is the required filtration.

{C(X—l)

We begin with the observation that Hi(C(X_l))== Hi )

for i £ A\ - 2. Therefore, using the long exact sequence in
homology associated with the short exact sequence of chain

complexes

0 4D L) L e

we see that Hi(c(l)/c(x“lh =0 for i € k'— 2

- C ooy : (2-1)
In the case i A '1 the map Hk~lc - Hx-l

surjective sc that Hk_l(ctx)/c(l'l)) = 0

()

- We also have that HX(C /c(k'lh = H

5 ¢
the chain complex C can be canonically identified with the
complex SEkQ). _ | _ .

We are now required to show that T(c(k)/c(l-lb = 0 for
‘all A. This uses the same basic idea as in Milnor [12],

Lemma'7.2.

We begin with the observation that when we delete the

support of the (A-1l} cycles of Qi-l’ we divide Qi into simply
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connected components (i.e. each component is precisely a

A-chain fi with contractible support as in Lemma 2.14.

, -1 A
Every chain of the complex C(l)/ (A-1) is the lift to X of -

a chain which lies inside one of these contractible com~

Ponents fﬁ.

' A A
Choose a representative component fk of fX' Then fl

projects homeomorphically onto f . For each chain f such

that |f' s fk choose the representative chain g contained

A A
in fl' No repxesentative chain fk in fl can be incident to

A , A A
a proper translate o fk 1’ a1 because a fk 1 must be con~

A
ta.med in a component o‘% Wthh is dlSjOlnt from fl 'I'his

means that the boundary a% can be expressed as a linear cont--

binatlon of k - 1 chains with coeffic1ents which are integers

(rather than group ring elements). Thus in computing the

torsion Z < Zm. Then rC (1)/C(1—1)

€ Eiz = 0, Therefore,
(A, (r-1) |

T(c'"™

} = 0 and the proof is complete,

—

Theorem 2.16 Cembinaterial Invariance for Iwﬁ. Let T be 3z

triangulation of X© and let W be a subdiv151on of T' Then

we have ITP(X,T) = IT (X W) .

Proof. The proof is analoqous to the proof of the combinatorial
‘invariance of Whitehead Torsion as in Milnor [12] and uses the

algebraic fﬁrm lism of the Algebraic Subdivision Theorem 1.4,
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—

. A : . ‘ -
Let C = SP(X,W) be the chain complex associated with

the subdivision W. We will construct a filtration of C by

subcomplexes

L) B c(?) c...ec™ _ c

such that the associated chain complex E-given by
= 1 (¢ o O-D)

al

\ ) can be identified with the chain complex

SP(Q,T). We then‘check that all the hypotheses of the

Algebraic Subdlv151on Theorem are satlsfled We can then

—

conclude that T(C) = T(C), i.e. I¢ (X,W) = IT (X,T).
The construction follows. To begin with, recall that

C = C(n) = SP(X W) is the chain complex given by

8, @, £ on)sn N S R 1, (02 ()

Next we introduce the following notatlon Let RP (W)
denote the subcomplex of W' consisting of all (p,]) allowable
simplices of W' contained 1n51de IQP(T)l j € i where IQP(T)
denotes the underlying topological space of the complex QP(T),
Let ﬁ?;j dencte the corresponding subcomplex of Q. Now we
construct the filtration of C = C(n) as follows.

-1
C(n ) is the subCOmplex-of C(n) given by

Ap Ap
n-1 (Rn—l, (W) R

P \
n-1,n- 2(W))'*H -2 (R -1l,n- 2(W) ﬁ n-1,n-2 3/

e e (ﬁpﬁl o)
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and shmilarly'cqn) is the subcomplex given by
B OB 55 o 0B
N IRUR I T B (RD L 0LRE )

. 5 _
) 4es ) S'S
HO(Ri,O(W)) for O i n.
We claim that this is the required filtration.

c(x—l))

We begin with the cobservation that Hi(C(X)) = Hi(
for i £ X - 2 (since the Intersection Homology groups are
combinatorial imwvariants). Therefore using the long exact

sequenae in homology associated with the short exact seqguence

of chain complemes

o = cﬂm_l} " c(x) 5 C(x)/b(x_l)a o)

we see that Hifﬂix)/b(k-l)) =0 for i £\ - 2.

In the case 1 = X - 1 the map Hk_lc(l_;) - Hx-lc 18

surjective so that H 1(C(K)/cu"l)) = 0,

l— .
p - o Ap :
We also have that'Hl(C( )/'(:“L 1) - Hx(éi(T):Qﬁ_l(T)). o
"Thus the chain complex € can be canonically identified with
sp(x,ma. _
We are now required to show that T(C(X)/C(kﬂl,) = O for

all A. This uses the same basic idea as in Milnor 121,

Lemma 7.2.
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We begin with the observation that when we delete the

—

support of the (\-1) cycles of Ok 17 we divide Qﬁ into simply
connected components (i.e. each component is precisely a

contractlble A-chain as in Lemma 2 14, Every chain of .

(\) (A1) is

the complex C /C

the lift of a chain which lies

inside one of these contractible components ek.
] ‘ of Th A
\ ey - en e,

pProjects homeomorphically onto ek. For each chain e such that

. A
Choose a representative compenent e

A
Iel = ey choose the representative chain 2 contained in ey
oo . A | _
No representative chain e, in gl can be incident to a proper
N A | A e i
translate o‘ek__l, ¢ # 1 because Ue}o—l must be contained in a

‘ A .
component cex which is disjoint from g This means that the

A
boundary aék can be expressed as a linear combination of k -1

chains with coefficients which are integers.(rather than group

ring'elements). Thus in computing the torsion of the complex

C(A)/C(l_l) we neod only work w1th the subring Z < zZr, Then

C(X}/ (A-1) € 1z = 0, Therefore 'r(C(M (A~ 1) = O and the

proof of Combinatorial Invariance is complete.

Theorem 2,17 Duality for ITP. Let Xn be an n-dimensional

oriented pseudomanifold such that its universal covering space

9 is compact., Let {h?] be a basis for IHE{X.e). Let

—

n-i . . . .
* 3 IHE » Iy denote the isomorphism of generalized Poincare
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duality. Suppose  : {h?} - {hg-i)*}' Then we have the
foliowing: |

— 4

1) When m is even szTP(X,e)+anTq(x,e) = 0
2) When m is odd fa ITP(X, £) =£’/nITq(X, £).

Prcof. Recall #hat sF (X) is the chain complex given by

5§ - B B
Hn(Qn,Qnm_l‘)l SR a9 109 e (_Ql'QO) > H Q).

This is isomorphkic to the dual complex

n, p - il P
1 (@P,0°_) - 7Y

B

p 1 P- D o, .p
’ e s oim , -H .
1'%y H(Q),00) ~ H ()

We have from Goresky and Macpherson [9], Section 3.

the isomorphisms (for i+ j =n)

T (oPy e wd T o ‘
EifQiﬁ H (Qj+1} ‘ _(1)
and - .
) P o PN 3T
Im Hi‘@mi} - Hi (Qi+1) ImH (Qj+l) "’. H (Qj) ' (2)_
| . : | PP yandind T
(1_} and {2} together imply that H, (Qi.Qi_l) 2 H (Qj,Qj_l).

‘Thus the complawmes

E 5 N 5 ‘ e E E; 5
LA I N C AT S BT A CLA I B, (Q))

and L L .
20507 3 e 0% 0T ) ennne wlind 1@ L 1O d
('Qn'Q_n—l.E (Qn—l'anz) H (Ql.Qo) H (QO)

are dual to each other.
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A
Since X is compact we have that the complexes

A5 NS AD o 5 A5 AB

5 (@200 ) »m s l,Q ,) e ché R LA
Aa Ag - A“ AT

g 0%,8% ) ~ 5142 q ) - H (Qq Sq) - H (Qq) (4)
n n-1l n-1’

are also dual to each other (when regarded as Z-modules).
Since the action of the fundamental group commutes with
the deformation retractions of generalized Poincare duality as
in [9], (3) and (4) are dual even when regarded as Zm-modules.
The theorems 1) and 2) now follow by the argument of
duality'for the torsion of dual chain complexes as in Milnor

C13], Cheeger [31].

A

Theorem 2.18 Independence of Stratification, Iwg. TP are

independent of the stratification used to define it,

Proof. Given two stratifications Sl,S2 of Xﬁ there is a

“triangulation T subordinate to both, Then we may deflne the

chain complex gP (T) and by Theorem 2.18 we have that

v (#P,5)) = 1(sP(n)) = ,(9,5,52, = 1.,

Example 2,19, If ¢ is the trivial flat line bundlie R over a

pseudomanifold Xn, 1.6 is applirable for ITP(X,R) and we

have
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P = E{—l)iﬂmoi (1.16)

where Oi is the order of the torsion subgroup of IH?. We

—

will use formula {1.16) to calculate ITp and. to show that
ITP is distinct from the usual Reidemeister torsion in

general,

Let M be any even dimensional orientable manifeold a

let S(MP) be the suspension on M-, Then by Poincare duality
using formula (2.12) we have far(s(M?)) = o, However,
BﬂITH1# 0 in general as the following example shows,
s(p>xp°)
3 3 3 3 3 :
HO(P } =2 HO(P XP7) = 37 ,HO(S(P XP7)} = 2
3 3 .3 3 3
i = 7 H {(p = @ £
hl(P ) Zz l( XP7) 22 22 Hl(S(P XP7)) Z
3 | Cn30.3, 3.3, _
HZ(P) =0 H2(P XP™) =0 , HZ(S(P xP))_—Zz@Z
3 .
H, () = 2 i, (2%xp%) = z oz H,(s(p°xe%)) = o
3 .3 3 3..
= @ ] =
H4(P xP7) 22 Z;2 H4(S(P XP ) 2P
3 .3 3 3
= —3 = W
HS(~ XP7) 0 HS(S (P xp™)) 22®22
H6(P3xP3) = % ' HG(S(P3><P3)) = 0
H (s(2°x0%)) = 2
ﬁ 3 .3
P = : S5(P xp7)Y = ¢»
O(S( XP }) HO( (P xP7)}
™ .32
1(S(P XP )) = Hl(S(P XP)) = 7
ﬁ 3 3.,
ser B = @Z
2(S(P xP )) (5(P"xP7)) Z, 5

nd
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xﬂ';‘(s(p3xp3)) = H3(S(P3xP3)). =0

] (5 (2% 0% ) mi, (#°xe%) > 5, ((2°xe%)) = o

I.Hrsn(s (23xp3y) H, 2303 = o

IHg(S(P3xP3)) = H6tp3xp3)

h
(]

i

1
O

IR (S(Poxp")) = B (p>xp%)
7 7

tnr(s(2°xp>)) = o

IS (P3xP3)) = fna.

This example shows that even when ht = 0, ﬁanm # O;

. m . .,
i.e. IT7 1is a finer invariant than r.

-

'Remark 2.20. The Intersection R-torsion is not invariant

under "simple homotopy equivalence." For éxqmple C(P3xp3)

(the cone On_P3xPB)has the simple homotopy type of a point.,

m 3 3
Bowever, It {C(P xp”)) # 0,
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3. Review of Analytic Torsion for Compact Riemannian
Manifolds,

Let M" be a compact orientable Riemannian manifold with-
out boundary of dimension n. Lét ﬁ be the universal covering
space of M and let 1 be the fundamental group of M, Let
e : 17 - 0(n) be an orthégonal representation of the funda-
mental group. Then w acts on ﬁ x R® as follows: Let o € .
‘Then o(m,x} = (a{m),c{o)x). ‘The quotient ﬁan/ﬂ will also be
dehoted £ and.is a flat bundle over M.

Let w w.(wi,.;...,wh) where w, is a differential form on
ﬁ. For any o € m we define o*(w) by o¢*(w) = (U*(wl).
o*(wz),....~.0*(wh)). If w satisfies 6*(w) = ¢(0)w then we
say that w is an z-valued differential'form or equivalently
a differential form with coefficients in the flat bundle .

For any w = (wl,.....,wh) we define dw = (dwi""f"dwh)”
It is easy to check that if o*(w) = e{o)w then oc*(dw) = ¢{o)dw
80 that if w is a differential form with coefficients in ¢
jthen_so is dw, We let Ai(e) denote £he i-forms on M with

1

éoefficients in the flat bundle e. Then 4 : Al(e)-*A1+ (e)

and we can form the de Rham cchomology group

ker &
Image A

(13

hi(e) - Ai+1(£)
T S W

" () « The deRham.cohomology

with coefficients in the flat bundle is canonically isomor
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to tﬁe simplicial homology groups of M with coeffi-
cients in ¢ as described in Definition 1.6.

We define § = (—l)n(i+l)+l*d* and the Laplace operator
L : Ai(e) > A (e by A; = d8 + 8d. The Laplace operator
Ai is then a positive semi-definite elliptic opgrator with
gpectrum O 2 ilo 4 ikl.....aan and corresponding eigenformé
¢k' The space of harmonic forms, the kernel of Ai is iso-

morphic to Hl(e) by Hodge theory.

By the functional calculus for elliptic operators on

compact manifolds we can form functions of the Laplace oper=

ator; in particular the heat Operator ne_tA and the operator

A5, o7tR has a smooth kernel function, E(x,y,t)
_ljt _tA .
SEe T o,x)®,(y), i.e. (70) (x) = [E(x,y,t)£(y)ay.

_ ' _Ast
The trace of the heat kernel tr(E(t)) =T &~ J may be com-

puted as tr(E(t)) = [E(x,x,t).
M ALt
As t » 0, the trace of the heat kernel T ¢  J o o in

a manner which can be described quite explicitly. fThe point-

‘wise trace of the heat kernel has an asymptotic expansion as
»n/ +5

..da, (Xp}f)t

]
-
BN

- -]
t =0 Ei(x,x,t) ~ 7
§=0
computable, i,e. in any coordinate system they depend in a E

where aj(x,x) are locally

universal way on the coefficients gij(x) of the metric and

2 finite number of their partial derivatives. when we
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integrate over M we get
N ---n/2 +73 -n/y +N+§'-
g T 12 (3t + O(t

j=0 M ~ J —tA

The trace of the heat kernel tr(e l) and the trace of

trE (t) = ) I

the operator A;s, tr(A;s) are related by the Mellon transform

éi denotes Ai pProjected on nonzero eigenspace. Setting
-A t -, At bt -\t o _s-1
=i

e = % e 7 ana u=_A_ t, j‘t-leljdt=f us-]_ e d{;
Aj>0 *3 o o\, i’y
-8 i 3
For s » g-the integral in (3.1) converges since the in-

tegral decreases faster than,Ke_kt at infinity and is bounded

s-n/,~1
: 2
above by Xt as t » O (where \ denotes the smaliest

- honzero eigenvalue of A ),

-- 1 x -n/y+
‘Let plt) = tr{E(t)) - £ [ a (x,x%)t . For € »o,
, 3=0 , J

-n/2+N+1,/:,2
Since p(t) = 0(% ) the expression
oo At € b
l e 51 -i s-1 i s
st -’.r 1, —
Tt e e e - 2
- g5-n/2+3

,Ci;S) =

N
+

a, : 3.
j=0 173 s=n/,*] [2.29

makes sense for s > n/é - N - 1/2 and agrees with gi(s} for

8 » n/2. One sees that gi(s) nias only simple poles at points

n/2 - j which are not nonpogitive integers and the residues
: a.
3/
r(n/z“"j) *

are the locally womputable values For n/2 -3
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a nonpositive integer the pole inside the bracket in (3.2)

is ¢ancelled by the simple zeroc of and gi(s) has finite

1
T(s)
n/2

value at such points. gi(o) = ,a - bi' n even.

Now g;(o) can be computed by differentiating under the
integral sign and setting s = 0., Since I'(s)s = T(s+l) and

I''(1) = -Y where v is Euler's constant

. ~n/, +j

_ @ -At e 2
¢ = [ ¢lerte Tat + [ty (0) + 5 L&, & :
i a 0 x s 23 03

+ (,a_, _ -
M4 n/z bi)Y + (ian/2 bi)ﬂn £.

. -5 e
For s >n/, ¢.(s) = § -in_%\. .2, so that -¢, (0) may be
‘ 2 ~i \; >0 iy 17y i

thought ¢f as a generalization of

= 7 R/nkj = indet

in the finite dimensional case. We then define the anélytic
torsion T(M, :} as

g (-n?t

=0

N3

T (M, E) = ig;(o) | © [3.3]

P

When M is even dimensional, orientable and aM = ¢, then

/T = 0. We also have the product formula

. o , o
ﬂmT(MlxMz.wl(cl} ®w2‘(e2)) = 7““2)‘9’”“&1’81) + x(al}m?(mzoez)
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In Cheeger [3], it is shown that when M" is a closed Rie- o

mannian manifold, the analytic torsion T(Mn,s) equals the

Reidemeister torzion T{Mn,e,h*(e)). where h* (¢} is a basis

of orthonormal harmonic forms. 1In particular when there
are no harmcnic Forms T(Mp,s) is independent of the metric, [

i.e. a manifold invariant.
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4. BAnalytic Torsion for manifolds with igsolated

conical singularity

We will begin by recalling the reéuired pﬁrts of the
theory of the Laplace operator on manifolds with isolated
¢enical singularities as developed by J, Cheeger in [4],
(5] ana [6]. |

Let N be a closed Riemannian manifold of dimension m
with metric g. By the cone C(N) we mean the space (0,=) x¥

equipped with the metric dr ® dr + rzg where r € (0,x). Set

Co'u(N) = {{r,x) €c(n), O<rs$u}l and

Py

%o [§33) = {(r,x) €c(n), O€rsqu)

Definition 4.1, Xl is called a space with co.nicalj'inquu

larities if there exists pj € x’“"'l j =1, 2.'......1: such that

x™ +l\ U {pj] is a smooth Riemannian manifold and each pj has
j=1

2 neighborhocod U, such that U.\[p.} is isometric to C (Hl?)

for some uj and N’; c

Without loss of generality we assume that kX = 1 and

3

the union is along the boundszry.

u, 2 1. We write Xm+1 = Co I{Nm) U Mm"-l where N = 3M and
r .

-
By difinition analysis on X 1 means analysis on the
smooth part ¥\{p}. Since the manifold is incomplete the

situation is Qiffarent from the compact or conplete case,
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In particular, the Laplacian Ai on i-forms is not essentially

self adjoint and we have to choose a self adjoint extension,
. m+l .
Since analysis on M 1 18 well understood we restrict
our attention to CO 1(Nm). We begin by recalling the func-
. .

tional calculus for the Laplacian Ai on

Co'l(mm), as de-

veloped in Cheeger [4 ] [ 6 ]. The Laplacian on functions

on C{N™) is given by

2
-3 m 3 1l ~ :
Aa_____;_._...;.._.b
arz ar r2

where A denotes the Laplace cperator on the base Nm. let

¢j'uj denote the eigenfunctions and eigenvalues of A and

set

l/é

2y "2,

Vv, = T
3 f“:

_ , .2 Nm .

Let g{r,x) € L(C(N)). If we restrict g(r,x) to {r} ¥ N

then by the standard theory of the eigenfunction expansion

of A on compact manifolds we can write
9{z,x) = ¢ g,(r)s, (x) - [4.2]
. the eigenfuncti I = : which b
{913 are the eigenfunctions of L‘{r}xﬂ ich can be

tdentified with thQSQ of L = L![l}xN by parallel translation

along the radial geodesic R X {x}. The sum [4.2] converges




57

in the Isz—nomm
The eigenftmcti_ons of 4 with the property that they
together with their differentials when restricted to C0 l(Nm )
- . r

. 2 . .
are in L, are -just the functions

r-'("z J (Ar)e. = %7 (A\x)e. .
vj 3 vj 3

The associated edigenvalue is kz.

If g{r) is a smooth function with compact support in

(0,~) its Hankel transform Hv(g) is defined by
: ) |
Hv (g} {3} = g g (r)Jv(kr)r dr.

The Hankel inversion formula states that

gir) = H,(H, (9)) (r).
: o
-} m ]
Let A = —0 - — 4 =
H am'z roox?
a4 L% -
Then Hv(r .&l_ug} (j)‘ r [Aug]Jv(lr)r dr

ft AHQ']I'G‘J“ ()" ar
0

= J‘g Au[rﬁ‘a‘v(kr) ™ ar
0

Then the map defined by

. 2 -6
A Hv(r g).




g(r,x) = (Hvo(r-ago) ' H\Jl(r—mglj'““f)

provides an isometry of L2(C(Nm)) with L2(R+,ldk,L2) wuch
that A is carried into multiplication by 12. This provides
the speétral representation for the Laplacian;

Now we describe the situation for i-forms on C(Nm).
Operations on the cross-section are denoted by a tilda. The
coclosed eigenforms of K in dimension i are denoted by ¢,
and the corresponding eigenvalues by uj. We set

+ -
a(i) =1i2i-n

[

v () {hj+a2(i) : ' |

al(i) = a(i) &y, (). | o |

If 8(r,x) = ¢(r,x) + dr Aw(xr,x) is an i—-fo#m on C(N™) and
%ﬁ- = m', and so0 on we have

9549 ~ T
%8 = rm 21+2 W+ (-l)lrm 21d»r Axd

80 = r 288~ r2ar ABw- (' +m-2i+2) " Ty

A8 =0" - (m—2i)r“1a5' + rnzgabg- 2r_3dr AZe +ar A

[—m"-(m—zi+2)r_lm' + (m=2i)r 2y + p2 Rl -2r 18w

Let e&i {r,x) be an i-form such that for each r,

0, (r,x) € 2(™). Let ¢! = B35+ o5+ o' denote the
' - H e ce '
Hodge decompeosition of ¢. Then forms of type 1,2,3 and 4




ra(i) ....°’l
ce .
a{i-1) i

“(""“5 o1-1 ¢hy’

+ dr A (x
P
ce Ca
DL a1 g "R B C S VRS NI 53 _o*
ce ce

ra(lhz) +l<:'tr.' A 3

tad

Ce

As before the Hankel transform gives the map

- ~a(i) -a (i)
=7 gjaj - (H"o(r go).. H\)]_(r g

l)'...‘ﬂ)

which provides an isometry of Lzltype 1 forms onto

(R ,2%,2d)\). This isometry carries A inté multiplication
by lz'andthus provides a spectral representation of A on
type 1 forms, which extehds to forms of type 2, 3 and 4,
We can now form functions of the-Laplace oéerator using the
Hankel inversion formula
£ = () 5 T g2 I3y (5) e e e ) 86 ).

3o Y5 .
In particular for the functions e_At. A™S we can ex-

-plicitly calculate the kernels by evalvating various Clas-

sical integrals.

At _
Example 1. The heat kernel e <+ on forms of type 1 is

given by
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' ' 2
- ali) _ 7 -\t
Ei (xl'rl'xz'rz't) (rlrz) . I;j ({e J\J (i) (lrz) Adx @j (xl)

j .
® °’j (xz)

o (i) 1- - ‘”i*’;’/4t ryr
Mo— ® \
§_2t e Ivj (2t ) aj(xl) aj(xz)

= {xyry)
where Iv is the modified Bessel function.
j -
Example 2. I‘(s)A“S is represented by the kernel function for

forms of type 1

. . A 1-2s .
(rlrz)a(l) ET(s) [A (‘Arl)ij(krz)dk 05 (x)) @0, (x,)

O kR
NV, -V +2(5-1)
rJJ:é ) (v, -s+1) ri
=% — o1 F(l-s+v,.,s+1,y,+1,~5—) 8. (x.)
j 228 lr(vj+1) - j i i1
. ® wj(xz).
' 1 T(x-s+1) 1
- Let ¥(x,s) = —— Tis-3)
2’\/“_ T (X+S) 2

We can write the complete trace of I'(s)A > which is the

zeta function P_(s)gi(s) as follows,
% ' i i
_I‘(s)gi(s) = T ﬂ!(ia(i)l,s)dr/\hjl\?hj

=1

i1 o - |

+ £ {vati-1],s) +20s+ei-1) 14 (|a(i-1) |,s+2) 1

=1 i1 w o i-1
dr Ah, A%h,
- 3 j

i i
4 v.(i),s)dr Ad AL o,
E,;l”( J( )a ) 3 *‘33

J
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+ z{¢(vj(i—1).s>-+zEs+a(i-1)1¢cvjfi—1>,s+1)arfxag“lAQb;“l
3 - .
AFaet-1

+ EfW(v.(i—l).S)'+2[s—a(i—1)]w(v;(i-l).s+l)A
5 3 _ J by

deé

i-2
J A %

+ ¥ \h(vj (i-2),s)dr A

Ty
J 3

P(s)gi(s) and tr(E(t)) are related as follows.

Theorem 4.2 [Cheeger {4], section 47.

‘oo

1)  The pointwise relation [ 5 rm (1) = Tislc, (s)

o <b
holds in the strip % < Res < vo'+ 1.
i . !
2) The pointwise relation f ts—ltrE (t) = T(s)c_. (s)
o >b >b

holds in the strip E%l < Res <b + 1,
3) T(s){(s) has an analytic continuation to a mero-

morphic function in all of € with possible poles at

) g o= BEL 3
a 2 2
1 -1 -3
b) 8 = 'é-' T ._2—-.'-00
c) s such that vj~s = 0,-1,00. for some vj
w5 A -1 -3
4) For ) 52 3 e
a., . () = Res (s} ¢ {s)
/2 _m+tl 3§ >+l
s="2 32 2




msl ] 1 3
5) For = —2"'.'21 nreme

EC PR
-

-3
2

In Cheeger (4] Section 4, the analytic continuation of
T(s)(,(s) is calculated directly. In particular the follow-
i .

ing result is obtained

Res ¥(v(s)) = -Res v .
s=0

As in Cheeger [4] Section 2, we demonstrate the form of
the asymptotic expansion of the trace of the heat kernel on
C -

0,10

- Let Ei(rl,xi,rz,xz,t) denote the heat kernel on C(Nm).
Iet w(r,x} denote the volume form and let Tk : C(Nm) - C(Nm)
be the homothetic transformation defined by Tk((r,x}) = (kr,x).
Sét

ﬁr(Ei(r,x,r,x,t)) = f(r,x,t)w

‘'where w is the volume form. Then because of the conformal

homogeneity of Cimm)

wir,x) = l(1,x%) (1)
£lr,x,t) = ¢ (OF1) 2y (o)

£(1,%,

If the pointwise asymptotic expansion of'trEi(r,x,t) is
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given by

_m+l +
2

b e

Ta. (r,x)t
J/a

then (1) and (2) imply that
a = -j_' l »
s/, {r,x) = a'/2( +X)

In particular if X_ = X.C () then
u O,u

’
o~

EY 9 (x,1)

a,
i/ mtl-

J' (x 1)8 logu
%t
| N —-2—-.

for some constant ¢, , ,
i/2 |
L€ j 2 m+l the integral on the right hand side of (3)‘

diverges as u - 0. We define its finite part

P_af-‘r j/2 (rJX)W . if j z mtl

X

P. L I 5./2 {r,%)w EVPA if § < m+l
X

-Since the integral on the right hand side of (3) does not

converge for j = m+l it is clear that we cannot cbtain the
coefficients of the. integrated trace of the heat kernel by
integra tlng the pon_ntw1m Loefflclents of the pointwise trace

of the heat kernel, ' However, instead of using the
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integrated trace (which does not exist) we use its finite part
P.f. a,/zix). This gives the following form for the asymptotic
J ' :

expansion of integrated trace of the heat kernel,

Theorem 4.3 [Cheeger [4], Section 2]

" -
— t 1 .
~ o Lo - - T
trE(t) jfo(p £ g aj/z) , 2 am+1(1) log
2

m+l
—=
2

b |-

1.9 -1_. 1-1
+ = a7 s, x,w)f qu + I 1 (a)du + L a,, (1]
1w 5 x jrmr 372
| -m+l . 3
—..-_......+.--.
2 2

We are now ready io begin the study of analytic toréion
for manifolds with isolated conical singularities. We begin
by recalling that for compact manifolds the analytic con-
tinuatioﬁ of gi(s) to s=0 was obtained by using the asymptbtic

expansion for the trace of the heat kernel as iﬁ (3.2),

‘e : At | € b gs N s"n/2+i

X rp 51 - =i s-1 i € :

€. (s8) = oI £7 Tere ) F [T - A—+ w g e
i I'(s) & b S j=0 J 8 n/2+j

For manifeolds with isolated conieal singularities the asymp-

totic expansion of the trace if the heat kernel contains
logarithemic terms, as in Theorem 4.3, Thiec leads to a pole

of gi(s) at s=0 which can be seen by the following simple !

e ‘ I
calculation, The log term contributes a factor I £° 1am+1logt
0 e t———

2
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which we calculate by integration by parts.

s
s-1 5 s t &5

dv . t
u=logt;a“£=t gives —S——-logt-j'-s—gdt=—s—logt - 5.
; s

For s=0 the pole of l—:s-“- logt is cancelled by the simple zero

s
. t '

of T'(s) but since the term Y has a pole of order two it is

s

not cancelled by the simple zero of ;21'5', and the expression

for gi(s) given by

1 T os-1 THEOO€ o, Pi s
= t + - — :
Ci(S) I‘(s)[ér tr{e ) j‘ot uft) . €
s - o+l J

R s
+§Ea./2 —cy 7~am+1§ logt—am+l§__
§~— + = == s == 2

2 2 2 2 s

) IS | 1, (1)
+ "2{]' Juw g(1,x,u)p au + [u pk(u)du + ¥
1N

j#m+1 —-m+l 4 3
o j# ==*3

has a pole at s=0, so that gi(O) is undefined. We now make

the following observation

. m-1 .
. i
Theorem 4,4 Z {-1)7i .a = 0
. i m+l
1=0 _2

Procf. We have seen that

= Res I‘(s}gi{s)

L Res ¥(v (1)) + 2¥(v,(i-1)) + (v, (i-2))
3 j s j

= Res '\)(i) ~ 2Res v{i-1) + Res v (i-2)

aj/z ']ES

=
S
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m-1 . . m-1
Therefore, T (—l)li .a =_(—l)li T Res V(i) + 2 Res vw(i-1)
. i mtl .
i=0 TS 1=0
+ Res v{(i-2)

The contripbution from each Res V(i) is
. . .
(-1 Y1 Res vii) + (=1) TT1(i+1) 2Res V(i) + (1) 2 (i42) Res V(i)

= t -0 2i2) + (-1 (2142) T Res V{i) = O.
m-1 i
Therefore ¥ (-1) i Pl o,

=0 2

Thus even though gi(s) has a pole at s =0, the alternat-
. i, . .. . .
ing sum (-1) 1gi(5) iz finite because the contribution

from the logarithmic term drops out. We have then

m-1 ; ml e -_A_it € .4 b, o
B (-1)7ig (s) =75 B ilf £ Ttrle )+ [ E Tu)-e
i=0 i=0 € 0 :
o ¥l I _
e 2 2 l[]‘ﬂf -1 A
+ % a, — — + = v Cf(1l,x%,u)BRdu +
/g g ml,d 2734 o
2 2 -1
1 v T fuldu
| aj/z( ) e M
+ % 1=

-mtl ,J“s
; +
JAEl ST

which is a well defined expression,

We then have a well defined expression for the analytic

torsion T on C(Nm) as follows,.




m-1

tT (e (™) =% % (-1)Ti¢ (0)
. i=0 *
m-1 . ® ~A. t € i i L2
i i -1 =i =1 .
£SOV € Terle T ) + [t (t) + 5 : —
) 2 : +1 2 -m+l:
- 5 ___3#“‘2 A 3/ L
_ . -?'W*;; a (1)
Aoy ' 3/
+ [—b -Fl-f'fu f(1l,x,u)B du+ r u pk(u)du-FE _":I__TJY
1N 0 2 2
‘“ : | :SH.éj/ (1) |
+ {-b, +'§'J‘_fu 1f(l,x u)Bdu+j' u |.,ch1u+)3 m:-zf_ujﬂﬂe. :
N | = +.2

The analytic torsion for a manifold with isolated conical

+ m+
singularity G H 1 U C(Nm) is now cobtained as follows.

Let ﬁ:.{ denote the Laplace operator on i-forms on the manifold

+ M
Ve and let ubf, a, have the usual meaning on the manifold M,

+1 -
Then we define the analytic torsion ’I‘(X‘-Tt l, £) as

m-1 . o -A P

| + 1l -1
nr ™ 0= 2 21 e er (e )+jt1u (£) + %
) i=0 ¢ #m+l
.3 3
- 2 s
.a. €
132 ~-m+) |, J
._._._..+—
2 2
a,
° . _ 3/ (1)
+ [-b, +-l— j ‘]‘u lf{l,x,u}ﬂdu+flu lu {(n)du+% 1 {y+n ¢)
i 2 » k L -m+l I
€W v : -t
2 2
M _mtl
L ThE S g we 20 m b.)
+ [t e (e )+j°t u o)+ a, ——————+ {31 7y
4 . J -mtl o4 o ——
é jmel ) TREL 4 2

2
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If m = 2k, and Hk(nzk,R) # O, then in order to ensure

self-adijointness of the Laplacian on k-forms we must choose
ideal boundary conditions for 1.2 k-forms as discussed ip
Cheeger [67, Section 1.

Then by exactly the same argument as in Ray and Singer
{159, Section 2 we have the following propérty'for the
analytic torsion T(X,:) for a manifold with isﬁlated conical

singularity.

+ +
Theorem 4,5, Let X 1. M 11Jc(Nm) be a closed even dimen-
sional manifold with isolated metrically conical singularity,

and let ¢ be a flat orthogonal bundle over X. Then

e (™M, ) = o,
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