On the Geometry of Abelian Schemes
Over Arithmetic Varieties

A Dissertation presented
by

Troecls Petersen

to
The Graduate School
in partial fulfillment of the fequirements
for the éegree of
Doctor of Philosoph?
in
Mathematics
at

Stony Brook

Auguglt, 1983

oy €




STATE UNIVERSIVY 0F WEW YORK
: ' AT STONY BROOK

THE GRADUATE SCHGOL

Troels Petersan

for the

We, the dissertation committee for the ebove candidate
prance of

Doctor of Philosophy degree, nereny recommend acce
the dissertation.

s A !é._\f' o

Michio Kuga, Professor of éathnmat1cs
Dlssertatloﬁgglractor

e

e

# - i v
Marie~Louise Michelsohn, Associate Professor of

Mathematics
. 9
Mer Docs s,

4 ) .

" Max Dresden, Professor of Physics, Inst. for
Theoretical Physics
Outside Member

-

mhis dissertation is accentaed by the Graduate School,

Renbons QA

Dean of tha2 Craduate S Hoo T

' August 1983




Abstract of the Dissertation

On the Geometry of Abelian Schemes
' Over Arithmetic Varieties

by
Proels Petersen

Doctor of Philosophy

in

Mathematics

State Univexrsity of New York at Stony Brook

1983

We'present a Riemann-Roch formula for a 1ine bundle
I, on a group theoretic Abelian scheme V over an arithmetic
variety U. The formula gives ¥(V,L) in terms of the weights
of the symplectic representation defining V, the arithmetic
genus of the base U and the polarization of the fiber. We
also derive a vanishing condition for Hk(V,L)° Two gpecial
. cases, the Abelian schemes of "Satake type" and of "Addington

type”, are considered.
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"The fact that the category H is very small,
does not mean that H is a bad object of study. A
wider category has lesser connotations comparatively

to a well chosen smaller category, which has richy

juicy connotations. Saying the same thing in a
differént way, a very complexéd deeper theorem
which‘involves much structures, can not have most
grandeur domain of validity. Tﬁis is a predestina-

tive dilemma.”

Michio Kuga




0 Introduction

A group theoretic Abelian scheme over an arxithmetic

variety is a family of Abelian varieties parametrized by
a compact locally symmetric space and constructed from a
symplectic representation of an algebraic group G. Such
a scheme V is by constructicn a Hodge manifold. Kodaira‘é |

embedding theorem thus implies the existence of a line bundle

1, = V whose sections give a projective embedding of V. This §
paper is concerned with counting the number of independent
sections of the line bundle L. We derive a Riemann-Roch

k dim Hk(V,L) in terms of the

formula for X({(V,L} = & (-1}
weights of the symplectic representation defining V, the
roots of G, the arithmetic genus of the base and the §
polarization of the fiber. Using Kodaira's vanishing
theorem we obtain a condition for the vanishing of

Hk(V,L) for k > 0. Two special cases are considered: the d
Abelian schemes of “Satake type", arising from a group |

without compact factors, and those over guaternion Hilbert

modular varieties, studied by Addington.

The general idea is to use the fibering of V = U to
split bundles over V into horizontal and vertical parts. ' |
In this way we push the calculations on V down to the base

U, where we can apply the results of Ise, Borel and Hirzebruch

on homogeneocus bundles over lecally symmetric spaces.




We begin in Section 1 with a brief review of the con-
struction of group theoretic Abelian schemes according to
Kuga. Section 2 presents some results of Ise on locally
homogeneous bundles over a compact locally symmetric space.
These are vector bundles defined from a representation of E
a compact Lie group by an automorphy factor, ox, equi%alently,
by an associated principal bundle. The characteristic classes
of V are approached by splitting the_ﬁangent bundle into two
parts, each the pullback of a locally homogeneous bundle
on U. The Borel-Hirzebruch formula, discussed in Section 3.

expresgses these classes in terms of the weights of the re-

presentations defining the homogeneous bundles. The tech-
nicalities on roots and weights in this section can be skipped
by the less radical readex. Section 3 aléo deScribes.Ise's
generalization'of Hirzebruch's proportionality theorem. This
theorem is used in the following section to shift the eval- : i
uation of the characteristic classes of V and L from U = N\ X
to an integral over the compact dual of X, independent of the
arithmetic subgroupl. We then consider the two special types
of symplectic representations defining Abelian schemes which
"have been classified. Section 5 is concerned with Satake type
Abelian schemes, while, in Section 6, Addington's claséificaﬂ
tion is used to obtain a Riemann-Roch formula and vanishing
conditions for the non-Satake type schemes arising from ,

quaternion algebras. Section 7 contains some concluding remarks.




i Abelian schemes over arithmetic varieties

This section is a review of the construction of group
theoretic Abelian schemes formulated by Kuga [6). We

begin by assenbling the ingredients.

@ is a semisimple algebralc group defined over @ whose

real points form a real semisimple Lie group G. K denotes

a maximal compact subgroup of G. We assume that the guotient

X = ¢/K is a Hermitian svimnetric domain. Let I be a discrete

torsion frée subgroup of G acting properly discontinuocusly
on X, The quotient U = f\x is then a gmooth complex manifold
which we assume to be compéct.

Let F denote a real symplectic vector space with Sy~
plectic form F, Sp(F,3) the symplectic group of F, and

G{r,n} = [T € GL(F) : J2 = -1, AJ symmetric and

positive definite)

the corresponding Siegel space. ©{F,A} is a smooth manifold
. : ‘o -1
on which Sp(F,A) acts transitively by J P g "Jg. For a

-given base point Jb € &(r,A), the stabilizer U(JO) < Spl{F,a)

_ SpiF,n)
is & maximal compact subgroup so ©(r,A) = _ U(Jb) isg |

£

. e L
a synmetric space. The parametrization ¢t B exp(E%:JO) of

the one-dimensional center of U(Jb) specifies one of two
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Spl{r,A) invariant complex structures on G(F,A). With
this complex structure S{F,A} is a Hermitian symmetric
space.,

Let A C F be a lattice on which the symplectic form

takes integral values.

et p ¢ G = Sp(F,A) be a sympiectic representation of
G. We assume that p(I) A & A. We also assume that o
sdmits a holomorphic "Bichler" wap ¢ : X = G (F,A} com-
patible with the action of G, i.e. plgx) m.p(g)m(x) for
g € ¢, x €& x. |

Givan a collection (G,X,I.F.A,h, p.t) satisfying ouxr

assumptions, we construct a family of Abeliaﬁ varities as

follows. Since the action of I' on F preserves the lattice

A, we can form the semidirect product group 1 g Ao Define
, an éction of "y Aon X ¥ T by (v,&)e(x,wi = (vx, ply)wtd) .o

Let V be the quotient of X x F by this action:

X
x = TR,

HRE X . .. .
The natural projection V = THA\ X ™ = U is a fibration
with typical fiber the torus G = A\F. _ |

To each slice {x} %X F we assign the complex structure

corresponding to om{x) € S{(r,A). Together with the complex




structure of X, this defines a G invariant complex
structure on X x F. Passing to the guotient, we have a
complex structure on V for which the projection Vs U
is holomorphic..

Let &sg be the Gfinvariant Beyrgman metric on X. The
induced metric on U is then Hodge. On X X P we put the

metric
t. ,
ds”™ = ds_ + “dE s(xX) 4§

where § = (glgo,,,EZm) is & coordinate system on ¥ and

S(X) = Ap(X) € ¢L{2m,R) is symmetric and positive definite
This metric iz invariant under I' ® A and so defines a metyic
ds” on V. The condition A{A, A} C2 implies that dsz is Hodge.
The Hodge form is 6 = ﬁ*BU +'QA where BU is the Hodge form of

U and GA =2 %‘tdg A AdE locally.

V is therefore a projective algebraic variety, and
T . . , . .
V —> U is a smooth fiber bundle whose fibers are Abelian
vairieties,
We now review an eguivalent but more practical descrip-
tion of the family of Abelian varieties V= U. This descrip~

tion reguires another realization of the Siegel space.

Chocose a symplectic basis for the vector space P, i.e.




0 1
. ™
one which represents the symplectic form as o
~1 O /
m 4

For a given complex structure J € &(F,3), let O be the
matrix relating the real symplectic basis {ey}, kK = Lyeacsnis

to the complex basis {e&}, 0 = lreeeeMe Then
. m a (1)
%<mai %me£ T o\z)’

and it can be shown that the m ¥ m complex matrix Z is sym-
metric with positive definite imaginarxy part. Letting
g = {z € Mm(E) : tZ = Z, Tmz ¥ O}, we have a map S(F,A) =6
which cén be shown to be bijective and holomorphic.

The choice of a symplectic basis identifies F withimzm

and Sp(F,A) with Sp{2n,R). The action of Sp(F,A) on B{(F.a)

corresponds to the action of Sp{2m,R) on € given by

gez = (BZ4B) (C24D) T, ¢ (A B) & Sp(2m,R) .
C D

Given a symplectic representation and Eichler wap
G -P» sp(F,n) = sp(2m,R)

Xl & (F,A) =6

define a map

m ' _2m
g : X R F =X yvC : (x,w) P m4biﬂmxnw},(wéFﬁm”}e




With respect to the complex structure on X X F defined
above, 6 is an isomorphism of complex vector bundles.
The action of I" x A on X %X F translates to an action on
X x " given by
£, =1
(v, 2) - (xou) = (yx, {(Cz+D} "u + oﬁﬁzyx)&)p

' ‘ A B : -

where ply) m.(c D) € Sp(2m,R) and Zx = pi{x) € &,

To seea thié, apply o to (Y;&)ﬂ(x,w)i

i {vx, p(viwti)

i

(v, d) e (wow))

h

(v, (Floe(yx)) (ply)wtd)

= (vx,(ml,zyx)g(v)w * (1.7 )4)

_ v
Since (-1,7 ) = (2 ,1) (O I Y
| v v 1 of
t ‘ 2z, [ (az_+8) (cz +D)"1
and . (z 1) =|" YX oL X b1
Y= T L ,

.

. y Z
AZ+R -1 A B % -1
- (czm} (cz-+D) - (c D) (1 ) {caxln}

we haﬁe
' RN PP | tfa BY/O 1\ ,A B,
(ml,zyx)p(v)w = (sziD) (zx,l) Gj ) (ﬂ )(C D)w

1

[y i O l : ey t 1] ab “1
(&x,l)(“l O)W = (CZXED)- u

& -
== 7 +D
(c7X )




for u = (-1,p({x))w. We can therefore define V as the

mm

. .S
quotient T'RA\ e
The fibering of V over U induces a bigrading of its
cohomology ring defined as follows. For each integer N
in mo . .
the map X X C =X x € : (x,u) ¥ {x,Nu) normalizes the
action of I' X A and so defines a “stretching operator"
B Y oo x
e(m)*: V =+ V, The eigenvaluecs of @(N)" on H (V,2) are

b r
powers N , b = 0,1,2;... ¥ (V,2) decomposes into eigen-
shaces
o, Gy
i, © m (V. D)
atbh=xr

where H‘é’b>(va@} is the eigenspace corresponding to the

R
eigenvalue Nb, H<a’b/(vﬁ@) can also be described as the

E_ = FE term
2 oy

1 (U, 1°(6,0)) = Hacu,AbFé)

of the collapsing spectral sequencé for the fiber bundle
G =V = U,

With respect to local coordinates XiroearX ON X and
coordinates w_,,..,wh on @m, a cohomology class ig

k!
{a, by : » e .
H (V,R) is represented by a differential form on V of

"(a,b) type", locally expressable as




i i 3 5

¥ o . (e, dx lA»Adx ah&w”lﬁooehdw b
1‘§i <°°5-c:i Zh J'llﬂoojb ,
1 a A
B B =m

>

O
It can ke shown that the "horizontal" part Hﬁ%’ (V.@)

is isomoiphic via ¥ to Hr(U,Q)U The "vertical" part

H<b’r>(v,@) is isomorphic to the subspace Hr(G,@)r of -

invariant elements of the cohomology of the typical fiber G.
Finally, consider the ring A""(X)G of G-invariant dif-

ferential forms on ¥. Bach such form ig closed and so de-

fines a closed form on U. We therefore have a homomorphisn
3 G " “}‘.“ ; -
AT(X) " = H"(UR)

which can be shown to be injective. The image is a subring

which we will denote by H*(UJR)Ge
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2. - _Locally homogeneous burdles

In this section we show how the tangent bundle of V
is obtained from two locally homogeneous bundles on the
 base U, This will enable us to determine characteristic
class of V firom the representations defining these two
bundles.

The tangent bundle T(V) of V cqptains a vertical sub-
bundle T(V)' consisting of vectors tangent to the fibers
of V » U, The guotient of T(V) by T(V}' is ig@morphic to
the pullback o*T (U} of th@_tangent bundle of U.

In the previous section, V was constructed by dividing
n

T
faA\XX@

« We can take this guotient in two steps, constyruct-

ing an intermediate bundle as Follows.

N -]
Let - 1 {g.x) denote t(CZ+D) € GL{m,C),
‘A B . .
where. plg) = (C D) € SpCm,R}, % = p(x) € &,
XY@m
Let B = '\ , where v(x,u) = (yx,9({v,x)u). Then & is a

. . m
~vector bundle over U = I'X with fiber @ . Recall the map
m o, . . - . .
g ¢+t X X P X xC defined in the last section. Since the

action of I' is assumed to preserve the lattice A, the sct

@ {XxA) = { (e, (L,o0(x))4 : 2w € X, L €A} C X ¢ ™ is stable
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under ' H A, Let EA = Fwﬁ\ﬁ(XXA). E, is a bundle of lattices
contained in E and EA\E 2 vV, The fibers of E-E@ U are the
universal covering spaces of the tori which form the fibers
of V =+ U. For each such torus we can identify its universal
cover with its tangent space at any peint. Therefore, we

can identify the'pullback #*E with the vertical tangent

bundle T(V)'. More ewplicitly, under the identification

il in m . . .
T{Xu® ) = P {X)Izx € ¥ ¢ the action of 'K A is

(v L) e {vou,y) = (v¥v,j(vex)u + (-L,o0(yx)) L. {v.x}VY)

m
. . } Tit 7 F ‘N {
for v & (Tx)y@ u,y € @, and T(V) = Tﬁﬁ\ﬂfx)h o e The
. « . , ' ‘ Xxﬂmxmm
vertical bundle is then T{(V)' & IWA\ . Denote by

(xﬁu)v and (xpu}E the images of {(x,u) undexr the projections

wxe™ E

m
HXE m
- m Voagnd X X ¢ - I\ & 5, o

X % & TeAN

Define
m ™ *
B+ X @ X =+ nE = {(vpa) EV XE : {v) = ple))}

by

B(X‘?ﬁa‘y} = ({x,u) ° (x,u) .,) a

A

This map is easily seen to be invariant under THA and to

. , ' .
induce an isomorphism T (V) =2 w¥g,

The picture is




[
N

TR = TV} = 150 (U)

where the top row is exact.

E is an examplé of the "locally homogenecus" vector
bundles over a locally symmetric space studied by Ise [4].
Tse's description of such bundles is slightly different

Erom ours in its use of the notion of an automorphy factowr.

pa
N
i3]

We will summarize Ise's description snd then verify
equivalence with ours.

?irst, recall the Havigh-Chandra embedding of a sym-—
metric domain ¥ = G/K. The Lie algebra of_GE decomposes
as g@ = g@ ® m? = k@ ® m& ®mnm, whére m% are the 21 eigen-
spaces of the compleﬁ structure. Let Mﬁ denote the subgroups

a ] h + ¢ - @
of G with Lie algebras m . The map M X K X M =G

't (n,k,m} » nkn iz a holomorphic injection onto an opell sub-

T . ' T~ '
set of G containing 6. GK'M is thus an open subset of

(8 e ¢ .
M+K M~ Dividing by KM and using the fact that

£z .. . . ,
G M K'M™ = K we have an inclusion
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; + 0
t : X = G/K & GK@M"/'E Coms M KM/ M+~

K M~ _ KM

. . o .
Composing t with log «: M < m gives the Harish-Chandra
realization of X as a symmetric domain.

The ewmbedding ¢ is G-equivalent. Therefore,
get (x) 2 3 (gx)}T{g,x) mod M~

for some Jfggx) € K@. This relstion defines the “canonical
avtomorphy factor" J ﬁ G % X = Kmo J has the following
propertigs:
1)  For each g € G x®P Jlg,x) is a holomoxphic
map X - K¢¢
2)  Tlug'.x) = I(g.g'x)I(g =

3) J(k,x) = k and J(1,x) = 1 for all k € K, % € X.

The locally homogeneous bundles discussed by Ise are

u

defined as follows. Given a representation ¢ é Km - GL(m,T),
denote the composition god : ¢ X X = GL(m,&) by Jéo As
beforé, let ' © G be a discrete torsion free subgroup for
lwhich U = F\X iz a smooth cowpact complex manifold. I acts
on X x ¢ by v (x,u) = (yx,Jﬁ(va)u). The gquotient

F\Xxmm

E =

. is a holomoxphic vector bundle over U. The

sectionsg of Eﬁ

y are automorphic forms of "type 6" with

A,
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respect to I',
In the case of the Siegel space 6, G = Sp(ZmJR) and

K = U(m) is the subgroup o ;

. , T T g
T oy -1 . i wo\ ‘
{a(g m)a : g € Ulm)}, a = . oo e ;
© 9 L%n ~1iy '

‘ - t.
It is easily seen that MY = {a (? :?\)a L : b o=Dbl < Sp(om,a)

[ )
and (7)) = a\gn 2§>am1 for 2 € &6, It follows that

t Im 1
JFB(QpZ) = 3 (cz+D) © a_l € Sp(2m,C} which we identify
>l 0 (CZAD)

with Cezm ™t ¢ k& = enim, o).

The factor j(g.x) usea in constructing B is therefore
egual to Jsp(g(g)gfp(x))° |

I£ p s 6 = sp(2mR) is a symplectic representation, then

p maps K to a maximal compact subgroup of Sp(2m,R}, which, Ty

conjugating, we can assume to be

.

e faf9 O ~1 € U(m
U(m) gt {d(o {,j,)a : g (m} 3.
Thus p]K ~g ®G, where 6 :+ K = U(m) is a unitary representa-

tion of K, ILet ¢ denote also the complex extension
K GL(m, ). The following lemma says that Jsp(p(g),m(x)) i

= ¢Jlg,x), so that Ise's bundle EGJ is the same as BE.

Lemnma. Let X, o= Gi/Ki (i=1,2} be Hermitian symmetric domains

. ) T
with canonical automorphy factors Jiz Gi X X, o= Ki“
J.




Let G QWW%G
1 2
tp
P
1 Xy

be compatible. Then

5
6. 9K, e 10
171 | 1
&

el i

ad v

2 T

X ot K
G, %X, )

conmutes.

ot T . .
Proof. Let ti : Xj -» Mi < G; be the Harish-Chandra map.
T ] &
Now p (Mz) < M; and in fact p restricted to X, © Mi GO
Co . I . « A
incides with ¢, i.e. p 11(X) = 12m(X) {2 -prop. 8.11. Apply-

. T .. )
ing p = p <o the defining relation

G tl(x) B ti(gx)Jl(ggx) mod hl, g @ Gl’ x & hl

gives p(g}p(ti(x) ] p(il(gk))p(Jl(g,x)) mod Mi
S0 ;*;({;;)1,2(41;3(:&))‘3a tz(m(gx))p(Jl(gFX))
s0 plg) s, (0 (x)) % 1, (pla)w(x)) ol (g,3)).

Comparing this to the relation defining J?(p(g)fmfx)) shows

J2(ﬂ(g)am(X)) = p(Jl(g,x))e
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Notice that the representation used here is o and not
the complexification of pl®X : K » Sp(2mR). Egy is &
trivial complex symplectic vector bundle, of which E@J is
a nontrivial Lagrangian subbun&le,

We now give a more geometric description of locally
homogeneous bundles, which will be useful in the calculation
of their characteristic classes.

The projection ¢ » (/K = X is a principal K-bundle.
Dividing by the action of I we have T\G - U, also a principal
K-bundle, Consider the complex vector bundle EG over U asg-

. G . . )
sociated to T\ = U by the representation ¢ : K “+ GL(m, ).
G m . L .
EG = (I'\' € ) /K  where the action of K is

oy L - ‘
(I'g,u}k = {(Igk,o(k) w), g €6, kK €K, vy €T, u €& T,

Lemma (Ige}l. E and R 4 are isomorphic as C% complex vector
g o}
bundles.

"It is easy to check that the isomorphism is induced by

the smooth eguivalent map
m m
G XE =G xXTC : (g,u) (ggﬁJ(ggxo)u)

where N is the base point K € X.

We have shown that the vertical tangent bundle T(V)' of
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V is isomorphic to the pullback of the locally homogeneous
bundle over U associated o the representation ¢. The

horizontal tangent bundle is the pullback of the tangent

bundle of U, which is also locally homogenecus. T({U) is
associated to Ad K|m*, the adjoint representation of K on

mt,  We have therefore decomposed T(V) into two bundles,

each the pullback of a locally homegeneous bundle over U.
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3. FProportionality Theorem and Borel-Hirzebruch formula

We now review Ise's generalization of the Hirzebruch
proportionality theorem, With this theorem we can replace
the locally homogeneous bundles over U described in the
last section by homogeneous bundles over the compact dual
of X. We then derive the Borel-Hirzebruch formula For the
Chexrn classes of these bundles.

v . ' . C .o

Let G be the compact real Lie subgroup of G with Lie

e VN VoY .
algebra g = Kk @ im @ g, Let X = G/K be the compact Hermi-

tian symmetric space dual to X = ¢/K. Let j : X - % denote
the Borel embedding. We then have three principal XK-bundies

related by the diagram

G v
N e ¢ G
| b
U e ——— X
Suppose now that o ¢ K = 6L{m,8) is a representation.
v v ' ]
Let }'::(j - X be the homogeneous complex vector bundle as-
. b4 v .
'sociated by ¢ to G » X. This bundle is related to the bundle

EG < U by a lemma of Ise.

L\
Lemms_ {Ise). E_ is isomorphic to T\j“Eﬁe

The principal bundle G = G/K has a natural connection
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defiined by left translation of the subspace m C ﬁ,%’TeG

(e € G is the identity element). This connection ig left
G invariant so its curvaﬁure form is G invariant, given at
the base point %y = K € G/K by {i{v,w) = - %{v,w] & Xk,

v.w & m. The principal bundle ?\G - U therefore inherits
a connection_with curvature defined in the same wav.
Similarly, left translation cf im < ﬁldefines an invariant
connaction on the principal bundle g - gg-with

V
Q{iv, iw)

i

Stvawl.

The Chern class of Eﬁ,ﬁ U, being a polynomial in the
curvature {1, lies in the "G-invariant" subring H*(U,R),.
Recall that H*(U;R)G was defined in Section 1 as the image
of the ring A(X)G of G invariant forms on X. _Since'any such
form is determined by its restriction to TXQ(X) = m, this
riné is isomorphic to the ring Alm® 3 of A4(K} invariant
alternating forms on m, ILebt n= % Ty € h(mﬁ)K be a form
representing c{E@), Since § is a compact symmetric space
~its cohomology ring is isomorphic to A(%)G, which is identi-

. . o K . Y A
fied with A(im*)". 7The Chera clasgs of B @ X is G-invariant

. v v L g K
and so is represented by a form 1 = ¥ T © A(im™) . We have

the relations

vV .
) = (_l)' riléi(?l‘vlﬁe""lfj‘vz']‘{)? VIE oneg'v - ema

2% 2k

ﬂk(vlpe@u,v
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Suppose that U,n are two representations of XK. Let
. | vy
EG_‘.}E‘.u be the associated vector bundles over U, Eg,“LL the
v "
associated bundles over X, and let ch(Eu), td(Eﬁ) %H”(UJR)G
) . N4 Y o ek A .
and ch(® ), td(Eg) € H* {(¥,R} denote theipr Chern characteys
v

and Todd classes. Ise has proved the following generaliza-

tion of Hirxzebruch's proportionality theoram,

Theorem {Ise~-Hirzebruch).

[ch(Eu)td(Eﬁ)][U] = X(U)[ch(§u>td(§§)}tﬁja

HEere Y% {U) is the arithmetig genus of U; {p}M] denotes
evaluation on the fundamental class of compzct m-~dimensional
manifold M of the degree m homogeneous part of differential
form #.

Actually, Ise stated his theorem in a slightly less
genéral form. He considered the case when ¢ is the adjoint

‘ N4 \
representation of X and EG = T (1), EG = T{X). Using the

Riemann-Roch formula, he stated the theorem as
N
U, B =2 v X,E ).
X(U,B ) = % (0)%0LE)

This result and the more general one both follows directly

from the proportionality of the Chern numbers of asszociated
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bundles over U and %.,

We now review the Borelﬂ‘—Iiréehruch formula express-
ing the Chern class of %ﬁ as a polynonial in the weights
of .

Let T C K 23{ be a maximal torus of (\5 with L-i,e
algebra L and let ¥ G/Ji1 -¥ G/K be the natural map.

We iden{:ify the weight lattice of T with H (Te@} o
(Writing T = t/L, a weight p € 2mitL¥ ig identified

*

wit ko € 1,% m 1{1(‘1‘;22)).; Let ¢ : K = GL(m, &) be

271,

a representation with weights }\1JF ””)\m € H (7,22). The

Y . . :
vector bundle over G/T associated to ¢/T is isomorphic

. o < v v
to the pullback ¢“E_  of the bundle EG - G/K associated

tCJ OI o

y Y
G G /T e "E,

A

G/K ! SUE 36

4

v ,
The real root decompesition g = £ @ £ g~ = £ @ h pro-

vides an AdT invariant complementary subspace h to t




A8
N

- . . o
and thus a G-invariant connection on the principal
v v ;
T-bundle ¢ - G/T, The curvature form is

QT(V,W) e %{v,wlt & ¢, v,w € h (the subscript denotes

projection to t). The curvature form of ¢*Eﬁ isg

therefore O (v,w) = - %Wj(tvfwj% € g(m, ). With respect

to the weight space dedomposition,c([vgw]t) is a diagonal

th

matrix whose entry is lj([v,WjT},

. L 2N
Let ¢ denote the transgression Hl(ng) -~ HTAG/T 78
which,takes a weight % to minus the Chern class of the

\ v :
gossociated line bundle EK 2 G/T. (i} is represented

i

V .
by the G-invariant 2-form ﬁ7(v,w) = g%{'l([vew]t) on h.
\ T T ) .

We can write

A

21

i

\p'ffc{\ég) - c(w{r*%ﬂlﬁ) = det (L+5= () gi(lmﬂ)\,j)) ¢ ¥ (&1 )

which _
which is the formula of Borel-Hirzebruch [27.

To make sense of this formula it is useful to express

. N Vo ' : .
the cohomologies of X and G/T in terms of polynomial rings.

'Let {pl,ewepur} be the basis of t* given by the set of




2%

. hY
fundamental weights in Hl(T;Z)ﬂ The Weyl group W(G) acts
on the polynomial ring]Rful,,.ﬁyur] by permuting and chang-
. . A4 . .
ing signs of the generators., Let 3‘.’(w denote the ideal
i

v . .
generated by the W(G) invariant polynomials of strictly

. ' WX .
positive degree. Letiﬁ[ulpo.,pur] (K) dencte the subring

of polynomials invariant under the Weyl group of K.

Proposition.
%

* -

H"(G/T ,R) ﬂm[ul”“’“‘rj/,[-l-
TG

w _ ) WK

H* (G/K,R) Eﬁm[ul,.”pu ] ( )/

, ; h ot

Ta

Here the generators My have degree 2. The old degree ccho-

mology vanishes.

Qutline of proof. Let H be a closed connected subgroup of

v : . .
G. Recall the Weil homomorphismn
' » H %,V
¥ o2 S(h*)T - B (G/H,R)

for the principal H-bundle g - g/HB Here h is the iie algebrs
of H, S(h*) is the symmetvic algebra. Let O be the curvature
0f a connection on this bundle. Then # takes an H-invariant
polynomial p to the cohomology class of the differential

form on g/H defined by the H-invariant horizontal closed

' W \
form p(0,...,0) on G. If G

and H have egual rank then ¥ is




Pl

surijective. The kernel consists of the ideal generated by tha

polynomials on hh of strictly positive degree which extend

w H

G > S(l‘f“)

v v 5
£o G invariant polynomials on g. Iet 1 : S(§)

be the restriction map, which is injective if rkH= rk G.
v
SR .+ V'.*: G . ,
The kernel of ¥ is then generated by 1 (5 (g 1 }. Letting

H = T, it can be shown that the image of

\'4 T .
iz B(g™) = S(L*) = s(t") %IR[uj_“wur‘]

. . WG . . - .
ig the subring S(g?)\( ) of W{G)-invariant polynomials on

G° This gives the first formula. Similarly,
. . . 11 . WA{H
taking H = G, we have S(hf} & S (L™) ( }s Now let H = K.

t, s0o ker ¥ = I

Then

.V ) o K W(Kl//
®fr S oo (e e G gk . .
H™(C/KR) Sk )/]‘:er " S{L*) .
' G
Returning to the Borel-Hirzebruch formula, it is clear

&V &% .V ’
t the map ¥*¥ ¢ H (6/KR) = I (G/TR) is induced from the
' W{K)

th

o

inclusion of Ry :o.our] inJREu],,oe,ur] and is therefore

1
injective. The transgression ¢ sends the fundamental weight
‘ 1 2.V . .
uj € H (T#) to the generator “j €8 (¢/T,R). Since the set

of weights of ¢ : K = GL{n,T) is invariant under the Weyl

group of K, the expression H{lww(kj)) is W{K) invariant and

. . eV
g0 determines an element of H” (G/KR) .




We thus have formal expressions for the Todd class

vV
and Chern character of It

~¢(k5)
l-exp (v {).))
J

i

v
td(E ) .
a

v
Ch(Ec) = ) GXP("T(Xj))a

no
LT
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4.  Riemann-Roch formula and vanishing theorem

V is a Hodge manifald‘with fundamental foxm 6 = GA+'W*GUe
By the Kodaira Embedding Theorem there exists a holomorphic
line bundle L » V with Chern class Cl(L) = M—%¥+ N w8, for
suitable integers M,N, and a projective embedding of V into
P(HO(V,L}). In this section we begin the derivation of a
Riemann-Roch formula for the line bundle L. We then use
Kodaira's Vanishing Theowem to state a condition on L for
the vanishing of Hq(V,L)p g » 0.

L can be wyritten as a tensor product of two line
bundles I, = ;L.V 0 Lh with ci(LV) = M eA € H<0"2> (V,2) and
Cl(Lh) % ﬂ*IQGU.é H<é’0>(VF@)o The ”horizonﬁal“rpart IP
ig the pullback of a line bundle LU on U, Recall ﬁhat GU
is the Hodge fofm induced £rom the Bergman metric on X snd

so belongs te the Chern class of the canonical bundle HU of

: N .
U [ 5]. We can therefore taske Ly = Hye Iy is a locally homo-
geneous bhundle, associated to the character kPﬁdet(Ad(k)FlhghN

on K.

According to the Riemann-Roch-Hirzebruch Theorem,

Fl

% (Vo L) = {ch(L)ta(v)Ilv].

We first decompose this expression into horizontal and

vertical parts. By the wultiplicative and functorial proper-
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ties of the Chern character,
_ \ 1 ' v,
ch (L) = ah(LV)ch(Ll) = ch(l }ﬂ*ch(LU},

From Section 2 we have the short exact sequence of bundles

over V
QO = %E - (V) = 7T({U} =20
where B is isomorphic to Eﬁa Therefore,

td{V) = td(ﬁ*E6@3v*T(U)) = ﬁ*(td(Ea)td{U))

and so
ch(L)£d (V) = ch(L')n* (ch (L) £ (B ) ed (U))
where
ch(LV)'ezaé“*>(v,@)f ch (1) ta (8 ) d (U) € B (U,0).
Since H<reo>(v,@) 2 Hr(U,Q) = 0 for v ¥ 2n
and H<Q‘S>(VF@) = 0 for s » 2m,

v CVed e V4
[ch (L )ﬁ*(Ch(LU)Ld(Lﬁ}Ld(U))]2(m+n)

o [ch(LV)jémtww(ch(LU)td(Eﬁ)ta(u))jzn

([a]k denoltes the degwee k homogeneous part of g.) To eval-
uate this form on V we integrate first along the fibers and

then over U. The integral along the fibers gives the con~

stant Ffunction




°8

i

{en (") }a] fexp (M0, ) AT = %(G, L) = Jaet Mo,

= Jdet A M

Using the proportionality theorem we can shift the
. . LN ¥ N/ .
integral over U to X, Let L < X bhe the line bhundle as~
socipted to the character which defines LU -+ U, The tangent
N
bundle T{U) corresponds to the tangent bundle T(X): both are
defined by the adjoint representaticn of K. The proportion-

ality theorem gives
{eh(r ) ta (B )ea(w) Hul = x(v) {eh () -t:c:{(%f@'}td %) 30x7.

Therefore,

(VL) = Jdet A M oy (U) fch(ﬁ)tci(;é@) ea (h) 1137,

In principle, this formula combined With the Borel-
Hirzebruch formula gives % (V,L) in terms of the weights of
0, the polarization & and %{(U). The difficultyris that,
except in special cases, it is impossgible to carry out the
integration. It is also difficult to calculate the arith-
metic genus. To simplify the formula nmove informaﬁion zbout
the symplectic representation is needed. In the next two

sections we will consider the special types of represents-

tions studied by Satake and Addingténn
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In order to equate %(V,L) with the number of indem.
pendent sections of I. we need the vanishing theorem of
Rodaira. Xodaira proved that if L @ n$ is a positive line
bundle, then Hq(VFL) = 0 for g » O. From Section 2 it
foilows that

AZ {rr+in)

=5

w(v) e a2 O

T{UYBE
" { )DFG)

2n 2

) s, o0 . L 2m
=] ¥ ” @ o 3 " ’("). (2‘0;
T AN TUY @A E ) = ow¥( VR ),

v o & 2m
£ & &
L®y L @n™ (Ly iy ® A _Eﬁ)

2

o gV % N—lsb 2ul
L ®Tr(nU 2 A Eﬂ)o

. . . _ . v o, .
This bundle will be positive if L is positive as a bundle

N-1

on the fiber ¢ and MU v

2 . - .
& A L, is positive over U, L is

positive (for M » 0) since it is given ky the polarization

. . . N-1, 2m
of G. The vanishing theorem therefore holds if KU @& A

-

G

Favd
is positive. For a line bundle Ii » U associated to tha
welght )\, Ise has shown that ¥ is positive if (h,mj) <0

for mﬁ ranging ovex all positive complementary roots {i.e.

" ._i_‘ . 2 w,
those whose root spaces span n < g). The welght of A?mEﬁ

is the sum % ki of the weights of ¢. The weight of *y is wéK
'4

where 6y is the sum of the positive complementary roots,
AN




&,
<

{ (-1} 51{”2)‘:?_’“’-7) » 0,

for all positive complementary roots (y,j.




5. Schemes of Satake type

The problem of classifying group theoretical families
of Abelian varieties was Ffirst studied by Satake [8]. In

this section we will use his results to obtain a Riemarn-—

Roch formula for the "Satake type" families.
For a given semisimple Lie group without cowmpact
factors, Satake considered. the problem of classfying the

symplectic representations which admit a holomorphic Richler

map, In other words, he considered pairs
B s g BY

P

AN

where X = G/K is a Hermitisn symmetric domain and @ is holo-
morphic and equivariart with respect to p. Satake assumed
that ¢ commutes with the symmetries of X and &. Representa-
tions satisfying these conditions are called admissible and
the families of Abelian varieties they define are said to
_bhe of "Satake type".

| Tf p is adnissible then each irreducible subrepresenta-
‘tion of p is admigsible., It is therefore sufficient to con-~

sider irreducible representations. Writing G as a product

of simple factors ¢ = Glx,eoxﬁagg an. irreducible representa-
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tion is a tensor product p = @ giwhere gi is an irreducible
representation of Gie Salake showed that if p is admis-~
sible then all the factors Gi must be of classical type

and all but one of the p; must be trivial. The problem is
therefore reduced to classifying the admissible representa-
tionz of the noncompact simple classical.groups of Hermitian
type. BSatake's results are listed along With a table éf
weights of the representations for the corresponding locally

homogeneous bundles.




Satake's

ligt:
Type | G K e
pEg=2 .i.dy;g
I SU(p.q) S{U(p) xU{e) ) .
P4 oo ? k .k
pEg =1 AR
IT, SU(n,.n) MO (K,aé Un) nzh id
1’]::[n Sp{2n,m) U{n) nzl id
pal
odd A
iv Spin{p,2} |Spin{n}xsS0o(2)
»
pad th
- A
even
Table of weights:
4im o . whg.of
Typa weights of ¢ N aAd K| 311*
i <
. . - _ }\'-H?\‘ _,u'z = ‘L::_s.?;l
) Peaged {?\lp 8o g ?\.D: )\p_‘_lo ¢ o ey lp_i_q l. P
T : (pu) kgt
PF C{ . ‘__..:
e eeTh. - . teoeet \ .- .0
}‘il ?:Lk" (1‘31 hjymf)\p-lw% . s Mo
pg=l ] “ (P*'—') 1sigp]
1»27_1&6.,@<J]v;-p, ﬂﬁjl °°°j} =p kK
{xiﬂj :
I neh tos
n {7\13 f xﬂ} n 1 <j .’;’:I'I}
TLX nzl Aysone s
n { 1’ a?)\h n l&ﬁlﬁ.jgn'}
n gy My ®
:52 ’}"];i_'} M he o @ ,£ o+ ? AL
o n {z( ';k e A k’l’*”j.}} 2 n_’ﬂrl"il 1}
N Mfl(ix At L) Lt {
. LAl :.!ﬁo & o-ﬂ'i . -+ L r WA, 1'1 nm'l )\,. :_"'s:)\ \ -
e ed 2 L N n nt+l Pl i nt ]
even . (0dd) no.of minus igns 1misn]
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Noteg on the table:

I (A ITI_ ). p=q»l: The representation is "id,id", by
Peq P

which is meant the injection

D O 0 C
. Y . O . e b
sulp,q) 3 & Pinbal O R B O e gyipig,pig).
, O ¢ b O
B o o &K

Pag = 1: In this case the representation is not unigue.

(k)

For each k, L % %k £ p, p is defined by composing the aiter-

nating tensor representation Ak s SU(p,1) = SU((?)F(?%T))

with the mep p given above.

- O I
o vy X eus n
IT (DIIL }. G = 5U(n,n) NO(X,C) when K = I, o

and “ig" G = SU(n,n) is inclusion.

II%3U3ID)‘ G = Sp(2n,/R). The repfesentation is the inclusion
Sp{2n,R} = SU{n,n) Nsp(2n,E) = SU(n,n).

‘IV?(BDIP). p=2n+l: p is the spin representation A with
L 1
.--t —{ = ce e :i‘,\ & The 1 N i
weights {2(‘xl& 2 >n+l)} The Weyl group of
K o= Spin(2n+l) X 80(2) permutes and changes the signs of

{A7cvern 1 and fixes L ... The weights of 6 are thereforc
1 s T+l -

1 ‘ - .
LG WIS W = 2n: > weilghts of p = At (resp A~
{2(%XL$ Kn hn+l)L p = 2n: the weights of p AV (resp A7)




are {%(ixld:a”:&:'}\ns:knﬂ_) : with even (resp.odd) nunber of
minus signs}. W(K) acts by permuting {kl,@o.,hn} and
changing an even nunber of signs, so the weights of gt
L ' :

resp.d 7)) ar TlEA koA PA L) s even (resp. odd) number
(resp.o ™) are {2(”‘"7\’1 =A nrl-.L) e (resp )
of winus signsl.

Suppose then that V -» U is a Satake type Ffamlily of

Abelian varieties constructed from a symplectic representa-—

tion and Eichler map

G P Sp (2m,R)

X =L @

such that ¢ = ¢ x,”xGS is & product of simple noncompact

1

Lie groups and ¢ commutes with symmetry., According to

Sé@téke,' p has the form p = @ p opr, vhere pr, : G =0,
L i i i
) ‘ Hu u H
is the projection and ﬁu is & representation of Gi given
T

in Satake's list.
Let K = le..,.x Ksc: G be the maximal compact subgroup

and let X = X x...xX_Dbe the decomposition of X into ir-

Let ¥ = ¥ X 1
-~ — 4 > N
K" et ] g ¥e e x X he
) 1 v oV N
the compact dual of ¥ and let p, ¢ X = }{j be the projection,
I

. G,
reducible components }(i = i/

Then plK ~ ¢ © ¢ with 0 = & ¢ opr, .
oo lp‘




\
Therefore, , % = & p%* B
o wod oo
: (A 4
\ \
80 £d(E_ ) = Np¥ wd(s ).

) ) \
Let Ki be the canonical line bundle of Xi. Then

o2
(i

' /
no= ®Igini is the canonical bundle of X and so
¥ . N & i)
= (P, " = Rp.
L (:7}:5'_1 i) Pl( J_)
¥ , ) )
80 ch(l) = ﬁpicﬂﬂﬁi)N .

It is clear that

N YV v : W
= * & 4 = T w K °
T (X} @pi i (Xi) o td(X) n Py tc {Xi)

Therefore,

v, Ny . Y] |

ch{L)td (X}ed(E } = Op¥(ch(x.) td{X.,)). Mp _
&3 . i i I u ;

i 4 14

.y ) ) s
= nereh(x ) tatye 1 wal )3

, 1 1 a1, g

u:iumi u

where the second product is taken over those representations
4 which are nontrivial on the it factor Gio The integral over

. . . A .
% splits into a product of integrals over Xi and so0 the Riemann-

Roch formula becomes

WV, L) = M /et A x(U‘)-ijI{ch(ni}N ta(t.) 1 tdigﬁ )}Eﬁil
;i :

p:iuﬂl h)

1
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Suppose now that G has compact . factors. Satake has
shown that in this case, if p is assumed to split as

p=p_ ®p with p  trivial on the compact part of ¢ and
ne ¢ nc

P, trivial on the noncompact part, then the same classifica-

tion holds for pnﬁe Families constructed from such repre-

sentations are also known as "Satake type'. The Riemann-
Roch formula for these varieties is essentially the same,

The vepresentation ¢ splits as g = @ @36cﬁ 80

nea

\ A v )
E =5  @OE ., Writing ¢ = ¢ %G DK=XK XG , we have
o] . 6@ N c ne e

) W ) m v
E =G %G XE& </ = s W
o c K ; ¢

e nceg C ne

' - Y m .
since Knﬁ acts trivially on Gc O O and Gc acts trivially

-

u]

Vv ‘ v . - . .
on G . Thusg EG i1s trivial. It follows that the Riemann-
¢!
Roch formula depends only on pnﬁ (though of course, the

dimension of P, @Fpears implicitly in m and a). |




34

6. Schemes of Addinqtoﬁ type

In this section we obtain a Riemann-Roch formula fox

Abelian schemes over guaternion Hilbert modular varieties.

Representations defining such schemes have been clagsified %
by SBusan Addington [1]. We begin by summarizing her results.
Let k be a totally real algebraic number field,

b o= {¢1¢¢g°9$r] the set of embeddings of k into R and

g {leeos,r] the set of indices of §. Tet k' be the normal
c¢logure Qf k, The Galois group Gal(k';Q) acts on & and so
on S, Let B be a éuaternion algebra over k (i.e. a 4-dimen-
sional central sim@la k-algebra) suvch that B Mz(k)a Foy
each i Els, B gtm is isomorphic either to the watrix alygebra
MZCR} or to th;“alg@braim of Hmwiltonian cquaternions. Let

SO < S be the subset of 1 € 8 for which Bcfim es M2GR} and

S = = )
let 1 s S0

1 . . . .
The group B” of norm one units of B defines an algebraic

) l : 4 .
group over k. Let @ = Res B be the scalar restriction of

k
. _ /@ ,
~this group, Then G is a senisimple algebraic group over @
'wi.th
R o 1
G = G(R) = {(BOR)" = SL(2,M) % SU(2)

where X, = ]Sj|. Let X ¢ ¢ be the maximal compact subgroup




r r
0 : , .
S5G(2) X SU(2) lu The symmetric space G/K is then the

product of upper-half planes éfgo

The representations congidered by Addington arve con-
structed as follows. For each so-called "atom" i € 8, let
pi : G = Gi  SL(2,8}) be the projection to the factor Gi
(@SL(ZJR} or SU(2)) cvomposed with inclusion in SL{2,C). A
subset ¥ = {i,3,....k} © & (a set (f)f_a";.'toms.s hence & "moleculéed’)
defines the representation by = pi<3.°c® Py of G. A collec-

tion of molecules P = {YlaOaapg&] (a "polymer") defines

p. = o @,,.®p . A polymer is called "stable" if it is
B b4 Y i
1 {J 2 .
invariant uvnder the asction of Gal(k :@) and each molecule
containg at most one atom from SOo A stable polymer is
called "rigid" if each molecule contains exactly one atom

firom S _ .
" Sy

Addington showed that a representation of ¢ which de-
fines a family of Abelian varieties is eéuivalent to a
polymer representation for some stable ﬁblymer, Conversealy,
- for any stable polymer, some multiple (either 1, 2 or 4) of

the corresponding representation will define a family of

Ahelian varieties. 7This means that there exist & non-

degenerate symplectic form A on the representation space F
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for which p(e) « Sp(F,A), a lattice A © F with A(A, A) C%
- _

. . ' o
a discontinuous subgroup ' ¢ G such that f\(@ is compact

and p(T)A < A, and a p-equivariant holomorphic wap
X0 » _
p X E‘ﬁ - @ so that the octuple (GoX Do, 0,08, p,w)

defines a group theoretic family of Abelian varieties
r
v a-é .

Using Addington's characterization of the representa-

©
. _ o . s -
tion defining Vv é'é . We can obtain an explicit formula for

vV, L) .

Consider first the case of ¢ = ro = 1+ G = 8SL(2,R),

g = 8U(2), K=T = 50(2). p : SL(Z,R) -~ ST{2,C} is the in-
. . e . 1 ' e
clusion, with weights % 1 € H (T,%) = %, and plK ~ o @5

' ¥
where ¢ : S0(2) = U(1l) is the natural isomorphism, EG ie

Vv
therefore the universal bundle over G/K = mPle and

Y
Cl(EU) =~ %en where e is the fuler class.

For the general case, let ﬁj he the composition

S K, = 80(2) —» U(L) and let éj be the Buler class of the
Y v 1 \
- component Xj 5 Gj/K' = e X,
3

Suppose Y = {jfaen,k} < 8 is a molecule with [Y| atoms

an F = i1, £ = @ugs@): 5 i
and ¥ N o {3}. Then Py Dj P gj & pYMjg with

¥Y¥-9=Y¥Y NS Therefore

1°




ui

Ke {0, @0,) &
oy 1K (0, @F) ® o

50 GY =, @ pY .+ and so the associated homogeneous bundle
3 =
Y v Vo Voo, . . .
is B =1, & EY 3¢ where Ej isg the line bundie given by @j
J = .
g . lel-1 .
and B is the rank 2 vector bundle given by p

Y"*"} Y"'j “

Ag remarked at the end of the last section, a representation

that is trivial on the noncompact part of G produces a trivial

Y v
bundle on X, Therefore, E

-

is trivial, This implies

Y-
5 T -1 bvl-1 .
v v ozl 1,2 fxl-2
C(r = C(R ) m (1l -"e.) = ] -2 €
() = c(E, (1-5e, 5
since e? = 0, The Todd class of EY is therefore
Y 1. Y lv -2
td {# = ) o =C (B = 1 —- 2 °
{ Y) 5 l( Y) ej

. . v, ..
I£ Y is a molecule with Y N 8. = ¢, then EY ig trivial, so

V .
td(hY) = la

#
Let P o= {Ylp.se,Y$} be a stable polymer and let %p - %
be the bundle associated to p . Then
P
td(EP) = ] td(Ey) = [[{1-2 e )
k=l . Tk 0

where {RO} = Yk N SO if Yk f &0 # ¢, and eko = O Aif

~

v. N SO = ¢, This expression can be rewritten as




Lo

td(.g ) = 1 ! (:z_--~2]Y‘“3

P jGSO ¥33 Gj)
whére the second preduct is taken over all molecules ¥ in
P for which ¥ N SO = {45},

Therother components of the formula to be calculated

, : N :
are the Todd class of X and the Chexn character of the line

hundle. Since

i
o

. o o,
X)) = @ pra(X.) and ¢, (X,
3 €8 J L
o
we have

! i A4 ,
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Consider now the line bundle L - V.  We assume that I,
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splits as L = L ® I, into a vertical part determined by the

polarization A and a horizontal part which is the pullback
of a line bundle LU on U, Suppose,that LU is the locally
homogeneous bundle defined by the automorphy factor
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or, eguivalently, by the weicght (wflﬁo,g,"fr } €HT(80(2) )
' : 0
v v
A O° The corresponding bundle L = X then has

1
2

1 v ‘
C (L} = % E‘fjej and éh(L) = exp(x %‘fjej) = (1 +
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Combhining these calculations gives
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The degree 2r0 homogeneous component evaluated on X is
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Since e,[Xj] = 92, wa have
J .

L4

v

ne -5 21¥ 172
J .

Together with the calculation in Seotion 4, this.giv&a
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We now consider the vanishing theorem for a line bundle
over an Addington schemef Let {“1’°°“‘“r} c Hl(ng) ox ™

be the set of fundamental weights of ¢. The positive com-

plementary roots are G, =2 Mi' 1= lfao.grom L and %é.
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are assocliated to the weights

£, | X
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o~ f.p, and ¥ 24, respectively.
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For the molecule ¥, the representation Oy = ﬁj @ n - has |
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21 % weights, all of the form “j + V, where ¥ is a .

“compact" weight (i.e. a weight of K}. The sum of the

weights of a polymer representation is therefore
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The bundle Iﬁ & KS ® AQLEP is thus associated to
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From the argument in Section 4 it follows that I & ni ig
positive if the innerproduct of this weilght with each

positive complementary root is negative., Since

(Mj,ai) = 2 6ijp this means
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Thus the Kodaira vanishing theorem holds if the line bundile

I is chosen so that
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Note that this imples that each Ffactor of the product

in the Riemann-~Roch formuls shove will be positive
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7. Concluding Remarks

We conclude with some remarks on guestions raised by
this work.

In order to write down explicit Riemann—Roch formulas
for more general non-Satake, non-Addington type families
of Abelian varieties, the representations defining such
families need to be classified. The outlines of a gen-—
eral classification theory are visible, involving the
combinatorial "chemistry" of semisgimple algebras with-
involution.

Kodaira's theorem asserts that an embedding is giveﬁ
by a sufficiently large multiple of the positive line bundle
corresponding to the Hodge form. The line bundle considered
in Section 4 involved séparate multiples, M and N, for the
vertical and horizontal parts. From the theory of Abelian
varieties, it is known that taking M = 3 is sufficient. It
may be.possible to determine N from work of Nakai and Molshezon,

The method of this paper depends on the fact that the

line bundle splits into L = 1V ® 7%L,. Tt is likely that

U'
in general every line bundle on V admits such a splitting;

though L_ need not be locally homogeneous. This raises the

9}
problem of classifying the line bundle on V, a problem which

is also relevant to the study of algebraic cycles‘on Vo,
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