Invariant Subspaces of Shift Operators
for the Quarter Plane

A Dissertation presented

by

Om Prakash Agrawal

to

The Graduate School

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Mathematics

State University of New York

at

Stony Brook

May, 1983
We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of the dissertation.

Ronald G. Douglas, Professor of Mathematics
Dissertation Director

Joel Princus, Professor of Mathematics
Chairman of Defense

Daryl Geller, Assistant Professor of Mathematics

Ram Srivastav, Professor, Department of Applied Mathematics & Statistics
Outside member

This dissertation is accepted by the Graduate School.

Dean of the Graduate School

May 1983
Abstract of the Dissertation

Invariant Subspaces of Shift Operators for the Quarter Plane

by

Om Prakash Agrawal

Doctor of Philosophy

in

Mathematics

State University of New York at Stony Brook

1983

In this paper we decide when two shift operators on $H^2(D^2)$, the Hardy space, restricted to some invariant subspace, of finite co-dimension, are unitarily equivalent. To such pair of shift operators, there is a naturally associated hermitian holomorphic vector bundle. We use techniques of complex geometry introduced by Cowen and Douglas. Our associated hermitian holomorphic line bundle is holomorphically trivial. In finding a global holomorphic cross-section of the line bundle, we made critical use of a basis for $H^2(D^2)$, other than the usual one. Using this cross-section, the curvature of the associated line bundle was

iii
computed. We use a theorem of Cowen and Douglas to prove our result.
To my mother, Harbai. To my wife, Michele.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Dedication</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter 0: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1: Preliminaries</td>
<td>5</td>
</tr>
<tr>
<td>Chapter 2: Main Results</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>30</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude to my adviser, Professor Ronald G. Douglas, for his deep concern and help. He not only answered my foolish questions patiently but also was a constant source of encouragement and inspiration.

During the Fall of 1981, I had the opportunity of having many exciting discussions with Professor D.N. Clark of the University of Georgia, Athens. I would like to express my deepest thanks to him.

I am very thankful to my friends David Anderson, Martin Beilis, Toni Ceasar, Myrna Chao, Randolf Davis, Joe D'Mello, Paul Liebler, Lucille Meci, Gadadhar Misra, Eddie Mejias, Mamata Patnaik, Dayal Purohit, Surinder Rai, Estella Shivers, Cheryl Shain, Parris Stanley, Helen Tuzio, Alan Winick and Jean Yip for their incessant help and encouragement while I was at Stony Brook.

Lastly, I would like to express my gratitude to Professor Gokula Nand Das and Professor Swadheen Pattanayak of Utkal University and Sambalpur University, India, respectively, for arousing my interest in mathematics and the faculty members of the Department of Mathematics at Stony Brook.
I. **INTRODUCTION.**

In a beautiful paper [3], Beurling studied the invariant subspaces for the unilateral shift operator. He proved that a closed subspace M of $H^2(\mathbb{D})$, the Hardy space, is invariant for T_z, multiplication by the co-ordinate function z on the unit disc \mathbb{D} in \mathbb{C}, if and only if $M = \varphi H^2(\mathbb{D})$ where $|\varphi| = 1$ a.e. on $T = \partial \mathbb{D}$, that is, φ is an inner function. R.G. Douglas (c.f. [6]) has observed that the collection of operators obtained by restricting T_z to its non-zero invariant subspaces are all unitarily equivalent to T_z and has given a proof of Beurling's result based on his observation.

What are the invariant subspaces of $H^2(\mathbb{D}^2)$? Here invariant subspace means invariant under each T_{z_i}, multiplication by the co-ordinate function z_i on the bi-disc \mathbb{D}^2 in \mathbb{C}^2, for $i = 1, 2$. The obvious generalization of Beurling's theorem for $H^2(\mathbb{D}^2)$ fails, that is, it is known (c.f. [8]) that there is an invariant subspace which is not of the form $\varphi H^2(\mathbb{D}^2)$ for any inner function φ. An explicit description of or determining the invariant subspaces of $H^2(\mathbb{D}^2)$ is, it seems, a difficult problem. However, seeking a model for the operators T_{z_i} on $H^2(\mathbb{D}^2)$ restricted to its non-zero invariant subspaces may help to understand the nature of the invariant subspace. To be explicit, let \mathfrak{A} be a subalgebra
of \(\mathcal{L}(\mathcal{H}) \), the algebra of bounded linear operators on a Hilbert space \(\mathcal{H} \) and let \(\text{Lat}(G) \) be the lattice of invariant subspaces for \(G \). One is interested in determining \(\mathfrak{m}(\text{Lat}(G)) \), the space of equivalent representations, that is, algebra homomorphisms from \(G \) to \(G|_M \) which maps \(T \) in \(G \) to \(T|_M \), the restriction of \(T \) to \(M \), for \(M \) in \(\text{Lat}(G) \). In this generality, it is unlikely to get a usable model for \(\mathfrak{m}(\text{Lat}(G)) \). However, for natural classes of operators, it is not unreasonable to expect a good model for restriction operators. This is evidenced by Douglas' observation of Beurling's theorems in this case for \(G = G(T_z) \), the subalgebra generated by \(T_z \) in \(\mathcal{L}(H^2(\mathbb{D})) \), the space \(\mathfrak{m}(\text{Lat}(G)) \) is given by a point.

In seeking models for the operators \(T_{z_1} \), on \(H^2(\mathbb{D}^2) \), restricted to its invariant subspace, one possibility is to consider ideals \(I \) in \(\mathcal{A}[z_1, z_2] \), the algebra of polynomials in two complex variables. If \([I]\) denotes its closures in the Hardy space \(H^2(\mathbb{D}^2) \), then \([I]\) is invariant for multiplication by \(\mathcal{P}(\mathbb{D}^2) \), the algebra of polynomials in \(\mathbb{D}^2 \), then \(\mathcal{P}(\mathbb{D}^2)|_{[I]} \) is a restriction representation of \(\mathcal{P}(\mathbb{D}^2) \). In this case ideals in \(\mathcal{A}[z_1, z_2] \) provide a model for the restriction of \(\mathcal{P}(\mathbb{D}^2) \) to some invariant subspace. However, not all restriction representation of \(\mathcal{P}(\mathbb{D}^2) \) arise from ideals. This follows from the fact that invariant subspaces
arising from ideals are all finitely generated and $H^2(D^2)$ has an invariant subspace which is not finitely generated (c.f. [8]). Which invariant subspaces arise from ideals? In this direction, Abern and Clark [1] proved: If M is an invariant subspace of $H^2(D^2)$, of finite co-dimension, then there is an ideal I in $\mathbb{C}[z_1, z_2]$ such that $M = [I]$. Hence for invariant subspaces of $H^2(D^2)$, of finite co-dimension, the model for the restriction representation of $\mathbb{C}(D^2)$ is given by ideals in $\mathbb{C}[z_1, z_2]$.

It is not known when different ideals give rise to inequivalent restriction representation of $\mathbb{C}(D^2)$. However, in a few cases this is known. For example, let $0 < p_1 < p_2 < \ldots < p_r$ and $0 < q_x < q_{x-1} < \ldots < q_1$ be integers, and let A be a finite subset of D^2, and let

$$I^A_{p, q} = \{ f \in \mathbb{C}[z_1, z_2] : \frac{\partial^{1+j_0}}{\partial z_1^{1+j_0}} (\lambda) = 0 \text{ for each } \lambda \text{ in } A; \ 1 \leq p_k, j \leq q_k, 1 \leq k \leq n \}.$$

Note that $V(I^A_{p, q})$, the set of common zeros of polynomials in $I^A_{p, q}$, is equal to the set A. In the case when the set A consists of just the origin; Berger, Coburn and Lebow [2] showed that all the restriction representations are inequivalent, that is, the representation $\mathbb{C}(D^2) \rightarrow \mathbb{C}(D^2)_{[I^A_{p, q}]}$ is unitarily equivalent to the representation $\mathbb{C}(D^2)_{[I^A_{p, q}]}$ if and only if $p_x = 0$ and $q_x = 0$. In [4]
arising from ideals are all finitely generated and $H^2(\mathbb{D}^2)$ has an invariant subspace which is not finitely generated (c.f. [8]). Which invariant subspaces arise from ideals? In this direction, Ahern and Clark [1] proved: If M is an invariant subspace of $H^2(\mathbb{D}^2)$, of finite co-dimension, then there is an ideal I in $\mathbb{A}[z_1, z_2]$ such that $M = \{I\}$. Hence for invariant subspaces of $H^2(\mathbb{D}^2)$, of finite co-dimension, the model for the restriction representation of $\mathbb{P}(\mathbb{D}^2)$ is given by ideals in $\mathbb{A}[z_1, z_2]$.

It is not known when different ideals give rise to inequivalent restriction representation of $\mathbb{P}(\mathbb{D}^2)$. However, in a few cases this is known. For example, let $0 \leq p_1 < p_2 < \ldots < p_r$ and $0 \leq q_r < q_{r-1} < \ldots < q_1$ be integers, and let A be a finite subset of \mathbb{D}^2, and let

$$I^A_{p,q} = \{ f \in \mathbb{A}[z_1, z_2] : \frac{\partial^{i+j} f}{\partial z_1^i \partial z_2^j}(\lambda) = 0 \text{ for each } \lambda \text{ in } A; \quad i \leq p_k, j \leq q_k, 1 \leq k \leq n \}.$$

Note that $V(I^A_{p,q})$, the set of common zeros of polynomials in $I^A_{p,q}$, is equal to the set A. In the case when the set A consists of just the origin; Berger, Coburn and Lebow [2] showed that all the restriction representations are inequivalent, that is, the representation $\mathbb{P}(\mathbb{D}^2) \to \mathbb{P}(\mathbb{D}^2)_{I^A_{p,q}}$ is unitarily equivalent to the representation $\mathbb{P}(\mathbb{D}^2)_{I^A_{p,q}}$ if and only if $p_1 = \tilde{p}_i$ and $q_1 = \tilde{q}_i$. In [4]
Cowen and Douglas gave an alternate proof of this result based on their techniques of complex geometry. In this thesis we generalize this result to the case where the set A consists of one non-zero point. We prove that the representation $\mathcal{P}(\mathbb{D}^2) \to \mathcal{P}(\mathbb{D}^2)$ is unitarily equivalent to the representation $\mathcal{P}(\mathbb{D}^2) \to \mathcal{P}(\mathbb{D}^2)$ if and only if

$$\lambda = \beta, \quad p_i = \tilde{p}_i, \quad q_i = \tilde{q}_i \quad i = 1, \ldots, r$$

where β is in \mathbb{D}^2, that is, all restriction representation of $\mathcal{P}(\mathbb{D}^2)$ are inequivalent. Some of our results generalize to polydisc in \mathbb{D}^n. We were unable to prove that the restriction representation of $\mathcal{P}(\mathbb{D}^2)$ are inequivalent if the set A contains more than one point.
CHAPTER I.

In this section we state some of the known facts we need for our purposes. Let \(\mathcal{H} \) be a separable, infinite dimensional, complex Hilbert space. Let \(\mathcal{L}(\mathcal{H}) \) denote the Banach algebra of all bounded linear operators on \(\mathcal{H} \).

Definition 1.1: Let \(\Omega \) be an open connected set in \(\mathbb{C}^m \), and let \(T_1, \ldots, T_m \) be operators in \(\mathcal{L}(\mathcal{H}) \). Given an integer \(n \geq 1 \), we say that \(T = (T_1, \ldots, T_m) \) is in \(\mathfrak{S}_n(\Omega) \) if the following conditions are satisfied:

1. \(\{T_i\}_{i=1}^m \) are pairwise commuting.
2. ran \(D_{T-\lambda} \) is closed for \(\lambda \) in \(\Omega \) where \(D_T : \mathcal{H} \to \mathcal{H} \oplus \cdots \oplus \mathcal{H} \) defined by \(m \)-times
 \[D_T x = T_1 x \oplus \cdots \oplus T_m x. \]
3. \(\text{span}(\ker D_{T-\lambda} : \lambda \text{ is in } \Omega) \) is dense in \(\mathcal{H} \).
4. \(\dim \ker D_{T-\lambda} = n \) for all \(\lambda \) in \(\Omega \).

The class \(\mathfrak{S}_n(\Omega) \) for \(m = 1 \) was introduced and studied by Cowen and Douglas in [4] and for \(m \geq 2 \) by the same authors in a subsequent paper [5], and more recently by Curto and Salinas in [7].

Definition 1.2: Let \(\Omega \) be a complex manifold and let \(n \) be an integer \(\geq 1 \). A holomorphic vector bundle of rank \(n \) consists
of a complex manifold \(E \) with a holomorphic map \(\pi \) from \(E \) onto \(\Omega \) such that each fibre \(E_\lambda = \pi^{-1}(\lambda) \) is isomorphic to \(\mathbb{C}^n \) and such that for each \(\lambda_0 \) in \(\Omega \) there is an open set \(U \) containing \(\lambda_0 \) and holomorphic functions \(s_1, \ldots, s_n \) from \(U \) to \(E \) such that \(\{s_1(\lambda), \ldots, s_n(\lambda)\} \) forms a basis for \(E_\lambda \) for all \(\lambda \) in \(U \). A holomorphic cross-section of \(E \) is a holomorphic map \(s : \Omega \to E \) such that \(s(\lambda) \) is in \(E_\lambda \) for each \(\lambda \) in \(\Omega \). For \(T = (T_1, \ldots, T_m) \) in \(\mathfrak{s}_n(\Omega) \), let \((E_T, \pi)\) denote the subbundle of the trivial bundle \(\Omega \times \mathbb{H} \) defined by \(E_T = \{ (\lambda, x) \in \Omega \times \mathbb{H} : x \in \text{Ker } D_{T-\lambda} \}, \pi(\lambda, x) = \lambda \). That \(E_T \) is a holomorphic vector bundle of rank \(n \) follows from the following:

Lemma 1.3: Let \(\Omega \subset \mathbb{C}^m \) be an open connected set and let \(\mathbb{H}_1, \mathbb{H}_2 \) be Hilbert spaces. Let \(X : \Omega \to \mathcal{B}(\mathbb{H}_1, \mathbb{H}_2) \) be holomorphic, that is, it can be defined locally by a power series, with coefficients in \(\mathcal{B}(\mathbb{H}_1, \mathbb{H}_2) \), which converges in norm. Let \(\lambda_0 \in \Omega \) be such that \(\text{ran } X(\lambda_0) \) is closed and \(\dim \text{Ker } X(\lambda) = n \) for \(\lambda \) near \(\lambda_0 \). Then there exist holomorphic \(\mathbb{H}_1 \)-valued functions \(s_1, \ldots, s_n \) defined in some neighborhood \(\Omega_0 \) of \(\lambda_0 \) such that \(\{s_1(\lambda), \ldots, s_n(\lambda)\} \) forms a basis for \(\text{Ker } X(\lambda) \) for each \(\lambda \) in \(\Omega_0 \).

Proof: See Cowen and Douglas [5], page 16 or Curto and Salinas [7], page 8.
In order to study simultaneous unitary equivalence we need some more notions from complex geometry.

Definition 1.4: A hermitian holomorphic vector bundle E over Ω is a holomorphic vector bundle such that each fibre E_λ is an inner product space. The bundle is said to have smooth (real analytic) metric if $\lambda \rightarrow \|s(\lambda)\|^2$ is smooth (real analytic) for each holomorphic cross-section of E.

1.5: Let E be a hermitian holomorphic vector bundle over Ω. A connection on E is a first order differential operator $D : \mathcal{E}(\Omega, E) \rightarrow \mathcal{E}^1(\Omega, E)$ such that $D(f\sigma) = df \otimes \sigma + f D\sigma$ for f in $\mathcal{E}(\Omega)$ and σ in $\mathcal{E}(\Omega, E)$, where $\mathcal{E}(\Omega)$ denotes the algebra of complex valued C^∞-functions on Ω and $\mathcal{E}^p(\Omega, E)$ denotes the spaces of smooth differential p-forms with coefficients in E, that is, $\mathcal{E}^p(\Omega, E) = \mathcal{E}(\Omega, \wedge^p T^*(\Omega) \otimes E)$. Now given a connection D on a hermitian holomorphic vector bundle E over Ω, we define an operator $D : \mathcal{E}^p(\Omega, E) \rightarrow \mathcal{E}^{p+1}(\Omega, E)$ by using Leibnitz’s rule

$$D(f \otimes \sigma) = df \otimes \sigma + (-1)^p f \wedge D\sigma$$

for f in $\mathcal{E}^p(\Omega) = \mathcal{E}(\Omega, \wedge^p T^*(\Omega))$, a p-form on Ω and σ in $\mathcal{E}(\Omega, E)$. An easy calculation shows that $D^2(f\sigma) = f(D^2\sigma)$ for f in $\mathcal{E}(\Omega)$ and σ in $\mathcal{E}(\Omega, E)$.
Thus \(D^2 \) is a bundle map from \(E \) to \(\wedge^2 T^* (\Omega) \otimes E \) and we define the curvature \(K(E,D) = K \) as the \(C^\infty \)-section of
\[\text{Hom}(E, \wedge^2 T^* (\Omega) \otimes E) \] by \(K = K(E,D) = D^2 \).

For more complete treatment see Wells [9].

How is simultaneous unitary equivalence between two \(m \)-tuples of operators \(T = (T_1, \ldots, T_m) \) and \(\hat{T} = (\hat{T}_1, \ldots, \hat{T}_m) \) in \(\mathcal{B}_n(\Omega) \) related to the associated hermitian holomorphic vector bundle \(E_T \) and \(\hat{E}_T \)? The relation is given by the following:

Proposition 1.6: Let \(T = (T_1, \ldots, T_m) \) and \(\hat{T} = (\hat{T}_1, \ldots, \hat{T}_m) \) be in \(\mathcal{B}_n(\Omega) \). Then \(T \) and \(\hat{T} \) are simultaneously unitarily equivalent if and only if \(E_T \) and \(\hat{E}_T \) are holomorphically and isometrically equivalent, that is, there exists an isometric holomorphic bundle map from \(E_T \) onto \(\hat{E}_T \).

Proof: See Cowen and Douglas [5], page 16.

For operators in \(\mathcal{B}_1(\Omega) \), the simultaneous unitary equivalence is related to the curvature of the associated line bundles as the following proposition shows.

Proposition 1.7: Let \(T = (T_1, \ldots, T_m) \) and \(\hat{T} = (\hat{T}_1, \ldots, \hat{T}_m) \) be in \(\mathcal{B}_1(\Omega) \). Then \(T \) and \(\hat{T} \) are simultaneously unitarily equivalent if and only if the curvatures of the associated line bundles are equal.

Proof: See Cowen and Douglas [5], page 16–17.
CHAPTER II.

In this section we state and prove our main result.

2.1. Let \(D^2 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_i| < 1 \ i = 1, 2\} \) be the bi-disc in \(\mathbb{C}^2 \). We let \(H^2(D^2) \) denote the class of holomorphic functions on \(D^2 \) which satisfy the following condition:

\[
\sup_{0 < r < 1} \int_{\mathbb{T}^2} |f_r|^2 \, dm_2 < \infty \quad \text{where } \mathbb{T}^2 \text{ is the distinguished boundary}
\]

of \(D^2 \), \(dm_2 \) is the normalized Lebesgue measure on \(\mathbb{T}^2 \) and \(f_r(z) = f(rz_1, rz_2) \) for \(z = (z_1, z_2) \in \mathbb{T}^2 \).

Proposition 2.2: For \(f \) in \(H^2(D^2) \), \(f^*(z) = \lim_{r \to 1} f_r(z) \) exists a.e. on \(\mathbb{T}^2 \) and the following are true:

(a) \(f^* \) is in \(L^2(\mathbb{T}^2) \) and \(f_r \to f \) in \(L^2(\mathbb{T}^2) \)

(b) If \(f(z) = \sum_{m,n \geq 0} c_{mn} z_1^m z_2^n \) is the Taylor expansion of \(f \) in \(H^2(D^2) \) and

\[
f^*(e^{i\theta_1}, e^{i\theta_2}) = \sum_{m,n \in \mathbb{Z}^2} a_{mn} e^{im\theta_1} e^{in\theta_2}
\]

is the Fourier expansion of \(f^* \) in \(L^2(\mathbb{T}^2) \) then

\[
c_{mn} = a_{mn} \quad \text{for } m,n \geq 0 \text{ and } a_{m,n} = 0 \quad \text{otherwise}.
\]

Proof: See Rudin [8].
Definition 2.3: Let

\[H^2(\mathbb{D}^2) = \{ f \in L^2(\mathbb{D}^2) \} \]

\[: a_{m,n} = \frac{1}{(2\pi)^2} \int_{\mathbb{D}^2} \int_{\mathbb{D}^2} f(e^{i\theta_1}, e^{i\theta_2}) e^{-im\theta_1 - in\theta_2} \, dm \]

\[= 0 \text{ for } m < 0 \text{ or } n < 0. \]

Note that \(H^2(\mathbb{D}^2) \) is a closed subspace of \(L^2(\mathbb{D}^2) \) and hence a Hilbert space.

Proposition 2.4: The map from \(H^2(\mathbb{D}^2) \rightarrow H^2(\mathbb{D}^2) \) given by \(f \rightarrow f^* \) is an isometrical onto isomorphism.

Proof: See Rudin [8].

Under this identification we treat \(H^2(\mathbb{D}^2) \) as a closed subspace of \(L^2(\mathbb{D}^2) \). For more detailed study of these concepts see Rudin [8].

Let \(0 \leq p_1 < p_2 < \ldots < p_r \) and \(0 \leq q_r < q_{r-1} < \ldots < q_1 \) be integers and let \(\lambda = (\lambda_1, \lambda_2) \) be a point in \(\mathbb{D}^2 \).

Definition 2.5: We denote \(m_{\lambda}^{(p,q)} = \{ f \in H^2(\mathbb{D}^2) : \frac{\partial^{p+q} f}{\partial z_1^{p} \partial z_2^{q}}(\lambda) = 0 \} \]

for \(1 \leq p_k, j \leq q_k \)

all \(k, 1 \leq k \leq r \)

Observe that \(m_{\lambda}^{(p,q)} \) is a closed subspace of \(H^2(\mathbb{D}^2) \).
Definition 2.6: We define S_i on $m^\lambda_{p,q}$ by

$$S_i f = P \left(\overline{z}_i f \right), \quad i = 1,2$$

for f in $m^\lambda_{p,q}$, where $P(p,q)$ is the orthogonal projection on $H^2(D^2)$ onto $m^\lambda_{p,q}$ and z_1, z_2 are independent variables.

Note that S_1 and S_2 are bounded linear operators on $m^\lambda_{p,q}$ and depend not only on the point λ but also on p's and q's.

2.7: Let \mathcal{H} be a functional Hilbert space, that is, \mathcal{H} is Hilbert space of complex valued functions on a non-empty set X such that the evaluation map $f \to f(y)$ is a bounded linear functional for each y in X. Consequently, by the Riesz Representation Theorem, there exists, for each y in X, an element K_y in \mathcal{H} such that $f(y) = \langle f, K_y \rangle$, where $\langle \rangle$ denotes the inner product in \mathcal{H}. The function K on $X \times X$ defined by $K(x,y) = K_y(x)$ is called the kernel function for \mathcal{H}.

Observe that $H^2(D^2)$ is a functional Hilbert space. Its kernel function is given by $K_w(z) = \frac{1}{(1 - \overline{w}_1 z_1)(1 - \overline{w}_2 z_2)}$ for each $w \in D^2$. $P_{m^\lambda_{p,q}}K_w$ is the kernel function for $m^\lambda_{p,q}$ as can be seen quite easily.

In order to study the pair (S_1, S_2), we require a basis for $H^2(D^2)$ other than the usual one.
Proposition 2.8: For \(\lambda \) in \(\mathbb{D} \), the unit disc in \(\mathbb{C} \), the functions defined by \(e_m(z) = \frac{\sqrt{1-|\lambda|^2}(z-\lambda)^m}{(1-\lambda z)^{m+1}} \) form a complete orthonormal basis for \(H^2(\mathbb{D}) \).

Proof: Suppose \(m > n \). Then

\[
\langle e_m, e_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} \left(e^{i\theta} - \frac{\lambda}{1-\lambda e^{i\theta}} \right)^m \left(e^{i\theta} - \frac{\lambda}{1-\lambda e^{i\theta}} \right)^n \frac{1-|\lambda|^2}{1-\lambda e^{i\theta}} \frac{1}{1-\lambda e^{-i\theta}} \, d\theta
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} \left(e^{i\theta} - \frac{\lambda}{1-\lambda e^{i\theta}} \right)^{m-n} \frac{1}{1-\lambda e^{i\theta}} \, d\theta
\]

\[
= \langle f, K_\lambda \rangle = f(\lambda) = 0
\]

where

\[
f(z) = \frac{(z-\lambda)^{m-n}(1-|\lambda|^2)}{1-\lambda z} \text{ is in } H^2(\mathbb{D}).
\]

This shows that \(\{e_m\} \) is an orthogonal family. Now

\[
\|e_m\|^2 = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{1-\lambda e^{i\theta}} \left| \frac{e^{i\theta} - \lambda}{1-\lambda e^{i\theta}} \right|^2 \, d\theta = 1 \text{ since } \left| \frac{e^{i\theta} - \lambda}{1-\lambda e^{i\theta}} \right| = 1
\]

and \(\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{1-\lambda e^{i\theta}} \, d\theta = \frac{1}{1-|\lambda|^2} \) where \(K_\lambda \) is the kernel function for \(H^2(\mathbb{D}) \) defined by \(K_\lambda(z) = \frac{1}{1-\lambda z} \). This shows that \(\{e_m\} \) is an orthonormal family. It remains to show that this family is complete, that is, if \(\langle f, e_m \rangle = 0 \) for all \(m \geq 0 \) then \(f = 0 \). To show this we prove that such an \(f \) has a zero of infinite order at \(\lambda \); and since \(f \) is holo-
morphic on the open connected set \mathbb{D}, f is identically equal to zero. Now we claim that if $\langle f, e_j \rangle = 0$ for $j = 0, 1, \ldots, n$ then f has a zero, of order at least $n+1$, at λ. We use induction. This is obviously true for $n = 0$ since $\langle f, e_0 \rangle = 0$, then $0 = \langle f, e_0 \rangle = \sqrt{1-|\lambda|^2} f(\lambda)$ and hence f has a zero, of order ≥ 1, at λ. Assume $\langle f, e_j \rangle = 0$ for $j = 0, \ldots, n$, then f has a zero, of order $\geq n+1$, at λ. Suppose $\langle f, e_j \rangle = 0$ for $j = 0, 1, \ldots, n+1$.

Then

$$0 = \langle f, e_j \rangle = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z) (1-\bar{\lambda}z)^j}{(1-\lambda z)^{j+1}} \frac{d\theta}{(\bar{\lambda} - \lambda z)^j},$$

for $j = 0, 1, \ldots, n+1$.

$$= \frac{(1-|\lambda|^2)}{2\pi i} \int_{\gamma} \frac{f(z) (1-\bar{\lambda}z)^j}{(1-\lambda z)^{j+1}} \frac{dz}{(\bar{\lambda} - \lambda z)^j} = \frac{(1-|\lambda|^2)}{j!} g(j)(\lambda)$$

by the Cauchy integral formula,

for $j = 0, 1, \ldots, n+1$, where

$$g(z) = f(z) (1-\bar{\lambda}z)^j$$

$$= \frac{(1-|\lambda|^2)}{j!} \sum_{k=0}^{j} \binom{j}{k} f(k)(\lambda) h(j-k)(\lambda)$$

by Leibnitz's rule, where

$$h_j(z) = (1-\bar{\lambda}z)^j$$ for $j = 0, 1, \ldots, n+1$.

But by the induction hypothesis, f has a zero, of order $\geq n+1$, at λ, that is, $f^{(k)}(\lambda) = 0$ for $k = 0, 1, \ldots, n$.
morphic on the open connected set \mathbb{D}, f is identically equal to zero. Now we claim that if $\langle f,e_j \rangle = 0$ for $j = 0,1,...,n$ then f has a zero, of order at least $n+1$, at λ. We use induction. This is obviously true for $n = 0$ since $\langle f,e_0 \rangle = 0$, then $0 = \langle f,e_0 \rangle = \sqrt{1-|\lambda|^2} f(\lambda)$ and hence f has a zero, of order ≥ 1, at λ. Assume $\langle f,e_j \rangle = 0$ for $j = 0,...,n$, then f has a zero, of order $\geq n+1$, at λ. Suppose $\langle f,e_j \rangle = 0$ for $j = 0,1,...,n+1$.

Then

$$0 = \langle f,e_j \rangle = \frac{1}{2\pi i} \int_0^{2\pi} T(e^{i\theta})(\frac{e^{i\theta}-\lambda}{1-\lambda e^{i\theta}})^j \frac{1}{1-\lambda e^{i\theta}} \, d\theta$$

$$j = 0,1,...,n+1$$

$$= \frac{(1-|\lambda|^2)^j}{2\pi i} \int T' \frac{f(z)(1-\overline{z})^j}{(z-\lambda)^{j+1}} \, dz = \sqrt{1-|\lambda|^2} g(j)(\lambda)$$

by the Cauchy integral formula, for $j = 0,1,...,n+1$, where

$$g(z) = f(z)(1-\overline{z})^j$$

$$= \sqrt{1-|\lambda|^2} \sum_{k=0}^j \binom{j}{k} f(k)(\lambda) h_{j-k}(\lambda)$$

by Leibnitz's rule, where

$$h_j(z) = (1-\overline{z})^j$$

for $j = 0,1,...,n+1$.

But by the induction hypothesis, f has a zero, of order $\geq n+1$, at λ, that is, $f^{(k)}(\lambda) = 0$ for $k = 0,1,...,n$.
Hence \[0 = \langle f, e_{n+1} \rangle = \frac{\sqrt{1-|\lambda|^2}}{(n+1)!} \sum_{k=0}^{n+1} f^{(k)}(\lambda) h^{(n+1-k)}(\lambda) \]

\[= \frac{\sqrt{1-|\lambda|^2}}{(n+1)!} f^{(n+1)}(\lambda) h_{n+1}(\lambda) \]

which implies \(f^{(n+1)}(\lambda) = 0 \)

since \(h_{n+1}(\lambda) = (1-|\lambda|^2)^{n+1} \neq 0 \), proving what was required.

Corollary 2.9: For \(\lambda = (\lambda_1, \lambda_2) \) in \(\mathbb{D}^2 \), the family \(\{e_{mn}\}_{m,n \geq 0} \) is a basis for \(H^2(\mathbb{D}^2) \) where

\[e_{mn}(z) = \frac{\sqrt{1-|\lambda_1|^2}(1-|\lambda_2|^2)}{\lambda_1^m \lambda_2^n (1-\lambda_1 \overline{z}_1 z_1)^{m+1} (1-\lambda_2 \overline{z}_2 z_2)^{n+1}} \lambda_1^m \lambda_2^n (z_1 - \lambda_1)^m (z_2 - \lambda_2)^n \]

Proof: Proposition 2.8. shows that the family \(\{e_m\} \) where

\[e_m(z) = \frac{\sqrt{1-|\lambda_1|^2}(z-\lambda_1)^m}{(1-\lambda_1 z)^{m+1}} \]

is a basis for \(H^2(\mathbb{D}) \) and hence \(\{f_m\} \) is also a basis for \(H^2(\mathbb{D}) \) where

\[f_m(z) = \frac{\lambda_1^m (z-\lambda_1)^m}{\lambda_1^m (1-\lambda_1 z)^{m+1}} = \frac{\lambda_1^m}{\lambda_1} e_m(z) \]

It follows that \(e_{mn}(z) = f_m(z_1) f_n(z_2) \) is a basis for \(H^2(\mathbb{D}^2) \).

Corollary 2.10: \(\{e_{mn}\}_{m \geq p_k+1, 0 \leq n \leq q_k+1} \) for all \(k, l \leq k \leq r \) is an orthonormal basis for \(\mathbb{H}_\lambda^{(p_k, q_k)} \) and \(\{e_{mn}\}_{m \leq p_k, n \leq q_k} \) for all \(k, l \leq k \leq r \) is an orthonormal basis for \(\mathbb{H}_\lambda^{(p_k, q_k)} \).
orthonormal basis for $m_{\lambda}(p,q)$ and $\dim m_{\lambda}(p,q)$

$$
= \sum_{k=1}^{r} (q_k + 1)(p_k - p_{k-1}) \quad \text{where} \quad p_0 = -1.
$$

Proof: This follows from the definition of $m_{\lambda}(p,q)$ and corollary 2.9.

Proposition 2.11: The pair (S_1, S_2) is in $\mathcal{A}_1(\mathbb{D}^2 \setminus \{\lambda\})$.

Proof: The map $\eta(z) = \left(\frac{z_1 - \lambda_1}{1 - \overline{\lambda}_1 z_1}, \frac{z_2 - \lambda_2}{1 - \overline{\lambda}_2 z_2}\right)$ is a biholomorphic map from \mathbb{D}^2 onto itself. This map η induces a unitary operator $U : m_0^{(p,q)} \to m_{\lambda}^{(p,q)}$ defined by

$$
(U\eta)(z) = \frac{1}{\overline{\eta}(z)} \eta(\overline{\eta}(z)) \quad \text{where}
$$

$$
\eta'(z) = \det\left(\frac{\partial \tau_i}{\partial z_j}\right)_{i, j = 1, 2} \quad \tau_i(z) = \frac{z_i - \lambda_i}{1 - \overline{\lambda}_i z_i} \quad i = 1, 2.
$$

We get the following commutative diagram:

$$
\begin{array}{ccc}
m_0^{(p,q)} & \xrightarrow{D_S} & m_0^{(p,q)} \oplus m_0^{(p,q)} \\
U & & U \oplus U \downarrow \\
m_{\lambda}^{(p,q)} & \xrightarrow{D_S} & m_{\lambda}^{(p,q)} \oplus m_{\lambda}^{(p,q)} \\
\end{array}
$$

where $D_S f = S_1 f \oplus S_2 f$ acting on $m_0^{(p,q)}$ and $D_S f = S_1 f \oplus S_2 f$ acting on $m_{\lambda}^{(p,q)}$. Hence D_S acting on $m_{\lambda}^{(p,q)}$ is unitarily.
equivalent to D_S acting on $m_0^{(p,q)}$. But the pair (S_1, S_2) acting on $m_0^{(p,q)}$ is in $\mathfrak{A}(\mathbb{D}^2(\{0\}))$ (see Cowen and Douglas [5] page 20). Hence the pair (S_1, S_2) acting on $m_0^{(p,q)}$ is in $\mathfrak{A}(\mathbb{D}^2(\{\lambda\}))$.

Proposition 2.12: Let $\Omega_0 \subset \Omega \subset \mathbb{D}^m$, Ω_0 connected bounded, then $\mathfrak{A}(\Omega) \subset \mathfrak{A}(\Omega_0)$.

Proof: See Cowen and Douglas [4], page 193.

We want to calculate the curvature of the associated line bundle E_S, for $S = (S_1, S_2)$ in $\mathfrak{A}(\mathbb{D}^2(\{\lambda\}))$.

Proposition 2.13: $K_S(w)$, the curvature of the associated bundle E_S, for $S = (S_1, S_2)$ in $\mathfrak{A}(\mathbb{D}^2(\{\lambda\}))$, is given by

$$K_S(w) = \overline{\partial} \partial \log \|K_w\|^2 + \overline{\partial} \partial \log F_{p,q,\lambda}(w)$$

where

$$F_{p,q,\lambda}(w) = \sum_{k=1}^{r+1} \left[\frac{w_1 - \lambda_1}{1-\lambda_1 w_1} \right]^{2p_{k-1}+2} \left[\frac{w_2 - \lambda_2}{1-\lambda_2 w_2} \right]^{2q_{k}+2}$$

and $q_{r+1} = -1$

Proof: A holomorphic cross-section for the line bundle E_S is given by $P_{m_\lambda^{(p,q)}} K_w$. Hence the curvature for the
bundle \(E_S \) is given by \(K_S(w) = -\delta \log \| P_{m}^{(p,q)} K_w \|^2 \)

\[\frac{\delta}{\delta \lambda} \log \| P_{m}^{(p,q)} K_w \|^2 \]. We want to compute the norm \(\| P_{m}^{(p,q)} K_w \|^2 \). Now by Corollary 2.10 a basis for \(m^{(p,q)} \)

is given by \(\{ e_{ij} \} i \leq p_k, j \leq q_k, 1 \leq k \leq r \) where \(e_{ij} \) is as in Corollary 2.9.

Hence \(\| P_{m}^{(p,q)} K_w \|^2 \)

\[= \Sigma_{k=1}^{r} \Sigma_{i=p_{k-1}+1}^{p_k} \Sigma_{j=0}^{q_k} \left(\langle P_{m}^{(p,q)} K_w, e_{ij} \rangle \right)^2 \]

\[= \Sigma_{k=1}^{r} \Sigma_{i=p_{k-1}+1}^{p_k} \Sigma_{j=0}^{q_k} |e_{ij}(w)|^2 \text{ since } K_w \]

is the kernel function and \(e_{ij} \) are in \(m^{(p,q)} \).

\[= \Sigma_{k=1}^{r} \Sigma_{i=p_{k-1}+1}^{p_k} \Sigma_{j=0}^{q_k} \frac{1}{\| K_w \|^2} \left(\frac{1}{1 - \lambda_1 w_1} \right)^{2i} \left(\frac{1}{1 - \lambda_2 w_2} \right)^{2j} \frac{1}{|1 - \lambda_1 w_1|^2 |1 - \lambda_2 w_2|^2} \]

\[= \frac{1}{\| K_w \|^2} \left(\frac{1}{1 - \lambda_1 w_1} \right)^{2p_{k-1}} \left(\frac{1}{1 - \lambda_2 w_2} \right)^{2p_k} \]

\[\times \left(\frac{1}{1 - \lambda_1 w_1} \right)^{2q_{k+2}} \]

\[\times \left(\frac{1}{1 - \lambda_2 w_2} \right)^{2q_{k+2}} \]
bundle E_S is given by $K_S(w) = -\partial \log \| P_{\mu_\lambda}(p,q) K_w \|^2$

$= \partial \log \| P_{\mu_\lambda}(p,q) K_w \|^2$. We want to compute the norm

$\| P_{\mu_\lambda}(p,q) K_w \|^2$. Now by Corollary 2.10 a basis for $\mathbb{m}_\lambda(p,q)$

is given by $\{ e_{ij} \} i \leq p_k, j \leq q_k, 1 \leq k \leq r$ where e_{ij} is

as in Corollary 2.9.

Hence

$\| P_{\mu_\lambda}(p,q)^T K_w \|^2 = \sum_{k=1}^{r} \sum_{i=p_{k-1}+1}^{p_k} \sum_{j=0}^{q_k} \langle P_{\mu_\lambda}(p,q)^T K_w, e_{ij} \rangle^2$

$= \sum_{k=1}^{r} \sum_{i=p_{k-1}+1}^{p_k} \sum_{j=0}^{q_k} \| e_{ij}(w) \|^2$ since K_w

is the kernel function and e_{ij} are in $\mathbb{m}_\lambda(p,q)$.

$= \sum_{k=1}^{r} \sum_{i=p_{k-1}+1}^{p_k} \sum_{j=0}^{q_k} \frac{1}{\| K_\lambda \|^2} \frac{1}{1-\lambda_1 w_1} \frac{1}{1-\lambda_2 w_2} \frac{2i}{|1-\lambda_1 w_1|^2} \frac{2j}{|1-\lambda_2 w_2|^2}$

$= \frac{1}{\| K_\lambda \|^2} \sum_{k=1}^{r} \sum_{i=p_{k-1}+1}^{p_k} \sum_{j=0}^{q_k} \left(\frac{w_1-\lambda_1}{1-\lambda_1 w_1} \right)^{2p_{k-1}+2} \left(\frac{w_1-\lambda_1}{1-\lambda_1 w_1} \right)^{2p_k+2} \left(\frac{w_2-\lambda_2}{1-\lambda_2 w_2} \right)^{2q_k+2}$

$\times \left(\frac{1}{1-\lambda_2 w_2} \right)^{2q_k+2}$
by summing the geometric sequence

\[
\sum_{k=1}^{\infty} \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{1}w_{1}} \right)^{2p_{k-1}+2} - \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2p_{k}+2} \right) \left(1 - \frac{w_{2-k+1}^{-\lambda_{2}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2q_{k}+2}
\]

\[
= \frac{\sum_{k=1}^{\infty} \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{1}w_{1}} \right)^{2p_{k-1}+2} - \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2p_{k}+2}}{\| K_{\lambda} \|^{2} \left| 1-\bar{\lambda}_{1}w_{1} \right|^{2} \left| 1-\bar{\lambda}_{2}w_{2} \right|^{2} \left(1 - \frac{w_{2-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2} \left(1 - \frac{w_{2-k+1}^{-\lambda_{2}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2}}
\]

\[
= \frac{\sum_{k=1}^{\infty} \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{1}w_{1}} \right)^{2p_{k-1}+2} - \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2p_{k}+2}}{\| K_{\lambda} \|^{2} \left(\left| 1-\bar{\lambda}_{1}w_{1} \right|^{2} - \left| w_{1-k+1}^{-\lambda_{1}} \right|^{2} \right) \left(\left| 1-\bar{\lambda}_{2}w_{2} \right|^{2} - \left| w_{2-k+1}^{-\lambda_{2}} \right|^{2} \right)}
\]

Simplifying both the numerator and the denominator we get

\[
1 - \sum_{k=1}^{\infty} \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{1}w_{1}} \right)^{2p_{k-1}+2} - \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2p_{k}+2} + \sum_{k=1}^{\infty} \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2q_{k}+2} \left(\frac{w_{2-k+1}^{-\lambda_{2}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2p_{k}+2}
\]

\[
= \frac{1 - \sum_{k=1}^{\infty} \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{1}w_{1}} \right)^{2p_{k-1}+2} - \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2p_{k}+2} + \sum_{k=1}^{\infty} \left(\frac{w_{1-k+1}^{-\lambda_{1}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2q_{k}+2} \left(\frac{w_{2-k+1}^{-\lambda_{2}}}{1-\bar{\lambda}_{2}w_{2}} \right)^{2p_{k}+2}}{(1-|w_{1}|^{2})(1-|w_{2}|^{2})}
\]

\([q_{r+1} = -1]\)
by summing the geometric sequence

\[
\sum_{k=1}^{r} \left(\frac{\lambda_{1} - \lambda_{k}}{1 - \lambda_{1} w_{1}} \right)^{2p_{k-1} + 2} \left(\frac{\lambda_{1} - \lambda_{k}}{1 - \lambda_{1} w_{1}} \right)^{2p_{k}} (1 - \frac{\lambda_{2} - \lambda_{k}}{1 - \lambda_{2} w_{2}})^{2} \right) \left(1 - \frac{\lambda_{2} - \lambda_{k}}{1 - \lambda_{2} w_{2}} \right)^{2} \left(1 - \frac{\lambda_{2} - \lambda_{k}}{1 - \lambda_{2} w_{2}} \right)^{2} \left(1 - \frac{\lambda_{2} - \lambda_{k}}{1 - \lambda_{2} w_{2}} \right)^{2} \right) \right) \right) \left(1 - \frac{\lambda_{2} - \lambda_{k}}{1 - \lambda_{2} w_{2}} \right)^{2} \left(1 - \frac{\lambda_{2} - \lambda_{k}}{1 - \lambda_{2} w_{2}} \right)^{2} \right) \r...
\[= \|K_w\|^{2}(1-F_{P, q, \lambda}(w)) \]

where
\[F_{P, q, \lambda}(w) = \sum_{k=1}^{r+1} \frac{|w_1 - \lambda_1|}{1 - \lambda_1 w_1} + \frac{|w_2 - \lambda_2|}{1 - \lambda_2 w_2} \]

and \[q_{r+1} = -1. \]

Now
\[\|P_{m_\lambda}(p, q)K_w\|^{2} = \|K_w\|^{2} - \|P_{m_\lambda}(p, q) - K_w\|^{2} \]

\[= \|K_w\|^{2} - \|K_w\|^{2}(1-F_{P, q, \lambda}(w)) = \|K_w\|^{2}F_{P, q, \lambda}(w) \]

which implies, after taking logarithms of both sides
\[\log\|P_{m_\lambda}(p, q)K_w\|^{2} = \log\|K_w\|^{2} + \log F_{P, q, \lambda}(w) \]

Hence
\[K_{\theta}(w) = \frac{\theta}{\theta} \log\|K_w\|^{2} + \frac{\theta}{\theta} \log F_{P, q, \lambda}(w). \]

2.14: Let \(S(p, q, \lambda) = (S_1, S_2) \) and \(S(p, q, \beta) = (\bar{S}_1, \bar{S}_2) \) be two pairs of operators on \(m_\lambda(p, q) \) and \(m_\beta(\bar{p}, \bar{q}) \), respectively for \(\lambda \neq \beta \) in \(\mathbb{D}^{2} \) and let \(0 < \bar{\delta}_1 < \ldots < \bar{\delta}_n, 0 < \bar{\gamma}_1 < \bar{\gamma}_2 < \ldots < \bar{\gamma}_1 \) be integers. Then by Proposition 2.11 \(S(p, q, \lambda) \) is in \(S_{1}(\mathbb{D}^{2} \setminus \{\lambda\}) \) and \(S(p, q, \beta) \) is in \(S_{1}(\mathbb{D}^{2} \setminus \{\beta\}) \). By Proposition 2.12 we obtain \(S(p, q, \lambda) \) and \(S(p, q, \beta) \) both are in \(S_{1}(\mathbb{D}^{2} \setminus \{\lambda, \beta\}) \). Now we
\[\|K_w\|^2 (1 - F_{p, q, \lambda}(w)) \]

where
\[
F_{p, q, \lambda}(w) = \sum_{k=1}^{r+1} \left| \frac{w_1 - \lambda_1}{1 - \lambda_1 w_1} \right|^{2p_{k-1} + 2} \left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k + 2}
\]

\[
- \sum_{k=1}^{r+1} \left| \frac{w_1 - \lambda_1}{1 - \lambda_1 w_1} \right|^{2p_k + 2} \left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k + 2}
\]

and \(q_{r+1} = -1 \).

Now
\[
\|P_{m(\lambda)}(p, q)K_w\|^2 = \|K_w\|^2 - \|P_{m(\lambda)}K_w\|^2
\]

\[
= \|K_w\|^2 - \|K_w\|^2 (1 - F_{p, q, \lambda}(w)) = \|K_w\|^2 F_{p, q, \lambda}(w)
\]

which implies, after taking logarithms of both sides

\[
\log \|P_{m(\lambda)}(p, q)K_w\|^2 = \log \|K_w\|^2 + \log F_{p, q, \lambda}(w)
\]

Hence
\[
K_\beta(w) = \overline{\partial} \log \|K_w\|^2 + \overline{\partial} \log F_{p, q, \lambda}(w).
\]

2.14: Let \(S_{\lambda}(p, q, \lambda) = (S_1, S_2) \) and \(S_{\beta}(\tilde{p}, \tilde{q}, \beta) = (\tilde{S}_1, \tilde{S}_2) \) be two pairs of operators on \(m_{\lambda}(p, q) \) and \(m_{\beta}(\tilde{p}, \tilde{q}) \), respectively for \(\lambda + \beta \in \mathbb{D}^2 \) and let \(0 \leq \tilde{p}_1 < \ldots < \tilde{p}_s \), \(0 \leq \tilde{q}_s < \tilde{q}_{s-1} < \ldots < \tilde{q}_1 \) be integers.

Then by Proposition 2.11 \(S_{\lambda}(p, q, \lambda) \) is in \(\mathfrak{A}_1(\mathbb{D}^2 \setminus \{\lambda\}) \) and \(S_{\beta}(\tilde{p}, \tilde{q}, \beta) \) is in \(\mathfrak{A}_1(\mathbb{D}^2 \setminus \{\beta\}) \). By Proposition 2.12 we obtain \(S_{\lambda}(p, q, \lambda) \) and \(S_{\beta}(\tilde{p}, \tilde{q}, \beta) \) both are in \(\mathfrak{A}_1(\mathbb{D}^2 \setminus \{\lambda, \beta\}) \). Now we
state and prove our main result:

Theorem 2.15: Let \((p, q)\) and \((\tilde{p}, \tilde{q})\) and \(\lambda, \beta\) be as before. If the pair \(S(p, q, \lambda) = (S_1, S_2)\) is simultaneously unitarily equivalent to the pair \(S(\tilde{p}, \tilde{q}, \beta) = (S_1, S_2)\), then \(\lambda = \beta\).

Proof: By the discussion preceding the theorem we see that both \(S(p, q, \lambda)\) and \(S(\tilde{p}, \tilde{q}, \beta)\) are in \(\mathcal{B}(\mathbb{D}^2\setminus\{\lambda, \beta\})\) and by Proposition 1.7 the curvatures of the associated line bundles are the same. But by Proposition 2.13 \(K_{S(p, q, \lambda)}(w)\), the curvature, is given by \(K_{S(p, q, \lambda)}(w) = \bar{\partial} \bar{\partial} \log \|K_w\|^2 + \bar{\partial} \bar{\partial} \log F_{p, q, \lambda}(w)\) and the corresponding curvature for \(S(\tilde{p}, \tilde{q}, \beta)\) has a similar expression. Now the equality of \(K_{S(p, q, \lambda)}(w)\) with \(K_{S(\tilde{p}, \tilde{q}, \beta)}(w)\) on \(\mathbb{D}^2\setminus\{\lambda, \beta\}\) implies \(\bar{\partial} \bar{\partial} \log F_{p, q, \lambda}(w) = \bar{\partial} \bar{\partial} \log F_{\tilde{p}, \tilde{q}, \beta}(w)\) on \(\mathbb{D}^2\setminus\{\lambda, \beta\}\) and hence equality holds on \(\mathbb{T}^2\) since \(F_{p, q, \lambda}\) and \(F_{\tilde{p}, \tilde{q}, \beta}\) are both real analytic in a neighborhood of \(\text{CL} \mathbb{D}^2\setminus\{\lambda, \beta\}\). Now

\[
\bar{\partial} \bar{\partial} \log F_{p, q, \lambda}(w) = \sum_{i, j=1}^{2} \frac{\partial^2 \log F_{p, q, \lambda}(w)}{\partial \bar{w}_i \partial w_j} \, d\bar{w}_i \wedge dw_j
\]

and hence we have

\[
\frac{\partial^2 \log F_{p, q, \lambda}(w)}{\partial \bar{w}_i \partial w_j} = \frac{\partial^2 \log F_{\tilde{p}, \tilde{q}, \beta}}{\partial \bar{w}_i \partial w_j} \quad \text{on } \mathbb{T}^2.
\]

Recall that
\[f_{p,q,\lambda}(w) = \sum_{k=1}^{r+1} \frac{w_1-\lambda_1}{1-\lambda_1 w_1} \cdot \frac{2p_{k-1}+2}{w_2-\lambda_2} \cdot \frac{2q_k+2}{1-\lambda_2 w_2} - \sum_{k=1}^{r} \frac{w_1-\lambda_1}{1-\lambda_1 w_1} \cdot \frac{2p_k+2}{w_2-\lambda_2} \cdot \frac{2q_k+2}{1-\lambda_2 w_2} \]

Rewriting, we get

\[f_{p,q,\lambda}(w) = \frac{w_2-\lambda_2}{1-\lambda_2 w_2} \cdot \frac{2q_k+2}{\sum_{k=1}^{r} \frac{w_1-\lambda_1}{1-\lambda_1 w_1} \cdot \frac{2p_k+2}{w_2-\lambda_2} \cdot \frac{2q_k+2}{1-\lambda_2 w_2}} - \frac{w_2-\lambda_2}{1-\lambda_2 w_2} \cdot \frac{2q_k+2}{\sum_{k=1}^{r} \frac{w_1-\lambda_1}{1-\lambda_1 w_1} \cdot \frac{2p_k+2}{w_2-\lambda_2} \cdot \frac{2q_k+2}{1-\lambda_2 w_2}} \]

Differentiating \(f_{p,q,\lambda} \) with respect to \(\overline{w}_1 \), we get

\[\frac{\partial f_{p,q,\lambda}}{\partial \overline{w}_1} = \sum_{k=1}^{r} \frac{\partial}{\partial \overline{w}_1} \left(\frac{w_1-\lambda_1}{1-\lambda_1 w_1} \cdot \frac{2p_k+2}{w_2-\lambda_2} \cdot \frac{2q_k+2}{1-\lambda_2 w_2} \right) - \sum_{k=1}^{r} \frac{\partial}{\partial \overline{w}_1} \left(\frac{w_1-\lambda_1}{1-\lambda_1 w_1} \cdot \frac{2p_k+2}{w_2-\lambda_2} \cdot \frac{2q_k+2}{1-\lambda_2 w_2} \right) \]

\[= \frac{(1-|\lambda_1|^2)(w_1-\lambda_1)}{(1-\lambda_1 \overline{w}_1)^2(1-\lambda_1 w_1)} \sum_{k=1}^{r} \frac{w_1-\lambda_1}{1-\lambda_1 w_1} \cdot \frac{2p_k}{\overline{w}_1} \sum_{k=1}^{r+1} \frac{w_1-\lambda_1}{1-\lambda_1 w_1} \cdot \frac{2q_k+2}{w_2-\lambda_2} \cdot \frac{2q_k+2}{1-\lambda_2 w_2} \]

Differentiating, once more, \(\frac{\partial f_{p,q,\lambda}}{\partial \overline{w}_1} \) with respect to \(w_2 \)
\[F_{p,q,\lambda}(w) = \sum_{k=1}^{r+1} \left| \frac{w_1 - \lambda_1}{1 - \lambda_1 w_1} \right|^{2p_k+2} \left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k+2} \]

Rewriting we get

\[F_{p,q,\lambda}(w) = \left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k+2} + \sum_{k=1}^{r} \left| \frac{w_1 - \lambda_1}{1 - \lambda_1 w_1} \right|^{2p_k+2} \left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k+2} \left(\left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_{k+1}+2} - \left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k+2} \right) \]

Differentiating \(F_{p,q,\lambda} \) with respect to \(w_1 \), we get

\[\frac{\partial F_{p,q,\lambda}}{\partial w_1} = \sum_{k=1}^{r} \frac{\partial}{\partial w_1} \left| \frac{w_1 - \lambda_1}{1 - \lambda_1 w_1} \right|^{2p_k+2} \left(\left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k+2} - \left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k+2} \right) \]

\[= \frac{(1 - |\lambda_1|^2)(w_1 - \lambda_1)}{(1 - \lambda_1 w_1)^2} \sum_{k=1}^{r} (p_k+1) \left| \frac{w_1 - \lambda_1}{1 - \lambda_1 w_1} \right|^{2p_k} \left(\left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k+2} - \left| \frac{w_2 - \lambda_2}{1 - \lambda_2 w_2} \right|^{2q_k+2} \right) \]

Differentiating, once more, \(\frac{\partial F_{p,q,\lambda}}{\partial w_1} \) with respect to \(w_2 \)
we get

\[\frac{\partial^2 F_{p,q,\lambda}}{\partial w_2 \partial w_1} = \frac{(1-|\lambda_1|^2)(1-|\lambda_2|^2)(w_{1}-\lambda_1)(\bar{w}_2-\bar{\lambda}_2)}{(1-\lambda_1 w_1)^2(1-\lambda_2 w_2)(1-\bar{\lambda}_1 w_1)(1-\bar{\lambda}_2 w_2)^2} \]

\[\sum_{k=1}^{r} \left(\frac{\partial^2 F_{p,q,\lambda}}{\partial w_2 \partial w_1} \right)^{2p_k} \left(\frac{\partial F_{p,q,\lambda}}{\partial w_2} \right)^{2q_k+1} \]

\[\left(\frac{\partial F_{p,q,\lambda}}{\partial w_1} \right)^{2q_{k+1}} \left(\frac{\partial F_{p,q,\lambda}}{\partial w_2} \right)^{2q_k} \]

Now \(\frac{\partial F_{p,q,\lambda}}{\partial \bar{w}_1} = \frac{\partial F_{p,q,\lambda}}{\partial w_2} = 0 \) on \(\mathbb{T}^2 \)

as \(\frac{\partial F_{p,q,\lambda}}{\partial w_1} = 1 \) when \(|w_1| = 1, \quad 1 = 1,2 \)

and \(F_{p,q,\lambda} = 1 \) on \(\mathbb{T}^2 \) for the same reason.

Differentiating \(\log F_{p,q,\lambda} \) first with respect to \(\bar{w}_1 \) and then with respect to \(w_2 \) we get

\[\frac{\partial^2 \log F_{p,q,\lambda}}{\partial w_2 \partial \bar{w}_1} = \frac{1}{(F_{p,q,\lambda})^2} \left(\frac{\partial^2 F_{p,q,\lambda}}{\partial w_2 \partial \bar{w}_1} \right) \left(\frac{\partial F_{p,q,\lambda}}{\partial w_2} \right) \left(\frac{\partial F_{p,q,\lambda}}{\partial \bar{w}_1} \right) \]

\[= \frac{\partial^2 F_{p,q,\lambda}}{\partial w_2 \partial \bar{w}_1} \quad \text{on} \quad \mathbb{T}^2 \quad \text{since} \quad F_{p,q,\lambda} = 1, \]
\[
\frac{\partial^2 F_{p,q,\lambda}}{\partial \overline{w}_i \partial \overline{w}_j} = \frac{\partial^2 F_{p,q,\lambda}}{\partial \overline{w}_i \partial \overline{w}_j} = 0 \quad \text{on } \mathbb{T}^2.
\]

Since
\[
\frac{\partial^2 \log F_{p,q,\lambda}}{\partial \overline{w}_i \partial \overline{w}_j} = \frac{\partial^2 \log F_{\tilde{p},\tilde{q},\tilde{\lambda}}}{\partial \overline{w}_i \partial \overline{w}_j} \quad \text{for } i, j = 1, 2 \quad \text{on } \mathbb{T}^2
\]

we have
\[
\frac{\partial^2 F_{p,q,\lambda}}{\partial \overline{w}_1 \partial \overline{w}_i} = \frac{\partial^2 F_{\tilde{p},\tilde{q},\tilde{\lambda}}}{\partial \overline{w}_2 \partial \overline{w}_1} \quad \text{on } \mathbb{T}^2 \quad (1)
\]

But
\[
\frac{\partial^2 F_{p,q,\lambda}}{\partial \overline{w}_2 \partial \overline{w}_1} = \frac{(1-|\lambda_1|^2)(1-|\lambda_2|^2)(w_1-\lambda_1)(\overline{w}_2-\overline{\lambda}_2)}{(1-\lambda_1 \overline{w}_1)^2(1-\lambda_2 \overline{w}_2)^2(1-\overline{\lambda}_1 w_1)(1-\overline{\lambda}_2 w_2)} \sum_{k=1}^{r} (p_{k+1}(q_{k+1}+q_k)
\]

and
\[
\frac{\partial^2 F_{p,q,\lambda}}{\partial \overline{w}_2 \partial \overline{w}_1} = \frac{(1-|\beta_1|^2)(1-|\beta_2|^2)(w_1-\beta_1)(\overline{w}_2-\overline{\beta}_2)}{(1-\beta_1 \overline{w}_1)^2(1-\beta_2 \overline{w}_2)^2(1-\overline{\beta}_1 w_1)(1-\overline{\beta}_2 w_2)} \sum_{k=1}^{s} (\tilde{p}_{k+1}(\tilde{q}_{k+1}+\tilde{q}_k)
\]

on \(\mathbb{T}^2 \).

Hence from (1) and using \(|w_i| = 1\) for \(i = 1, 2 \) we get
\[
\frac{(1-|\lambda_1|^2)(1-|\lambda_2|^2)w_1 \overline{w}_2 \sum_{k=1}^{r} (p_{k+1}(q_{k+1}+q_k)}}{|1-\lambda_1 \overline{w}_1|^2 |1-\lambda_2 \overline{w}_2|^2}
\]

and
\[
\frac{(1-|\beta_1|^2)(1-|\beta_2|^2)w_1 \overline{w}_2 \sum_{k=1}^{s} (\tilde{p}_{k+1}(\tilde{q}_{k+1}+\tilde{q}_k)}}{|1-\beta_1 \overline{w}_1|^2 |1-\beta_2 \overline{w}_2|^2}
\]

on \(\mathbb{T}^2 \).
\[
\frac{\partial F_{p,q,\lambda}}{\partial w_1} = \frac{\partial F_{p,q,\lambda}}{\partial w_2} = 0 \quad \text{on } \mathbb{T}^2.
\]

Since

\[
\frac{\partial^2 \log F_{p,q,\lambda}}{\partial w_i \partial w_j} = \frac{\partial^2 \log F_{p,q,\lambda}}{\partial w_i \partial \bar{w}_j} \quad \text{for } i,j = 1,2 \quad \text{on } \mathbb{T}^2
\]

we have

\[
\frac{\partial^2 F_{p,q,\lambda}}{\partial w_2 \partial \bar{w}_1} = \frac{\partial^2 F_{p,q,\lambda}}{\partial w_2 \partial \bar{w}_1} \quad \text{on } \mathbb{T}^2 \quad (1)
\]

But

\[
\frac{\partial^2 F_{p,q,\lambda}}{\partial w_2 \partial \bar{w}_1} = \frac{(1-|\lambda_1|^2)(1-|\lambda_2|^2)(w_1-\lambda_1)(\bar{w}_2-\bar{\lambda_2})}{(1-\lambda_1 \bar{w}_1)^2(1-\bar{\lambda}_2 w_2)^2(1-\bar{\lambda}_1 w_1)(1-\lambda_2 \bar{w}_2)} \sum_{k=1}^{r} (p_{k+1})(q_{k+1}-q_k)
\]

and

\[
\frac{\partial^2 F_{p,q,\lambda}}{\partial w_2 \partial \bar{w}_1} = \frac{(1-|\beta_1|^2)(1-|\beta_2|^2)(w_1-\beta_1)(\bar{w}_2-\bar{\beta_2})}{(1-\beta_1 \bar{w}_1)^2(1-\bar{\beta}_2 w_2)^2(1-\bar{\beta}_1 w_1)(1-\beta_2 \bar{w}_2)} \sum_{k=1}^{s} (q_{k+1})(q_{k+1}-q_k)
\]

on \(\mathbb{T}^2 \).

Hence from (1) and using \(|w_i| = 1\) for \(i = 1,2\) we get

\[
\frac{(1-|\lambda_1|^2)(1-|\lambda_2|^2)w_1 \bar{w}_2 \sum_{k=1}^{r} (p_{k+1})(q_{k+1}-q_k)}{|1-\bar{\lambda}_1 w_1|^2|1-\bar{\lambda}_2 w_2|^2} \quad \text{on } \mathbb{T}^2
\]

and

\[
\frac{(1-|\beta_1|^2)(1-|\beta_2|^2)w_1 \bar{w}_2 \sum_{k=1}^{s} (q_{k+1})(q_{k+1}-q_k)}{|1-\bar{\beta}_1 w_1|^2|1-\bar{\beta}_2 w_2|^2} \quad \text{on } \mathbb{T}^2
\]
from which it follows that
\[c(1-|\lambda_1|^2)(1-|\lambda_2|^2)|1-\bar{\beta}_1 w_1|^2|1-\bar{\beta}_2 w_2|^2 = \mathcal{E}(1-|\beta_1|^2)(1-|\beta_2|^2)|1-\lambda_1 w_1|^2|1-\lambda_2 w_2|^2 \]
\[\text{on } \mathbb{T}^2 \ldots (2) \]
where
\[c = c(p, q) = \sum_{k=1}^{r} (p_{k+1})(q_{k+1}-q_k) \neq 0 \]
and \[\mathcal{E} = \mathcal{E}(\bar{p}, \bar{q}) = \sum_{k=1}^{r} (\bar{p}_{k+1})(\bar{q}_{k+1}-\bar{q}_k) \neq 0 . \]

Now
\[|1-\bar{\lambda}_1 w_1|^2|1-\bar{\lambda}_2 w_2|^2 = \left((1+|\lambda_1|^2)-\bar{\lambda}_1 w_1-\lambda_1 \bar{w}_1 \right) \left((1+|\lambda_2|^2)-\bar{\lambda}_2 w_2-\lambda_2 \bar{w}_2 \right) \]
\[= (1+|\lambda_1|^2)(1+|\lambda_2|^2)-\bar{\lambda}_1 (1+|\lambda_2|^2)\bar{w}_1 - \bar{\lambda}_2 (1+|\lambda_1|^2)\bar{w}_2 \]
\[- \bar{\lambda}_1 (1+|\lambda_2|^2)\bar{w}_2 - \lambda_2 (1+|\lambda_1|^2)w_2 + \bar{\lambda}_1 (1+|\lambda_2|^2)w_1 + \lambda_2 (1+|\lambda_1|^2)\bar{w}_1 \]
\[\text{ (using } |w_1| = 1) \]

Hence from (2) we get
\[c(1-|\lambda_1|^2)(1-|\lambda_2|^2)|(1+|\beta_1|^2)(1+|\beta_2|^2)-\bar{\beta}_1 (1+|\beta_2|^2)\bar{w}_1 - \bar{\beta}_2 (1+|\beta_1|^2)\bar{w}_2 \]
\[- \bar{\beta}_2 (1+|\beta_1|^2)\bar{w}_2 - \beta_2 (1+|\beta_1|^2)w_2 + \bar{\beta}_1 (1+|\beta_2|^2)w_1 + \beta_1 (1+|\beta_2|^2)\bar{w}_1 \]
\[= \mathcal{E}(1-|\beta_1|^2)(1-|\beta_2|^2) \left((1+|\lambda_1|^2)(1+|\lambda_2|^2)-\bar{\lambda}_1 (1+|\lambda_2|^2)w_1 + \lambda_2 (1+|\lambda_1|^2)\bar{w}_1 \right) \]
from which it follows that
\[c(1-|\lambda_1|^2)(1-|\lambda_2|^2) |1-\beta_1 w_1|^2 |1-\beta_2 w_2|^2 = \tilde{c}(1-|\beta_1|^2)(1-|\beta_2|^2) |1-\lambda_1 w_1|^2 |1-\lambda_2 w_2|^2 \quad \text{on } \mathbb{R}^2 \ldots (2) \]

where
\[c = c(p,q) = \sum_{k=1}^{r} (p_{k+1} + 1)(q_{k+1} - q_k) \neq 0 \]

and \[\tilde{c} = \tilde{c}(\tilde{p},\tilde{q}) = \sum_{k=1}^{s} (\tilde{p}_{k+1} + 1)(\tilde{q}_{k+1} - \tilde{q}_k) \neq 0 \]

Now
\[|1-\lambda_1 w_1|^2 |1-\lambda_2 w_2|^2 = \{(1+|\lambda_1|^2) - \lambda_1 \overline{w_1} - \lambda_1 w_1\}(1+|\lambda_2|^2) - \lambda_2 \overline{w_2} - \lambda_2 w_2 \]
\[= (1+|\lambda_1|^2)(1+|\lambda_2|^2) - \lambda_1 (1+|\lambda_2|^2) w_1 \]
\[- \lambda_2 (1+|\lambda_1|^2) w_2 - \lambda_1 \lambda_2 \overline{w_2} - \lambda_2 \lambda_1 \overline{w_1} + \lambda_1 \lambda_2 w_1 w_2 \]
\[+ \lambda_1 \lambda_2 w_1 \overline{w_2} + \lambda_1 \lambda_2 \overline{w_1} w_2 + \lambda_1 \lambda_2 \overline{w_1} w_2 \]
\[\quad (\text{using } |w_1| = 1). \]

Hence from (2) we get
\[c(1-|\lambda_1|^2)(1-|\lambda_2|^2)((1+|\beta_1|^2)(1+|\beta_2|^2) - \beta_1 (1+|\beta_2|^2) w_1 - \beta_1 (1+|\beta_2|^2) \overline{w_2} \]
\[- \beta_2 (1+|\beta_1|^2) w_2 - \beta_2 (1+|\beta_1|^2) \overline{w_2} - \beta_1 \beta_2 w_1 w_2 + \beta_1 \beta_2 \overline{w_1} w_2 + \beta_1 \beta_2 \overline{w_1} w_2 \]
\[= \tilde{c}(1-|\beta_1|^2)(1-|\beta_2|^2) (1+|\lambda_1|^2)(1+|\lambda_2|^2) - \lambda_1 (1+|\lambda_2|^2) w_1 \]
\[-\lambda_1(1+|\lambda_2|^2)\bar{w}_1 - \bar{\lambda}_2(1+|\lambda_1|^2)w_2 - \lambda_2(1+|\lambda_1|^2)w_2 + \bar{\lambda}_1\bar{\lambda}_2w_1w_2 \]

\[+ \lambda_1\lambda_2\bar{w}_1\bar{w}_1 + \lambda_1\lambda_2\bar{w}_1\bar{w}_2 + \lambda_1\lambda_2\bar{w}_1w_2 \].

Since these polynomials in \(w_1, \bar{w}_1, w_2\) and \(\bar{w}_2\) are equal on \(\mathbb{P}^2\), the coefficients of these polynomials must be equal.

So we have constant term:

\[c(1-|\lambda_1|^2)(1-|\lambda_2|^2)(1+|\beta_1|^2)(1+|\beta_2|^2) \]

\[= \bar{c}(1-|\lambda_1|^2)(1-|\lambda_2|^2)(1+|\lambda_1|^2)(1+|\lambda_2|^2) \ldots (3) \]

coefficient of \(\bar{w}_1\): \[c(1-|\lambda_1|^2)(1-|\lambda_2|^2)\beta_1(1+|\beta_2|^2) \]

\[= \bar{c}(1-|\beta_1|^2)(1-|\beta_2|^2)\lambda_1(1+|\lambda_2|^2) \ldots (4) \]

Dividing \((4)\) by \((3)\) we get \[\frac{\beta_1}{1+|\beta_1|^2} = \frac{\lambda_1}{1+|\lambda_1|^2} \ldots (5) \]

Taking the absolute value and cross-multiplying we obtain

\[|\beta_1|(1+|\lambda_1|^2) = |\lambda_1|(1+|\beta_1|^2) \]

\[= |\beta_1| + |\beta_1||\lambda_1|^2 = |\lambda_1|-|\lambda_1||\beta_1|^2 = 0 \]

\[\Rightarrow (|\beta_1|-|\lambda_1|)(1-|\lambda_1||\beta_1|) = 0 \Rightarrow |\lambda_1| = |\beta_1| \]

since \(|\lambda_1| < 1\) and \(|\beta_1| < 1\).

Hence from \((5)\) we get \(\lambda_1 = \beta_1\). Similarly equating the
\[
- \lambda_1 (1+|\lambda_2|^2) \overline{w}_1 - \lambda_2 (1+|\lambda_1|^2) w_2 - \lambda_2 (1+|\lambda_1|^2) \overline{w}_2 + \lambda_1 \overline{\lambda}_2 w_1 \overline{w}_2.
\]

\[
+ \lambda_1 \lambda_2 \overline{w}_1 \overline{w}_2 + \lambda_1 \lambda_2 w_1 \overline{w}_2 + \lambda_1 \lambda_2 w_1 w_2.
\]

Since these polynomials in \(w_1, \overline{w}_1, w_2, \overline{w}_2\) are equal on \(\mathbb{T}^2\), the coefficients of these polynomials must be equal.

So we have constant term:

\[
c(1-|\lambda_1|^2)(1-|\lambda_2|^2)(1+|\beta_1|^2)(1+|\beta_2|^2)
\]

\[
= \tilde{c}(1-|\beta_1|^2)(1-|\beta_2|^2)(1+|\lambda_1|^2)(1+|\lambda_2|^2) \ldots \tag{3}
\]

coefficient of \(\overline{w}_1\): \(c(1-|\lambda_1|^2)(1-|\lambda_2|^2)|\beta_1|(1+|\beta_2|^2)\)

\[
= \tilde{c}(1-|\beta_1|^2)(1-|\beta_2|^2)|\lambda_1|(1+|\lambda_2|^2) \ldots \tag{4}
\]

Dividing (4) by (3) we get \(\frac{\beta_1}{1+|\beta_1|^2} = \frac{\lambda_1}{1+|\lambda_1|^2} \ldots \tag{5}\)

Taking the absolute value and cross-multiplying we obtain

\[
|\beta_1|(1+|\lambda_1|^2) = |\lambda_1|(1+|\beta_1|^2)
\]

\[
= |\beta_1| + |\beta_1||\lambda_1|^2 = |\lambda_1| - |\lambda_1||\beta_1|^2 = 0
\]

\[
= (|\beta_1| - |\lambda_1|)(1-|\lambda_1||\beta_1|) = 0 = |\lambda_1| = |\beta_1|
\]

since \(|\lambda_1| < 1\) and \(|\beta_1| < 1\).

Hence from (5) we get \(\lambda_1 = \beta_1\). Similarly equating the
coefficients of \bar{w}_2 and dividing by the constant term we get
\[
\frac{\beta_2}{1+|\beta_2|^2} = \frac{\lambda_2}{1+|\lambda_2|^2}
\]
which implies $\lambda_2 = \beta_2$. Hence $\lambda = \beta$ what we are required to show.

Theorem 2.16: If the pair $S(p, q, \lambda) = (S_1, S_2)$ on $\mathfrak{m}_\lambda^{p, q}$ is simultaneously unitarily equivalent to the pair $S(\tilde{p}, \tilde{q}, \lambda) = (S_1, S_2)$ on $\mathfrak{m}_\lambda^{(\tilde{p}, \tilde{q})}$, then $r = s$, $p_i = \tilde{p}_i$ and $q_i = \tilde{q}_i$ for $i = 1, \ldots, r = s$.

Proof: The complete unitary invariants for the pair $S(p, q, \lambda) = (S_1, S_2)$ on $\mathfrak{m}_\lambda^{(p, q)}$ are
\[
\frac{\partial^2 \log \|p\|_{\mathfrak{m}_\lambda^{(p, q)}}}{\partial w_i \partial w_j} K \| \frac{w}{w} \|_f^2
\]
for $i, j = 1, 2$.

Let
\[
W_{ij}(p, q)(w_1, w_2) = \frac{\partial^2 \log F_{p, q, \lambda}(w_1, w_2)}{\partial w_i \partial w_j}
\]
where $F_{p, q, \lambda}$ is given by Proposition 2.13. Thus the complete unitary invariants are $W_{1i}(p, q) + (1-|w_i|^2)^{-2}$ for $i = 1, 2$ and $W_{12}(p, q)$, $W_{21}(p, q)$. Let $\tau_i(w_1, w_2) = \frac{w_i - \lambda_1}{1 - \lambda_1 w_i}$ for $i = 1, 2$ and
\[
\psi_{p, q}(z_1, z_2) = \sum_{k=1}^{r+1} |z_1|^{2p_{k-1}+2} |z_2|^{2q_{k+2}} - \sum_{k=1}^{r} |z_1|^{2p_{k+2}} |z_2|^{2q_{k+2}}.
\]
Observe that $\psi_{p, q}$ is bi-circularly symmetric. Now
\[
\log F_{p,q,\lambda}(w_1, w_2) = \log \psi_{p,q}(r_1(w_1, w_2), r_2(w_1, w_2)).
\]

Hence, by chain rule, we get

\[
W_{jj}(p,q)(w_1, w_2) = \frac{\partial}{\partial w_j} \psi_{p,q}(r_1(w_1, w_2), r_2(w_1, w_2)) \quad j = 1, 2.
\]

where

\[
W_{jj}(p,q)(z_1, z_2) = \frac{\partial^2 \log \psi_{p,q}(z_1, z_2)}{\partial z_j \partial \bar{z}_j}.
\]

Let \(z = re^{i\theta} \), \(r > 0 \). Then \(\frac{\partial}{\partial z} = \frac{1}{2} e^{-i\theta} \left(\frac{\partial}{\partial r} - \frac{1}{r} \frac{\partial}{\partial \theta} \right) \). Thus

\[
W_{jj}(p,q)(r_1, r_2) = \frac{1}{4} \left(\frac{\partial^2}{\partial r_j^2} + \frac{1}{r_j} \frac{\partial}{\partial r_j} \right) \log \psi_{p,q}(r_1, r_2).
\]

Fix \(r_2 \neq 0 \) and let \(G(r_1, r_2) = \log \psi_{p,q}(r_1, r_2) \). Then we have

\[4r_1 W_{11}(p,q) = \frac{\partial}{\partial r_1} (r_1 \frac{\partial G}{\partial r_1}), \text{ so}\]

\[(*) \quad 4 \int_0^{r_1} w_{11}(s, r_2) ds = r_1 \frac{\partial G}{\partial r_1} \text{ and hence}\]

\[(**) \quad C(r_1, r_2) = 4 \int_0^{r_1} \frac{1}{2} \int_0^{r_2} w_{11}(s, r_2) ds dt + G(0, r_2), \]

Using the formula similar to \((*)\) for \(W_{22}(p,q) \) when \(r_1 \neq 0 \) and taking the limit as \(r_1 \to 0 \) we get, again with \(r_2 \neq 0 \),

\[r_2 \frac{\partial G}{\partial r_2} = 4 \lim_{r_1 \to 0} \int_0^{r_2} W_{22}(r_1, t) dt. \text{ Hence using the}\]

\[\text{fact that } G(0, r_2) = 0 \text{ we have}\]

\[G(0, r_2) = 4 \int_0^{r_2} \frac{1}{2} \lim_{r_1 \to 0} \int_0^{r_1} W_{22}(p,q)(r_1, t) dt ds.\]
\[\log F_{p,q,\lambda}(w_1,w_2) = \log \psi_{p,q}(\tau_1(w_1,w_2),\tau_2(w_1,w_2)). \]

Hence, by chain rule, we get

\[W_{jj}(p,q)(w_1,w_2) = \frac{\partial \psi_{p,q}(z_1,z_2)}{\partial z_j} = \frac{\partial^2 \log \psi_{p,q}(z_1,z_2)}{\partial z_j \partial \bar{z}_j} \]

where

\[\tilde{W}_{jj}(p,q)(z_1,z_2) = \frac{\partial^2 \log \psi_{p,q}(z_1,z_2)}{\partial z_j \partial \bar{z}_j} \]

Let \(z = re^{i\theta}, \ r > 0. \) Then \(\frac{\partial}{\partial z} = \frac{1}{2} e^{-i\theta} \left(\frac{\partial}{\partial r} - \frac{i}{r} \frac{\partial}{\partial \theta} \right). \) Thus

\[\tilde{W}_{jj}(p,q)(r_1,r_2) = \frac{1}{4} \left(\frac{\partial^2}{\partial r_j^2} + \frac{1}{r} \frac{\partial}{\partial r_j} \right) \log \psi_{p,q}(r_1,r_2). \]

Fix \(r_2 \neq 0 \) and let \(G(r_1,r_2) = \log \psi_{p,q}(r_1,r_2). \) Then we have

\[4r_1 \tilde{W}_{11}(p,q) = \frac{\partial}{\partial r_1} (r_1 \frac{\partial G}{\partial r_1}), \]

so

\[(*) \quad 4 \int_0^{r_1} \tilde{W}_{11}(p,q)(s,r_2) ds = r_1 \frac{\partial G}{\partial r_1} \quad \text{and hence} \]

\[(**) \quad G(r_1,r_2) = 4 \int_0^{r_1} \frac{1}{t} \int_0^t \tilde{W}_{11}(p,q)(s,r_2) ds \ dt + G(0,r_2). \]

Using the formula similar to (*) for \(\tilde{W}_{22}(p,q) \) when \(r_1 \neq 0 \) and taking the limit as \(r_1 \to 0 \) we get, again with \(r_2 \neq 0, \)

\[r_2 \frac{\partial G}{\partial r_2}(0,r_2) = 4 \lim_{r_1 \to 0} \int_0^{r_2} \tilde{W}_{22}(p,q)(r_1,t) dt. \]

Hence using the fact that \(G(0,1) = 0 \) we have

\[G(0,r_2) = 4 \int_1^{r_2} \frac{1}{s} \lim_{r_1 \to 0} \int_0^s \tilde{W}_{22}(p,q)(r_1,t) dt \ ds. \]
Combining with (**) we get

\[
\text{(***)} \quad \mathcal{C}(\ell_1,\ell_2) = \int_0^1 \int_0^t s^{\tilde{\omega}}_{11}(s,\ell_2)ds dt + \int_0^1 \int_{\ell_1}^{\ell_2} \lim_{r_1 \to 0} \frac{1}{r_1} \int_0^r s^{\tilde{\omega}}_{22}(r_1,\ell_2)dr_1 ds.
\]

Now the pair \(\tilde{\mathcal{S}}(p,q,\lambda) = (\tilde{\mathcal{S}}_1,\tilde{\mathcal{S}}_2) \) on \(\mathcal{W}(p,q) \) is unitarily equivalent to the pair \(\tilde{\mathcal{S}}(\tilde{p},\tilde{q},\lambda) = (\tilde{\mathcal{S}}_1,\tilde{\mathcal{S}}_2) \) on \(\mathcal{W}(\tilde{p},\tilde{q}) \).

Imply \(\mathcal{W}_{1j}(p,q)(w_1,w_2) = \mathcal{W}_{1j}(\tilde{p},\tilde{q})(w_1,w_2) \) which in turn implies

\[
\tilde{\mathcal{W}}_{1j}(p,q)(\ell_1,\ell_2) |_{\nu_j} = \mathcal{W}_{1j}(p,q)(\ell_1,\ell_2) |_{\nu_j}
\]

and hence

\[
\tilde{\mathcal{W}}_{1j}(p,q)(\ell_1,\ell_2) = \mathcal{W}_{1j}(\tilde{p},\tilde{q})(\ell_1,\ell_2)
\]

since \(|\nu_j| > 0 \). From this

and (**) we obtain

\[
\log \psi_{p,q}(\ell_1,\ell_2) = \log \psi_{\tilde{p},\tilde{q}}(\ell_1,\ell_2)
\]

which implies \(\psi_{p,q}(\ell_1,\ell_2) = \psi_{\tilde{p},\tilde{q}}(\ell_1,\ell_2) \).

and hence \(\tilde{x} = x \), \(\tilde{v}_1 = \tilde{v}_1 \), \(\tilde{q}_1 = \tilde{q}_1 \) for \(i = 1,2,\ldots, n \).

\(\psi_{p,q} \) and \(\psi_{\tilde{p},\tilde{q}} \) are real analytic, in fact polynomials in \(\ell_1 \) and \(\ell_2 \).
Combining with (**) we get

\[(***) \quad G(r_1, r_2) = 4 \int_0^{r_1} \int_0^{r_2} \tilde{w}_{11}(p, q)(s, r_2)ds \, dt
+ \int_{r_1}^{r_2} \frac{1}{s} \lim_{r_1 \to 0} \int_0^{s} \tilde{w}_{22}(p, q)(r_1, t) \, dt \, ds.\]

Now the pair \(s(p, q, \lambda) = (s_1, s_2)\) on \(m(p, q)\) is unitarily equivalent to the pair \(s(\tilde{p}, \tilde{q}, \lambda) = (s_1, s_2)\) on \(m(p, q)\),
implies \(w_{1j}(p, q)(w_1, w_2) = w_{1j}(\tilde{p}, \tilde{q})(w_1, w_2)\) which in turn implies

\[\tilde{w}_{jj}(p, q)(z_1, z_2) \frac{\partial \tau}{\partial w_j} = w_{1j}(p, q)(w_1, w_2) = \tilde{w}_{jj}(\tilde{p}, \tilde{q})(z_1, z_2) \frac{\partial \tau}{\partial w_j}\]

and hence

\[\tilde{w}_{jj}(p, q)(z_1, z_2) = \tilde{w}_{jj}(\tilde{p}, \tilde{q})(z_1, z_2)\]

since \(\left|\frac{\partial \tau}{\partial w_j}\right|^2 > 0\). From this and (***) we obtain

\[\log \psi_{\tilde{p}, \tilde{q}}(r_1, r_2) = \log \psi_{\tilde{p}, \tilde{q}}(r_1, r_2)\]

which implies \(\psi_{\tilde{p}, \tilde{q}}(r_1, r_2) = \psi_{\tilde{p}, \tilde{q}}(r_1, r_2)\).

and hence \(r = s, p_i = \tilde{p}_i, q_i = \tilde{q}_i\) for \(i = 1, 2 \ldots r = s\) as \(\psi_{\tilde{p}, \tilde{q}}\) and \(\psi_{\tilde{p}, \tilde{q}}\) are real analytic, in fact polynomials in \(r_1\) and \(r_2\).
Corollary 2.17: If the pair \(s(p,q,\lambda) = (S_1,S_2) \) on \(m_{\lambda}(p,q) \)
is simultaneously unitarily equivalent to the pair \(s(\tilde{p},\tilde{q},\beta) = (S_1,S_2) \) on \(m_{\beta}(\tilde{p},\tilde{q}) \) then

\[
\lambda = \beta, \quad r = s, \quad p_i = \tilde{p}_i, \quad q_i = \tilde{q}_i \quad i = 1, \ldots, r=s.
\]

Proof: Combine Theorems 2.15 and 2.16
References

