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Abstract of the Dissertation
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~Let X = T\D be an arithmetic variety. Tf PGy — Sp

is a symplectic representation and 1:D -— h™ is & holo-

morphic map suchk that (p,T) is equivariant, a group

" theoretical abelian scheme over ¥ associated to (p,T) is

‘obtained by pulling back the universal family of abelian

varieties m°:Y” ~= X’ by the map Ty X — X’ induced by T,
where Sp is a symplectic group and n' is a Siegel upper '
half space.

If the symplectié representation p sends a symmetry

to a symmetry, the equivariant pair (p,1) is called

21id




(Hy)-equivariant. In this thesis, we shall prove the

following theorem:

Theorem. Let w:Y¥ — X be a group theoretical abelian
scheme over an arithmetic variety X associated to an

equivariant pair (p,T). Then,'for each element ¢ in

aet(e), 79:7° — %% is a group theoretical abelian

scheme over X associated to another equivariant pair.
- FPurthermore, if p ig a symplectic representation of a

classical group containing no Dy factors such that

(p,T) is (H,)-equivariant, then w°:Y° — %" ig a group

theoretical abelian scheme over x% associated to another

(Hz)-equivariant pair.
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INTRODUCTION

Abelian schemes over an arithmetic variety, or what
used to be called families of abellan varieties, have
been proved to be of great significance in algebfaic
geometry and number theory. Given an arithmetic variety
X = ?\D, if there exist a symplectic representation
p&GR —~ Sp and a holomorphic map T:D —= h® such that
the pair {(p,T) is equivariant, a gréup theoretical
abelian scheme over X associated to (p,T) is obtained by.

puiling back the universal family of abelian varieties

m Y — X’ by the map Ty X ~= X’ induced by T, where
Sp is a symplectic group and h' is a Siegel upper half
space. |

Let m:Y —= X be a group theoretical abelian scheme
over an arithmetic variety X. Then w is a morphism of
conplex projective varieties; henée, Lo each o€ Aut(C),
there corresponds ancther morphism of projective
varieties 1°:Y° — %O,

In the sgixties, G.-Shimura considered azbelian
gschemes over arithmetic varietieé associated to a
so-called PEL type and showed (e:g. [9]) that, for each
o &hAut(C), if m:Y — X is a group theorectical abelian

scheme over an arithmetic variety X associated to a PEL

type, X7 is anrarithmetic variety and 77:7% — x9 ig a




group theoretical abelian scheme over Xq,mgln 1970
D. A;_Kajdan considered the base spaces of these fibre
varieties and showed [3] that, for each element ¢ in

Auf(C),fif X is a compact arithmetic variety, x° isg

also an arithmetic variety.
iThermain purposé of this thesis is to show that
a éonjugation of a group theoretiéal abelian scheme
over a compact aritﬁmetic variety is also a group
theoretical abelian schéme over an Arithmetic variety.
More preciéely, given an clement ¢ in Aub(C), if
m:Y — X is a group théoretical abelian scheme over a
compact arithmetic varietme,.then 19:7% — %9 is a
group theoretical abelian scheme over the arithmetic
variety x°, |
iAnother problem considered in this thesis is the ‘ . ]

one of conjugation of abelian schemesg over an arithmetic

variety corresponding to an (H,)~equivariant pair.
More precisely, we shall prove the fbllowing statement

- under the assumption that p is a symplectic

representation of a classical group which contains no

Dy factors:




If m:¥ — X 1is a group theoretical abelian scheme
over an arithmetic variety X associated to an (Hz)-equi-
variant pair (p,T), then 9:y° — x° is a group
theoretical abelian scheme o%er x° associated to another

(Hz )~equivariant pair.

Notations. The letters @, R,-and 0 denote the

rational numbers, the real numbers, and the complex

numbers respectively.




CHAPTER I. STATEMENT OF MAIN THEOREMS. .

Let G be a semisimple algebraic.Q—group, G, the

R
grguplpf real points of G, and KR a maximal compact
subgrouﬁ @f GR. We assume that the symmetric space
D = GR/KR has a Gp-invariant complex structure.

TLet I be a cocompact arithmetic subgroup bf GR
with no élements:of finite order. Then X = I'\D has the’
natural éfructure of a complex manifold. Such a complex
manifold is called an arithmetic variety. We shall
identify X with ite embedded image in a complex
projective space. |

Let X' be aLcompleg frojective variety determined by

the equations

e 0

{7 a. .
10. * .lﬁl—

in the projective space PN(G). Then, to each o € Aut(C),
“there corresponds another complex projective variety x°

determined by the following set of equations:

oo iy
{2 (aio...iN) KgreeeXy

Tn fact, for each o€ Aut(C), there is a functor from the

category of complex pfojective varieties and morphisums 7




of varieties to the same category, sending a variety X
to a variety %% and a norphism of wvarieties f:X — Y to
a morphism of varieties_fG:X0 — 79,

It is known [3] that, if X is an arithmetic variety,

o . . . .
X7 is also an arithmetic variety.

Definition. Let Gp(resp. Ggp) be a semisimple Lie group

with the associated symmetric domain D(resp. D). Let

p:GR — Gé be a homomorphism of Lie groups and T:D —¥ D’

a holomorphic map. Then the pair (p,T) is called

equivariant if and only if the following condition is 1

gatliefiad:

t(gz) = plg)t(z)

for all g€G, and z €D, Furthermore, if the additional

R

condition

T'SZ = ST(Z).T

is satisfied for all z €D, the pair {p,t) is called

strongly equivariant, where Sz(resp. ST(Z)) is the

symmetry of D(resp. D’) at the point z € D{resp. t(z) €D’).

Theorem 1. Let X(resp. X”) be an arithmetic variety,

D(resp. D) its universal covering space and Gp(resp. Gp)

the associated semisimple Lie group. Let G§(resp. Gg°)




be the connected cdmponent ofAthe_idenﬁity.of Aut(ﬁﬁ)
(resp,'Aut(D'O)).r Let ¢:X — X’ be a mofphism_of
varieties, 3:D ~e D’ a lifting of ¢, and p:Gy — Gé a
homomorphism of Lie groups sﬁch that (p,$) is equi-
Variént. Then there exist a finite covering G of Go,
a homomorphism p?:G? —*VGEO 6f Lie groups and a lifting
6deb -~+‘D'0 of @U:XG — 1’9 such that the pair, (p9,3°),
is equivariant. -

Let X be an arithﬁetic variety and D its universal
coveriné space and GR a semisimple Lie group associated
~to D. Let_S? be a symplectic group and h™ the symmetric
domain associated to Sp. If there arera{homomorphism
p:GR;—+ Sp and a holomorphic map T:D — n" such that
(p,T) is equivariant, then, as:is described in §3.2, we
can construect a family of abelian varieties H:Y - X
assoclated to (p,T) called group theoretical abelian
~stheme over X. Since # is a morphism of complex
' projective varieties, to each cehAut{C), there corres~
pondé another morphism of complex projective varieties

g, .0

T Y o

- X .

Theorem 2. Let m:¥ — X be a group theoretical abelian

scheme over an arithmetic variety X. Then 7%:y% - x°

. ' . . o
is a group theoretical abelian scheme over X~ .




Definition. Let p:(}R - Gé be a homomorphism of Lie

groups and 1:D —= D’ a holomorphic map such that (p,T)
is equivariant. Then the pair (p,t) is called
(H,Y~equivariant if and only if the following condition

(H,) is satisfied:

(Hz): O(SZ) = ST(Z) for all =z €D,

From the definition, it follows easily that, if

(p,7) is (Hp)-equivariant, it is strongly equivariant.

Theorem 3. Let p:GR — Sp be a homomorphism and

7:D — 1@ a holomorphic map such that (ﬁ,T) is (Hz)}-equi-
variant., Assume that G, is a plassical'group with no Dy
factors. - Let m:¥Y — X be a group theoretical abelian

scheme over X associated to the (H,)~equivariant pair

J.+0 g

(ps1). Then w ;Y  -= X~ is a group theoretical abelian

scheme over X° associated to another (H,)-equivariant

pair.




CHAPTER II. ARITHMETIC VARIETIES.

§2.1. Prouniversal Covering Manifolds.

Let X be an arithmetic variety, D the universal
covefing space aﬁd I' the fundamental group of X.
Congider the cofinal system {Fi} of subgroups of finite

index of T with
FDPIDFZD ].“33'.."'

For each i, X, = Ti\D is a finite unramified covéring
manifold of X and {Xi} is a cofinal system of covering
manifolds. We put D = lim X,. Then ¥ has the natural

structure of a conplex manifold; We define

Aut (D)

{genut(D)]| [T:glg” ' NT] < o
1

A
G

I

G

and [T:g” TgNT] < «}
Then the following is known [3]:

(a) D is isomorphic to a connected component of 3.
(b) If 1:D == § is a 1ifting of the covering maps

wi:D — Xi sending a point do €D to T = 1im ﬂi(do), ﬁhen

G = (gel] 88, er(D)).

(c) G is dense in g.




Let ¢:X — X’, $:D — D’ and p:Gp — Gy be as in
Theorem 1 with &(gy) = p(g)¥(y) for all g € Gy and y eD;
. let I'(resp. I'") be the fundamental group of X(resp. X').
Consider the cofinal system éf sttbgroups of finite

index {Fi}(resp. {Pi}) of I'(resp. I'") with p(Pi)CﬁFi.

We put D = 1im Xk and D’ = 1inm X, and define
Al et o r— k

" $:D -~ D’ by $ = lim by

For each element § in € there is another cofinal
system {Xlk} of covering manifolds of X and morphisms
g iX1, — X, such that g = lim g~ Let ék:D —= D be a
1ifting of g :¥y, — X, for each k. If Xi, = T1\D,
then we have § (T1,)CT,. Turthermore, the liftings &'

satisfy the following condition:

) - k- . ok
& = g, with .
() By = vy g Y

e, for j <k
i J

In general, each element £ in G can be identified with a
collection {g } of 1iftings of g, satisfying the -
condition {*). Applying p to these.liftings, we obtain

the maps D(ék):D’ — D’ such that

o(By) = o(v;¥8) = o (v, 0 ()

where ije Fj for j < k.

Replacing the elements of {P;k}rby smaller subgroups
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if necessary, we can choose a cofinal systenm {ri, ) of

subgroups of '’ such that

Id

p(T1 ) CTy, and p(gk)r{kcrk for each k.

" Let X{k = T{,\D and define pk(p'gk):xfk ~ X" 1o be | |

k

the morphism induced by p(ék):D' — D’, Since

p(g,) = p-(ij)p(éj) with
k ' . .
.O(Yj )ép(?j)CFj for -j < k,

{p(g )} is a collection of liftings p(E, ) of p,(0E,)

satisfying the condition (¥*) for D’. So lim pk(pék)eia'.

Pall)

We define $:0 — § by
Fa .Y - . -~
p(g) = Lin pk(pgk).

Propegition 1, Let $ﬁ — D7 and 6":}\ — (7 be as above.

Then

§) =

(SN
oo
et
=

$(8

for all F¢@ and Jeb.

Proof. Let m:D — X,, my D —= X , ﬁi:D’ . Xi and

ﬂ{k:D' — X{k be the canonical covering maps. Then, for

each k, we have the following commutative diagram:




) b1
Xlk k > ka
’lT]_k ﬂ{k
D . p’
gk '.ék lp(ék) Pk(pék)
% - D’
Oy

: |
From the commutativity of the diagram, we have :

“£$(éky) = ¢k(gkﬂ1k§) = ¢k(gkxlk)
mep (B )8(y) = (p (o)) day (m1yy)
= (p(pgy)) oy (xay )

for all yeD and X1y, = WMi,y. Since
B(5) = o(5)8(y)

for all y €D, we have

for all xi, € X1j.  Thus it follows that

(%)

<>

¢(g9) = (&)

P

for all § = Lim xi, € .
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U:ﬁ'o — 6;0

§2.3. D

Let {Xk}(resp; {Xﬁ}) be a cofinal system of finite
unramified covering manifolds of X{resp. X’). Then
C{x)(resp. {X.}) is a cofinal system of finite unramified

covering manifolds of X% (resp. X°°%). We put

59 = 1im x7, 579 = 2im x;°.
Define $%:0% — 577 vy $° = Lim ¢;, and put

89 = Aut (DY), 629 = pgut(D°9).

an. Then there exist cofinal
systems of covering manifolds {z,} and {W.} of x% such

that the following diagram is commutative:

oo - T3 ~ 7, -7 - x°
hs h, hi
s - Wy - W, - W, - x°
Applying 61 to this diagram, we obtain
5 51 51
ves — 43— 73 ——r 7] — X
-1 -1 -1 |
h$ hy Ih?
-1 51 51 ,
crs —= W —— W — W] —— X
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Define p°:8° go

-1
69(8) = zim (p (oR] N7

-1 : -1 |
" where 512 :D —~= D is a lifting of hg e _ : '
|

Propogition 2. @G(QO?O) = 56(§0)$0(§0)

for all £°€ B9 and §° e B°.

Proof. For each k the relation ¢(gy ) = p{g)d(y)

induces the following commutative diagram:

Xlk,_. ¢%k - X1y
8 lpk(pék)
Xy x = XQ-
Applying'cs to this diagram,r we Obtai‘n
e ' .
| Igg | l(pk(p'gkno

which gives op(glxy) = (py (08, )) %1 (%)) for all

o

x&:exgk. Therefore it follows that

$7(879°) = p°(8M87(7)  for a1l §7e 7.




14

§2.4. 0°:0° — ¢’9

Let I'’(resp. T'’?) be the fundamental group of

X%(resp. ¥°°%) and D%(resp. D'G) the universal covering

. space of X%(resp. X’9). We define G° and G’ by

GO = {gOE.Aut(DO)] [To:gofo(gc)"1lﬂrcj < @

g

and [Toi(go)—jfog rxr“] < o }

GﬁO’ _ {g/O‘EAut(DIO')I [Flo:gadr;g(g)0)~1n 1.,;0] < ®

and [Ffﬁ:(gfﬁ)"1PAGg;OnrfU] < }.

As in §2.1 we consider G°(resp. G’°) as a subgroup of
ﬁd(resp. 679 and Dg(resp. D’%) as a submanifold of

ﬁa(resp. 59y,

Proposition 3. p°(G%) is contained in G'g.

Proof. Take an element d € D% € §° Without loss of

generality we may assume that

$9(a3) en’® ¢ p*°,

As is mentioned in §2.1, by Kajdan [3], we have
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If gOGEGO, then godg.EDG; hence, from the continuity
of $°, it follows that
$°(2%48) €$°(p%) < 7,
" This gives

£9(£9)8°(a%) = $9(¢%0) en”°.

Therefore we have

5%(g% ec’? for all %€ c°.

. We define

c g a
p = ﬁ iGo! ?ﬁ = 9 |DO.
e)

Thus we obtain the maps p°:6° — ¢’° and §°:0% — D

Satisfying the following relation:

' 59(g%%) = p%(g%)3°%(a%)

for all goe ¢° and a°%eD”,




§2.5, Proof of Theorem 1.

Let GY and Gs° be as in Theorem 1. Then,

result of §2.4 and [3], G° is dense in GJ and
3%(hy) = p"(n)%(y)

for all h€G° and yeD®. We put

Ga = {(gseg)€cs x ad®l 3%gy) = ¢” 3%(y)

for all yeDY)

Since the set {(g,pg(g))l geaGO} ig contained in G, and

g

G~ is dense in Gg,,the projection map pi1:Gy —

surjective.

Lemma 4. Gy is a reductive Lie group.

Proof. TLet K be the kernel of the projection map

Py il e Gg. Then we have

K

(1,8 €cd x as% 3°(y) = g°3%(y)

for all y eDY)

2 {g’eag’]

il

a
3;2D0 Ts0(3%(y))

L

where Iso(%o(y)) is the isotropy subgroup of $°

%G(y) = g'%o(y) " for gll y

16

from the

g .
Go 18

Y

eD%}

(y) in




EE Gs%  Thus K is a compact Lie group, and therefore a

reductive Lie group. Since the sequence

Pa o
1 = K '—‘Gg\"""‘""Go""‘—'—‘"‘I

is an éxébt sequence of Lie groups with K and‘Gg reductive,

it follows that G, is also reductive. ' : . ;

Proof of Theorem 1.(cf. [1])

w

Deéoﬁpose Gé into a direct proﬁuct of simple Lie
groups and.simblé tori,fand define G? to be the product
of thosé‘simple factoré 0f G which map nontriviallj to
Gg. Thén.thé‘kernel of the map from G? to Gg is finite,
and hence GY is a finite covering Lie group of Go.
Define the action of G? on DY and a homomorphism

07:aY ~ 6¢° by
” .. o) » ’
(g:27)y = gy, pi(g,g”) = ¢

for all (g,g”) ect c @, c g9

. .
X Gg . Then we have

39(g, e y) = 3%ay) = g 3% (y)

:D?(g,g')$0(y)

i

for all (g,g’) €GY and y€D%. Thus we obtain a

homomorphism of Lie groups p? from a finite covering




to G4° satisfying

3%(h1Y) = p¥(h1)3%(y)

for all hy €GY.and y eDY, Therefore the pair (p%,3)

is equivariant.
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CHAPTER III. GROUP THREORETICAL ABELIAN SCHEMES OVER

AN ARITHMETIGC VARIETY. ' - -

§3.1. Universal Family of Abelian Varietios.

Léﬁ:V be a Q~vector space of dimension 2n, A an

alternatiﬁg bilinear form on V, and I, a Lattice in Vi

let Sp(V,A) be the symplectic group and put

sp(L,A) = {geSp(V,A)] &L = 1}.

-

The symmetric domain associated to Sp(V,A) is isomorphic

to the Siegel upper haif space h", TLet T be a subgroup
of Sp(L;A) of finite index with no elements of finite

| order. Al%hougﬁ the quotient space F\hn is not compact,

it is a.qgasiprojectivé variety, i.e. a Zariski open

subset of a projective variety, by the theorem of Baily

and Borel[Z]‘

-We can construct a fibre bundle ovér the quasgi-
projective vériety F\ﬁn, called universal family of
abelian variéties, ags described beloﬁ.r

' Let, Sp(V,A)} X V be the semidirect product of Sp(V,A)

and V. Then 8p(V,A) ® V acts on h™ x V by
Agsv)+{z,u) = (gz,gu = v)

for all (g,v) e Sp(V,A) X V  and (z,u) € W™ x V. This

induces the action ofIT‘k L on u" % V. We put
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X’ = r'\n", T = (17 x I)\(s" x V).

Then we obtain a commutative diagram

h™ x Y
pl !ﬂ'
hn B - X;
where o and B are obvious projections, p(z,u) = =z, and

1’ is determined by Bp = m’a. Thus we have a fibre
bundle 7°:Y° — X’ whose fibres are complex tori
isomorphic to L\V. In fact, this fibre buhdle has the
structure of a family of abelian varieties associated to
a PBEL type.which has been studied by G. Shimura

extensively,

Propogition 5.{(Shimura) Let © be a normal admissible

PEL type(see [10] for definition). Then there is a family
of abelian.varieties_f:v — U, denoted by F(Q), with ﬂhe
following prdperties: | |

(é) U and V are Zariski open subsets of projective
varieties,

{b) U, V and f are defined over a number field k().

(c) For each o€ Aut(C), there exists an isomorphism of
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F(2)° to F(0%) defined over k(n®).

Proof. See [8] and [9].

Thus we have a fibre variety n”:Y’ — X’ whose

fibres are abelian varieties. It is called g universal

family of abelian varieties.
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83.2. Group Theoretical Abelian Schemes over X.

Consider a morphism ¢:X -+~ X’ of arithmetic
varieties and its 1ifting $:D —~ D* with D’ = 1 ana
X’ = P'\hn as in §3.1. If 77:Y° — X’ is a universal
family of abelian varieties, then we can consider the
pullback bundle 1:Y —= X of 7w7:7° —*VX' by ¢:X — X~

as in the following diagram:

=
B e e e

If there exist semisimple Lie groups Gp and G

»

assoclated to D and D",and a homomorphism 0:Gp — Gp

such that the pair (p,3) is equivariant, then it is
' known{e.g. [4],[7]) that w:Y¥Y — X is a morphism of
projective varieties and that each fibre ig an sbelian

variety. Thus we obtain a fibre variety whose fibres

are abelian varieties, Such a fibie variety 1s called

- a group theoretical abelian scheme over X.
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§3.3. Conjugation by o and Proof of Theorem 2.

“Let ¢:X — X’ and $:D — D’ be as in §3.1, i.e.
D’ = n", X’ = r\n".

Tﬁen X’ ié'a quasiprojective variety, and it is known
(e.g. [7]) that ¥’ is an arithmetic variety for each
c5éAut(C), more precisely, x’Y islbiregularly
igomorphic to F'O\hn for some arithmetic subgroup r-°
of Sp(V,A). | ‘

By:apblyiﬁg the theorem of Baily—Borel[Q], we. ean
easily ﬁodify the proof of Theorem‘1 for noncompact
X%, i.e. we éonsider the finite unramified qovering
nanifolds of X~ belonging to a cofinal system as
embedded in projective varieties. Thus Theorem 1 is
§6i11 true for D’ = K" and X* = \n".

Consider ¢%:X% — X’ and its Lifting

3%:0% — 0’9 2 p™ 45 in Chapter IT. Then by Theoren 1

there are Lie groups G; and G¢° and a homomorphism
p?:Gg o 6¢° such that (09,39 is an equivariant pair.
Theréfore, as 1s mentioned in §3.2, there exists a

group theoretical abelian scheme ﬂ(c):Y(o) ~+= X% which

is a pullback of a universal family of abelian varieties

n'(O):Y'(O) . by ¢%:3% — x°9;
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(o)
() by - (0)
7(0) 7 (9)
x0 @O . 3’0

On the other hand, applying o€ Aut(C) to the diagram

for m:Y¥ — X in §3.2, we obtain the following diagram:

8]
0]
N ¥ v 0
TTG lﬂfO’
le]
XG o L X;G

By Proposition 5(c), a family of abelian varieties
over an arithmetic variety associated to a PEL type is

unigue up to & biregular isomorphism. In particular,

o)

this is true for X’°. Therefore ¥ is biregularly

“igomorphic to Y’G; hence, by uniqueness of a pullback,

o .
Y( ) is also igomorphic to 1°. This proves that

7%:7% — 3% is a group theoretical abelian scheme over x°.




CHAPTER IV. (H,)}-FQUIVARIANCE AND PROOF OF THEOREM 3.

§4.1.- Strongly Equivariant Casec.

As is described in Chapter III, if p:Gy — Sp(V,A)
is a homomorphism of Lie groups and T:D — n" a holomor-
phic map such that (p,t) is equivariant, then we can
construct a group theoretical abelian scheme over an
arithmetic variefy X associated to (p,T). Thus the
problem of classification of all group theoretical
abelian schemes rTeduces to the problem of classification
of all corresponding equivariant pairs.

Satake considered theiproblem of classifying all

symplectic representations p:Gy, —~ Sp(V,A) such that

R
(p,T) is strongly equivariant(cf. [5], [6] ana [7]).
In his proof, he reduced the problem to the one for
(H;)-equivariant case, i.e. he showed that to classify
ali symplectic representations p of GR worresponding to
a strongly equivariant pair (p,t) it is enough to
classify all such p corresponding to an (H,)-equivariant
pair.

The above observation leads us to believe that

gimilar reduction should hold true for the problem of

conjugation of group theoretical abelian schemes over an

arithmetic variety. Thus, in this section, we shall

: 0




prove the conjugation problem for (H.)-equivariant case,

which is stated in Chapter I as Theorem 3, and state the

conjugation problem for strongly equivariant case as a

conjecture:

Conjecture.. Let n:Y — X is a group theoretical abelian

scheme over X associated to a strongly equivariant pair.

Then 71%:Y° —» x% ig a group theoretical abelian scheme

over X° associated to another stronély equivariant pair,

26
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§4.2. Algebras with Tnvolution.

Let_m_be a connected adjoint semisimple algebraic

group dofined over a field K of characteristic zero.
Asoumé £hat & does not contain a factor isomorphie to
either an.exceptional group or Dy. Then it is known
[12]‘that there is a semisimple algebra with involution
(A,1i) defined over K such that & is isomorphic to
Aut(A 1)0, the connected component of the identity of
Aut(A 1)

Definitiono Let A, be a Semisimple algebra over R, An

involution @-on Ap is called positive(resp. negative)

if and only if
Tr(x%%) > O{resp. < 0)

for all nonzero XﬁEARf It ig called definite if it ie

either positive or negative, and indefinite otherwise.

Proposition 6. Let & be a semi-simple algebraic group

defined over Q and (A4, 1) a semisimple algebra with

1nvolutlon defined also over @ such that
GR = Aut(AR,i)O

where GR(resp._AR) is the group(resp.'algebra) of real

points of &(resp. A). Then there is a one to one
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éorrespon&ence between the get Of'positive involutions
on AR commuting with 1 and the set of maximal compact

subgroups of GR.

Proof. BSee [12].

Lemma 7. Let AR be a semisimple algebra with involution
o over R.. Then there exislts a positive involution on AR

-over R commuting with o.

Proof. See [11, p.64].

Proposition 8. TLet (A,i) beia.semisimple algebra with

involution defined over Q. Agssume
m
(AR’l) :k@1 (Ak’ 11{),

where Ak_are simple, i1,...,i are indefinite and

h
ygqreee0d, are definite. Then there exists an
involution @ on A commuting with 1 such that o is

defined over ¢ and a1,...,ah are positive where ak is

ig an involution on Ak induced by & for each k = 1,...,n.

Proof. Let Gy be an involution on A given by

Tyiy

ag(X) = ¥~
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for all X€A., We define

X

VQ = {YE&AQ] ty ;ommutes with i}

x . .
Vg {YG_AR[ ay commutes with i}
W= {Yerl| o > 0 o, > 0}
R R .1 ’...’ h -

such that

where ak is an invelution on Ak

=1
ak(Xk) = ¥ 'X

for all X, €A, and Y, €A,. Then w; is open in A; and

by Borel's density theoren VQ is dense in VR. By

Lemma 7 W;f]VR is not empty; hence it is a nonempty
open subset of A;. Therefore WE(\V is algo a non=-

Q

empty sel and an element o in w;rqu gatisfiecs the

condition of the proposition.
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84.3. Dengity of AG.

Let & be a connected semisimple adjoint algebraic
group defined over Q. Assume the decomposition of the

semisimple.algebraic group GR is

G, = G

R T U Xttt X Gy

where G1,...,G are noncompact simple Lie groups and

h

'Gh+1""’Gm are compact simple Lie groups. We consgider

a subgroup M of & such that

with Mk CZGk for each k.

Definition. MR is called a quasimaximal compact subgroup
of GR 1f and only if the following conditions are

gsatisfied:

Mk: maximal compact subgroup

h)

A
g
[ A

of Gk (1

m) .

I~

Gk/Mk: symmetric. space (h+1 < k

Proposition 9. There exists a subgroup M of & defined

over @ such that MR is a quasimaximal compact subgroup

of GR'
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Proof. Let (A,1) be the semisimple algebra with

involution such that-

G = Aut(A,i) LG o= Aut{Ag,i),.

0’ R

If Gp = Gy X +++ x G, then (4,1) can be decomposed as

follows: - R

(,8) = (hppap) X oo X (A,5)

wi&h

G, = Aut(a

k wir)o

- for each k. BytPrbposition 8 there exists an involution

o = (a1,----,am) defined over Q such that Gysees,@ aTe

h
positive. . We define the subgroup M of & by

M= {geq] ga = agl.
If M, = M1 X ess X Mm’ then we have
: |
M = lg eyl gyop = opgy ) _ i
|

for each k. So, by Propositicen 6, My is a maximal

compact subgroup of Gk‘whenever 1 <k < h. Therefore

Ro

MR is a quasimaximal subgroup of G
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Proposition 10. Let D be the symmetric domain associated

to GR. Then there is a symmetry S on D which is contained

in GQ’ the group of rational points of Q.

Proof. Take a subgroup M.of & defined over Q such that
MR ig a guasimaximal .compact subgroup of GR' Consider

the Symmétric space

DM = GR/MR = D1 X oes X Dm

where D, = Gk/Mk for each k, and Gy, M, are simple
components of GR; MR respectively. Let C(M) be the
center of M. Then, Since M is defined over @, C(M) is
also defined over Q. C(M)R, the group of real points of
C(M}, is the samé as G(MR)’ the center of the Lie group

MR. Thus C(M)H can be decdmposed as follows:

c(m)R = C(MR) = G(M1) X ese X G(Mm)

where C(Mk) is the center of M, for each k. Since the

k
center of a maximal compact subgroup of a simple
classgical group associated to a symmetric domain is a
one dimensional torus,-C(Mk) contains an element of
order two for 1 < k < h, Without loss of generality we

may assume that & is Q-simple. Then each Mj for.

1 <3 <mis a Galois conjugate of some My for 1 < k < h;

hence Mj for h+1 < j < m also contains an element Sj of
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order two. Define an element 8 in C(M)R by

8 = (8;,...,8 ).

Then S is a symmetry on Dy and, if considered as an
action on D, it is also a symmetry on D. Sinece C{M) isg

defined over Q, we have
o] o _
s ec(M)y = O(M),

for all oehut(C). 8% is also an element of order two,

and hence it is a symmetfy on D But the symmetry on

M.
DM contained in C(M)R-is unique; so we have

8% = 8 for all o ehut(C).

Therefore S 1s contained in G..

Q

Proposition 11. Let G, D, G° and D° be as in Chapter 2

and Sz the symmetry on D at 2z contained in G. Then
there exists an element w in D° such that SW is the

symmetry on D at w and Sw is contained in G°.

Proof. ILet X be an arithmetic variety as in Chapter 2.
Consider a cofinal system {Xk} of finite uaramified

covering manifolds of ¥ where X, = T, \D. We put
g k k P

Xy, 5 = (Szrkszn Fk)\D
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for each k. Then {Xk Z} is also a cofinal system of
]

unramified covering manifolds of X and, since

st(r'kn szrksz)x (szrkn rksz)x

1

(8,18 NT)S x
for each k and x €D, SZ induces the following commutative

diagram:

...___—_b-' XB’Z-—*‘XE, -—*———PX'},Z -P-X
83,2 SZ,Z 81,2
3 + 7

ter o XB,Z " X2,Z e X1,Z = X

where each Sk " is. a symmetry on X . Applying ¢ to

. k,z
this diagram, we obtain

e CUIE e, S e &N S
s 7 2,7 : 1,z
03 g g
SB,Z S2,z S1,z
L 3 i
g g g o]
: XB,Z X2,Z — X1,Z X
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o3 . : o
and each Sk,z is & symmetry of Xk,z'

. Iol ' ] L
is a -symmetry Sw on D at a point w which is a common

Therefore there

o a0
lifting 0? Sk,z'

We.dgfine A and A by
5 = {z€D | S, €G }

AD’.

1t

twen’] 8 €c” )

Then, by Proposition 11, we easily obtain

Corollary. A is dense in D if and only if A is dense

. o]
in D7,

Lemma 12. TIf there exists a point 2z in D such that Sz

ig contained in GQ’ ther A is dense in D,

Proof. Nobe that Gy is contained in G and that it is

dense in GR’ Let S? be the symmetry contained in GQ‘
Then, for ecach géEGR, we have
S(gz) = 85

So, if g is an element of GQ’ S(gz) is alsc an element

of GQCZG; hence gz is contained in A. Since G, acts

R
the set

transitively on D and_GQ is dense in GR’

{gz] 2€G }, which is a subset of A, is deunse in D.




36

Therefore A is also dense in D.

. Proposition 13. Assume that GR is a classical group

with no Dy factors. Then A% is denmse in DC.

% Proof. By Proposition 10 and Lemma 12, A is dense in D,

Therefore, by Corollary to Proposition 11, A% is dense

in D°.




§4.4. (H,)- equivariance and Proof of Theorem 3.

As in 82.5 we can construct a finite covering G? of
G5 and a homomorphism pP:07 — G2 such that (09,39 is

equivariant, i.e,

3%(n1y) = 09(n1)3°%(y)

for all hIE(ﬂ?and yelf{ In this section, we shall

show that (p9,3°) satisfies (H, )~condition.

Proposition 14. Let A% and pO:GU — 0’9 pe as in

Chapter II. Then

o -

Y (Sy) S'&)O(y)
for all ye a°,

Proof. Let y be a point in A% such that 8§ is contained
in G°. Applying Proposition 11 for 6"1, we obtain a

" symmetry Sz on D for some z €A, Since
8 ) = Ry c G,
p(8,) = S5, p(G) € G

p(Sz) is a symmetry S%(z) on D with $(z) € A", Applying

Proposition 11 once again, we obtain a symmetry Sw on

+0

D for some w éA’%, From the definition of 0%, it

follows that

S = pg(Sy).

37
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Since

[¢] g a _ w054 . x0
8,0 (y) =0 (Syw (y) = 9 (uyy) $ (y),
we have Sw = Séo(y). Theref‘ore

g, ' B o)
0 (Sy) = s$o(y)..for all yeA .

Proposition 15. The pair, (p?,&o),mis strongly equi-

variant, i.e. it 1s equivariant and
o]
5 = 8.0 .
B8y = Sg0y)te
. :
for all ye€b .

Proof. Given a cofinal system {X, }(resp. {XI;}) of
finite unramified covering manifolds of X(resp. X*)

and a point z €D{(resp. =z €D”), we put

Xy , = (8,18, NTIND

Xp o = (gz,rksz,r\rk)\ﬂ .
If Sy is a symmetry on D° at yEAG, ﬁhen by Proposition

11 there is a symmetry Sz on D at z €A, For each k the

relation

$'SZ ﬁ S$(Z)'5




induces the following commutative diagram:

This induces
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by ,
Xy, 1 = X, ()
1 b 1

I, ’
Xk,Z : i Xkr%(z)

dJG
g k, = +0
Y, T A, ()
) g o _
¥ 8] y
a d}k, w +Q
Xkrz - - Xk:&(z).
o 3° p*o
{ {
o 50 p’0




. . . o] - _ . o ) g .
which gives Sy = S$0(y) $° for all yed . From

the density of 4%, it follows that

8] _ - . (o] . g
$ S, = S$o(y) 37 for all yeD.

Lemma 16, Let_p:GR — Gé be a homomorphism of Lie groups
and 1:D —~ D’ a holomorphic map such that (p,T) is
is strongly equivariant. Let Go(resp. Gg) be the
connected component of the identity of Aut(D) (resp.
Aut(D’)). Then Gi is generated by products of even
number of symmetries on D, and there is a homomorphism
u1:Gy — Gg¢ such that

ui(S_e-e8_ ) =8 yeeeS

g %oy T(Z1) T(zzk)

for all products of even number of symmetries on D

considered as elements of G;.
Proof. See e.g. [5].
Applying Lemma 16 to (p$,3°), we obtain a finite

covering G, of Gg and a homomorphism P,:Gs > G&G such

that

pz(SyTr--ska) ='s$o(y1)---s$o(y2k)

40




for all products of even number of symmetiries on p°.

Since %G-Sy = S$G(y)-$c for all yﬁDO by Proposition 15,

we obbtain

?ﬁ.O(Sy eve3  y)

%)

i

5}
pa(S_ =+ )3 (y).
I ok
‘So (02,66) is strohgly equivarian%.

Lemma 17, Let D, D’, G, and G¢ be as in Lemma 16, and

1:D —= D’ a holomorphic map such that

T'SZ = ST(Z)OT

for all z €D, Let G; be a finite covering of Go and
u1:Gs MF_GJ be a homomorphism such that (uy,t) is egui-

variant. Then such ui1 is unigue.

Proof. (cf. [1, p.173]) Let np:Gs — (G§ be another .
homomorphism such that (us,T) is equivariant. Without

loss of generality we may assume that Gi = G.. We put
K ={g’ead] t(x) = g’t(x)} for all xe&D}.

Then K is compact. Defining B by

B(g) = uile) (ua ()™,

41




we have a homomorphism from Gi to K. Since Go 1s d'semif
simple Lie group with no compact factors} there are no

nontrivial homomorphisms frem G; to X:; so we have u; = {is.

Proposition 18. (p?,@c) is (Hz)uequivériant.

Proof. It follows from:Lemma 17 that p? = p2; hence we

‘have

T Y ‘u.--. . = L eee
B pl(SYT : Ska): S$G(y1)- S$U(Y2k)

for allzpfoducts of even number of symmetries on p%,
Let Gs be the subgroup of o generated by all producté'
of even number of symmetries on p° coﬁtained in ¢°.
Then Gz is contained in G and is dense in Go. Since
Ore y _ e
o (sy) = 559(y) fQPKal; Sy€‘3 » we have
P, = °%lg,
. ' pl‘Gs P Gs
which gives
o -
S = S0
pl( Y) b (Y)
for all Sy,EGg. Thus 1t follows from the density of Gj

in GY that

g . '
_Dl(sy) h‘saU(y)

for all symmetries on p°.




Proof of Theorem 3.

Let p:G, -~ Sp(V,A) be a homomorphism of Lie groups

R
and ¢:D —~ n" a holomorphic map such that the pair,
(p,%), is= (Hz)-equivafiant. Let m:Y -~ X be the group
theoretical abelian scheme over X associated té (p,%).
Then, asg is proved in Chapter,B, TrG:YO — XG is the

group theoretical abelian scheme over x° associated to

(69,3°%). The pair, (p?,%o), is (Hp)-equivariant by

Propogition 18 and this proves Theorem 3.
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