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Abstract of the Dissertation

Gaussian Beams

by

Li-yeng Sung

Doctor of Philosophy

Department of Mathematics
State University of New York at Stony Brook

1983

There are two main results in this thesis. The
first one is the construction of Gaussian beam solutions
to perfectly reflecting boundary value problems in

ction 3.4. It iz a generalization of a result of
Balston {(ef.[10]). The second one is the construction
ol diffracted beams in chapter 4. It is based on the
fgrazing ray parametrix of Melrose and Taylor. The ﬁidth

* 43 g * "“1 8 +8
of the diffracted beams is found to be p / whereas
G . I £ ‘
the width of the Gaussian beams is p ° .

There are also three other new results, Section 1.4




contains a new construction of the phase function of a
Gaussian beam by a generalized method of characteristics.
We ﬁrove in iemma 3.2.2 that a'system (P,Bj) is perfectly
reflecting iff its adjoint system (P%,Ck) is perfectly
reflecting. The classical result on coercive boundary
conditions ls obtained as a corollaryc‘ Theorem 3.4.2
conﬁéins a new proof of a result of Majda and Osher (cf,
(3. |

Appiications to the propagatioh of singularities of
hypefbolic equations, microlocal regularity of elliptic
coercive boundary value problems, reflection and

diffraction of singularities are also given in the thesis.




To the memory of my father.




Acknowledeoements

I would like to thank my advisor Michael Taylor
for his guidance and encouragement throughout the
research of this thesis.

My sincere thanks go to the Mathematics Department
of Rice University for its support, especially for the
gupport I received in the years 1980-82 when I was away
from Rice. I am also grateful to tﬂe Mathematics
Department at Stony Brook for the support of the last
year of my graduate study.

Without the understanding and support of the members
of my family I would have never persued a career in
mathematics. My gratitude to each of them is unmeasurable.

Last but not least, I want to thank Miss Susanne
Bfenner for typing up part of the thesis and for

correcting the numerous gramatical errors in it.




dable of Contents

AcknowledgementSeeesovenensrasesocosnacsseansss s Vi

Chapter O Introduction:
1. Gaussian BeamS..ccaessosnsssoccrsoaonooessassd
2. Almost Analytic Machineryeevescesvosecsssssel
3. Pgeudodifferential 0peratorSescsscosssocnsest
u“ wave P‘I‘Onlt SetSottoouoeonesooaeut&soaueovaoil
5‘ Airy Funotionsﬁ!GQQUOUOUIlBOO‘GG'iOSDOGODﬂﬂlg
60 ll‘.DWC) LeInrﬂaS&&ooDﬂ.o!lIﬂo(-dnlOOGHUW*BIGIOQCDIDZO
T Some Notational ConventionSescecrescncoses 2

Chapter I Initial Value Problems

1. Strictly Hyperbolic OperatorScescssocescss o225
2. Initial Value ProblemS.essccescncosossosasselh
3' The Ansa‘tZQwuupeuaeonoaeoauialbuaon.nnevunczé
4.,  Solution of the Eikonal Equation by

the Method of CharacteristicSecicecscrecacsldd
5e Solution of the Eikonal Equation via

the Ricattil Equalioneseocosssscrosroconssseld
6. Solution of the Transport EqUationsS..sceee 45
7 Solution of the Initial Value Probleme ... 45
8. An Applica"siorl....H».os“»o.n.““.e....oullﬁ

Ghapter 11X Boundary Value Problems

1. Elliptic OperalorSeiecscerssssssoosovaverassid
2. Coercive Boundary Value ProblemS..oescess. 52
3o Solution of the Coercive Boundary

Value Probl@mo.......»;ae-a“oa.“ﬂ.ua.....55
by An AppPlicationeevesccscessccsssssovessssseehB

Chapter III  Reflection of Singularities
1. Reflected Family of
Null=bicharacteristiCSerieeoccosonsconcsosebdl
2,. Perfectly Reflecting Boundary
Condi-tio‘!‘lseol‘ﬁoFlﬁtoallBDCEDE.'ACOQQIBI'OCJBD63
3. Reflection of Singularities,
LQPB.I Theorymnusun:ooooo»nooeoteoonaOeu@Ot-?l
.,  Asymptotic Solution to a Perfectly
Reflecting Boundary Value Problém.secvcocccee?3
5 Reflection of Sihgularities,
G:L(}blca-l TheOI.yO!OOIBQIEGOBDIGBOOOO90‘50‘&0!!79

pler IV Diffraction of Singularities
1o Grazing Gaussian BeaMSessoccvsoscossnsocessSH

2. Diiffracted BeamSecsoseesesscsasocen




i W
L]

L

6o
7o

Construction of Phases and Amplitudes

in the Diffracted BeamSesecoseosses
The Boundary TeIMesovsecsosesonses
Basic Estimates of

4(o221)/a(62/% ) and
A'(p2/3z;)/A(p2/3zn)“.............

The Width of the Diffracted Beams.
Diffraction of SingularitieSccece.

Referen,ceS'DOGEO!DDIO&IO'DO.H.QDIDIOQQOI

&

L

&

L2

¢

¢

-8?
.89

0490
.95
«100
104




Chapter O Introduction

Section 1  Gaussian Beams

A CGaussian beam is a function of the form

ipy(x)

u(x,p) = e (ag(x) + al(X)p“l +eootk aN(X)p“N)o

(X)) ya (X)), c00yay(x) are smooth functions on R, p is

a positive parameter. Im y(x) satisfies the following

condition:
There exists 2. smooth curve T in Rn_such that

Im y(x) = yodist(x,?)2, for some y > 0. (1)

Typically, I' is the characteristic curve {i.e. the

projection of the null-bicharacteristic on R™M) of a

differential operator P and u is an asymptotic solution

of Pu = 0,
It follows from (1) that u = 0(p™®) away from r.

We can therefore multiply the aj's by cut-off funciions

that u is supported in an arbitrarily small neigh-
7borﬁood—of I'« This is why they are called beams.

| The construction of Gaussian beam solutions to

rictly hyperbolic equations will be carried out in
§hapter 1. The presentation basically follows Ralston

?(F10]> except for the solution of the eikonal eguation.
ih re we consider the Gaussian beam as an oscillatory

ction corresponding to a strictly positive almost




analytic lLagrangian submanifold of order one {ecf. section

0.2) and solve the eikonal equation by a generalization

of the method of characteristics,

In chapter 2, asymptotic solutions to elliptic
equations similar to (1) afe constructed. A similar
construction can be found in Ralston ([10]) under more
restrictive conditions.

Via a Green's formula, an understanding of the
asmptotic solutions to the adjoint operator will lead to
results about propagations of singularities of the
original operaﬁor} Thus propagation of singularities
of hyperbolic initial value problems and microloeal
regularity of elliptic boundary value problems are ﬁroved
as applications in chapters 1 and 2.

In chapter 3, the construction of chapters 1 and 2
are combined to treat the mixed initial-boundary value
problems. As application, various resultsg in the
veflection of singularities due to Lax-Nirenberg ({8))
and Majda-Osher ([3]) are proved. The Gaussian beam
'éonstruction also leads to a new proof that the perfect
reflecting condition is essential for the result in
eflection of singularities to hold (cf. theorem 3.4.2).
In order to treat the grazing ray problem, we in-
roduce a more complicated ansatz in chapter 4 which will

e called the diffracted beam. These diffracted beams

Do




are obtained by using the Fourier-Airy integral operators

of Melrose and Taylor.

For Gaussian beams, it follows from (1) that given
any € > 0, u(x,p) = 0{p~™) for x ¢ {x: dist(x,T) =
p=E*€},  The corresponding result fér the diffracted
beam is u(x,p) = 0{p™™ ) for x € {x: dist{x,r) =

p=1/8 + ey,

Using these diffracted beams, the'result of - Melrose
and Taylor on diffraction of singularities are proved in
chapter .

The rest of this chapter will record a collection
of basic definitions and results that will be needed in

the following chapters.

Section 2 Almost Analytic Machinery

Since the Gaussian beams have complex phase functions,

we will be forced to go from R into C" all the time.

The appropriate machinery will be recorded in this section.

We will Ffollow Melin and Sjéstrand ([5]) and refer the

aders to that paper for the proof of the assertions.

efinition 2.1

Let 0 < C" be an open set, If f € Cm(n), we say that




£ is almost analytic if 37 vanishes to infinite order
on g = 0 N R"

If is easy to prove that every f € Cm(QR) has an
almost analytic extension, uniquely determined up to
equivalence.

Definition 2.2

Let £y and fp € C7(0), 0 = ¢, We say that f, and
f» are equivalent, denoted by fqo ~ oy if £ = £5

vanishes to infinite order at 0.

The technical tool in obtaining asymptotic expane
sions for Gaussian beams is the complex stationary phase
method.

n X R . .

Let a(x,w), X € R, w € R® be a ¢ function defined

in a neighborhood of (0,0). We suppose that d,a(0,0)=0,

3 aza
Qet( 'axia o

) ¥ 0 and that Im a = 0 with equality at (0,0).

2
sowe have Im ( o a )
0X 39X

o

ThedremAzgl

| Let a be as above, Then there are nelghbornoods U
dnd V of the origin in R" and Rk respectively and diff-
:rential operators Cv,w(D) of order = 2v which are ¢%

functions of w € V such that we have the asymptotic




expansion

ip8{z(w),w)
e ¥

(Cy, WP (2w)) (1)

Here u is a ¢~ function with compact support in U. &

ipa(x,w)

e u(x) dx ~ Vgo p

3

“vn/2

e - * L]
and v are almost. analytitic extensions of a and u.

z{w)} is the solution of dza(zpw) = 0,

We shall also need the concept of an almost analytic
pesitive Lagrangian submanifold. First of all, we have

the following definition.

Definition 2.3

Let 0 « Cnrbe an open set and let M = 0 be a real
submanifold of real dimension 2k. M is called an almost
analytic submanifold if for each real point z, of M there
exiéts s nelighborhood U of %, and ¢ functions Treg seocs
T, such that M is gi#en by fk+1(z) =eoo=f (2) =0 inU
and
187,(2)1 = eyl 2™ + maxl2,(2)10), 2 € U, for all
N € Z4 and the complex linear differentials dfk+1(z),“'

(z) are linearly independent over C.

finition 2.4

et 0 < C'. We say that M, and M, are equivalent (and

|~ MQ) if they have the same intersection

(621




T wﬂ\u—w‘wﬂ\

o Y R ) .
with R" and the same real dimension and if for every

Q' @=0 and N € Z, we have
dist (z,Mz) = CN,Q' | Im zIN. Zz €0 N M1 for some

constant CN,Qso

Let o = dzlAdxl dee et dipArdx,, be the symplectic
two form on RZn. B = dTqAdzqy et dX,Adz, is the
extension of o to G°N,

Let U be an open subset of Rzn.and £t U amn RN

be a diffeomorphism.

Definition 2,5

!, .
Ifrf{m = o, then f is called a symplectomorphism,
1f ¥ is an almost analytic extension of the symplectoe
morphism f to a neighborhood of U in an, then T is

called an almost analytic symplectombrphisma

Definition 2.6

Let M be an almost analytic submanifold of an,
ssume that for any real point (XOEEO) € M there exists
ja neighborhood U of (xo,ao) in M such that by an almost
nalytic symplectomorphism,(xo,gc) is mapped to (yo,no)
d U is equivalent to {(dyh(y),y): ¥ belongs to an
spen nelighborhood of (yo,no) in C°M and h is an almost;
nalytic function with Imih = 0 and Im h(yo) =0 3},

nen M is called an almost analytic positive Lagrangian




submanifold.

There is an important special case.

Definition 2.7

An almost analytic submanifold M < C" is called a

strictly positive Lagrangian submanifold if

(i)  aimgM = 2n ,

{ii) MR = M N R2n is a Submanifold;of M-,

(iii) &)y ~ 0 (i.e. & vanishes to infinite order on M,)
M R

(iv) 2 @(v,v) > 0 for all v € T, T, (Mg), p € Mg,

Here © is regarded as a bilinear form-on TPCZn

and by TP(MR) we denote the complexification of

TP(MR) [

The order of M is defined to be the (real) dimension of
MRu

. It is easy to see that a strictly positive Largrangian
submanifold is indeed positive in the sense of definition

2-,6@

- Definition 2.8
Let ¢ € Cw(Rn). ¥ 1s said to be strictly positive

at 0 if Im 4(0) = 0 and Im ( o ¥ ) > 0.
axian




ST

section 3 Pseudodifferential Operators

In this section we will record some basic definitions
of pseudodifferential operators. We will follow Taylor®s

book (L121).

Definition 3.1

Let @ be an open subset of R™,m,p,6 € R, and suppose
d < Q,é.s i. We define fhe symbol class Sg,é(ﬂ) to
consist of the set of p € C (0 x R™) with the property
that for any compact K < ), any multi~indices «,B, there
exists a constant CK,q,p such that

DEDE px,ed s cp o (14 lgnymoelaleslBl

m

0,8 when

for all x € Ky £ € R, we drop the 00 and use S

the context is clear.

- Most of the time we will only use the classical

symbols s™.,

Definition 3.2

The symbol p(x,t) belongs to ST(Q) if p ¢ ST}O(Q)
‘and there are smooth pp_3(x,£), homogeneous of degree

m-j in £, for [t ] z 1, i.e. pm“j(x,ri)érm"mewj(x,E),

[el = 1, r = 1, such that

KeE) ~ T Prpe 5 (x4 E)

Where the asymptotic condition means that




i
i
1]

it N
plx,t) = I p o(x,8) € 87707 ()

30

Definition 3.3
Let p(x,ﬁ) € 55,5+ The operator p(x,D): C_(a) ~C"(n)

is defined bv the following formula.

iX
plx, D)u(h) = fp(x,8)@(8)e ag,

where Q(£) = (2 TR J u{xde dx.

We say that p(x,D) € opqp 5 °

In order to extend p(x,D) to a map between C{n) and

itself, we need the concept of properly supported pseudo-

differential operators. Since p(x,D) induces a distribution

on. ) x O, we consider the following more general definition.

Definition 3.4
A distribution A € é@%QxQ) is said to be properly

supported il supp A has compact intersection with K x O

‘and with Q0 x K for any compact K « Q.

For every p(x,D) € OPSm.é, we can construct a properly
_supported g({x,D) € OPS ,6 such that p(x,D) - q(x,D) € OP3™™,

e can therefore zssume all the pseudodlfferentlal operators

to be properly supported from now on.

There is a symbol calculus Tor the class of properly

jupported - pseudodifferential operators with nice symbols. -




Ve refer the readers to Taylor's book for a detailed
discusstion. The following theorem due to Melin and

S j8strand is more relevant to our purpose.
J : ‘

Theorem 3.1

Let P € OPSy_, +(R"), & > % and let § € C (R")
satisfy Im ¢ & 0 and dy # 0 where Im ¢ = 0, Then we

have
ip¥ : ipw(x)
Pluse ) o~ e

- g =0

B (x,peap(x))

ipo(x,y)
£ Di(u(y)e - '

ly=x (1)

ol
with asympotic convergence in_Sg’l(RQ z‘R*). Here
‘u € Cz(Rn) and P is an almost analytic extension of-p
to a conic open neighborhood. of R x R in ¢N x ¢,

8{x,y) = ¥v(y}-p(x)=<y-x,dy(x)>.

This asymptotic expansion is of course a generali-
zatlon of the well-known result in the case that ¢ is
real. We refer fhe readeré to [5] for a proof. Note
that at points where dy(x) is real, we can use p in
stead of P on the right hand side of (1). This will

Le the case when we apply theorem 3.1 to Gaussian Beanms,




section 4 Wave Front Sets

In order to study the propagation of singularities,
we need the concept of wave front sets. First of all,
we recall the definition of the singular support of a

distribution. 0 will denote an open subset of R,

Definition 4.1
Let u € (0}, We define the singular support of

u} denoted by sing supp u, to be the complemenf of' the

set {x: u is C” in a neighborhood of x}.

It is easy to see that x £ sing supp u iff there

exists a ¢ Elcﬁ(ﬂ} such that z(x) # 0 and -the Fourier

transform of fu is rapidly decreasing.
. o
Let u € é)(ﬁ}m The wave front set of u, denoted

by. WF(u), is a subset of T%(Q)‘M~O defined in the

foliowimg WaY .

Definition 4.2
(xgeko) £ WF(m) iff there is a £ € Co(n), £(x,)#0,

znd a conic neighborhood 1 of £os Such that, for every

N,
[T = eyt + 1x)™, ¢ e p, (1)

Here Cy is some constant depending on N.

By.the following lemma, we actually have a lot of




freedom in choosing the functieon t.

Lenma 4.1

Let u, £, I and (x4:t,) be as in definition 4.2,

i

If n € C?(Q) and v tnu, then there exists a conic

< I'y such that, for every N,

A : -
v = gt + e, ¢ e 7.

neighbvorhood I'* of EOQ»P‘

The proof of lemma 4.1 can be found in L2 By'
lemma 4.1 and the observation following definition hot,

we immediately obtain the next proposition. -

Proposition L.1

w(h“(u)) =-31ng supp U,

whetre w 1s the canonical
progectlon from T° (Q) onto o

The concept of wave front sets can be defined for

distributions on manifolds. In faet, we have the

following lemma.

Lemma 4,2

/ "
Let u ¢ 9(0) and (xogz ) € T (0)~0, then (X04s8g)
WE{u) iff given any function ¥ € € (0) with dw(xo) Eo,

there existe L€ o ol tixy) # 0,such thQL, for every

ipy(x) | N
W oulx)e{x)e dx| = Cnep™ o

A proof of lemma 4.2 can be obtained by adapting




the argument in the proof of Jemma 4.4,

IT P is a pseudodifferential operator, we can

describe WF(Pu) in terms of WF(u).

Proposition 4,2

et P € OPSJ g,p > O, then WE(Pu) < WR(u).

Proposition 4.3

If P € OPSy 4 is elliptic, p > 6, then WF(Pu) =
WE(u) .

We refer the readers to [12] for the proof of
propositions 4.2 and 4.3,
We will also need the following result, the

proof of which can be found in [8].

Lemma 43

Let u be a G? function in t with values in the
spaée of distributions in the xuvariables. Suppose
(xQ,tO,EO,TO) £ WF(u). If A(x,Dg) is a pseudodifferential
operator in the xnvariabies, A € CPS?'O, then-

(ot oEpaTy) £ WF(Au),

et u be as in lemma 4.3. There is a relation

between WF(u) and WF(uji=g).

Proposition 4.4

Let it {(x,%)s t=t,} — RP*L1 be the natural




injection. If (x4,0,t,,1) £ WE{u), then WP(U ] pey) ©

it wR(u) ).

We refer the readers to [1] for a procf of
proposition 4.4. Actually it is shown in (1] that if &
is a submanifold and the. conormal bundle of § is digjoint

from WF(u), then the restriction of u to § is well defined
and WF(u]S) o i%(WF(u))a
For the interior of O, we have a theorem due to

Hormander on propagation of singularities. We need

another definition before we can state the theorem.,

Dgfi@ifion'4e3 _ o o o N i
“Let p(x,t). ¢ s™Mq) has principal symbol p,(x,t)
(homogeﬁeéus of'degree‘m-in E). The characteristic set
of P = p(x,D) is defined by
Char P = {(x,£) € D* (0O py(x,t) = 0].

Thegrem 4,1

' Let P € ors™(n) have reél principal symbol and u,
t e}Q%rnn Suppose that Pu = £. Then WE{u) WP(f) is
{containéd in Char P and is invariant under the flow of

the Hamiltonian vector field Hpm"

A proof of a more general version of theorem 4.1

can be found in [127.




We now turn to the relation between wave front sets
and Gaussian beams. - The following lemma under the

assumption that u € 1 can be found in [10].

Lemma b,k
Assume d¥(xo) = £, # 0 and (xg7%,) £ WF(u), u ¢
f ‘ % ; ~
ﬁ}(ﬂ}a Assume a € CJ(Q) and Im ¥ o= Yllx=xo“(y » 0} on
the support. of a. Then_there,are constants Cy such that

ip$(x) ' N - .
[ acuce dx| = Cyp™™, for p > 1 and N € Z.. Here

~the integral is evaluated “in the sense of distributions.
Proofs By assumptlon, there exluTu L4 G_GO(Q), Ly (x)=1
in a nelghborhood of x,, such that, given any positive
integer N, |
| 1&y J(E)f s Ot + IEI)“N, for £ in a conic
nelghborhood I of KO, . -- (2)
J acurelrlax " |

Cipy iey
S astyeuce  dx 4+ f (1 - £9)eacuce  dx

=H +J

~8ince Im ¥ z y|lx - XOHZ on supp ¥, J = 0(p~*),

<o We only have to estimate H°

Let Z, E‘C?(Q), Lo = 1 in a nelghborhood of Xo e
‘such that [[dy(x)] > d“ﬁo“ and flay(x)=tll > 6 > 0 for x ¢
supp £, and ¢ € 1°

CdpV ipy
f ae§1°52euje - dx *+ Ia-Cl'(l L a2)°U'@ dx




.'::I;Q*G

Again, G = 0(p™). To estimate I, let f = atfqu

and then we can write

S A tox b+ipy(x)
I =pn ff f(pg)-gé(x).e ' d¢dx, where

' -ixef - ' '
%(i) (ZﬁTn J Tlx)-e dx is the Fourier transform of

SoI= I+ Ip ¢ Ig. The domains of in%egra%ion'for
L1, Iy and Iy are {{x,8): 6] > He /83, {(x,2)s j¢|
Mol /4 and £ € T} ang £(x Ere l6h 2 e ll/4 ana ¢ £ 1)

respectlvoly.
Intcgrdilon by part with respect to X Shows that
I, end Io are O(pnw) .13 is 0{p~") because of (2).
o . Q.E.D. ’ |

" The proof of lemma 4.4 can be generalized to prove

the next lemma.

Lemma 4.5

Let v(x,p) be a Géussian bean aiong 2 smooth
curve C o 0 and u € gy(ﬂ) with supp u @ @ 0. Assume
that the ﬁhase'function & of v satisfies the«fmllowing
*condltlonq.

0 # ay(x) & WF(u) for x € C.
heﬁ for any positive integer N,

Wou(x)ev(x,p) dx] = o(p-l),




In- order to deal with the case in -which sSupp u is
not_away from 30, we need the followiﬂg concept. From
now oh 0 will be a domain in R™*1 with smooth boundary.

Let u ¢ () ana P € aQ. Assume that in some local

coordinates p = (0,0) and 0 = {(x,t): x € R" and % > 0}.

Definition 4.4

i

Let (x,,8,) € TV (30) S 0. We say thaﬁ_u is micro-
locally'smooth'aﬁ (X5:60) if u is ac. function of t = 0
-ih the space of distributions in the x-variables and-S
6§ > 0, t € Coln), ﬁ(xO) A0 and a conic neighborhood T

of  Eqoe such that, for any positive integer N,
P . .
Here ¢+u is the Fourier transform of. feu in. the x -

variables,

- Using lemmas 4.1 and .2, it is easy to see that
definition. 4.4 does not depend on the choice of local

coordinates.

Definition 4.5 _
If u is also defined for t = 0, then we say that
% is microlocally smooth at (x0s%0) with respect to the

hypersurface t = 0 if (3) holds for |t] = s.

Refinition 4.6

We say that u is microlocally smooth along a curve

lm(t?a')i' = GN,(i_‘,-% le])-N, ¢ e rand 0 =% s 6. (3)




(x(s),E(s),t{s),7(g)) in T*(Q)\\EO if u is microlocally
smooth at (x{s)wg(s)) ﬁith respect to %he hypersurfaces
t = t(e), for all s.

It follows from definition 4;5 that if u is micro-
locally smooth at (xo,go) with rgspect tq t = 0, then .
-(xo,go,o,r)=f WF(u) for any . - -
| The following lemma is an immediate consequence'of.

lemma 4. 4:and definition 4.4

Lemma 4,6

o e o4

Let'v(x,p)jbe a Gaussian beam along-a smooth curve

C <, ﬁ € 30 and C have a contact of order at most 2
with aQ_at ?6 Let ¥ be the phase.function of v and o =
(pad¥[3a(p)) € 7*(an) ™~ 0. Suppose that u € D(0) is
suppprtedrin a -neighboerhood of.p o 0 Foady(x) ¢ WF(u)
for x € C™.{p} and u is microlocally smooth at g with
respect to 8. Then given any positive integer N,

| I w(x)ev(p,x) ax | = o(p~N),




Airy functions are solutions to the Alry equation
¥"oE Xy | | (1)

We will need the Airy functions in our treatment of
the grazing ray problem in.chaptér 4. We record the basic
.pfbperties of Airy functions in this section. We refer
the:readefs to {97 for details.

A solution to (1) is given by
Al(x) = % f: cos(t3/3 + xt) dt, x € R, ' - (2)

. o
where the integral is evaluated as lim [, .
B o o0

We can'0f d0ursé extend Al to the complex plane.

There is an asymptotic-expamsiﬁn of Ai(z).

88 2 = @ in the sector [ph z| =% « § (6 > 0).

2/3 « 23/2, 4 _ = 1,

0

‘Here 14

;)S P(BS + ’21‘) :
Ug 5 crt (1)
® 335(2 ) P (%)

The following two funetions will be used in.

C 2wi/3 .
Ai-(Z) = Ai(ﬂe .'Z) (5)

It is clear‘that Ai satisfy the following

rquations




y* = exy (6)
It follows from (3) that we haveAformulae for
the asymptotic eipanéion of_Ai(z) in the sector
Iph-zl = ,2w/3_m 5 (& > 0),_
We.should also mention the non-trivial fact that
the gefos of Ai(z) and Ai'(z) are éll real and negative,

In particular, As(t) # 0 for t € R.

ection & - Two Lemmas

P s ol

We will prove in this seetion two lemmas that are -

negeded later, .
Theﬁfirst lemna ié concerned with theifollowing
problem in 0.D.E,
Let p(z) =2 v a2k a1z 48 e a

Polynomial. by,

n), is a set of
polynomials. |
Consider the problemrof solving
p(D) u =0, B | (1)
and bi(ﬁt)u(d) = 0, = | ' - (2)
| We want to find an algebraic condition under which

{1) and (2) will have only trivial solution.

If the T00LS Aj,sesshy of p(z) = 0 are all distinct,




then it is easy %o write down the condition as

rank of the matrix (b;(r:)) = n. {3)
' . i
1=J=n

kY

If the roots Aivesosry OF p(z) = O have multiplicitles.
MyeseesmM, we define B to be the following matrix.
. .  {my-1) ' (my-1) .
Prlhsd DIO) o b T () e By (A e e by E ()

. L2 'y ) [

[ L] [ ] ® L4

1200 %G - v g o o)

(&)
Then +the conditiOnfcan be written as -
rank of B = n, ' (5)
What we want is a coﬁdition=that is insensitive to
the multiplicities of the roots of p(z) = O, |
- Let € be a.curve in the complex plane encircling
all the roots of p(z) = 0 such that the winding number

of C with respect to easch root equals 1,

demma 6.1
(1) and (2) have only trivial solution iff the

rank of the matrix B = n, where

bi(z)

T iy




(r)( s) % mg-1, be one of the

(r)
Py )
column vectors in B(see(4)).
Dencte p(z)/(zuks)r+l by f{2). Then we have
bi(z)f(z)
e - de
21 'p(z)

L]

®

by (Z) (%)
MMWWWMNMM dz

C p(z)

-l

belongs to the column space of 3. Conversely,

L bi(Z) dz§ be a column vector of §
s e pr“7“ . 5oebium '

1

2l

It follows from partial fraotiongand'Cauchy's theorem

that ¥ belongs. to the colum space of B.

Q.E.D.

In the case of 1 = N, then

p(D,) u = 0, | (1)
1 (24)

have a unigue solution for any ngl s J £ 1, iff the

. bz}
atrizx B = (ﬁgﬁ, S RPN LS )o 4 = i,j < n, is
: “ul "G op(g)




nonsingular.
Also, in the definition of E we can replace {23“1:

1 = j =n} by any basis of C[2]/(p(z)).

. The second lemma is concerned with ndnsinguiar
matrices.

Let A 5@ a nonsingular n by n matrix and B be
the inverse of A. Let I be a subset of {1,2,¢00,n)
and J be th 'compl@ment of T in {1,2,..0,n}. Assunme

that |I] = m and [J]| = nem.

1=k=m m+isli=n

nongingular i is nonsingular,

i i a vector U = u£1 # 0 such

L]

that upeq=+++=u,=0 and Al

= O0.for i € I. This is true iff BU = ¥, which in turn
is equivalent to ﬁlbeing singular,

QoEaDs




Seetion 7 Some Motational Conventions

We will adopt the following conventions in this

work.

(1) Let i,3j, and % be natural numbers. Theorem{lemna,
proposition, formula) i.j. means theorem J in
section. 1 of the same chapter. Theoren (lemma,
proposition, formula) i.j.k. means theorem {lemma,
proposition, formula) k in section Jj of chapter i.
The summation,conyentibn aibi = igjaibi will be used
whenever there is no ambiguity sbout n.
df will denote the gradient of f.

If v(x,p) is a function dépending on a positive
parameter p, then,for'any natural'number_N,

vi{x,p) = O(p“N) means IpNV(x,p)l = Gy for all x in
some domain .. (1)
v(xep) = 0(p™) means (1) being true for all N,

A = @ ) means that A is a compact subset of Q.

-We say that a contour ¢ encircles complex numbers
llﬂbq,,hk if the Winding number of ¢ with respect
to X;(isl,...,k) equals 1.

Lo . . . .
é@(Q)AlS the space of distributions in .




Throughout this chapter, P will be-éh operator of
the form -
“P(x,t,Dy,Dy) DY *+ Ag(xyt,D )00t Lo Ay(x,t,D,)
where t € [[0,0] for some T > 0, A. s(x,8,D.) € OPST(H“) (def
Oejéﬁ) Cis properly supported and Al(x T Dy ) depends

o’ »

smoothly on t, for 1 < i = m.
Let aj(x,t,£) € 8 ( RN ) def.0.3.1)be the principal
symbols of A;, for 1 = m. The pricipal symbol of P

is defined to be

Palet f,7) = ™ 4 ag(x,t,8)em=t ¢ L., (T8 )

Pp is agsumed %o be real and to satisTy the following
strictly hyperbolic conditions p (x,t,¢,7) = 0 has m
distinet real roots for any non-zero real .

We shall write x,,,4 = t and gn+1 = T whenever we
.do not want to emphasize the "time variablé" t. In
thiz notation we shall write

PRix,8), (x.8) € RO*L RO for the principal symbol

Pp-1(x,£) will denote the part of the symbol of P

that is homogeneous of degree m-i.




Section 2 . Initial Value Problems

Let Vi =& ﬁMj(x)pk+JeipW0(X), 0 £k 35 m1 be

oy A

Jty
oscillatory functions with strictly positive complex
phase function ¥, . Vi 'is supported near 0.

We want to solve asymptobtic initial value problems

of the form:

Pu = 0(p~N) : ' J (ia).

B wige = vy + 0L O aw

where N = 0,1,2,,,, , ¢ [O,T] and O = k = m-1i,

Section 3 The Ansaky

In order to solve (la), we set

M : o ad e
_Zﬂuj(x,t)pJe&ﬁ$(k’L), where M depends on the N in (is)
is

By (0.3.1)

[

Pu = & g.pd iV
Jsm ¢

cm(x) = pm(x, d&ﬁm?);uo(x)

[}
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)
g
!
T
e
—

(Tugd(x) + p (x, ap(x))u (x) (2)

1 ap, .
'i" -a-gv{! (X.» dﬂg(X)) Sqi‘j ¥ L

841 o .
T T P G av(a) D,

In general, Cmml"&»i(x) = (Lur)(x) +rpm(x,. d\!f(x))ur+1(x)

gr(x) : - (3)

O

¢ eco » U, 4 and their

where & is a function of v, U

derivatives.

Setting (1) and (BJ_Qqual to zero, we obtain the
eikonal equation.
p (%, Q¥(x)) =0 | (4)

and the transpdrt equations

- Lur+gr=0,.r=0,"1,‘e_oe (5)

We shall solve (4) in two ways. Once we have the

phage function ¥, solutions of (5) are easy to construct.




on & solution of the Eikonal Equation by the

Method of Characteristics

Led dir, (O) o and Ty, eves 7 be the m distinet
‘roots of the eguation pm(o 0, 0,1) = 0, It Tollows from

strict hyperbolicity of P that

axs

?

Pm(Xgﬁ)'$ 0 implies _9Pm (

ag”ﬂ"’l :

Let %0 be any almost analytic extension (def.0.2.1)
of_mo(x} to ¢ in a3 neighborhood of 0 and §m be any

almost analytic extension of P, to a neighborhood of

. & +
ritl x KD 1 73'71’_1 ¢t 1

We have the following Hamiltonian equations

. Y]
corresponding to j nanely,

az. P
= S S B
ds az
L 1 =isn+ 1 (2)
d . op
== B (2,8
ds azi

For Z(0) = 0, £(0) = (EO'T1) the solution to (2)

s

is just the null= blcharacterlstlc of p_ through {0,(¢ ﬁrl))o

We shall denote this null-bicharacteristic by b. By (1),

. . +1 :
the projection of b on R" 1 is a smooth curve c.
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Many properties of the Hamiltonian-?ector fields
on real symplectic manifolds can be geheralized to the
almosf analytic category. Here we only deal with two of
them, . : | |

| ﬁét'fs be the fléw generaﬁediby (2), i,é, fs(z,e)‘r
= (Z(S)pﬂ(é)) € C¢+1 X C?*l is the solution of (2) with
ihitiél conditions (Z(0),2(0)) = (z,0).

Since Py is real, f_i R2N+2 qtR2n+2

s lm £ (z,0) | = o ITm(z,0) 1) o (3)

where lhe esﬁimate.is uniform for (zﬁe,s) in any compact
subset df cn*l oy gt R. We shall ﬁse the symbbl 0
in the éame‘sense fbr the following TwWo prdpositions°
Let o =dgga dxy Foeee F Al AdX 4
| ® = dza dZ1:+ eee + d¥ 41 A dZpeq 38 the

extension of o to T (¢P¥1),

Propogition 4.1

o Beytann) T Ba,e) + 0mmGe,)M)

for N = 0, 1, 2

» LI Ll

I-EJ;Q‘Q_‘QE l:et w1,W2 be any 'two Of le .noop Zl’l‘*‘.‘!.' 61’ é ooy

o BEy . Bk . %Ek YT
2 o2

e of Itm(z(s),2(s)) 1" )

the almost analyticity of ﬁmn




(%) then follows from the fundamental theorem of
calculus and (3).

QHEODE

In particular, if (x.,t) € RI*L 4 Rn+1, then

# o _ .
s Brg(x,0) = Ox,1) | -8
Let (*) be the canonical conjugation on cAnt2,

It induces a canonical conaugaflon on the tangent

bundle of GZniZ

Given (x,t) € R2n+?, sincé

T ‘st(h k)

fs* ' T(X,E) is real, it

follows from (5) that for any u, v € T(x E)czn*z
o B i .

na

B0y () < B ) Eaers T ()
Proposition 4.2
Cod B £.(2,0)) = o(lIn(z,0) ") (7)

ds

for N =0, 1, 2, ...
Proofs (2) and the almost analyticity of ﬁm implies
N
L.HeSe = O(1Im fs(z,e)l Jo (7) then follows from (3).

Q.E.Ds

The complex phase function wo being strictly

positive at O means that

30
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Im WO(O)-m 0 and the matrix

t 32 im”j
3% ox

(O) ) is positive definite. (8)
*J

Therefore there exists a neighborhood Uy of 0 in ch
such that (8) holds for U, NR" and
d@%z.;Ui “,_;_cn is a diffeomorphism. ,(9)

- (1) lmpi1es that there exists a neighborhood Ué of

0 in ¢” such that

B, (w, 0, a¥ (w), f).m 0 has a smooth solution vy (w) for

W €Uy and v1(0) = Tye.

Dgfine U to be U1 N Us.

Let F(w,s) € C*™2, y € U ang s ¢ [0,8], be the
nOlUthﬂ of (2), i.e.

Q..E' 7.-:: ap 4 ?7

d5 = 38 (Flw,5))
(10)

e ei = .- %%m (F{w,a)) L= 1, .., n+l
i

L

with initial conditions
Fi(W,O) = W 7 . = 1,\9..;,1’1
Al (w) ' ’
{w,0) = 10N = 1,0e0.,0
+1+ $ :
n+i+i 3z

(w,0) = 0

F

n+1

an.a,.z("vio) = Tl(w) . : (11)

and F(0,=), 0 = s £ § is the null bicharacteristic b

with Fn+1(0,s)_:
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Proposition 4.3

Fi: U x [0,7] e T (CPF1) 59 an imbedding.
Proof:s Follows from (1), (9) and the fundamental theorem
Of O 01) G.E:: &

Qo’Eth

We will denote the image of F by . Let
io s { (w, dﬁo(w))'s w €U}, then EG ig a2 positive
almost analytic Lagrangian submanifold (def.0.2.3) of Czh

and T is just the flow out df-Lo by the Hamiltonian

vector field (2).

Proposition 4.4 _ ‘ ,

Fooor(rM = p
Proof: F(we,so) E'T*(Rnfl) for some (wo,so) €U x [0,8]

implies F(WO,S) € T*(Rn+1) for all s € [0,8] because the L

Hamiltonian equations (2) are real on T (RPYY), 1n

particular, F(wy,0) = (w,, 0, dﬁo(wo), 0) is real, i.e.

el . . n . o - ' i
w, € R" and dﬁo(wo) -,d$b(w0) € R'e (8) implies wy = 0 , |

and hence F(wogso) = F(O,so) € b,

Q.E.D. -

1t follows that we can use iwl to measure the

distance of F(w,s) from F N o (RPFLy =y,

For the rest of this section, the symbol 0 always

denotes estimates uniform for s ¢ [0,8] and for w
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‘belonging to some neighborhood V < U of 0. in ch,

Lewms 4.1

fim P(w,s) | = of fw i)
Proof: Follows from proposition 4.4 and the fundamental
theorem of 0.D.i,

QR.E.D.

Proposition 4,5
gl (w,8) = O lwN) i<jsn (12)
o N
PplF(w,8)) = o(|wl") - (13)
f'Or’ N E,Op 1, 2, v o ¢ @ ‘ . |

Nl

Proofe To prove (12), observe that if we differentiate

(10), by almost analyticity of Eﬁp.weiget

d_ ¢ 3L (w5 S (w,g) |V
S awi(”’&) ) = 0( Imlp(w,s) 1Y)

) o Jw ¥, by lemma 4.1
Similarly, in order to prove (13), we observe that
%g ﬁﬁ(F(wps)) = 2Bp , &L _%g? . %§i+1 + o i)
of 1), by (10)
Q.E.D.,




Proposition 4.6 .

o is flat on ﬁ; 1e2i giﬁ vanishes to infinite order
Proof: By proposition 4.1 and lemma #.1, it suffices +to -
prove that &, oy = o( wi¥y, But this follows easily .
from (11) and the almost analyticity of %Oo

Q.E.D.

In summary, we have shown that F is a 2n + 1
o . . . . r # ,_n'ﬁ*l
dimensicnal real submanifold of B (C ) whose
. . . LN T ao, .
intersection with T (R ) is b and ® is flat on F.
It turns out that the canonical projection
o 4] . , . ) \
we F oy 0V 44 an imbedding in a neighborhoocd of b,
To verify this assertion, we proceed in the following

manner.

Lemma 4.2

1 =V 5 0 for v @ B b
T Or(0,5)(Vs¥) > 0 for v & Tp(g o)F \Tpe, ()b

Proofs By (6), it suffices to check this for g = 0O,
But when s = 0, this follows from (11i) and (8).

QsEaDe

Lemma 4.3
7t i an immersion along b.

Froof: u €T (F} implies that u = v where
'_ F(O,S) R 1

“U“l € EF(O!S)F \TF(O,S)band VZ S TF(O,S)bo
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4

Since b is real, v, 1s real and ol{u,l) 5(v19$1)
by proposition 4.6,

wi(u) = 0 implies a{u,u) = 0 and hence
Lemma 4.2 then implies vy = 0,

Sow{vy) = 0 and we have v, = 0 by (1).

i Q&EIDU

Prombsition L7
TR Gn*¥ ié aﬁ.imbedding in a neighborhood

of b. ' | |

Proofs Follows from lemma 4.3 and the fact that

Wt Doy ¢ 18 an imbedding. |

Qﬁ}EQDo

2 . . .
Since p, is real along b, there exists n+l

linearly independent real vectors in TF(O c_,’)(F),sfc'[O,,S:]a
¥ .

By the implicit function 'E;heoremF we obtain,the

following corollary to proposition 4.7,

contains a neighborhood of ¢ in RV,

We shall denote this neighborhood of ¢ by a.
Then there existe Hi §em o0¥1 such that w(x,H(x)) = X
Tor all x € G,

To make the discussion simpler, by a'change of

coordinates, we can assume that




{ (xlﬁ cees Xpgq)

and G = {(le. ec.oo xn‘ﬂ)
and 0 £ x|
n+l

Note that in this coordinate system

H(x',0) = aliy (x') for i =1, ..., n. (14)

We define the function $.by‘£he Tollowing formula.

XI’l’+ i

. | ol X
¥i{x 'Xn+1) ﬁi:l JO Hi($x°)xidﬁ + JO 1(0 t) £ 4+

Aps

¥ (0) - (15)

where x' = (%, oo, Xn), ix*| < v and 0

('X' ’}{n+.1). % O( ]X’I

Tor N = 0, 1, 2, ... and the estimates are uniform on G.
Proof: Follows from proposition %.6 and the fact that
Ix*| measures the distance of (x, H(x)) %o b on P

Q.E.D,

Lemma b.5

FOI‘NE l’ 29 [ 8§ i:if e e p n‘f"l

Ny .
an+1) - H. (X ’Xn+1) = 0( |x*] ), uniformly on G,

Proof: Follows from (15) and lemma 4.4, QeE.Ds




L)
~Z

Theorem 4.1

There exists a complex phase function ¥ in a
neighborhood G of ¢ which has the following properties:

(L) v, = ,
lGTﬁ{xn+1 = 0} OIG n{xn+1 = 07}

o
[N
ot
p —_

& (o) =7
LES L

(1i1) p(x, ay{x)) is flat on ¢, i.e.
Cop(xe ar)) = o ax,e)N ), W= 0, 1, 2, ..,
ﬁhiformly for x € Gri | |
( d(x,0) = distance from x to ¢ )
(iv) 8¢ # 0 along ¢

is pogitive definite

o]

(v) along ¢, (82 e e
& ’(g“fjax 1=i, Jsn+t

on any'nmdimehsional_éubspace of" the tangent space
_trénsveréal to c.
Proofs (i) and (ii) are clear from (15). (iii) follows
from proposition 4.5 and lemma 4.5, (iv) follows from
the fact that.(x, ay({x)), x € ¢, describes b < |
T*(Rn+1)\\zero section. (v) is just lemma 4.2.

G.E.D..

_We have thus solved the eikonal equation (3.4) in

the sense of (i) to (v) in theorem 4.1.
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~S - . .
hemarks Let ¥ be an almost analytic extension of ¥ to

nt+i

a neighborhood of ¢ in C , then - {(z, a¥(2z)})} is a

strictly positive almost analytic Lagrangidn submanifold

it

of order Qhe,(defOUZQ?).The flow out P .of ﬁ;

,ﬂ(Wn,dWO(W))} is equivalent (def.0.2.4) to a (2n+1)

. i~
dimensional veal submanifold of L.

Rection 5 Solution of the Eikonal Eouation via Rieathi

Equation

In this section we will directly attack the

problem of solving the equation

pm(x, dy(x)) = 0 to infinite order on ¢, with initial

conditions @(x',O) = $O(X')

ok Y =
R ox (G'O) Tl
nei .

where x* € R, ‘ (1)

Recall that ¢ is the projection of the null bie

characteristic b of p. through the point (O,O,iomj)e

Again, for simplicity, we assume that ¢ is given-
by xl(s)-x eee = x.(8) = 0, xn+1(s) = aand 0 =g < T,

We shall follow Elojclosely in our treatment.
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We have the Hamiltonian equations

ax., ap

i AR 1

dg 9ty S |

Aty . =3P i1 =1 = n+t C(2)
S T T )

dg- DM,

i

b(s) =((0,s), £(s)) is the solution of (2) with initial

condition (00,8 ,vq)s
| If we differentiate pm(x, av{x)) = 0 with respect

to x:, we geb

d
. 2[
mEm (x, dw(x)) + QO (x, dW(k))~ww$“ (x) = 0 (3)
. J ) *k : . 16: J
; i< ] = nel
If we restrict (3) to ¢, we get
-Pm (0,s dw(Ops)) + 2Ry (O S dv(o s) =i~ (0,8) = 0
AX , L ex . :
.)_ oo . . k -]
(3*)

By—(z), (3') will be satisfied if we set
a¥(0,s) = £(=) : | | (&)
and we have solved (1) up to first order on c.

Note that by our assumption on ¢, we have

$oo (0,5,2(s)) = 85, ne1 : | (5)

] j -
IT we differentiste (3) with respect to Xis We

get




Lo

% T e N - P e T
B, 3% 3K . A% OXs ax azm 3X. SN ¥

19% 3 10%y 0 99Xy RS T

: 2. 2 | |
. 35Dy LAY 2 + 2B asﬁ = 0 (6)
azkagl qzlaxi oxkéxj agk axkaxjaxi

. If we restrict (6) to ¢, by (5), we have
- 4

A+ 1B+ BM 4 NCHM + M = 0 L - (6")

Wher@ fOl’.‘ i,j = 1929.0h,pn+1|

- ' 2.
M(s); 5 . "S?cmgff (b(s))
| 9%

Hi
at
LR e
e
7
bt

Bls)iy = —2Pn (n(s))
C(S)ij - ;mmaﬂm (p{sg)) ’ ‘ ' (7)

andré = 48 .

Note that A;_B,-G are real matrices and

a=4% c=c¢" - (8)
(6! )is"a matrix Ricatti equation. For a detailed

discussion of matrix Ricatti equations see [11].

We want to solve‘(é‘) with the following initial

conditions




w015 7 toto)
J

%4
. 3Dy C
M(O)k(lil) m(o)( o) = gigr(O,Lo,tl)

1=k s nrl (9)
We consider the following system of linear

egquations assocliated with (6%):

&

y = By + Cq |

with:initial conditions
y{0) =
n(m - 10(0) (11)

Lenmz 5.1

If y, n satisfy (10) and y is.nqnmsingular, then
M = hey“i is a solufion of (6').
Eggggs Direct substitution.

Q.E.D.

211t 2

Recall that 3 is Lhe canonical Z-form on C ;1T

n+l

(ug,vi) € €™ % ¢™1, 4 = 1,2, then

a;((ul#vi)ﬁ(uzﬁ“VZ))g Vl'uz ""Iul'VZ L]
Lemma 5.2

If (ui(s),vi(s)); i= 1,2, are solutions of (10},

then %((ul,vl),(u?,vz)) is independent of s.

41




prtng e

_ljgr:'o“q;_‘s a aj((uisvl)s-(UZEVZ)) :
ds

i

V(wAul - :B‘tlvl)°u2 + Vln(BuZ + GVE) o _
MKBui + Qvi)v2 - uin(mAuz - Btvz), by {(10)
0 »by (8)

QelE D

Since A, B and C are real matrices, we can deduce

by the same proof the following lemma:

Lemms 5.3

Under the same assumptions as in lemma 542,

m((ui,vljp(ﬁés§%)) is also independent of s. o 75

Lemma 5.4

If y(s) and n(s), 0 = g < T, satisfy (10) and (11),

Ok o .
then (yn+1(s), nn+1(s)) = b(s) = (0,1,5(s)), where ’ |
'1S‘t : ) -

’yn+1 and'ﬁn+3'afe the n+ column vectors of y and 7. |

mggggs Differentiating (2) with respect to s we obtain

% 2 2
4y = _a«gml + mﬁmggm ?l
as a}xka > 4 ¢ E; gi

& . 2 2
ag s 3% oo 9 N .
r_*:“é' = J—- | Xk an “m E
s axkax- &Elaxi 1

' T ¢
By (7) and (11), we see that (y,,i.n ;) and b
satisfy the same differential equation with the same

initial‘conditions,_ Q.E.D,




Lemma 5.5

17 y(s)land nle), 0 =8 =<7, satiﬁfy (10) andr(il)

then y(s) is non-singular for 0 <'s =< T,
Qggggz Lex ylg.&egyn+1 and Mysooe Ny+1Pe the column
vectors of y and M.

Suppose that a,y;(s,) = 0 for some s, € [0,77],
Letu = a, 3¥; and v o= ay ﬂ., then

m((u(q ) V(u )) u(émT v(s V)=.0, By lemma 5.3,

F((0(0),(0)), (RTY,5T0T)) = 0, i.e.

":r‘:wnn”:uhmj - . 0)... = -" 23 . ®Tm . ,u" = .
airﬁ(O)lan_ u( )IJ 5 0 or(2i)a; I m(O)”aJ 0

By (9), Im M(O)k(n+1) = Im M{0) 0, 1 =k < n+t

(n+1)k

and (In 1(0);;) = (Im 3% v, (0)) is positive definite.

0X.0X.
X30x

va, = 0for 1 %1 Sn. But then a ,(¥y+q # 0 which

implieg a

=0 mma 5.4,
il ) by lemme 5.4

Q.E.D.

Pronogition 5.1

Equation (6?) with initial conditions (9) is
‘solvable for 0 < s = T,

£roofs Let (y(s).,n(s)), 0 = 8 = T, be the solution of
(10; and (11). y{s) is nohnsingular by lemma 5.5. By

lemma 5.1, B = n*yﬁl will solve {6'), It is clear %hét

(11) implies (9). G.E.De
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So far we have solved (1) to order two along ¢.

If we differentiate (6) again and then restrict it to ¢,
we will obtain'normhomogeneous linear differential
equations.  We can solve then inductively with initial
conditions ¢ompaﬁible with (1).

(1) is therefore completely solved. By Whitney's
theorem (see [4]}, we can extend ¥ to a neighborhood of
¢. This extension of v owill satisfy all the propérties
stated in theorem 4.1. We have thus reproved theorem 4.1,

Suppoée x'is‘anothér functioh satisfying propertics

» a

(1), (ii) and (iii) of theorem 4.1, then

n+1'Will satify (6) and (9) along c.

Bgt there is a unigueness theorem for matrix Ricatti
equations (see[11]). The uniqueness theorem for O.D.E.
will take care of fhe oﬁhér ' derivati#es; ‘x-and.ﬁ
therefore coincide to infinite order on c. We have thus

proved the following theorem:

theorem 5,1
1f X satisfies properties (i) to (iii) of theoren
4,1, then x = ¥ ig flat on éo In particular, x will

P

algo satisfy (iv) and (v) in theorem 4.1.

b




3

The soluticon to the eikonal equation (3.04) is

therefore essentially unique.

Remarks If $O depends continuougly on a parameter, then

o

11 the estimates obtained in sections 4 and 5 will also
be uniform with respect to the same parameter by the

fundamental theorem of G.D.E.

-Solution of the Transport Eguation
We shall follow the notation in section. 3.

Theorem 6.1

Given any positive integerrN and ¢ > 0, there
exist functions UgseeesU y SUpported in o  such that
Lur + 2y is flat on ¢, where 3
C, -= £(x'?x 0 = T and d(x,c) = e}

2 = X
n+1) i+,

Proof: If we differemtia{e Luo = 0 with respéct to Xj
and then restrict it to c, we will get a smequence of

nehnhomogeneous linear equatidns of the derivatives of
u, along ¢. We can solve these equations inductively

with arbitrary initial conditions on {x 0}, 1Ir

n+1i
we extend u, to a neighborhood of ¢, then Luo'is flat

Q11 Ce

Since gr only depends on Ugroeostlnggs We can




L6

solve inductively Lur tog,. = 0 te infinite order on e |
in exactly the same manner.

VBy'using cut-off functions, we can assume that :
supp.uj < e, for j = O,fe,,mN; 1

QD

Remark s If the initial conditionw OF Uypaoe U yaepend

continuous sly on a parameter, then all che estlmates

1nv01v0d will also be uniform with respect to the same

parameter by the fundamental theorem of 0.D.3. .

section 7 Solution of the Initial-Value Problem

We will follow the notation of sections 1,2 and 3.

Recall that TiresesT, are the distinct solutions of

the equation 28 (O 0, O,T) 0. Let bl,o{.pbm be the

U1l blchdraciorlﬁtlc of 2 with initial conditions

b (0) = (0,0 %O,T ) 1= 1,000,m, and ¢ty eee,0™ be the

projections of b to RNTL,

By theorem 4.1, we have cdmplex phase functions

wj,..n,mm deTined on neighborhoodg of ci,...,cm, with

j.. 3‘ 1;0»9;]710

In what follows, L;k will range from 0 to mel and

J will range from -Nem to 0,




Let u(x) = ukj(x) pj elpwk(X) (1)
. l+' o i
then Dl u(x*,0) a%(x') e J elpr(X) - {2)
e S -
thoar(x') = o) | :
wi a, x" “x Uyo (x',0) 7 _ B | (3) j
and in general ' | : .
oo 0O . 4
By Ty WXt 0) e my | ()
where hlg only depends on By e L = r = 0,
If we compare (2) to the initial conditions

- 1{ 1 ) h 'V
1 elp\o(x ) | (5)
then we obtain the fellowing equations

[} - "-l o : ’
alj(x } o= £ ukj(x ,Q) + hlj (5)

' | 14
¥ =3 i -
v (X ) C%:JJ(}{} [

which can be solved inductively for u ',0) because

k(%

o \ 1o, :
the matrix (T ) is non=singular,
By theorem 6.1, we can construct uy (x) supported
in cgg for 0 £k £ mel and =Nem = j =0, w1th initial

]
data ukj(x , 0

Theorem 7.1

Given any positive integer N and ¢ > 0, there

exists a solution to {(2.1) in the form of a collection

e sy
of Gaussian beams u = ukj pJ et™VE 0 5k = M1,

Qp with supp ukj o cgg

Proofs Follows from the above construction, theorems

——g

hil, 6.1 and the equations (3.1, 3.2).  Q.E.D,




By the unigueness theorem'for all the differential

N S S . k- v ' J iP\‘Z—fi-, PR
equations involved, if u' = ukj pY e k is another

solution, then the corresponding quantities in w and u*

wlll ceincide to some high order {(depending on N)-on ¢,

i.e. the Gaussian beam solution to (2.1) is essentially

unigue., '

Bemarlks I the initial conditions (2.1 b) depend
continuously on some parametcrsg fhen the estimates in
(2.1a, 2, zb) w111 be uniform with res pect to.the same

parameters,

section 8  An Application

As an application of the theory developed in the
previous sections, we shall prove a result about the
propogation of singularities of strictly hyperbolic
equations of the first order,

Wé-considér a Tirst order hyperbolic operator

Dt - A(xpt,DX), where A € OPSl(Rn) is properly

supported and a(x,t,f) € Sl(Rn), the principal symbol

of A is assumed to be real. A also depends sgmoothly
on t. Also, a(t,x,£) £ 0 for EA 0,
Let v be a ¢ function of t € [0, T] with value

in the space of distributions in the x~variable. We

h8




e

assume that v is a solution of the following initial

value problems

Pv =g, t¢[0,1] (1)

v{x:0) = v_(x) (2)
where g € C®°(R™ x [0,7]).

Let (x50E,) € T (R™) and b(t) = (x(),%,£(t),c(t)),

0 % =7, be the null bicharacteristic of ¢ - a(x,t,2)

through the point (XO,O,Eopa(XO,O,EO))b e(t) = (x(%),t)

is the projection of b to RN,

Theorem 8.1

Ir (xO,EO) ﬁ'WF(vb)@efw0n452)then v is micro-

locally smooth along b, (def.0.4.6) Consequently,
(x(t'),E(t°)) £ (Div|t:t.) for i = 0,1,2,400, 0 < t* < 1
and b(t) £ WF(v) for 0 < t < T,
Proofs ILet t* € [0,7] and

A

ip(x-® + i Lig%;ﬂ, )

Uiy o g (x) = 2(x) e | (3)

where £ € C? (R™), ¢ = 1 near x(t') and the parameters

"

Ix'e8') vary in a neighborhood of (k(t'),&(t‘)).

By theorem 7.1, given any positive integer N,

there exists a Gaussian bean

i ip\!f(xpti X';t'sﬁ')
u(}{st) == uj(xsti X‘s't'vgt) p- e

W] @ 4 0=t = ¢
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such that - ' |

3
Pu= 0(p~M)

(5)
= " !
A A A
We have the following Green's formula
$J é VP u - PVi) dx dt
L0, xR |
= Jen v E -~ v(0)a(07 ) ax | (6)

1f the parameters (x',£') are close to {(x(t*),e(t°)),
then we can assume that Supp u is contained in an

arblirarily small neighborhood of o, In particular,

e o oo (x,0) s supported in an arbitrarily small
(t t X PEJ)

will then belong

!:
neighborhood W of Ko dxw(x,o)ﬁ x €W, o
to a small neighborhood of Eow
3 - 3 1T 1o !
Since (xo,EO) ﬁ"hf(vlt:OJ5 by lemms O.4.4,

[gnv(0)ETOT ax = o(p™) (7)

Also by lemmas 0.4.5 and 0.4.6,

'J{O 75RO Pv U dx 4t

2 lX‘L

= f{o - U dx at = 0(p™V) (8)
y I jx

In view of (5}, (7) and (8), we obtain from (6):

| '|2
X o= X
mip(xﬁgi e mnrm s )

fﬁn,v(t'sx) t{x) e 2 ax = 0(p~V)

(9)




Integrating with respect to x*, we get
. ““j_p}:"lzﬁ N .
Joo vt ,x) €(x) e dz = 0(p~™) (10) |
R _
It follows from (10) and the remark Tollowing

theorem 7.1 that v is microlocally smooth along b. The

rest of the theorem then follows from defl. 04,5,

Q.E.D. |




Ghapter XTI Boundary Value Problems

“Section 1 Elliptic Operators

Throughout this chapter P will be an operator of

i

. ! n .
the form P(xgypuxpny) Ao(x,y,Dx)Dy toeee # A (.0 ),

where A, (x,y,D ) € OPS*(RN) (def0.3.3) i= 0

2

5oy,
depends smoothly on y € [0,Y].

Let;ai(xgy,g) ¢ s3(R™)(def032) pe the principal
symbol of Ai“ P ig assumed to be elliptic, i.e. the
principal symbol
pm(xgyggfﬂ) = a (x,y,6)0l + L., + a (x,y,£) is non-
zero for any real (£,n) # (0,0). We shall also assume

Aj to be properly supported (def.0.3.4).

section 2 Coercive Boundary Value Problems

\ ] my + nt _
Let Bl(X’Dx”Dy) = BO(X,DX)Dy S S Bml(X’DX)
1
i
We want to solve the following asymptotic boundary

fer 021 < v, Each By ¢ s™HR™Y) is properly supported.

value problems

Pu = O(pmN)

v f N
Bl_uly=0 = vy ok .O(p )

' : Inl-{: j
where vl(x) alj(x) P




ig an oscillatory function at the origin with strictly

stitive complex phase function y, (def .0, 48)? = Ay (0},

Let b (x £) € SJ(Rn) be the principal gymbol of
A ) = Cp il + Bl the
Bi-and ?l(xgi,n) = bi(x,i)n toea. bml(X,E) be the

principal symbol of Blo We assume My £ mel.
By the elliptic assumption on P, we have the

following decomposition of pm(xgopisﬂ)ﬁ

pm(XpOngZ> = M-}.(X s %) M (X L %) (2)

-where the roots of Mi(#,z,*)-m 0 have * imaginary parts
for anyi(x £) € (R,
We assume’{P,Bl]‘satisfy the coercive conditiong
in a neighborhobd of (Q,EG)
(i) v =n" = degree of M, . , (3a)
(i1) { by(x,8,2)s 0 =2 = m¥ } form a basis of -
clz]/art) (3b)
We use (f) to denote the veetor subspace of C[z]

generated by the polynomial f.

Suppose f and g are two complex polynomials with

no common zero... Let I' be any contour in € that encloses

all the ueros of f but none of the zeros of g.

Lemma 2.1

[ el e A AR

Let bl”‘“’bk be complex polynomials, k = deg T,

Then the following two conditions are equivalent:




(a) {bi,ae.,bk} is a basis of C[z]/(f)

(b} the matriz

ke p, ByladlalT g,

e / is non-singular.
2ni P (z)g(z) 1\3 1=k

Proof: (b) implies {a): Let tiby + ... &kbk'é (£,

b, gl~i

then «, N S N T dz = 0, by Cauchy's theoren. ;‘
d T JP feog L

(a) implied (b): Since {bi,,..,bk} is

a basis of G[z1/(f)
and the linear transformation I gh on ¢[z]/(Ff) i«

invertible? by Cauchy’s theorem,

bolzl‘“i
1} d A7 )
( 291 IP g

LS

mw%iy dz)y . 3, 1kn A8 non-singular, (Note that

-

= Osoae,ke1]} is also a basis fop clz1/(f).) .But

the latter matrix is clearly non-singular by Cauchy's

theorem,

Q.E.D,

Condition (3b) is equivalent to the matrix




bi(x,t, z)zl |
( 2wl “c p(6“§“E“z) dz )y < j,1 = @, being non-
ingular., : (L)

Here C is a contour in the upper half complex plane

enclosing all the roots of M'(x,¢,n) for (x,%t) close to
(0,80,

Proofs FollOW$'directly Trom lemma 2.1.

Q.E.D.

:ive Boundary Vaiuc

Froblem

We shall follow the notation of sections 1 and 2

#

In order to solve (2.1), we set

iy m, _
u = e L u, (1)
1=1 : '
~Nem ) Cotlx,v,2) e PY2
where u_(x,vy) = I pﬁ 1, 8% dy
’ g 120 2wl Y0 plx,y,dv(x),u)
and C is the contour in lemma 2.2. _ (17)
- First of all, we se't
—_ & S‘“’i .
0(x9ysz)‘“ el (x) 2 (2)

: : wl{-emm '
B uy. _ =_elpW T 1w pq (3)
1 Hy=0 q=m, 1q . ‘ Bt




i

&

b (Xad\!f(X),Z)aZ
where w = 1 1 ' o N
F lml 291 IO 7 P(X,O,GW(X)FZ) cso(x} az

(&)

Comparing (4) and (2.1c), in view of lemma 2.2

Pl

“_‘ . ,' 1. - 3 o '. L3 L3 . ]
“lml Wlml uniguely determines cno_ln a nelghborhcod

of 0.
| - ipy ~N | P »
Now Pu_ = e . % v , 1=gsm (5)
' = r=m ST '
o _ . 1pyz
and v (x,y) = e ¢! (x).z5"1.¢ dz
. 2wi ¢ 80 -
= O by Cauchy's theorem
ipyz
. . .y :
Vs(mul)(xpy) 2wy g vs(mmi)(x’y’Z) e dz (6)

¥ . - y - o . '
where vs(mmi)(x,y9ZJ Cs(ml)(x’y’“) + Rstni)ﬁxvyEZ)
’ (7}
with R depending only on the symbols of p and co(x)e
Next we set

: e S=1 . '
¢ 1)(X9y92) = cs(”l)(x) 2 - Rs(kl)(h,y»z) (8)

If we substitute (8) into (6), then v* is
_ s{m-1)

identically zero by Cauchy's 'théorema

The second highest order term of (3) is given by




o by (x,09(x),2). 551
Wl(mlmi) 2wy YC pm(xyo,dw(x)pz) 'cé(WQJ(X) dz + T(x)

where T depends on the symbols of P, ¢ and Rg(m1)°

Again by lemms 2.2, al(mlni) = Wl(mlml) determlnes

Ac;( 1)(x).uhique1y in a neighborhood of.0.

Similarly, we can determine‘cst for §t € «2

inductively by 1atting-othér terms in the asymptotic

expansion of Pu and Buly_o be equal to zero.

‘Theorem_Eai

Phere exists a.solution to the boundary value
'problem-(Eai) in the form (l), where each u is
supporte@ in a small neighborhood of (0,0).
u = 0(p ™),

Moreover,

Proofs Since the contour o lies in the upper half
complex plane ang wo is a positive definite complex

phase function, any function u of the form (1) ig 0(p™")

away from (OFO),_ We can therefore use cut=off functions

to control the support of each u

v
5

Q.E.D,

Eemark: If the initial data (2.1c¢) depends continuously

on some parameters, then all the estimates obtained in

this section will be uniform with respect to the same
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bparameters since -oup congbruction only involves algebraic

cperations.

section % An Application

We shall apply the theory developed in the previous

sections to prove g microlocal-regularity theorem Tor the

Dirichlet problenm of elliptic equations,
Wé shall folléw the ﬁotétibn in the previoug
sechions, -

| Let w and g be ¢~ functions of y ¢ [0,Y] with

value in the space of distributions in the X-variablie.

For some Eo # 0, g is assumed to be microlocally smooth

along I = {(0,y,8 )1 0 5y < Y}, (def,0.4.6)

Theorem 4.1

Suppose that Pw = g and (O,ao) g’WT(Dyw,ygo) for
0= J =m,-1, then w is microlocally smooth along
r' o= {,(Oey,li_o)s 0=y <vYl,

Consequently, (O,Eo) £ WF(Dﬁwlyxy,)-fer J = 0,1,2...

and 0 = y' <Y, Also (O,yggo,v) £ WF(w) for 0 < vy <Y
and any v.
Proof: By‘%he Preparation theorem for pseudodifferential

operators (see [8 ), we can write P = P P,

y Where




Pi(xvyfbxrﬂy) & AO(XWFDX)Dy toaag Am‘{’(x@y,Dx),

&n

The principal symbols ‘of P, are denoted by Pys  They

-satisfly the following condition:

Por £ £ 0 in Rﬂg Pulx,y,€,2) = 0 implies +Im oz > 0, ' ' . J
S | , ' _ _ (1) |
Let v = P,w, then Pw = g is equivalent to J
Pva=g |
v (2)
P+w S :

Let u € C”([y°,Yj X Rn); 0 = y® <Y, we have the
following Green's formulas

S Pvh -y "o odx dy
RAx[yiy] = -

m 1 [ ' m ~1 .
= 4 - d e J .. ™o
S S DY u dx + 2 S DI vy o Tou dx
J:_.:O )gl'- J ly:y' y ,yﬁy' jﬁo er y Iy“'Y ‘ .} I&f'-‘:l .
: (3)

where Sj and Tj are some boundary operators conjugate

%o the Dirichlet bouhdary éperators DJ; J® Oyeo0,m =1,
" . y L1
. J
J te S, = . 2 - T oaes h
If we write SJ .%Jo(k,y,mx)Dy S

jj(xp:y'sl?x)'s

then 5, is elliptic.

JO

By theorem 3.1, given any positive integer N,

there exigte a_function uy of the form (3.1) such that




" .
P oug = 0(p ")
T el ; | k ip{xeg + %i]x»x'[z)__ LN
Dyf kuilyﬁy, t(x) e + O{p )
pd = 0 0 € j«m o2

y Uiyt T 0 0 s

uy = 0(p™") for y > y°

where (x'fi) is close;to-(o,o) and &-é C?(Rn),.ﬁrﬂ 1.

in a neighborhood of O, {
If-we'éubstituﬁé v, in (B)Q”using (4) and thé

micfolooal amoothness Of.gg we obtain that |

- ~ip 3% ~ A|sext|? N
én 8oV gy b(x) e dx = 0(p~ ) (5).
if (x',ﬂ)_is.close enough to (O,EO) and supp £ is small
endughol | '

The estimate is uniform for (x',t) close to (0;&0),
Integrating (5) with respect to x’; we have

wipwet

J x) e T T ax o= o(p™) (6)

1 So¥] yay
uniformly for £ close to Ege
Since S, 1s elliptic, (6) implies that

mipxog

lfanv(yesX) L' (x) e dx = 0(p™") (6')

for another ' ¢ CZ(Rn)ﬁ'C' = 1 on a neighborhood of 0,

Again, by theorem 3.1, there exists Uy such that
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ipxet e%lxmx’la'-7~"

Byl Malysyr = b0 e | ook
Dd g 0, j # m=2

v ZIy::y’ -rm

Uy = O.(p“"?’ﬁ) for y » ‘y‘ | - 7 (?)
Substituting,uZ in (3) and using (?)1 welget

‘"J'.PX"E; ) g | |
JRH Sivlymy' C(X) e dsr = O(pm ) (8)

But 5, = Sio(xpy,DX)Dy + Sli(x,y,Dx) and S,, is ellipticsy
(8) and (6) then imply

_ L eldpxel ' =N .
Jan Byviyt,x) £'(x) e dx = 0(p™) - {9)

By an inductive argument, we can. therefore prove

that v is microlocally smooth'along B,

I we now apply the sanme argument to P+w = Y,
it follows that w ig microlocally smooth along
Yoz [(O,Eo,y)a 0 <y <Y}, Taking into account that
i 3 j ) L]

! WR =
(0,£,) £ i.(Dy_le:O), f§r j

the mierolocal smoothness up to y = 0, i.e. w is micro-

locally smooth on pr*,
’ QDEbD\‘-

Oyeverm,=1, we can improve



Chapter IT1  Reflectior

Let P(xﬁD)_be_a.mth order partial differential

operator on Rnfi

Saction 1 Egilﬂgﬁ@g E@Q;lx of Null»@icharacﬁeristics
|

with real principal symbol p(x,t), |
\

n+ 1 |
S ig a nonmcnaracferlgtlc hypersurface in R .

CIF is Seee RO 1 18 the natural injection, then
3 :

iq T'Rn*"‘i-lsﬂma S,

_ - ' S sl _
s 3¢ -
Let a € Tys? o # 0 and 1 (a) Nt p 1(0)

L . — o % n+1
{:ﬁlsceo,ﬁlkj 4o TyR L

- Following Nirenberg (bee [81)s the null-bi-

characterlsblc iy

,pauejrl of p through Bl,n,eﬂk are said
to belong to the same r

eflected family of nullebi-

characteristics corresponding to o.

Let ms T (ROFEy._._ gn¥l be the canonical

projection.

Throughout this chapter we shall impose

the follo

wing non-grazing hypothésis on-?l, cvog Pks
Gy o= w(Pi) is transversal to S at Ve (1)

Sd that

+1 .
R™ 18 given

If we choose local coordinates at y
{(Xlgenn;)ﬁl’tjgj t = O:}, 'the}’l is S
by i(xl,,ao,xn) = {xl,,,d,xnso) and

ire pFRITL

o™ T 8 is given by
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% . )
i (xigno-& gxn,g,lgoec,};n!,'g’)z(}{lgo.;,}{n’tgglisepgrl)s

From here on, {(x,t) will denote a point in Rﬁ x Re

if pm(x,t,a,f) is the principal symbol of P, then

p_ is real and
m T
Pp(x:0,0,1) # 0 (5 is non-characteristic) (2
o | .
Let y = (0,0) and q = (0,€ ) ¢ To(RY) . If

'Tl,oeegfk are the gzeros of pm(Osoﬂio,%) = 0, the none

grazimg hypothesis (1) is equivalent to
EM00,0,8 ey # 0, § =1 } (3)
‘E}l" E ,‘Oprj ] J"“ sooepha

We shall let R'1 = {(x,t): t > o0].

Perfectly Reflecting Boundary

We shall use local coordinates in the following

discusslon and we shall follow the notation in sectiont.
Let p(0,0,5_,7) = (r=1y)ese{very) q(v), where

q{(T) = 0 has no real Zero,

By (1.3), for (%x,%,t) close +o (0,0,ﬁo), we can

,T) ﬂ'(Tmrl(x,t,ﬁ))°*°(Tmfk(x,tf€))'q(x,t,i,f),

. : =X - :
Treearte € STRY) and q ¢ STEELy, ()




By the preparation theorem for Pseudodifferential

operators (see [87), we can write |
P(x;tlith)'m (D% m-Al(X,t,DX))”°“<Df m'AkO(x,t,Dx))v
_Q;(ﬁ,t;bgtbt)eQ+(x,thX5Pt)'(Dt - Ako+l(x,tpnx)j.,u_

(Dt “,Ak(x’t’nx) + T, where i's_ko = k., | N (2)

For (x,%,%) close to (0,0,Eg, the principal symbol

of Aj is fja The symbol of T vanishes in s neighborhood of

(0,0,ao) for all ¢, If q;(k,t,i,f}-are the principal

symbols of Q4+, then q = a.°q, and for ¢ ¢ T%(Rn),
q+(x9t,iﬁz) = 0 implies‘ilm_z > 0, (3)

Since 2 is real,

ey
=

Py = P_ as polynomials in 7 and hence

@

deg p, = %{(m-k). o ' | (4)

We shall write

pulx,t,8,7) = (TmTKO+I(x,th))‘°'(Tmrk(x,t,E))* afx,t,t,7v)

with degree P, = Hm-k) + (kmko) = my | (5)

and. |

oA t,E,T) = (var (x.t;E))=9°(7mrk (x,t,8))q_(x,t,t,r)
. )

with degree P, = #m-k) + ko =nq , - (6)

Let { Bja J o= i..oa,l 1} bea set of'boundary

partial differential.o?erators on.S. The order of Bj is

&4




less than or equal to m-l. The principal symbol of.Bjjafl

J
iz denoted by.bj(x,tpﬁ,w),
Following Majda and Osher (see (31),
{Bjs J= 1ieee,l) is said to be perfectly reflecting
at_(O,Zb) if there 1s no nen-trivial solution to the
OwDu-";*o . '
. ' ) ,
P (O,O,E;O,Dt)v = 0 -(’7.)
with boundary conditions _
bj(o,o.,'e;c'}gn,t) v(0) = 0, j = 1,‘,,..3.,,1 . (8)

The condition of perfect reflection is equivalent

to the following conditions

0,(0,0,8 ,2) span C[a]/(0%) (o)

Proof: By lemma 0.6.1, the perfectly reflecting condition

is equivalent to the rank of the matrix

r=1
1 b'Z ) . .t
Eite TTET Wi a5 eawal tom,
1 sr= m,

Here ¢ is a contour‘enclosing all the zeros of P, The

‘lemma then follows from lemma 2eZale

Q.T.Do.

Perfect reflection implies 1 = m, .




Remark:s It follows easily from lemma 2.1 that the
condition of perfect reflection iz independent of +the

choice of loecal coordinates,

Example (1)  Let Bj : ; £ J = m,.1, then (E,Bj) is
perfectly reflectingar
(2).  Ir P is elliptic, then (P, B, ) is perfectly
reflecting ire (P, B ) is COGTClVGg provmded,

that 1 = im,

We now assume (P,Bj,j = l,e,a,m+) to be perfectly

reflecting and that order of Bj # order of Bj? I G # 3.
1 2 2

The principal symbol olej is also assumed to be of the

form

ey b (}., teyei=t w1l (x,t,t), (10)
Jnj _

where nj = order of Bj’

e e,

Let u and v ¢ Ct(R2+l). We have a Green's formuls

- - ome1 o :
Sl PUV = WP v dx dt = % Jon Bu€ v ax, (11)
Rf’l' 3 N | j=0 “RM T3 7y

‘where BB 2 ' % Oyeee;lel are the given boundary operators,
r

The order of B' is Je Ba,has prinéipal symbol equal to

Wl

R S (107)
1 dd
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Le-t J = {Oglgawaﬁm“l]
I = {jrs r= ol ee,m ]
Note that |INI)] = p .

Any set of boundary operators {G L) € INIDY is
led to be adJ01ni to BJ 1 o= j <m, . AdjOlnt operators
are not unlque, because they al&o dep@nd o the choice of

B', j .3\1,
J .

Llemma 2.2
(P,Bjr 1£j§m+) is perfectly refiecting with respect
to

(]

geeesly at (0,0, o) 3T (P C.,] € JNI) is perfectly . !
o

reflecting with rcvpect to Pk %1"'°’Ik at (0,0,¢ ) - f

Proof: First of allF given h(z) = zm + g 0=t

l +Onu‘+ ang
we define

1h(z)

"n(z) = 1 - | - (12)
Let C be a curve in Lhe complex plane encircling all
~the zerog of pm(OgOpEO,z)m Similarly C, encircles the

zeros of p. and Cy is separated fron Co .

For simplicity, we shall assume in this proof that

Py ' +lower order terms in v. Since Py is none

characteristic at S; the proof of the general case will
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differ from this by the multiplication of a4 Nnon=%ero

constant.

Using pseudodifferential operators and (2),

we can
write ' : ' . . |
- s _ =1 e
ffRn+1 wP%v w Pusv dx dt = jgofﬁn hj_u »Bj v dx,
‘ | (13)

where the principal symbols of EJ.s Fj at (0,0,io) are s

e = i -
O
¢ m_l_'”'i
ml =T
em+ = PZ(Ovotzch) q;(osopgosf)
e . by

P,*q_°T




where pl =

i

Pgw

‘We have used (4) in the above computations.

('r""-"fl(xytpg))n.a °(TmTko(xntrE--))

We define

o~

KTmTkO+1(x,t9E))°’f(T“Tk(XPt’EJJ

£ m-1 in the foliowing way s

1

L

- . elz) iz '
(e,£) = 5= I, mlg,é%,mxﬁml_ww dz

Then (ej?ff)

= G,

Jr

by Cauchy's theéreme

We can also write B® =
where (qu) is a lower triangular matrix.

_ L o .
We can write E, = BjrBr

.(gjr):is the inverse of (a. )

If we compare (11) and (13), in view of (20), we

J

‘immediately obtain

Cj =

[CY)

‘ I we
b2(0,0,¢ ,7)

F

rjy r

g

3

(B

J

[

L

°;

e, =g, «b3 ‘and ¢,

3 Jr

H

LU

SO?'&OF’Z}

i

0= j,r -1,

b

Jr

lower order termg

r) +s the adjoint of (ﬁjr)°

ioqk at the symbols, then

(?oosgoy’l")s

gt of
4 r

e

+ lower order terms, where

(16)

a duality between polynomials of order

(17) .

(18)

a'rET + lower order terms,
. [¥ R

(19)

(20)

(21) s
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where (ajr) = (bgﬁ )

By lemmas 2.1 and 2.2, (P B ) = (P,BY ) :

perfectly roflectlng with respect Toll,.,o,lk iff the

matrlx (& (r 1)) <r,rk m, 18 non-singular. (24)
Similarly, (P%,CJ,J € J I) is perfectly reflecting

- with respect to p

" +19e,,Pk ife the matrlx
o

« o € 3 o €1 VY O " £
(CJ’er)j ¢ g\y 18 non~-singular., (25)

m £ r = M«

By (22) and (18),

& R
(Basfsﬂer) - (BJr)
Therefore (25) is equivalent to

(st)j € I\I - _being nohmsingulara

m, 8 = m=1

-+

We are now in the situation of lemma 0.6, 2 , hence

(24) ig OqulvaJent to (2?),

Q.E.D.

Recall that is P is elllpflc, then (*,B ) is

perfectly reflecting iff (P, BJ) is ceercive,

Gorollarys

(PyB,) is coercive iff its adjoint (P*@cj) is

coercive,
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A0

SOC%?(Q

Reflection of singularities, Local Theory

o

We ‘haJ] follow the notatlon in sections 1 and 2,

Let u be a ¢” function of t € [ 0,00) with values in
the'spaee of distributions in the x;variabieo

We assume that Pu'ﬂ T e Cm(;ﬁ‘ﬁ“')e Let I'geeeesl) be
the r@flectod family of nulle blchdrsctefistics of' Py,
corresponding to (0, £l {Bjs 1 53 =1} is a set of
boundary. partial differential operators such that (P,Bj)

is perfecily refleotlng at (0, to ) with respect to Firene

P}ioa-

Theorem 3.1 ( Majda and Osher 37
It {

. 'L’"‘..::O)"' 1£ j:slparld Plgﬂqrg?r‘lio . i
£ WF(u), then Pk0+19»..fk-ﬁ'WF(u) and (0,¢ ) ﬁ,WF(D%ultmo)
for j' :3; Ofinzge;ee . . - : !

‘Prooft By (2.2),
P = (Dy = Ag(x,t DX))“»(Dt = B, )@ (x,,D,,D, )
QX tiDy D) (D - Ak #1 (% 6:Dy)) e v e (D w Ay (x,%,D )
4 7
(Dt = Ai{xft’nx)_)QP‘l(Xitl’Dant) T,
‘where P ig defined in.the obvious way e
let Plu ne uip then we have
Dy = agCert,D )t = g, (1)
)i

where £% = £ . Py ig mlcrolocailv smooth along {{(0,1, Eq

0 =t = Tos 5 > 0] by the nature of 7T,




By'lemma'oﬂh.B’pl £ WF(u) implies that
Iy #ou UL ‘ (2)
| Let-fl'be parametrised ao (X'(ﬁ),z“(t);t, v {t)).
(2) implies then | |
G (800,80 (8) ¢ wpqutfy ), - (3)
for t* > 0, t° close to 0 so that t = t' is nonw |
Characteristic ( =ee prop. 0.4.4 ),
e oan'ﬁow apply theorem.ioBDI to conclude that ut is
micrdlocaily smooth along {(Oetgao): 0=t =4 « to} o
ir we apply the same argument kg-1 times to the

1p'we obtain

equation;Piu =
WoleelDy = Aggri) ooy w &) w = g, ()

where g is microlocally‘smooth along {(Opﬁgio)srﬂétSt"}c
By the proof of theorem 2.4,1, (4) implies

Pyu = Qye(Dy o Agra) 2Dy = dy) w = g0, (5)

where g' is microlocally smooth along {(oﬁtsﬁo)s Ost=t™ Y,

for some t 0.
The perfectly reflecting property of (P,Bj) implies
(via lemma 2.1) that

Diu = EseBsu + RePyu + Su, 0 = p < =1, (6)

for some pseudodifferentinl operators E R and S. The

J’ |
symbol of S vanishes in a neighborhood of (O,O,g0 ) with .

v arbitrary,
(5) and (6) inply that
(0ut o) W70 [ yo0), for v = 0,.,1,muet, | (7)




It Follows from (7) and Theorems 24,1, 1.8,

u is microlocally smooth along [(O,tgz5 )i 0 =

it

for some & » 0, Hence (0, 20) ﬁ'WF(Dg u) for j D 1
and Fkbglgenw,Pk ﬁ WF(u) in a sméll neighbor hood of

(090980 Yo Tt then follows from ﬁheorem_0«4@1 that fko*l’
U £ ()

.QaEwDo._'

section 4 Asvmptctic solution to a Perfectly Reflecting

tc‘

Boundary Value Problem

Letg(Pﬁﬁjn 12 ) % me-l) be perfectly reflecting

- with respect to Plpeg.ﬁFku'at (O”EO)B Werwant_to solve,
o
for any positive integer N,

Pu = 0(p~) (1a)

. | (1b)

h (x) - " (x) pre’ Yol*) der of 1
where v X h VJT x) pre ¢ mj = order o BJ ang

__B.u = v, o+ 0Of
3. ,t—.a "l ?

t

mo is a irlctly pogitive complex phase function with
rd$o(0) = &Ow

For a = k +1,,¢.,k there exists a so]ut¢on 1

ihe eikonal equsation P, (x b,d¥(x,t)) = 0 satisfying all

the eonciu81ons stated in theorem 1.4.1 with

2%5 (0,0) = «_ ,E | , (2)




We shall let
uo= oy, v oy

h &

He
w,, = 5 .
h camkytg “

C ipWa(xpt)
ua(x?t} = u . (x,t, )pb e s =N =< b = 0, (5)
) Aip\yﬂl -é'(rﬂ'”k) . )
U, =@ ‘s%i U _ | (6)
Conlx,t,z) - . o i .
S N EhrAe b . etrtz 4, (7)
Us 2l CF pb,pm(x,tpdmo(x),zf % ,

‘;“m‘“N fi: b g On

Here C' is a contour in the complex plane encircling

the roots of q+(0,z090,z) = 0. From now on , s will

always range

%(IHP"}{) ®

frdm k0+i‘to k and s will range from 1 to

By lemmna Ze2al, peffect reflection implies that the

matr;x ) ; (0 0 EOpZ)
( Zni'c TH(0T0 Eo,z) @y (8)
- 0 = J,l = m_,;;“l
is non-singular, where
C is a contour encircling the roots of b, (0,0, Eo,z) = 0,
Let B' be the mater defined by
b ; bj(0909&0,T1+k +1), Osjsme=1, Oﬁlskukomlg, (9)
S b ' :
1o (0,0 ,;gmz%, Lek+k : :
Zwl Yoo pm{O,O,E}O#é z © dz,

Oi=maw]
kmk0515m+mk+kom1,

singular iff B is nonsingulsr,




Proofs By Cauchy's theorem, the column spaces of the
two matrices are the same.,

Q.E:D.

ir we apply P and B; to u, we get

dJ
Pu = Puh * Pue
o ' iplg ip¥g '
= PQ(Waae | r Wgye o =N = o < m. (10)
: ‘ . .p\’uo
Bju = p&(wag * wiple s =Nemims = B = M. {11)

The highest order terms in (10) are given by
Wam(Xst) = p (xet,di, (o t) Jugol(x,t) (12)
: 1 ‘ : ipte
Wep{Xst) = oo L cso(g,t,z)e dz N (13)

Since pm(x,t,dwa(x;t)) is flat on ¢y o= W(Tj), (12)

On the other hand, (13) will be identically zero if we
pick cgpl{x,t¢%) to be holomorphic in z. |

We shall let cso(x,t,z) = céo(x)zsmi. The highest
order terms of (11) are then given by

Wémj = ba(X,O,d$0(x)ra)ua0(x,0) - (14)

PiGee0na¥olx),n)a%t  on (x) (15)
pm(xvondwo(X)eﬁ)

=
i
!
iH
e
5

By lewma 4.1, uao(x,o) and céo(x) are uniquely

determined by the boundary conditions (1b),

We now look at the second highest order terms in

does not contribute anything in the asymptotic expansion.,




(10} They are given by

Walmm1) = Lauao(xgt) + pm(xﬁtgdwa(x,t))u (A,t;)p - (16)

where Ly = 3 §P0 (x,1, Ly (xt DS+ 2 L L 71,
J. .

M, is a function depending only O Ppys Py, 1 and w
(16) will contribute nothing to the asymptotic
expansion if we solve the transport equations (16) to
infinite order along cj = W(P ) with initial data qu(AQO)
On the other hand,

Van-1) = g o (e () Grtan) ¢ Ry(Lp)(n,8,2) e dz,

(17)
where Rs(ml) depends only on cso.and symbols of P,
(17) will be zero if we let Ca(ut) ® cé(ml)(x)zsﬂi -
Rg(w)(xstez). The secong hlghes* order terms in (11) are
then given by |

Wé(m%l),x b.(x,0 e A, (%), )uJ( 1)(? 0) + Talm wl) {18)

wnere Td(maml) depends onJy'on Ujor W, and symbols of

B’j' and P,

- b W ), 7) '
slmge1) Ao g Bilx,0.a%0(x) s c25=1 gge CL(_
(m'] 1) - Zni "¢t Pplxe0,d¥,(x),2) s(~1)

Golme 19)
- | S(mel)ﬁ ( o
where Gs(mﬁmi) depends only on Csp @nd the symbols of Bj

and P;

Again, Uo(.1) and Cg(~1) are uniquely determined by




the initial conditiens (1ib).
We can therefore solve the boundary vaiue'pro'lem

(1) inductivelya We have ‘thus proveqd

Given any positive integer N,

there exists an
asymptotic solution to (1) in the form of u Ui +g *
ve oo Up *+ U, where the support of udp ko*l 2 a 5 ky is

conTazned in an arbitrary small nenéhborhood of e, =

w(P ) and the support of‘ue is contained in an arbitrary

small nelghborhood of (O O) HMoreover, Ug is 0(p~)

away from (0, O)

Remark: If the intial data depend conflnuou ly on

Some parameters, then the asymptotic expansions will be

uniform with respect to the Same paraneters,

: ' |
- As an.application of theorem 4.1, we shall prove a ."!

partial converse to theorem 3.1. we follow the notation |

in seetion 3.

Let P ve a partial differential operator on RITL

and BJ, 1§ =1,

a set of boundary operators. we

assume that 1 « n, and £bj(6;0,ﬁotz)s d = 1,...1} is

@ et of linear independent vectors in O[z]/(p+(050,io,z))
theorem 4,2

There Ghl 5t8 a C function u of t€[0,T] (T > 0) with




values in the space- of distributions in the x-varible

such that

(i) Pu € c™(R" x [o, ‘I‘]) and Bjul, € ¢”(RY)

{i1) Ee‘I‘(uanﬂl) S Tpovp U U Py

S m+w1 :

(1ii) UWP(DJ = {(0,6,.)}
J=0 It ©

Proof: We can pick_D.’gl,“uD%m4 1, jlpeoe»jm+u1 £ Myl
such that [bj(0ﬂ0,£0,2)4

j = 1,°eepl}\u {ijua‘zjm+ul}
form a basis in G[z]/(p+(opo,gopz))s

By theorem 4,1, glven any positive integer N, thgre

exists v(x tep) in the form of Gaussian beams

Pv = O(p""NJ

such that

4 nw ‘“N- s - et
BJVItmO “-O(p. )t_ 1 me = 1

Jr‘ ' ir o "o =N
Dt Vigsp® (%) p e + 0(p™),

1 = r < my=1, (20)

where [ ¢ CC(RH) and ¢ =‘1'in‘a'neighborhood of 0,

By Borel's theorem, we can actually construct s

wix, t,p) such that (20) is satisfied fopr N = 0.y wix,t,0)

is_smooth in (x,p) and w(x,t,p) =

Let u =

O fOI‘ p < 10
f? w(x,t,e) dp, then u satisfies (i)-(iii).
| . Q.E.D.

If 1sk-kg-1 and-{bj(0,0,Eo,z)s J = 1,.0451} spans

a knkoml dimensional;subspace' of CEZ]/((Z“TK¢+1)°"(Z“Tk))'




then we can comstruct u satisfying (1)~(ii1i) with
WE(u|n+1) non-empty,

IT 1 = gl and [bj(O,O,EOpz)z R A spans
& de=1 dimensional subépace of C[z]/(q+(OFO,EO,z))p
then we can construét U satisfying (1)-(41i1) with

0 .

)

RE(u | n+1)

m Lot

2eetion 5 Reflection ef Sineularities, Global

theory

P will denote gz strictly hyperbolie partial

differential operator in this section, Q' is a domain

n+i

in R =g xR 1s then a domain in r7*1, 30 is

iy]

ssumed to bhe ndncharacteristic with respect to P,

Let w be a distribution in 0. We assume thit the’
traces of u and its derivatives on aQ and O' x {1t} (ter)
can be defined,

~Suppose also that _
Pu = f | | | (1a)

Bilan = 850 15§ = 1, : |  (1p)
Dgult:o *= hpy 05 r = pmpe1, - (ie)

Given T > 0 and (x,r ) ¢ 1*(int g'), to # 0, let




Ty 1 = 1,.0,,m be tﬁe roots of pm(xo,T,EO,t) = 0, Let -
us'codéider the nullnbicharacteriétics (rays) of p
through the points (XO,ngogri)or We begin with
following the rays backwards into t < Ts If one of
these rays, say I's hits a0, we assume that the reflected
family of rays containing I' is non-grazing. We then
follow the backward rays in the reflected Tfamily. A
éhower of rays is obtained in this manner. Here a ray
at a0 is forward (backward) iff (v°dgpm) %fm is
positive (negative), where v is the inner normal at 30,
We shall put the following assumptions on this
Shower of faysm
(i) None of the rays in the sho@er graze 30,
(ii) There are only finitely many rays in the shower,
(iii) Eaéh ray will eithef sfop at 30 (when there is no
backward fay in the reflected family) or reach
t = 0 at the points (0008508405 4 = 1,, ..M,
(iv) Yo i = 1yeve M, belongs to the'interior of Q.
() (P'Bj) is perfectly reflecting with respect to the
backward rays at the intersections of the-shower
with a0, B |
{(vi) (yi,ii) £ WE(h,), 3 = 1,.0.,M; 7 = Opeeaymet,

(vii) r is-microlacally smooth at the intersections of

. > +
the shower with 7 (30), T*(Q‘ x {T}) ang



% X
™ (n x {0}

(viii) WFP(F) has empty intersection with the shower ,
(ix) The intersections of the shower w1fh 7 (20) do

not belong to WF(gJ), 1 =3 =1,

fheorem 5,1

Under the above assumptions v will be m3c3070cajlv
f= . - * 1 ey e in r
smooth.at (ho,Loﬁl)o ConsequenLly (xo,go) 4 WF(Dtult:T)

for all r and (XO,T@aO,r) £ WR(u) for any .

Proofls We have a Green's identity for this situation,
_ - e iy 4
JgPumv “ UeP'y = % ( faﬂb u Crv + I{T}XQ'PFU Dtv b
S, DuETY ) (2)
[O]XQ‘ 1t ™ & . .

which ‘holds for v € C®(a¥ x LO0.T]), v vanishes near
the corners of a0' x [0,T]. At each intersection of the

#

%
shower with T (af2), say at (y,a), there exists B;_
. J

1 =3 = kl” such that each B}_ ig identical with one

o _ E
of the Bj in a conic neighborhood of (y,a). If k =
total number of rays in the reflected family corresponding

to {(y,x), then ki = z(m=k) + number of forward rays in |

' : [
the reflected family, ' |

Let (x',6',7') be so .close to (XO,EO,T) that

the shower corresponding to (x',£',T') also has the

properties (i)~ (ix),




Given any positive integer N, we can conbtrucb
a Gaussian bean solution to the fol]ow¢nv problem,

(3%5-:%

Py =0 0(p~ Ny
S IXOE' o Flxext]? N
Vigage = E0x) e * 0le™)
D'(‘v = Q(p“N) 1 = mei (Bb)
‘_t Ti. . P = I - . 7 N

v has the following properties:
‘ ' _ #
{2) at each intersection of the shower with T (an),

say at {(y,a) € T*(aﬂ)g oy w ‘4 of y = 0(po~N) rop

0 £J sml and j rl"‘°’rki | |
(b) the support of v is contained in arbitrarily small
neighborhood of the projection of the shower in 0O,
The cons tructlon of such a v is possible by ﬁhe
theofy developed in chapter one and section & of this
_chapferg Note that (P*,cj)e O=j=mlandjir,...,
rki,is perfectly reflecting with respéct to the forward
ays at (yoa) (lempa 2.2). Hence we ean construct a
Gaussian beam solution to P%v = 0{p” ) and ¢, V,a = O p=N)
with supp0rL contained in arbitrarily small nelrhoorhood
of the backward rays (theorem 4.1),
I we put v in (2), we immediate] 1y obtain
lfj uf{x, T)E(x) elpxot! ”dx[ = 0(u=N), where t(x) = 1 in
a neighbarhood of x . o (x',et) %'WF(u’t:T.) Tor (x',t',T")

close to tx o T) .



By choosing different initial data for (3b), we

can then prove that u is miérolocally smooth at (k0;55;1)7

Q.E.D,

mples Wave equation ou side an object with Dirichlet

boundary condition,




Riffyaction of & Singularities

Secbion 1 Crazine Gaussian Beamg

Let @ be a domain in pN7E and P(x,D) be a second
order differential operator with principal symbol p(x.t),
o) is nonuchdr cteristic with respect to P.  Agsume
that dgp(x,a) # 0 for (x,£) € Char P = {{x,8)s p(x,5)=03.
Let b be a nullmbicharacteristio of p and ¢ = w(ﬁ) be
the projection of b on Rn+1'éuch that ¢ and a0 has a
gecond order contact at Hee

We can choose local ccordlnates at x, so thaﬁ

Loayds x € 8%, v » 03, wim X, = (0,0).

Let v be a Gaussian bean along ¢. Then

m§ a.{x) pj elpWO(X)
j=0
It is c¢lear that
Im ¥ ,(0) = 0 and Im wo(x) = ylx[” (y » 0), (2)
for x close to 0,
For any given positive integer N', we want to.
solve the asymptotic boundary value problem.

Pu = 0(p~N") ~ (3a)

Ulan T Vo * Ol - (30)




N

Section 2 D

E
ke onri T

ffracted Beams

We: shall construct a local solution to (1.3) in

the form of

u o= e (en) Mg A(p2 ) + 1p=1/3 A'(p?“/?z:)]m(pz/%n)”1
e PPr(e,p)at, | (1)
where g¢ = d&l“°d£n

N . }

B =X es(xy,t)pd, :
J=0 1
- 3 | |

«h = : hj(xsysg)p 3 ' .
J=0 “

& = E(x,y,t)

9 = e_(xﬂyﬂgx)c

£, hj* £ and 0 are Ssupported in a neighborhood of (0,0,0)

A is one of the two Airy functions

' +2wi/3
Ai(s) = Ai(-c” 8) . (0.5.5)

By choosing the appropriate A, u can be made to

decay rapidly away from either the incoming ray or the

‘\
outgoing ray. u is called sz diffracted beam.,

‘Let <, > denote the symmetriec- bilinear form in 11

varying with x such that

<E B> E'p(-}:b‘z)




8
P{Le a(p2/32) 4 1p=1/3y 4 (p”"/%)_,l o ° )

o ip® ny ipe
% 3 A(pg/BC)e + b A*(pg/bﬁ)e s where

a = 2[(\ae d6> + f<dl,de>)g, « 20<df,d0>h,] +

—

ngo( -21<36 dé > o4 2it<de, dh»> + i<dt df“h

) a o4

- (\- * @
1R38] 18 hJ 1TJ)

an

“d
b = 5/33i[“(<de A6+ [<dt,88>)h, ~ 20<dl,d0>g T+
2/ N
pel 3 sE,(2<a0,an > - 26<dt,dg > <al,dig; ¢
B.. . [¥; &.7 .
| Rigy + Sihy o EJ),
where d? = dxﬁyeg df = dx&yﬂa
Rj, R%, Sjg 83 depend only on £,6 and symbols of P,

Tj and Tg.depend only on symbols of P, &, 6 and Epo

hrg‘j+1.$ TS0,
If we let the hlrhevt order terms in a and b equal
0,_we get the following eikonal equations:

<d0,d0> + L<db,dt> = 0 (3a)

(3b)

lower order terms equal zero .

<df,do»> = 0

If we then let the
Successively, we dbtaiﬁ the following'transpmrt
-equationsa | ' ' |

2<a0,dg > - 28<dt,dh > - <dt,at>h, + Rig. +

33
R A R Y




2<d0,dh > 204l dg s> <ay,dtrg, + Rigy + | , |

Sthy 4 T%'m 0. (41)

Seetion 3 Construction of Phases and Amplitudes in

ﬁgg,Diffracted Beans

The eikonal equations (2:3) and the transport
equations (2.4) can be solved locally at (0,0,0) with
the Tollowing properties being satisfied by the solutions:

For ¢

=0
n ¥

<d0,d0> + f<dl,.di>

[
O

<df,36> = 0, (1)

FOI‘ El’l S_ Og k = 031925‘0&07

k
0
Tor\<d0,30> + redt,dE>), = 0
oyke( <40 R,
ak‘ y
a—-mvk((l’:if,,deb’),y:o = | (2)

S Similarly, (2.4)

and (2).

are satisfied in the sense of (1)

ot _
'é“}; (Oworo) = O:O = 0, f—i(XpOpE) £33

nt : (3)
: 3% . .
The matrix ( e A%, 0,£)) is non~-singular, (&)

h‘i(xsoiﬁ)'tﬂ Oe




8,(0,0,0) ¥ o, - (6)
First of dllﬂ let us look at the foliowing example,
which is due to.F, Friedlamdero
{xy)s vy > 0, x € &Y

N _ e 2
P(}\iiy?DXvDy) - Dy e PDXH e p. Ve

We want to s0lve
Pu = 0

uy - T, | - _ (7)

Let u be the Fourier transform of u in the X

variable., We have the following equations:
2 .
R
dy” . ,
fico) - , (7b)
Two t sblutions for (72) and {(?b) are

A ‘L/Ba =2
) = e) (8)

) A

u - (7a)

culx,y) = pn(Zw)““J Ai(pz/ggv + En))

| 2/3%)

In this particular case, we see that £ and 0 can
be taken as y + £, and,x=&.respeotive1y. Also g = 1,
g5 %0 (j = -1) ana hi £ 0 (§ = o0),

For the construction of &, o, gj,'h,-in the

J
general cas e, the idea is to reduce it to the example




above bj using the equivalence of gldﬂﬁin hyperéurfaces

(see [6]) We refer the readers to [?] for détailsn

sgction 4 The BOUIddLM Term
When y ='0; (2.1) becomes

- 2 | ips . ' .
wlx:0) = o™ (20)™ fgie” 4 p(g,p) ag | (1)

By choosLng approprla%e local coordinates for RN
we Ccan a““ume that the- inverse of the CanHJCSl
ﬁran3¢ormatlon (dgeﬁﬁ)ﬁfﬁm (xﬁdxé) is also given by a
generating function . |

Recall that_we wahtr

ulx,0) = v+ o(p-®y o (2)
- -5 ' . ip¥e(x) _ _
Vo =Z  aj(x)ple ; | :
J=0 ' _ |

where Im WO(O)'x 0 and Im WO(X) 2 y[xlp on the supports = . . ﬁl
af ai which are close to 0,
 We shall let

F(g,p) = pl (Zw) n. Fff p(h(z’n) moEck - g s Vola))

alpeq)B(p, zpn) dgdndz (3)

where a(p,q) = 3 aj(q)spJ, (aj =0y N = § & wK-1)
j=0




N .
5(9»'4&7!) = b-(Zs'fl)pJe
450 7]

Since ¢,(0,0,0) # 0, if we substitue F(%,p) in (1), = |

5 . |
then by the stationary phase method (0,2 2.1), we can
arrange'bj 80 that u(x,0) = v, + O(p“N)g {(2) is
therefore solved if N = N*,

Using integration by parts and the fact that

Im w (x) y[x[*h we. can also assumc that ¢ is compactly

supborted in an arhlhrarily small neighborhood of

(o,o,dmg(o)) and 8 is compactly supported in an
arbitrarily small néighborhood of (0,0,0).

and A (02/3?‘)/A( 3r.)

Section 5 Basic EStimates T A( ?/BP)/%(o7/gz .

Recall +hat

+*211/3  L2/3(wc

£2ni/3 .
3/
Ai(z) = H{-e %) e

where H(z) ~ g7% § 032"33/2. (00563)
j=o =

ijen any K = 0, there exists a C > 0 such that
z > C dnd arg(z) fs-w/B -~ & (6 > 0) imply that

(k)(”) = Conbtanfv 3/h ﬁ 0 =k s K. ' (1) ‘ : . ‘ :

We shall keep in-mind that by (3.3),




(XaY,E) = Lo+ (uy,/2)y, for (x,v,2) close to (0,0,0)

(2) is assumed to be true for’the-discussion’belowp

The estimates of B = A(p2/?ﬁ)/h(92/32n

) and
B* = A'(pz/sﬁ)/ﬁ(p

Z/BEH) will be divided into three
groups. 'In these estimates j will range from 0 to K
ang w = éexp(izwi/ﬁ)e
(1) 92/3En z C (hence pE/BC = C)

B = alp,x,t) exp(ip(g3/2 nrgg/?))'

¢ Where
a = ﬁ&&aﬂfiﬂLh
' H(szjagn)

It follows from (1) that

IDgafﬁ constant+pl/6+ 2373,

(3a)
-Similariy,-B"= a'(pex,t) exp(ip(t;’B/r2 . Eg/é)) and
IDga’j < constantepl/3%2 /3 (3b)

(11) 0 < 192/35n [= 2c

(i) 92/3C-> C

B = alx,y,t) exp(ip§3/é), where

8 m ﬁ,.(ﬁ*i?f /ié_.)

o

8(p2/3y ) |
It Tollows from (1) that

lbga[ = constantep<y/3 | ' (ha)

()




Similariy, B® = a’&exp(iQCB/z) with

3 | . 1/6 + 23/3 &
lmg a'l = constantep /6 i/ . (4p)

(11) 0 = |p?/3¢
/Q

B o= Ale’ o It is clear that

A(‘G'J3

lDéBl,5 constént‘ng/g. | ' {5a)

e (p2/ 3y )
Similariy, B* miiﬁﬁm& and,
nx

. z ’ 29/
IDgB‘] < -constantep JZBH ' ' - {5Db)

(11I) pz/ﬁﬂn < .G

B = a(p»xsi)°exp(12/3(p&3/2))9 where

rion

alo,n,n) = B0o200) | 2/3(5 )32,
H( 2/3 )
ne EE”I

It follows from (1) that

ngal < constant°p2j/§. ' | ' (6a)

. : 2
Similarly, B' = a’eexp(iz2/3(p ﬁB/ }) and

nga’l = cmnstantapl/6 * 23/30 (6b)




B = é.ﬁj;f;@&)mm .:e-»'f%p/ 3"(“;51/1)3/2
H(up2/5

- It follows from (1) that

)

iDng < constant°pzj/35 ~{7a)

' -
o 20/3 ()Y
Similarly, BY = a'se and

nga‘I = constant°p2j/3° o (7D)

(111) 02/3, < ¢

Be B2 ) 20/5 o ((ae )2 (L2
H(KPEFBgn)-

Let I be defineg by the following identity.

. 3/2 3/2 |
TR )T L)) L ey | |
By thefmean value theorem, we have the following
estimates,

| L, Ja_constant{pélzg and , {8)

ngL | = co»nstam‘;uczrml/3 * 23/3.

By (3.3), €(x,0,¢) = g

ne
S {Dg(ﬁmﬁnjllg constant-y,

The estimates (l),(2),(8),(9) and (10) imply that

IQSB {S cons*camt‘pi/6 * 2j/3n (11a)

Similarly, l%;B'I = (:01’181:9&11;epl/3 + 23/3, (11p)




Using the estimates {I)=({II1) we can prove the

following theoremn,

Let u be the diffracted bean (2el)s For (x,v) €0
close to (0,0) we have py = 0(p~N"1)
Proofs We can choose ¢ » 0 80 that the estimates (3) .

S ot

(7) and (11) are éalid for K = 0., fet Aqshpand AB be

positive C° functions on R such that hl Ao Ag o= 1, ‘ ?
SUPP A1 < [Cy), supp Ap o [«2C,2C7 and sSUPp ch(mml,mcj@

We can write u = S I(p,x,v,2) dE, where I is the
integrand in (2.1, ﬁ can be written as the éﬁm of the
following functions,

J >‘¢1(92/3g.n) ‘I(PsXD.VrE) ag

u, =
up = [ AQKQZ/EEH)5%1(92/3§(x9y,g))gg(ppxgyyg) ar

uz = J lz(PZ/BEn)*AQ(.o2/3e:)=I d

vy = J' 3“3(92/31*217)*1‘\1(92/3&%1dg | | f
ug = S xj(pz/agnmg(pz_/swl at

ug = l3(p2/3&:n)“l3(92/3t:)'1 ar

Observe that the left hand sides of (2.3) and (2.4) i
are bounded by constant« |z [N por any positive integer m, ;

Since [En]'s ZCp“ng on the support of Ao, it follows




from (I1) that Pu, = o(p~N=1/6) ,4 Puy = 0(p~M), ¢
also follows from (IT7,3i,1ii) that Puyy, = 0{p~M) ang
Pug = 0(p~Ny, |

For £, = 0, the left-hand sides of (2.3) ang (2.4)
are bounded by constante |y M for

(See (3°2|.))6

any positive integer n

It follows from (2), (8), (11) that Pug = 0(p=N+1/64
Puj = O(PQN+1/6) is obvious,

Q.E.D,

{o
b
o
o
3
i

R e e Sl

peetion & The Width of the Diffracted

4 '
Let ¥7 = 00x,y,8) & 2/3°2(x,y,2)%2 for £y = 0,

We can rewrite (2.3) in the following compact form,

p(xpy»dwi,y(x,ysﬁ)) =0 (1)
Recall that £(x,0,t) = g, (2)
and d;0{x,0,0) = o, (3)
o d&f{ovo,o) = 0 (%)

Let ¢ = (b) be the projection of the grazing ray
on g « R gng of be the half-rays.,
By the construction of g and t (seef7]),
ey e ot
(¢ (L)pdv;,y(g (t),0))

bt (5)

RS

Assume That ¢* is defined on W x [0,Y] in local




coordinates, where W is a neighborhood of 0 in RV

Proposition 6.1

Uﬁ = {(x,y) 'd¢§(xey;0)l < 6} is a neighborhood
In W x [0,Y]. If U} is the component of U% that

containslcis then Ug converges to c¥f asg & goeg to O,

Eroof: We shall use c (¥) to denote one of ot (

~thisg proof, We

YUY in

shall al 0 write y as x

n+le
By (1) and (35),
nti ]
ﬁm gy (b(t))umm . Al (x,0) = 0 along ¢, (6)
icev 4 By

4 38 ' = Oalong ¢, for j = 1,....n.
IT aCJ(C(t)"O)' : g | Bocey

Since 2y (0,0) = 0 by (4), we see that dev = 0 along ¢
oL | . |
and therefore Ug is a neighborhoed of o,

If we differentiate (6) again, we see that the

veotors v, (m a;?m(}c O)MQ;EBFKMM (x,0)),
n+l

satisfy the following system of linear equations along

c{+t) {(away from 0).

2
2 (b(t))
d J o ’ ! G = -
ey V o+ Aoy 0, where A(t)ij .

QMM {c(t),0 Q“R_MM {3 ot
15 5373 ‘EC( ) (b(t) £ 1,5 € n+1,

(2) and (3.4) together impiy the linear independence

of the Vgs at 0. Since the vss are continuous along c,




Vo= dy$j. 12 j=n, are therefore llneariy lndep@nden
,j *
]

.ong ¢. Hence Uy converges to ¢ as ¢ goes to 0,

. QoEeDe

Recall (ef.(4.,3) that

ipp(g,m,z,t) _
Peon) = 008 Elp,q,n,2) e dqdndz, (7)

where p(g.n,2,8) = y(z,m) = zet - qen + ¥,(q) (8)

and E(p,q,n,5) ig a classical amplitude.

Lemmu Gl

-

. ipu N
Given any g =0, I Eere  dqdndz = O(p=N), for

' 1/ e
taf > p™27 7 0
I\{ = Gplgzg.eiw ] ‘
Froof: Follows from the fact that In Wo(q) = qulao

QcEeDs

Lemna 6,2

- oe | N
Glven any ¢ » 0, pff Ere  dgdndz = 0(p~N)

l1-dg¥,(0)] > p=1/3 + &

?

fOI" N = Oglp?’;aa:_

Proofs Choose ) » 0 such that e¢; < g, .For lqf<p=1/3 =
lnmdqmo(o); s pMI/B %,E implies that ]nmdq$o(q)l >‘

' -1 + .
constantep /3% ¢ for p large,

For Jqf » p=1/3 % #1, since

m




fIm d (q)l = co’nstant%qup we have

i

fn~-d l3!0(qu Im a qVolall

constant - pj“je

for p large, |q- d (q)[ = constant»p”a for gsome &

pogitive. Inﬁegratlon by partswith respect to g will

finish the proof,

:[;
Q.E.D, 1’
“Lemma 6.3 [
. 1P N
Given any ¢ > 0, J[J Lee dgdndz = 0(p=*"),
R ’ 7, , > o j / LI' -+
Tor N = O i,

peom

Proof: We can prick positive numbers £1 and €5 s0 small

h w &
that ldqx( sN)~q| = c:onstam;m1‘/’J /2 provided that

In-a ¥ (0)] = p""‘l/ilr Y81 ana |q| s o=t/ + €2. TPhig
4o*

is possible because dnx(ogd ¥o(0))

The lemma then follows from lommas 6.1, 6 2 and an

inﬁegratlon by parts with respect to M

Q.E.D,
Lenna 6.4 _
. ‘ 1oy N
Given any. e > 0, JJT E+e dgdndz = 0(p~%),
el > et/ + e
for N = 0,1,

pven

Eroof:  We can pick positive €1 and €5 so small that

f2] = p=1/0 + ey 509 l1-d 4 (0)1 = p=1/8 + ez 594




that in the basic estimates-of section &5 , dlffelentlatloﬂo

/. .
imply fgmdzx(z,n)l z constantep~1/4 + €/2, Phig is

possible beeause dzx(ogdqwo(o)) RRRN e s :
The lemma then follows from lemmasg 6¢1m6@3 and an - %
integration by partswith respect to the z variable,

QOEnDo

1

Iheorem 6.1
Given any ¢ > 0, Jlet Vo = {{xey)s lagi(x,y,0)] > ' : -

prl/8 + & J¢ Then u = 0oy, for N = 0el,2,000, on Vo

L)

Here ¥ is one of mi, depending on the choice of the Airy

functions Ay,

s

Proof: We can write

i E@(Xpyeg')"{‘u(clfan)j
= SIIS I-‘(PsxsyerT]pZ)° pr :

dgdndzdy,
where I involves some classical amplitudes and the Airy
functions,

- We can pick:el and €, S0 small that (x,y) ¢ V
implies min{ lng”(XﬂV £l-zl ,la W“(h y,h)*&ﬁm21a(in20)
Fage(x,y, £zl } = comz:tan‘t“p'“l/8 % &/2 provided that

lel = p=t/h + ey and |z] = p“l/h e,

The theorem followg then from lemmas (6.3),(6.4)

and an integration by parts with respect to £« Note

L]

in the ﬁ variable only raise the order of p by 3 Q,E,D.




seckion 7 Diffraction of Sineularities

Let P(x,t,nyDt) be a second order strictly
hyperbolic partial differential operator with real : ,
principal Symbol, Pze OF is a domain in R, O = 0 % R
is a domalin. in Rn+l, o2 is assumed %o be none -, o 3
characteristic with respect to P¢ Let u and f be ' ' V
distfibutions in O such that | 7'

Pu =t | | (1)

We also assume that the traces of u and its -

derivaltives are well-defined on 30 and hypersurfaces

0" x {t}. The following conditions are therefore

meaningful .,
“lag ¥ P - | (2)
Rtz ¥ 8 | (3)
Py, =8 | | (4)

"Here b and gi(i=1,2) are distributioné in 80 and
0N respectivelye |

Lef (xgpgo) € Int Q' and T » 0. Just like in (3.5),
we Shall consider the backward shower.éorresponding to
(xOPQO}T}t‘ We impose the following assumptions on the
shower. |
(i) The-projéotiOn oflthe'shower ch Q can have at ﬁost

'secbﬂd order'codtact with o,

(ii) There are only finitely many rays in the shower




and they reach the hypersurface t=0 at the poinﬁétu
-(yigDyﬁigTi),ri-n s eee, Mo ‘ -
(iii)-yi, 1=1,2,¢v.ym, belongs to int 0' and (yi,ai) 4
W"JE‘(gO) A WF(gl)
(iv) f-is microlocally smooth at the intersactions of
the shower with T (a0), 1"(0'x (7}) and 7" (0 x {0}).
(ﬁ) WE(L) has empty intersection with the shower,
(vi) The.interseé%ioné_of the shower with T*(am) do not

‘belong to Wr(b).

Theorem 7.1

Under the above agsumptionsg, u is microlocally smooth

at (XO,ZO,T). Cbnsequently (XO,EO) 4 WF(Diult:T) for any

r and (xo,ﬁO,T,f) £ WF(u) for any 1.

+

“Proof: Just like in the case of reflection of singularities,

. -
. it suffices to show that we can construct Gaussian beam

solutions to

Pv = O(p“N) o (5)
and Vi T G(p“N),' | : (6)

7,with.support contained in an arbitrarily small neigh-
borhood of the projection of the chower on (O,
The only remaining difficulty is.that the diffracted
beams are oniy definéd,locally..

Observe that away from. the boundary of Q,-uSing-the

asymptotic expansion (0.5.3 ) of the Alry functions, we




can rewrite the diffracted beam in the follbwing
forn_ie _ _ _ ) ‘
W= bh(zﬁJ"nf G(P,X,tgﬁ)°€lpv{h’yrg)ﬂ(pg/égn)M1'

| . E(g,p) dt, (

~3
e

where G(ﬁpx?ypz) ls a classical amplitude and § is
one of g 'k 2/3’&3/?e_ By a prorper choice of By w
will be supported in an'arbitrarily small neighbqré
hood of the‘projectiéh of.the backwardg ray'on Qs
which will be denoteq by ¢,

Let 0y {ty) be a hypersurface that intersecus_o
 at a point (x’,toj oloée to the boundary of O, For
£ close to O and x" close to X'y we can construct the
Gaussian beam solution to

Pﬂvi'* 0(9“N) |
and Vllt Ty = pn/é(Ew)

| Glpox,to,8) + 0(p~Ny (9)

| 8)
- Tpw(x,t ,Z)m%pixmx"SZ‘
"2 () 0

Here A € CM(Q’) AMx) = 1 in a nelghbgrhood of x'. The
solution vl(pgx Tt x") will have support in an

arbitrarily small neighborhood of ¢,

lLet VR L vy (et £ xt) (0?38 )R (e, p) asvar
Then P w' = O(p~ N) By the well-posedness of the Cauchy

problem for hyperbolic equations Dgw qnd th {(r=0,1)
will mateh up to o(p~N ) on 0' x {t,3. N' goes to
infinity as N goes to infinity, |

Thus we can extend w along ¢ with ‘support contained

102




in an arbitrarily small neighborhood of c,

We can now finish the proofl via a Green's formula,

The arsument isg exactly the same ag that in the proof
2 . b

of theorem 3.5.1.

QE.D.

Example: The wave equation outside a compact convex ’

object with Dirichlet boundary condition.,
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