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Abstract of the Dissertation

Traoés, Indices and Spectral Theory
of Toeplitz Operators on Multiply
Connected Domains

by

Jingbo Xia

Doctor of Philosophy

Mathemnatics

State University of New York at Stony Brook
1983

In this thesis, wé study Toeplitz operateré on the
multiply-connected domains by employing the t&chniéue of
almoét commuting operator pair theory. By concretely
constructing the principal current for a pair of self-
adioint Taﬁpilt?\operato“ and a muitiplicaticon operator,

we obtain an integral representation of the trace func-

ticnal for the pair. Then we represent the indewx formula

iii




és the boundary current, and therefore indices as wind-
ing numbers, We are able to decompose Toeplitz operators

"as a direct sum of Toeplitz operators on each component

of the boundary. Therefore, wé can treat foeplitz
operators with unbounded real symbols and calculate the
deficiency indices. Also, we calculate the von Neumann
multiplicity function for the absolutely continuous part
of self-adjoint Toeplitz operators and give a criterion
for such an operator to have purely absolutely continuous

spectrum,
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Introduction

The nature of this work is an application of the gen-
eral principsl curvent theory to the stuﬁf of Teeplitz
operators on multiplyucennecta& domains., The construction
of the principal current for a pair of a self-adjoint
Toeplitz operator and the multiplicastion by a function
provides an exemple for the explicit computation of G-
currvents. It turns out that the caleulation of ¢ is re-
duced to sach connected componelt of the demain which is
a conformal image of the unit cirele. The essential part
of the caleoulstion, namely the syimbol calculation, is
carried out on unit circle using the invafiant principle
for wave operators. This ides, which is due to Professor
Fincus, was used in a pfeliminary‘study [271 coavthored
with him, "Self-adjoint and Symmetric Teeplitz Operators
Lel¥ MultiplymCﬁnnect@ﬁ Pilane Domaing”. This paper will
appesr in the Journal of Functional Anslysisg,

In conparison with the vesults in [277, wé would like

Lo cuphasize the following:

al In {277 we studied self-adjoint Toeplitz operators

-

T, on multiply-connected domzins by couparing them to the
¥



%
&a

opeyator on the bonndary of the dousmin,

following o suogestion by Profesmor Pipous, we achieve

b

& gencralization vhen Toornlitz operators with

.

eontinuous syibol replsce the pusiltion opesrator. We ghow

for the erincinpls ourrant

of the opewrator pailyr,

the later should results in (297,

Ix} We establish & sviebol aviterion in Chapter IV

thea abpolute continuity of the

LR

O Wmult

Toeplits oy iply-conneot

2 Y AP . - . i
= The dificlency index result about symuetric operators

in
Cherpter ITX can also be viewed as solubion thevry for singular

CeT e _
110 ) for detalied

egraj equations on contours, qeb 9”,
explainaticens.,

In the interest of completenases, and in the hope that

Crers wihio woald

1lad pregsesntotion may benefit of
P

Lite 4o nske conteibuiions te the princin cursent theoyry,

thesiz that the vesults in {27]) are in-

Fuann o e T T
CAR TS

and mwany details which




from {27] becaunse of the considerations of length given.

For exanple, we give here in detail the construction of

the prinéipal current, which is a pavrticularization of
tha‘qéﬁéfal construction in Carey-Pincus [287 to our
situation using the invariant principle, and of which

onlylé very abbreviated version was presented in [277.

It also should be p@int@ﬁ out that more important

than giviﬁg an example of calculating the G-current is

thea study of the unitary invariants c¢f the operator pair,

o equivélgntly, the C*%alqebra generataed by the pair.

It is weil known that the principal function of a pair of
self-adjoint céeraters with a rank one commutator is a com-
Qleté set of unitary invariant of the pair. In general we

do not expect the G-current to give all the information about
the unitary invariantse: But we will see that, in addition to
other resulﬁsy we Find inter@sting facts that the boundary of
the support of G is the jeint essential spectrum of the paiy
Cwhich is also conzidered as the ﬁaximal ideal space of the
Caikin algebrsz; that for a Fredholm element in the C¥-algebra,
which is represented by'a nen-vanishing function on the
bdundary, th@ index is minus the windin@ mumberrof the funcw‘

tion sbout the origin; and that the spectral multiplicity of




the absolutely continucus part of the self-adjoint Toeplitz
aperator is giﬁan by the nunber of arcé, in a sense to be
speaifieé in Chapter III, in the intersection of the cur-
rent witﬁ the appropriate plane. For the pairs we study in
this paper, the commutator is never of rank 1. But so
manylérop@rti@s of the G-ocurrent resemble the correspond-
ing prep@#tias of the principal function in the rank 1
commutator casae. The oﬁly underlying nature of the re-
semblance we have SO faf understeood is that there is an
invisihlé rank one perturbation problem invalvedfrnamely
the cammﬁtatar of t@e mﬁltiplication with the Cauchy pro-
jection is of rank 1 and the diffevence hetween the ortho-
gonal projection and Caﬁchy projection is a trace class

operatar;

=

in ﬁis thesis, BAbrahamse established a decomposition
of Teeplity operator at the Calkin algebra level, in othex
word, & decomposition modulo compact operators. Ouxr study of
‘Teapiitz operator starts from a somewhat different point of
;_viewo e decomposition theorem in Chaptex I1III says that a
Teeplitﬁ cperatdr on ﬁuitiplymccnnect@d domain is indeed a
trace class paxturbatian of a direct sum of Toeplitz opera-

toyy on the unit circle. As a matter of fact, the perturha-

|
|
|
|
a
|




tion being trace class is.crucial for quantative analysis
problems such as the spectral multiplicity. Also because

of this deconposition modulo the trace class, we find that
the deficiency indices of symmetric Toe?lifz operator is
computed in terms of the restrictions of the symbol on

each individual contour.

With the intention to obtain a complete set of uanitary
invariant, we also study the spectrum of self-adjoint
Toeplitz operator. Since the spectral multiplicity of tﬁe
abgolutely continuous part can be counted from the symbol,
if a self-adjoint Toeplitz operztor has absolutely continucus
spectrum, then the symbol is a complete set of unitary in-
variant., In this‘connection, we are able to designate in
Chapter IV & class of self-adjoint Toeplitz operators that
do have sgbsolutely continuous spectrum. Particularly, those
operators whose symbol has harmonic conjugate and continuous
derivative are in this class,

We arrange all the materialé as follows. In Chapter I,
we collect gll necessary preliminaries. Chapter II is de-
voted to the study of G-currents and trace and index formalas
and ecssential specitra, We study éelfwadjoint and symmetyric

Yosplitz operator in Chapter ITL. The main theorem of this
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Chapter I. Preliminaries

I.)l. Almest commuting pairs and the G-current

The determining function theory has been established
for many almost commuting operator pairs {a,B1. Usually,
the approach is this., If [A,B] is of trace class, then we
first try to establish a functional calculus at least for
those functions which are smooth on the product of the
spectra, so that [F(A,B), H(A,B)] is a trace class operaﬁor
for test functions F and H. Then the bilinear functional
(F,H) » tx{F(a,B), H(A,B)] will be studied. If A,B are
self-adjoint operator and/ox unitavy operator, it turns out
that this functional is an integral curreﬁt with the de-
termining funﬁtion-being the function that the Poisson bracket
{F,H} is integrated against {(cf.{7], [&8], [371). Our study of
the determining current (or G-current) will essentialiy follow
this pattern with the pair consisting of a self-adjoint
operator and a normal operator. The starting point is the

following new development in the general theory.

Theoxem T,1.1 {(Carey and Pincus [6]). If N = Xy + i x,, is

a bounded normal operator, and Y is a bounded self~adjoint

operator with [N,¥7] in trace class. Then trace [F(xl,xz,y),



H{xlexﬁ,y)] = [G1(aFAdH), whers the current [G]=ﬁ(ﬁ2[jﬁhvg,
% is an ﬂz maznsurable and (N232) rectifiable subset of RS,
fn is an ﬁzij summable 2-vector field which is % almost
everywhere simple and is such that the tangent space
tan(z} (ﬂzl;zpﬁ) is associated with n(x). We can take
Entz)ll = 1 s.e. with respect to y? ¥, two dimensional
Hausdorff mezsure in ﬁa raestricted to L, and the principal
function, g, isg Ean ¥ summable, Furthermore, this can be
done so that £ < o) x{v).

In the proof of this theorem, Carey and Pincus provide
a construction of the current G (see [67). We adapt this
construction to our present situation. $Since the pairs we
treat later in Chaﬁter IT have much "smoothness", the tech-
nical coreplenity invelved in the sbove theorem can be avoided,
Therefore, we will not bother to explain the details of this
theorema' netead, we concentrate on notaticns and definitions
wo will need later. We would like to point out that while
the épestion of the existence of an integral current repre-
sentation for the trace functional has been settled, it is
gtill interesting to explore the methods of actually cal-

culating +the ¢ vector field., We will demonstrate the com-

e

ratation of such a ¢ for the pair {Ta@k,mf} vhere T@ ig a



Toeplitz opesrator and Mf is a multiplication operator.

,in this section we only introduce‘the aspacts of the
general éetermining function theory that are relevant to | i
.ouf stﬁdy, The concrete calculation of G will be left for
Section Ii,zq

All the Hilbert spaces are assumed to be complex and

s@parable; Lzt H be a Hilbert space, we denote by £(H) ang

cl(H) the algebra of all bounded linear operators on H and
the trace class coperator ideal respectively. TLet A € £(3)
be a self-adioint operstor and let El be its spectral measure.

For any x € H,‘MXCA) = (EAx,x} ig a Borel measure on real

iine R, Lat HQCIA) = {x b, is absolutely continuous with
. =1 . _
respect to the Lebesgue measurel}. Then it is easy to prove

that H@c(h) is a closed subspace of H and reduces A (gee [23T).

The restriction Aac of A to Hac(A) is called the obsolutely

continuous part of A. The orthogonal projection from H to

Hac(m} ig dencted by Pac(A)e

| L@t A,B‘be two seli-adjoint operators on Hilber£ space H,

' We say that the wave operators Wi(A,B) exist if the strong

limits .

Swiim.eitA e“itB P {(B) =
_ ac

Tl

w (a,B) |
ﬁ‘) ) i

exist.
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The wave operatorc may not always exist, But when

they do exist, we know the following:

Prowosition I1.1.2, Suppose Wﬁ(A,B) exist, then

a) Wﬁ(A,B) are partial isometries with initial

space PaC(B)H and final spaces Wﬁ(ApB)He
b) 'W*(A,B}H are invariant for A and

g W&(A,B)'m Wi(A,B)B

c .
c) W&(A,B}H Pac(A)

Remark. Here A,B are not necessarily bounded self-adjoint
operators, When.ona of:tha operators isrunbound@d, wﬁiﬁ,ﬂ)
maps the range of B into the domain of A and has the inter-
twining property.

'VSuppﬁﬁe Wﬁ(AﬂB) exist for a pair A,B. They are called
complete if Wﬁ(A,B)H =¢ Haa(A}, The completeness ef wﬁ(A,BB
can be described by the existence of other wave operators

Wﬁ(Behje

Propogition 1.1.3. Suppose Wﬁ(A,B) exist, then they are cor-
" plete if and only if W, (B,A) exist.
The proofs of Proposition Z.1.3 and I.1.4 are essy and

can be found in [23].




il

Hence if the wave operators Wﬁ(ﬁ,ﬂ) exist and are comn-
plete, then the sbsolutely continuous parts of A and B are
unitarily eguivalsnt. For a given pair A,B, there are many
criteria for the existence and completeness of wave operators,

among them we only wention one that will be used in ouwr

Toeplitz operstor case.

Theovem I.1.4 (Pearson's Theorem), Let A and B bhe gelf-agdjoint

cperators and let J be a bounded operator. Suppose that there
exists C € Glfﬁi go that ¢ = AJ -~ JB in the sence that for

all ®x in the domain of A and v in the domain of B
(Cyext) = (Oy.nx) - (TBy,x)

than strong limits

s-lim eltﬁ J e“lth P (B)

vt ac

This thecrem is a generslization of a result due to

Carey snd Pincus (see [5)) and we also refer its proof to

This theorem shows that if two self-adjoint operators
defer by a trace class operator, then they have the same

ghoolutely continuous parts,




12

How we present the éymbel construction which is due to
Carey and Pincus. et A bhe a selfmadjéint operator and let
T be a bounded operator. By the ashove theoremn, if
[a, 7] 6,@1(H) then strong limits

| ita | -iat

Sﬁ(Arf) = g-lim e T e Pac(ﬁ)
toizen

exist. We will call S, (3,T) and §_ (A,T) the positive and
negative_éymbols of T with respect to A respectively.
The symbols have the following properties (sece 15735 .

If [A,T];and [A,8] are in el(ﬁ), then
Sﬁ(A:T) belcné to-theccmﬁutant of Az
§, (nyT*) = [S%(Asfﬂ]*:
i sﬁ{m'rfs-} = 5, (a;T) + 8 (A;8);
- 5, (A7) = sﬁ_(A:T)Sﬁ(Ays);
ls, asm) )l = |zl ,
S$(A:T = O if T is a compact operator.

Let M(A) be the C*%alq@bra generated by all bounded

operators whose commutator with A is trace class. It is easy

to see that Sﬁ(A;o) extended to homomorphisms from M(A) Lo

E{H})., iIndeed, we have.
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Propogition I.1.5 [5]). For any T € M{a), Sﬁ(A:T) exist,

The kernel of homomorphisn S% contains all the compact
opaerators.
Now we introduce certain functional calculus modulo

the trace claés ideal. Let MCRB) be the collaction of

. 3 . .
finite complex valued Borel measures ® on R™ satisfying

Nell = [ (L+]e]) (+]s]) (2+]€])dulr, 5, 8) < o,

3

R
The characteristic function of such an w is the scalar

funotion

F{a,y.z) = j exp[irx + isz + itzldwi{r,s,t).

ZR3 '

Let X,¥,2 be bounded self-adjoint operators on H and [¥X,¥] = 0.
Then we can associate with {X,Y,X} an element F(X,¥.A} € ()

by the iterated integral

ALY ,A) = ‘ e Y S d
F{X,¥,A) %R(%R(ERF(X y,z)dE, )AF, }dC )

where E,F,G are the spectral resclutiéns of X,¥,A respectively,
ﬁate it is impoxtant that EX,?] = O for the integral to make
sense (sece t?], (8. Ih fact if X does not commute with Y

it is not knnwn whether the iterated integral converges or

not in any sense. But when [X,¥] = 0, ¥F(X,Y,A) has anotlier
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form:

j-. eixx isy ita

F(XUYBA) e [ e- . dlﬂ(r;s;t)

{77, [83;- Let QGRB) be the collection of all the character-

N , R . 3 ,
istic functions F of measures u in M{R™) and define

el = flwll. suppose that [X,23, [¥,A] € e, (B).

Propogition I.1.6. ¥ B F{X,Y,A} defines a *-homomorphism
N o _ o
from MIR™) into £(H) module Gl(ﬁ) in the sense that for

A2

Fmﬂmwmﬁmmﬁ)éﬁm)
and

F(X, Y, A)6(X,Y,8) ~ (FeG) (X,¥,A) € ¢, ).

Furthermore, there exists a constant L » O such that

ey ayr - Fav . s el (ad), + tv.adl

and

F(X,Y,2)6 (X, ¥,5) - (Fea} (x,Y,0)],

s ool teall, + Nov,ad ).

This proposition is essentially Proposition 4.2 of [5)
and the proéfs are similar. It follows from this proposition

immediately that [F(Xp?g&),H(X,Y;A}] € 31{H} for any
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A
r.H € MUR3).

‘The last inequality of Proposition I.1.6 describes the
dependeuée of I{F(X,Y.n), G(Xnga)]Hl on F and G when X,Y,A
are.fiﬁede Another aspect of the dependence problem is
that if ¥ and G are fixed, how the trace norm changes when
X,¥ éhd A change. .This éuestion can be discussed in more
generality. First we need to generalize the functional
calculus to n varisbles. Tet ﬁ{mﬁ) be the collection of
function$ |

: - n
Flloeoasd ) = [ exp (i X

X tjkj)dw(tlp,og,tn)
®" J

1
wh@rg
J

BB

l(l-{ltj|)61&j| (tlenoortn) G:‘.w 97

"

i~ I

Let Al,oo,,An be n self-adjoint operator and define

. {itlAl it A :
E(Alp...,ﬁn) s f e ve ol dw<t1"“°'tn)“°

n
r

As we mentioned before, this operator can not be ex-
pressed in terms of the spectral resolutions of Al,.n.,An.
'But this definition of functional ealeulus still makes per-
, A n

fect good senze. TFor F,H € MR ), the comnutator

[F(Kl,n,O{An}gﬁ(Al,...,An)] ias an integral representation.
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In fact if H is the characteristic function of measure

“.; thé.‘n [F {AlgcwegAr:)p II(AlpooapAn):}

1t1A1 ltnAn 151Al _lSnAn
= [ [ [e ceol® e ol
w R
is A is A it A it A
- @ 1 1°¢9e nne 1 10.0 Illljdmdu
n 1t1“1 ) 1t.Aj lslAl ltnAh 132A2 msnﬂn
= I () cool@ , @ Jeoee sl
j%l:Rn
&w(tlgoaoptn)du(sl,,,aesn)
is A, it.A i i
il 11 1tnan lgzhz lgnAn
+ [ [ le e coel e coot
n
R R
is. A ig A it_A it
1% 8y n U101 anAn]
- e eooe e -ooe
dm(tl,.negtn}du(sl,,ee,sn)
= % &
) k1 b i.S A is N : i it A it.ﬁ&. isl . itA
e k-1"k-1 L S 1 I S ST £
k=1 g=1 K{lﬂp
is is A :
k¢1Ak+l nn
e ool dm{tl"'e‘#tn)du(slp“’P’Sn)7
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Let A be a self-adjoint operator and let T be an

operatoy, then

1) elAt

: iR -
[e™F,0] = (ePTpe At
t d& iAT. ~iAf 1AL
a; e Te dy e
O
t [
if elAT
O

l(tmT)AdT,

(a,7]e

If B is a self-adjoint operator, then

ia demy & imA ism. i(t-m)
[e .A’elsB] . 1j elTA[A'elsBj@l(t ‘)Aﬁw

t () (6o
if{g-@)B da ej {t e)z-‘;d,?

i
=

tes 1FA  igB ileg~a)B  ilb-n
-l'j" e’ [a,Ble (s-a) el( ')Adﬁaﬁw .

Therefocre we have

[F(A1'°"'An)' H(Al..o,.hn)]

: | t. s is A is
n n 3 i h — P o
'g"ﬁ 5 EJ‘ J‘j‘[ke 1 1."0” k-1 1
k=1 jﬁlmnmno 0
ltlAl 1TA, 10Ak
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_ e R  p ‘o
G)Ak i T)Aj ltnan qu+lak+l 1 nAn
[AjeAk]e e Y 0@ e cool

(icd'f&m('tlp o o .'tn)(‘:{u(ﬁla * e & ’Srl) L]

From this we can conciude that if [Ai,Ajj is of trace class
for each pair i,j. then so is [F{Ale,so,An), H(A],ooophn)]u

. e _
Let {A§'°"‘A§}p"l be self-adjoint operators such that

S“lj.m E.’ = A F j =t lj@eepn

Py

and [ﬁ?, ?] € Gl for any i, 3 and p and

Limf [a¥,28] - [a .2 0 =0
p-%m ] : 3 +

for each pair of i,j. It is cleaxr that for fixed s};..e,sng

tlpmj;ctne Taﬁy

. fr s S s enl e P
is 18 Ay o 1E.A CAFAT, LeA
e l 10»0@ knlAk 1@ 1‘lboae Je AktﬁﬁPﬁija

i P ia AP
+Sk+lﬂk+l J"snA:n

b e o

converges Lo
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is i i i7A, oA, i(s, ~0)2
1%1A1 lsknlﬂk"l ltlAl eerjelc k[A e (Sk U)sk
a2 ._onee e‘ e jﬁA}: =
1(tij)ﬂj ltnAn l$k+lﬁk+l lsnAn
e- oooe e o ¢ o

in trace norm. By the Isbesgue dominated convergence theorem
we have

Prowvosition T.1.7.

. : P p p V p ' - ] 3 | |
;ﬂ“ [r (Blseeaed s H(Az.'f“”:“n” TP (Ayrecesd ),

H(Al“wpﬁn)]ﬂl = 0,

Obviously, tr[F(X,YpA),-H(XpY,Af] is & bilineay functionasl
defined on ﬁi@3)¢ Ve will give a repregentation for this
funciional in terms of integral and local data of opafators@
We &tart'with dirécﬁ integral representations of H. Suppose
X and ¥ have spectral ﬁeasures 1 and ¥ respectively. Then

the Hilbert space ¥ has the following direct inteygral de-

compogitions
He [ @ L, du (1)
-G{X)
and -
H P j :, & K}kC‘iV(X)

G (:Y)
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g0 that under the corresponding decowmpositions of the space,
X and ¥ are the multiplications by the coordinates. Since

Y comnmutes with X, we have
(YEY (A} = ¥(A)YE(N)

where Y(\) € E(LK) and £ € Ho If a()\) is in the point

spectrum of ¥{l}, we denote by F the orthogonal pro-

Aooa(n)
jection from L1 onte the eigenspace of Y()\) corresponding
to the sigenvalue a{)). Because Sé(XpA) are in the com-

wutant of X, they have the decompozitions
(S, (£,A)£) (W) = 5 (X,A) (N £(N)

with & (LA} (X) € £(T,). But 5, (X,A) commate with ¥ too,
B0 Sﬁ(xpﬁ)(h} commute with Y{)) for (Lebesgue) almost all

A {by the definition of Sﬁ(xgﬁ})g Theraefore, Sﬁ(xpﬂ)(l)

l- 2 -t .
l,@(k)nx° By (57, Remark 3.1,

preserves the eigenspace P

S_{q(xca) (}\} - Sﬂ(XvA) ()\) € el (Lk)v

Thus there exists a phase shift g, a()), ) for the pertur-

bation problem

5, (X,B) (VF + 8_(X,a) (MF

h.@(k) he )

for Be®, ) {3@& [5]; [81}0
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Similarly, under the decomposition

H = ® K dv(Eg)
J.c(Y) 5
we have X = f ® X(E)dv({E) and Sﬁ(Y,A)
g (¥)
st f @ Si(YgA)(E)dv(i)o Fdx each B{€) in the point spectrum

5(¥)

of X(&), let ® be the projection from KE to the cor-

B(€),%

responding eigenspace. Then there also exists a phase shift

for the perturbation problem

- S__ (Y, A)(E)E

S (Y, A E <
A IS 8(E), ¢
Lat
oF 3F
_ ox ez
J13(F’H) = deot {x,v,2)
st 1A
and
ey Z (x,v.2)
J.. {F,H) = det
23 i G
oy OZ

where FP,H € ﬁﬂRB)g Let Gp denote point spectrum.

Theorem ¥.1.8 [2]. The trace functional has the representation
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tr{F{X,Y,n), H(X,v,2)] .

Le(f 5

= o (F. 1) (ha{l),z)g(halr),z)drdz
LTSS €, (Y ()

J13

NI

) J?B{Faﬂ) (B(%}pg,z)hiﬁ(ﬁ),E,z}dfﬁdz}.
ﬁ(fi)éﬁpf}({g)) ’

In Chapter II we will calculate g,h, F and
Cﬂ(?\):)\
EB(F) g in terms of the local data of Toeplitz operators
=E A
and derive a much simpler form of the representation. In
fact, ¥ + i¥ will be the multiplication by a smcoth funetion,
dim I’X and dim Kg will be uniformly bounded and w{i}, 8(%)

will turn out to be the local parameters of the boundavry

curves.,
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I.2 Hardy spaces and Toeplitz operators

Let D be an open set in complex plane ¢ hounded by
analytic Jordan curves. In this secticn we summarize soms
basic facts about Hardy spaces and Toeplitz operators on
such plane domain D. Although many results are also true
for #Y spaces, we will only considex Hz, The boundary of
D gonsists of n 4+ 1 nonmintersectingrsmooth curves, which
are denoted as Fogﬁl,.eo,ﬁn-wherelfg is the outer boundary
of D, Because of the smoothness, Direchlet problem can alwayse
be soived for continucus functions on 3D, In other words,
given continuous function u on.db, there exists a continuous
function & on D such that Q restricted to D is harmonic and

A . _ A . o
u=uon oD {91, Pick z. € D, then u b u(zO} is a positive

o

continuous functional on C{3D). Hence there exists a measure

mz » which iz ealled the harmonic measure with respect to
O

o* on oD so thzat

&
A
ulz,) = [ ulMdy ()
. &
oD 0
'mz and the arc length measure on 8D are nutually boundedly
O
equivalent [9], therefore, so are ®, ‘and w_~ for any
0
,zl'ﬁ D. We will henceforth fix a peint z. € D as the

base point snd drop the suvbscript of .
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Thé Hardy space HZ(D) is the collection of analytic
functions f on D such that |f‘2 hzs a harmonic majorant on

D. The noxm Hfuz is defined to be inf {ul/

2(zo) ; u is a
harmonic majorant of !flz}0 There is an alteinative de-
finition for the Hardy space. Lot A(D) be the algebra of
analytic functions on D with continuous extension to D.

We restrict thelfuncticns in A(D) to the boundary 3D and

denote by HZ(aD,w) the Lz(abgw) closure of these vestric-

tions, HQ(B) and Hz(an,w) can be naturally identified.

Theorem I.2,lL. Let £ € H2(D)o Then £ has nontangential

r

limiting value £* on 3D w ~ a.e., and £* ¢ Hz(aﬁgw), £ £*

is an isometyic isomorphism from HZ(D) to'Hz(aD,w)e Further-
moxre, F is the harmonic extension of £*, £ can also be re-

covered from £¥ by the formula

k.
f(z)fﬁ;’% %._%)*dk. z €D,
Al BD =

This theorem and its proof can be found in [1]. Frem
now on we will identify every f in Hz(D) with its boundary
value and use Hz(D) as the only symbol for the Hardy space.

Note that the correspondence

£ £ 40, £ € .7 (oD, )

291 3D A-2
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defines. the Cauchy projection which will be denoted by P.
Let g be the Green's function per D with pole Zey Then

g is a c” function on 9D and has a positive tangential de-

rivative %%(1) » 0O on ab. Let h be a multi-valued harmonic

conjugate of -g, and let v be the derivative of -g +ih.

V is analytic on a neighborhood of 8D, Let m be the arc

length measure on 8D. Then the measure dw, dm and dz have

the following relation

dn(n) = = 20y
Adw(r) = E%Ev(l)dh (seer[l]},

. ' : 2
Let Hg(b) denote the subspace of functions £ in H™ (D)
such that f(zo) = 0, Hz(D) and ﬁz(D), where bar denotez the
complex conjugate, are subspaces of Lz(aD,m) and it is easy

to see that Hz(D) L ﬁg(D). Let N = Lz(aﬁ,m) @ [HE(D)GEﬁg(D}]n

Theoren I,2.2 [117. dim ¥ = n, the number of the inner-

boundary components. N has a basis consisting of real valued
o .
C functions.

This theorem will be used in certain important estimates,

L s 2 ) .
The decomposition L (anw)'m Hz(D) @®N D ﬁg(n) will be re-

garded as the standard decomposition of the L2 SPace.
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By ilie Reimann mapping theorem, there is a holomorphic
fanction v mapping the vnit &isk A onto D (0O to zo) and A
is the universal covering via ©m [1]. Let G be the group of
covering transformation, the G is a subgroup of linear tyrans-
formations from A to A. The set L of limiting points of G,
congisting points that are accumulations of [Gk(z)} with

1 and has

[Gk} <G and 2z €D, is a closed subset of dA = S
Lebesgue measure 0, 1 can be analytically continuated to
4’ that contains a neighborhood of Sl\Le A is mapped by 1
ento the Schotiky double D' of D {111,
v el 2 . ‘ 2
Let HG and nbp respectively, be the subspaces of H
and IJ2

,Lz(sll that are invariant under the action of G.

Then w induces an isounetyy £rom LZ(BD,w) onto Lé. in fact,
. ) 2

let £ € .°(3D, ) and let u be the harmonic extension of | £}

to P, then uer is a harmonic function on A and obviously ex-

tends |f0ﬂ|2o Hence ||£l 5 = [u(z )]1/2 = EU(W(O))]I/Z
. 0
: L° (3D, w)
= || fonl] . Thus, f 1 for is an isometry and for € IL-,
LZ(SI) G

Lot o € Liy then ]g|2 is invariant under G and so is the
J
. . . A A
harmonic extension v, Define v{m(\)) = v{()\) and g{n(z) = h(z),
1 A . .
where A € A and 2z € § \L. Then v iz the harmonic extension

A . A .
of lglz. Therafore, g € LQ(aD,w) and it is easy to see that
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-~ . . \ 2
gott = ¢, Hence U 3 £ ¥ forr is an isometry from L (3D, w)

onto Léo Obwviocusly U maps HZ(D) onto Hée

Lt P ; LZ(BD,m) -> HZ(D) be the orthogonal projection,

For o € Lm(aD,w), ~the Toeplitz oparator Tcp is defined as
Tqﬁ = P{ef) for £ € Hz(D). To carry out some cruecial
estimates in Chapter 111, we need a concrete form of P,
In the case D is thé unit disgk, P ig Just the Cauchy in-
tegral., But when D is not simply connected P dées not have
a simple representation. HNevertheless, we will later show
that the difference between P and the Cauchy projection is
always trace c%asso But first, we will seek a representa-
.tion of B in Hé which tuxns out to be very closely velated
to the Cauchy projection on Sls

~ Coxresponding to the decomposition LQ(ED,m) = HZ(D}€DN
@ ﬁg(n)£ Lé has the decomposition

2 .2 =7
N = H, @ Ny ©HO

. 3
Let PG and Pl be the orthogonal projectiocns from Ié
2

2 A . .
onto HG and L? onto NG respectively. Then foxy ¢ € LG’

' 2 2 2 . .2 ,
P.g- -P . ‘ = I = 1 54 80
e = PG(l ll)g But HG IG IG N 2%, so the Cauchy
integral will serve as the projection on Hg ® §§ 0° This
. . £

PrOVES
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.. 2
Pronosition 1.2.3. For g € Lg,

(P g) (r)
- g(7) o X S S
(PGg)(z) Toomi 8¢ g-m a7 21i I ' T-2Z -

S 5

Note that P1 has rank n.

1 @ N
Coroliary I.2.4, Let ¢ € L (3D,w). Then Toeplitz operator

T iz unitarily equivalent te #°  on H> on H° where
M o Ty G fe]
_ " |
(1 £y (z) = o2 [ emlnlEll, 1 (2, poi£) (7) o
tpoﬁ 2ﬁi S' 'f:-z 2T¥i S? .

for £ € Hég If we denote by T@oﬁ the usuval Toeplitz

. - . 2 1G PR ¢ 2
operator on I, then T = (Tﬁioﬁ Lplmﬁoﬁ)laea

For the purpecse of decomposing Toaplitez operator on D,

we introduce another decompogition of Lz(aDp@}o

L | 2 2 2 o
ap = T U T Ueeoul o so L7 (e, W= 17 0n,) @ 170, . 0)

2 . . .
Do o o OL (Pn,wn) where . is the restriction of w on

?je i = 0,1,c0000 Leﬁ DO be the int@rio; of‘fo and let Di
be the axterior of ?i union ©, 1 = 1,...,n, Let A(Di} be
Athe set of holomorphic funetions on Di with continuous
extension to BZ, Let Hi berthe closure of R(Di) in

Hz(ﬁ); then
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Dencte by Ai the restrictions of functions in K(Di) to P

and 1et Ki be tha Lz(Ti,wi) closure of‘hi, Then

. |
- (X &
L7 (oD, w) (KO®LO)CD(K1®111@0.9®.K5®LB)

L2 ,
where Li = L (Fi,mi}e?i, i = l,000s00. Each Ki can be
naturally identified with Hzo In fact, let ﬂj(ﬂb) be
a conformal mapping from A onto the exterior (interior) .
of ?i(fo)jrespectivelyc Note M, Preserves the positive

tangent direction and T, Map reverses the positive direction

0

on Fj, Thus, w veees T give the natuvral positive tangent

direction on 3D, We define'xﬁ by Xﬁ £ = foﬁi for

1

I e Iﬁ(ﬁgwfsi = 0,1,...,n. By the smoothness assumption of
) _ i
?i, ‘ﬂi‘ iz kounded from asbove and below on § and therefore,

xﬁ is a honeonorphism. Let A be the algebra of analytio

functions on A with continuous extension to A, Then clearly

o _ .2 2
XﬂiA(Di) = A, Hen@e Xﬁ Ki = H", TFor each £ € I, (fi,wi),

i

8

-“Xﬂifﬂz fsllf(ﬁifx)}lzdm(x)
= I €6 am ;™ (o)

1

(H

f 1@ 1217 (6 fam, (6)

= P et e e, (0 au, (0)
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il

where m, is the arc length measure GnI“i and Biﬁmi = dm, .

There exist 6,M » O such that

L

0 <6 p (O] (O] sH<o,
Let hj bhe an outer Ffunction on A such that
in (m)‘t2 w p (-ﬁ ()\))\'ﬁmlt(ﬁ onl .
LA S 14 i i
Define Uiﬁ = hixﬁ f for £ € Lz(fj,wi)a Then it is easy to

: . . 2
see that Ui iz a unitary operator and UiKi = 1", Thus we

also have &i(Lz(ri’mi)@Ki) = L2 & HZ, If P, is the ortho-

- . . 2 ' =
gonal proijection from L (fi,mi) onto Ki, then U.p.U; is
he orthcogonal projection From L2 onto Hz. Let

@ " :
” - -

. ,
. i = X..
lﬂi¢if for any £ € ii

Hence, U, P .M _U* = o ¢« the usuval Toeplitz operator on HZ,
iTi el ¢po 77

x

The wbove construction of Ui iz due to Foias. Let

U o= UO @ Ul®..°@l%f Then U is a unitary opervator from

2 2 .
L7 {dD, ) onkto LZ@,,,®Ig(n+l copies) and

‘ . _ 2 2

UEF& ®;Kl @, ..D Knj = 0 @...2H

On X,, we define T = P.M,,
i - : iy

L<r)
g V€L (1iowi), Then if
_ -~ T
wi {E L (rigwi) for i = Orlﬂooopnp th@!‘l

olr® @07 e @Ler
i QO $n mo’ 0 epn n
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«}
w € L (3D, uw}

*"

Let ¥ be the C* algebra generated by {Tcp

L1

‘ ‘ . . o
and 1et'3i be the C* algebra generated by {Té 0, € L G}fgﬁia
Let ¥ be the ideal of compact operators in £(H2(D)) and let
-Ki ke the ideal of compact operators in £(Ki). Abrahanse

hae the following theovem which gives a decomposition of

Toeplitz operator at C* algebra level.

: } B O
Theorem 1.2.5 [17. The correspondence Tm + K P (Twlf +4% )

O(r) . +¥)0...0@" | 1) is a Ch-algebra isomorphism
,w1f1 R q‘Jlfn‘ "

from S/Mfonto 5o/ % @ T /%, B0 T /K .

The theory of Toeplitz operatcfs on multiply-—-connected
domaihs has been develoﬁed resembling tha£ of Toeplitz opera-
tors on the unit disk (see [1]). However, since the topology
of the dowmain is éssentially different, new phenomena oecur
in the multiply—connectéd case. For example, on a multiply-
connected domain, the spectrum of a Toeplitz Operaﬁors is not
necegsarily connected; it is known that a self-adjoint
cperator can have discrete spectrun ([1]). Abrahsmse's Theorem
‘give5 some explanation as to why this is s0. Roughly speaking,
up to a compac£ pertqrbétion, a Toeplitz operator is pieced

together from local data of the symbol on each of tha contours.,
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Theorem II1.3.1 shows that the interaction between the con-
tours ig actually even weaker than compact perturbation.
Since the orthogonal complement of H2{D) in Lz(aD,m) con-

tains bounded real function, it is natural that self-adjoint

Toeplitz operator may have point spectrum. It seems veasonable -

to believe that the subspace N is responsible for the ex-
istence of singglar gspectrum of selffadjoint Toeplitz opexator,
Indeed we will later see that when a real symbol is perpendi-
cular to H, the associated Toeplitz operator does not havé
point spectrum,

We conciude thig section by two lemmas concerning in-
tegral operators on contours, Let klsz € Lm(anaD) and let

. &
flnoeopfma qla-aosgm € L (3D,w).

Lemma 1.2.6. Integral operator defined by

(k£)} (z) = [ kO z)E£(0dw())
3D

whare

et
k(hez) = | k, Ouolk, (0,2} duls) +
aD =1

£.(Ng, (2)

3
is a trace class operator on Lz(aD;w)@ Furthermore, there
exists a constant L » O such that for any o, € szab,w),

KM@ and M®K are also trace c¢lass operators and
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ke lly & tholl L. MKl < LllcplILE,IIM,,,KM;pII L F LM\\Lz He:sllee

L
Proof. Let

(Kif) (Z) = yabki(k’?’)f()\)dw(l), i = 1,2,

m D
@ K + s S‘
then K K2 1 jzl £f,. & gj ince kl,k2 € L (3Dyxabh),

Kz,Klmcp are Hilbert-Schmidt operators for any o € Lz(an,m),

Hence KMm is trace class and

m — —
"M$KMmHl 2 [} 01, K,) (KM + jﬁl waj ® $gjﬂ

m

s il Hxgm o+ jz o, oo, ,

1 L L

= gl Bl e B gl Nl Bl ol o

Lemma T.2.7. Let k(A,z) € Cl(BDxBD).and define

(RE) (z) = [ kO,z)£{x)dw()).
3D

2
Then for any & € I, (3D, w), KMm and M¢K are trace class opera-

tore and there exists . » 0 such that

il @ sl 5o ol € vl -

4L ig independent of o
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TR{h, 2} i z €T,

:] = 0l1l¢¢e'n anﬁ d@fine

(Ry£) (2) = [ %, (z)EO0de(N) .

oD

It suffices to prove that Rﬁm$ is in trace class and

ﬁ; i ¥ [}
“KijH1 LHmHLZQ Fix z, € fj and let.xj(ﬁpz) be the

characteristic function of the positive arc between zﬁ and

z. Let é%-denote the tangential derivative on Fjg Then
a .
k,(h,z) = =k, (h,mi% (Tez)dr + k. {0, 2.).
3 ¥ I]? BT :] ¥ j [ ) 3 & J)
j .

The proof follows from Lewma I[,2.6 immediately.



I.3 Symuetric operator ags s limit of self-adijoint operators.

It is natural to extend the study cof Toeplitz opevator
to the case where the symbols are unbounded., But to do so,
there is a éuestion that has to be settled first. That is,
what is the (or a) natural domain for such an operator and
how to define it. We do not know the answer in general.

But when thelsymbol ig real and satisfies some integvability
conditions, there is some special approach. In.this caze,
we first trumate the symbol to bounded functions and then
consider the_seéuence of resclvents of Teeplitz operator
with truncated symbols. In the end we can derive a symmebyric
operator that behaves like a Toeplitz operator with an un-
bounded symbol, or to be exact, a symmetric operatox that

we mean by Toeplitz operator with unbounded symbol. The
interesting point is that one c¢an prescribe the dificiency
indices in terms of the discontinuity of the symbol. This‘
construction follows a pattern introduced in Pincus [197.

. We sketch the scheme in thig section and leave the detailed

calcenlation to Chapter III.
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Let {An} ke a sequence of bounded self-adjoint opera-~
tors defined on a Hilbert space H, Assume that {Anlraatis—

»

fies the following two conditions:

, -1 ) . :
(1) RO) = Lim(d_-)) 7 exists in the wesk operator
n-e

-topology for every L € C\Rs

(i1} -~ lim itR{it) = I in the weak operator
N g"'il‘m,t@R .-

' topology.
Ther R{i) is an opefator valued holemorphic function on
€\R. Furtbermore, R{X} = R(A\)* and ImR(\) 2 O if Tm L% O.
Thus there exists a positive-contraction-valued meagsure Ft

cn B such that

7]

F
-% °

ROV = |
g1t

ey

By the Naimark dilation theorem (see Appendix I, Theorem 2,
. : A
{27) there is a Hilbert space B D H and an orthogonal re-
* 0 . | i A 7
solution E  of identity I such that PEtlﬂ = F_, where

Q : ﬁ + H is the orth@gdnal projection. If we reguire that

' ) A

‘V{EtH : £ € R} = H, then [Et} is essentially unigue. Let

. ' A

A= [ tdE
| t
R

A A -1 o A _
and R(}) = (A-2} 7, then R(A) = PR{A)[H. Define
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AL = A A - |
N, = Pﬁ(l)R(K)P - R(AJR{\) . TFor any =,y € H, we have

(ﬁ(k)ﬁ,ﬁ(h)y) = (R(X}Q.R(R)Y)+(Nxxny)a So % € ker Nh if

and only if [R(\x| = IR(Dx| = 1BR(Vx. This implies

that ﬁ(i)!ker N, = R(\) |kex Ny o

Lemma I.3.1.

1

cer N, = (x : x € H, vinl| (-2 "% - R(\)x] = 03,

N :
=2
In other words, x € ker EX if and only if {Anwk)_lx] converges

to R(\)x in the H norm.

Proof. Suppose ”(An~k)g - R(k)xﬂ <0 as n -+ @, then it is

ensy to see thut limH(l+(Xm§)(An~l}"l)xH = (3 (=3 R (1) Yo

A
Hence [12(L+ ORI = | 1+ DRI =] = I
= H(l%{kwi)ﬁ(k))xno From this it follows immediately that
ﬁ(l)i € H and therefore Q(R)x = R{Mx, i.e. % € ker Nl'
Conversely, if x € ker NX' then H(l+(la§)R(h)xH
= | -DRODI=N = fIxl.  Thus

1im“{1+(k¢i}(ﬁnnk}"1)x Q (1+ (=M R (1) )]
FapeT) . .

2% - 2 1im Re ( (1+(3-)) cAn~x)“1)x,(1-+(x—1')n(x))x> = 0,
: - Do

This proves the lenma.

Now we make further assumption that
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{(iil) R\ ker NX iz dense in H

‘fhis condition also guarantees that V{Ftﬂ} ; t €mR} = H,
820 ker,R(ki = 0 for any A € T\R.

Leﬁlﬁ = R(\) kexr Nk and V)L = (1+(k—K)R(1))|ker Nk’ Then
obviously B = H, vy is an isometry and ker(vl—I) = {07},
Define A = (AVRQE)(VR_l)_l. By the classical rasults of

von Neumazun, A is a symmetric operator.

Lemma T.3.2 Fi99. 8 and A do not depend on the particular
choice of A.

H . - A - .
Proof. Let 2 € ker N , then (a-1\") lz = R(A" Yz € H and
_ '
F A ’ - }.. ’
z o= [1+(% -2) (a-0") 12z € H. Hence

AL - A - AN, - A -
(A-2) 1ﬁ = (A-)") lz = P{Ah~%") 12 = P(A-1) lxo Thusg

A ) o
x = (A-n) (A=)t

X € ker N, and R(X} x = R(\")z., This proves that

A

R{%) ker NR = R{\'} ker N . But R{\Mx = (val)x/(RJEE, 80
. X' (9
av, “\] (Vk—l)_lR(k)x = (W,\-d}t) %/ {k-N) = AR(A}x + x

= kft(k’)z + (A’-\—wk)R(k")z - ﬁmx'}z =z + VR(V )z =

= [l'V_’nxfj(v ~1)"*'R(M“)z. Hence A is independent Of A\.
X S -

This symmetric operator is considered as the "weak limit®

of [Aﬁ]. The deficiency spaces of A ave H @ ker W, and
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H 6 ker Hi,. We will refer to N}L as the deficisncy operator
of A. -

This:symmetrié opexator theory has been establiished
for'singular integral operators and Toeplitz operators on
the unit circle (see [147, [20]). In these two cases, the

space H 6 ker N, is actually computed. For the purpoze of

A
this work, the results concerning the Toeplitz case are pre-
sented here.

Let o G'Lzﬁsl) be a real function, define

o{T) lo(r}| € n
’ 4 . -
o T =
o) : (s} ]| = n
‘0pera£ors Tm will be used as the limiting seguence., PFirst
oo, | )
we have to show the weak convergence of {(T -A) 1}0 For
. : mn
@ € A, let k&(f) = 1/(l-a7). Define
- it ,
1 o7 e 4z it
S g - = og - -
phegl = expl- 2= [ S log e (e7) =N at)
- | e -z
Then it is emsy to show £hat
s (s ()
(@, -0 TRk = B L
wn: & 1-ap

Tt follows imm@ﬂiately'that for A € C\R,
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-1

Lim{{T -3 ka'ks’ o s(xpsl_s(x,a)
e ¥n 1-0.8

vwhere
it

. . X om e 4z
S(hz) = expl- %= | __ it

1og(m(eit)—k)dt),

.

Since the linear combinations of {ka s @ € A is dense in
2 . ..
H , we claim that the weak Llimit

Lim(r -\) "%

1o n

= R{%)

exists for any A\ € €\R. Furthermore, computation shows that

ROk, = E“"(Lmsme)asao

and
_7 (le pka) - 1. 5 S('MCI.)S(LMG,}:S ()\-#(’i’.)s(kt@)
@ T aclal A=X
- S )\-p Jit - e
LA g Eee DV a5, s 0na 197
27 Y1t 15 t
-ge
VLet
—_— -1 :
S(h.2)85(N\,2) : Imh » O
QX(Z) 52 . I
~S (0, z2)YS{(n,2) : ImA < 0,

then there exists a positive msasure Vs such that
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mo, (z) = ]_ﬂ —1"1’4? av, ()
-z

The Radon-Nikodym derivative v.

% of nk with respect to the

Lebesgue measure is

P i i 2
vi(£) = ma () = (et |7,
Thus
N . .
. - I
(Nhk'a;’koz)s()‘"") Sl 21 Imh leit“’ Iz
where v{s) ig the singular part of Vg e Hence
us N (s}
dim{x © ker Nk) dim 12 (dv} )

(s)

Now we relzte vk

6k(elt) = %‘arg(m(elt)mz) be so determined that O £ §, & 1

to the symbol ¢ as follows., Let function

s

oen the unit circle. There exists a measure My such that
At
exp(j N 61(T) P =3+ 8 f HX(T)
8

where 8 = exp([ & (6" )dt) - 1, (see [191, [207). u, and v,

have the following relation

1 Y Y4 it
5 Yy = sin(g jo 8 (e Nat)y,  [19].

3]
=3

it
Note that O ﬁ‘% f b, {e }dt < nw. Hence vy and My are
O
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mutually ecuivalent, The singular part of Hy is complately

detexmined by & For example, if @ is bounded, then 5l

XO
is bounded awav from O and My does not have a singular
~ part. In anothex extreme case, if vis) is purely atomic
(s) it, (W)
with Vi.q @t a point e e 3= Lioea,n()), then we
e, dE0) 2
have S(w,e ) /(e 7 ~& ) € H" and
| (s) _ .
P TV NN 1O VIS T 1 (VoS
A g=1 27 |1l meltj(R) weltj(K)

(see El?], [207).
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Chapter II., The G-Currents and the Trace and Index Formulas

IT.I The difference between orthogonal and Cauchy proijections

Tqremplay the alimost community pair technigues in the
study of @éeplitz ¢perator, it is necessary that the com-
mutatog of a Tcepiitx Gﬁerator and the multiplication by
thé.variabie be of trace class. This is clear in the case
of the‘unit‘circla vhere a Toeplitz operator is a multipli-
cati@n'fciloweﬂ by the Cauchy integral. The key point is
that on the unit circle,:the Cauchy integral happens to
serve as:ﬁhe orthogonal projection from L2 to Hz, But on
a multinly-connected domain, complicationé due té both the
topology and the géometfy of the domain mérge so that the
orthogmnal projection can no longer be expressed as a singulay
integral operatoro- Fortunately, the difference of the ortho-
gonal projection and thé Cauchy projection is of trace class.
Thus, as fér as the almgst commuting pair is concerned, wany
techniéues use& on the unit circle can be transplanted to the
multiplyfconnected casé,' Furthermore, we have the following

important theorem which is the starting point of our study.

Thecrem il.l.l. Iet PP : Lz(aD,m} - Hz(D) be the orthogonal

and Cauchy projection respectively. Then P - P is n trace
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class operator. Furthermore, there exists a constant L » O

) -]
which depends only on D such that for any 9 € L (3D, w),

IOl sl 1, ol

L
Procf. It is easy to see that P and p satisfy the following

relations
PP = Pp Pﬁ‘a = ED' P = Pﬁ 4 P."‘z = Pf.’é‘)b

yy Pn@ M = P(P*-R)M M (P-2) = M (P-p*) + M (fo*.-P})

hus {P-§) " _( ) o ep( ) m( y o "

= [(P—@)Hﬂ]* 4 E(Q—?)M_]*, lenice by TLenma I.2.5, it suffices
9 . o .

to show that p - p¥ is an integral operatoy with the kernel

in czfanxan)a

Let (1 be the principal value integral, i.e.

1 £ (A
LB () = ST PV j’aD-*;E—f_:% dx

{1 and p are related by the following relations
1 . 1
pm;d_-x+f‘1, s?j‘m-z-;u-n .

Therefors P - PR = - Q*. The rest of the proof will be
;éevotaﬁ to showing thétlﬁ - 0* has a C kernel.

Leat Xh be the_charaﬁteristié function of m\[~ %‘, o
anﬁ define | |

i uli}
(2w (’T‘) vy . xﬁ(lx«'rl) Toa o O




2 .
for uv € L (30, w) ., Obviously we can rewrite Qnu as

)]
| 1 sz;.f...‘__’iil
+ u(¢)_2ﬂi IED - dy .

Hence .if u € ¢l {an), then {ﬁ ul " (BDsW) and {HQ ull } el
isg bcunded hy the supremum norm of u and the tang@ntlal
derivative u’ of u, By the definition of the principal

value integral,'n u cenverges to (u pointwise a.e. on 3D,

Thus if u € cliap), 1im HQ u -~ Qul| 5 = 0. &lso, if

nese. ) L
u,v € CI(BD), {Q*u,v) = (u,0v) = llm(u,ﬂ v) = lin(0%u,v).
: ' 110 " nee

Hence for such a pair u,v

((O-0F)u,v) = 1im((ﬂn-ﬂ;‘:)u,tr),
150

Let #(k} be the positive unit tangent vector to

eD and let $()) be the function defined by
dm()) = S )dw())

where m(A) is the arc length measure on aD. By Section 1.2,
len ‘ ‘
s € C (aD), Thus

o % (a-thsimre(n
. Ja A u (1) an(»)
D

(0 u) (1)
n

L
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and
L x (Ih=rlyp(o)s() (
(Q*u) (1) = —==— —— un{d)dw{n).
no 2T “ap A1

Hernce Qﬁf- Qz is the integral operator with kernel

—— A —

smsm _B(ms(n)
AT

xn(lx e[

1/2mi .

Let

ey oy L L eBOYSON) BDIS(T) _
K(h, 7} = Zﬁi[ X—T_ e 1 a1

Although % is not defined yet on the dl&qonal, if k is

hounded elsewher@, then it ig easy to see that

((0-0%)u,v) = f tf L(l T)u(%)ﬂw(l)jV(T)dw(T) for u,v € C' (D),
‘ oD ob

Sincercl(ab) is dense in Lz(aD,wj, the above eéuality also
hoids for any u,v € Lz(aD,w) and Q-0" is the integral
operator with kernel k. Hence to prove the theorem we only
have to show that we caﬁ assign values to k on the diagonal
X o= T.so that it becomes a function in dw{anaD).

For A % Te

k(1) = (am s=sl) 20 BIT),
‘ A%

The first term can be naturally extended to the diagonal
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since & is smooth.

D = I“O C.,.U I‘n consists of n Jor dan curves. For

each T",, there exist a smooth parameter
J

such that mg(t) = B(A) if L= Gj(t).

L

Let \,T € ?j and aj(t) = )\, aj(s) = 7, Thus B(%\) -u;(t)

R

and B(T) = m;(s). Consider the Tavlor expansion of mj

(1) a(e) - 6y (s) + a(s) (ea) + %’dg(s)(tus)z + plt,s) (E-s)°
and
(2) Gj(ﬁ) = aj(t) + mg(t)(S“t) + %'d;(t)(sut}g A+ $(s,t}(3mt33

\

where ¢, § € C° and @(t,s), (s, t) » 0 as |t-s]| - 0,
¥

By (1),
Bl _ o (s)
A=t m&(t)“@j(S)
. mj(s)
N o4 (s) IO
% (5) (g=8) [1 + 22— (t-s o)+ (e-s) 2 (2LEe8)y
uj(a) aﬁ(S)
" () T
= el 2ed—y (e (B (eogy 2971

aj(S) m.( :)




Note that
e i - I - &
1+at+h.

Hence

Ble) 1 ; (s)

Similaxly, by (2} we have

1+a+l

a’-b (L-a)

St = ) e ) (6-0) 4 (£, 0) (600 P

48

txj(t) - a.:;;(Sfi = cx:" (t) (t-g8) - %" (t) (tm--a + §{s,t) {t—«s:)3
and therefore
sy %)
7\“"? ) j(t)'" fj 3)

) Oy (t)

i M: (t) ( £)

(t) (t-g)[1 = c-g) T ===} {t-5) ]
Ot. (%) .(t)
3
140 ( )2
= 1 s,t) {(t-8)"]
t-g 2 m. (t)
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Hence

6(7\-) _ .B('f) - {Y”; (tl-i- (—@:j (S)
- :

h=T G’j (t) (X,j (S)

)+ Ewl(s.t)-+5£(t,s)](t~s)»

Obviously, the correspondence

o

£ bt 1. £ -

a. (o (W) g (as (7))
Qem) b de (e

@j{aj () mj(aj (7))

+ [wl(a;l(T),agl(k))~%E&(a;1(k),a;1(T})]

~L 4y =1
(aj {x) oy (1))

defines a C® function on a0 X 8D. Hence ¥{%,T) can be extended

to a ¢® function, This completes the proof.

Corollary IT,%.2, Let ¢ € cz(anaD) and ¥ € L®(3D,w), then

M {1PM -MP s M, PM (l-t d pM {(1-P)M tr ins
$E o~ My 1 " cp( P)_an . tp( ) i are trace class

operators and
oy Lo =20, = Bl

e e (1))l = LII\M[L2
and

e (1-pym, - = LH¢NL2
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where L depends only on o,

Proof. M ¢[PM$-M£pP] = [M q;(P"-P) ]Mm + M(PM@-«M{QP) + Mm[M ‘y(pmg’)],

for any £ € LZ(BD,@)
. 1 o{}) ~p{z}
M - Fz) = == S22 £ (0)a
M -M P)Fz) P IBD - (\)axn

since ¢ € C2(BD), we claim that

00) -u(z)

2 _ h
- € C”(3D%3D) .

Hence the first ineguality follows from Lemma T.2.7 and the

theorem. For the other two inequalities, we only need to

“nete that M PM (1-P) = [M (PM -M P) (1-P)] and PM_(1-P)M
‘qrcp{)[\l!epqa”) ¢ ¥

= P[(l—-P)Mm—Mcp(l—P)'qu’ o P[McpP "PMciju‘f"

Corollary IT,1.3. Let o € CE(BD) and ¥ € L™(3D) and

§ € L°(3D,w), then [quT¢j is a trace class operator and

Izl = 5yl

where L depends only on .

Proof. [T ,7.] = (PM PM -PM

' 2
" PMcp) 127 (D)

5 .
= _(pMm(l--p)M\anMw(1—9)M®P) 5 (n).

Particulaxly, if M is the multiplication by the variable
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on H2 (D). then [, ] € Coand |[m,7, . = wllell . with
¥ 1 ' ¥ 12
L depending only on the shape of the domain,

Corollary II,t.4. et a,8 € L”(dD,w) be such that
distance (support a, support B) » O,

1l €e

Then for any wl,wz € L*(do,w), [T, ,T 1

avy B,
and

I S DUPS TR

Fa, 6\112
L depends only on g and B,

Praof, [T T e PM PMBw P - PM,. PM

T T TN 89, el

ik

(P-Pim P - PM (P-)M P
B oy

P
¢
awl sz | 5 Ql

+ PM |, PM P - PM P P.
K !

. Hote that M Sl is an integral operator with the kernel

a@l B¢2

a(t) ¥, (1) 6 (2) ¥, (2)

Z2-7

dz

Since distance(support n, support g} > 0, the conclusion is

evident. -

Corollary II.1.5. Let u € c“(an), Then Pu € HE(D) N c®(3p}).
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Proof, Pu = (P-p¥)u+p¥u = (p-pFipu + (p¥-plu+pu.

By Theorem II, 1,1, (P-pP*)pu, (P*-Plu € c2{3D). pu is

also in C%®(aD) since u is.




11.2 The constyruction of the G-current

Throughout this section, § € L®(23D,w) is a real function.

Let n € R and define
A = T$ @ 1

corresponding to the decomposition Lz(aD,w) = Hz(D)GB[HZ(IJ)']J'e

Let o = x+iy € C?(BD) be such that
w({t:0 (r) = 0}) =0

vhere © indicates the tangent derivstive. On Lz(éb,m),
define X = Mgrand Y = My. By Corollary EI;lgz and IT,.1.3,
[%x,A7 and [¥v.2] are of trace class., In the rest of this
gsection, we will follow the notations of 1.1 with the triple
{%,¥,A} beinyg the operators specifically defined as sbove.
Cur goal is to calculate the functions g(\,a(}),z) and

h{g(8),8,2}) and give the formula
tr[P (X, Y.5) H{X,¥,A}]

N EL{XE Z I 4 FHL 0L alM) e z)g (M a (M) 2)dRdz
T etes (20

+ J23(FPH) (B(fi):@aZ}h(B(ﬁ)agoz)ﬁ@ﬁZ}

B(E)&@p(X(g))

a sinpler form.
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We begin with the decompositions

x= [ ex(mav(s) on 17w ~ [ OKAv(D)
o (Y} c (¥} i '
i . 2
and Y = I ®Y(\)dx on L°(3D,w) = I ® L. d .
o (%) oy MW

First we nead the following lemma.

Lemms 11.2.1. There exists g € @, Ial = 1 such than

w({r: (Re ap) ' (r) = 0}) =0

H

w({7s (11 ap) ' (F) = 0)

Proof. Let {d be the line in ¢ going through O and g. It

is easy to see that Re gu' (r) = O (Im ao' () = 0) if and only

i - ] ""3.
if e (o) e lrete’)
ig &
-1 :
hl) = w(l{p') "L _l\}T : o (7)) = 0}). But
io‘ ig .

e\ ' =03 = (o) I _\[01] and o 4 ¢

)

iy ie

implies (m°)“1[L _l\{o}] N (m')“l[b _l\{O]] = ¢, ‘There-
ie ip

—l)’ Since wi{f{r : o' {r) =0} =0,

w((m')mlﬁ

(o

fore exist at mest a countable number of {aj} c Si such that
-1 . 1 - \
wi{e') Lia) = 0 if ¢ k {aj}’ Similarly, there exist

{gﬁ} e st such that w{{e') 4 _1) = O if g & [sj}. Pick

o, & Sl\E{&.} U {Bj}], then this o will serve the puxposec.
3

By this lamma, without loss of generality, we may assume
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. that

x' (7) = 0})

(0

. w(ir

and

w({t s y'(7) =0}) = o.

 Let § = {v : 7 € 3, %' (7) = O or y' (7) = o}. .Th@n
Sris closed and @ restricted to BD\S ig locally homeomor-
phic. Hence both X andrY have absolutely continucus spectrum
and for élmost_all §and A o(X(B)) and o(¥ (1)) are discrete.

@l

In faet we bave

(h + da(d) : a()) € o, (¥ (1))

: = (3D} . N {w :w € T, Rew= )}
and
{B(2) + i€ : B(E) € 6, (K(£))] = ©(3D) N fw : w e, mw = €]

1

of axcs so that x and v restricted to esach Aj is one to ene.

D\ S decomposes inte disjoint union A, U A, Usooll éj Usow

Let Xy = xlAj and yj = y[Aj. Then it is easy to see that

ti,‘(:F (X'Ypﬁ\}? H{X!Y'A)]

3 'ih{jj (F, H}(l,y o? (R),z)g(h,y ox (K) z)
je3 2T % (a,) "13 ] ]
axdz + [f T, 5 (P, H) (xjoy (g),g,z)h(x oy Leey, g,z)dEaz],
' yvia,} <7 :
25

Let ﬂj = m(Aj), then Qj inherits a differential styructure




from Aj via ¢. BAs subsets of €, it may happen that
Q. ﬂ'Q; % ¢ for different i and j. But when diffeventia-
tion is cﬂncerned we always specify which one it means.

The symbol Q is understood as a set along with the dif-
2

erantlal structure,., Hence (I, is a one dimensionzal C

manifold pon51b1y with boundary, " For each j, let

mj s 1, = &j be the inverse of L) :"Qj -» Qj. Clearly,

ff B(F,H)(k yjox5 (W .x)g (v, vy, oxj (x),z)&kdz

wl P
¥ ”ym (S (Fe) (250} Y, £ e oy (8), 8 2 dsa

T 313(F,H)(€az)§(€az)]Yj(G)Idm(Q)éz

odu

-+ If T (Fo H)(é,@)htg,z)lﬁ (G)\dm(é)dz
%

where m is the arc length measuve Tj + ibj ig the positive

#

, ) + T
unit tangent to 0j° Let A {7 %%(T) » 03,

8T = g&( ) <0} and AR %%1?) » 0},
e X
'5—’ [T - aT (T) < C)]o

R
Iemms IL,2,2. On L°{3D,w) we have
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S+(X,A)“~‘=T]MX +M‘¥M .

. %

A A~
X,3) = M.M +

5- (2 i, T M

A A

and

'8 (Y,A) = mM + MM,
+(,’ ) TFx . L

S %

S_(Y,n)

#

M. M 'F L
y i

For \ € R(A ) and @(k) yJOLJ (X), the perturbation problem
S (x, A)(R)F -+ 8_(X,8) (MF 1 bhecomes
Aoy o, (N Aev.ox. ()
’Sjoxj ( ). Y3775 (
nX (l+lyjox. (l)) + ¢(® (l+ly Ox (k))x (1+1yjﬁx {k))
at A"

Y ¢(@ (x+3y ox (k))y (xmy'ox (R;)# Ay (A+iy ox
B 3 ﬁ i A~ J 3

In other wofds,'g(g,n).is the phase shift of the ?erturba—

tion problem

X (0 + ¥l ) () (© - P 10X L (6 +mx _(0).
A : A A A

Similarly h{f,-} is the phase shift of the perturbation

problem

X (6 + ¥lon (I __(6) » 4 (o3 (e % (0 4y _(0).
z J T 7 5 %"

oy,
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For a €1, define

"X(ﬂua) (Z) if a » ﬂ
"f‘*a(z)ﬁﬁ
‘:x(a'ﬂ)(z) if a < n.
Then
g(Csc) =% (G -1 (2) - % (O% -1 (z)
- A y(p, ~{(E)) A ¥lo, {(6))
| | j
and
n(oz) = x O - (@ -x_(Ox _, (=2
b ij (€)) T \l-'(cpj (6))

By the definition of the differential structure on Qj'

we have .
Gl v (O] =% . (2)v.(0)
3 @(@jlcg): 3
and
h{g,z) 6. (0| =% (z) 8, (L)
| ) w(wjl(s>) ]
Hence

715 (B (€209 (€,2) [v5 (O | + 3,3 (F,1) (L,2)h (C2) |5, (0

3F BF-'r 3}, AW,
= SR (Cen) - So(Ga) E(C)
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- <) - . .
where 7 anotes the positive tangent derivative on Qjo

Hence
tr{F (X, ¥,n) ,B(X,¥Y,A)]

OF 3H _ OF 2 |
2ﬂl jf (aﬁr vl %T€&. z) %y (2)am{€)dz.
¢(mj (&)

i
.
ii Mg

Consider (1 as the disjoint union of Qfs equipped with
3
the dlfferentlal structure prescribed on each Qi Let m_
. | -1 '
be the inverse of ¢ : 3D ~ (O, then o Qj = Aj. We can also

introduct » measure m on {} such that m is the arc length on

each Qj. Thus we have the following:

A
Theorem II.2.3. Let F,H € M&RS) then

tr{F(X,Y,2),H{xX,Y,2)]

= 2_’; [ [ <aF A &', 6> (£,z)dm(f)dz
R0

where

) L
G({,z) = %X _ (z) 3= A 57
bty T Y7

Corollary 11.2.4, Let M be the multiplication by the complesx

. Z
variable on I (3D,w). Then

tr[F{M,T¢®n), H(MpTw@ﬂ)]

== [ [ <ar A an, 6 (¢,z)an(8)dz
M R D '
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where

-
Q(Gaz) = X‘y(g) (Z)a‘f’ A 5z

By the left hand side of the formula, it seems that

the trace depends on o as a function because X = M nd

Rf-ztpa
Y = Mchﬂe But the right hand side is an area integyral

on a surface, to which conly the image of ¢ rather than.
the function itself contributes, with one of its natural
orientations., In other words, for any other function EL
no mstter how "fast®" () travels along as it keeps in
the same track and directién as o, replacing ¢ by % does
not change the trace. The same ié for Y. The right hand
side being purely gecmetric is essential for the calcula-
tion of G in the case ¢ has decontinuities.

. Now we prove lemma 11.2.2. To calculuate these symbols
we need to use the decomposition theorem of Toeplitz operator
which will be proved in I1T1.3. By this theorem, the dif-

ference

) 0]
T ® - {7

n
®Nid,..0T, @

0 n
i

Y

ig a trace class operator whexe T @ 1 corresponds to the
i
decomposition.
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Lz(r.l’w-) MK_ @L-!
1 1 L L

see T.2 for notations, Hence

n .
1

si(xsz&) = .@ si(Mx.,Tqr.@ M)

1=0) i i

and

n i

S (Y,A) = & S (M ,T° @
& i=0 * Yy ¥,

where x, = x|I', and y

i = y]fi. But

s, (M, ,T; ® M) = Uz 5,00 Ty o
wa i . . N

. W.@ mu,
i i i i

and S (M N ®1n) is an operator on Lz = H2 @ {HE)L,
TR P

Since Tgreeset, together give the positive orientation on
3D, the tangent derivative of X; at wi(¢) ig pogitive
{negative) if and only if the tangent derivative of Xioﬁi
is positive (negative) at 7.

Thus we have reduced the symbol calculétian to comput-
ing

Si(Mu'Tn{r @ n)

on L2 with ﬁ € Cz(sl) and § € L”(él) being a real function,

First, the existence of these symbols is guaranteed by the

fact that fMu,T$GJn] € Glo On Sl, define
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vw(T) = arg T

and -n % V(1) $ n. Then ule) = ufexp iv(-)}) = o(v{~))
where U : R » R is u(i exp(°)). By definition, the tangent

. g . i
derivative %u('f) = a‘gu(t), if 7= e’ " 4 -1, Hence

SQMu’Tq;@“’ = Sg(u(Mv)fTw@n),
Lét W £ Cm(sl} be such that O £ Wy £ 1 and
wk(ﬁ‘) =
1 ] =2 2k

Then

Sﬁ(u(Mv), (T\{l@ﬂ)ﬁw } = Sé:(u(Mv)eT ;@m%(“(mv)“mw )

k § k
S$(u(Mv) ’Tﬁ’ ® T'I)ka > 8, (um ) eT‘zg ® 1))
strongly as k - ‘@, But
] & - ® n) ¥
M, (T v ) ka (T y 1) 1WkM\’

= MV[T‘E'@“’MW]{] + [T¢®n,mwkzﬁv],

Since wkv £ C”(sl), we claim that

(M, fry @ ﬁ);ﬁw Jec.

k
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Let E{+) be the spectral resolution of.Mv and let

87 = {t

.k

t € {-myw), Glt) »o0),

"

-8 = {t :t € (-mm, H(t) <o0}.
By the invariance principle (see Theorem XI,1l of [237)

sah({’{(m\;),_' (T

¢@n)ka)
- “- + | 1) -_
= B(§ )sﬁ(mv, ('I‘w@n)ka) + E(b )Sﬁ(Mv, (T\IFGM)MWR)

oy . -
[‘E(ﬁ )sé:(Mv’ (Tﬂ}@ﬂ)') + E(O )S:%:(M\a" (Tﬁ@ﬂ))]l"iw}-o
Let

, dy
E = {7 : a-ﬂ" » 0}

=
B

=y

=3

g‘%(ﬁ’) < 0}

then it is easy to see‘that E('c‘>+) = M and E(5 ) = M .

o o

Let V be the bileteral shif on Lz. It is easy to see that

@y) = lim V' (T, @)V T,

mert e

¥

M T
Sé:(, v v

Let ep("r) = ¢ on Sl, p =0, %1, #2,... . Then

VT, ®@nv e = Vne =ne if P -m <0, Hence
Y : p p-m p

S+(Mv0qu @n) T ’n‘,
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&
Suppose that { = % wkek' If p~m >» 0, then

k:g...‘eo
. t

R : o
- = V" bX wkek

v+
T -m m ( T ¢ede .
VT, @)V =V T e kk
( L) wv. “p ¥ p-m k=m-p P

P kem-p

Teking the limit m - ~* gives us that

S_(M,eT, ®n) = M.

ﬁ;
Hence
tS+(Mu’T$G)n) = S+(u(Mv},T$CDn)
= M + M M

e TN M

ET E

~and .
SH(Mu,le@ﬂ) - 8, (uM )T, ®n
. = M M 4+ M .
S X,V My .
: " E i

From these two eguations Lemma I1T.2,.2 follows immediately.

Hote tﬁat the trace formuias we have deriveélare all
for the operator on L2(3D,m}, Now we consider Hg(D) and
AToepiitz operators. For a function |

. irx isy itz
I g€ e e

we have
. itT .
L o AsY. -
F(X:YnT¢§9ﬁ) = I 3elr e [e 1!’Oelm]dm((r,,s,,t)
=




ir¥ isy it
e e ﬂdw(r.

é Pf 3@ e @ dwl(r.s,t)p + Qf 1 8,t)Q

R ‘ _ jid]

. . 3, £ . . - '

irX igy * ix¥ isY i

e els e 11’ch»(a:*.s,s.t)l? + PI 39 @ e ﬂdw(r,s,t)Q°
R

The  last two terms ave trace class operators because

i(rnﬁ)X

Ly¥ j.r LO‘X[P X] da,

‘[Pt@ ] =
v 0
| ir¥ |
therefore |[P,e j"l 3 ‘r]”H[P,X]Hl and we have the same
estimate for H[P,elsyjﬂj¢

Furthermore, it is easy to see that

; . . : . AR iy
F(X,Y,2, ®n) = [ 3Pelrxpelep& 13*'61@4(3:',, S, )P + QF (X, Y, n)Q
| o 3

L]

+ trace class operzator. But

- X . 0
pe TEp | GITEXP o Qﬁgl—tpx p- (PXP) *]
Kis0

@ s l
= ¥ ii%l_.P ? (PXP)TEX p1 I 1y ¢ ¢
k=0 =0

1 L-]
Hence if the support of wl{xr,s,t) is compact, then for

any operator B such that [F(XPY,T$®ﬁ1),B] € Cl we have

,tr[F(X,Y,T¢@11),B] = tr[PF(PXp,pr,T¢)P,B]-+tr[QF(X,Y,ﬂ}Q,B],

If H is the Fourier transform of u with cowpact support, then
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tﬂF@ﬂ‘ﬁmﬁﬂmYﬂ¢@mi

¥

= ty[PF(PXP,PYP,T, 6 }P,PH (PXP,PYP,T )P]

¥ ¥
+ trtQF‘ (X, v, ﬂ}QaQH(XtYP ﬂ)Q]

or, if we regard (x,y) as complex variable { = x + iy

tr(F(r ,T ),H(T ,T

= Ly (Mcp,’l‘ @) ]

v @n),H :(Mep'T

¢
- trloF (M, m)o, oM, nal.
S ¢
In general, if w,pn € M(}RB), then we can define

‘wk(ﬁ)_ = (b an)'”}c(S) = (b ﬂBk)

o | | - ' 2
for any Borel set §, where Bk = {(r,s,t) : Jr2-l-52+t s kY.

Let Fk and Hk be the characteristic functions of Wy and My e

Since HFR“E_‘HQ(IR% = “m:k-w wll and HB]( -mHHMUQB) = Hu?{-*uua by

Proposition X,1.6, we have that -

. '. .:g N FT
-tr[}: (Tm,Tw),}I(Tm,Pﬂj?] }];irz telr (Tm,Tw),Hn (Tm zﬁ)j

11n1{trtFn (Mcp' T

® r, @

-,tr[sttﬁwpﬂ)Q,QHk(Mm.n)Qj}

B

trlP (Mm,T@ @_1‘1) LH (rv;cr),'r‘]J ®ni ]l -exlor (Mfo' M Q,0H (E\E@, me)
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Foilowing the notations of Theorem II.2.3 and using
dA to denote the area measure on {1 X R and ¥ the support

of G, we have

A
Corollary 11,2,5. For any F,H € M0R3),

trlF (Tcp'T'#) ! ‘Tm'fw’ ]

= o [ <ar AdH,gY (M aa ()
5

H

tr[QMF(wpﬂ)gQMH(w,ﬂ)Q]

/
a ..a:,_,. — v
aw S . A= (sz): z w "N
where gin) =¢
D o)
t’af A 3y W= (Cpz)ez <
1f Fle,m) = O or H(-,n) = 0, then

. |
er[F (T, ,Ty) HeT (T )] = 2 J’E«(dr? A dH, g2 (\)da())

This completes our concrete calculation of the principal
.current,

Up to now, we have been assuming that ¢ € Cz(aD). But
we also wish to present a trace formula like the one above
fbr a pair feeplitz operator [TW’T$} with ¢ being a function

with discontimiities. Since our construction relies on the
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fact that ET@'TW] and [Tw,T;] be of trace class and the
nonsmooth symbol ¢ can no longer provide such guarantee,
we have to impese some smoothness condition on § and re-
strict the discontinuities. Let § be a reél 02 function.,

This assumption takes care of [Tm,T 1. But the problem for

¥

[ .T;] is much wmore subtle. Since ¢ is not smooth,

®
[Mm1T¢G3ﬁ]-is not trace class in general despite the smooth-
ness of T

0

i Hence rather than constructing an integral cur-
rent with lbcal data of symbols, we are forced to start

with the trace formula in Corollaxy II,2.5 which can only be
applied to operators with smooth gymbols. Thus we can only
expect to archive a trace formula for the nonsmooth case by
limiting procedure. This is executed through delicate ap-
proximation of symbols. But when ¢ is sltered, both the
opefétcr theory of the left hand side of the trace formula
and the geometry of the right hand side change. Hence if
we use a seguence {@ﬁ] of smooth to approach ¢, we have to
Vccntxol the trace of the commutators and the integrals so
that they eyentually converge, But thig is not easy. Cbvi-

ously, ¢ can not behave too badly. However, since our in-

terest here is not the study of the pathology caused the

bad behavior of ¢ but the exploration of new phenomena, we
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impose relatively strong conditions to eliminate technical
cbmplications. We assume that o has only a finite number
‘of jump discontinuities'{?1,....Tm}and is a 02 function
elsewhere, Let Ui,i = l,...,70 be a neiqhbérhood of Ti

such that G; { ﬁs = ¢ if 1 ¥ j. Let U_ be an open set such

O
that 3D = UbLVUlU@,mUI%n and distance ({?0,.09,Tm},U0) = 0,

Let 1 N, be a partition of unit subordinate to the

; J

J
coveriny {UO:Ul'eoo;Uh}e Thus

W
i M2
& ™

m
[T.,TZ;}*-'-" gl 1% 1+ 3 (v 7% 7

® 321 Qfm:l Y ﬁj i?gj fp'ﬂ‘- ®n

Since [T ,T;] = PM, (1-P)M P - PM@(l—P)M P,

DTy "o © _ c—p'.no

if E agrees with ¢ on the support of Tb, by Corrollary II.2

TP I S S S A T

o1, @ B, @ L

‘vhere L depends only on the restriction of tp to the support

of no. Since E N = ¢ and

i Y
{ L N I & S U
v &), g
MR on; @,
= {r ,'E:;ﬁ_] + [ ,7* 1,

j o1, (0-0) n,
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by Corollary 11.1.4, we conclude that

I st % 1-fr ot 1

LR, on, " on, ~ 1

ij?%o i 3 on; O,

| g L&, + Noll I I&-wl ..
L2 ¢ Lz L2

Now we make further assumption that o' is a ot function

on 3D, Le.Lm{wWﬂfﬂhm ﬁ(ﬂﬁmdlmlw”W)

L T T7E
3 3 J

= 1im w"(T). 4 = l,.;.gmg where T = TT and © = 7, indicate
T 3 J
3

the limits from different sides of Tje It is easy to see that
there exists aj & Sl such that Re ajmnj is continuous and
, ‘ 5 y
therefore C2 function on 3D, Let ﬁ, = Re ajmﬁj and
‘ 3 3

A A
y. = Im ajwﬂj. We will approximate yj by a sequence of

[\ B

C7 (D) functions in Lzlnorm. et v, ¢+ [-1,1] » 8D be a
_ : 3 _
‘ A
local parameter near Tj and vj(o) = Tj. yjon has the only

jump at O. Define v, , to be a c? function on [-1,1] sguch
: ¢
that f =z t) = vy, ,(E) = -

at for |t| = 3 yj,k( ) yjoyj( ) and on [-, "1, Vix

joins y.ovy, (~7) and y.ov. (7). We also choose v. such
) gJGYJ k° YJ\YJ k Y3,

"

Il l;;;k(t)‘dt s M < w
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for someM independent of k. We defer the proof of the

. Lacd
existence of such v,

s K.
Define on aD
() if 1= )
Ak
Yj(T) = S
\Qj(fr) if 7 ¢ vj[;—].,lj .

. Ak, . N A : .
Obviously y% is a C2 function and Hy%-—y,ﬂ 2> 0 ad k = «,
3 3 732 .
ot

¢ =1 A Ak
o, ALy, T € su
; (xj yj) (r) PP M,

mk(f) m

m
L op(T) T € 3D\ U supp .

then it is easy to see that g € c? and 1imumk--wﬁ , ¥ 0.

k-3 1
Moreover,
[ L* Y = 2ilr, 1.
’ . , A Ak
%Ny Ky X, Y,

From this we can easily conclude that there exists L = O

such that

ez, ,Tzk] - lrg e dlly# L“¢k"¢%-"L2

k vk
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for any X,k . Since s - lim T = T o [T ,T*] € ¢
koo D ® e 1

and

- * oq * = |
]lc-f::.IEka.T_] [Tcp'Tcp]”l 0.

Hence by Proposition ¥,1.7,

1im tx{P(Tr ,T ),H(® ,T

)]
Ko @ %

= tr(F(r ,T ). H(r ,T )7,
[(cp'qu(cp'lk]
Now we consider the convergence of the integrals

j}“ (ar Aar,g 5 (M da(x)
. *k .
where ¥, calculated in terms of [ﬁk;ﬁ}e For simplicity, we

assume that § z n. Then

[ <ar AdH,gk}dA(k) = f ar Aam.

T Zye
Now let Q be the image of g unicn the line seoments joining

cp('T;') and s:(’r:‘]:)p § ® 1,00.,m. Define

(o{7),t) 'i‘?g'rjp nsts y(r), j=1,...,m

-

{€.t) ¢ in the line joining w(T;)
and ep('s‘j‘:) v

nests= ¢(Tj),j ® lpcaosm o
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Theorem 11.2,6.

'tlf[F (T(p' T\v) aH (TCP'Tw) ]

i - '
- e -4 T AdH - L M
Py f}g ax r{Q F (o, ﬂ)Q,QMH(m’ ,ﬂ)Q}.

Proof. It suifices to show that

lim [ arAda = [ 4F Add

and
Lim €r{QM Q . O] = tx{OQM WM.
kfm o) F(%m)m MH(mk»ﬂ)‘)] rlor ?(m,n)Q'Q ' (tps ﬂl}Q]
By the definition of B s there exists an open arce Ai
X _
containing Tj such that o and @ agree outside Ak UeooU Az
and such that m(Agl = 0 ad k -+ 'e, Let Gi be the curves con-—

sisting of mk(&;}ﬂ m(Ai) and the line joining w(¢§) and

.$(?§), 1f we keep the ovientation on ¢k(A§) and reverse

on the rest, then 6; is an oriented curve and
[ erham - [ aFAau = | GF AdH
i s
Ty U
jﬂllk

where

3

T CE&; T %}xi

ﬁi ¥ i min $(m)] ?zc:%gxivh max Y{(7)]
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By the boundedness of H@%Hw and the continuity of ¢, we

claim that if H2 is the 2 dimensional Hausdorff measure,

then
Lim H, “13;\@'11 x [n, min ¢(r)7) =0 .
Jgepen T@Ai
Lim([ arAdu - [ arsam
Tompien Z:k Z ‘
= Llim [ dr Aan
o ) ,
ke TG G;{Xf'ﬂ, min ¥(7)]
j=1 'fez\g
m
Let V, be the sclid enclosed by X [ne min $(¢)7 union

3=l j

Te

the top and bottom, then by Stokes' theorem

f aF Adu
m
U cskx['m min ${7)]
1 'réA]i
[ atarram) - [ araan - | aF A aH
Vk top bottom

A horizontal cross-section of V.

X has the area no wmore than

{ 1o -¢jdm. 7o prove that
op |
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lim tr[QMF(cpk ﬂ)Q’QMH(mk,ﬂ)Qj

Y-y

= tr[OM 1

s OM
F (@kf ‘fl)Q H (mka ‘f‘!)Q

we only need £o note that like Toeplitz operators,
lom 0.0M 07 € ¢, and
% @ 1

limfOM Q,0M Q] = [QM Q,0M ]
Y30 wk ¢ o)

7§l

Then Proposition I.1l.7 again enables us to conclude that the

traces onverge., This proves the theorem.

Now we show how to choose those ? k* Define
14
1 | 1 :
{ exp(- "‘?/[exp (-»"*l'é") + exp (= "“‘““‘"‘5}] : & » 0
t t (£-3)°
1 1 1 )
\Q}Ep(""‘?/[exp("‘“g) + exp (= —5)] : £t <0
t t {(t+l)
{p)

h is & C® function and h (0) = O for any p. It is easy
to see that h{t) = 1 when |t|2 1 and h'(t) 20 if t = 0

and h'(t) £ 0 if ¢t € 0, Let
h, (&) = h(kt)
and

- A
Yj,k(t) - }rjovj (t) “11]{‘ (t) .
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Thug

e

oty A ' A '
v, k(t) u3 (yjoyj) (t)hk(t) ¥ yjovj(t)hk(t)

J'l lgé;k(t)ldt % j:l@jovj)‘ () fat + lell_ ]‘111}1}'{({:) lat.
But

J':-L-l‘h;{(tﬂdt = j; h,;;(t)dt - jo h;;(ﬂdt

= * e ke)at - [ xn' (ke)ae = 2.
o -1

Hence

L
v T M ‘e
‘r«iwj.k(t) lat 8 M <

p Obviousiy §§,k ig a C2 function an@ gatisfies the other
reguirements.,

Following the notations in Corollary IX.2.5 andﬂTheor@m
IT.2.6, we will refexr to the set 0} X R as the cylinder and
therefore %(=%(w,})) is identified with the characteristic
function that represents it 6n the cylinder. A point on the
cylinder‘is said to be a discontinuity point of xg if on any

neighberhood of that point XE is not exclusively {in da



measure} O or L. The collection of all these points is

called the discontinuity set, denoted by 8% = o%n(w, ¥},

of xy or, equivalently, of G.
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II.3 Jeoint essential spectyra and indices.

Let 2(H) = £(A)/U{H) be the Calkin algebra on Hilbert

.

space H, Let ¢ = {A, : 1 € I} be a collection of bounded

i
operators on H and let é = {ﬁi . i € I1 be the guitient

image of C in 2{H). Suppose that é is a collection of com-
mutative elements in 2(H) and let R(é) denote the C* algebra
generated by ée A point \ = (xi)iél € EI is sazid to be in
the joint essential spectrum of C if {ﬁi“ li : 4 € 1) gener-
ates & proper ideal in ﬂ(é)¢' Hence the joint essential |
spectrum of C and the maximal ideal space of &(é) are in thig
way naturally identified. Denote by ®R{C) the c¥ algebra ge-
nerated by € and J(C) the commutator ideal of R{C). If it
happens that J(C) = H¥{H), then R(C)/J(CJ = R(é) and the

joint essential spectrum of C is

b I A \ . .
(» : A ea, Al - li' i € I generate a proper ideal in

SATORE

If we have an isomorphism

k

© =

then the joint esséntial'spectrum of C eguals
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- ) A
{r: % €c’, aj(Ai) = A\« 1 €T generate a proper

ideal in Rj}

where dj:is the projection of g onto ﬂja Thus the decompo-
sition at C*-aglgebra level reduces the calculation of joint
essential spectrum to each individual piece of maximal ideal
of ®_.

l .

Our calculation of jciﬁt'essential spectra for certain
pairs of operator on Lz(&mm) will follow this strategy.

We start with the pair [M,Tw‘ﬂ} where § is a non-

constant real function.,

Lewwnag IX.3.1. 'R(M,T

@fﬂ is irreducible and contains a

Y

non--zero compact operator.

Proof., Let H, be a reducing subspace for R(M,TwﬁJn). Then

the orthogonal projection onto Ho must commute with M.

5 .
Hence HO = L (B,w) for some Borel set E € 3D. But

T @OmT @®7n -mn € R(M,T

®
V-1 ¥ n so (T

" @O)HO

g o ;
cH (D) NL (E,»). This implies that either w(dD\E} # O,

y-n

-in this case (T$_Tﬁ90)ﬁb = {0}, or E = 3D, therecfore,

®

HO = Lz(BD,w), The Fformer implies that PHO C ker 'I‘¢__ﬂ

For any X € Lz(E,w), we have
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Y= f 4+v +qg + xlz
= £, x T 9y (0)

w’heré'f g€ H2 (D) and v_ € N, see Section I.2. L“(E,qw)
¥ K 0 x®

is closed under complex conjugation., Hence if X € L2 (&, w)

then

£ 4+ x:{: =

. \(zo) ?x € PHO

and

| + x{z ) = Px PH_

qx x{ao) Px €& 5
Since dim N = n, if dim Lz(E,m) = o, then dim PHO =0,

; : . . 5

But by Section IV.1, - dim kex T‘l‘""ﬂ £ n, Hence dim L”(E, w)

can not be infinite. This implies w{E) = 0. ‘Therefore,
f(M,T " ®@7) is irreducible.

We know that [M,T @®n] € C Therefore, to0 prove the

Y 1’

second assertion, it suffices to show that

M, T, ®n] ¥ 0,

Y

If it wers true that [M, T, ®n] = 0, then T ® n would belong

¥ P-n

to the commutant of M. Therefore, there would be a

11!1 € Lm(aD,w) such that T ®0 =M For any u € Hi(D),

Yu=M u=(r, ©®0)u=o0,
T
Hence 11.;1 % Q@ and T‘ym-n = 0, This contradicts the assumption
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that ¥ is not a constant. Thus the proof is completed,

By a familiar lemma due to Dixmier, we conclude

Coroz.larfg 17.3.2. J(M,T¢®ﬂ) = H(L‘?(BD,m))a

Thi

W

_ccrrollary enables us to identify the joint es-~
gential spectrum of {M,fﬁﬁﬁﬂ] with the maximal ideal space
cf,R(M,TWCBﬂ)/H{Lg(aD,w)), To explicitly calculate the

latter, we need the following decomposition.

Lemma I7.3.3.

i

(M, T
( i

: I
@n)/M = @ f{M,T
i

®n)/, .
] :ni

This is an lumediate consequence of Theorem I.2.5.

Obvicusly,
n o ‘
{ u {ﬁi(X)pu) ¢ (A4} € the joint essential spectrum of
1=0 ‘ : '
2
{MvT,%,oﬁ @1} on H™}

i
is the jeint essential spectrum of {M,TwéBﬂ] on HZ(D)°

Now the problem is reduced to the caleulation of joint

. ' 2,1 L
“essential spectrum of (M,T, @4} on L7 (87)., This is es-

¥ |
sentially couputed in Carev-Pincus [27 and [47.

On torus T4 = Sl'x"sl, let

P B H-L
now {{7,6) :+ T €8, 0 % arg ¢ S arg @(T}m%}




B2

whore 4 is a nonreal complex number and arg is regulated
to be batwesn O and 2w, According to the references men-

tioned above, the joint essential spectrum for the pair

L

{M, (T ~L)(T‘~L)_ ® 11 is exactly the discontinuity set

¥ §
2% of XE on Tze On the other hand we know that the joint

essential spectrum for a pair {A,B] is exactly the set of

(v,0) € 0 such that there exist {ﬁk] < H such that
vin(| a0 )| + |E-o)x ) = o, k)l = 1,
Keseo

if ker A N ker B = {0} (see [15T).

- -1 - -1
T, - AR - N - 18 an
{ ; &)(1¢ &) 1 {1 L)(T$ ?) is an

. 2 ) . o
invertable opevator on H , Hence the joint essential spec-

trun of {MF{TﬁngbiTwwzsﬁl} on H2 is

<
43 )
[42]
)
s

ar\{ (0, 1)

By spectral mapping, the joint essential spectrum of [M,T$}

on Hg is

f(o,t)

—~
Q
-
m
o
o
S

and that of {M,7, @n} on LZ(S‘) is

¥

R . tw--: X . 1
((0,8) = (6,550 €33} U {(om) : 0 € 87).




Thus we have proved the following:

Theorem 1I.2.4. The joint essential spectrum of pair

‘ 2 . . s
{M,‘I“}I@'ﬂ,] on L (3D,w) is the discontinuity set

(=, w)'df XE(? on the cylinder.

)

Now we consider the pair {M'TW} on Hz(D). For the
purpose of computing joint essential spectrum we choose .
n < -nwﬂw', Thus ¢ X {n} does not intersect the joint es-
sential spectrum of {M'T¢}° Since ker M = {0} on both H2(D)
and LZ(BD,Q), by [15], the joint essential spectrum of
{M,Tw} e oav{z, 1\€ x{nl. On the other hand, if
(v,2) € 32(z,)\€ x {n}, then there exist {uk} o LQ(BD,m)
such that Uukﬂ = ) and

| - 1

v 2 2,2

Linlf er-ryu  + ez =2 pu 17+ L O-n)ou, 1597 = o

ke ] k k

where @ : Lz(ab,w) - [Hz(D)]* is the projection. Since \ # n,

we can conclude that HQukn 20 as k -+ ‘o , Let’

Ve = 'Puk/HPuk", then

Lim (2, -0 = 2l (50 /A )| = o

and

Limfl (M-7)v. || = limH(M~T)Puﬁ]/HP i
heves X kde /ey
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s Linl (Ju-r)u ]l + ) 0-m)gu | 1/pu )l = o
k-deo

Corollary IX.3.5. The joint essential spectrum of

{M,T¢] on Hz(D) is 3n(z, I\2D x {nl.
Let o € Cz(aD). Spectral mapping theorem for C*-

algebras yields the following two corollaries.

Corollary 1Y.3.6. The joint essential spectrum of

(4,7, ®n} op 12 (20, w) is 3% (e, ¥).

Corollary 11.3.7. The joint essential spectrum of

(7,07} on B (D) is 3T(wl 43 \x {1}

For the proof of these two corollaries we only need to
note that on HZ(D), the difference o{M} - Tw is a compact

(indeed trace class) operator.

Denote BEO(GD. ¥) = 3T (e, VINC % {0},

Having determined the oint essential spectrum, index is
naturally the next object ﬁo_be investigated. We éxplain the
Carey-Pincus construction in [3], {671 as it applies to our
situation. Let us consider a pair {A,B}. If F is a con-
tinuous function which does not wanish on the joint es-
sential spectrum, then F(A,B) ié a Fredholm operator. If

H is & function such that H is the inverse of F on the joint



essential spectyxum, then H(A,B) is a pseudo inverse of

rF(a,B).

Lemma I17.3.8., If H{(p,BYP{A,B) - 1 2nd F{A,B)H(A,B} - 1 arve

trace ¢lass operators, then [F(a,B),H(A,B)] € Gl and

index ¥{(a,B) = tr{F(a,B),H(A,B)].
Proof. There exists bounded operator T such that
TF(A,B) = 1 - P
F(A,B)T = 1 - P

where Pl and Pz are the proﬁections onto the kernel and co-

kernel of ¥(A,B). Therefore, P1 and P2 are finite rank

operators. Let S = T - H(A,B). Then S is compact and

e

sr{a,B) € . and F(A,B)S € cl. By Theorem I111.8.2 of [7],

1
tri¥r{a,B),s] = 0. Hence

i

tel{F(A,B),H({A,B)] = txlF(A,B),T] = tr[Pl—sz

= index F(A,B).

1f {A,B} is either {Mw,T ®n} on Lz(aD,w) or

] |
. . \

[Tm'T¢} on HQ(D), then we have the following:
' |

- 3
Lemma IT,.3.9. For any F,H € ﬁﬁﬁ Y,
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tr{F(a,B),H(a,B)]

depends only on the value of F and H on the joint essential

spectrum.

Proof. ILet I be another function which agrees with F on
the joint essential spectrum. Then F(a,B) - F(a,B) is

compact operator and therefore s0 are

rel¥ (n,B) — F(a,B)]
and

m{F(a,B) - F(a,B) 7.
But by functional calculus

(Re (F(2,B) - F(a,B)),H(2,8)] € ¢,
and

{Im(F(a,B) ~F(a,B)),H5(a,B)] € ¢,

By Lemma 8.1 of [5], tx[(F(a,B) -F(a,B)),H(n,B)] = 0. Apply-
ing the same argument to H vields the proof.

Now let F bhe a C2 function defined on a neighborhood of
the joint essential spectrum and let z € € not in the image
of F. F caﬁ be extended to a neighborhood of ¥ so that =z
is stil) not in the image. Then we extend F again to a 02

. ) ' . 3 .
function with compact support in R, Obviously the extended
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P is in ﬁtﬂg). Let H be a QGR3) function such that in a-
neighborhood of 3,H is the inverse of F - 2. On the other
hand we can also extend F to F which is zero outside a
neighborhood cf the joint essential spectrum. Let ﬁé?ﬁGR3}
be the inverse of ¥ - z in a neighborhood of the joint

essential spectrum. Then by Lemma IT.3.8 and I1.3.9,

i

index (¥ {A,B)-2z) tr[F(a,BY,H{A,B)]

= tx[F(a,B),H(a,8) 1.

We can asswie that n < -||¥|| and in the case {A,B} is

{Tcpf'l“w}e ﬁlis zero on € X {n}. Hence

ar A af

index (FF (M ,T
© 5.

i
®n) -p) =
‘1’_ ﬂ) /) 2_[1_‘]‘

and

T index (F(M ,7T

i . e e
. 4 o d A 237 .
0 13J) z) Py f F A &l

by
Suppose w, § £ Cl(%D). Then 37 is a Cl manifold with

the induced differential structure. Note that we can re-

write the (1,1) form dF A dH = d{HdF). By Stokes' theorem

J ar Aaw = [ a(uar) = [  HAF. Hence
p> oL

4oab

Henece

,@n-z) - A [ HaF

' i
index{(FF{M ,T
o 2T 8% (s 1)




a8

S dF
= - -
2m 3, ¥) © 7
and
index (F (T ,Tw)——z) = f; I Hap
. ? 0%, (0, 4)
- AF_
- - "
S S I B
The integral
A 8F
29l ez

gives the'winding nuniber of F about point z.

1 A, 3 N
Theorem I¥.3.10. Let ¢,% € C (8D). For F € MR™), =z € @

ig & Fredholm point of F(waT¢Q§n) or F(T@'Tw) if and only

f z is not in the image of the corresponding joint es-

[N

sential spectrum. If z is a Fredholm point, index F(M@,T$<ﬁﬂ)
(index F(T@,T¢)) ig minus the winding number of F about z.
In general, if ¥ is a continuous function on the joint es-

, , A 2N
sential spectrum and z is not in its image, then F(M¢,T¢G3ﬂ}

AA :
(reSP'F(Tm'Tw)} is an invertable element in the Calkin algebra

l\

) A ) A ¥
and if T is a representative of F(M$,T¢@3ﬂ)(resp@F(Tm,T¢

then index T is minus the winding number of ¥ about z.

)},

The second part of the theorem follows from the first

part by a simple limiting argument.
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The same results can be derived for discontinuous .
. . 2 . . . .
Let © be a piecewise C function as considered in Section

II.2. Recall that the support set ¥ = L(g,¥) of G in this

case is -

(p(r),8) = n st ylr),7 €} U ((selr)) + (1-s)p(r)),t)

-d

= E [Oll]i‘ ‘n s t fs ﬁl’('rj)tj = lpccopm}

{we assume that 1 < —HWﬁm). it is easy to see that the

joint essential spectrum of {Tw,T¢} is contained in

0%y (e ) = {((T), (M) = T # 7,3 = 1,.00,m]

_j:
U {(SCP(’?;:) o (l"S)Cﬁ('f'j');‘]J('i‘j)) : s & [Ooljrjmlrweevm}e

) A3
Use the same arvgument as before, we can show that if F éM{n

and z is not in the image of F on a neighborhood of
Bﬁo(m;¢), then F(TQ,T¢)—~2 is a Predholm operator and

. ar
) —z) = - Fom

) 2mi
aﬁo {@v ‘I’)

index(F(Tm,T

Since the index of F(T¢’T¢) depends on the values of F on

whole azo(m,w), this set must be contained in the joint

essential spectrum.,

Theorem I7,3.11. For piecewise o2 function g and C2 function

{. the joini essential spectrum of {Tm,T

‘i’} is a}jo (fﬁg ‘1’) N Leat
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F be a continuous function on azo(m,¢), then z is a

Fredholm point for F(T@,Tw) if and only if F - z does not

vanish. If z is a Fredholm point, the index of F(Tm'T¢)

is.minus the winding

In the cases we
manifold, so Stokes'
index as integral on
Lemia I1.3.9 is true
fact, if we conzider

test functions, then

number of ¥ about =z,

considered above, 3% is a piecewise-cl
theorem enables us to express the

the joint esseﬁtial spectrum. But
regardless the smoothness of ay. In
the trace formula as a current for

its boundary current is representeble

by integral. Let o € Cg(aD) and § € L”(an,m) be a real

function. Then we can define the cylinder (0 X R as before.

Let cP denote the set of r ¢© forms with compact support

¥, 0

on the cylinder. A current {4 can be extended to a continuous

functional on C
r,0

0

-.0° In this case the Riesz theorem
[

tells us that there exists a positive measure {|£!| such that

) -»
By = (@), teEyalef ()

. =3 . .
where 1 is a r-vector field and |Z(x))| = 1 for almost all x.

Define

(63(w) = [ <w, @ Myan(h), wu €c”

2,0



Let £ be the boundéry current of [c], i.e. £(u) = d[GT(n)

= [¢J{dv) for v € C§ o° Suppose that the spectral multi-
’ r .

plicity functions of X = Re Mep and Y = Im Mcp are integrable.

Proposition IT.3.12. 4 is representable by integration,

FPurthermore, 4 is supported on the joint essential spectrum.
Proof. Let v = £d7 + hdz, then
L(v) = [GY{8v) = [c1(df Adr + dh Adz)
= t £ LT, ®n),M ] + tefh{M ,T, D T®
r[_(tp v ) c{Dfl ri (cﬁ‘ﬂz m,Ten]
Thus thé proof is weduced to showing that
| ‘tr{f(Mm'T\‘,r@m’Mtp” and ]tr[h(M ,‘l“b@ﬂ),Tw@n]{

are domenated by the L° norm of £ and h on the joint essential

spectrum respectively. But

tr{f(n ,7 ®n),X%
r(\m " 'rj) ]

-ﬂ-i-f tr{s

- @ X _ : F:r.‘ . '_O
20 (X, £, T, @) () - 5_(X, £ 7, © ) o)

o+
if f‘aqrees with £ on the joint essentisl spectrum, then
S, (X, ' = 7 ).
‘Si(_X,f(M(ppTw?ﬂ)) Sﬂ;(x’f(mm'T\b @ n))

Recall that S%(X,v) is a ¢*-algebra homomoyphism. By the

integrability of the spectral multiplicity function of X,
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we can conciuds that

]tr{f.(Mm.,Tw@-q),X]I £ C sup{'f(’f,t)[ : (7,&) € 35i.

Applying the same argument to Y yields that
|tr[f(M$,T‘y®'ﬂ),Mw] 2 ¢ supl{|f(r,e}]| = (1.t} € 83},

See Carey-Pincus [37 where such estimates were first
introduced,
By the decomposition theorem of Toeplitz operators,

" @ﬁ]i to

we can reduce the estimate of |trlh (Mcp'Tq:@n)'Tw

case 8D = Sl. It is easy to see that

i

® ]

f::r‘:\'ih(I«!m,,':}’.“!rl dn) ;,qu

| trth(@;(M)eTq’)rT‘b]

trlh(eM) (V) 6(V)]

t
&3

# trlh{p®M),s(ve&1)), c(vel)]

G A ) . . .
where V = (Tg: A4} (T‘i’ -1) 7. The function ¢ is defined in
‘ - ieo iBO
the following way. Pick e ¢ o(v) and e # 1. Define

it ., it it it .
ole ) = 3.(eu" +1) (e’ -1) for et e (V). Since 1§ o(V),
r 1 l 16
- we can extend o to S\ a neighborhood of e se that o

is smooth at 1. Theorem 1.7 of [3] shows that
‘trih(fp(M)yC’(V@l));ﬁ(VQl)]I

£ sup{ha{ep{'r),c(g)ﬂ : {7,8) in the joint essential

spectrum of M.V},




23

Simple coordinate change yields
‘tr[h(Mw,Tq,@n): T‘D@ﬂ’]! s ¢ sup{|h(r,t}] : (7,t) € By},

This prove the prﬁposiﬁiqn.

By Theorem 4.2.28 of [137, [G] is also a rectifiable
current. {[12] asserts that the measure Hell is a i-dimen-
sional Hausdor{f measure on 37. Let Hl be the l-dimensional

Hausdoxrff wmeasure.

Theorem 11.3.12. ILet the spectral multiplicity function for

X and Y be integrable. Then there is a H}~ measurable and
(Hl,l) rectifiable subset {0 « 8% and an ut integyrable veotor
field T on {0 and a positive integer valued function
: A

®(23[Gcl.x) such that for any F,H € MGRB),
. £y @
tr[E,(Mcp.,T@On),H(McﬂgTﬂ; ) ]

\ aeed

= j~<i(x),H(x}dF(xE?@(a[G],x)aH (x).
G

and

tr[F(r T ), H(T T
rlEhg) ey

= &), EEaF (xD e (36T, x) ant .
Iﬁ\¢><[ﬂ3< - - F

rarticularly, if z § F(0) (z Er(fA\e x {n})), then

2Dy 6 (a16T,0) ar

index[F(MwaTweaﬁJ"zﬁ = Iﬁ(ﬁ(x), F(x)-z



{and respeotivaely)

aLlly that of
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Chapter IIT, Self-adjoint and Symmetric Toeplitz
Opexators

I1.,)l. Existence of weak limits and corresponding symmetric
ocperators

Let § € Lz(BD,w) be a real function and let

210 Her) | = x

(1) S

) 4] =% .

8

In thiz section we derive a symmetric operator in teriss of

¥ 1 as described in Section II.3.
k

First we need the following lewma:

the "weak limit" of {T

Lemua III.%i.). Let {Ak} be a segquence of bounded self-
adjoint operators on a Hilbert space H and let {Bk} be a
sequence of finite rank operators on H such that

R{p) = leim(Ak—l}ml

ke
exists for any 1 £ C\R, and

—iw-lim pR{ip) = 1 (pER) ;
o

and such that rank Bk %= M and s-Llim Bk = R,
- ke :

Then there exists a discreste set § < C\R such that
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su?{]IMH : A €8] <«

and for each \ € (C\R)\S,

g\ = w-«:i.im(;zs.+}3k—>\)”l

K=peo k

exizts and

~iw-lim pR{iy) = 1,
poeo

Proof. We prove the lemma by using induction on the rank of
Bk' Suppose the lemma is true for m-rank operators {Bk]e

Let [uk}, {v.} © H such that

Limjlw, -ull = 0, 1iml|v,_-v|| = o.
K-des uk ’ k3o k )

Then it iz easy to ssze that

-1,
(A +Bk4uk®vk 3)

-1 _ ) \ -1
f14(Ak+Bk ) uk®vk](Ak4Bk~l, .

H

For A large enough, we have

~L 3, m a1 i ) -1
(A. +B}+uy®vk~k) "m:O{ 1) u3k+3k x) uk®vk] (Akfsk-x}
- om0t s § (nh (B, +B, 2] v, ,u )"
= (B +By -2 z LB 4By -2 vy o)

-1 ] -1 -1
(Ak+Bk—l) uk®vk{akf3k~l) == (Akak—A)

b d

_ 1 (A

-1
(3 B a
l'f"(\Akv % }\) Vk,uk)

-1
+Bk“l) 1, ®v,

k k ok

-1
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Hence for x,y € H,
({A, +B, +u. & -}\)"1» )
By By XY
= ((a 4B, -2) Yk, v)
k k ’

) -1 o -1
- ((Ak4-Bk—h) x,uk) ((A.]{%Bk-)\) Vier

-1
-3 %
1+((Ak+Bk A} Vk'uk)

y) = gk(h).

Since s-lim uk = u,s-lim v, = v, (A] +B] -7\)—1 is uniformly
ke = k ¢k )

bounded for |Im | large enough, it is easy to see that

-1
Yim { (A, B, +u, @v, -} “x,v)
O e e 6™

exists and is egual to

Lim( (Ak-i-’BkJ)\)“_lx,y) N lim(a, +B m)\)_lx,u)

Jc-»en £ () ¥k -»eo k

-1
¥ lim{ (A +B -%) “v,y) = g())
‘ k Tk
k-3
where

1im((Ak+Bk—x)"lv,u).

koo

i

£(3)

Since the lemma is true for {Bk}, we have

lim £(\) = 0.
x|
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Hence sl = {3a] £(2) = -1} is at most a discrete subset

of T\R.
. e -1 .
By the induction hypothesis 1lm((Ak+Bk—k) X,y exists
K-beo

and is analytic on (E\R)\so where sb is some discrete set.

Therefore, lim gk(K)
ko

rs

exists for A € (G\R)\(SOUsl) and obviously the limit, the
function g()}, is holomorphic on (m\R)\(sOUsl).

Let

RN} = w - lim{Aa+B]—l)_l,
2w

and
- ; -1
Ry (A = w - iiri(zkakmk@vk-m .

Then it is easy to see that

=i (R, (i x,y) = -ip(R{(iw) %, v)

iy L -
* T oy (B we ) vey)
- (X'Y) _ as y —» @ .

The lemma is proved by induction
Recall that 1 : A » D is the universal covering map

. . 2
which induces a unitary equivalence between Tm on H™ {D)

j
|
|
|
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and Tioﬂ on H2 = H2 N LZ-. Thus to prove the existence
of weak lLimit
. -1
w - lim{T,k6 -)) = R(}\)
koo Uk

for A £ C\R, it suffices to show that the weak limit

. G -1
w - l:n.l‘t‘l(’]i‘1lr o )

ke k

exists, But TG o= T - PP .M o where P and P_ are

¢kon $k0ﬂ 1 ¢k 1

the projection onto H2 and NG respectively. Let {&l,o..,en}

ke an orthonormal basis of NG consisting of bounded func-

n
i se = 1 . ® e -] -S .“
tion Then PP1M¢ om :E (vROﬁej) (Paj) It is cleax
k j=1
that
1imPP. M o (yome,) @ (Pe.)
g -~ 1imPPp = . ofTe, Pe.,).
ﬂ
K ~peo 1 ﬁ;ko =1 J J

As we mentioned in Section 1.3,

w - lim(T —1)_1
. o7

k- q’k

2
exists for any A € C\R and on H . Take {T oﬂ} to be the

Y

i

gsequence {Ak}, then there exists a discrete set 8 such that

w - lim(T n

+=PP.M, -
N Loy om
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exists for A € (C\R)\S. Note the above limit is on the
whole Hz. Particularly,
G -1 G
w - lim{? oﬁ-k) = R {}\)
k-yeo wk
exists for \ € (E\R)\S. Hence in the H2(D) space

R(A) = w - 1lim(T _--x)“l
ko Tk
exists for A € (C\R)\S. Since

-i w - 1lim pRG(ui) = 1
uﬂ)w

2 ..
on HG' it is also true that.

-1 w =~ lim pR{iy) = 1
11-beo

on Hz(D). But T, is a self~-adijoint operator, we have the

*k
egstimate

her, -0 s bl
k

Thus Cauchy integral formula for analytic functions enables
us to conclude that the weak limit R()\) ewists for all

2 € E\R. Thergforep the con&itions (i) and {(ii) of Section
I.3 are satisfied. To compleﬁe the construction of the sym-
metric operator, we need to show that R{\)ker N, is dense

A
in HZ(D}.
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Lemma IX.1.2. Let

fo = (u:ue€ H° (D), fu € H(D}}.

Then . < R{\ker N

0 A

Proof, TLet u € ﬁo, then P{y-1)u & Hz(D).

(0, -2 " e (4-0)u = u+ (T, -\)"TP(y-4 Ju. Since
by W X

fu € ngn), 1imn(¢—mk)un = 0. Hence
v

. -1 1
1iml (T, -0 TP (g-Mu -~ u] € = Lim||(v-¢ dul = 0.
k3o ng ‘Im M koo k

Thug P{{-M)u € ker N, (see Lemma I.3.1) and R(A)P{}-N\)u

X

= lim{T 6 -MP($§-2)u = u. Hence § < R()\) ker N,.
L} O X
kv k

Thus (iii) of Section I.3 is also satisfied, We denote
the symmatric operator so derxived by T¢ and its domain by 9.
The next lemma tries to justify the notation T¢ and the term

"limit",

Lemna ITT.1.3., For any u € ﬂo'

T u = Plu,

¥

Preof. S8ince u = R(M)P({-%)u, by the definition

T¢u = {I+AR{(M))P{(V-Au = Piu
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(see the proof of Lemma I.3.2).
Let o € b, then the correspondence
2
£ f£la), f € H (D)

3
is a bounded linear function on H” (D). Therefore, there

exists a unigue ka € HZ(D) guch that

£flo) = (f,ka) .

Lemms II1T.1.4. k_ € B2 (D) N c®(sD).

Proof. For any £ € HZ(D),

ar = [ f(?)[%%il]dw(w) where

. |
£la) = ==~ [ £(7)
291 3D T~0. 3D

h € C®(3D). Hence

Sehie)
= Pl——"] .
k, = PLT0)
The lemma follows immediately from Corollary II.1.5.

The next lemma shows that how T@ acts on u € 8.

Lewmma I¥I.1.5. For any u € #, the function

Lo i) 4 2 €D
27i ap  TZ f '
. . 2.
is in H" (D)} and
' o1 ¥{T)u(s) _
(T¢u)(z) = ol f o ar + [(p P)Mﬁu]{z)

3D
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ggmark; First, 4, u € LZ(ED,m), therefore § u € Ll(aD,m)

and the Cauchy integral makes sense. Second, by Theorem

. . 2
I1.1.1 (P«P)M¢ is indeed a trace class operator on H (D).
Broof. Let o € D, then

(T¢uaka) = ((T —ka)urka) + (T u’k&)

L] Yy
= (U.Pw-ﬁ!k)ka)‘% (T‘,’ku_.ka).
Since ]’;i‘:”“‘““""k’kc,“ = 0,
(‘I‘wu) (g} = limtt(’li“p u) {a).
ko 'k
But T u=fM u + (P-PIM, u and
Ve Y q’k
1im|] (e-P)M, u - (p—p)Md;un = 0,
ke k
Hence
Yo (FIu(r)
ELT f ﬁi{lﬂiﬂl = lim Elf‘f ;&“ﬂrﬂﬂ“ﬂdT
LLE SR P -% | koo 2TL o Tra

= (Tﬁ,u)(@t,) - [(P—P)Mwul(a) .

It is very much desired to establish a core for T,.:

¥

Unfortunately, this is not easy in general. What we know

is that certain functions must be contained in & (Lemma II.1.3)
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and the function that ® contains must satisfy certain con-
dition. But when the symbol § is semibounded, we can ac-
tually obtain a coxe. Without loss of generality we

assume that ¢ 2 O, First we prove that T, is indeed in a

v

self-adjoint operator. HNote that ¢k+1 = ¢k, S0

T¢ = Th and
K+, Y%
X s Y L
(r;;-‘lj +1)2 1+ (7 +1)'2(T o y{r, o+ 2](T +1)2 .
K ¥y el W b
Therefore,
v o+t g (x, +1) 7L,
¢k+l k

-1
Lt = {7 +1} 7, then for & = k,
Py e

Neagal? € a2 ka2
= NVAL“Akuz((Aénak)x,x)@

Hence strong limit

s-Lim{(T %1)_1x = R{-1}x
_ koo Yk
exists for any x € HZ(D). Let % € C\R be very close to -1.
Then (T ~L)“1 = (1-(1+2) (T +1)~1)_;(T +1}“1° Thus strong
by Yy ¥y

limit
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s—-lim('I'qJ —l)hlx = R{\)x
Koyeo . .

k
existé f@r ény X € H2(D), This implies that ker Nk s HZ(D)
and therefore TW is self-adjoint,.

Now éonsider v € Lz(sl) and ¢ =2 0. We prove that H®

_ : . Let 3.6 9, then x = R(-1}u for some

u € H2. For any positive integer p, there exist C? € C

is a core for 7

P . - 1
and ¢«. € A, = 1,...,N such that |[lu-u 4 where
(tj J - P) P H p” /P

Nb;
u o= v P x  en®
P j=1 J UP
.
Let = R{(-1)u , then
P P .
oo
- P P &)
X = r S(—l,(}',".}S("l,‘)k p *
P. J=1 J J aj

Since ”S(-—l,-)”m £ 1, xé is in H®, Moreover,

| nx-xpx} = lIR(-1) @)l 5 Y/ -
But wap = (T¢+;)gp u‘xp = up — xp. Hence
;. limnT|£ - (u-x)|| = o.
oo .

TW is a ¢losed operator, so T,x = uw ~x. This proves that

Y
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H*® is a core for T, .

v

Lemma IT.1.6. The orthogonal projection

G 2 2
F' ot H = HG

maps H® into Hg.

Proof. TPirst we note that L2(Sl} has the following decom-
position

2 2

) 2 2.4
L" = HG @ NG ® HG o @ LLG] o

&

Let E @ L -3 Lé be the condition expectation projection,

EH® = Hg:+ N, (Lemma 4 of [117).

Obviously for u € H®, p%u = PEu. This prove the lermma.

Now consider-w € Ez(ab,m) and ¥ = 0. Under the unitary

transform from H2 (D) o Hé induced by the covering map T, T\lr isg

. G \
equivalent to T¢oﬁ on Hg. Particularly for

: G ' B 2, . .
w € Hé, T w= P M w where PG : Lé -» HG is the projection.

form - G Yom

j It is al=so true that

. o . |
gy = - M : = T -
yorr” PP, W o= M W= PPIM v

| .
(o lHg)w = PPyMy v
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: L. » N ig the proijection.
where Pl - G proje

Let x be in the domain of TG , then x = (TG' “L}hlu
Yo Yo
2
for some A € C\R and u € HG. Note that
G -1 ~1
- - PP -
(T$°“ A} Tu (T$0ﬁ leoﬂ ) Tu
= (T, -\ (1 PP, M (T nx)ml)_lu
) .]l]o‘n‘ 1 dom woﬁ‘ *

Therefore, x is in the domain of T . Since H™ is a core

Youl
for T¢oﬂ, we can choose a sequence {xp} < H® such that
limllx x|l = 0 and llmHT X x|l = 0. Because x is an
P Yo 1T p Tyom
P> p-
element in H HP xp—xn = HPG(xp-x)H s pr-x” and therefore,

limHPpr-xH = 0, Let v € Hg, then v i

g in the domain of
p-o>®
G

T$oﬁ‘and

P ] G G

P Y s
(TWTr xp,v) (p ¢°ﬂv)
= (xp,(Twoﬂ-PPleoﬁ)v)
G
This implies that T PGx = PG(T -PM P )x It is clear
P Tyem Tp gom ~ gorr 1 Tp" - ” '

now that

e & G G ‘
, g - -P
llm”waﬁP &p P (TWoﬂx M$oﬂplx)“
poe
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Since Ppr ¢ Hg, we can conclude that Hg'is a core for
G

T
yor

In fact we have proved:

Lemma ITT.1.7. Let ¢ € Lz(aD,m) and ¥ = 0, then T¢ is a

self-adjoint operator which has H®(D) as a core.
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Iit.2. Self-adijoint extensions

Foy real ¢ € Lz(aD,m), the symmetric operator T¢ on

. . . ' G 2
HZ(D) is unitary equivalent to T@oﬂ on HGQ_ On the other-
hand, we can define symmetric operator ’1‘1110?T on H ', It
. G . \
has been made clear that the domain of Twoﬁ is contained

G

in that of T and that on the domain of TG s Twoﬁ

foT Yo

differs from T yorr only by a finite rank operator PP M, .

. . \ A 2
Twoﬁ has the Naimaxk dilation T on H D H . Let
K = PP1M¢°ﬁ. Except for a discrete set S < €, (T-K-i) is

invertable for every complex number \.

‘Theorem III.2.1l. TLet

-n

H o= vi {T-—K-ll) 1

-n
2 T 1
o (T-K-1) H%k Ay E(NR)\s,
nj,k, ave integers 2 0 , 1 £ i, j & k},
. s 2 e, . -1
then H O HG, ¥ is invariant for (T-K-)) and

(k-2 "= [ E

vhere {Et} ig an ecxthogonal spectral resolution. Further-

nore,

G, .. : - g -
KO0 = w-lim(a® -0 7 = Frrere)
Yo

! 15

6w
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. . 2
where B is the orthogonal projection from fH onto H-. 1In

G
otherwords,
i
[ tae = (T-K) | (T-X-)\) "H
m
is the Naimark extension of Tioﬁ.
G, . . G
Procof. Denote by T the Naimark extension of Twoﬁ on Hl'
Let
N 3, -1 j -1 2
HO - { S: (t“K'-Kl) P (T"K")\k-) uj - uj é HGF

j=1

M oA if (3,9 4 (L3 and 0] 2 i,3) 0 0 ¢ i,5) = ).

Then E“ = ﬁ.

0
N 3, -1 i -1
For any x = } (T-K-1\7) ...,('I.‘—K—')\,k } "u., by partial
=1 7 i
fraction we have
-1
({(T-K-20) "x,x)
N - | . _
= % (rr-0THera) T ek ) ha,
p,i=l j
-1 r -1
(T-K-2E) "L, (T-K-2" ) )
1 )’kp p
N kj kp |
. : - -
= 3 > ag’g((T—K—l;) u. s (1=K-22) a )
p,j=1 s=0 +t=1 ~f J P
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N kj kp
Iy e 5. -1 )
= ¥ T % oa é((Tnxg) (1<KB(xg)u..
p,i=)  s=0 t=l °F 8

p, -1 p
(T-1) (l-KB(Rt))up).

iz, and range K C H2 {again by partial fractions)

Since R:-%
that the above eguals

we see
5 k. k
N J S . . :
3 T ¥ aj'z(R(Xj)(l—KB(xj)u,,R(kp)(lmKB(kE))u )
p.j=l  s=0 =1 °F S s 7 t P
k., k.
N ] i . :
. sD . G G
=T £ F alY(®R(Ju, R (p)u )
Pei=l s=0 t=1 °° s J P
% % L
| . G 4 g G _
= 2 aPetadyh, a®ah ) |
j,p=l s=0 t=1 "' ' H
6 . ~-1. ¥ g 5.-1 G .J -1
moe-y‘d‘((‘r "“)\.) [ 5: (T "kl) .oe(T ""}\k ) U..].
, ,:1 . I
: 3 j
N . .
G . J wC_4J -1
[-E {T xl),e.(r kk') uj])ﬂ
J# J
Hence in particular we have
N . : __—
o5 (T—K~x?)"1...(T~K-xi )lujn
§=1 o L 3
N . ) . .
G 1 G -1
"=".“]_: 3 J
i=1 3

So if we let
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N L] L]
- -1
v E (T"K‘)\j) lnno(T“K")\}j( ) u,
j=1 3 ]
N . .
5 G -
= 3 (ro-ay ... (1= ) e,
. 1 k. .|
j=1 3

then V extends to a unitary operator from H onto Hl and

(-0 Yux, vy) = ((r-r-3) "uy).

Hence (TnK—k)m 1

V. Therefore,

(T-K-%) ~|H

1
IHy

is the resolvent of a self-adjoint operator. By the inversion

formula, that self-adjoint operator must be

(TwK)](T—K—k)-lﬂl.

It is already known that

1

(k-2 "u,v) = (RE(N),u,v)

2
for u,v € HG. Hence we have proved the theorem.
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IXT.3. The decomposition theorewm and spectral multiplicity,

Recall that Lz(aD,w) has the decomposition
, ‘
: = @ . A * 60 X ot
L (3D, w) (KO LO) & (Kl@}"l) ® @(In@)!n)

and that there exist unitary operators Ub’Ul"‘°'Un such
that
2,1
2L.) = 2
Ui(Ki Ll) L (g")

and

Let @ € L®{3D,w) and 0y = m]Tj, 3= 0,1,...,n. Then

1=0,1,...,n

. torr.”
wj 0 3
and
U[TO ®,..0T" JU* = Tomo Do @ T
@O f@n po 11 £ n
see Section I.2.
Naturally, T; e J = 0,1,...,n are considered as Toeplitz
3

operators on H2 of the unit disc. A brief raview of the
‘theory of Toeplitz operators on the unit disc tells us that
the development of much of the study takes the advantage
that there ars so many powerful analytic tools a§ailable

that difficulties in operator theory can be overcomed by
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concrete computatiqn. For example, for a self-adjoint
Toeplitz operator, the von Neumann spectral multiplicity
function can be calculated from the resolvent which, on a
basis {ka : o € A}, can be explicitly expressed in terms

of function S{q,-), see [25]. But unfortunately, on
multiply-connected domains, the non-simply-connected-

ness makes it virtually impossible to carry out any direct
calculation. 1In fact, analytic expression is not available
even for a function as simple and fundamentai as ka. Con-
ceivably, any gquantitative analysis for Toeplitz operator
nust reguire well understanding about the orthogonal pro-
jection P, which, except being a trace elnssg perturbation
of P, still remainé mysterious to us. Therefore, decom-
pos%ng Toeplitz operator into direct sum of those on the
unit disc seems to be the only alternative to crack_the
underlying nuf, Essentially, Abrahamse's theorem says that

Tcp ® 0 is a compact perturbation of (T; ®O)®, .. B(T

o “n
.But for our purpose compact perturbation is not enough,

T @0y,

What we need is the following:

Theorem IIT.3.1. For any o € L7{3aD,w),

T, ®O0 - L ®0)a. ..o

®0)) = K
Dy ® ®
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is a trace class operator and

Al = nliel
” el ? L {3D, w)

where L is a constant which depends only on the domain D.

Proof. 1In this proof, the numbers in parentheses are that
of the Lemma/Theorem we refer to.
Let x; be the characteristic function of Pi. Regarded

2 .
@s an operator on LZ(L (oD, w)

o " ®0=PM PM P
X Xy LR

= PM  (P-P)M P 4+ PM M P

% X Xp  O%y
= PM P(P*-P)M P + P[M p-pM M P
: Xi tpxi Xi Xi XjCP

since M M =0,
) i %y

MX P - PMX is a trace class operator with C® kernel

fud
R

Xi (Z) “Xl (T)

z-1

dz.
Hence & C » O such that

| _me_ﬂl s cllell , o (1.2.7, TI.1.1).

xl 9 L

Taking the adjoint, we see that
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e, =, . = cllel ..
Thus
* X% =TT Y o TX Tcox
e T T I E I B
o . Toox + ¥ ( . T T me T }
RTINS SRRC A TR R R
=TXTT + B (7 TX+T T'XTX - T TXT )
3% ak M PR Xy WX Xy Xy X Xy
Therefore,
e -2 77 ||, 5 3nc|ql
¥ . S 2
wxj Xj P kj _ , L
and
o -7 T T || = 2ncllel ..
\ \ . . 2
WXy Xy OXg %y I

Let Yi be the Lz closure of Ai. We denote the projection

onto'Ki by Pi and the projection onto Yj by PY {(both con-
) i

sidered as operstors on Lz(Lz(aD,m)e

érx ® 0 + ﬁ%
3 i

T 20
®

i
BYE
\3
3

" E & R = .
where K@ c, and “Km”l ClﬂmHLz

'rx TtpTx ®0 = PMX 'PMCOPMX P
3 3 j F

for any £ € Yi’
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£(z) = = [ L&l g4

297 P {~=
i
for =zé€ exterior {interior) of r, if i + 0(i=0).
If 5 4 i, then
- _(QL
xj(z)f(z) 2ﬁl f X (z)
1
¥ (C)yy (2)
1 i | _ ‘
o 29 T -2 £(@)ag,
PM PP M = PM P M PM P - -+
X v, © X. Y, - X-( Y. Pi)Mm PMX,PiMw
j i j Ti | j
=PM P (PP M + PM P.M
. ¥, 1 L A N (1)
X4 P . Xy ie
vhere
1 £(€)
£y m—
®8H@ =7 -z 46
T i
and
P = P *'_ . e .
Y. Y.P and PY.Pi Pi
i i i

PY - P, =2 M P* ~pM =M (P*-p) + ,®1.
" . . { P) [Mx. £

i i i i

1 Xj(z)xi(T)

251 z—T

(MX Pif)(x) f(7)dr.
.j -
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Hence for i % 3,

| . K < . .
||PMXjP pY:.lexcpnl const.ncpHL2 , {1.2.7, 171.1.1).

On the other hand,

PMx P PY Mtp = PMX PY Mcp = P(Mx - 1)1:»Y Mcp 4 pY Mm
J 3 i B j J j
=P{M -L((P_ -P.)M +PM -~-1)FPM + P M
( p. Y. J) 2] ( p ) 3w Y. @
3 J - J
= P{M -1)P_ (P*-P)M + P T (-M PIM +P. M .
. Y. . Y. ¢
Thus,
(b) HPMK PP, Mcp -P, Mwﬂ1 % const. ||l 5
J J J o .

{a) and (b) together imply that

fem, PP, M -5 .P M| = const.lgl ..
_ Xj 11 © ij Yj o'l _ L2
M@PY PM = Mm{PY - PI)M M PzM
= M (P - P‘i")PY Moo+ H P’,:Mx ,
i% O
M P_PM =MP (M -1) + M P
, v, X,
I e ® ¥y

=M (P -PYyM -1) + M P*(M
e 3 ¥ ® 3 X

-1) +M1?Y .
j i j ®
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P, PM - M P b ”1'5 const.”mHLZ , (1.2,7, Ir.1.1).

'MmPY B, =M (pY —Pz)PY + M P"i’PY
I T I
=M (P.-pP¥)P_ P *
Y. P M (P -p)P + M PR
o i i Yy ¥y m(Pl ;) v $Pl -
- 3 J
* i % -
= M 2 - P + M - + . - 5
»cp”i Pi)PY. . *cp(Pi‘ Pi)PY. wal(pY‘ Pj)
. ]_: 3 3 J
+ M P pPY
0 i j
=M (P-P¥)p P+ M (p*- P+ M oP, (P, - p*
L $(1 1) Y. Y. m( i Pl} Y. Mw 1( . PJ)
A | |
+ M P, pY
LA N |
But,
PP, =0 and P.p¥ = pM P¥, and M P = (pu )* = o,
3 i iy, 3 . %, -
L R 1.
MP p : 2 ' '
LY. =M (P, -pHy (e - .
vy, Y, U 1)‘ v, l}Pyj

Therefore,

4

P_ P €C and .
Mm vi v ¢. and (by 1.2.7 and I1.1.1).

ks
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lmp P | s const.|el] ..
L)
2 Yi Yj 1 I
Similarly
e, » mll. s const.lg| ..
Yj Y. © 1 Lz
(p 5 Yp TMPpP P
M - TP =
But . Y. Y, ) Y. v,
gm0 Yy Vi g4y PV Y
e - % 2 ye | s const.llul .
M - const.|liep .
50
© a0 Y5 ¥l L2
Let Yb = Yb,...,Yﬁ 5 YﬁfB[Yjﬂ(Ybffa.+Ym_l)], Yﬁ < Ym. And
H2 {D) =Y + +v =% +...+g': :Let PO ?n be the pro-
r ooo- n O -n : IR Y

jections onto ?5..9.,§; réSPQEEibély corresponding to the

decomposition. Then PQIPJ %:Ej and

nl
v =1,
. §=0
Hence
P-% P ) - %p ) 3
M P-30P =M (P~ T P 5
oy, © NP ‘S
® j=0 "j ‘ 3=0 "3 3j=0
n n i n n
= % M (P- ¥ B, )P = ¥ M (P- 5 P )P
jmo @ j=0 T =0 @ 3=0 5 ti

Thus,

. _
e (P~ 5 »p_ ). § const.|wl .,
o Tyl ¥ 2
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n
Nee- % »_ Imll € const.|yl| ., and
550 Yj ©'1 .2
TX T¢FX ® O = PM PM PMX P

n
o pr (p- % PY )MCDPM P + T PMX PPY MCPPM\ P
5 k=0 “k 5 ks i Tk %5

"!‘ PM P MPM P-EE...

J 3 J

Hence it is easy to see that

|

T T T -P

£ const. | gl ge
J 3 : '

YM(‘PY
i ®*5 L

PP M =P (P ~M P YM +PM P M
Y i Y, . Y. 1y, Y.
i 5% @ k5 ¥

=P (P -M P YM + 8§ P M
i Y s Y 0 17 Y, ¢

j j 73 j
By (c)
”Pi(PY -Mx PY YM [|1 £ const. ||yl 5
g *5 Y5 9 L
Eope PP M -6 P M s . .
therefore, 1 i Yj 0 Ui Yj (p“l const ”m”;,z

MP P, =M (P -PYP. +M PP,
°Y, 3 033

M (P, -PYYP P, + M
w3 3OY. 3 o

(PY -9 )P, +M P.P,
5 33 e

P

s

"M PP, =M (P, -P )P, + M P..
® ] f:o(j 3)3 o




For any £ € % A,
J 3]

Let

Xk(z)f(é)
(Pj“-Pj)f(z) = m IT. kij -z ag.
T % (=)
(Kg) {z) = 5= fr t(z) k"Jch_z — g ()ag.
3

Then K € Gl and HKHI £ const. ||el| 2

80 M, (P.-P. )P, € C; and ”an(Pj"Pj)Pjn1 s const.|lol ,

Hence

It MtpP

M B, M
H 1

L

M (#,.-P,)P, = Kp,
co(:l J)f] 3’

2.
L

Y

-Mmpj“l bod conﬁt.”@n

mPYi" S const,H@HLz.

Now we can conclude that

~and

P M
j

o

P,
J

= T

T ®0 - T PMP. €C
® e J w3

n
T ®0- ¥ PMP
I R J o

p
®

3

-

1

=0

2 j”l < const. | ol
je=

Thus we have proved the theorem.

I

122
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The first application of this theorem is the calcula-
tion of the spectral multiplicity for self-adjoint Toeplitz
operatoré. Let ¢ € LT(a3D,w) be é real function. The ex-
isﬁencé.ﬁf wave operators asserts that the absolutely con-

tinvous part of T¢ ® O iz unitarily equivalent to the
° 0) ® (1}

¥ ®@0)®,, . ®
0 1

absolﬁtely continuous part of (T

n ' . Lo : |
{T¢ ®0). The restrictions of T¢ ® 0 to [Hz(D)]'L and

®0)®...0(T, ®0) to L ®...®L have singular spectrs,
‘g’o ; 'qf . 0O no ) :

. n
therefore the absolutely continuous parts of T$ and

0 4w
T @o.,@T¢

¢ are unitarily equivalent. On the unit disc,

1
Tw ﬂf is of purély_absolutely continuous gpectrum if and
o s
fomls _
only if wnﬁi is not a constant or, eguivalently, ¢ is not

acmmumtanff

Theorem ¥I17.3.2. Let ¢ € L®(3D,w) be a real function and

let {Pi ,...,Pi } be the contours such that on each
N S m

3

', v k=1,...,m, ¢ is not a constant. Then the absolutely
I k ’ :

continuous part of Tﬁ-is unitarily egquivalent to

T @..,.er
emy Yo,

m

- - . 2
on the orthogonal sum of m copies of HY,
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The spectral multiplicity of bounded self-adjoint
Toeplitz operators on the unit disc was first found by
R.5. Ismayilov, then by M. Rosenblum (see [241). These
results are actually special cases of the multiplicity
theory of singular iﬁtegral operators found previously by
Pincus as a part of the principal function theory of pairs
of self-adjoint or unitary operators with a rank one com-
mutator. We refer the reader to [247 in this connection.,
Lat ¢ be a real functioﬁ on Sl. Then the actual countin§
of the spectral multiplicity of Tw is the following. For
any £ €®, let m(Z) be the spectral multiplicity of '1‘fp at £,

Then m(g) is equal to k if {7 - W,G-Sl, w(f) < €1 is (upto

1

a set of Lebesyue measure Of k but not k - 1 arcs: O if

this set is empty or all of Sl; and o if neither of the

pre&ious is the case (see [24]). Using the mappings .
'ﬂo.ﬁl,..u,ﬂn, we can give a description fér'the spectral

multiplicity of self-adjoint Toeplitz operators on ﬁ. By

# proper arc of 3D we mean é nonempty connected open sub-

set of 8D which iz not any full Fifi = 0,1,.,..,n. Tet E be ;
a subset of.aD,'we define n{E} to be k if E consists of,

upto a subset of Lebesyue measure 0, k¥ but not k - 1 proper

arcs and some full Fi's: 0 if E is either empty of the union
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of some full ?i's: and e if none of these two is the case.

Corollary III.3.3. Let m(€) be the spectral multiplicity

function for the absolutely continuous part of Tw. Then
m(E) = n({7 : 7 € 3D, ¥(r) < &}).

Another description of m(g) can be given in terms of
the G current. Let m < -[|¥ll_ and let ¥ be the support set

of the G current for the pair {M, T ®n}. let

]
p_= {(ny,2) : (k) ¢ ®R*}. Then m(g) = n(p, N§). Note
that this property of the G current resembles that of the
principal current for a pair.of self-adjoint or unitary

operators with rank one self-commutator even though in

this case the rank of the commutator is not one.

The following cbservation is a simple sonceguence
of known facts, but gsince it can not be found in the
literature, we would like to present here. Let & € LQ(Sl)

be a rezl function and let Tw be the symmetric operator.

A e A .
Let T@ be the Naimark dilation of Tm to H, Since

1

y o= Lim((T -3) "k Lk.)
i a B

({T-}) Kuika) = (R(l)ka,ks

ot
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A - AL
for any a,f € A and v{(wal) lx : ) G'Hz, » € C\R} = H,

from [23] one can easily conclude that the spectrum of
A .
Tw 18 purely absolutely continuous and the spectral

multiplicity for T at & is

n{{r : » ¢ Sl, o(T) < E}}).
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ITX.4. The dificiency indices of symmetric Toeplitz
operators

In this section we give the dificiency indices of a
symmetric Toeplitz operator on D in terms of the local data
of the symbol on each individual contour. First we prove

the following elementary lemmas.

Lemmg I17.4,1., Let [Am] be a sequence of compact operators
and {Bm} a sequence of bounded operator on Hilbert space H
such that

limlla_ -a) = o
m -
M-

and

w=lim B = B
m
M-

for some A,B E-S(H). Then

s-1im A B
m m
m-ro

exists and is equal to AR,

Proof. By uniform boundedness principle, there is an up~

bound M for {HAmH] and {]]Bmll]e Let x € H and [|x|| = 1, then

laBx -AmBm}:H s HA{BmBm)x!] + HA-—AmH ]]Bmx]

Given ¢ » 0, let A, be & finite rank operator such that
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| €
"AE—A[] < /4 l2ml) .

Suppose

then

AG(B—Bm)x

il
=

( (B“Bm)x: XJ)Y:} o

Since HA-—AmH » 0 and w-1im B = B, there exists L » O such
m-»eo

that for any m = 1, [a -al < 8/3(M+1) and

| [
BB s, x0) | <7/l )
Therefore for m = I,
|IABx—AmBmxll z || (A-a ) (BuBm)xH + l[Ae(B—Bm)xil
+ I]A-Amﬂ HBmxll < g

This proves the strong convergence of [Amgm],

Lemma I[TT,4.2. Let {Am}, {Bm} and {Cm} be bounded operators
B

r

on H such that A C =
m i m

w-1im Am = A, w-1lim Bm = B
m-o m-»e

ana
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Then for any x € H, limH(AmCmAC)xH = 0 if and only if
m-e

1im”®m—B)xH = 0,
mre

Proof, Firast it is easy to see that AC = B.
Obviously , there exists M > O such that nAmH s M

for all m. Let x € H, then

C_ = iy . — — - - 3 + B —~F -
(A Amc)x ?m(cm Cls + {(AC Amcm)x Am(cm c):\. {B Bm)x

Since HAm(Cm*C)X” 8 MH(Cm~C)X" and s;iim c. = ¢, the con-

clusion becomes obvious.

How let { € Lz(BD;w) hbe a real function and let T be

¥

the symmetric Toeplitz operator defined in Section III.1.

A ' A
Let T¢ be the Naimark dilation of Tw to the space H, Recall

that for nonwréal 1

AN T LA L -1A A A = SLA A 1A
Nh = Q(rﬂ;k) (Tﬂ: x) @ P(% 2D P(.L‘lr \) “P.

The dificiency spaces of T, are

Y

and Hz(D) 8 ker N_ .
A

HZ(D) & ker N1

Suppose R is the domain of Ty and define T, =T ® O on

]
5 + tHZ(D)]l. Obviously, Tl is a symmetric operator with
. . . A A A A
Naimark dilation T1 = Tllj @0 on H O [Hz(D)TL = Hl' Let ﬁl
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onto Lz(aD,m) and let

A
be the orthogonal projection from Hl

. A -1 -1 —. =1A —lA.
N A VRtCURE Vi S G SRS B # -n7E

1, A 1

1 1A

Since (é‘l—x)“l = % -vtoe (“1/x) and Ql('ﬁl-m" 5

L) 1

- _l
R(A) & ( /X)'

Lz(aD.w) © ker N = Hz(D) 8 ker Nl
1,

r .

for any A € T\R. Hence T, and T,k have the same dificiency

1 J

spaces.,

On the otherhand, on each k., we can define symmetyic

i

3 - L] A [
operator T, = UM U* where ¢ = {|T,. Let T" be the

L i jorr, 1 i

§ i
SR oy i A pi A
Naimaxrk dilatioh of T ; on K, and let : Ki - Ki be the

¥

projection. Then

. A AT — —1 A3 3 A AL — —1A3 . R
. Ni - Pl(Tl_l) 1(T1~1)QJ B Pl(il_ ) lﬁl(%lmk)gl

igs the dificiency operator and

K, ® ker N, K, O ker N"
1 A i -

N

" are the dificiency spaces for Tli. But
¥
o "1 i "'1

—_ -3 lll .-

Ui(kaoﬁ. Ay U= i )
i X

2 -1 . 2
and UK, = H, so {(T -1) "%} converges in the H norm
i1 ¢koﬁi
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. 21 .
if and only if {(Tli-—)\) U;x} converges in the K, norm,

. $k
Therefore,

i - i
Ui[Ki 8 ker Nlj and UJ._[L_i @lker N{]

are the dificiency spaces of T Obviously, the difi-

ott, *
Y i

&=

. i
ciency spaces of T i are
o ¥

]

i

3]

. n : s
[X, @ ker N;] and ® [K, © ker 7.

0 i=0 {

He
#
i

=

Let T_ = @& (I% ®0) corresponding to the decomposition
. i
i=0 ¥

L“:2 {h,w) = {E&CLO)...@(Kn®Ln). Then T, is a symmetric

2

. . n A.
operator and @ (Tl®o) defined on (ﬁ @1, )G*),“@(ﬁ B )
. . O 0 n n
i=0
_ n :
isg thae Naimark dilation. 'I'2 and @ Tli have the same
. i=0 ¢

dificiency spaces. Let N be the dificiency operator for

25X

Tz‘. Then by the definition of Tz,
ker N = {x « {(® [P, ®0] -1} "%} converges in the
2,4 X L
i=0 ¢
2
L norml.

n s '
But ® (1%, ®07 =T ® 0 - K, , therefore,
=0 4 ¥y ¥

(1)

-1
®0 -K, -\ x} converges in the

L 4']4: Y%

T = {
kexr NQr}\ {x

12 noxm}.
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;v
Obviously, o ¥ Km is a linear map from L {(3D,w) to

2
Cl(L (3D, w)). Hence there exists K¢ € cy such that

1im|k, -k ||l. =0 .
ke q’k ‘lf 1

Since

(7 BO-K -x)”l(l—x [(r -x)_l @ (“%)])

1‘hk q’k 11’k . ‘L‘k
._1 ...l ,_1 . |
= (T, @0-)\) “ = (7, -2 " @ ()
and, by Lemma ¥IT.4,.1,
ny S N ~1y o
ski;m K‘l[k[{Tﬁ;k by ® ( x)] K¢[R(x) @ ( 1”’

Lemnra II7.4,2 enables us to conclude thaﬁ the sequence
{(r ®0-K —l)ml(lmK [R(A) ® (~ lj])x} converges if and
e by ¢ \
R -1 1 1
enly if Lin{[{(T -2} 7 @ (- Hx - (RO @ (- )i = 0.
jae ¥k A R

- 1
Let W, “.A 1 - th[R(l) @ - k)].

Lemma IIX.4.3. Foxr any A € C\R

kaer Nl,k = ker N2,R°

If, in particular, we choose A € € such that |Im A

» 2(1+n]y|l ,), where L is the conmstant introduced in the

decomposition theorem, then W, is invertible. Hence we

A




have proved

. : 2
Theorem I11.4,.4, The symmetric operators T¢ on H (b) and

: 2
T, ® T ®,..@T on B2 ® H ®,..®8 have the same
tom fo 11 i) : _

) 0 1 bo n
. - dificiency indices.

Furthermore, since for nonreal X\

A -1 -1 -1, -1
@)=k = 0T -0 TH

¥

it is obvious that

Ql (’%1—K‘£{—k)_l]L2(BD.w) = Ry () (I—K‘le(H)—l

where

A -1,.2, - 1
R, (A = B, (® -0 "M r? (20, w) =RO) © (- 9.
Cn the other hand,

n ~1 -1
(@ [ 1._Gao]-x) = (7, ®O-K  -1)

i
=0 ¢ b by

= (¥ @(.’)-—)L)_l(l--K‘1r (T ®O-X)_l)”1
- e x %

and therefore,

n i -1 ' -1 _ .
w;iim(ifg[T¢i<®03—k) = Rlﬁk)(l—Kle(x)) = RQ(A).

This implies that %w @0 - K? ='%1 - K¢ is the Naimark dila-
n
tion of T_ = @& [T i(90]. Since Rl(k) = Rz(?\)w)L and

i
1=0 9§
N

+

W, ker N, , = ke T, and T, have ti . domain 8.
) "er 1) ey 2,0 T @ 5 Dave the same domain £.
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For any v € ﬁ, there exists x € ker Nl Xz such that
F .

Rl(k)x =y = Rz(}\)wkx. By the definition

i

le = Ay ¥ x and T2y Wy + W X.

X

Hence

f— K L]
le T qjy

gY = X - karz Kle(k)x

Naimark dilation of symmetrid Toeplitz operator T

Theorem IX1.4.5, The symmetvric operator T¢ @ O and

n +

i . \ . .
® [v jEEOE have tha same domain ® and on this domain
i=0 "

4]
T @0 - ®[r'. @01 =K €C,.
\ i=0 4" L

Furthermore, the difference of the Naimark dilations of
these two symmetric operators is also K¢ and in particular,
they defer only on Lz(aD,m).

The following corollary is obvious.

Corcllary I11.4.6. Yet m(€) be the spectral multiplicity

A
function for the absolutely continuous part of T the

‘yi
W then

m(E) = n({f : v € a0, (1) < £})

Particularly, if T, itself is self-adjoint, then the above

¥
number is the spectral multiplicity of the absolutely con-

tinuous part of T, at &,

Y




spectrum consisting at most n + 1 points. Hence ofT

ﬁ L HZ(D}, 0 is. an eigenvalue of T

Chapter IV. The Spectra of Self-adjoint Toeﬁlitz Operators

IVv.l. The singular spectra

It is well known that on the unit disc¢, every self-

adjoint Toeplitz operator has purely absolutely continuous _ |
spectrum if the symbol is not a constant. But when the ?
domain D is not simply-connected, singular spectra for
self-adjoint Toeplitz operators do occur., For Qxample,
if § =C, onT

3 jrj

T$ ®-0 on L2(BD,m) is a compact perturbation of

(C0 ®0)®,, ,GB(Cn ®0) corresponding to the decomposition

= 0,1,...,n, then we know that

0

'Lz(al),w) = (K @LO)G)...@(Kn@Ln), the later having the

¢)

must be discrete. This example was observed by Abrazhamse,

from the view point that the essential spectrum of T¢ con-
sists at most n points, see [ 1]. Another example of
gsingular spectrum is the following. The space N contains
real bounded functions., If we choose real ¥ € N, since
v But note that so far
we do not have an example of continuous singular.spectrum,

In fact it is doubtful that such spectrum really exists.

The only thing we know about the continuous singular
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spectrum is the followings:

Theoiem IV.1.l. No éelfmadjoint Toeplitz operators have

purely continuous singular spectrum.

Proof. -if the spectrum of self-adjoint Toeplitz operator
Tﬁﬁis_purely singular, then it does not contain absdlutely
coﬁtinuoué part énd the:efore, by'Theofem IrT.3.2, ¢ must
be constant on each of the contours, Hence the spectrum

of T¢ i discrete, not continuous.

Theorem IV.1.2. Let ¢ € L”(3D,w) ke real nonconstant func-

tion. Then

dim ker T, % n.

Y

Proof, T$ ig wnitarily equivalent to

¢ 2
== - H
Ton (?woﬂ Pplmwoﬁ)l o

. ‘ . 2
where T is the usual Toeplitz operator on H and

Yo
raﬁk PP.M = I,

1 fom

|
|
|
|
|
S _ ‘ . |
.- Simple linear algebra shows that if it were true that |
. G
dim ker T > n,
: Yot

then ker T$0ﬂ 4 {0}, which is impossible.

Corollary I,V,1.3. 1f nonconstant § € L.Z(3D,w) is real,
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then the multiplicity of each )\ € cp(T$) is net more than
n, the number of holes in D. |

Using Theorem III.2.1, we can similarly reach the con-
clusion that if T is the Naimark dilation of a symmetric
Toeplitz operator, then the multipliéity for each eigen-
value of T is not more than n.

We can.show that some self-adjoint Toeplitz operators
do not have point spectrum. Recall that for an x € L2(6D,m),‘
the haimonié coﬁjugate is a.function vy € than,w) the harmonic
extension of x + iy is in H2(D). If D is not simple-con-
nected, not all x € L2(BD,@) have harmonic conjugate. In
.fact ¥ has z harmonic conjugate if and only if x . N, in

B

other words, x € Hz(D) @ HE(D).

"heorem IV,1.4. Tf non-constant x € Lm(BD,m) has a harmonic

conjugate, then op(Tx) = g.

Proof, It suffices to show that ker T, = {0}. Let
v € LZ(BD,m) by the harmonic conjugate of x, so

. 2 . :
tp = X+ iy € H (D). Let u € ker T ¢ then there exist v € N

and w & Hg(D) such that




138

Thus
yu = igu + ixu = -gu + iv + iw
and
vu = igu - iv - iw.
Hence
2 — , . N
‘yu‘ = yusyu = [-igu+iv+iw]lipgy - iv - iw]

i

tou]? + |v]? + |wl? ~ [ouv+gav] + (30 +wv)

[epuw + wuw)

Since |cpu|2 = 1@‘2 |ul2 = (22+y2)‘u|2, we have

213 2 2 o — | —_
w tal + Jv|® + |wl® = [puv+gav] - [wv+wel + [ouw+paw],

It is clear that iﬁ the above eéuality,'the left hand side
and the firgt and second terms of the right hand side are

in Ll{aD,w), therefore, so is guw + 5;;; Because

w € HQ(D), m(zo)u(zo)w(zo) = 0 where z, is the base point

for w. Hence

Louw (7) + guw (1) Jdw(r) = O.
oD ‘

Furthermore, since gu € Hl(D), w € Hg(D) and v € N, it is

easy to see that

.-




[ {leuv+Tuv] - (W0 +wv]ldu

oD

Therefore,

0,

139
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Iv.2., Self-adjoint Toeplitz operators with purely
absolutely continuous spectrum

In Section IIT1.4, we characterized the spectral multi-
Plicity for the absolutely continuous part of self-adjoint
Toeplitz operators in terms of the symbol. Hence for those
operators whose spectrum is absolutely continuous we ob~
tained a complete set of unitary invariants from the symbol.
I some sense, thig is a kind of diaéonalization for these
operators, So it ig natural to investigate which self-
adjoint Toeplitz operators have purely absolutely continuocus
spectrum. On the unit disé, it is well known that all of
them do. But on.ﬁﬁltiplf—connected domain D, again due
to the lack of analytical tools, we s0 far can only de-~
signate a c¢lass of self;adjﬁint Toeplitz operators which
have purely absolutely continuous spectrum, Let A,B be
bounded self-adjoint operators on Hilbert space H. ILet
Ha{A) and Ha(B). respectively be the absolutely continuoqs

iC where C = 0,

(H

space of A and B, Suppose that AB - BA
Let I be the smallest invariant subspace for both A and B

that contains the range of C. The following theorem is

dus to Pubnam,
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Theorem 1IV.2,.)1 [21], [22].

L c Ha(A) n Ha(B).
Using this theorem, we can prove the following:

Theorem IV,2.2. Let % € [H2 (D) @HS'(D)] N L2{3D,w) be a

real function. If the harmonic conjugate y of x is semi-

bounded, the spectrum of Tx is purely absolutely continuous.

Proof. Since y is sémi-bounded, without loss of generality,
we can assuﬁe y = 0. Lét ¢ = x + iy, then o € HZ(D). By
SectidniiII, we.know thét the symmetric operator Ty is
actually‘a selﬁ—adjoint‘operator and Tyu = Pyu for any

u € H®(D). Hence for u € H®(D), we have

vzlt(TXu,tyu) - (iyu,Txu)] = —21((qunyu) - (Pyw,Pxu) ]

B

[(P(x+iy)u, P(x+iy)u) - (P(x-iy)u, P(x-iy)u)]

i

ol - Yegal® = ) - fesal? = o

Since H®(D} is a core for Ty, it is true for any u in the

- domain 9 = B of T

g _fi[(Txﬁ,Tyu) - (Tyu,Txu)] = 0,

It ig also true that

mi[(Tqu(Ty+1)u) - ((Ty+1)u,Txu)] z 0.
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2
Hence for any v € H (D},
~ifer_ (v +1) 77 ‘) -+ v, =0
Al (g Vv,V v e .

1

Let C = i[(Ty+1)_ 'Tx]' then C =2 0, Thus by Putnam's theorem

Ha(Tx] contains the least invariant subspace for both Ty
~and {'I‘Y+J.)_1 that contains the range of C. Denote this

subspace by K. We now prove that K = HZ(D). Let

2 - -
L = H (D) ® X, then I is also invariant for Tx and (Ty+1) !

and L © ker C. Tet u € L, then (Ty+1)”1u =ven . By

Yy

the definition of Ty

-1 -1
T ve="TI{( +]1) ua=1u- (T +1 e - R
y y( v ( y ) Tusu -~ v

Hence
(Txv,Tyv) - (Tyv,Txv)
£ (Txv,g~v) - (u—v,Txv)

= v - () = (e

0 —-1 e H p
(u,TX(Ly+1) u} = i(Cu,u) = O.

From this, it easily follows that
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iz )l - e i )vl” = o

Since H®(D) is a core for Ty' there exists a sequence
{Vm} < H®(D)

such that limljv_-vi = 0 and lin||T v_-T vn = 0. But
m ym ¥y
m-reo m-reo

- P v o= Pyv in 2 H®(D) .
v yv,, since v € (D)

Hence

Lim{ || Geriy) v |12

Lin I te=iy) v 127 = | (xrim ) vil®

”(Tx_iTij”2= o .

On the other hand

3}

n<1~P><x»iy>ymu2 I ee-iydv )2 - e Ge-yd v

= Geriy)v P - e Geiy)v 1% = 2 Goriyhy |12
- HP(x—iy)vmﬂz >0 asm - o,

Therefore,

4

2%V 1lim 2xvm = llm[(x+1y)Vﬁ + (x—ly)vm]

M-—>® m=reo ‘ .

8

iit{P[(x+iy)vm + (x—iy)vm] +- (1~P)(x—iy)vm].'

Since n{1~P}(x-iy)va - 0, we have xv ¢ Hz(D) and therefore,

L.

e
<
it
}_3
4
m
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So for u € I,

1

.
x({T +1 u

T (T +1) "u € L.
xy

But T (T +1)—lu = (T +1)—1T u for u € L, so
xy STy X

1

lT u =T (T +l)-lu = x (T +1) u.
b4 X Vv y

p +1l)
( Y
Therefore, k(Ty+l)"1u ¢ 5 and
(7 +L)x(T +1) e = T u.
Y y X
For any n, we also have
Tnu = (T +l)xn(T +1)_1u
X ¥ b'd
and therefore,

K +1) e o= (r +1)7E
Y -

™,
x
So
(+) px) (T, 1) "w = (2 +1) lpr_ju e 1
y v X
for any polynomial p. There are constants a and b so that
~Hx”m <a<b < Hx“w, aﬁd such that the sets

x_l[unxﬂm,a), x_l(b,nxnw] have positive measure.

Let £ be a continuous function which is equal to one

in [—”x”w,a], which decreases to zero smoothly in [a,b],

and which is zero on [b,Hxﬂm].
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Let [pn} be a sequence of polynomials that converges

to £ uniformly on [-|lx||_, llxl| J. It is a consequence of

(*) above that f(x(T})[(Ty+l)—1u](T) =[(Ty+l)—lf(Tx)uj(T);

- v =1
where (Ty+1) 1f(Tx)u ¢ L cH (). On x (b,llx]],, the left-
hand side is 0, so (Ty+l}wlf(TX)u = 0, But f(x(+)) is

1 on x_l[—Hwa,a}; hence we have
Cer +1) "Fuler) = Do +1) " re(r )ul(n) = o
Y Y N X
for ¢ ¢ x"l[~Hme,a].
Hence

-1
T _+1) "u
( . )

]

0.

It follows immediately that L = {0}, This completes the proof
Having a semi-bounded harmonic conjugate is certainly

not easy to be checked. But if x itself has certain smooth-

neegs, then its harmonic conjugate is semi-bounded and is

m: A->D carries Sl\L(G) onto @D, where L(G) is the limit
~set of the automorphic group G. The inverse image of each

', i=0,1,...,n, is the union of infinitely many connected

antomatically guaranteed. Recall that the covering map ‘
|
|

i

) . 1
components {if n » 1) or one component (if n = 1} of S \L(G).

Also, under 7, each component of Sl\LﬁG) is mapped wrapping

o . . . 1 .
BOME Ti infinitely many times. Hence if x is a C function




on 8D, then there are open arcs CO'Cl"'Cn on
1 . '

that xo1m €7 on a neighborhood of each C, . If
A .

real, then the harmonic conjugate v of xom is

tinuous on each E; (see page 79 of [16]). If
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con-

x has a

- . o _ A
harmonic conjugate y on D, then it is clear that yom - vy

is a constant. Therefore, y is semi-bounded.

Corollary 1vV.2.3. Let x é Cl(aD) be a real function.

' If x has a harmonic conjugate, then the spectrum of TY

is purely absolutely continuous.
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