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Abstract of the Dissertation

Curvature Ineguality and
Certain Toeplitz-like Operators

by
Dayal Dash Purchit

Doctox of Philosophy
in
Mathemnatics
State University of New York at Stony Brook
1882

For T € Bﬁ(ﬂ}, there is an asscciated Hevmitian holo-
0 .

morphic vector bundle E, over 0 of rank n. In the case

n = 1, the curvature RT(W) of the associated Hermitian

hoicmmrphic veotor bundlezgr is the unitary invariant of
‘T, It is known that U* & BT{D)p where U* is the adjoing
.Qf unilateral shift and D is the open unit disc, and the
_closure of D is & spectral set for U¥. In Bl(D), we have

a curvatuve inequality namely if T € B_{D) and closura of

1
£

D is @ spectral set for T, then KT{W} ¥ o{w), w& I,




In this paper, we obtain a generalization of the curvature
ineguality for Bl(Q}, where (0 is a simply-connected domain
with Jordan curve boundary. We consider a Riemann map

v+ D~ {3, which exists since () is simply-connected,
and show that Ti & Bl(Q*), where $ € H®(T) and ig the
w*-linit of . 2 B®(T) (0O<r <1l). We also show that
closure of 0¥ is a;spectral set.forrﬁi and if T € Bl(ﬂ*)

B
such that closure of ¥ is a spectral set for T, then

K, (w) £ K (w), w6 n*,
E T‘

1 *

3

Next, we consider co-subnormal operatoré T quasi-
similar to UY and show that T € Bl(D}o _We élso show that
if M is an invariant suvbspace of T* then the compression
PMT‘M € Bl{D) and is a guasi-affine transform of T, In
theicase M ig finite co-dimensional we show that PMTlM
isrsimilar to T.

Finally, for any bounded operator X on Hz{T), we
Aintroducera hounded operator TX on HZ(T} @ HE(T}o ' We
show that Tx € BZ(D)a We consider the special cases by

taking ¥ as the adjoint of analytic Toeplitz operator Té

X t o s . . -
and denote T by ¥,  In this paper, we have determined
the necessary and sufficilent conditiong for 7 and T$ te

be uailtarily equivalent, similar ox guasi-siunilar.

iv
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CHAPTER I

Introduction

In this dissertation we study a class of operators

that possess an open set of eigenvalues. This class of

operators were First introduced by Cowen and Douglas

[2.37. Later, the same authors have presented a detail

study of these operators in [4 1 and [ 587. They have
shown that these operators associate with themselves
certain geometric cobjects, namely Hermitlian holomorphic
vector bundles ovar some open connected subset of the com-
plex plane. And as expected, many of the properties of
these operators are shown to be translate& iﬁto the
geonmetric properties of the zssociated Hermitian holomor -
phic vector bundles. ?Or example, unitarily eguivalent
cperators give rise to eguivalent Hermitian holomorphic
vectoxr bundles, Usging this result, the adbove authors
have further shown that unitary egquivalence of these
operators reduces to unitary equivalence of certain finite
dimensional locgl operstors associated with the operator.
These local operators are nilpotent operators and there

is existing literature on the unitary equivalence of

finite dimensional nilpotent operators [127. When the




associated Hermitian holomorvhic vector bundle is one
dimensional, it is not too difficult to determine the
unitary invariants of the operator, for one dimensionzl
Hermitian holomorphic vector bundles are characterized
by their curvature [15]. .Also, given a suitable nonzero
holomorphic cross-section, it is fairly stright forward to
determine the curvature in the one dimensional case,

This paper consists of three chapters, the first two
of which deal mainly wifh the case n = 1 and in the last
chapter we deal with the case n = 2, In the first chapter
we consider a generalization of the curvature inequality
and show that many of the properties of operators in
Bl(Q) for a reasonable simply connected (), may well be
translated into the case 1 = D, the open unit disc. The
mosé important of the operators in Bl(D) is U*, the adjoint
of_the unilateral shiflt on the Hilbert space of sqguare
- summable sequences. One of the striking properties of Uf,
‘as a member of Bl(D)‘ is that it leads the class of oper-
ators in Bl(D}, which have the closed unit disc as a

spectral set. Moxe specifically, the curvature of its

associated bundle E . dominates the curvature of ET, for
U




any T € Bl(D) which have the closed unit disc as a spectral

set. And this is what we mean by the curvature inequality.
In Chapter I, we consider a simply connected open set

Q with Herdan curve boundary [147 and show that the adjoint

of the Teoeplitz operator Tm‘inﬁuced by the Riemann map
. @ .
@ : D = ) is &n Bl(ﬁ*)' where 0F = {W : w € 0} and that

the closure of 0 is a spectral set for Ti@ further we
0

show that if T is any other operator in Bl(ﬁ%) such that

the closure of 0¥ is a spectral set for T, then the cur-

vature of ET is dominated by the curvature of B . ab every

T
®

point in 0%, We alsc show that if Ql and Qz are two

simply connected open sets with Jordasn curve boundaries

and T € Bl(ﬂl) and closure of (. is a spectral set for T

1
and if we consider the Riemann map o ='Ql - Qz then ¢{T)}
is defined and o{T) € Bl(ﬂz)' furthermore the closure of
02 is a spectral set for ©(T). Then we deduce a relation

between the curvatures of E_ and B o
T (T}

In the second chapter, we show that co-subnormal oper-

‘ators gquasi-similar (131 to U* alSotbelong in Bl(D)o This

follows from a more general resul:. We do not claim any




originality on this result for it follows From the works
of Clary [ 1] and more recently of Raphael [13]. Later in
the chapter, we consider the invariant subspaces of the

adjoint of co-subnormal operators quasi-similar to U¥.

We show that if T is co-subnormal and quasi-similar to U¥
and M is any invariant subspace of T*, then the compression
PMT M is a quasi-affine transform of T,

Finally, in the last chapter we introduce certain class
of operators TX for any bounded operator X. We show that

T € BE(D)e In our study, we consider only special cascs

taking X as the adjoint of analytic Toeplitz operator.
When X is the adjoint of analytic Toeplitz operator Tm,

. X .
we denote T by Tm, We have been able to determine the

hecessary and sufficient conditions for two such operators

. |
ﬂfgandfrv,,m,$'é H®(D), to be unitary equivalent, similar or
quasi-similar. At this moment, we haven't been able to de-

termine necessary and sufficient conditions for the eguiva-

X
lence of general Ccperators T and TY, where X and Y are
arbitrary bounded operators. However, we have been able
- o e X . o .
Lo show that if T° is unitarily equivalent to T, where X

is an arbitrary bounded. operatoyr and ¢ € H®(D), then ¥ is

indeed the adjoint of an analytic Toeplitz operator. Again,
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we don't know if the same thing is true if unitary equi-
valence is xeplaced.by similarity or quasi-similarity.

Before we go on to the next chaptex, we give a few
relevant définitions and some known results with little
oXr no ﬁroof.

Throughout the paper, H will denote a complex se-
parable Hilbert space and L(H) will denote the space of
bounded operators on H. As is usual, we set
ker T = {x € H : Tx = 0} and Rugp = {x €H : x =Ty

for some y € H} for any T & L(H).

Definition 1.1. Iet Q be a connected open subset of ¢ and

n be a positive integer. 1Then we define én(ﬂ) as the class
of operators satisfying the following‘properties:

uﬁi) Qco(f) = {w€a : (T-w) not invertible}:

(ii) Rng (P-w) = H for w € bz

(i) VWEQ ker{(T-w) = H:; and

{(iv) dim kex(T-w) = n for w € 0.

Note that tﬁe first fwo properties imply that (T-w)
is semi-Fredholm on a connected set and hence the Fredholm

index is constant all thiroughout the connected get. We

choose this constant to be a finite number n and conseqguently

property {iv) follows.




Definition 1.2. The map w = ker{T-w) defines a rank n
Hérmitian holomorphic vector bundle ET over fl. Given a
manifold M with a complex structure, we define a vrank n
holomorphic vector bundle as a complex manifold E together
with a holomorphic map ﬂéE:¢ M such that each fibre Ek
= ﬂul(l), A € M, is isomorphic to ¢n and for each point

KO € M there exists a neighborhood U of ko in M with n holo-
morphic function Yl(h),...,yn{x) defined on.U‘such that their
values at any point A in U form a basis of the fibre Eke
These n functions are called a frame of E over U. If U can
be choosen az all of M; the holomorphic vactér bundle is
said to be trivial. It is known that any holomorphic vector
bundle over ¢ is trivial. Sc, it is the Hermitian-stxucture
in ET' that we will be interested in. 3 holomorphic veétor
bundie B is said to have a Hermitian structure if each fibre
E, is an inner-product space. A bundle map between two

A

bundles E. and E_, over M is a holomorphic map & : E

1 2 1 2 By

~which is linear transformation between each corresponding

. -] -1 . _ . .
fibres ﬂll(X) and T, (A}, X € M. If in addition, this linear
transformation is isometric, the Hermitian holomorphic vector

bundles El'and E, are said to be equivalent.

Definition 1.3. For T & B, (), we define the local operators




. . 4
NW. w € 0 as the restriction of (T-w) on ker(Tww)n 1@

Clearly, the local operators are nilpotent operators of

order (n+1).

Theorem 1.4, Let T & Bl(ﬂ), then the unitarxy invariant Ffor

the local operator N is the trace of N*N .
W w W

Proof. See Cowen and Douglas [ 4 1.

Theorem 1.5, Let T € BI(Q) and v (w) be a nonzero holomorphic
cross-section for ET' then the curvature KT(W) of ET is given

by 5

Kp(w) = = =2 gl () | =" ferace (N )

W oW

Proof. See Cowen and Douglias [ 4 J.

Definition 1.6, Let T € Bl(Q) and y{w) be a non-zero holo-
morphic cross-section for ET. Then there is a natural re-
presentation I' of H as a space of holomorphic functions on
0¥ = (W : w € 0} defined by (Tx)w = <x,v(ﬁi> for = € H,

w € 0%, and according to this representation, T serves as

the adjoint of the multiplication by w. If we denote

i((y,w) = (1 (t‘v’),y(K)), then K is a reproducing kernel for

this space of holomorphic functions. . However, there is no
canonical representation of H as a space of'holomorphic

function on Q*, since there is no canonical holomorphic

cross-section of E But in the case of U”, the Szego

’Il ®




kernel K(i,w) = (l—hﬁ)_l corresponds to the canonical
cross-section v(w) = (1,w,w2,.o.) and in the case of BZ,
the adjoint of Bergman ope?ator, the Bergman kernel

K\, W) = (1~NW)—2 corresponds to a canconical cross-section.

Using these cross-section; we can calculate that

K {w) = u(lm[le)-z and
o

K ) = - 20-]w]%H 7.
B
z

Thus, U* and B: are not unitarily equivalent.

Definition 1.7, Let T € Bl(ﬂ) and X be a bounded coperator

that commutes with T, 8o, if w € 0 we have ¥X{(T-w) = (T-w}X
and hence X kex(T-w) < ker(T-w). Thus, X v(w) = wpl{w)y(w),

for some holomorphic function ¢ on 0, where v(w) is a holo-

morphic ¢ross-section for ET’ Now since

lotl Iy Il = oty | = xy ] s il fiy Gw3 1

We see that ¢ € H®(N), the space of bounded holomorphic

functions on (.

1f we denote the collection of bounded operators that

. ¥ .
commute with T as (T) , then we have a contractive map

) S U1\ TN - L Fe) defined by




Using property (iii) of T € Bl(ﬂ) one can easily
show that TT is one-to-one. But RT is not always onto.
However if ( is finitely connected and closure of Q is
g a spectral set for T, then TT is onto. Instead of taking
0 finife connected, we may assume that for any o € H™({),
there exists a segquence of rational functions xn,with poles

off the closure of 0 such that Hrnﬂm & H@nm gnd £ 0

pointwise. We call such connected set 0 as. reasonable.

Theorem 1.8, Let T € Bl(ﬂ) and ) be reasonazble and closure

of 0 be a spectral set for T, then T

i is an isometric iso-

morphism onto H®({).

Proof., See Cowen and Douélas L41.

Finally, we state and provide a proof of the curvature

inecﬁuality’o

Theorem 1.9 (curvature. Inegquality). Let T € BI(D)

and D be a spectral set for T, then

Aw) 8 K (w) w & D,
“ u*

Proof. gince B-is a spectral set for T, it is a contradic-
~tion and so Tl = 1.

Let w € D. Now consider the local operator an With
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appropriate basis the matrix of Nw can be shown to be
0 Thiw)

. where h2 (w) = -~ 1/1( (w), {4 1. Hence the
0o 0 T

matrix of T restricted to ker('ﬁi‘mw)z with respect to the

w h (tv)

above basis is ( « Since T is a contraction,
: O w

v h()y) w  hiw)
I | EERY
i 1(@ 0) (w _h(w))

niw) W Vo w

Twl?  Whw)

= 5 i s 1,
vhiw) Jwl +h" ()

we have

2

£ 1 = £ 1

2 1

f‘w‘ whiw) . :
Since, | is hermitian, its norm is given

wit (w) ‘w]z +1% (w)]
by the maximom of its eigenvalues.

The eigenvalues, in this case, can bhe calculated to be

(2|wi?' + 12 (w)) 2 ﬁ]wlzhzcm + h"l'(w}

2
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hence,

2|w]2 +7h2(w) + Jé‘wlzhz(w) + h4(w)

% " a
2 . |
This can be sinplified as é
|
w5 (1-lw]?)? ‘
1
\
or KT(W} £ K (w) . '
U . |
|
And this proves the theorems . #
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CHAPTER 17X

Toeplitz Operator and Curvature Inegusnllty

Let {} be a simply-connected bounded open subset of €

with Jorxdan curve boundary. And let © : D = 0 be a Riemann

map. Then consider the function g, T 20 defined by

le) zz m(relg) for O < r « 1. It is well knowa that

mr(e

= o] o < o “ ! L3l
0. € H¥(T}, Hmr”m % Hwﬂw and tp, converges to ¢ € H®(T)
in the w*-topology, where the Poisson integral of § is e
Also, @, converges to © pointwige almost everywhere on T

with respect to the Lebesgue measure on T, For details on

thi:

o

s topic see Hoffman [ 9 7.
In this chapter we will show that Ti’E Bl(ﬂ*), where
‘ 5
0% = {7 : w € 0} and that closure of 0% is'a spectral set for
7*. Then we obtain a generalization of the Curvature Inegual-

ity Theorem. More specifically, we will show that if T € B,

and closure of 0% is a spectral set for T, then KT(W) <K
' T

‘(w}p

-5

w € 0%, Then we show that 7% is same zs ¢ (U*), where & : D =%
- lald
@

is the Riemann map given by & (z) = E(E)a Then we go on to

show that if Q] and 0

o, are simply-connected bounded open sub-

sets of T with Jorxdan curve boundaries and o : 01 - Q2

ig a Riemann map and if T € Bg(ﬂj) stch that closure
ok e

of Ql is a spectral set foxr T, then o¢(T) is defined




13

and closure of 02 is a spectral set for wo{(T). TFurther-

more, o(T) € Bl(ﬂz)o‘ Then we deduce a relation between

the curvatures Kﬁ and Km(T)“
CFirst we begin with a simple lemma.

Lemma 2.1, ILet O and o be as described sbove. And let

Y5 € ), then there exist ¢ » O and O < & < 1 such that

lo(z) - wbi % ¢ whenever 1 - 6 < |z| <1,

Proof. Let ¢ : £} - D be the inverse map of ®. And letl

. Then consider the function J(w) = {{w) ~ =z

<

o

Wwo) =z o

Then clearly E}wb) = 0 and thus by the continuity of ¥ we
have a, b 2 O such that ‘§XW)|< jo] whenevef }w~w0| < 8., 1In
other words, 1W*WO‘ z a whenever ‘E}w}l =z b or \&(w) - zol zh,

Writing ¢(z) = w we have |w(z) - wbl z & whenever |z - zolifb.

]

Let E fz 1 lz - zol < b} and set 61 = suplzl. Let ¢ = &

’ - zER

and 6 =31 - 8,. Then 0 < b <L and 1 ~ & < |zl< 1 implies

lll
Z é B or, |z - ZO! 2 b which in tuwrn implies that
im(z) - wb| =z g, And this completes the proof of the

Jenma. - 2]

Next, we state a theorem and refer to the book of Douglas

[ 7] for its proof.
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Theorem 2.2. Let 6 € HY(T), then T is a Fredholm oper~
w

ator if and only if therxe exist ¢ » 0 and 0 < 6 « 1 such
' A

that 1 - 6 < Izl < 1 implies |$(z)l = ¢ where ¢ (= %) is
the Poisson integral of $e Moreowver, the Fredholm index

of T, equals the negative of the winding number of the

O .
curve &(rel } around the origin for 1 - § < ¥ < 1.,

Lemma_Z.E. Let @2 and @ be as described above and W € Q.

Then (Tﬂfwo} is Fredholm and j(Tﬁ;wb) = -1, where j denotes
0 o

the Predholm index.

Proof,. First we note that'(&wa) € H®(1') and the Poisson

integral of (a;wc) is ¢ - Woe Since (@“WO) is conformzl,

its winding number around the origin is 1. WNow from Lemma

2.1 and Theorem 2.2 we obtain that (T ;wb) is Fredholm and

' ®
j ('I‘N—WO) = —1 P i ’ 1]
0 ‘

Lemma 2.4. Let Z4 ED and f ¥ 0 € H2(T) such that .

U%Ff = » €. Then Tf: £ = p(zZ,) f.

O
©
- Proof. Consider the holomorphic cross-section Y {z)
= (l,z,zz,se.) of B , then f = C.y(zo), for some constant

v |

2 o L A A
(T}, then clearly <é;Y(ZO)} == g(zo) where g

¢. Let g € H

denotes the harmonic extension of g to the open unit disc.

fo, we have
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9.T Y(Z {>’ <ﬂ g, Y(z’)) <}E,Y(z i>

= oz )gé..v(? »

(? ) = m(z )g(z )

= (g.'c".«kzo)v(afo))
and hence |
Ry (T = anlo Yo (5
Tﬁy(zo) w(zo)v(zo)
0
e - i
or Tﬁy(zo) w(zo)v(zo)
4]
or Ttﬁ = &(Eb)f

@

Theorem 2.5.

T: ¢ Bl(a*)
O
-

Proof. Let

i

and (T _-w) = -1,

@

is nonempty, so by P and M Riesz Theorem ker(Tﬁﬁw)

Hence
dim ker(TifW) = 1
_ e
and (Ti;ﬁﬂ has dense range.,
. o
it follows that
er;(T:mW) = Hz(T)
o0

From Lemma 2.4 we have

ker (U¥-z) < ker

£
T e
( 54 4 (

-

¢ 0%, Then by Lemma 2.3,

(Tﬁfw) is Fredholm
tn

From Lemma 2.4, we see that ke::‘('l".‘wn'\ev)'Er

&

{ol.
sl

]

(2.5.1}

But since {Tﬂfw) is Fredholmn,

©®

(2.5.2)
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But both the spaces have dimension equal to one, Thus we
have
ker (U*~z) = ker(Timm(E)),
©
Hence, |
A ker (1%.37) = Vv ker (UF-z) = HQ(T) 2
wen s z€D |
i
or, Vo.ox ker(T¥-@) = H3(F) - (2.5.3) |
wefl ~ B |
P 5
And this completes the proof. N "

: |
Theorem 2.6. Closure of 0OF is a speciral set for ¥ . f

© |

Proof. ILet R : 0" = ¢ be a rational function with poles

off the closure of Q*¢

Consider the function

S : Q= defined by

s(w) = R{w). | B

Clearly S ig a rational function with poles off the closure |

of 1. Let

aK(w—wl)(w~w2)¢a¢(w—wK)
S(W) == ) ty. [}
aL(w—wi)(w—wz)oo.(w—w-)

where wi @ clos{(}} 1 % i =2 4. By Wintner Theorem, we have

a(TN) = clos{gp{D)}) = clos (g(D}) = clos(Q)
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hence (TN-W;L) is invertible for 1 € i £ £ and S(1) is
© 0
defined.

Next, we note that 8(T,) = T ._» where the Foisson

— 0 Soep
integral of Sot is Sep. Thus, we have

Ise )l = lle__Il < 1550l < Jseol_
n Sotp

< sl = =il

Since,
R(T?) = s(r ) ¥
©® @
we have
IR¢z) ) = |Irl_ .
o
Hence closure of * is a spectral set for T* . , B

mn

Theo;em Z2ate

K *(w) = |¥ (w) !ZK *(E(w))g w € n*
T U
P

- -1
where Vlw) =0 (W)

Proof. Let v{2)} be a nonzero holomorphic cross-section for

U*. In Theorem 2.5 we have shown that’

&

ker (U%-z) = ker(Ti-eﬂ(-Z_))a zZ €D
]

Se, ¥(w) = ¥{¥({w)) is a nonzero holemorphic cross-section
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for 1% ,
A
4]

Now by Thecrem 1.5, we have

2
- Yy 2
Kl = = oo llv o) |

0

K ) v () (T w) D
T 8w ) v (W)Y

(By chain rule)

Iy GO I ) v ) 1710 G 97 () 2 y(F o) )12

1y (i) ) )1

12

1T ) |2 [y (T, y@(w>’>>12~llvf‘.ﬁ<w>)nzlt Y (T (w) )
w
vy 1

it

17 (w) | %K , (W) ' B
U

Theorem 2.8, Let T € B1(ﬂ*) and closure ofyn* is a spectral

set for T, then
K (w) s X {(w), we€p*.
T T*
e
@
Proof, Consider the function

E : 0% » D  defined by

Yiw) = w“l(ﬁ), where




fs
O

® : D -~ 0 is the Riemann map.
Then 1 € BH(N*). Now since 0* is simply-connected
and is a spectral set for T, the map EP 1) - EE(OY)

is an isometric isomorphism by Theorem 1.8. Tet
— -1 =,
(7)) = ?T (4}, then
leemy | = [yl =2

Next we claim that
¥(r) ¢ B, (D).

Let z € D and ijb) = Zge Then ¥(w) - z, is a holo-

moxphic function and has a zero at Yoy e Thus

Tlw) - z, = (w~wb)P(w), where P(w) € H®(N¥). But since
0% has Jordan curve boundaryprthe Riemann map T : Q¥ » D
extends homeomorphically to a map from the closure of O
onto the closure of D, [14]; Henéé ¥l{w) - Z4 is not zero

at ‘any point inside closure of 0F except at Wy Thus

P(w} is invertible in H®(0Q#). Again by Theoren 1.8,

P(T) is defined and invertible. And we have

EXT) - 2y = (wab)P(T), P(T) invertible.

Thus,

ker (J(1)-z,) = ke:r(T---wO.) - (2.8.1)
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and R ng (E(T)—zo) = H - (2.8.2).
And from (2.8.1) we have
Voep Fex (B(T)-z) = v (1-w) = ® - (2.8.3),.
we}
so, T(r) € B, (D).

As ¥(T) is a contraction, closure of D is a spectral

set for T(T). Hence by Theorem 1.9, we have

KE(T)(Z) < KU*{Z}, z €D - {2.8.4),

Next let ¥(z) be s nonzero holomorphie cross-section
for §(T), then from (2.8.1), V(w) = ¥(i{w)) is a nonzero
holomorphic cross—section for T. Hence by Theorem 1.5,

we have

2
I{T(w) oo O LD”"I"(E(W))”Z

dwWaw

it

1% () 1%k

7(zy T

(By chain rule)
S 1T ) 1’k @), (From (2.8.4))
o
= K (w) " {By Theorem 2.7.)
T
®

Thus,

Katw) 2 K (w), w € 0%, g
- Tw

0
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Theorem 2.9. @}Ti} = U* and 3 (U*) = 7%, where
&0 _ t

[T S

3(2) = @(z) and [w) = ¢ (@) .

Proof, 0% is simply-connected and closure of OF is a

spectral set for Tiﬁ Hence by Theovem 1.8,

®
by ¥ _— -1

T, (20)" > 8°(0") is onto. So (T¥) = IL(§) is defined.
T, Y th T
% - %

And for similar reason ®(U¥) is defined,
Let v{z) be a nonzero holomorphic cross-section for
U¥, Then by Theorem 2.5, y{w) = v(V(w)) is a nonzero holo-

morphic cross-section for T%, Hence
£

el
?@?v&)zE@?YQWH
T o
= P(T*)¥ (w)
&
= E(w)gkw)

= Y(w)v (Fw))
= zv{z) = U¥v{z),
Thus, Y(t*) = v*,

Similarly,

TR (e) = () = T = v )
& @ @ |




Proof, Since Qz is bounded, we have tn € Im(Ql), Again,

29

= 8(z)¥(z) = $(U*)V¥(z).

Thus,

T'fn‘ . q, (Uﬁ')

lad

W
In the above, we have assuned that ¥{w) = 2 and

and w = & (z). | u

Theorem 2.10. Iet Ql and 92 be two simply-connected
bounded open subsets of the complex plane €, with Jordan
curve boundaries., Aﬁd let o ? Ql - ﬂz be a Riemann Map »
Then if 7 € Bl(ﬂl) and closure of ﬁl is a spectral set
for 7, then o{T) is defined and @{T) € Bl(ﬂz), Further-
more, closure of Qz is a spectral set for () and the

following curvature relation holds, : |

K@(T}(W} = |E?(w)f2K&(ﬁ]w)),_ w €0,

\n_ P

where Y(w) = o = (w).

since Ql is simply-connected and closure of ﬁl is a spectral

set for T, Tp ot {T)' - I (Ql} 18 onto. Thus g(T) = ﬁr {p) : |

it

‘1s defined.

0 1

- ey 2 o G i
(= zO)P(z), where P € o (Ql). Since Ql and ﬁp have

O

Let vy € 0, and e(z)) =w_, z € q, Then @(z) - w
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Jordan boundaries, ¢ can be extended homeomorphically from

closure of Ql onto the closure of 02. Thus ¢ - W, is not

zexc on closure of Ql except at Zey s and consecuently P is

not zero on closure of 01. Hence P is - invertible in

Hm{ﬂl}. S0 P(T) is defined and invertible and we have

w(T) - Wy = (Tmzo)P(T), P(T) invertible,

Hence,
ker (p(T)~w ) = ker(T-z,) -~ (2,10.1),
and Rr@y(m(T)nwb) = ¥ - (2.10.2)

From {2.10.1) we have

z &N

V s ) —w = ,"'_,7= - & L\ e o
wéﬁz kex (o (T) ~w) v ker(T-z) 31 (2.10.3)

1
Thusg,

p(T) & Bl(nz).

To prove that closure of Q? is a spectral set for w(T),
let R - 02 = € be a rational function with poles off the

closure of Q,. Then (Rog) € H”(Ql) and Row(T) is defined.

And we have
IRogp ()| = Yrowll | = [r)_
or, ArtoE) ] = 7).

Finally. let ¥(z) be a nonzero holomorphic cross-section
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for T, then from (2.10.1) ¥(w) = v(w"l(w)} = Y(I(W))

.

15 a nonzero holomorphic cross-section for (T} . Hence

by Theorem 1.5, we have

62 r 2
Kogry O = = e Wl ¥w) |
2
I T 2
= - Fua— Lolly (Tw)) ||
— 2 _
= !if(W)IKT(ﬂIW)}. (By chain rule)
This completes the proof. 7 &

Note that in the above theorem, we could have taken
Ol and 02 finitely-connected instead of simply-connected
as long as they are conformally equivalent via the Riemann

map o : Ql - Dza B

Lastly, after we had obtained the results on curvature 5|

|
ineguality, Misra [10] has worked on it independently and .

has provided a different proof of Theorem 2.8. b
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CHAPTER IIX

Co~subnormal Operators Quasi~-similar to U* and Their
Invariant Subzvaces

Lat T € Bn(ﬂ) and 8 be.similar to T, Then it is easy
to show that & € Bn(ﬁ), But it is not known if the same
thing can be said when the similarity is replaced by quasi-
similarity {11]. fThe problem lies in whether the approxi-
mate point spectrum [ g ] éf S* is same as that of T*,
Recently Raphael [13) has shown that gquasi-gimilar cyelic
subnormal operators have the same approximate point spactrum.
Using this result we show that if T% i cyclic subnormal and
T € Bn(ﬂ) then co-subnormal operators quasi-gimilay to T

belong to Bn(ﬂ), And as @ corollary to this we deduce that

i
|
|
|

co-subnormal operators quasi-similar to U* belong to Bl(D)e
Later in the chapter we consider an invariant subspace
problem. In [ 6], Douglas has shown that if T € Bn(ﬂ) and

M is a finite co-dimensional invariant subspace of T*, then

- compression of T to M, PMT]M, where PM is the projection

Operator onto M, belongs to Bm(n). The finite co-dimen-
sionality of M plays a key role in the technique of his

proof. TFor M of arbitrary dimension, this is still a con-

jecture. 1In this chapter, we consider co-subnormal
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operators T gquasi-similar to U* and consider invariant
subspace M of T* of arbitrary dimension, and show that
PM¢]M & Bl(D). It is known that in the case of U*,

PMU*|M is unitarily equivalent to U* for any invariant
subspace M of U. Though, however, the same is not true
for co-subnormal operators quasi-similar to U*, we have
been able to show that PMTIM is similar to T in the finite
co-dimensional case and quasi-affine transform of T for

M-of arbitrary dimension.

Theorem 3.1, ILet T* be cyclic subnormal and T € Bn(ﬂ) and

S gquasi-similar to T, then 8 € Bn(ﬂ).

Proof. Let A and B be quasi-invertible eperators (one-to-

one and dense range) such thaﬁ

AT = Sp and TR = BS, | |
S50, if w- € 0, then we have

A(T-w) = (S-w)A and {(T-w)B = B(S—-w).,.
'Cieaxly, A ker{rT-w) ker(S—w) as '

X € ker(T-w)

= (T-w)x = 0O
= A{T-w)x = 0 .
=3 {(S~w)ax = 0 ‘

= Ax € ker (T-w)
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But, A is one-to~one, so we have

dim ker (T-w) % dim ker (8-w)
similar}y, we have

din ker (S-w) £ dim ker (T-w).

Thus,

dim ker(S-w) = dim ker{T-w) =n, w € 0 - (3.1.1)
and in the same way as above we can also show
dim ker (S-w)* = dim kex (T-w)* = 0

and this shows that (S-w) has dense range.

Due to Raphael [13], we have the approximate point
spectrom of S¥ is same as that of T%,

Hence if A € 0, then (Suwb)* is bounded from below
as iT~¥9* is bounded from below. Thus, (Suwb)* has closed
range which in turn implies that (Suwb) has closed range.
This together with the fact that (S«wb) has dense range'

implies that (S~wb) is onto. Thus we have |

Rng (S-w) = H, wé€oqn - {(3.1.2)

To complete the proof, we observe that

A ker(r-w) = ker(S-w).
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‘Thus,

AH = A V ker(T-w) c v A ker (T-w)
wE&D w

&0
= VWEQ ker (s-w).
But AW is dense in H, hence
V ker S"“A’ = I"I - 3@]-..3
wE€n ( ) ( )

and we conclude that 8 € Bn(ﬂ). &

Corollary 3,2. Co-subnormal Operators guasi-similar

to u* belong to BI(D)°

Let T be co-subnormal ang gquasi-~-similar to UY and M
be an invariant subspace of T¥. According to the classi-
fication due to Clary [ 11, MA, the oxrthogonal complement
of M, takes the form as ker ©{T), where & is an inner-

function in HY(D). WNext, we use this fact to show that

pM¢}M ¢ B, (D).

Theorem 3.3. Let T be co-subnormal quasi~similar to U¥

and M be a nontrivial ipvariant subspace of T*, then .

-PMT[M € B, (D).

Proof., Let

M = ker o(T), ¢ € H®(D) is inner.
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A :M=2H by

AX = o{T)x

then A is clearly one-to-one and has dense range. To

show that A is one~to-one, let X € M and AX = 0. Then
: L
(T} = 0 = X € ker () = x € M

aﬁd x €M N M o x = 0,

To show that A has dense range, let yv(w) be a nonzero
heolomorphic cross-section for ET, Suppose z 4 Rng o(T).
Then

{o(T)v(w),xY =0 Vwenp
@ oW y(w),x) = 0 ¥ w €D
& <%(w),x> = Q0 Vwé€D, as © #0

= = 0, si v = |,
% » since V. v (w)

Thus ©(T) has dense range and consequently A has dense range.

-Next, we observe that
.A PM¢|M = TA .
‘Let w, €D and x € ker(PM'J."|M--mb)F then

TM—-w_) = 0
(PM | w, )%

=h - =
A(PM¢!M Woix = 0

= (T—wb)Ax = 0 = Ax € ker('l‘--wo)°
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Thus A ker(PMT]M~wb) - ker(T—wb), As A is one-to-one,
we have

dim ker(PMP]meO) s dim ker(Twwb) = 1,

Next, we will show that ker(PMT}M—wb) is nonempty
from which it will follow that dim ke:r:(PM'I"M-wo) = 1.
Let Y(P)(wb) denote Pth derivative of v{w) at
WO W |
, (P) ) i
We claim that w (wb) cannot belong to M for all
- nonnegative integers p.

To show this, we observe that, in a small neighborhood

Wof wy in D, y(w) can be expanded as a Tayloxr series as

follows:
v 6o ) , v )
Y{w) = ylwy) + (w"wo)""“?HM*“'+ (w-vi )= - 5 oo

P , .
If Y( )(wo) € M for all nonnegative integers then
Lo, . .
v{w) € M in a small neighborhood of Wye And it follows

that M° = g contradicting the fact that M is nontrivial.

Thus, there exists a smallest nonnegative integer P
- () s | Yo
such that y "0 (W) ¢ m, |
(2 ) (® )

O
note P s
Denote M Y (WO) Y

M 0
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Clearly, Y (wb) # 0 and

()
(PMT|M~wb)vM (w,) =0

W

(P ) (P -1)
0 Yo
fqr (T»wb)v | (Wb) = Pw ¥

(wb), for reference see

Douglas [ 3 ]. Hence,

® ) (2 ) (p -1)

O O O
- 4 = - n -+
(T wb)\M (wb) (r wb)YML (Wb) P OY (Wb)

+ -L » [} L
Since M 1is invariant under T and P

is the smallest non-
Yo

P
W,

negative integer such that y O(wb) ¢ M*, we have

(Bw -1) (Pw )
o} L

¥ (wy) € M7, also, (T—WO)Y N
. M !
() - |

. | ‘

(wy) € MY, Hence

o) LoL

(T—wb)YM (wb) G M

(r )
w

and hence Yo © (Wb) € ker (PMTIM

|
"w&° S0, we have proved fi
_that !

a
. r ' s - 3. B ‘
dim ker‘PMTIM wo) 1_ (3.3.1)

w5 is arbitrary point in D, so we have

dim ker(PMT]M~w) = 1, we€D - (3.3.1)




For some w & D, YM(W) may be zero, but

T |M-w) .
YM(w) € ker(PM ]4 W)
S0, to show that ker(PMT]M—w) span M, let x € M and
X 4 YM(W), w € D. Then x Y(w), w € D and consequently

X = 0 since v(w), w € D span . Thus

VW%D ker(PMTlM"‘W) =M - (3031;2) ®

To prove that (PMT|M~W} is onto, let x € M and let
£ = (T-w)v for some Y € H. We cin choose ¥y as (T-w) is

o wE 3 @ T
onto. ILet y Y YM* hen

(T-wly, + (T-w)y L =X
M

. . , n
or, P (T-w)y = x, dince (T~w)y € M, Thus
M M M.!. |

P T M- = X
( . |4 wﬂyM

and (PMTiM“W) is onto for w € D, This completes the proof

of the theorem. : ' 8

Note that in the Proof of the above theoren, we first
showed that P,TM is a quasi-affine transform of T, from
wiich the rest of the proof followed. . As a matter of fact,

whenever PMTIM is a quasi-affine transform of T € B, (0),

we have PMT[M'E Bl(ﬂ), and in this case M' = key p(T), for
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some ¢ € H®(N).

Theorem 3.4, Iet T & Bl(n) and M be an invariant subspace

of T¥, Then P IM is a quasi-affine transform of o if
and only if M' = ker ©(T) for some o € H=(n). and, in

this case PMT|M € Bl(Q).

Proof. We need only show that if P,T|M is a quasi-affine

ﬁransform of T then M = ker ®(T) for some © € H(Q). The

rest of the result is contained in the proof of Theorem 3.3.
Lat

A : M = H be quasi-invertible

svch that

APTIM=Ta .,

Define

A : H - Hby

‘.f"‘ui

AX = Ax X EM

= 0 x ¢ Mt

then A is bounded and commutes with 7T,
Let A = @{T) for some ¢ € H™(0), then Cclearly

4 ‘
Mo = ker g{1). . @

Theorem 3,5, ILet T ¢ Bn(ﬂ) such that the point spectrum

i
H
i
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6P(T) of T exactly equals to (1 and M be a finite co-
dimensional invaxriant subspace of T¥, then PMT]M is

similar to T and consequently PNT1M € B (D).
1,

Proof. We first observe that the orthogonal complement
ML is an invariant subspace of T,

. . . L
Now, consider the restriction of T on M .

L i
T :: M -»M,

y n, A
Let P(X) = (X—ll) (X-Xz) a.q(XwRK) be the characteristic

L . . L
“polynomial of T[MJ. Clearly, nl + n2+,ee+nK = dim M and

A, €0 (1sisr),
i
Consider the operator P(T) on He We claim that
ker P(T) = M*,
First, we note that for ] « 1 = K, (Twhi) is a Fredholm

Operator and the Fredholm index j(wai)_m +l. Hence

n

j(T«Ai) = n, and conseqguently

1 = - = i +
F(P(t) = ny +n24...+nK dim M

Since ker(T—ki)* = {0} for 1 = ;i = K, we have

ker P(T)* = {0}. 8o,

dim ker (P(T)) = dim M

L . e .
but M~ < ker P(T) as P(X) is the characteristic prolynomiasl
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of T ML. Hence
kér P(T) = M,
Consider the operstor
A : M->H @efined by
Ax = P(T)x,

Clearly, A is a bounded operator, we claim that A is

invertible and
[} s
A PME M TA.
To prove that A is invertible let x € M and Ax = 0. Then
P(I)x = O » %X € ker P(D) = M
-L,
% EMNM » ¥ = 0,

50, &4 is one~to-one.
o ni
Next, since each (T—ki) is onto, (Tuki) is onto and

cohsequently# P(T) is onto. Thus for x € H we can get

y € H such that P(T)y = x. Let Yy =y, tvy L Then
M

P(T)yM + P{T)y . =8,
M

But P{(T)y L F O as kexr P(T) = M
M

L
« SO

P(T)yM = X
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or, AyM = X and A is onto,
And by open map theofem A is invertible. %o prove that
AP T|M = TA

let x € M, then

i

TAX = TP(T)x = P(T)Tx :_P(T)[(Tx)M + {Tx) L]

M

#
]

P(T)(TX)M = A(TX)M

)

A"PMTIM X .

Thus, T and PMTIM are similar, BT ter similarity, it will

be routine to check PMT[M & B (Q). ' B

Coxollary 3.6. Lét T be co-subnormal and quasi-gimilax
to U* and M be a finite co-dimensional invariant stbspace
of T*%, then P.T[M is similar to T and consequently

PMTfﬁ € B, (D). | .

Before elosing this chapter, we remark that in most of
the invariant subspace results we have indirectly assumed
Tthat M = ker ©(T) for some € ﬁ“(ﬂ). We don't know any
condition on T ¢ Bl(ﬂ) which will assure us that any in-

variant subspace of T will be the kernel of some operator

commuting with T,
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Though we have not been able to prove it, we believe

that most of the results may be obtained assuming that

closure of (1 is a spectral set for T. The technigue

certainly will be different since it is unlikely that

invariant subspaces will have the above form,
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CHAPTER IV

Certain Toeplitz-like Operators in B?(D)

Let X be a bounded operator on H2(T). Then consider

the operator

T = on E*(T) @ B2 (T)
X u*

It is not very difficult to show that T € B,(D). But it
is rather difficult to determine the necessary and suf-

s A X Y
ficient conditions for two such Operators T and T to
be unitarily equivalent, similar or quasi-similar. In
this chapter, we consider only a particular case, namely
we take X as the adjoint of analytic Toeplitz operator.
Since the adjoint of analytic Toeplitz operator takes the

form 0 (U*) for some g € HO(D), we denote T for X = o(u”)

If we consider the two dimensional nilpotent complex
matrices
o)

e 2 €T,
1

then it can be easily seen that twe such matrices

(a,b € @) are anitarily equivalent if and only if
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lal = b} and similar if and only if both a and b are
simultaneously Zero or nonzero. In finite dimensional case
quasi-similarity is eéuivalent to similarity. As we show
later in this chapter, it turns out that two operators

Tw, T¢ {0, § € H®(D)) are unitarily eéuivalent if and only
if fplw) | = W) ], w € D if ang only if o = C¢, where ¢

is an unimodular constant. Further_we find that Tm, Tw
are similar if and only if there exist constant K. and

i

Kz such that Kl % 'w(w)l/]¢(s)[ e Kz, w € D, However,

quasi-similarity doesn't turn out to be egquivalent to

N

.

s-milarity.' We find that 1% ang Tlif are quasi«similar if
and only if there exist outer functions f and g in H%®(b)
such that £(w)p(w) = gwW {w), w e D;

At this point we do not know the Necessary and suf-
ficiént conditions for two general orerators TX, 'I'Y to be
unitarily equivalent, similar Or gquasi-similar. We do,
however, show that if TX ig wnitarily equivalent to Tm, )
then X.is the adjoint of ap analytic Toeplitg operator and
X = Cp(U*) where c is a unimodular constant. Again, we do not
now if the same thing can be said if:unitary equivalence is
replaced by similarity or quasi-similarity equivalence,

Before considering the particular case, we first present
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the proof that 1> ¢ BZ(D) for any bounded operator X

on Hz(T).
P4
Theorem 4.1, = ¢ Bz(D).

Proof, Let w € D ang suppose Tx(f,g) = w(f,qg) for

(f,g) € H2(T) ® HQ(T). Then we have

u* o\Nf F U*g wf

X U\ g XE + u¥g wg
and equating the terms, we get

U*F = wf - (4.1.1)

and Xf + U%g = wy - (4.1.2).

To determine f and 9, we note that u* € Bl(D). Hence (U*-w)

is a Fredhoim Operator for w € D ang there exists gzn Operatoy

S such that
W .

(U*nw)Sw = T -~ (4.1,3)

and s (Uw) =1 4 - (4.1.4),

Pker(U*ww)

Let v{w) be a nonzero holomorphic cross-section for ®
3]

-

*

Then from equation (4.1.1) we get

£ = a v{w) for some constant a 8¢ ~ (4.1.5)

and from equation (4.1.2) we get




(U*~w)g = ~Xf = ~aXvy(w)

Now, applying Sw on the'left, we get

,‘:—- —_— —_
Sw (U*-w)g a SWX v (w)

+ g = - : ] 1.4
or, [z Pker(U*nw)Jg EiSwX*(ﬁM) from equation (4.1,4)
ox, g +by(w) = -a S_WXY(W), where b is some constant
in €. :
5o, g = -a SWXv(xv) - by{w) - (4.1.86). "

From eguations (4.1.5) and (4.1.6) we get
(E:9) = aly(w), =5 XY (W) - b(0,v(w)) |

where a and b are some arbitrary constant. . Thus ker (T¥-w) is
two glmensional and spanned by (v {w), —S“R{Y(W)) and (0,v(w))

and we have

‘dim ker(waw) = 2, w€D - (4,1.7).

To prove that (Txuw) is onto, let (f.g) € H2(T} @ Hz(T)e
Now, since (U*nw) is onto, there exists fl € HZ(T) such
that (U*ww)fl = f2 and there exists f2 € Hz(T) such that

(U*-—w)f2 = =Xf It is easy to show that

l.

(T"-w) (£,,9,) = (£,9)

Thus,

(Tx«w) is onto for w € D - {4.1.8)
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Finally, to show that ker(TX—w), w & D span
2 L2 2 2
H™(T) @ H°(T). Let (f,9) € H () ® H (T) and
X \ X .
(f,¢) 1 ker(m -w) Yw €D, Since Ker (T ~-w) is spantied

by (Y(W)o“SWBJY(W)) and (0,v(w) we have
W&)A(ﬂWwﬁ§YW)aM(mvmanED

(f,qg) .4 (C,y(w) Vwen implies <§,y(w)> =0 VwéD and

since y(w), w € D Span Hz{T) we have g = 0, So,

(f,q9) & (v(w),-Sw;DY(w)),mv ED = <f,v(w)> w“O ¥Yw €D and
for the same reason as above, f = Q. Thus, (f,g9) = 0 znd

we conclude thapt

X 2 L2 _ ’
vwéD Kex (T7—w) = H (T) ® 1 (1) (4,1,,9)_

and consequéntly TX & Bz(D)q ' . w

Next, we state and prove a very usafuyl lemmz, which

has been a kev for the Proof of subseqguent results,

Lonna 4,2, Let B be gz bounded operator such that the cow-

mutator (U*B-BU*) commutes with U, Then B commutes with u*,

Proof. Since (U*B—BU*) commutes with U¥, we can identify it
with o©(U*) for some ¢ € B®(p) through the iscometric isomorphism

Tﬁé (™)' 5 a2y,

U




Tcp' th o
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50, we have
U*B - BU* = o(U*), o ¢ B®(MD).
If we define

Y : D@ by

¥(z) = p(z)

then ¢ is holomorphic and bounded on-D, Tt can be easily

v

shown that o(U*) = p¥, Applying problem 184 of Halmos {87,

we obtain that 7% jig quasi-nilpotent and thug T is also
: _

gquasi-nilpotent. But there is no quasi~-nilpotent Toeplitz
Operator otherrthan zero by Corollary 2 of Prcblem 196 in
Halmos [87. Thus we have U*B ~ pu* = o and B commutes

with ¥, ' &

Next, one by one, we state and prove the results
on the necessary and sufficient conditions of unitary

equivalence, similarity and quasi-similarity of

¥ € HY(D),




a4

Theorem 4,3, and T¢, tw, ¥ € H*(D) are unitarily equi-
valent if and only if lotw) | = W) | ¥ w € D if ana only

if @ = ¢, where C is a unimodulpr constant,

Proof. It is easy to show that the condition
!m(w)] = |$(w)| VweéDis equivalent to saying ¢ = C{ for

gome unimodular constant ¢,

10 |
Suppose, ¢ = e ¥ for some real number €. Then we

have
)
p(U*) = ™%y (uy .

Now, consider the matrix W given by

e
e 2 I 0o
2 2
W o= ; @ on H (T) ® B (1),
0 e 1 L
. * . ! th ;
Clearly, W is a unitary operxator and W' = T"W as can be -
seen by |
i 9 ) i e
') Y ) "
e “3 o u* 0 [ u* o\fe %71 0
2 = . i2
0 e 1/\ y(u*) u*/ \eu®) u* o) e “1

' _
Thug % and 7" are unitarily equivalent.

[ , . .
Conversely, suppose T" and Tw are unitarily ecquivalent




and let
A B
be a unitary operator
C D
and
A B ¥ 0 u* o\ /n B
= - (40341)
c D/ | w(u®) u* L () ¥\ ¢ D
simplifying (4.3.1) we get
AU* + Be(u®) BU* U*a U*p
Cu* 4 pe(u*) pu® J (U*)arutc y{U*)B + U*p

Now equating the coefficients we get

AU

¥+ Be(U*) = Uta - (4.3.2)

RU* = U*p | - (é@3g3)

] cu* + Dm(u*) = §(U*)a + u¥c -~ (4.3.4)
and pU* = J(UM)B + U*D e (4.3.5)

From (4.3.2), (4.3.3) and (4.3.4), we see that (AU*-U*R)
and (DU*nu*D} commute with U* and so by Lemmas 4.2, we obtain

that A and » commute with U* and B = 0, Now, from (4.3.4)

we obtain that (cu*-u*c) commutes. with U* and

De(U*) = y(u*)a - (4.3.6).
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is a vnitary operator,
C D

we can write (4.3.1) as

u* 0 A¥ c* A% c* u* 0

o (U%) u¥/ \ p*  D* B p¥/ | y(u) u*

As before, we conclude that A% and D* commute with U* and

Since A, A*, D and D* commute with Ug* and the only
Operators that commute with both U and U* are scalar
Operators, we have both A and D are sc¢alar operators.

Further, sgince

A 0
is wnitary,
O D

we conclude that A and D are unimodular scalar operators.,

And from (4.3.6) we obtain

o{U*) = aB y(u*)
"and hence

olw) = a% y(w), wEéD

and this completes the proof, "

Theorem 4.4, 7% and Tw are similar if and only if there
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exist constantsg K, and K, such that K, = ‘m(W)I/1¢(w)] 5:K2

VY w € D,

Proof. Suppose that there exist constants K, and K, such

that the above inequality holds. Define
flw) = m(W)/¢(w) on D.
Then, clearly £ € H®(D) and invertible in H®(D). So we have

olw) = £{w)¥(w) and consé@uently

©(U*) = £(U%) 4 (U*), f£(U*) invertible.

Thus,
I 0]
is an invertible operator
0 £ (U*)
and
T o) U* o\ u* 0 I 0

o £(U*)) \y@w™) u* e (U¥) u*/ | o £(u%)

0 .
and hence T and 'l“lj are similar,

Conversely, suppose TT and T$ are similar and let

A& By
be invertible with
D
“1 1
Az B2

inverse and
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%* *
A B U 0 U O A B
1 1 1 1
D o (U* u* * u* D
) WARAE o /\ €y 1
. From this, as in Theorem 4.3, we obtain that B1 = 0

ahd Al, Cl and Dl alllsommute with U¥, Also,
m(U*)Az =D, (U%) - (4.4.1)
Similarly, considering
u* o\/A B A B u* 0
2 2 2 2

. *- * * *
o (U*) U c, v,/ c, D, /) \ ¥ (U¥) U

we have B? = O and Az, 02 and D al1 commute with U*¢

Next, since

a0 o\/a, o ooy /A, oN/a o
Cg Dl C2 D2 O I C2 D2 Cl Dl
we have
Ay =T = ] |
and DlD2 = I o= Dle .

Thus, A? and D2 are invertible and from equation (4.4.1)

o

we have

©(U%) = a0 ¥ (u").
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"Note that AlDZ commutes with U*, We denote AyD, by £(U*)

for some invertible f € H®(D). So, we have

o (UFY = £ (UN (U

and hence plw) = f(w)¢(w),

Next, since f is invertible there exist constants Kl

and K, such that

2
K, % |£(w) | = Kz’_ w € D,
or K, o) ’/lqr(w)l sK, Vwénb, B

y
Theorem 4,5, 1% ang Y are quasi-similar if and only if

there exist outer functions £ and g in H®(D) such that

£ (w)op(w) = glwli{w) V w € D,

Proof. Suppose there exist outer fumctions F and g in HY(D)

sucl: that

=

EWwow) = gwiw) v we D.

Then we have

£WH) gu*) = g(u*)y ).

We note that £{U¥) and g(U*) are the adjoint of the multi.-

Plication operators Mf and Mg. And since f andg g are outer

functions, the multiplication cperators Mf and Mg have dense
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range. Thus £(U*) and g (U*) are one-to-one. Further,
£(U*) and g (U*} have dense range since if X is any vector

perpendicular to range of £(U¥), then
X 1 F(UMy(w) = flwly(w) ¥V w

where y{w) is a nonzero holomorphic cross-section for u*,

And hence x = 0O,

So, both £(U*) and g(U*) are one-to-one and have dence

range. In other words, they are quasi-invesrtible.

Now, consider the operators

£ (u¥) o g (u*) 0
' and o
o g (U™) 0 £ (U¥)
Clearly, they are gquasi-invertible and
£(U*) o ¥ o u* o \/fw*) o
0 g(u*y/ | y(u*) u* e {(U™) u* o) g (u*)
and
g (U*) 0 u* oY [ U o \fgwh o
0 - £(UF) /) | g(u®) u* P (U*) u* 0 £ (U*)
! -l
Hence, TV and 7" are guasi~similar.

Conversely, suppose 7% and T* are quasi-similar and let

A B Z
1 1 b B

and be quasi-invertible
Yooy D C2 D
!
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operators such that

A B u* 0 vt 0 A B
1 1 i 1 1] (4.5.1)
W e * E
¢, D, [ L) U § (U™) U <, D,
and
A B u* 0 u* 0 A B
2 2 _ 2 23 _ (4.5.2)
. * * % %
c, D, [\ ¢(U%) U 0 (U*) U c, D,

From (£.5.1) and (4.5.2), as in Theorem 4.3, we obtain

2 1
with U* and also

that Bl = 0 = and A _, C;, Dl and Az, ng D2 all commute

chp(U“"’) q:(U*)Al - (4.5.3)

]

and D2¢(U*) cp(U’*)A2 - {4,5.4).
From (4.5.3) and (4.5.4) we obtain
D * = *
Dl 2cp(U ) A1A2®(U )
o n A 5. .
or _D1D2 Al 9 (4.5.3)}

Next, since

A, 0

(i=1,2) are one-to-one,
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we have
A, O O 0
t s ¥ 0 if X = 0,
C, D b4 b.x

l_'i / i

Thus Di(iﬁl,z) are one-to~one. We claim that Ai (i=1,2)

are also one-to-one, For exXamnple, if Alx = O then

-AzAlx =0 = Dlsz =0 , from (4.5,3)

= sz = Q ¢ Since Dl is one-to-one

¢ since D2 is one-to-one,

Similarly, A2 is alsc one-to-one.

If we denote A, D as Ai(U*) and Di(U*), then clearly,
they are one-to-one and have dense range. Consequently,
the analytiec functions A, and D, are outer in H®(p),

From {(4.5.3) we have
.Dl(w)m(w) = d,r(w)Az(w)o
And this completess the proof, B

Finally, as we had noted, we shall provide the proof
that if 7> is unitarily equivalent to Tm, then X is the

adjoint of an analytic Toeplitz operator and X = C@(U*)

X

for some unimodular constant C. We suspect that if T




ig similar or quasi-similar to Tm‘then_it may be possible

to show that X is the adjoint of an analytic Toeplitz

Operator.

: < .
Theorem 4.6. Let T be unitary equivalent to T$, then X is

the adjoint of an analytic Toeplitz cperator and X = Cgp(U*),

whare C in some unimodular constant.,

Proof., ILet

A B
= be a unitary
c D
operator such that
, _
B B u* 0 v* o A B
¢ D/ \ o(u*) y* X v/ | ¢ D
then we have
* e FI
AU” + Bpl{U¥) = y*a - {4.6.1)
BU* = y¥p - (4.6.2)
CU* + pp(u*) = XA + U'c - (4.6.3)
and pU” = XB + U*D - (4.6.4).

Using Lemma 4.2 and using the above equations we obtain that

B=0and A, C, D comaute with u*,




Similarly, considering

a¥ c*\/u* 0 g* 0 \/A* c*
o) p¥/\ % u* o (U¥) v/l o D*
we have
AYU* + C*x o= U'A* - (4.6.5)
c*ut = yEew ~  (4.6.6)
D*X = g (u*)a* -~ (4.6.7)
and D*U* = (U*)c* + u*p - (4.6.8).

From (4.6.6) and (4.6.8) we see that
(D*U*-U*D*) commutes with U, 50 by Lemma 4.2,
D¥U* ~ uHp* = o(U*)Cc* = 0o

if ¢* € H*(D) correspond to c* € (U*) ", we
p{w)c*(w) =0,

Now, since ® # O, we have ¢* = 0., Thus C* = 0 and from

(4.6.5), we see that a* commutes with U* and we have
A, A%, D, D* all commute with U*..

Since the only operators that commute with U and U* both

are the scalar multiples of identity, we conclude that

A and D are scalay nmultiples of identity,




Next, from the fact that

i

unitary, we have

A and D wnimodular constant multiples of identity,

Next from (4.6.3) we have

D o(U*) = xa

or, X = AD o(U*).

This completes the proof.
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