GG S P
¢ r”f T e - (:@

ON CERTAIN RTEMANNTAM MANTIFOLDS WITH
: POSITIVE RICCT CURVATURE i

A Dissertation. presented |
by l
Yoe Itokawa

to-

The Graduste School

in Partial Fulfillment of the Requirements = =~

for the Degree of

Doctor of Philosophy
in

Mathematics
State University of New York
at

Story Brook

August, 1982




STATE UHNIVERSITY OF NEW YORK

AT STONY BROOK

THE GRADUATE SCHOOL

Yoe Itokawa

We, the dissertation committee for the above candidaﬁé?fﬁf"°"'”

the Doctor of Philosophy degree, hereby recommend acﬁéﬁﬁéﬁg

£

of the dissertatiypn. e L

Blaine Lawson /?/f Committee Chairman

"Lt/ %117’77
DetlefiGrqmoll he is Advisor
Mlchlo Kugilféy _//

_— s

g

7 ' : . i
Jacqueg Eerk, Physics Department {outside nember)

The dissertation 1s accepted by the Graduate School

(b D f

Dean of the Gradnate Scheo




Abstract of the Dissertation

On Certalin Riemannian Manifolds With

Pogitive Rieccd Curvature

by

Yoe JTtokawa

Doctor of Philosophy

in

Mathematics

State University of Wew York at Stony Brook

1982

It i1z an dinteresting and important problem in

modern geometry to understand the meaning of Riccil

curvature on a Riemannian manifold. In this paper,

we give some topological restrictions for a manifold

0f positive Riccl curvature to have prescribed ranges

for certain other geometric invarisnts. Specifically,

re show that if the velume is large relative to an

arbitrarily glven upper bound on the sectional curvabture

or if the injectivity radius is large, the manifold

has to be essentially a sphere, In addition, the




extremal value for the diameter is studied to give a
new direct proof and some applications of the Chenge

Toponogov theorem. The paper dncludes a fairly compre-

hensive account on the history of the positive curvature

problems : |
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Ce Historical introduction_

Riemannian geometry has its beginning in an attempt

at the vnified foundation aad classification of non-

Fuclidean pgeometries, which were, in the middle of the

19«th century, still in the rrocess of gaining puvlic

recognition. As the single most important computationad -

tool to distinguish the local geometries of various

nop-Buclidean spaces, G, F. B, Riecmann already ewpha~

gsized the role nf a certain biquadratic form which he

called Y"the curvature, or, equivalently, a function

on za-dimensional. directions through each point which

is now called the sectional curvature. Yet, in those

days, the concept of manifolds was not fully established

EY
B

and the study of local properties was all that couid

have been hoped for by Riemann's methods.

Around the turn of the century, dramatic changes

. / ;
toeck place, On one hand, H. Poinecaré, G. Cantor, et al,

began a conpletely new branch of mathematics which we

now know as topology, and it became possible to under-
¢

stand Riemaun's concept of manifolds properly as

portions of more global spacial configurations. On

the other hand, W. Blaschke and o herst startling

revelation that local properiies of curves and surfaces

(]




AL - .
often influence and at times even delermine the shapes

ofiﬁhese figures in the large brought about the birth
of the study of glbbal differential peometry., It was
then only a natural course that @eoﬁle started asking |
the question: "To whal extent is the global geometbry
of & Riemannian manifold M determined by dts curvature |
guantities?? .'§

The first breakthrough in this direction was

probably the Tollowing solution to the problem raised

by W. K. Clifford, F, Klein, W. X, J. Killing:

Theorem 1 (H, Hopf, 1925): Let M be a complete

simply comnected Riemannian manifold of dimension n

With a constant sectional curvature, #, Then, depending -

on whether % ig:

(1) positive,

{(ii) negative, or

(iii) zero;

M is:

(1) bomothetic to the n~dimensional Euclidean

1 n
Sphere, 57,

¢

(i) homothetic to the n-dimensiconal hyperbolic
2

Spate, B, of J. Bolyai, ¢, . Gavuss, and N, T

Lobachevsky

(1ii) dsometric to the Rueclidean space, R 7,




The first result for {he variable curvature casc |

was

: KA S o a
Lheorem 2 (J. Hadamard, i, Cartan, 1928): Ii

M is complete, simply connected, and of non-negative

. - . e . . 1 - Y1
sectional curvature, then M is diffeomorphic to R,

Then, in 1951, a paper éppeared which wag to
Zive a decisive influence on global Riemanﬂién gecometry
that is felt for the rest of the history.

Theorem 3 (H. Rauch, [R1): If M is g comnlete

Simply connected manifold whose sectional curvature,

X, lies in the range

F3XKan 7
for some 0 <« & < %, then M is homeomorphic to Snn.. _
Note that the & in this theorem is just a normalization
constant and may well be assumed to be 1 by applying
a homothetic change of metric, if necessary. The
valve of #/§ originally given bﬁ Rauch was = 4/3,
This was later improved by M, Berger [Be2] and W.
Klingenberg [K2] to
J LK<y
Note that these theorems are, in some sense,

generailzations of Theorem 1, The assumption on the

range of the curvature is wealkened from single values

to intervals with the consequences that the manifolds



are no longer isometric to the classical spaces, but
'they atill retain the topological types. Thus, a
distinct philosorhy in Riemannian geometry was recoge
nized., ‘YThe perturbation principle” states that if
a fixed value Tor a geometric invariant determines the

Bpace, then values sufficiently c¢lose to it will still

result in manifolds that are somehow topologically

similar to the distinguished ones,

In the vears following, many generalizations and

strengthenings of Theoren 3 appeared, First, Berger
& 0D » &

studied the case when the range of the curvature is

P P ST
DIesLs ely i

g 51-!-35

Theorem 4 [Bell, [Be2l: 1f a complete simply

Connected manifold M of even dimension has sectional

curvature in the range

14 K

A

by

. o 4 . n . .
then M is either homeomorphic to 8" or isometric to

2 Riemannian symmetric space of compact

1,

type- with rank

!

The latter spaces are called CROS

S and are completely )

classified, Theyare, besides Spheres:

@Pn i= U(n + 1)/U(n) x U(1)

}{Pn 1= spln + 1)/sp(n) x spl1)

AY

(Cayley)p® - Fh/Spin(g) R




CIn K3, Klingenberg conjecbured that the eassunpiion
on the parity of dimension in the last theorem may
not be necessary. This was indeed verified by J,.
Cheeger and De Growoll in 1972 (see [CC2T).

There also have been altempts to strengthen the

topological slmllarity in the conclusion of Theorem

3¢ This was prompted by the discovery of J. Milnor

in the period 1956 - 1960 that in each dimension 2 7y

there are conpact differentiable manifolds that are

homeomoryhic, but not diffeomorphic to SU, After

the pioneering works of B. Calabi (unpublished, 1966),

Gromoll [G17, and Y. Shikata [3hl, the works of M.

o
Doy

Suginoto an K. Shiochama [Sus] and of K. Grove, H,

Tm=Hoff, Hs Karcher, and T, Ruh: Crul, [erkd, [erknl,

[T27 have established

Lheorem 5:

o mrad

A complete Riemannian manifold, whether

simply connected

or not, whose sectional curvature

ranges in

T8 K < 1,47
Cis diffeomorphic

Te

¢ - Iy
to sowe manifold of constant curvature

Ime spaces of constant sectional curvature 1

are called

the sphericel spaceforms and have been classified

completely by Ju Wolf [Wol previouslv,




Yel another way in which Theorom 3 has been
generatized is to replace the assumption on the curveae
ture by a weaker hypothesis, Arong the first of these

| | |
atteupts was | }

diecren € (Berger, 1962): Suppose that the

sectional curvature, K, and diameter, d, of M satisfy

1{ K,
/2 <A,

Then, M has the homotopy type of s,

In fact, if the sectional curvature of M lies 4in

[i,4), then [K1] shows that Z/2 <'d. Therefore, hy

the generalized Poincare conjecture of S, Smale (19671)

in dimensions 2 5, this implies Theorem 3 and is

stropger. Later, Grove and Shiohama [GST found a

more direct argument which obtains homeomorphisin in

all dimensions 2 2 without the use of Polncare conjece

ture, Iinally, Gromoll and Crove [ce1l, [ee2] (confer

also [51, [8as] for preliminary results) proved

Theoren 7: 1f the sectional curvature and diaweter

0 M are in the range

1 K
Ld

=

then M is either homeomorphic to S% o disometric to

one of the following:




9

a CROSS
a spherical spaceform with 1ts fundamentsl Broup
having a fully reducible reprecentation in O(n + 1),

o1

. N . ﬂ _
a quotient of @PI/L where n = 2 {mod 4) by an

isometric ?i?maction» ’ [

Py

There are also results of & more generalized

nature,

LIheorem 8 (Cheeger [C1): In ecach dimension 1,

given any 1 < K and O < Y, there are only finitely

nany homeomorphism classes of manifolds that admit

Riemannian metrics whose sectional curvalures are
in the range

P4K £ %
and the volume, vol, satisfies

v £ vol,
In fact, it is easily seen from the result in [K1]
that if n is even and 0 ¢ ¥ S %, then thers is an
8 priori Jlower bound, computable in terwms of 'n and
%, for the volume, HenFe, Theorem 8 has

Corollary 0,17 TFor n even, given any 1 < W,

Rttt et

there are only finitely many homeomorphism classes

of ne-dimensional mwanifolds that admit Riemannian

structures with



TS K S .
A weaker version of the above is due independently
to A. Wednstein [W]. For n odd, Corollary 0.1 is
no longer true. In fact, for éach n <3 odd, Cthere
1s a topologically distinct manifold of constant

curvature 1 for each priwme integer, while for n - 7,

there is an infinite family of homotopically distinct

simply connected manifolds all of whose curvatures

lie in the range

1 ¢ K < 1073/16

as shown by H.-M. Huang [Hul using exarmples of N.

Wallach, Hewever, very recently, we have

fheorem 9 (M. Gromov [Gm]): TFor any n, there

are only finitely many rational homology types of

manifolds thal admit Riemannian structures of positive

curvature,

One of the stimulating influences for the

vigourous development of Riemannian geometry in this

century was A, Binstein's liberal use of it in his

theory of general relativity (1918). Playing a majour

role in his

equation for the gravitational potential

is the sum of n - 1 sectional curvature termo containe

ing one tangential direction, The same guantity had

already beecn studied in 1904 by G. Ricci~Curbastro




for purely feometric Considefations and 1s now called
the Ricci curyatureel

The first result on the intluences of Ricei
curvature on the global gecmetry of a Rilemannian
wanifold is still'co;sidered by many to be one of the
most beautiful theorems in mathematics:

fheorem 10 (5. Myers, 1941): 1f the Ricei curvan
ture of M is in the range

ne- 1% Ric
then M is coupact, has dismeter
s W,

and its fundamental group is finite,
Hence, by the topological theorem of Hurewicz, the first
Betti number of M, ﬁ} = Os. The last assertion has
been extended by Se Bochner (1946) to

Theore@_11: If Mis a compact Riemannian manifold
whose Riced curvature is non-negative, and if its
Tirst Betti number $, % 0, then there arc ggklinearly
independent globally defined parallel vector fields

on M. In particular, §q & n.

In fact the last theorem as well as more informations

on the structure of the fundamental group can he
rTecovered from

Thecrem 12 (Cheeger and Gromoll fcaid): 172 ¥ 1ia




compact and has non~negative Ficci curvature, then the

universal covering space of M =piits dsometrically as

S WX B

3

where W is compact and ol dimerslion n - ke
There have been other directions to sharpen
Theorem 10, In 1963, R. Bishop showed

Theoren 1%: With the Ricei curvature of M ag in

the condition of Theoren 10, if d is the diameter of

M, then the volume of M is mno larger than the volume
of a metric ball of radius 4 in st Moreover, if the
volume of M equals that of Sn, then M is isometric to
it. |
The second half of this theorem has been generalized
by 5. Y. Cheng [Cn2] to

If the Riccil curvature of M is in
the range

n - 1% Ric ,

then M has diameter | if and only'if M is disometric
to g™,
The last lheorenm was known carlier to V. A, Toponogov
[T3 in the case the sectionsl curvature of M was 2 1,

There are other results on Ricel curvature that

certainly striking but of wmore specialized natures,

example, if M has the structure of a Kihien mani fold,




the celebrated solution by . T, Yau [v1], [¥27 to the

problem of Calabi provides to a large extent the complete

\ N ; - . .
description of the Ricei curvature. In dimension 3,

the problem on positive Riced curvature seens cempletew

ly settled, For open manifolds

; We have

Theorem 15 (Re Schoen and Vau [ScYD: A complete

but nonwcompact 3Zedimensional manifeld with positive

. Z
Riccd curvature is diffeomorphic to R -,

Note that the analogous result is true in arbitrary

dimension if the Ricci curvature is positive by the

work of Gromoll and W. Mever [ije On the other hand

e
H

the compact case has been dealt vith by ; -

Theorem 16 (Ao Hamilton, 1982): A Rlemannian

metric on a

compact 3-dimensional manifold whose Riceid

curvature is positive ¢

an be smoothly deformed to the

metric of a spherical spaceform,

In general, however, our knowledge on the Riceci

curvature still seems meager. For irstance, previous-

1y, no perturbation result fer Ricci cuvrvature on a

Ial

uajmmanifold of arbitrary dimension seems to have

been known, It has been proposed:

Problem A (Yau):

[ —

I's there a constant % > 1 such

that, if the Ricci curvature of M is in the range

n~- 148 Rcg(n-~-1)%




then M admité an Binstein metric, leeys a me{ric‘of
constant Riced curvature?

The solution to the above seems to require new tools
in partial differential equations that are not vet

available, TIn view of Theorem 14, we might hope for

a more geometric =solution to the following

Problem B: I5 there a conztant 2 0, depending
[ & p ]

only on the dimension n, such that 1f M has Ricet

curvature

and diamester

- p < d ’
then M is, in some way, topologically similar to 8%¢
Tf the sectional curvature has the range
¢ K
then Theorem 6 states that f =7/2 provides the solue
tion independent of n, However, in the Ricci curvature
tase, the dependence on the dimension, at least, is

inevitable as the following example shows. Let M

be the Riemannian produet

M= ST T TR TTY) « SHWVTE TR T

where we have written Sl(r) for the i-dimensional

. : ~ A+ 1 S
Bphere of radius r in W1, Then, calculations chow

that M has an binstein metric with




Clearly, d appreaches ® as j + k increases to w .

Although Problenm B, asz it = ands, is still open,

the purpose of the present paper is to answer some

related questions, Specifically, we show thal there
is a pinching on volume that forces a manifold M of

Positive Ricei curvature o have the homotopy type

of 8%, Although, at the preééﬂﬁ} the pinching constant

itself depends on a sectional curvature information,

We can give some pinching constant for an arbitrarily

glven upper bound. For a stronger geometric invariant,

the injectivity radius, we can prove the existencs of

a pinching constant, depending only on the dimension,

- . ol S -
that nakes M homeomorphic to 87, If we allow the

constant again to depend on the upper bound for the

sectional turvature, then the plnching on irjectivity

radius can be weakened to that at

i
The last fact deserves additional comment, A

a single point,

manifold M is said to have the Blaschke property at

a polnt p € M, 3if the injectivity radius at p is equal

to the diameter as measured from p, TFor eXample,

any of the CROSS's satisties the condition at an




arbitrary point. On the other nhand, the classivication

#
by Ee. Cartan (1927) already shows that they are the

only symmetric spaces with the Blaschke property at

any point. The following famous conjecture is now

usually called the Blaschke conjecture, even though

the present form is due to A. Besse [Bs3, 1, Nakagawa

and Shiohams

[nsl, ang possibly several others:
E I v

Problem C: If a Riemannian maniflold M satisfies

the Blaschke property at all of itg points, is it then

isometric to one of the CROSS g7

The best partial solution so far

seems to be that

pointed Blaschke manifold

8 have the cohomology types

0f the CRO3S1g

» although R. Bott [BoJ, Wakapawa [k,

and L, Bé}ardnBéfgery [B] have shown th

at this conclye

slon holds under much weaker hypotheses, Recently,

O. Durumeric [D] has

studied the problem from a dif-

Terent viewpoint, Te investigaled the case when the

injectivity radius is €~close to the diameler, Such

& manifold is said Lo have the £-Blaschlke property

at p and can have arbi{rary topology already in dimen-

sion 2 without any further assumptions, However:

Theorem 17 (Durumeric, 1982):

Given any éﬁ a

lower bound for the

sectlonal curvature of M, there
! 3

is an £, depending only on 5, such that if M satisfies




the £.Blaschke property at ail p ¢ M; then M is either
- Blmply QﬁnanLed or hes the homotopy type of the real
brojective space I PT,
Motice that by virtue of Theoren 10, manifolds with

n- 1 &« Ric
and large injectivity radii automatically have the
almcst Blaschke property., In view of this, we might
pose

Lroblem D: -Ts there an € > 0 such that if g
manifold M with

nho- 1< Ric
Satisfies the g-Blaschke properiy at some p ¢ M, then
M share scome topology with one of the CROSSIg?

In this paper, we shall state our resuvlts more
brecisely as well as establish our notations and
discuss sonme standard pTellm1 aries in Section 1,
Then, in Section 2, we describe our main tool. It
is a criterion by which a manifold can be cov >red by
two balls of prescribed radii and is essentially a

refinement of g worh used prev¢ouly by CGromov in Lam3,

In Section 5, the result on the injectivity radiuvs

Will be proven and some applications wili be given,
In Section by we shall show how our gecmetric methods

4

can be used to glve a new direct proof of Theoren 13,




W e
[

We will also give additional applications in the sane
section., For the Main theorem. we shall reguire some
fleasure-~theoretic analysis zs well as standard theorems

of purely topological nature, These will occupy the

last two sections, Section 5 ang Section 6, of our

paper,




1. HNotations and statements of the results

In this paper, M will always denote a connected
3 u
C%® mmanifold of dimensicn n with a fized Ricmannian
metric ¢,». The tangent bundle of M ig TM and its |

fibre over p & M, ?nu while the cotangent bundle is

o

|
w . . Y . - . : . q '
T My, We shall refer to CkaSGCLIOUS of TM and T M : J

gimply as yector fieids and Pfafiian forms. The spaces

-“'V‘V’-&; Tt N o T '\,?a Y

1
|

of all vector fields and Pfaffian forus sre denated
regpectively gy, and Oy. The metric induces the

Covarldht derivetion of Levi.Civita,
S R e R Yy

A AR Y et e A e

7 &jﬁ~mgﬁw, ® by
, . - . D)
where the tensor product is taken over the ring C h,
Customarily, we write VX for X(V¥), fThe .icﬂunnm
e R Ty R Y

Christoffel tenocv is
AR AR e A R

R(X,Y32) 1= ¢, V{ + vYViZ V[

£

7
.u.’YJ
The sowcalled curvalture identities amount to the fact

that the adjoint of R in the fourth index may be viewed

section in the bundle

2

% o
M (sympetric product) A“T%M e

equivalent to a guadratic form

K: ACTM wp» T

salled the Rlemannian cnrvauhré, The Riemannian

A TR Nty N o Ay By e

curvature evaluated on simple elements of unit length




PN ird it Py R Ry iy L A

Riemann.Chr

..

o

1

-
1

K defined
oy (=3

in T M, b
e N

This functi

of a metric

These eigen
,

function ¥

the princ

£ Ty R

v
1
<

V., Ilor 2 X

.

(n - 1)st partial Ricci

curvature s
L Y NN

Let o

values are the critical values

s i - the L2 r",c-l Di\ ":_J"
A5 called the poth vartial Ricci curvature,

Urvature, Viewed thig way, 1t is

sectional curvature determines the
istoffel tensor,
consider the function

fixed v ¢ TPN? let us

oa v, the orthogonal coumplement of WMy
Ko(x) = R(x A v) .

v
on is guadratic, and 50, in the presence

L] é?rlwi(v)ﬂ
of the

s has -real eipenvalues 91(V) s

on the unit veclors in v and are called

al sectional curvatures of the

A Ry St S ST S P R

direction
moEn - 1, the (partial) trace

Ricm(v) ;= ?1(v) + oeee Pm(V)

ature The

curvature is simply the Ricei
\ . Eg S T

nd is denoted Ric{v).

Em4;3] ~> M be a piecewige ¢® CUrve,

We denote by 1L{c¢) the length of ¢,

where, as usual, ¢{s)

sider

i(e) = jz'fé(s)!ds

Tyeld/ds) and || is the NoIrm,

Ehe pull.. bundle ¢ (TM) over [, 87,

ol ecewisencq)nsections 0f this bundle are the

I

[




vector gieldg %;ggz Ce We shall write X For the
T g By R N e %

Space ol all vector fislds QLONE Co  The covariant

|
derivation of Levielivitsy induces o natural gerivalion |

from .?(ic we» ., which

- We denote by a dot over the ar gue
ment,  In ¥, th re)is a special subzpace
K, = {Xe X, ) GEy O, e = x(g) = o}
The fields in %“C may be viewed as the directiconal

derivative

operators at ¢ for the parametrization-

invariant functionals on the space of all curves

Joining c(®) and c(p),

Now, assume that c- [0,1] ws M is & geodesic,

Unless otherwise Specilied, all of our geodesics will

be parametiized by the arclength., The Second deriva-

tive of the length functional is, for W, X R AL

WeXeLle) = f 5,50« (6 A w,8 A 1)

L]

If 0 r €1, the symmetric bilinear form

To0H,X) 1= j’g<w,x> - R(S

AW, A XD
= (@2X>lg - j’é(ﬁ,x) + R(C A¥l,e AY)

is called the index form of ¢ on [0,r]s If ¢ has the

minimal length

aimong neilghbouring curves Joining c(x)

and c(p), I is positive definite for all p <1.

1 o - r . -
Morcover, for all r$ 1, Io(Y,Y) attains a. mindwum

among all vector fields

along clf0,r] with the same




With the sane boundary values or with the same von-

1if

RNeumann conditions i and only ¥ satisfies the

Jacobl equation
Pty AR R

*s

Y+ R(G,V;¢) = 0

Let us now view M as a metric space. If p, q

&€ M, then d(p,q) is the distance between them, If

Pe by for > 0, we get

B(r:ip) := {qae 11 ]dlp,q) < r}
Blr;p) := {q e M | d(p,q) < r}
S(rip) := {fa €M fQ(p,q) < r} .

We give TPM the metric structure of an

and set

Broy = {ue %ﬁ[luf< r} o,
Drop = {ue Tl vl< e},

Grip iz {ue %ﬁ{[u{(r} .

In case r = 1, we usually Suppress this fact from the

ce PO N
notation; i, ee,zgp .zjarﬁp, etc,

The classical theoren of ¥, Hopf and W. Rinow

(1931) states that M 4is Complete ac a metric‘space

if and only if, for any v ¢ M, there ig g geodesic

- u & . - -
€y In M with ¢ (0) = v/|v} and Lley,d = Jvl; i.e.,
the gggggﬁgzial,ggg, Xy, is defined on all of M,

In such a case, for u e 6%, we define
: T

Alu) .= sup{r > 0l d{x,exp ru) = r}

Euclidean space




we have:

P e uf%f At

the inj ect7v1l; adings at pr i(p) ;- 1nf{§(u)l uE & }

the Q%émeterlgg n: dlp) . Qup{éku)f ue éi?} ;

Rty A A

the injectivity radius QL #r 4, 1o inf{i(p)f D & M} ;

RS TN RN ‘-/ e T E i
wne Lamet [ a. . | i N = M
the %i&dgmi243£ I “ip = osupid(p)] v e My
The following calass cal theorem provides a methad
for estimating the injectivity radius;

Proposition 1.1 (w, Klingenberg [Kipy: 1¢ M 4g

a4 complete manifold witih K bounded from above by some
constant 3¢ > O, and if there 18 some point v € M such
that
Hp) < nafics
then there is a simple closed geodesic loop at p of
length 2i(p)., 1n particular, if M ig compact and
iy L aws
then there 1ig a ?OflOdJC geodes lC in M of Tundamental
period aiM,
One can see that M ig compact if and only if d(p)
ig finite at SOME P
It s well-known that the function #(u) is conti.
nuous on the unit sphere bundle & :- {y ¢ T jul =i,

and that the set

=ive Tl ivi < gov/iv )y

is Starusha)ed with respect to the origin, The boundary




of the last =met

i tanpential cut e oof The cut locus in
""8 L:h C a}z‘{c_bﬁ,ﬁg/l;'k A '1,,‘ ",:-, ;l,gﬂ?-:};;ﬁ,"{‘y O - 'L“J ® - /g,&}%,/ &,rgh/gygqaf j ‘r
M will be denoted
C(]:'J) 1= ,_‘\D(TL )
For p& M, the G;pobeﬂt]dl map restricted fo

TPM is denoted GX_po L v ﬁ T Hs the space Tvy

Can be canonically identified with TDMg Thus, we get

a linear map

Tvexpp: TpM iy Texp -
given hy the differential, It 1is Wellwknown that
for u g ﬁpp amap {: R~ TpM is an affine mayp if
and only if ?(s) 1= TSuepr(X(s}) satisfies the Jacobi
equation, The norm of the map Tvexpp 1s estinated

by the following famous

Proposition 1.2 (Rauch Comparison theorem): Let

XIQZﬁp. Then, if the scctional curvature of satic-
fiss

&
for all simple ¢ of unit length in AS TN containing

Tvexp v as a factor, Then, for any u e TpM,

sin ¥# v | [l
Ve vl

and /% ars real, but

the complex extension of sine if either & or




N

#ohappens to be negative. Nute, howover, that
ein vE /E Qs always teal, 80 that the inequality
males senae,

The map . _

Qg -x,p”]: exp(ﬂ%) m@-TpM

prevides a coOrdinate charl for the complement of
Clp) called the normal cobrdinate System, If U € M
15 a Borel set, we have

]

vl

. - . !7-Afri’}.,_,.: . s
Uiy = ‘Feyp ’i(U) N ?ZPQCL\‘*JX‘UP) dx voe X

The square of det(T

In this payper ‘e Brall employ technigues fron
the comparison theory, (Civen any & € R, we shall
Congider ﬁ, the simply cornected Riemannian manifoia
of dimensinn n ang the constant sectional curvature
&, By Hopf's theorem (Theorgm 1), B is unigue up

and:
W s"OME) 2 {x e o] =l = 1478 Yo
the metric induced from the standard Fuclidean metric

of R'™!, 4r§>0,

> - ( l’ll # 5 o
M o= & = e R ix) ¢ w]/é} with

the metric




Fa s
Q<V’”>luujldcan

} P e e e ok

>
b+ 55”‘“uulzoedn

=2

e
Wy

A ~
for v, W oe Tﬁﬂj ifr§ <o,

somebimes, we consider

E>

as a pointed space with

AN
o}

a specified origin, However, as thege Spaces are homo.
genious, it matters not which point ig chosen, The

g LY /\ N 4 » LI
mebric fipgures 4in M, centered ot the origin will be

denoted:

Be), Do), B, B,

The Gramisn 4in M is given by

é}%(?) _ s¢gm;'\walv[)

WElTH

Now, we are ready to state the main results of

our mpaper,

E?Egifm 18 (Main theorem): Suppese that the
Ricced curvature is in the range

ne 1 £ Ric
&2 @ quadratic form relative to | . Then, given

whatever upper bound % for Ky there jg a conscant

<v, depending cnly on n and ¥, such that i¢

{(1 = v)volsn £ vclM

then M has the homotopy type or g
Using some 0f the same techniques, we shaill also
ootain

Theorem 19: ILet M Batisfy



™
.

I e 'l S; ’\\_j,C ' o

)

Yhen, there is 4 Constant O < £ depending only on

-~

N, such that 47

ﬁ had p < jur,,q 5

, . . .7
then M ig homecmorphlc tc S

©

Jheorem 20:  (Hven BHY %, an upper bound for L
there is & P depending onily on n and ¥, such that 1ir

there is a reint p ¢ M where

T - p <ilp)

then M is homeomorphic fd st -

L Moy R is of class CO), we denote the
Hessian form of f by hcssf5
hessf(W,X) = {@%grad Xy,
where, as usval, grad f is the gradient of f. Ve take

the convention that the Laplece cperator acting on

£

functions 4z

The next formula is useful .

Leunz 1.3 (A, Lichnerowicy [LD: 17 re caﬁg
then

4

2, ; .
~zdigrad )= _ lﬂessf!a - {grad f,prad BE) + Ric(graa 1),
' Let 3 be the firat Non=0 eigenvalue of &, and

suppose that g is one of the Corresponding elgenfunce

1

tions, The set g"l(O) is called the nodal set, The




following is classical:

Pronosition 1.4 (R. Courant): mThe set'wg“}(o)

has ezactly two components,

1t dis wellwknown that the firet elgenvalue of g% 4g e

In Section 4, we shall give a new seometric proof Lo
b g ;

the following-celebrated

[t

theoron 21 (M. Obata [0]): 1f M has
n- 1% Ric

only if M is isometric to g7,

T

Lt




Ze Volure esiinmates and covering lemmag

W assume that M 4g

S ryen 7] e e
LOmTAaTe

Let v ¢ M and u ¢ @%ﬁ

58 du). Suppose that

LR BRR:

RN

i monotonically non-increasing,

sroctfs Let vy

) . n A
J sevoy Vo . Le any basis for i
172 3 Thee 3

c M Set

Y*!(S) i Tsue)’"l‘:ps‘\?] 3 } = 19 vewsy 1 o= ]
Then, by the discussion in Section 1, Yj €& %; satisfy

the Jacobi 2quation,

Now, fix a t & (0,(u)). &ince

!

% E} e B is [ .
l (-3 . e “q a 1 :] O”lr)l el
ph.Lu]’H‘; t-‘ﬁ«.—-. g 18 o Be w 15 ’E

:oesey Vo o €0 that Yi(t)’

paey Yn T(t) are orthonormal at c(t), Then,

a1

fGl“ E(Eiu);t

[y

£L




50 that

Z(Yj(t),yj(t))

vow, extend Ti0t)y eou, Tho1(t) to a parallel

orthonormal frame field 1.

(S)’ eso;AEnm](S) along Ce
set

ne Ja CObl equation and vanish at

have the same boundary values on

<‘§_j(~t>,Yj<t)> .

Therefore,

g,
ds




&3

:2:\58(\7}](3)9&?.;’3}} KCV__].(S) A c(s)) ds

By our assumption on the Ricced curvature, the last

i d e ]
qEs | or e(dﬁijt ‘< 051n vE Sy
BTy S B Y &

&

Multiplying bath the numerator and the denominator

of the right side by (14/5 )7~

to make them each

real and cross-mulilplying, we obtain




el R
Cr_“(su
|
. i d
AL ; o -
o E '(r?r’p“’(tu) 50,
te that ths lert side of the'inequality akove is
the numerator of the exvpression
o 1,
g “su)
s -

But, since t was chosen arbitrarily, we concluae that
e ] z
s Gr ()
d D ’
oz _ . <0

for all s, Bty
Moting du the above that, 11 the function ipn tre
lemma is o consta ant, ijs must satisfy the Jacobi
equation, we can derive Bishopts theorem 13, However

the followjng observation is much stronger:

PrOﬁdm tion 2,2 (M Gromow [ij):

.Tlet p E I“‘]o

Suppose that M Satisfies, for all u € é! and g € (O,&(u}\

(n - 18 < Ric(e (u))

F]
whore cu(s) I CUP su and § is

S0me real number, Let

M be the model space of constant sectional curvature

as described in Section 1, Then, for all 0 ¢ ¢ LR,

VO Lr\('

Ripd o7 Blr;n) ¢O*§” 7 i)
[ Q— il

S s

OB (rp) B ’mi‘*cr)




Ereoof: Define T(u) := min vy #(udl. Then,

‘T‘(, Tlen -
Vo, % 3 p) o b 47 i F - LSS dzdu

\ ’ .
U b Ty yelet
VOlP( ,p) i R(PFP) F /&w ,_:_j oM Tz (Du)-.) asan

Therefore, our desired result follows inmediately from
thm following intergration trie ke
Lemma 2,%5: et s 81 [ORT ws B Do integrable

functionsg If £/g is & monotoni cally nonmn_ncreasn,ne

Tunction, then, for any 0 < p = R,

fﬁf(s) ds / fgf(s) ds 1:3, };p"(q) ds /fop( ) ds
Proof: 1t suffices to show that

[r(e) as j“%(t) WE frete) as fEece) ay

by assumption, f(s els) 4 I(r)/g(x) for ali
and £(r)/e(r) £7(t)/g(t) for all ¢ S r. thus,

R ~ r T }\ S) I o I ¢
p1(8) ds [Toct) ap . S5 as) as f sty at

£ L jﬁ%wjﬁg(s) ds {Ta(t) at

(Te(s) as [t -—ng(t) At = {%n(s) as force) at ,
dnr.d,




ary col (Bishop-CGromov volume Comparison

theorem): Under the same situation ags Proposition 2,2,

Vol o, VOLgy
S T S O W 1
VOJ,T? Y = L, v
Slrip)

Proof: HNote that since BOE; p2 o Blrsp),

VOlB(p;pw B(rip) = VOolg(n.yy = Volpir.ny s

: } : Lo :
and likewise in M, Thercfore, we can sdd

N
s Lo

side by side to the inequality of Proposition 2,2
obtain the corollary, Ge@oda
The following particular observation, though

simple, does not seem to appear in literature:
Lemma 2.5: Let M he a compact manifold, and
Suppose that p € M has the property prescribed in

Frovosition 2.2, Assune furthermore that

(1 - U)vol%‘(R) g voly,

where d{p) LRand 0 < V<1 s some real nimber,

Then, for any 0 < r, we, have

(1 = u)vol§<r) g vol

e g Y &
fi‘\.[“,p}

Proof: Since dfp) < Ry Corollary 2.4 states




Thercfore,

vol,
mmmwmﬂmmwv01&~ vol.,,
voiﬁ(p> TH(r) 2 TB{rip) .

But, by assunption,

S50, the degired ine nalit obtains, Ge€od,
) G

It is a standard fact that, for any two Rlemannian
S Beh] 1o K nd M ) e M., V > [
manifoldes M] and ME and p; € hT* by g Iy,

yolB](r;p1)
11 M e s =] s
T =3 Q) vOlBa(r;pB)

where B, iz the hall in Mis 4 =1, 2, Using ihis,
Corollary 2elt dmplies the following,

which actually
predates Corollary 2elp:

Corollary 2.6 (Bishomn comparison theoren): shill

under the hypotheses of Proposition 2.2, for any ¢ < R,
Proof: Multiply heth sides of the inequality
in Corollary 2,4 by VOlB(r;p) and take the limit as

r goes to O deged,
Corollary 2.7: 1et be a compact manifold,
and let

3

€ I satisfy the &ssunptions of

Fropesition




i

2.y Given O < U, let b be the number such that
VO Jm’ ) ] i} &

i { T

Then, whenever M Satisfios.

we have b % a(p).
This Tollows immpdiately Trom the
that B(d(p);lﬁ)) = Mg

Now, assume that

fle wish Lo find o critefidﬁ by which M is coﬁe:ed 0y
two balls of prescribed radii, A first relatedrresult
Seems to be due to ¥, Tankamoto [Tsi], who proved thai
and p, g € M realize the diameter of M, then
) and DI/25q) cover M, This fact is no longer
We aseume only that n w 1 & Ric, In fact,
LM be the product of Spheres described in Section Q,
Let vs take J=k; i.e.,
M= SISTT T2y o SIS T
Let Pys 4y be & pair of antipodal points 4in the first

{
factor, and Pps 9- @ pair of antipodal points in the

Second factor. Then, the pair (p]’PE) and (q1,q9:

realizes the diametor

RS T BRI

) hes the distance




Vi ey

from hoth (pysps) and {g,.q,).  Since j 2 2 and

1 o

the two balls oj the radiuve % /2 from { T ) and
Pp--a

(q1,q9) do not cover (g,
.

15Ps)e 0 In Fenl, Gromov uses

Corollary 2l to obtain an estizate on the number of
metric balls 2 3, all of 2 fixed radius, that are
needed to cover a manifold with a given lower bound
on the Ricci curvature and an upper bound on the dige
meter, dowever, this is not good enough for.our
purpose,

How, for 08 v <1, we define B(Y) to be the
number between O and %, such that

(1 = v)volgn = VO1Liyy s

O o .
where B ig +dn orn Hote that b{1?) 1nc¢reases to X as

VY decreases to 0,

Proposition 2.8 (Main Covering lenmma): Tet

M be a compact manifolg with the Riced curvature in

the range .

n - 1< Ric

Let 0 2 v be small enough sc that

2pvolyn §'VD1§Yb(U))

and suppoze that




z

(1 w v}volsn 3 vol, .
Take » ¢ M and chOGée 9 € M 5o that
Glpang) = dlp)

Finally, given any 0O 8 dy, let ds = bly) w dye  Then,
there exists a constant 0 < p, depending oenly on N,
Vs and d;, such that the eloseq balls D{dy + r;p)
and D(d‘2 + P;q) cover M, Moreover, for fixed n ang
d19 T can be s0 chosen ag to approach 0 as V tends
to 0. _ o

Proof: By Corollaryra,Ts bzv) S d(p)e .This
implies that

B(dysp) n

Hence,

] .
VO my B(dy35p) ~ B(d;:q)
T Oy volgy gy - "1Bay50)
By setting R = # in Corollary 2¢5, we have
VolM < volgn
while, by Corollary 2ol
and

VOlB(da;p) 2 (? e U}VOl‘g{\‘da) .

Substituting, we oblain




OlM'w B(d 1) B(dagq)

£ volgn - (1 . U)(VOH; (a,) ¥ VOIB(d )) :

Let us call the right side of the above, V(). Now,
Choose 1 so that

(1T « U)V()lg‘(r) = ’\7/('%)) o

We ¢laim that such an T exdists,

To prove this claim, it suffices to prove that

volsn 3‘”¥(g{j o
But,
o
- A
vol N o iy
VO?Sﬁ
= Volsn wa “T“Zﬂﬁ“ + VOlB(d ) + volg(d )

{1 - Wvolen - volen + (1 w u)(volg(d y * VOlB(d ))

— aag

1
VOlﬁ(df) + VOlﬁ(da) v(volE(d y + volB(d ) +¥0lan)

Tep i
But since, for one or i=1o0r 2, d; 2 b()/2 ang
volB(d y ¥ volB(d ) £ v01 Ny the numerator of the
above is
? - 2
by assumption,

We now show that this r has the tdesired broperty,




Choose_an'arbitrary X g M o=y B(GI;D)'W H(d 5G)e  Using

Corollary 2.6 aga ing we see that
< Fly) & v 1
voly ~ B(d, :p) ~ B(dwc) £ V) & vo Blr;x) o
13P

This shows that the C¢Obéd ball D(r;x) Cannot be
contained completely in the set'ﬁ(D(d1;p) U D(da;q))s
lee. 5 We nust have either

D(r;x) n D(d];p) X 4
or

D(r;z) n D(dﬁ;q) 5P .
By the triangle 1nequa1:wyS this dmplies elther

dlx,p) & d, ¢ r

d(x;q) < dy + r
Therefore,
X € D(d +rip) Y D(dﬁ +riq) .
By virtue of the way X Was chosen, this Proves the
Tirvst statement,

To prove the second statement, choose Eﬁ a'a
pair of antipodal points in g%, Then, for any
0<dgm, ’

D(d;D) U D — ;) - gt .

Since g% homogeneoum, this implies

nlg(d) + VO1ﬁCn . d) = volsn .

!
o
o~
<
p—
ﬂJ

O
A4
Q
I
en)
n
,q

Now, as v tends to O, dy d,




Y
-

3

Thus,

vola + ovole, . S ‘
VOlB(d1) + v0¢B(Q9) 3 volSn 9 |

Cen

and, consequently, F(U) wx O, This allows r also to

go to O, - Ge€od,

Eg@igg: With a 1ittle more tare, Proposition
28 can he improved in a nuwmber of ways. First, by é:i
exXamining the way volﬁ(d?) + volﬁ(d?) Changes as d?
and d2 do, it can be seen that the assumption on
can be weakened to

WOJ_SH ,_‘,é, VOlf;'(b(U)) &

The numerical value of r can be improved somewhat

by estimating the various inequalities a little more
carefully. Then, there ig an R<m, depending only
O n, such that the fipst statement is true whenever

Finally, we mention that there is a method to find

the r which is independent even of'the given d1e

However, as none of the subsequent arguments seem

to be sharp, we shall 10t persue these guestions

further,

For convenience later; we rephrase Proposition

2e8 slightly,




Corollary 2,9 (Covering lemma).

Suprose that

no-1¢ Ric ,

Let py ¢ € M be such that A(p,

—

4} realizes 'C'i},j@ Then,

glven any 0 <« 5, P, depending only on

there is an v,

n, 59 and O, such that

DI&+P50) U D(BW) w &4 £ia) = M,




3. P sitively aleclecurvec maniiolds with

large injectivity radii

In this and z11 subsequent sections, M is assumed
to satisfy | ‘
ne- 1% Ric 5
and, accordingly, we shall use M - g™, By the theoren
0% Myers (Theoren 10), M is ther compact and has

%% Theoren 10, itself, ha

i

the Tollowing consee
Wuence: _ |

ifgpd Se1¢ IF there in 1 point p € M where any
geodesic 1 100p &t p has length > R, then M is Simply
connected,

gggggz If M is not sinply ci innected, then there

1s a minimal geodesic for each elemant of ﬂ'(h‘q)e

Yo see this, let 7 M =+ M be the wniversal covering

space, and take 9 X ap &’ﬁ“T(Q)a Then, the minimal
path from a; to o in ﬁ¥projects to a geodesic Loop
of length d(quqa) LY 7ta  On the othep hand, if such
a geodeslc loop representing g non-trivial homotopy
class at p has length 2, then there must be Py1s Py
& nl (p) with d(plﬁpa) 2 7 a Contradiction,

gs€ed,
Lorollary 3.2: If fop some p ¢ M,

L1




/2 < i{p) 5
then ¥ is simply connected,

Proof: This follows inmediately as EVery geow

desic loop must contain a cut point, Qeeed

We viow prove Theorem 19,

Lf@@a 3¢5t Let 1) ve any positive number so small

vaolqn < Vol

"B(b(w)) o

and suppose that -

(1 = pivolen § voly .

Let p, ¢ ¢ M be such that d(p,q) realizes dye  Then, |

there is & number 0< p < @ such that if

R < i(P)s i{g)
then M ig howeomorphic to g@

H

Proof: lLet dT = da = b(p)/2, Let r be as in

the conclusion of the Main covering leumz,  We claim

that R := b@y)/2 + r is the desired constant, In
fact, then

D(R;p) U D(R;q) = )

ip) e}’p(ﬁ) and D{(R:;q) ¢ oxp(’f[ )e
D(R;p) and D(R

whence D(R

Thus,

;a) are botn dlffeomorphlc to the Buclid-
ean disc

DR s fx e R xi <1} .




This implies that B(R:p) is hémeomorphic to |2 and
S{R;q) ism homeororphic to gh=1, By the Jordan-Brouwer
Separation theoren, we'see that B(R;q) ~ B(R;p) is also
howeomorphic fo p", Thus M is written as The union

Of two homeomorphic copies of DH5 Jjoined at their
Comnon boundary, Now i+t is a-standard topological

fact that such a manifold is homeomorphic to g¥

]

Gecod,
'égﬁgg% Dol Suppose.that there is a point g €M
for which o
/2 < ilg)
Then, ‘

. s P T
voj.é(i(q)) am VOl’SnWI l(q) sin :]_(q) < VO.].M .

Proof: Choose an ue Gq.@ Then,

Fiws | : 1

EAn s T e, - Gr .gm(mggggm%m
( 5 ) dsGrq (su) Grq (Sa)ds IS )

Mo |
O

(172

by Lemma 2.1. On the other hand; since

a1
Gr “(su)
lim 9 T =
8—+0 (sin s/g)™

4
> Grqa(su)) and so

.3 df sin g yo=I
Gr 2(su) - E?GW_WS )

L R

= f{Grqg(su) - BN s nﬂi} <0




6r F(su) « (& g,y "

is monolonic aiiv non-increasing, Hence, for 0 < g
£ 1(q),

Tew |

1 . Yo ] ,, .

o Sk 20 ) < ardrs .Ein s,

ar, (i(gin) « ( CD ) < Grq(&u) . ( : .)
4

Since 0% 6r F(i(q)u),

Tlem ] . : 3
%ln : sin i(qg T
) - i(qg ~) g gt

Aoja

Tor all v e 6;6 Now we integrate bcth sides with

respeet to the polar codrdinates:
J;5é&fg(q)sinn”?s dadu

sin i(q)
i(q)

whence




The right side of the last expression ig

TR (a)5g) % YOLy

thus o'bta:."l.r.ling the desired :Lm.—‘x;s,ua].:?mty@ QeCed, :

|
Proot of Loeoren 19:  In view of Lemma 3,3, 1t ;
Suffices to show that if j"M is su:f‘ficiently large,

(1 v)volsn 5 VOl ‘ :‘
¢
Where 'ézwolsn < volﬁ(bw))@ But this follows from '

Lemma 3,4 Bince as ilg) a sroaches 7
5 . 1 3

vo]fg(i(q)) m} _volsn

and
ﬁ.(q)sinn"1i(q) o Oy
| Oe€od,
- Let us now turp to Theoren 20,
éggg% Je51  Suppose that there is an upper bound
| K <%
Tor the sectional curvature 0% Me Then,
§d €K

where § i= n w1 . (n =« 2)%,

Prodi’: Take an u € &M, Note that whenever &

UA YV, Ve ut is of unit length, then

Pr{u) L KoY Po (1) & x,
Now,

n o« 1 é RiC(U.) = P.]CU) + see ‘f”an'f(u)




S P+ (o= 2,
Therefore,

N e (nw2) 4 A (u)

Ge@ol,
The following theorem ig already tlassical:
Proposition 3.6 (J. Cheeger LC1): 1et V be an

Dedinensional compact manifold of
that

diameter & F, stuch

02K S %
Then, glven any ¢ S HASK,

there is an U, depending

¢nly on n, §, and £, such that, whenever

U< volV

<.
& lv '

After Cheeger's original proof, E, Heintze and

I, Karcher [HK] offered s considerable simplification,

The following proof is simply a repvodUCulon 0f the

Bsence of their argument

R _ -
8, and V - Hn(?Aﬂigj
Lidion 1.1, it suffices to

s Whenever

Proof: Take ¥ 1= E?n if
T § < 0. Thanks to Proposi

ind an U such that

0 < vol, |,

hen any periodic geodesic in V must ha

ve fundamenta]

s




- wa‘

v
29

0v e, Vi1 7€ & basis for &(s)tn n oyl

Define the Jacobifields along #(r)

Grc(s)%(ru)

Setl

and gset U

9@@:}

¢ (0,8u)),

pex‘iod > 2f o

geodesic ¢ in V of funds wental period & 2€ and

is all of Vm

Yj(r) = T.,8Xp Vo5 )

Then, in the Fermi coordinates,

Then, there is a choice of Vi

Y, (t), Yep(t) are orthonormal at a fived t

parallel frame field E{r), Ei (e,

For this, let

¢ o= {q &7 fq(ﬁ‘ﬁﬁ % 7, where C is the portion

0f the x'v axis of length 2g},

=

voiﬁm Ye cabsume that there is g period:

o

show

that voly & Us In fact, since d. 2 7, the set

“‘\l 35
la € v]d(q,clo,267 < 7}

Let u ¢ f'( . be normal to c(s)w Let

«= €Xp

Hr) = Truezp‘rc(s)

,J'—T-‘]gs@eg.x'“-'(_.o

]Y(T) & Y—](r) "N oeos A YIl'ma(r)I
Tiew ] I Y |

r A ses AV

nmal °
© s5 Vy o 80 that Y(%),

EXteHd Y(t)g Y](t), e0oy Yn-’-:?(t) to 2

eses Enma(r) along

V(I‘) V= L8 ";/.3’-

EHOT gy
COJ}‘J 1’5 t

Vilr) = MM_EW_,@ )

COS\.S';& "'_




Then, exactly as 1in the proof of Proposition 2ol we

show that

e,

wg;"al’b (2 T}'(.ﬂu)
de ‘iw(ﬂ) S

G oy ()

¢ &rt SinYE
e 2 pacem

= 0 coa™y§t
. J°i cdaiiﬁ“r

0 a Pfgifum KB, (r) A g (r))-2
_ é

= K(E(r) A far(r))m-m

< ‘ft 81n2J3 7 e cop™/Tr o
e e :
O cos“/Ft co“%/giz
+ 02 1o o 2 i
+ (n - T)j*t COB LT & gin Sy >

B o i
0 sinadg-t sinagg”t

H?cosﬁ/s r sin® /5 Sroy
cos Vv t sinnmﬁfgmt

This allows ns tb conclude that

T(ru) § -$08. J?vr qsnn 3{

Grc (S ) J"’“ I’},m-

integration,

2£f dsduds

g.

2¢ 'Tiﬁ-i e
S o J;n_1‘fourd(r)r drduds = voly = U

required,

. Ge€sed,
Proof of Theorem 20: Given K g.%% let &

Do 1w (0w 2)Kand £ = R//%K « Then, choose U as

I8

4.7




in Proposition 3:6, s0 that, if

U < volm 3
then

T
£ 'I"I"l @
Take py g € M so that d(p,q) = dye  In Corollary 2s9,
set & 1= 2¢/5 ang g 1= /3, Then, there is any > 0,
and if

ey

(1 « u”)volsﬂ.ﬁ voly

then

D{e;p) U D(bYr) - £/35q4) = M
Now, as in the proof of T

&

heorem‘19, Lemma 3,4 implies

e 0f R>» 0 so that, ir

kR < ilq),

maxfl, (] = u')volsn}‘< Voly .
The rest of the proof can be accomplished exactly as
in Theoren 19, q,e;dg

We give two more applications of Lemma %,%, Tn
the following famous theorem, we neeg not assume the

condition on the Riced Curvature,

Proposition 3,7 (W, Klingenberg [XiT):
—-:7':'-:2-‘:‘_‘___;"‘:-_:

Tet v
be a compact manifold of

even dimensione

0<K g %

Assume that

-]




_ﬁ:j@éﬁk- % im"”

Combining the above, whose proof we omit, with

Lemna 3.3, we get

- §£é2: ﬁLe£.M be an even-dimensional manifold
with AT
n e ] % Ric
and

OCK S 4 ~ g

Tor some 0 < ¢, - Then, there is a constant 0 < v,
depending only on n and €, such that, if, din addition,

(1 - U)volgn < voly
then M is homeomorphic to g7,

Proof: Take p, q € M with d(psa) = dye Then,

by Proposition 3.7, DRAVETE 5p) and DUrAT TR q)
are both diffeomorphic to D, Now let p :o RASTTTE

_ il
- 2, and choose U as in Proposition 2.8, so that '
. -] £ 3

these balls cover M, The proof can then be completed !

, i
as in Lemma 343, ' _ Qe€ole i

e . ‘ . :

The volume assumption in the above is necessary, ;

in fact, the standard metric (of Fubini-Study) on ¢p™

can be normalized so that

and




-

51

N e

A o= 1 oo e 1
n 4 4 ;.‘:.‘K;-? + noo4 2 °

For arbitravy dimensions, hthere is the following
fecent result of p, Hartman, which we also guote here

without the proof:
Proposition 3,8 LBl Bssume that M i

S a compact
menifold such that

K& K<y
Then, we have
T /,%/!’k‘};m ‘< iM @
Here, Ric

nep 18 the lower partial

Riged cCurvature
defined in Section 1,

Notice that the condition above

implies n « 1 < Ric ang is implied; in turn, by

now 1§ Ric

Then, exactly as in Theorenm 22

»- We can prove
.
Theoren 23. Suppose that we have

< -+
n 2 ngﬂLcn"Z

K<L - g




for some 0 < ¢, Then, there is a constant O< v

depending on n and £, such that whenever

{1 w U)volsn =4 VOl

. . 5 |
then M is homeomorphic to st :

. [
Remark: Using Leana Selty We can assert the EX1Sw *
tence of some ¥, depending only on n, such that if ' w!
n - 1 % Ric b
and

0 <K <3 |
in even dimensions, or if T »
I
- n-2% e o i
and j
K < % ‘ %
in arbltrary dimensions, then M is homeomorphic to st -~ W

However, such a statement can be obtained much more
easily by appealing to Lemna 3.5 and Theorem %, That
is to say, if we choose % so0 that '
[
nwim(nm,?)%:mg}m% . '

then the metric tan be renormalized 850 &3 Lo have

£

T_éK <L

by homothecy, Whether the constant obtained by our

methods ropresents any improvement iz not immediately

clear withecut an aid of a moderateu

speed calculating
\
device, :




hs The theorem of Chenngoponogov

Tn this section, we show that Theorenm 14 of
Se Yo Cheng and Vv, 4, Toponogov can pe proved nmore
directly by geometric neans. Chengts original proot
was based on the estimates for the elgenvalues of the
Laplace operator acting on functions, and ig related
closely to Obatats theorem (Theoren 21)s We shall
show that aftep the geometric proof of Theorepn 14,
Obétafs theorem can be deduced from it, A$sumiﬁg

5till that

we have

Lemma L,1: At any p € M,

et

vol
""'"’"“""-"‘W"""V " 'Mar»"( ?-‘5:4\/-‘.2« E—K‘Qo)u g

VOlntn 2, )

Prqgj: This follows immediately fropm Proposition

s

' @

2.2 by setting R :1= 4 ang » ‘= ®/2, where the right
side can be calculated explicitly, Qoecd.,
Lemma 4.2; Suppose that dM = % Choose p, g

e

& M s0 that d(p,q) = 7. Then,

VDlB(’ﬁ:/& p) L LB(T&ff) Lo VOlM .
Proof: TNote that

23




Bi/2:q) < M ﬁrBC@/agp) o

- Therefore,

-VOiB(%/g tq) V”JVfw B/2:0)

— s

VOiEC@/a;p) N VOLH(ﬂ/Q;D) - ’

By reversing the roles of p and ay We also have

VO:]-B('}[/"D" m)
VOLB(}z/}i q') "; 1

YolBn/2;p) T YO gim . y)

We hence caleulate that - -

0 M ¥ Br/2i0) ~ Blrseig)
= VO]B(’}Z /2’p)

YOl ~ B/2:0) < VOlnir oy

VOlp /25 m)

VOly . Blr/2: p) - VO?B@ﬂ/azq)

VOlntn /2 p) Velpt/2yp)

Ge€ode
Since M~ Dl /2;p) ~ D&ﬁ/d q) is an open set,

Lemma 4.2 has the following

- ‘ . -
Corollary 4.3: In the same situation as Lemna

[

he2, the two balls D(L/2;p) and Dé/2:q9) cover M,

Moreover,

QDGR/Z D) .= 3Dﬁx/d sq)




0y

Loz s Ifp, g ¢ M satisfy dlp,q) = % and

if ¢ LOVR/2T] wr M 4 any minimal geodesic with |

¢(0) = q, then ¢ extends to a winimal curve: [0,#7]
=d Moguch that elm) = Pa

Froof: Since o 9

T STy v

(Al

X

T D

astumed to be minimal on [0,m/27],

.2

c{m/2) =: % ¢ G0 /2:q)

i

gD/ 2:p), Therefore, there

A58 & minimal geodegic ot

LOs7/2 ] v M with ¢1(0)

= D oand ot (B/2) = x, Consider

the broken geodesic

obtained by traversing ¢ followed by -ct, This is 5

{(possibly) broken connection

om g to p of length 7,
But, as d(p,q) =Ry this 4, 4in f

geodesic,

acty, a smooth minimal

q_mead-s-

Now, define the following set:

I := {u G'C:v’q | ) ?‘TZ/E} .

Lemma 4.5: Tf g€ M nas aA(aq) = ®, then Lis

ah open and closed set 4n 6éa.

Proof: The fact that 1T i open is clear fronm

the continuity of & on Gh“ To show that it is closed,

note that by Lemma b5, whenever v € I, we have,

in fact, #u) = n, Suppose that the Sequence {ui}

C XL converges to a ve quo

Then, by continuvity or
,&'againy Ay =g, Hence, ve 11,

Ge€ud,

Since€5q is homecmorphic to gP=!

S and, thus,
connected, T =G ; i.e,:




+ For g & M with a(q) = Fiy, we also
- have 1(q) "‘En |

DProof of theorem 14 Let 4 be az in the above,
Note first that D@E;q) = Mo Lei ¢ Eogﬁj w0 bhe
any peodesic WILh'c(O) = . Tale an crthonormal

basis Vs aony ¥ for 5(0Yi‘and extend it {p g

e
rarallel frame fieig L?, seey B o along ¢, Define
| Xj(s) = sin s Ej(s) bl =ty cees nowe
Since i(q) = TL,
| I(?(ngxj) £ 0
for each 3, on the dthér hand, since Xj(O) - Xj(ﬁj
= 0,

23:%3& D = z:.ujf(xj(s)sxj(s» + K(X5(8) A E(s)) as
= Zf[ﬁéinaa - K{E. (m) A ¢(5))sin’s dg
Y0

j“ {(n = - Ric(é(a)}sinas ds

By our assumption on the Riced turvature,
L/~ " - N
5 IO[‘(KJ,XJJQ; Oy
Thus, for each P IgTXjer) = O, Agéin, since ¢ ig
minimal, Xj must satisfy the Jacobi equation; i,e,,

«51n23 k0% (s) + K(E.\u) A c(s\)Q1n s E. (s)

at each s, blnv@ E. (s) X0 and sin 5 § 0O on 0 < s {1,
T = K(Ej(S) AG(s)) = Ké(S)(Ej(S))




for arbitrary 5. Since Ké(@) i1s quadratic, and so

depends only on n < 1 independent directions, this

lmplies that Kg";(';ﬁ') (w)= 1 for a1l o and all ué ¢(g)

of unit length, * }; . 1' |
| How, let 9 b§ aﬁy point in S" ang D its anti. : |

pode. Tix an orthdéonal transformation

T Tas” i T M
and define a maﬁ 0: 8"~ (B -3 B(il:q) by

0(R) := eXp. 0 T o exp@fT(ﬁﬁ -

Since i(qg) = el = 74, 0 is a diffeomorphismg Morem
over, by Rauch comparison theorem (Proposition 1e2),
E(s) H T implies that ig, in fact, an lzometry,
But, as D(m:q) Bsq) = {p}, by continuity, 0 is
Séen to extend to an isometry:

gt ~» D(M3q) =M ,

GeCod,

Now, we consider the Laplace operator & acting

Gﬁ@ We let } be the First non.o eigenvalue and

on C
g the corresponding eigenfunction@ First, we prove
the already classical

ngmg_qg? (A, Lichnerowicz): Under our ASSUmp-

tion on Ricg,




A

tained 11 and only if

2 owpd,?

and the equaiity

here is due to M. Obata

' o
1|erad g]“ + Ric(grad g)
r M, since M is compact,

35 to 0 by Stokes' theoren.

Mljgrad gl* ~ Riclgrad g) .
btokes' theorem are

,.g< 2 o= - fMlgrad ef©

and Sl
IM(Ag)E:IMJ&gAg = JQM}-‘ grad g '2 s
Now, we compuféf

§ .....J,M Ihessg + "“%“"‘é(,) |2

-fM!heSSglz * 2““”<h858 ,g<'y> + 2[( >l2

Substituting from the formulas above and the fact that

<O

S J‘Mllgrad g’a - Ric(grad g)

@




-

+ m%m’grad g]a

- ji,.}.grad gl

~ Ric(grad g) |,

Therefore,

]

= Ewaw:lﬂ'm IMRlc(grad '%)./ fM’ grad £ ‘ § :ib

L]

Since (n . ])Igf&&*g[?"g Ric(grad g), we obtain that
néi?
whence the equalitj'implies equalily in all of the

above, In particular,

H

[pese + 26032 = o

from which the second part of the lemma follows,

Qa€ola

Egggg of Theorem 21: By the preceding lemma,

h@SSg = -'g<9> © | I.

Take p, q € M 850 that g attains a winimum at p and

a maximum at g,

thaet glq) = 1

Without loss of generality, we assume

o Choose ¢ to be a minimal connection
from q to p. Then,

hess, (8(s),8(s)) - glc(s8)){E(s),d(a))

(g o ¢)v(s) :‘ .-»g o C(sj

L]

Since g = ¢(0) is a maximum for g,

we have the initial

condition




'}élo c(0) _
(g o ) (0) = 0 ]
We see that
g o ¢le) = cos & .
Thus, the fivst point where ¢ intersects the nodal
set of g is at the parameter valne g = /25 1.6, at
point % such thagt d(qﬁx) = RSP,

Now, consider =8 and repeat the argument, We
see that the last roint of intersection of ¢ with the
nodal set is at y where Alp,y) = 7/2, Therefore,
Up,q) 2 %, Tn view of Myers? Theorem 10, x - y and

dlp.q) = .
Therefore, by Theorem Thy M is isometric to S,
| Qe€ad,

We consider two more applications of Theorem 14
which give rigidity for the case.when M g non=simply
tonnected,

Theorem 24: Tf there is a poiﬁt P € M such that
every simple geodesic loop at p has length 27, then
M is either 5imply connected or is isometric to R p1,
In particular, if n/2 < i(p) for some Py the conclusion
follows, |

Egggj: Assume that M ig not simply connected,

Let m: W ~» M be the univers al covering Space. Then,

i3




as in the proof of Lemma 3.1, far'each homotopy class
in 7, (M;p_), there is a pair Pis PoE ] (p) with
d(pT,pE) Z . By Myerst theorem and Theorem 14,
d(stpg) = ﬁ;andJﬁ,is isometric to 80, ‘Coﬂaequentlyﬁ
M is of constant sectional curvature te From the
fact that, on Sns for each aq s nhe;o is only one G
with d(q1st) = %y We see that Lp19 Do Voo (p)
and that %1M ﬁda This implies that M is disometic
to sh, : qoesd;

We now present a new proof to the Tollowing
Wwellwknown

Suppose that V ig a compact and none

simply connected manifold, Then, every conjugacy
class 1n1%1v is represented by a smooth closed geodesic
which has the minimal length- among all loops represente
ing that class, _

Eggggz Let g € .V and /" pe the cyelic subgroup
0*:=;ne=*1:1ated by g, Then, there 4ig a coveang space
7 V =%V and V 1s isometric to V/F Let G ¢ ¥ be
a fundamental domain of' the [-action., Then ¢ 4s

compact and the function

G723 T dlq,z-8)

L .~
takes on the minimun value at sone Eﬂ Tet ¢ be the

minimal geodesic from f’ﬁo g-ﬁi Then, ¢ 1= ;o0 ¢

6




is a geodesic foop in V. The ftact that ¢ has the

winimal lengti amcng all loops

of g follows from our choice cenbined with the fact

that conjugacy classes of“ﬂJV aire 1n natural onee

to-ona correspondence with the free homotopy lasses

of Jcops in V,

To show that ¢ 1ig smoothly closed, it sufficen

to show that ¢(0) = &(1) where 1 = L(c). Tet q
= T(31) e W, By minimality, exDy is injective in

& neighborhood of image(c), By Gauss' Leuma, then,

2(0) ana (1) are orthogonal to S(11;9) which ss a

smoothly embedded hypersurface near 7 and geﬁ; 'Sincej

by choce, 77 is injective on B(11: g)s S(31;7Y)) is
tangent to itsgelrs at 7(P) :'K(gbp)o But,

since Tgﬁi
and T

g % are orthogonal transformations,
that ¢(0) = &(1),

this inmplies
Qe@od,

See [CE], § 5.9 ang [Sp] vole TV, pp.352 fr,

for slightly different procfs,

Theorem 25:  Suppose that all smooth closed

geodesics on M have length 2 7, Then, the conclusion

of Theorem 24 holds,

Proof: Assume that M is not simply connected,

Take e x g £1 € 74M, and let €1 be a minimal smooth

closed geodesic representing the conjugacy class of

in the conjugacy class




e

g1« Let p ;- ¢, (0)e Suppose that 7w: 1 w3 M 45 the

uiversal covering space and £ apen (p), Then,

A, geF) - Lle;) & By By the same argument ag in

o
- N f"- x " * 1 L] i n
Theorem 24, (T2 =70 aud M is isowmetric to S

&

i
I

Now; it suffices to show that 3,4 ﬁ’Zﬁae

Suppose that there ig a6 x g, E’H1(M;p)g Then,

P . . i o, 4 .
the minimal geodesic from T to Es«p In M projects to

& geodesic loop Cs by 7t which is longer than = smooth

closed geodesic Tepresenting the same conjugacy class

:
dleta, i
d(:ﬁ;g"ﬁ) = L(Uz) = JC ]
s i . . e o o
By spherical geometry, this implies that 81w 5 = Bo Py
and so g = . Thus, #ﬂ?M = 2, and our conclusion
follows, Qoted,

In either Theoren 2l or Theoren 25, 1f M is

simply connected, it ig not true Necessarily that

M has any topology of Sne

In fact, if M is the manie
fold

ST TTI7CETTTY) x 530/ 7T

which we have already considered in Section 2, then

all geodesic loops on M are smoothly ¢
length

losed and have

b NS LY/ 237y




It is not known, if the

conclusion follows
We only assume that g11 smooth

L
Hty

closed geodesics throvgh
P

Sfome single point have length

R




S5« Main theorem . part one

Measure calceulations 4n the tangent space

In this and the Tollowing sections, we finally

brove our Main theorem (Theoren 18). We let q & M
and consider the Euclidesn Space TqMa The Lebesgne

messure of TqM 1s denoted by %, First, we prove

P CGiven any 0 < &y there is a constant
¥ 4

0< g, depending only on n and &, such that whenever

. 7. -
(1 = Vvolyn < voly,

then
AP o LY 3 . ﬁ-:f.;m. b
m(ﬁ{lﬁ,q) = & < m!\.kq) .
Assume that

(1 - u)volsn £ voly

for some O'é {54;1e Note that Myers' theorem {(Theorem

10) implies thatﬂ@lcfﬁﬁsiw Therefore, it suffices

to prove that as 1y tends to 0,
m(@,rggq i d %q) e () 2

. ~ Tl . . .
Fix some 9 € S" as the origine Choose an orthow

gonal transformation

L3

a Y4 1 Cfn
‘E. qul “‘”"% rlarq

me Then, by Lemnma 2el,

A
Set i i ; ﬂ




. L PR
VGlM :'J° Gr 2 dm & &f@¢J¢ dm = vo! Cm .
ﬂq g Fi &
S0, our assumption implies that
s
= Wivol.n £ vol Rt .
(1 L)ngb s vetexptmg .

a3 . ol . (‘;E\ s PR Y e
Hace 5T o= expllly), pulling the sel-up in a8t

- v)f,,»} LTI dm % I

A . .
or, as Mc Digs equivalently,

~ 3 ol PN
A~ Gr? an 2 W j o~ &v2
Dy~ Dy

On the other hand, it is c¢lesr that the measures
HNL e s \ .
j‘Grz dm and 'm are absolutely continuous with respect

to each other. That is to say, for some fixed cone

stants f7, f1v 5 0, depending only on ﬁ, we have
Pt~ 0 & v (@,

Now, appiy The isometry = -1 to get

BB o mr s Ly
m@?&’q 7 ?&q‘) == ]""‘j RV “',T{ﬂq )
which proves our assertien, GeCelo

For 0 < r< m, we regard the sets Gi”q C TqM

as Riemannian submanifolds with the metric induced

from the Fuclidean structure of the ambient TqM°

/
Let m,, denote the Caratheodory measure on Gf’q given

by the volume element of this ralric, Then, we assert




Lemma 5.2:  Given any 0 < »< 5

and 0L §,

there is a constant 0< U, so that whenever

(1 - ﬁﬁvolqn < vol

ot 'I‘l‘I s,
then
m (@}” s q -7 H ) { e
> “ 4 o M . & t e “ rl ?‘r el T “1
Iroof: Tor 0< t ¢ iy, 1 iy Pq > qu

the homothecy operator

mt(u) = tu

Then, the fact "cha'i:’TLq is star-shaped is rephrased

that whenever r < g and v e &

’Z;(V)eg “Tﬁ

by sayi s [4
N ying qﬂyjﬂqf‘

Thus,

R r{%}{ﬂﬂs/r(@ )

' On the other hand,

r<adn

AL . %S d
mn( {J) 4 &VI‘ 'vilq)) = Jarm?“mragr?qﬁszq) ds

(5 p
mrégr’q w’ﬁa)
2r

Hence, we see that

RO £ WD, ) - s

Now, given 0 < §, set

LR 2
r

d

67




=
4
@
P

his & in Lemma 5.1 to find an ¥ so that whenever

(1.... %j)-‘m:]_sn < woly

we have

1y -
A g) -

@

We sece by adding this to the prévious ineguality that
our conclusion must follow,. GaBed,
We shall find two uses for our lemma sbove later,
For one of them, it is convenient to state it in 2
slightly wmore refined forme Let O R<L 7, The
structure of M does not enter explicitly in the next
proposition, Therefore, we mighﬁ as well ddentify
G%;q with 83“1(R) ¢ RY by a suitably chosen isometry,
Let us denote the canonical distance function and
Carathébdory measure of this Riemannisn space by

ﬁfand m, réspectivelye
%g%g% De3: Suppose that 0< 4] is any given
number, There is a constant 0 < § < m(SnnT(R)) S0
that for any Borel set 51 ¢ 8™ witn
n=N) < §
and any v € Snui(R),
v < .

~
Froof: Tet B(r;v) denote the open metric ball
in 53“1(R) of radius r and center v, Then, the




function £(r) :

the

m(%?f;v)) ig iadependent of

choice of v, ©

3?ngnm? «in™C5 /R gg “

ssertion 1ollows by choosing
& = £(z), To' see this,

assume that for some pair
ve s®™N(Rr), mc s gy

a Borel set,
v 2y

Then,

Blypsv) €~
Thus, : R
§ = 2) = nE0v)) 8w
e contrapositive,

T |
L C/"R’q i

isometry,

proving th Gs€eC,
{(R) be the aforementioned
Set 1L :- g(Gqu N Ti;q)a

Then, combining
Lemmas 5,2 and

5.3, we imnediately get

Corollary 5,4:

b o s e s,
e t———

Let any 0 « » < 4 and -0 < i

<7HR be given, Then, for some constant 0 4 Vs

depending only on n, R, and n, if

then anyhv§;c¥R,q whose length is < 1o
We now wish to transfer the measure computations

above down on M, Our main tool is g standard result

in ordinary differential equations, which we rewrite




our own context as tne next

&Q&ﬂﬁ 5.5 (GronwalT Tet

R T fuleoiid

=

be a vector bundle
0f rank k over the snace [o, R aqgu Ipped with an

Buclidean metrie ( ) and a covarisant derivation ©

Which ig compatlble w;th the metric, Let®: ey I
be a fibrempreserving map such that each %HES is
Lipschity continuous with constant p( ) with respect
to the norm [, Assume that_pks) is

function ang let € [(B) sati

& continuous
iy

e (8Y 24
V_gj{;’(”) _,L%‘(Ag(S))

da

A'%(O) '*“/2/ ‘ﬂ 0 a
Then,

/.F.u

(s)ds
gl g, 1o FE

S
Eroof: Letﬁ?@a,ensa,?k be an orthonormal parallel i
i
frame field for Ey which exists since [O,RY is a con.

tractible space, Then, we define ap Evaalued intee

gration for ye /7(m),

fEVCS) ds 1= f"_‘f(_~)<’3f(s) o (53 ds 4 (R)

By the Funaamental theorem of calculus, we have

/‘9’(}\/ == /fa’(;{’) + IEV"Q-,{?(S) dS.:,% 'Ff}j?l(;‘?(S)) ds

Using the triangle lnequallty, wWe sSee that




by < Ly ol * S Wls)) | ds
fﬂﬁ%[ * fggsf{ﬂg(s)l ds

. e -
Ve defbine a Tunction f: CORY cupe 1 by

() iz h@bl + j‘gg(s)hﬁ{s)i ds

1t suffices, then, to show that £(R) g;EA§

Mote that y(r) 2 £(x) for a1l o 4
T is differentiable and

2 (r) :'p(r)L%(f)!

Hence,

I l )i
-l

(log D) (r) < fi(v)

for all 0 $ r €1, Integrating this, we obtain

log f(R}_» log 1(0) £ Jﬁgp(g) ds

Since £(0) = h?b”

log f(R) & 1og [f,g%| 4+ Igp(s) ds

which, when integrated, gives the desired inequality.

GeBol,

We consider the followingrspecial case: V is

a Riemannian manifold of dimension n and ec: [o,Rr]



% %,
> V is 2 geodesic, TLet T :o o (TV) @ ¢ (1v), the
Whitney sum bundie over LO.RT endowed with the product.
metric <, ) and the product covariant derivation 4

* 4 o o
of those induced frow TV by ¢ o Define Teq 7o to

2
be the projections on ¢ (TV) by the firet ang second
factor, respectively, Then, for yel(E), ¥ &2 Ty o 4y
éf%c satisfies the Jacobi equation if and only ir
4 satisTlies

¥ a4(s) = Rings))

ds

where
Rlgls)) =7, 0 4(s) @ R(&(s),7(s);¢(8))

This is just the familiar reduction of a second=order
system to a firsteorder system, written in the bundle
language,

Lemma: 1In the situation just described above,
Suppose that ¥V satisfies the Jacobi equation and
that the sectional curvature of V satisfies

54 K(6) & x

for all g’e,dzTV which are simple, have unit length,

and contain cfs), Then,

Y% /17012 1 [7(0)] 2 oR
n® .+

where y :=

(= 10 = 2)/2 6 = &2 |

_gr;%f Since clearly, [Y(R)] é\/lY(R)la + H(R)[a




- L%KR)‘? in view of Lemna 5:64 wWe only need estimate

the Lipaschity constant for o

vl

E.o which d4s Just its

norm as a linear operator, But,

} N - IR ) ] m'w‘_
N B A TN LY A

¢(s) g
where
* e L N
Ryt € (TV) %y pes R(E(s),y:80s)) .
. « l
Let €15 ooy S be an orthonormal basis Tor clgy™,
Then, by a standard identity for symmetric linear
forms and the estimates in our assumption,
. - -
'Ré(s)l = °§:-:f R(C(D)pei,c(@)gej)
5.)=
ne1
= 2 {3[X(3(s) A (o + e3)) = K(E(m) A e)
Ly J=1
- K(E(s) A e )]}?
< (n - T)én = 2) 12K § - 5)2
- e ' 2
s Aneddn e 2) g L2
The remainder of the proof is simply substitution,
Gs€sd,

'Corgiifgg 5.7 Suppoée that a Riemannian mani fold

V has sectional curvature in the range

% x(o) £ K%

L4

Then,

for any q € V and u e GE and 0 < r, we have

the following estimate for the Gramian




proof of Lemma 2.1 that

{3"‘) /\, ;, G,o N Y:ﬂm‘! (’I‘)!

1 A ose NV
(1)!
cor AV 1]

Dm1‘

! n

H

where v

18 sees

form a bhasis and Yj(ﬁ)

e . - i e r Lake
= Isu.gp(mv ) n -~ 1e We may take

and then Yj's have

S0, for each Ja

by Lemna 5,6, L ' o de€ade

Corollarz 5.8 iet Vv be again as 4in Corollary

5 ? and q € V, Suppose that v, w € Q?

can be

joined by a great circular arc 1n<§

of length
SN TLet x := €Xp V, ¥ = exp w. Then,

d(x,y) £ ;%-eVR

Procf: TLet ¥

L0,1] ~> Q;R’q be the great

are from v to w rarametri

circular 1zed by arclength,




s0 that 1 4 We Then, dlx,y) & Llexp o #)s Let uy

€ (3’q be such that Ruy = (t), and let ct(s) = eXp su,.

L

Then,

L

xpo ¥(£) = Y, (R)

¢

’

where'Yte & is the Jacobi Tield with the initial
£

condition

i

¥, (0) 0
y“"t(o) = g(tYy/R O,

Since {¥] = 1, By Lemnma 5.6, therefore,

fé%g?%(t” 5 m%mewR ,
integrating which on O St €1, we obtain the fequired
résul'i;0 Je€ode
We now return to M with nrm 1§ Ric and state
the two main tomputations of this section,

Pronosition 5.9 (CGeodesic endpoint lewmma):

Suppose that 4 is any given upper bound for the section-
al curvature of M, Then, given 0 < R ¢ Tt and 0K €&,
there is a constant 0 < V., depending only on n,

%y Ry and £, such that whenever

(1 - 1ﬁ)volsn.< voly

Ve gl?’q and % :=exp v, then
d(X,S(R;q))< £ o




= 1w (0w 20, Then,

Y]
Set g = Re VR whare

Y S S Sy

Let Yy be as in Corollary 5.4 so that any v € ¢3

g
can be Joined to sone &,C{Rsﬂf;j%Q by a great cireuwlar

arc¢ of length < 17 in Qﬁp Then, by Coroliary 508,

d(x,0xp w) < £, But we Cprg N1t

implies that exp w
€ S(Ryq).

L]

L}t;k eadgs
Pr0p0q7t¢on 510 (M

qapping multipllchv 10mm¢)

Let % and ® be as in the preceding proposition, . Cone

sider the exponential map onﬁﬁuyq@ Let W€ M be

the set of those points that have more than one preimage

under exp D sqe  Then, if
for some O&ii)a small enough so that

mR(GR,q ¥ %q) < 6—

as in Lemma 5.2, then

S

Rn“ S e

Fach point in W has at least one preimage

volw <

Proof:

in -R’Q‘”jlq‘ Thus, by Kroneckerts formula,

L
w3 2
OJW'~ J&DR,qﬂvquGrq Qm




Faly
Of

Using Fubiniig theorem, by Corollary He?y
R, 13 i
: v Or ¢ af - o e Or E(y) gegp
fﬁ%?ﬂqﬂ”jlq 4 ' O‘“QP“Q'IJLQ k
R P Nes |
e ane A oy Y
é fo(m;._g ) m,, ('&;Tﬁq i jg,q ) dir .
But, as in the proot of Lemma De2, the fact that
ﬂq is star~shaped implies that
5 L & .
Q)I‘S’q‘j :EE(_{C: QI’/R( v ﬂq)
for r < R, Here,ﬁ? is the honmothecy operator again.
Thﬁrefore, the last integral i
R, PR2SIN B
S f O(m";éw) fhyy (@R g '??,q ) dr

R
O

< f VI

IH

as reguired,

Ti= 1
()5 o

Ge€ad,




6o Main thecrey . rart two:

A topologicnl construction

Y vy £ vl ; . Co
L1 dJOisn ~ X““M? then M ig slmply

Connected,
Proof: Ve prove the contrapositive, Agsume
that M is not simply connected, Then, there exists
] > - N «l
a none=trivial Covering space 51 M =+ M, say of ordar

kg 2, and

k volM = vo}ﬁ’ ,

. I
But since n - 1T & Rie in M as well and Myerg! theoren
(Theorem 10) states that Ay & 7, by Corollary 2eby
we see that

Vol & volen

Putting these informations together,

voly £ 1/k volen % %volsn .

GoBod,
On the other hand, it i 5 classical theorenm
of J, H, C., Whitehead (1948), that s 5imply connected
Compact cell complex is homotopically equivalent to
S as S00n as all homology groups, or equivalently
all cohomolopy ET0UDsy vanish except in the top and

bottom dimensions, The following ig well-known:
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Lemma 6.2 (Topological lemmal:  Let V be an

orientable tovological (not hecessarily differen.w.
tiable) manifold of dimenéion Ny znd suppose thatl
there is a continuous wapping

g S v
of Brouwer degree 1, Then

mvsmy - o
for j = 1, ewey N o= 1,

Proof: Suppose that ¢ e Hj(Vgﬁi)a Then,
(%) 3 1@y - o ]
Thus,
LT n gy - o

~

where E] denotes the homology c¢lass of the fundamental
cyle and M- Hj+k(¥;Z3) X Hj(ﬁ;zz)-;ﬁ-ﬁk(”;ZZ) is the
cap product. TFrom the functoriality,
He; Vi) 2 B9[] ng - o |

By our assumpiion on the Brouwer degree, n.els™]
= EVi:M‘Therefore, “

[(Via¢=0 .
But, as V was an orientable maﬂifold,-the mapping
[Vl n: Hj(V;ZZ) ne»Hn_j(V;ZZ) is just the Poincaré
duality isomoryphism, Hence, ﬁ, which was arbitrary,
must = O, ‘ GeCod,

By virtue of the above two lemmas angd Whitehead's




theorem, in order +o complete our proof, it suffices
to show that slven an arbitrary upper bound ¥ for K,
1t is possible to fing o Q< ¥ 50 that 1¢

(1 - v)voisn,% voly
then we can construet g degreé 1 continvous mapping
@i 8N ey,

Louplete proof of the Haln theorem: For the
given %, let & f= /(W% ) e Then, by Propozition
366 (CheegeereintzeuKarcher)g we can find an vB 80
that for any M with | _ |

(1 - L%)volsn'< voly
we have
he < iy,

By our Covering lemma (Corollary 2.9}y 1T we

set & 1= 2¢ ang P =L, we can also find a 0 < v,

for which 471

- (1 = Uq)volsn < voly,
is satisfied and ir Ps @ € M realize d(p,q) - dy» then :

PGEP) U D(bw,) - £5q) = 1 -

(the function b(V) was defined in Section 2), |

Now, set R :- b(Uq) ~ & and let cw<-v1 be the

number in the Geodesic endpoint lemma (Proposition I

5.9); s0 that wheneverp




(1 = wdvolen < voi,
.‘ pan | "'}
and x ¢ exp&éRSq)g then

A5 = £50)) < ¢

o e

Next, using the Mapping nultipiicity lemma (Prow

Position 5.10), we can define g O<

5 such that
Whenever

{1 m’vz)volsn < voly,
18 satisfied and if W is the

set of points with more

t@an one preimage under expk@b(vh)ngq , then

Voly < (1 - vhvargn . oley -

Finally, we define

&

Vi min{_;’q—s U-' . vg, UB, U[;_}
O< ) < 1 and it depends only on n and ¢,
that M hag

Then,

©

(1 m‘U)volsn < vol,
We now construct an explicit mapping

¢: 5" ean
which has Brouwer degree 1,

"Let p, q € M have

| d(p,q) = q, .
Let M' be the topological quotient space obtained
by identifying all points in D(qs;p)o Note that
DiLhesp) is contractible inside M,

Therefore, there




are continuvous mappings

£1 M s

A MY s M

such that £o 2 and Lo 4 are toth bomotopic 4o the

identities and, addi tionally, sueh that £ e £l1Dg; )

is the dideatity (£ is 4ust the natural projection),
y J

Consdder the mapping

# o cxp: @uv)

Now, by the Coverlng; lemma,

=9'Hf;’,l' I\fj ¥

=ty

S(b(Uli) = €359) & D(3esp)

b
While, by the Geodesic endpoint lemma,
d(X,S(b(U ) —g:a)) < g
for all x» g eXp( by, ) £g )e Consequently
exp@b(z;h)m@sq) < Dlhgsp) e

Since the right side the abo\ro is 1dent1f1@d to

e mappln f 0 erl/ﬁb(p )

3 through a continuous mapplng

Single point hy % s ~g’q
factor
D: 8" ey Mt

where the S™ here is obtained specifically by collaps-

ing %b(vh)mf;‘q = Gb(vl%),q to a point, :

The desired mapping <f:

gh - M is, then, obtaineq

as




a3

Pz oo -,
To show that ¥ has Prouwer deprec T, it suffices
to show that there is Some oper set in M which 4g

covered only once by 4 o ) om,gﬁﬁ}o(y )mg‘;s . But,
this mapwing coineides with GXp on @b(y Yogtq » and

We have

voly < (1 (5 )vol%n - VO]B(I;g)

< Voly - vo‘]B(l{& D) & VO'—LBXP@b(%)qu)

by the volume comparison and oui‘_-constructionm Thus,
exp(‘bb(v&)mg,q) W g
This completes oun proof of the Maiﬁ theoren,
Qe€oelso

By way of conclusion to oup baper, we mention
that if the given 4¢ is falrly small, so that + < min
v, v 25 V3, L}}, then our proof shows that for a
larger choice of U, viz, U :u min{v1, o3 33 4},

(1 - wIvolen < volM

Also, in the event that T, v, < mlniv 3, 1)4} =: v,
if
(1 - f})volsn < v.c)lM' s

then we can stiil conclude that M has the cohomology




8

ring (such qe

structure of = truncated polynordael

the cobomology ring of a CROSSY, The actual numerscal
DEY 2

of the v's should be gasily and explicitly

speed computer,
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