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Abstract of the Dissertation

Bi-quotients of Compact Lie Groups
and their Curvature

by

Julio Vidaurrazaga

Doctor of Philosophy

in the

Department of Mathematics
State University of New York at Stony Brook
1982

After a brief survey of properties of homomorphism of

Lie groups, bl-quotients are defined. Some necessary and/or

sufficient condltioneg for existence or a biguotient manifold
are given. An outline of classification for the most important
cages 1is givén,

Finally, & formula for the sectionsl curvature of a bi-
quotient is given and the properties are exploited to get
conditions for an existence of strictly positive sectional

curvature,
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0. INTRODUCTION

The complete simpiy-connected Riemannian manifolds of
negative sectlonal curvature are well-known. They are dif-
feomorphic td the euclidean gpaces of the sanme dimension.

On the other hand, no general result is known for mani-
folds of strictly positive sectional curvature. Such mani-
folds are neCessafily compact if K » e » 0 (Myers Theorem).
For a long time, fhe only known examples have been the sym-
metric spaces of rank‘l, i.e., sphefes and projective sgpaces.

Berger [B] succeeded in classifying all the homogensous
simply-connected manifolds Qf-sg;gétly positive sectional
curvature. Besides the weil—Known axamples Qf symmetric gspaces
of rank 1, with thelr normal metric, he found some igolated
~examples of homogeneous manifolds diffeomorphic but not iso-
metric to symmetric spaces of rank 1. They correspond to
exceptional Lie group homorphisms © : H = G, if the manifold
M can be written as M = Q/HH”.(The gquotation marks point to
the fact that there is é particular embedding of H into G.

The precise notation should be G/m(H)')

Besides those cases, Berger found two new examples:

/ with the usual notation for clagsical Lle groups,
Sp(2)xT

and a seven-dimensional example Sp

SU(E)

for a particular

(2)/"SU(2)”,

homomorphism of SU(2) into Sp(2). This manifold has the ra-

tional homology of the 7-sphere but a different homology for
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characteriétios 2 and £. -The interest in this example is
related to thé fact that 1t shows that the topology of the
guotient manifold depends not only on the pair (%%f) of Lie
algebras but on the Lie algebra homomorphism o :;f‘@ %{as |
well.,

The results of Berger assume that there is a bi-~invariant
metric on G. Up to a constant on every simple factor'of G,
such a metric will be the metric given by the Killing form.

It is natural, in this context, to look for other iso-
metric actigns_of a Lie grouﬁ on a compact group.

A problem Wili érisé,"hbwever; becaﬁse the action to be
defined is not necessarily free. The gimplest example would
be the following: Let ® : H=— G be a Lie group homomorphism,
and define an action of H on G by g m(h)gm(hml). Clearly,
“any central element of G is a fixed point and the isotopy
subgroups of fixed points of the action are different, if g
is & regular or a singular element (in the sense used in the
theory of compact Lie groups, as it can be found in [Helgason]).

Given a compact Lie group, the existence of a bi-invariant
metric is classical and corréspdnd to an Ad{G)-invariant inner-
product of %, the Lie algebra. If <,> is the inner-product,
the group of isometries is, therefore, O((,),g), the ortho-
gonal group of the form <,>.

In the homogeneous case, we take a Lie group H and a homo-

morphism ¢ : H = G. We may define an isometric action, as we




already said, by g b m(h)g~(or,'equi§alently, g gop(h 7)),
h € HB. It is clear that this action is fixed point free,
and we get the usual theory of homogeneous spaces.

. Let us notice that, usually, the theory is presented
by taking a manifold M, where G acts transitively, and one
proves that M = G/’H,.H the isotropy group of a point. In
this apprecach, the quotient manifold is the basic object.
Hoﬁever, if we want to élassify the possible quotients, we
are forced to look at G as the basic object for the construc-
tiqn; (There is some lack of precision in the literature
aboutlthis simplé fact.)m B N

| Though recently, Wallach replaced the hypothesis of a
bi-invariant metric on G (equivalently Ad(G)-invariant on
the Lie algebra by the requirement that the metric is) lelt
“invariant on ¢, and Ad(H)-invariant in the Lie algebra. As
In the case of the two new examples of Berger, his ekamples
are isolated.

In the case of the symmetric spaces of rank 1, we have
an example for each dimension of certain type. The two ex-
amples of Berger and the new.examples of Wallach are partic-
ular caées, corregponding to highly specific pairs of Lie
groups. _ |

- L. Berard-Bergery [BB] completed the work of Wallach

" by showing that the classification of homogeneous manifolds

of positive sectional curvature was complete. Here there




are no new examples, besides those of Berger and Wallach.

Leﬁ us return to the original question, It hag been
known for many years that a compact Lie group admits a
metric of non-negative sectional curvature. More precisely,
the cUrvature of a Lie group with respect to a bi-invariant
metric is non~negative. However, this curvature hasg many
Zero sectiogs, In particular, the curvature will be zero
at the origin for palrs of vectors fangent to the same maxi-
mal ftorusg. For higher rahks of the Lie groups more and nmore
palirs of vector will give zero sections.

In fact, Walléch [WAlJ'has-also prerd that the only
simply-connected Lie group that accepts a left invariant
retric of strictly positive sectional curvature is SU(2)
_(Which is diffeomorphic to the sphere 53).

It is natural, therefore, to ask for new ways to define
a manifold by taking a ﬁie group ag the starting point. The
reason is O'Neill's well-known formula for Riemannian sub-
mersions which implies that, for a Riemannlian submersion,
the projection does not decrease {horizontal) sectilonal curva-
ture. We look bhack, therefore, at the original situation.

If G is a Lie group with a bi-invariant metric and M a manifold
‘such that ¥+ : G = M is a Riemannian submersion, we have Kp = 0
tor p = #(g), g € G. The basic fact that was used in the con-

struction of homogeneous manifolds of positive curvature is

that the Lie group H acts by isometries on G via the homomor-




phism ¢ : H = G. The action is defined, of course, ag
g @(h)g where h € H, g € G. (It would be completely
equivélent, in case of bi—invariant metrics, to take a
right action with the obvious modifications. For a left
invariant metric, it would be necessary to modify the con-
ditions of invariance. The appropriate condition is the
metric belng the left invariant by G and Ad(w(H))-invariant,
via the homomorphism m.j- |

As we observed above, in the usual definition of homo-
geneous spéces, we do not pay attention to the homomorphism
@ @ H=- G and we cﬁnsidéf-H\asiasubgroﬁp off G. The reason
for this apparent inconsistency is that, in most of the in-
ﬁeresting cases, the homomorphism ¢ is unigue. We shall
return to this point of the classification theory of Lie
“groups. A much more general situation whether it is pos-
sible to define a Riemannian submersion with total space G
is to use a representation of a Lie group H into the isometry
group of ¢ with respect to a given mgtric; Let G = M be such
a Riemannian subwersion, The curvature of M at p = 7{g) will
be greater or equal (o some durvature of G at g € G, This
fact isnthe basié idea in the sﬁudy of homogeneous spaces as
sources of examples of pogitively curved spaces.
- Our main purpose here l1ls to consider, among the actions

- of a Lie group on other Lie groups, those that can be defined

by a(h) : gp m(h)gw(hﬁl), where ¢ : H = G and w.: H - G are




Lie groups homomorphisms and G,H compact.

Thére is a slightly more general situation that can be
described as follows: Let Hl,Hg,G be compact Idle groups,
and @ : Hy - G be Lie group ¢ : H, = G homomorphisms.

We may define an actilon of‘H1 x H

o On G by

g m(hl)gw(hél), where h;, € H,.

It Hl = He, this product actlon admits a restriction
to the diagonal, i.e..H considered as the diagonal of H x H,
and we are in the situation described first.

Any_ciassifioation effort will have two parts: To get
conditions such that the action is free, that will imply
that the quotient of G by the action is a manifold.

CAfter finding some necessary or sufficient conditions
for a free action, we shall look at the problem of determin-
‘ing the secticnal éurvature of the quotient, considered as a
Riemannian submersiocn. We shall do 1t here by putting on G
a bi-invariaﬁt metric.

Let us notice that the two parts are essentially independ-
ent. The condiﬁions that we shall obtain to decide if the
action is free or not, do not depend on the particular metric.
Of‘coufse, this will be different when we study the curvature.
However, at least bi-invariant metrics are unique up to a
faéfor on a simple Lle group. Therefore, in most cases results

will not depend on choice of a particular bi-invariant metric.

Let us notice that there is an essential difference be-




tween homomorphism of gsemi-simple Lie. group and other Lie
groups, even in the compact case. The simplesf situation
will show the difference.

A homomorphism ¢ between abelian groups, @ : Sl - Sl

lz[pE(L u=exp 2rlt, t €RJ},

is represented by 8
exp 2riti exp Z2vi nt, or ut un,n € Z. Those homomorphisms
are essentially different, the degree of the map ¢ being enough
tolclassify them. . |

On the other hand, for the 3-dimensional simple Lie group
su(2), a“hémomorphism @ : 8U(2) = gu(2), is unique up to an
innernautomorphiém;- Thié;ébmeS*from thé:necessary commutation
relétion on the Lie algebra.
. Our main interést being the geometry of a bi~-quotlent
and the analogy between our situation and that.of the clagsical
" homogeneous spaces, we have resbricted our attention mainly to
the seml~simple case. The non-semli-simple case will almost
always produce metrics with not strictly positive curvature
in the bi-quotient. On {he other haqd, most of the interest-
ing geometricalrexamples of homogeneous spaces depend on the
existence of a fibration H ﬂ'G L M, where G is semi-simple
(even Simple, as for symmebric spaces of rank 1 and Stiefel
manifolds).
| Our work has the parts after a brief review of the basic

“properties of Iie groups, we look at the important properties

of homomorphism froma simple Lie group to a simpie Lie group.




A basic tool will be the index of a homomorphism, asrintro~
duced by Dynkin [DY1l].. The index can be described approxi-
mately as the ratio between the metric induced by the embed-
ding ¢ : H = G and the metric induced by the Cartan-Killing
form., In fact, our main goal is to find simple conditionscn
the Lie algebra to analyze the problem,

Next, we look at the necessary or sufficient conditions
for a free action. Up to a discrete subgroup, all
the conditions can be expressed in terms of the Lie algebras
and thei; root systems.

our maiﬁ result for the diagonal action is that if
m,w-: H -~ G, H,G compact simple, and index ¢ ¥ index ¥, the
actlon will be free. This criterion is simple enough and in
practlice will often suffice {o prove the action is free.

We have not succeeded to prove the converse. In fact,
thefe may be a couhterexémple. However, we do have two
partial converses (@,,¥,:H"G).

IE e, 5-4 G are Lle algebra hbmomorphisms, coth of
1, or if index ¢, = index {; and u,(H) and ¥,(E) are what
Dynkin [DY1} calls regular subalgebras of G, then there exist
fixed ?oints.

(A regular subalgebra can be defined by the condition that
vy ¢ H= G transforms the root system of H into a subset of

the root system of §.)

The existence of what Dynkin calls singgiﬁg:suéalgebras
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does not allow us to produce a'completely general converse
to our proposition about the index. As it stands, however,
we can cover most cases of geometrical interest,

The proposition "index @, = index { = 1 implies the
action has fixed points" is in fact, extremely useful. It
applies to the product action asg well as to the diagonal
action, and it covers many cases of subgroups that give mani-
fold of geometricai interest.

We repeat that the study we make of fixed pcints does
not dependfon any particular metric on the Lie group. The
Cartan-Killing férﬁ'doéé"induce'a-bi—invériant metric or a
semi-simple Lie group'and it is helpful fto prove some results.
However, the Cartan-Killing form is defined purely in terms
of the Lie algebra of the Lie group. It may be considered,

- u? to a positive factor, as_being the natural metric for a
semi«simple Lie group;

In the third and last part we study geometrical properties
of the bi-quotients. OCur main concern is to decide whether or
not it ié posgsible to obtain strictly positive curvatures.

The example of Gromoll and Meyer [GM] of an exotic sphere
ol nonQnegative curvature and the fact that 0'Neill's formula
for a Riemannian submersion guarantees non;negative curvature,
ét least makes this a natural question.

After deriving a formula for the sectional curvature in

terms of the bi-invariant metric and the different invariant




- 10
of the Lie algebra, we will discuss an important condition

that says positive curvature implies that the difference

of the ranks of both Lie groups 1ls at most 1.
This proposition radically reduces the possible bi-
quotients. If rank G » 2, we prove, by applying our pre-

vious results to this case, that regular subalgebrag will

not give any bi-invariant, because the action must have fixed.

points.

The general path to follow will be:

First the analysis is doﬁe ffor regular
subalgebras of a Lie algebra. "The fact
that the roots of the subalgebra are the
roots of the algebra makes the proof ex-
tremely simple.

In fact, the generalization to a regular non-semi-simple
subalgebra will be more or less immediate,

In the case of a non-regular subalgebra, Lhe general
classification theory and the work of Dynkins {Dv¥1,2] will
have to be used. Nevertheless, the result is analogous.
Given the structure of the possible subalgebras of rank n
or n ~-1 (where n is the rank of g), the different actions
always have a fixed point that can be considered the identity
of G (as usual, a more careful description of fixed points
wouldibe possible in terms of singular and regular elements
of ). _ I

Let us remark again that our analysis of fixed points

N &
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does ﬁot depend on the metric of G. We conjecture that
the condition rank H = rank G - 1 is necessary for any
other reasonable (not necessarily bi-invariant) metric

on G, as has been.proved in the homogeneous case by
Wallach. Then, our results on fixed points would complete
the claésifiéation cf bl-quotients.

It remains to consider the case rank G = 2. This case
is essentially different, {(c.f., the example [GM]).

The essential difference 1s that, 1f rank H = 1, there
are no restrictions in the diffefent commutaticn relations
of the Lie algebra. HoWeve;,ufﬁéﬂéase rank G = 2 can be
settled eagily by a casé by case exanination., It hés been
done by Gromoll and Meyer to 32 = 02, it i=s éimple for A2
(where, anyway, all roots have the same length)and it will
be dohe,'again, by a case by case examination to Gs 5 the
exceptional Llie group of rank 2.

The non-semi-simple case, recently [E]} has produced new

examples, using the pair (SU(B),Slel)°

His examples are a
generalization of ﬁhe Wallach examples. However, the abelian
charactgr of Sl implies that this example should remain isolated.
As we sald before, our conjecture in the semi-simple case is,

there will be no new examples, also for not bi-variant metrics.

The reason being that we prove that the pairs of Wallach do

give fixed points for the double action.
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Some questions remain- open. We would like to have a
better understanding of the Index of a homomorphism. It
has been a very useful invariant here, and its topological
interest i1s obvious.

Also, there may be some other invariants that may be of
interest in the topology of homogeneous spaces and bi-quo-
tients. (The topology of homogeneous spaces 1s poorly under-
stood if the difference.of the ranks is big.)

Finally, it is difficult to see how it would be possible,
starting with a compact Lie group, to define other actions of
a continuous group Ehat nny‘give'rise'to nanifolds of posi-
tive curvature. The basic problem is the character of the
O'Neill's formula. Even though curvature is non-decreasing,
under the projectlons usually it does not increase for many
palrs of vectors. The few examples of manifolds of non-negative
curvature, besides Lie groups and homogeneous spaces, makes any
progress in that direction difficult, but also very important.

At the end of our work we examine the examples of Wallach
from our viewpoint. Given the particular groups and subgroups
used 1in his work, with the exneption of (SU(S),Slel) (that
has been studied in [E]), we will see that no general section
seems possible,

We may ask about other possible actions of a Lie group

on a Lie group. The essential point is to find a representa-

tion of the acting Lie group in the (connected component of
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the) group of isometries of G with respect to some left-
invariant metrics., We have mostly cover the bi-~invariant
case. The problem of dealing with a "g,y-invariant metric",

i.e. an innerproduct such that L (h)°R l) is an isometry,

| §(n”
would be a possible generallization. However, our results
aboutlfixed points of the doﬁble action remain the same, and
there 1s a serious restriction in the number of possibilities.
Other metrics, in general, do not have non-negative
curvature. However, we think that our results will, at least,
help to clarify the-rea% difficulties. A compact Lie group,
even if it carries a metrictbf'ﬁ5ﬁ-negative sectlonal curvature,
always has a very blg flat submaﬁifold, the maximal-torus
(whose dimension increases with the dimension of G).
) On the other hand, a semi-simple Lie group is a very
'rigid object. In fact, the theory of seml-simple Lie groups
offers one of the few instances in mathematics where a EEEEQEEE
classification is possible. The results of Dynkin [DY1,2] also
show that homomo?phisms between two semi-simple Lie groups can
he completely described,’up to lnnerautomorphism. These re-
sults make the beauty of the theory. They also confronts to

the difficulty of producing essentially new examples of posi-

tively curved spaces via Lie group theory.




PRELIMINARTES

(This chapter has the character of a survey of basic
facts about ILie groups and Lie algebras that will be used
in the next chapter. We refer to the Bibliography for

the necessary proofs.)

(8ee [sA]l, [HE}, [VA], [LO}, [T1], [Dv1,2})
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Section P.1. Let G be a compact semi-gimple Lie group

Associated with G there exists gg = G @ [, the tensor

product over the reals. gg is called the complexification

of G. The theory of Lie algebras is usually developed in

terms of complex Lie algebras. Our interest has been the
real compact Lie groups, so we shall describe some rela-
tions between both objects., Also, we denote T < ¢ a

maximal torus of ¢ (sometimes T,, if there are several Lie

G)
groups) and EGits (abelian) Lie algebra, the Cartan subalgebra,
(We may also denote this algebra by QG.)'

" On G we have the Cartan-Killing form K.

(P.1.1) K{X,Y) : = trace(adxoady).

The Cartan-Killing form is negative definite and ad-invariant
(i.e, adXK(Y,Z) = K(adXY,Z) - K(Y,adXZ)). We define an in-

variant positive definite product by
XL, = -K(X,Y) for X,Y € G.

We remember also that a complex semi-simple Lie algebra é

G has the canonical decomposition

(P.1.2) G =T®® G* where o € R, the roots,
a,

T is the Cartan subalgebra,
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and the spaces g? are of (complex) dimension 1.

We have also, (for the sake of completeness)

(P.1.3) [g*,gP) = P

if o + 8 is a root = O otherwise. : ?

This decomposition and the properties of the root sys- ;
tems implies that, in general, any theorem of geml-simple
Lie groups may be Statéd in terms of roots. We shall use
ffeely this fact in the next chapters.

Given a complex'semi—simple Lie algebra, there canonically
is assoéiﬁ%éd a real compact Lie algebra; lL.e., a real Lie
algebra whose Cartan-Killing form is negative definite.

t Also, given a semi-simple complex Lie group G, there 1g
a maximal compact Lie group K, unique up to ihner~automorphism, o

_8uch that

(P.1.4) Ko @=4¢g, i.e., the complexification of K

1s the Lie algebra of ¢ ("Weyl's

unitary trick").
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Section P.2, Real Lie algebras and Roots

The real Lie algebra K has the decompogition

.

(P.Q.l) K = T, inK@
: €

where R+ denotes the positive roots.

T ® € = T

[K%,&"] ¢ %P @ P

K* is of real dimension 2. o # & g. Also [KQ,KQ]zzﬂaﬂd

where H& is defined by 7""*m%uhwi
gP.gfg) H € EK Q(,(H) - "K(H&:H) — <HCL’H>

H is called the inverse root of w., We have (see [VA]) that

K generates T over @ and TK_ = 1 Z:R}%} i.e., in span the
Lie algebra of the maximal torus of K < G).

,If G is éimple, 1t 1s well known that, up ﬁo normaliza-
tion by a posgitive factor, the H, have length 1 or 2 (with
the exception of‘Gg, (length 1 and 3).

We have also other set of wvectors

(p.2.3) H = : 2 ;
| oo

Hd » the basic translations.

(P.2.4) 1In fact ([O], [HE] ), there are three lattices

(1) Ays the lattice generated by the ﬁg




(2) A, = N
N 1 wER &

T i= {x ¢ EK]a(x) c Z}

Ay 1s called the central lattice

(3} A(K) = exp"l(e) where e is the identity of K.

We'have ([LO], [HE]) that

(P.2.5) A, < A(K) © AlL

If K is simple-connected then

(P.2.6) ké e AK). e

(Our main interest‘being the simple-connected ;ase, we
shall'assume at leagt implicitely, thie hypothesis very
often., In particular, there is in this case a cannonical
isomorphism between the maximal torus and Tk )
/n(x)
In generél we have the isomorphisms:

(P.2.7) Wl(K) o A(K)/ -'

and, where Z{K) is the center of K,

(P;2.8) Z(K) = Ay
_ S /\

0

We shall exploit these properties. In fact, we must

reduce our conditions to conditions that can be éxpressed
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only in terms of the H_. {or, equivalently, the ﬁ& on o,
the roots).
For a complex seml-simple Lie group G with Lie algebra

G it always is possible to find a basis (Weyl's basis) Hd,Xa
) ' ]
with the properties _ _ |

(p.2.9) (1) x eg

Nﬁ;a-e z S o -

if oo + 8 a root.

Also, for the compact form K of G we have

(1) Y =X -X_

I
[
b

i
b

(2) ZC‘I. | o =L

It is known (see [HE])) that

(P.2.10) (1) K(X&,Xﬂa) = 1

(2) K(XQ~X_G,XG—X_¢) = 2
(3) K(L(X%_,)s 100X )) = =2

(4) K(i(Xa+Xia), Xa—X_a) = 0

(5) K(iH,iH ) = ~«(H ) <O .

- i

We remember also that
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T o= o H, is proportional

¢ Lasw
to B by a real factor.
Even if we shall not have occasion Lo use explicitely
all. these facts, they will be assumed. They will, in effect,
allow us to use the resulfs of classification theory as in

[DYL,DY?2] in the compact case.

Note. There is, in the literature; some inconsistency with |

the factor 2ri, This factor comes, of course, from the ne-

cessary changes to pass from the real compact ILle algebra to

the complex one, and in ceversa.

Also, the factor 2r is related to the fact that we want

the innerproduct given by the Cartan~Killing form to agree
with the canonical bi-invariant metric on S3 (with constant

curvature -+1).

(Let us remember

(P.2.11) g3 ~ su{e) =« gp(1) = Spin(3))
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Section P.3.

We shall use freely the convention of classification

theory of Lie groups in particular the notations

for the classification Lie algebras and
G’2} F)—I" ET’ E8

for the five excepticnal ones.

(Even if it may 1look incongigﬁent we may speak of G, ;

say, as a real lLle algebra or a compact Lie group. This

"Abus de langage" i1s common in the literature.) |
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CHAPTER L

Sectlon 1.1.

Given w : H = G, a Lie group homomofphism, it is always
possible to define a new. one by taking an inner-automorphism

of G, ig : x & gxg—l, and composing it with o:

= i e

g

is clearly a new homomorphismu Any classification of the
homomorphism between # 0 Lie groups will be done, therefore,
up to equivalence by anuihﬁérnautomorphism.

Analogously, for the Lie algebra H andjg, we have that
Ad(g)o@* is Lie algebra homomorphism.

We may also modify o by composing at thé source with
“an inner-automorphism of H, Thus will be a particular case
of the first (conjugation by o(h) in G) and shows again that
any classification should be understood up to inner-automor-
phism.

Given a system of simple roots, 7, we may introduce an
order in the real vector spaée of linear combinations of the
roots. .We have a linear function m* from the span of the
roots 6f G to the span H of the roots of H.
| ‘ We say that an ordering of the span of roots of H is

consistent with the ordering respect to o*.

If the relation o¥*(x) < ¢*(y) implies the relation
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X <y, X,y € Span(r) is . We have the following proposi-

tion. ‘ T

Propogition 1.1l [DYl]. For every homomorphism ¢ : H =
there exist an equivalent homomorphism that respects the

order defined by .

Proof. (See [DY], page 122),

PR,

i e <

1 i et 4 B e Y I N T O
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Section 1.2, Index of a Homorphism [DY1]

Let H and G be simple Lie algebras. The Cartan-
Killing form defines on H (respectively ¢) an inner-
product <,> that is invariant in the sense (1) |
X, Y,2> + <X, [Y,2]> = 0. If g,'g are simpie then this
innerproduct is unique up to‘a factor.

It is clear enough, in the semi-simple case, to
classify the subalgebras of the simple Lie algebras., We
also may consider the subgroups of the simple Lie groups. f
Both problems are intimately related and it is helpful
sometimes to interpret Lie algebra resulte in Lie group i
terms and reciprocally.

The compact non-semi-simple case requires slightliy
different methods and wili be studied only occasiocnally.

The problem of finding the semi-simple subalgebras
of a semi-simple Lie algebra was solved by Dynkin (Dy1)
for complex Lie algebras. With minor modificationé we
may use his results and methods. This section has, there- . ?
fore, the character of a survey of results. We refer 4o
the important papers of Dynkin [DY1,2] for complete de-
velbﬁment of the theory. We shall not hesitate to use ;

his results and tables when sultable. it
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Let H,G be two compact Lie groups and p ¢+ H= G be
& group homomorphism.

It is clear that ¢ induces a Lie algebra homomorphism

Py tH= G .

(Occasionally, if there is no risk of confusion we gshall use
the same letter for both homomorphisms.)

The problem of finding and classifying the subgroups
(reép. subalgebras) of a compact Lie group (resp. seml-simple
compact Lie algebra) is equivalent to the problem of finding

such homomorphisms, - i

“Given two Lie algebf%g E;"g:éhd simply-connected Lie
groups H,G with Lie algebras H, G respectiveiy, (H,G) any
hémomorphism P 5_4 G defines a'homomorphismr"mﬁ form H
to G, ¢ : H~- G. .

The propogition is not, in general, true if H and ¢ are
not simply-~connected. For instance, there is not a homomor—
phism between S0(n) and Spin(n) even though the Lie algebras

are isomorphic.,

Let us notice that Dynkin's definition makes sense for L

a real compact Lie algebra, our main interest. ‘ %

let us consider o : H~ G, a Lie algebra homomorphism.

Let <’>H’ respectively, <’>G be invariant innerproducts on I /

(respectively @).

We may define a "new" innerproduct <,> on H on x,y € H

Km0 = <olx),0(y)y i.e., the "pull back" of <{sPg to H by o.
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The innerproduct on H being unique up to a factor,

there exist a positive number jcp such that

KL=, = Q¢<X,y>ﬂf

Definition 1.2.1. j$ i1s the index of the homomorphism WP

Example 2.1. Let G = sp(2)

I = sp(1)

realized as 2x2 quaterniomic antihermitian matrices and

purely quaternionic matrices respectively. i

An innerproduct on sp(é) ig given by Re tr AB,
A,B ¢ Sp(2) and an innerproduct on sp(l) is given by
Re qlqg, 41,4, pure imaginary quaternions. We have the |

two representations N

v ar (3 ) esp(2) | | |

0

q) € sp(l)

2 g*%A(%

It is easy to seé that g is of index 1 and ¥ of index 2. ¥
Let us notice that ¢(sp(l)) and y(sp(l)) are isomorphic, 8

as Lie algebras, but not conjugated by an inner automorphism

of sp(2). _ : E;

The index of a homomorphism (equivalentiy, a subalgebra)' @

will be an invariant of fundamental importance in the study of

subalgebras, subgroups and bi-quotients.
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It is clear that, given two compact simple Lie groups,
analogous definitions make sense with the bi-invariant
metric,

Let us remember too that the Cartan-Killing form a
canonlcal invariant associated with the semi-simple Lie
group (Lie algebra), defines an invarlant innerproduct.

Aiso, the existence of such bi-linear invariant has
str&ng implications about the topology of the (semi-simple
compact) Iie group G. In partiéular the existence of such

a product implies that the group hag a finite fundamental

group and that HZ(GJR) = 0, T
Moreover, in a semi-simple compact Lie group there
exist an invariant 3~form @, the Cartan form defined by

[M1]

w(X,Y,2) =<xX[Y,z]>.

The Cartan form will allow us to glve a different interpre-
tation of the index of a homomorphigm.
Let us remember the following facts from topclogy [HE] %

for a compact semi-simple Lie group:

_wl(a) is finite
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If ¢ simple w3(G) S/

Hs(G,?Z)é-‘ 7z
(1) ‘

H3(G,zz)== 7 .

Proposition 2.1. Let ¢ : H - G, H,G simple, o Lie group

homomorphism. : '

3(62z) and HO( |

Let w and w' be generators of H H7Z)

respectively. Then o g = ijwm‘. In particular j@ is

an integer.

,» the 3~-formg defined by

Proof, Let 5,3'

W(x,7,2) = <X,[Y,Z]> X,Y,2 € ¢ <,> an invariant

innerproduct in G

B (X 5KpsXg) = CXp5 (Y529 D> Xp5¥y,7, € HED | | N

an invariant inner-

product in H .

It 1s classical that W(@' ) defines a cohomology class in ']

HB(G;B), (HB(H;R)) [de-Rham cohomologyl. @

Now, H3(G,ZZ) @R =1R

B (HZ) ® R = R from (1),

We have the pull-back of & defined by o :
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w*m(Xl,Yl,Zl) = <$Xl:[@Yl:@Zl]>

il

<@X1?¢[Y1’Zl]>

I

o &<K 5 [¥7 525 120

= me' ‘ (2).
We have g*w = Aw' and ¢¥ : H3(G;Z) - HB(H;Z) is a homomor-
phism (multiplication by A G:ﬁ). HS(G;Z) = HB(H;Z) = 77
is free. A homomorphism of free modules is determined by
its tensorhproduct with IR (over Z)

(2) implies j@ = &A

QED
Note. G,H being semi-simple

[¢,q] = @

{H,E] = H .

This implies thatf the definition of Jw by @*@ = j¢$' is com=

pletely equivalent to the defintion given above.

Remarks. Let us nobtice that, from our proposition,it is clear
that jCp 1s an integer. This faét has been proved by [DYl]l
using more complicated techniques of Lie algebra representa-
tions.

It would be interesting to see if 1t is possible to find
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a simpler algebraic.proof of the fact that the index is an

integer. The cohomological nature of our proof suggests,

that a simpler proof in terms of Lie algebra cohomology

may be possible.




Section 1.2.3, Regular Subalgebras and Homomorphisms

Tet G be a (complex) semi-simple Lie algebré.

Definition 1.3.1. @lc G is called regular if there exist E

a basie consisting of elements of some Cartan subalgebra

C < G and root vectors of the algebra G respectively

to C ([DY1l] page 142),

Jor every Cartan subalgebra C < G there exist a

canonical decomposition of G.

R ¢ € R, R the roots.

Also, there is a canonical decomposition of G = (& %Ig9, a € R
G is regular if ¢ < ¢ and R' © R. (This definition is due to
Dynkin [DY1].) Equivalently taking ¢ : G - G, G,G semi-simple

Lie algebras, we have C{Q%(R) c ’'and e

»(C) c ¢ g
Qp(ﬁa) HCL o & ﬁ ' %
- . %
o € R.
Regular subalgebras are, of course, easler to describe and | %
study.
In the case of a real compact Lie algebra, the defini-

tion should be modified as follows: [BB] i

_1et G=°Co@®G .
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K" a positive system of roots 6% a subspace of real dimen-
sion two
G=coe, G°.
.

Definition 1.2.2. A subalgebra G is regular if ® < gF.

Among the regular subalgebras, the 3-dimensional

Iiie algebras
generated_by_

are of fundamental importance. (We have, of course, also
the 3-dimensional compact Lie algebra generated by

AR 1(X&+X_a), l(X&-X_a) of the real compact Lie algebra
whose complexified is G.)

In general, from the décomposition

G =C® 0O (&
= =32
H=_0oo

= 5 =

we have that 9y (H(a)) is a 3-dimensional ILie algebra of G

and, is such generated by Fo= m(ﬁg)

o
v, o= e(X))
Y-d = (P(X-OL)
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CHAPTER IT

Section 2.1. Introduction

Let us remember the definition of a homogeneous
épace [HE].

Let M be a manifold. Suppose that a Lie group G acts
transitively on M. Then M is diffeomorphic to the quotient
G/H, where H is the isoﬁopy group of a point p € G, M is
called a homogeneous space.

The ggal definiﬁion does not put emphasis on the fact
that H, as an abstract Lié'group,rcan‘be-éften realized as
giggéxggg_subgroups of G. Two examples will show the impor-

tance of the observation.

Example 2.1, Lets take G

i
<
5
i_..l

H = U(n)

we may define ¢ : H - G by (representing ¢ by (n+l) complex

matrices H by (n) complex matrices)

A € U(n)

OOE

p(A) = i.e., the matrix with

1 in the (n+l1), (n+l) entry.
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: G . C a4 s .
The quotient space /@(H)‘lu, ag 1t 1s well known,

diffeomorphic to goitl.

Let us, now, take A € U(n) and {§ a homomorphism
defined by

A

AL where o = Det[A]

0

0

9
Q0 o
A simple exercise shows that Gyw(H) 1s diffeomorphic to
cph X Sl clearly non—diffeomdrphic to 32n+l. In this case

G is compact but non-semi-gimple.

Example 2,2 [BE]. The example of Berger of a homogéheous
space quotiént of S§(2) by a particular embedding of Sp(1)
shows that even in the semi;simpie case, different homoﬁor—
phisms may glve different quotient manifolds {the example

of Berger is a real cohomology sphere that is not an in-

tegral cohomology sphere. There ig 2- and 5-torsion).
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Section 2.2, Bi-guotients

In all our considerations the homomorphisms

p + H-> G and

y :+ H= G

will play an important role.
In our context, a homogeneous space is defined as the
quotient of a (in general compact) ILie group by the action

of a (compact) Lie group H, via a homomorphism ¢. The action

will be defined by' ' S
Hx ¢S g
m
(h,g) = o@(h)g € G .

This definition suggests the following definition.

Definition 2.2,1. TLet G, H,, H, (compact) Lie groups

.%o Hy > G

Vo H, = G Lie group homomorphigm.

We define a double action

D : ngng) X G- G

by | 1

(ny:hys7) P o(hy ey (h;h)




€ H h, € H2 and g € G.

1 12 72

for h
The quotient space, if the action 1s free (that 1s,

without fixed points) willl be called a bi-quotient.

A simple example of bi-quotient appears in [GM]. -

Example 2.1, Let us take G = Sp(2)

Hy = sp(1)

I

Hy Sp?l).

We define_@r: Hl - G by ¢, a quaternion of module 1,

a Oof T
v(q) =
B O q
and § H, = G by
q 0
y(q) = '
- 0 1l

The bi-quotient of Sp(2) by the action

ql 0 q2 0

(g,%a,,Q) » (
17 -0 a, -0 1

1s a manifold diffeomorphic to Su. A simllar example with

Hy g H, would be

Example 2,2. H, = Sp(n) R

H, = sSp(1)

G = Sp(n+l) : !
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0
v : Al A |0
0
00 0|T
. » |
q0 0
04 0
¥o:og W q
0
0 Oq;

The double action is freé and the bi-quotient is a manifold
diffeomorphic to HP(n), the quaterniomic projective space.

Our main interést will be, however, if Hl = Hg. In
this casé-%é-éan'réétriCt”the action to the diagonal

AMH)Y ¢ H x H, a Tie group isomorphic to H. In this case

Definition 2.2.,2. ILet w + H-=>G

and ' Yy : H-> G be Lie group homomor-
phisms.

An action p : HX G~ G is defined by g m(h)gm(h_l)

where h € H and g € G. -

If the action 1s free, the bi-quotient will be a manifold.
In ﬁhe example of [GM] they obtained a manifold X, homomor-
phic but not diffeomorphic to ST, i.e. one of Milnor's exotic
spheres. Our first purpose is to obtain conditions to decide
1f the action is free. In general, we should study the case
where H and G are compact and semi-simple., (We may have

occaslonal allusions to the compact non-semi-simple case.
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Anyway, the compact case depends on the study of the semi-
simple cdse from the known fact that any compact Lie group
is locally isomorphic to the product of a semi-simple com-
pact group and a toral group.)

We should try to reduce our problem to séme number of
necessary {and eventually sufficient) Lie algebra condi-
tions; we éhould use the result gketehed in the previous
sections, and, more specially, the important results of

Dynkin [DY1]. o %;

Propogition 2.2.1. - TLet ¢,y : H - G be homomorphisms.
The topology of the bi—qﬁotient depends only on the con-
Jugacy class of u and V. | o

Proof. Let us take $_= Ad(gl) P

V= ad(g,) ¥ .

There are loops'Cl,C2 : [0,1] » G such that
ClFO) = e 02(0) = e
Cl(l) = gl ngl) = g2 .

Therefore $ is homotopically equivalent to o, F to ¥. By
a standard result of fibration the proposition follows.

Let T, (resp. T,) be a fixed maximal torus of H (resp.

i o/ "

G). The proposition allows us to consider, in general,
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tp:H—;G cp_(TH)CTG
Y : H~> G ngH) < Ty
Observation 1. In the case of the production of Hl X H2 | |
on G, we may still take T, , T > T, as before with
Hl H2 G
o(Ty ) < 1y

1

(v, )T, .
¥ ' < To

Observation 2. All maximal tori of H being conjugated by

inner-automorphisms, we can take an equivalent representation

@ = poAd(h) : B~ G ”
such that

Proposition 2.2,2, ILet w,¥ * H= G and let h € H, g € ¢ be

such that g is fixed by h, i.e., m(h)gw(h_l) = g. Then there
exist equivalent homorphisms $,$ such that

$(h)eﬁThml) =e 3 i.e., ;

the neutral element is & fixed point.

o(n)g g, b(h™) = 8185

Proof. TIet us write g = &8, Ei
R ;w

&£ = gg gl )i‘

we have EJ




4o
@ (g w(h)g )e(g v (h

l.e., we have to take

H

8

= Ad(gi R

)

¥ = Ad{gg )oy

QED

Observation. We have proved that we may change both w, .

Clearly, i1t would be equally good to modify ¢ or § by

composition with an inhef4automorphism,

Corollary 2.2.3. Under the same hypothesis, if ¢ is a Ffixed

point so is every element of the center of ¢.

Observation. - It is clear that, if o(h) = 4(h) for some h € H

then h fixes e, and so will any power of h. This observation

has a more useful form in terms of Lie algebras.

Proposition 2.2.3. Let ¢,y : H - G and let ¢, .4, : H - G be

the correspondong Lie algebra homomorphisms.
If there is an X € U such that y4(X) = ¢, (X), then the
identity is fixed by every element of the toral group {exp tX}

t € R.

Proof., Let us take h. = exp(tX). m%(X) = m%(x) implies, for

all t € JR-tm*(X) = ¢, (%) :Aw*(tx) =-t¢*(X).

By a basic result of Lie groups theory
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o(exp tY) = exp ty (Y)

i

t(exp tY) = exp ty (¥)

therefore, o(h,) = y(h, ) fixes the identity. The rest

follows by continuity.

Proposition 2.2.4. TLet 9,y : H~ G. If h € I fixes g, then

the cyclic groups generated by ¢(h) and §{h) are conjugated

by g

Proof. . o(h)gy(n”

YVneéz ()

Observation. If the group generated by w(h) is continuous,
: -1 ' '
th at ad = T here T the to
e relation (A) reads g Tm(h)g §(n) Where g e torus
generated (topologically) by g.
By differentiation, we obtain ¢(X) ='Ad(g)¢* for an X
such that exp X = h. In the semi—simple case it 1g possible

t0 say more. We have, in fact, that CH, the Cartan subalgebra

of I is generated by the.iﬁa. -

we have that
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If Tcp contains some defining vector f corresponding to
a 3-dimensional Lie algebra, m*(f) contains the other two
vectors as well. - )

By the same reasoning applied to Ad(g_l)cw, we obtain

that there is a 3-dimensional Lie algebra fixing the point g,

i
J
i
i
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Section 2.3. i

We shall try to obtain conditions for the existence

of fixed points.

P

OQur first préposition shows the importance of the Index

ag an invarlant of a representation.

Proposition 2.3.1. Let H,G be simple Lie groups and

w,¥ : H- G such that j@ # j¢‘ Then the diagonal action

1s fixed point free;_ﬁp to a discrete subgroup of H.

Proof. Tet us assime @(h)gw(hf})m; g. If n generates a toral

group the relation implies as we know that for some vector ¥ € H

o, (X) = Ad(g)y, (X).
. By the canonical bi-variance of the innerproduct on H,G we

have <@*(x),m*(x)> = {4, (X),4,(X)> in contradiction with the

hypothesis: J (X,X> = o, (X, (X)> = < X, (XD = J¢<X;X>«

Corollary 2.3.2., Let H be semi-simple

j—.e. ’ E = -.H_.l@ }12@- L) O®Hn
and let . w : H-=> G
and Y ¢+ H=> G.

Let us call o, (resp. wi) the restriction of g to ' |

LI duy A dy; Tl then the action is fixed point free.

.
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Egggg,' The proof is completely analogous to the previous
proposition up to the fact that we may permute the ﬂi by
a representation of the Weyl group.

The generalization of the proposition to a semi-simple
Lie group depends on a careful definition of the various

index.

Remark, As In the study of homogeneous spaces we shall assume
in the future that}¢¥(ﬂ) < G and ¢*(E) C G do not contaln any
non-trivial ideal'inf¢ommon with ¢. (For the analogous con-

dition in homogeneous; see [B] . and [BB].)

Ohservation, Leﬁ G = Gl i-ngénd'H, be as usual, but with

Gl,G2 simple gnq let

o = (pg,1)

and

V= (lswg)'

We may define a double action on G by,

i

. . ~1
plh) (g;585) & (p{h)epa0,077)) .
The action is free and we can define a bi-quotient. However,
the bi-quotient is an ordinary homogeneous space, In fact,

if M is the quotient manifold, we define an action of G on M by

Orbit(g,.8,)%(8),8,) = Orbit(g,8,,8,8,)8,8, € G

L
§‘
|
P
{
¢
t
il
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The isotropy group of a point is ?SH) X %JH).

Observation. By the equivalence up to inner-automorphism

of @ (resp. y) we may always suppose that

o (Ty;) < Tg
(4)
Wity = 1

G

where Tn» Ty are Maximal tori of G and H, respectively.
Let us notlce that we still have a cholceswe may modify
[0) and ¥ by an 1nner automorphnsm that fixes elther T

or T

H G?

i.e., & representatlve for the Weyl group of H or G. ‘We
shall use thls fact several tlmes. Usually, we wlll assgume
(A) without expl¢c1bly saying that the condition holds.

| The results-to follow in this section shall depend on

the result in [DY1l, DY2].

Proposgsition 2.3.3. Let w,¢ : H~ G, where H,G are simple,

be such that ¢, (H) and ¢*(E) are regular subalgebras of the
same index. Then there exlsts fixed points.
. , _ , &
Proof, Let w*FE) = @*Eg)® ?+ @*Sg ) and
- o
) = bi(C)o O ¥ (€7)

B =
*.
e

(with the notations of the previous section)

then m*(lHB) = iH

_w*(iHB) = iH

.
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P root on H and a roots of G contained in R by the defini-
tion of H& and the definition of regularity.

Therelfore, (the Weyl group acts transitively on roots
of some length) we can replace §, by an equivalent repre-
sentation with ¢*(1HB) = 1H . We see that there are ele-

ments exp(tiﬂm) € H that fix the identity element.

Corollary 2.3.4. With the appropriate condition in the

index of

"ﬁ;”;;h“k the proposition

is still valid if H,G are semi-simple.

Proposition 2.3.5., ILet ¢,y : H - G where G,H are simple

Lie groups, If jcp = j¢ = 1, then there are fixed points,

Proof. By [DY1l} up to equivalence by inner-automorphism

we may suppose
o, 1) = 4, (5,) = 1,

where g 1s the highest root of H and B is the longest root

of .G. _ H]
- Therefore, we shall have fixed points by our usual

criteri?n: ¢*(Ha) = ¢*(Ha).

Observation., fThe proof will be equally valid for the double

4




b,

|
action of Hl b H2 as 1t is for the diagonal action.

Proof, We apply exactly the same proof of the previous
proposition about bil-quotients, remembering that the Weyl

group acts transitlively on roots of the same length, i

Observation. If G is semi-simple and compact amd H compact,
the proposition will still be true by the remarks of [DYL]
and [B,B]. [H,H], the semi-simple part of H is a regular

subalgebra 1if rank H = rank g;

Proposition 2{3.6;TDYI];},ifsragg;H = rank G, H is regular. ‘

Proof. See [DYl].} 

Propogition 2.3.7Q If H ,HE,G semi-simple Lie groups and
“rank H1 = rank H2 = rank G, then there always exists {ixed

points for the quotient by

. V :+ H

Proof. Let us apply the previous propositions and the pro-

position about regular subalgebras. Up to a representative

of the Weyl group we must have ¢*(ﬁa) = w*(Hd) for some o.
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Proposition 2,3.8. If Y,p : H- G, rank H = rank G, and
rank G > 2, then there are fixed points for the diagonal

action.

regular sub-

Proof. Again we use the fact that Hc @ is

&
algebra. The rest is as in Proposition 2.3.8,
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Section 2.4. Symmetric spaces and bi—quotieﬁté 

If we look at the list of compact symmetric'épaces,
as in [HE], we observe that all pairs of Lie algebras (G,H)
with a specifiec homomorphism ¢ : H - G,H contains an ideal

of index 1. Therefore, 1f" we take

W o Hl - G

such that / o () and / (H ) are symmet?ic spaces, the
double action’ Wlll-have flxed points andithe index of
o3 + B » G is 1 (end = pl,pd simpre 5 = 1,2) [pral.
(References: [HE], [LO], and [WOT.)

| The observation can be explained by the fact that
Hc G is the get of fixed points of an automorphism o
such that 02 = T. o, thérefore, does not change the

‘length of the roots and the index must be one.

Symmetric spaces being the most interesting examples
of homogeneous spaces, this fact radically reduces the pos-
slbilities of bi-quotients that are related to well-known

symmetric spaces.

i
B
!
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Section 2,5, The case rank H = "rank G ~ 1

(For the necessary facts about Lie algebras, see [DY1,2],

[BB], and [WO].)

[A] The case o, (1) and t.(H), rank ¢ » 2 are regular sub-
algebras. ' .

If rank H > 1, @*(ﬁ) and ¢, (H) both contains a root of
the same length (let us'remember that up to normalization
the roots are of length 1 or 2)

The Weyl group acts tran81t1vely on roots of same lengths.
Therefore, We should have, for equlvalent Lie algebra homo-
morphJSm w*, ¥,, that for some H € H, m (H ) = E%(H&), imply -~

ing the existence of fixed points.

[B] The case rank'g.z 2, rank H.

If rank H= 1, H=~ 8p(1) z'Al simple,
(1) The case ¢ = Sp(2) has been studied by [GM].

The other possible cases are: ‘

It

Su(2) x su(e)

Sp(1) x sp(1).
The only possibility is

(2) G = 8pin(L)

I

v :q- (q,1)
¥oroa - (1,q)
and we get a particular realization of the

sphere g3 = sp(1) = su(2),
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(3) G = spin(5) = Sp(2) and we are in the
case (l);(Cla851cal isomorphism between

C and B

2 2t )

The case G2 deserves special attention.

G2 contains two non-conjugated 3-dimensional ILie aigebras.
In fagz; let {o,BY be a simple system of roots with | of
HBH = 3. Eﬁ and I—IB may be conszdered as defining vectors of

a 3-~dimensional Lle algebra that will be distinguished by

the index. The 1ndex of the algebra defined by H is 1, the

index of the algebra defjned by HB 1s 3. "Therefore, the

diagonal actlon lS WLthout flxed p01nts.? -
[C] The case-m*(ﬂ);Fﬁﬁ(ﬁ) regular G;”H sem1*31mple
rankH-:rankG 1; rank H > 1.
In this case, we may apply the theorem of Dynkin [DY1,
Theorem 5.5, page 148}.
The algebras ®*(E), w*(ﬁ) being regular, up to con-

Jugation by a representative of the Weyl group, again we have
(H ), a a root,
and we have fixed points.

Theorem 2,5.1., If ¢, H are seml-simple with rank ¢ = rank H +1

and @*(E): y,(H) are regular subalgebras with rank §_> 1, then ' 2

the diagonal action always has fixed points. S

§
i
f
i




The theorem does not apply to this case that wéjSEttled

by a case examinabion.




Section 2.6, w*(E) non-regular, semi-simple,

rank H = rank G - 1

In this casge, the solution depends strongly on clag-
sification arguments. Again we refer mainly to the articles

of Dynkin [Dv1,2]..

Definition 2.6.1 [Dynkin DY1,2]. A subalgebra that is not

regular is called an S-subalgebra,

We remember thexfollowing_lemma.

Lemma 2.6.1 [BB]. Tf H is a S-subalgebra of ¢, then HE ig
& S-subalgebra of gg;;: , : _: )

Proof [BB}. Let_g be a subalgebia of g@, K regular

and g? < K. If KCE is semi~gimple, then by Theorem 7,7 of

[DYL] there exists a L semi-simple complex in g?, Lo EF.

If rank(&)': rank(ﬁg), gq would be regular in I, and

therefore regular in g; then rank(L) = rank(gg).

H belng a compact subalgebra, thgre exist compact forms
Yof Land B of 6% such that Hc Uc B. We know that B is
conjugated of G in Qg. By that conjugation we have that
Hc Ucp becomes H' < U' < g.

H, E' are subalgebras of G conjugated in gg. They are,
therefore, conjugated in & and we obtain L c U" < ¢.

Finally, rank(Uu") = rank(U) = rank(B) = rank(G) and H

u" ¥ G becomes U # B, U' would be a regular subalgebra of (.
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The lemma allows us to use the results of [DY1l,2] for

S~subalgebras ([DY1,2] has classified them in the complex case).

Proposition 2.6.2, The possible S-subalgebras H of g,

G semi-simple, rank H= rank @ - 1 are given by the
following table.

(1) ¢=0n, .. H=B®B
n=3,0sps [

(2) @ = 03_' :_;
(4) @ = Ge
' (5) @ - FL; B - 5 Al@ ,
6 - Ag - Ai"'
(7) @ = Ai@"Al H = Al- (diagonal inclusion)
(8) a=-c, Hea
(9) ¢ = B, H=0, ‘
(10) G = py H = B,
(11) ¢ = Dy =8, 0B,

Observations,
(1) . The classes (10) and (11) correspond to (1)

forn=4, p=0and p =1, but by an exterior

automorphism of Dy, (triality automorphism),




.The conclusion iS{iﬁ.f§ﬁfﬁuﬂ

(2) The inclusions are different from the usual

(regular) inclusions.

The proof of the proposition depends on the lemma and
of the Theorem 15.1 ([DYl], page 235), Table 3 of [Dvl],
page 233, and if G is a clasgical algebra we refer to [DY2]
Theorems 1.1, 1.2, 1.3, 1.l (pages 250-253). For oF a
clgssical algebra éﬂd Hg”simple, Theorem 1.5, bage 253 of
[DY2]. Finally, the table l page 364 of IDy2] gives

(Goshy) and (D, ,B@B, o0

2)

Theorem 2.6.3n:'if2¢'(H)'éﬁd:m;(H)ﬁéfé Stsubalgebras, there
‘ X BT
are no bi—quotiénts by the diagonal action (i.e., the diagonal

action is not fixed point free).

Proof. The table of possibilities gives only (DM’BS’Eé) and

(DA,B 2,B1®B2)' l.e., the case (1) for n= U4, p = 0 and
(10) and case (1) for n = 0, p = 1. The exterior automorphism
1s an isometry and has fixed points.’ For some elements on H

both homeomorphisms agree and we have .Fixed points.

Theorem 2.6.4. If w*(g) 18 a regular subalgebra and w*(g) is

a S-subdlgebra, the possibilities for free actions are:

(1) (Al®Al’Ei (diagonal inclusion)

A

1)




(2) (GQ,Al,m*(Al)), the example of

[G-M], », of index 2

(3) (G Ao, (Al)), v, of index 4, [Dy1]

(4) (GE,Al,@ (8;)), @, of index 28 [DY]

8 1
(5) (CS’Al@Al’ 1 Al)
(6) (cq,A ®A @Ag,ArQArOAl)

(In (5) and (6), the exponent tells the index of the

subalgebra. )

Proof. By,Prbposifibn 2;6:2'”(1) ~(10), (ll) correspond to
the case where both subalgebras contaln a factor of index 1
(The embedding are obtained via an exterior automorphism
which leaves the'innerproduct invariant. )

The cases of rank G = 2 will be analysed at the end of
this paper. In (5) and (9) of 2.6.2 there is not a regular

subalgebra to define a bi-quotient. In (9) and (10) we may

*

observe that the index of the singular subalgebras are dif-

ferent of 1, therefore our criteria for free action holds.

({8) and (8) correspond to very particular homomorphic in

the symplectic group. )




CHAPTER ITT

Section 3.1l. The curvature of bi-guotients

Motivation. Ih the article of [GM], D. Gromoll and ﬁ;fﬁaﬁer
gave an example of an exotic sphere of non-negative curvé;f
ture, however this exotic sphere has secﬁions of zero cur-
vature at some points. Tt is natural to try to generalize
this construction to other bi-quotients of Lie groups and
this is the purpoéé_bf this chapter.

Let G be a c'b'mp'a.ct Lie Group. Tt is classical that G
admits a bi—invafiéﬁt.mét;igiéhéﬁwis given, if ¢ is simple,
up to a multiplej_by the'Cartan—Killing form. In general,

if G = ®a, ® R an ad-invariant innerproduct in G is given
1

by {x,y0 = % ki(xi,yi) + (xo,yo) where x,,y; E'Gi,
X52Yq EIRn, and'ki a posiﬁive multiple of the Cartan—Killing_
form. If G 1s semi-simple, 1t is known that the sectional
curvature K is nonnegative.
O'Nelll's formula for a Riemannian submersion implies
that the curvature of the bi-quotient space, with the induced
melric, .is also nonnegative. Tt . 1s natural to ask if it is
possible to use this construction to obtain manifolds of
strictly positiﬁe curvature that may give other examples. _ |

The basic reference In this section is the article of [GM].

Our results are, essentially, a generalization for

(semi-simple) compact Lie groups of thelr results.




As befofe, we shall make the hypothesis

9, (H) and @

¢ (H) and ¢ do not

oontaln a common 1dea1._ This hypothesis, we remark, cor-

responds in the homogeneous case to assuming that the action

of G on / (H) 1s effective.

The hypotheSisqthat (G_¢ (H))do not contain a common

ideal G compact Lle algebra

1sﬁalways assumed by [B],

[BB] or [WAl]

Notation. Let Ml;M beaRlemaonlan.manlfolds with
dim M, = dlmM2 and 1et w be a submer51on ks i M, » M55 L.e.,
T 8urjective and of max1ma1 rank )

The tangen@1$QQCe Tq(Ml) at g splits into an orthogonal

sum

v ®u. where V_ is the tangent
AT T q &

space to the fibor:w'l(w(q)) and Hq the orthogonal
complement to Vq; FV aﬁd‘H are the vertical and horizontal
distribution of the Riemannian submersion.

For a vector field Z on M, let us denote by 7V its

vertical component. Any vector field X on M2 has a unique }

horizontal 1ift X on ﬁ, i.e. XV = 0 and 7,% = Xer (see [GM]

or [CE] for the details). - T 3
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The sectional curvatures T of M, and K of M, are
related by 0'Neill's formula ([ON] or [CE]),
If X,Y are orthogonal vector fields on an open subset

of M then

25

K(X,Y)ew = K(Z,9) + g-H[X,Y]W

Following [GM we conslder a Lie group ¢ of Lie algebra Q.
We denote by L and R the lef't and right translations
and by Ad = RfloL the adJelnt representatlon. For X € G

we con51der the rlght and left 1nvar1ant vector fields L X

and R Y deflned by

1
o fﬁf.

0,

I
o

o
*
>

and we remember the lemma proved in [GM], (page 402).

Lemma 3.1:.1. If <{,> is a bi~-invariant meiric on & and

X,Y € G, we define
f G Rby flg) = {X,Ad(g)>

then (Lg*z)f = {X,Ad(g)[Z,Y]>. With this fact present
we may generalize the formula of [GM] (page Lok).
Let H,G be (compact) Lie groups. [It would be enough
that G has a bi-invariant metric] and H,G their Lie algebras.
We consider o, :lH =» Lie group homomorphiém and ;

w*,¢* : H~ G the corresponding Lie algebra homomorphisms,

.




by the diagonal action..
(With obvious modifications we may derive an ehtlr
analogous formula for the double product action, ) :
We have the fibration H » G - M(1), M being the bi-
quotient, and we take G with a bi-invariant metric <,>.
With the help of the metric we may give the fibration (lj_

the structure of a Riemannian Fibration. Then we have

Theorem 3,1.2. Let A € H, g € G.

(1) The tangent space to_the fibre 7~
of w : G - G is spanned by

Rg*m%(A) - Lg*w*(A) A€l

(2) Let u,v € G be orthonormal vector such that

U=1_ ué€H
BT gy g

V=1 v EH then
Ex g

Kl 8, %) = # || [u,v]]| 2

|
; (0, (A) 49, (8), [u,v D 5
+ E Max R

840 | ad (g™ )p, (8) -y ()]
AeH :

In particular, K(W*G,W*V) = 0 if and only if [u,v] = O.

Proof.

(1) Tet us consider the curve
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Pp(6) = (expto, (4))g(exp-ty_(4))

then ¢,(0) = Ry, @y (4) - Lg*w*(A)

by Leibniz rule.

@A(O) is clearly a vertical vector tangent to the orbit.

of g. Also, {exptA(a € H)} = H.

(2) Iet & ¢ H. We define a 1-form on ¢ by

wplx), = (Rg, @, (8) - Lgu¥i (A),x >

~ then Hy = {wlwA(w) = 0 Y A€ Hj.

We know that, on G with the bi-invariant metpric

K%Y, = R(u,v) - %I[u,v]“g, the second term in the - i

0'Neill formula ig %H[X,Y]VHE. By the same method as that
of [GM], we shall compute this term. TWe have, by the pro-

perties of Linear functionals

2
. & (W)
lw@ = dax A

A€g HRg%m*(A)-Lg*¢*(A)”?

w, (w)?
= Max

Rl flaazt o, (a)-y (a)]°

ARG A s i i e

" wy ([%,9] )2
and therefore ”[X,?]W[Q = Max “ﬁ : £. 5 .
ACH [[Aa(g™ o, (A)-y, (a)]]

As in [GM], we have by the properties of the exterior

derivative




2du, (X,Y) = Zwy (¥) - Fu, (%) - w, (1%,¥))

1] o ]
since X,Y are horizontel, and

dw, (%,9), = du, (%,5).

On the other hand, we have

it

2de(u,v) EdmA(Lg*u,Lg*v)

%u)wAg%%Y) - (IQ%wQ(L*u)

I

Te

I

wAFLg[u3v]).
We get from the definitioﬁ of w, and the relation

(Lg%u)<a’Adgb> = <a,Adg[u,b]> already mentioned:

FLg*u)gAgL*v)-= (Lg%u)(m*(A),Adgﬁ>

.'<¢*(A), Ad,[u,v]>
and (L, v)w, (L u) = <w%(A),Adg[u,VJ> '
Finally :

Wp (B, Tusv]) = <o (&) - Adgy, (4), Adglu,v]),

using the fact that the innerproduct is adjolnt-invariant,

Combining the different terms we get

o (¥}, = <ads™ o, (8) + 4(a),[u,v]>




and we get the announced -formula.

Qbservations

(1) We should get a completely equivalent formuld :
with Adgw*‘ in the corresponding place and the

obvious changes.

(2) It is clear that K(u,v) = 0 with

<l

u=Tou, vy,

_if and only if U,V are horizontal at

the point g and [U,v] = 0.

Our problem will be,iﬁ favorable cases;_to compute the
curvature to verlfy if it is zero for some sections. Es-
sentially, the method is an adaption of the method of [B]
to our purposes. Let us notice that, in general, the cur-
-vature of & bi-quotient is more complicated that the curva-

ture of a homogeneocus space.

Commentary. If we observe the formula for the curvature,
1 2

v, (A) =y (a)][°.

This exXpression will not be defined if there is A € H
G0 (B) = 4 (a).

Butrthis is precisely the Lie algebra condition for the

we notice the denominator HAdé

such that [[Ad e (8) - ¥, (A)| = 05 i.e., Ad

existence of fixed points.
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Section 3.2,

We shall see in tﬁis sectlon that the hecessary con-
ditions for the existence of posltive curvature are incom-
patible, in the semi-simple case, with the free action of
the group H via the two different homomorphism, with the -
exception of some isolated cages in low dimensions.

Our basic result will be analogous of one of the pro-

position of [B].

Proposition 3.2.1o Let ¢,¢ : H = G be as usual and M the

bi-quotient. If rank H < rank G-1 then KM = 0 for sonme

palr of tangent vectors at some point 7(g) € M.

Proof, By our original analysis (see Chapter IT) we may

take o,V such that

®(Ty) © 1,

(1) < T

for a fixed maximal torus of G,T,, and a fixed maximal torus
of H,TH.

(Let us remember that, if it were not the case, we may
replace ® and/or § by equivalent homomorphism up to an inner-

automorphism and the equivalent homomorphism will satisfy

the condition.) '

The proof now, will be very similar to Befgér‘s result : L

[R]. We need the following lemma.
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Lemma 3.2.2, Ilet G be a compact Lie algebra with ad-

invariant metric H < G subalgebra, CG’CH the Cartan sgub-

algebras of G and H respectively, such that ¢, < ¢

H

Take P an orthogonal complement of Cpy n H; l.e.,

H=0C4®P. Then P is orthogonal to Cq on G [the essential

GO

point will be the ad-invariance of the metric].

Proof. Let us take X € CG and X orthogonal to CH' We

have (oﬁ:cG) [X,CH]

Choose (as in [B]) M an orthogonal eomplement of H,

respectively to the metrlc, i. e.,:gfé HGDM and decompose

orthogonally B -':f=I?TT_I.J; g7ﬁ _ ’

X = XH M

We have for h € H, h' € H, meM

(1) [h,h'] € H (Lie algebra condition)
<[h:m]:h1> = <m:[h:h1 ]>

(ad-invariance of the metric)

.= [h,m] €M

now [X,C.,] = 0= [X,,C0.] =0
H M’ H

[XgsCyl = O

because [XM,CH] c

=

(Xl ©

|z

;
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Therefore X, € Cy (CH 1s & maximal abelian subalgebra
of H}.

Since X is orthogdnal to CH we have

A~

X = XM_E M

= XM orthogonal H .

With the help of the Lemma 3.2.2 we may prove the proposition.

Let us take Cy»Cy Cartan subalgebras corresponding to Ty T
and @,V such that - . S
v, (Cy) & Cy
: '¢*(CH) = CG

H being reductive, m*(CH) 1s a Cartan subalgebra of @%(E)

for any homomorphism.q&: H~ G so ir H=2¢ ®Pp,

H
X € P = qx) € m*(g) (invariance of 4he metric). Let us
take y ¢ éG’ y orﬁhogonalto (w*—w*)(CGJ. By the previous
observation and the lemma, y is orthogonal to

¢, (P) and §_(P).

Now, if-t € GH; h € P we have
<o, (h)-y_(n), @, (£)=4(t)>

. _<cp*(5),¢*(t)>—<¢*(h)cp*(t)> -0

G R
m*(t), $*(t) are orthogonal to m*(g),:w'

f

because ¢*(t) and w%(t) € C and
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Therefore, ¥y €C and y orthogonal to (w -%;)(H). But
(m ~y )(H) is the vertical subspace of the submersion at
the 1dent1ty, i, e., y € H .

Since the orthogonal elements to (¢ )(C ) in ¢,

are an abelian subalgebra of G, K> 0 1mp11es there are

no linearly . independent vectors ¢

l’ in Hé such that
[tl,tg] # O and so the dimension of guch subalgebra should
be O or 1.
GED
Observatiéﬂé: ST e )

(1) With trivial modifications the proposition
would be due also for the double product

action,

(2) If we replace ¢ or § by homomorphism § or §

such that, say $(TH) < T,, the conclusion

G.’
K = 0 at the projection of the identity 7(e)
will still follow.

(3) It is clear how to prove the proposition if

¢ but q;(cH) # Cu, from the fact that

all maximal tori are conjugate,

olcy) < ¢

In general, we should take specific homomorphism, in the

‘equivalent class in order to make possible a conclusion
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wilthout excesgs of computation. In most of the cases,

we shall assume that @¥,¢* are such that they preserve

the ordering induced by a system of simple roots.




Section 3., C(Classification of bi-quotients of

positive curvature

Proposition 3.3.1. Let ¢,y : H = ¢ where rank H = rant
and G,H are sémi-simple.
Our construction does not give any bi-guotient with

KM>O.

Préof. From our results of Chapter 2, a subalgebra of
rank equal to rank G is always regular and, therefore,

there are fixed points.

Proposition 3.3.2. Let g,§ : H = G, where H,G are semi-

simple, be such that w*(ﬂ), ¢*(g) are regular subalgebras
of G.
If rank G > 2, there are no bi-quotients of positive

curvature, with the possible exception of (03,A1®Al) and (Cu,Al@Al),

Proof, We apply our results for the case rank H = rank G - 1
rank G » 2 as in Chapter 2 and we get, again, that the con-
dition KM > 0 is incompatible with a free action.

The case n = 2 requires a particular analysis:

(1) 1In fact, there is the example of -[GM].
Thig manifold, an exotic sphere 27 has K > 0
at the projection of the ldentity. However,

there is a lower dimensional subset With 0

sections, ' |




o

(2) The case G = spin(4) = 55 x 85 = gp(1) x 8p(L)

does not give any new result. The diagonal
inclusion of 83 and a homomorphism of the

kind g ¥ (d,1) (a) gives an ordinary sphere,

(b) in fact P, i A (A,0) is such that

¢%(Al) n (A1®Al) does have a common ldeal.

(3) The case Sp(l) x Sp(1)

with - o Sﬁ(l) » 8p(1) x Sp(1)

: 8p(1) - Sp(1) x sp(1)

D o - i
v : g (q,1) e

¥ gb (1,9) has the same conclusion.

(4) spin(5) 1s, as it is well-known, isomorphic
to Sp(2) [HE] and we have a different pre-

sentation of [G-M], example X,

Note [E] (preprint) has succeeded in generalizing the
construction of [Wallach] to a double action of &' x S' on
S0(3), and he got positive curvature with a 8 x 8' invariant
meﬁric'(no bi-invariance), i.e., the Lie algebra pair

(AysIR").




The case A2

A, does not fall in our previous considerations because

rank A2 = 2.

A semi-simple subalgebra is necessarily isomofphie to

Al. There are two such subalgebras. The first (up'ggz

conjugation) regular subalgebra described by 8U(1) - SU(3)

g B+iv]  ~iq B+iy O
= |p~iy -la,
-1y -ig) . [0 0 0|

. (Subalgebra of index 1) -

The second subalgebra can be described by the representa-

tion of Al of degree 3 gilven by'(up'to conjugation)

— -
21 0 O




Both representations being of different index (1 and
respectively) we‘do not get fixed points at the Lie algebra
level; | | |
A discrefe set of fixed polnts can be discarded in thé-
following way. Up to conjugation such points are necesséry

in the maximal torus. Our representations restricted to it

are given by

7 0 Z 0 0
i~ |o 7 0
-, 0. Z
; | 0-— O 1
and
22 0] 0
b4 O
| = 0 1 0
0 7z
o o z
(Up to conjugations)
We would have a fixed point if
— —_ ' [— -
Z 0 0 22 0 0
0 z ol = 0 FANG
© o 1 0 o 1]
i.e.Z:lo
\ o 0 -
The element 0 1 0 is obviously central.

o o0 1




The manifold has the same homotopy sequence thal

e at the origin is positiﬁé.

sphere 85 and its curvabur




We

aigebra Al they get an exotic




Let us ¢all it 8

Index 6 =7
Index » = 1
Index ¢ = 2

$0 well for the pairs (6,p) as (4,0) the index does not

detect fixed points. We shall use the same method

with AE.

If there are fixed points, we may, up to conjugation
find them in a maximal torus. We restrict to a maximal

torug. Thereby the representation ¢ is given




z 0

0 7
¥ by

p )

o 7
and 6 by

Z O

0 z

The element

w

O

o

N

™|




[

W 0
The subset fixed by _ mey be described in a
0 W . '

precise way.

Similarly, for ¢,8 we have to find z such that

zS = 7 ' il.e. 22 = 1 7 = %],
-1 0]
The element has as image either by Y or 0 the
0 -1 :

central element "IM' We can pass to the guotient

Sp(2)/zZ _5.30(5) and we get an action of SU(2) on sU(5).
) R

The quotient manifold by this action is an ordinary

sphere. (Oral communication of Professor ¥. Meyer.)




The Case G2

Let us nobice in the first place that
not one of the pairs of Berger [B]. Neitheffls

A®A. ).

(Goshy

G2 contains four 3-dimensicnal Lie algebras:

1) At generated by the shortest root
2) IS generated by the longesgt root

3) Au the diagonal subalgebra of index 4

1 3

e AT @AY = A

1

-?_%l and

‘4) A28, a singular subalgebra

(see [D1] page 172, 176 and Chapter 9).

(The exponent correspond to the index of the subalgebral)

The fact that (GE,A ®A. ) is not one of the pairs of

1 l)
Berger, ellminates immediately the possibilities

o(hy) = AT y(a) =7
olay) = A y(ap) = a®
o(a) = A5 y(n)) = A" .

In all cases the horizontal subspace contains the

1 3

ortogonal complement to A~ ® A° and [B] such complement

contains a couple of commuting vectors.

For the singular subalgebra A28, we use the description
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of [BB] (page 65) and [DY1] (page 163-173). The Cartan
subalgebra is generated by a vector proportional fb

H3a1+&2 with the usual description of the roots of G2

(see [H]).
The decomposition of GE can be written down exp11CLtely
There are 6 positive roots with the usual relations,

ie. G, =C@® 3 G(ai) where a, and o, are the simple roots,
i=1

We can always assgume

Atccoe G(al)' (eqqiyglently any root of length 1)

3 . c @ G(ag) (equivalently any root of length 3).

i

Also 128 has & basie H, X ,v™ with x Xy + X,

1 !
X = Xl + X2

(Xl,x') € al(xg,x')e Gy (with the notation of [B]) ([DYl],
page 163). TIn the same way of [B] or [BB] we find a pair

of vectors X,Y that

1 28

X L A and X &+ A

Y . &' ang x . a°8

and [X,Y] = 0.  We have, therefore,'zero_curvature at the

brojection of the identity for these vectors.

‘The case of the sdbalgebra A4 c Al @ A3 ls completely

analogous and the conclusion is similar. (We have, however,




take ALF c G(a11@G(3al+2q2) and a-sliéhﬁl d
28 ) '

description of A

This analysis concludes the study 0f diagqn@if'

actions of A; 1f the rank of the Lie group ig 2. .

FINIS

e st i,

P.S. We expect to cover, in the near fubure the cases

(Carh®hyshOhy) and

L4 '
(Ca,AiOgi®Al,Ar$A£DAl).




Appendix

'Wallach found three new pairs that give homogeneous

spaces of strictly positive curvature. They are:
2
(su(3),1°)

(sp(3), su(2) x su(2) «x su(2)}),

al'ld (FM,SPln 8)'

For all of them, rank G = prank H. The first example does

crs . . 2 . —
not f£it in- our consilderations, because TS is not semi-simple.

It has been studied by [E] (preﬁ;;ﬁt).

The last .two do fit into our general congiderations.
We have proved that if rank H = rank G, then there are
always fixed points (for the diagonal and the prbduct action
and for any pair of semi-simple Lie groups). Therefore, it
is not possible to define a bi-quotient for those bairs,
independently of the metric that we put on Q.

Behrard-Berger [BB] showed that there are no new odd
dimensional examples, with Q's that arise from a left in-
variant metric. Our analysis of fixed points has used
his pairs and we conclude that, besides the case rank
G = 2, there are always fixed pointé.

The fact that O'Neill's formula is simply curvature non-

decreasing and the existence of many pairs of vectors on G

such that [X,Y] = O makes 1t unlikely that more general metrics

will provice new examples of positive curvature.




Bibliography

L. Berard-Bergery [BB1] ¢ Riemanniennes
Homogenes simplement conu =5 '
& courbure strictement p ath. Pures et
appl., bb, (1976): P. LL

g homogenes
normales simplement conexe ,rictement
positive., Annali dells S ‘Sup. Pisa
vol., 15, (1961), p. 179 :

J. Cheeger, D. Fbin [l]{ L son Theorens
in Riemannian Geometry 5 1975,

E.B. Dynkin [DY1l], Semisir ra.s of Semi-
simple Lie Algebras, AMS ! ey

vol, 6, p, 111-244 (=)

(72) 1952, p. 349-L62.

E.B. Dynkin [DY2], Maxima
groups, AMS Translati
378 (=5, Trudy Morkov
p. 39-166, L

D. Gromoll, W. Mayeér
Non-negative Sectiona
vol. 100, No.2, Sep.

S. Helgason [1] [
Groups; and Symmetric

0. Loos [LO],
Benjamin, NY- z
B. O'Neill [ON},

mersion, Michigan Math;:

169,

H, Samelson'[SA]Q_WNot_é on Lie Algebras", Van Nostrand,
Wy (1669, it loreE en | -

J. Tits [TI], ”Tabéiiéﬁ’éd Finfachen Lie Gruppen und
Ihren Darstellungen", Lecture notes in Math., No. 4o,
(1976), Springer-Verlag, Berlin.

V.S3. Varadarajan [VA], "Lie Groups, Lie Algebras and  ,
Thelr Representations", Prentice-Hall, NJ, (1974).




N.E. Wallach [WA], Compect Homogenes
with Strictly Positive Curvature, Ar
vol. 96, (1972}, p. 277-295. :

R.R. Wallach [WA2], An infinite family
7-manifolds admitting positive curved R
structures, (Preprint).

8. Aloff-N.R. Wallach [A-WA], An infini
distinct 7-manifolds admitting positivel
Riemannian structures, Bull. Amer. Math.

(1975}, p. 93-97.

N.R. Wallach [WA3], On maximal subsysbtems of
systems, Can. J. Math., 20 (1968), p. 55557

Jo.A. Wolf [WO], "Spaces of Constant Curvatuy
3rd edition, Publish or Persh, Boston (1974

J.H. Eschenburg [E}, New Examples of Manifolds w
Strictly Positive Curvature, (preprint). E

J. Milnor [M1], "Morse Theory", Princeton Univér
Press, Princeton, N.J. (1963). -




