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Abstract of themDiséertation

¥amilies of Abelian Varleties
of Non-Satake Type
Arising from Quaternion Algebras

by
Susan Iroulse Addlngton
Doctor ofrPhilossphy
In the

Department of Mathematlcs

State Universlty of New York at Stony Brook

1981

Iet G be a semisimple ILie group, and X = G/(max. compaeg)
:the corresponding symmetric domain; let %§m) be.fhe Siegel upper
half space; Sp(2m)/(max. compéct). Satake considered the prob-
lem of classifylng all holomorphlc maps T : X "agm), where T

is compatible with a representation p : G = Sp(2m). Such a
situation leads to the construction of "group-theoretic! families
of abellan varleties V = U, wlth base space U = T\X, where T' isg

a dilscontlnuous subgroﬁp of G. - |

Satake classified all such 7 and ¢ with the following addi-

tional condition (x): ILet G =G x G, , where G__ (resp. G.)

ral
AW

s




the product of the noncompact (resp. compact) simple
fadﬁors of G. Let projnc and projc be the projections of

‘ L ons ‘ - I
and G, . For representations p .t G CL(Nl_E,
s G GL(NQ,E),

(#) p ~ g ooprod, @ p eprof .

We construct and roughly classify a class of group-theocretic
“families of abelian varietles In which (%) doés not hold.

Let k be a totally real number fleld and § = {ml,,.,,mm}

the set of Infinite places of k. Let B be a guaternion algebrar
with center k, B # Mz(k), and 8, the set of infinite places of

k at which B is unramified. The group of units of B having norm
one 1s an_algebraic group G QB ig a semisimple Lie group, and
the corresponding symmetric space 1s a product of upper half
planes.

For each ®y € S we construct a symplectic repreientation

Py of G; conslder direct sums of tensor products of the Py

Such a representation p ig called admissible 1f 1) it is in~

varlant under the action of Gal(K:Q), where K is the normal
closure of k, and 2) each tensor product iIn p contalns at

most one Py where 9y € SO.

Theorem., If ¢ 1s admissible, then some multiple of p defines

& group-theoretic famlly of abelian variletles. A

If a representation p of G defines a group-theoretic family
of abelian varletles, then p is egqulvalent to an admlssible repre-

sentatlon.
iv_
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INTRCODUCTLION

|
family 5f abelian varietles is a ¢ -fiber bundle whose

are abelian varletliess the total space, base épace, and
are nonslngular algebralc varleties, and the projJectlon
ap is a rational map. A group-theoretic famlly of abelian
'drieties (abbrevliated GTFAV) is a family of abellan varletiles
‘that 1s defined using a symplectic representation of an algebralc
group. (This will be defined precisely in §1.)

Backgrbund and Applications. The general theory of familles
.of abellan varietles was developed by Kuga and Shiﬁura. Satake
.classified a large class of algebralc groups and symplectic re-
presentations Which admit group-theoretic families of abellan
varieties. ([é—l], [8-2].)

Families of abelian varieties are closely linked with many
areas of algebraic'number theorys they also provide examples in
algebraic geometry which are amenable to calculatibn.

If V - U 18 a GTFAV, then the base space U is8 a quotient of
- a symmetric domain X by an arlthmetic subgroup T of the group

%B of lsometries of X. qm ig a real form of a semlsimple algebrailc
group G deflned over Q. |

Speclal cases of GTFAV whilch arlse ag ﬁoduli spaces for
abelian farieties with additional structures, such as endomor-
phism rings and points of finite order, ﬁhé flelds of modulil énd

fields of definition of V, of U and of "singular" flbers have




e6n studied by Shimura. In l;nost .ca.ses, the field of moduli

as obtained as a class.fleld,

Assccilated to a famlly of abellan varietles isg a Hasge-

Weil zeta function, which can be determined in certaln cases
where the base U is one dimensional. The zeta functlon

coincides with a product of Dirlchlet series of GL,. The case

of higher dimensional base space has been investigated by
Langlands.

| The cohomology of the total space of a GIFAV 1s glven by

a spectrai gequence in terms of the cohomcology of the base and
“the fiber. If the base space 1s a product of upper half planes, .
a theorem of Matsushima and Shimura enables one to compute the
dimengions of some of the cohomology spaces. (See [M-Sh], [K-2].)
For a group-theoretlc family of abellan varieties, the vector-
valued cohomology spaces are lsomorphic to spaces of autcmorphic'
forms on X with respect to I'. Hence GTFAVs provide a means of
realliring spaces of automorphic.forﬁs.

Another algebro-geometric problem ls to consider algebraic
cyeles., One can in certain cases calculate the dimension of the
space of Hodge cycles Iin a GTFAV and describe them explleltly
([k-2], [K-3], [T]). If one could prove that such a cycle 1lg not
algebralc, this would be a counterexample to the Hodge conjecture.
André Weil has suggested that a counterexample to the Hodge con-
jecture might be found in a generic fiber of a GTFAV,

Summary of Thegls., Let G be a semislimple Lie group, K its



)

maximal compact subgrbup; and X = G/K the corresponding sym-
metric domalng let-~§ﬂu be the Silegel upper half space,
Sp(2m,R)/(maximal compact). I. Satake considered the problem
‘of classifying all holomorphic maps T : X = ?nﬁ} where T is

‘compatible with a representation p : G = 8p(2m). SYuch a sibua-

tion leads to the construction of "group-theoretic" families of

abelian varieties V - U, with base space U = I'/X, where T’ 1s a

discontlinuous subgroup of G.
Satake classified all such T and p with the following ad-
ditional condition (x) : Iet Or = Gy X G, where G| { resp. G,)
is the product of the noncompact (resp. compact) simple factors
of %R‘ Let projnc and proj, be the projections of qm onto Gnc

and G,. For representations p , : G . = GL(Nl,m) and

nc
pe § O, = GL(N,,E),

(*) p ~ PncoproanGBpCOProjc.

- All previous examples. of group-theoretic families of abelian
varieties have been of the Satake type.

In thils theals we construct a large class of group-theoretic
famllles of abelian varleties In which (%} does not hold.

Let k be a totally real number field, |k:@| = m, 8 = {ml,...,mm]
the set of embeddings of k into R (the infinite places of k), K

the  normal closure of k, and G = Gal(K:®2). Let B be a quaternion
algebra with center k, and SO the set of infinite placeslof k at

which B is unramifled. The group of units of B having norm one
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1s an algebralc group G, deflned over @3 G, 1s a semlsimple

izt
Iie group, and the correspondling symmetric space is ﬁ%, the

product of upper half planes. )

For each @i € 3, we construct a symplectic'representation
py of G (an "atom™); the tensor product of such representations
is a "molecule," and the direct sum of tensor products is a
Mpolymer." A polymer is admissible 1f 1t 1s G-invariant and
;each molecule contalns at most one atom from SO.
If T 1s an arithmetlc subgroup of G such that there 1sg a

group~theoretlic famlly of abellan varleties defined over Q with

pase space r\%R/(ma.x. compact), then the representation assoclated

with the famlly i1s an admissible polymer.

Convergely, if p 18 an admissible polymer, then there is an
Carithmetic subgroup T of G, such that there exlsts a group theo-
retic family of abellan varieties associated_with p p for some
multiplicity p, with base space I«\Gf[R/(ma,:x:. compact).

This essgentially classlifles sudh familiez, up to multiplicity
of the representation and the cholce of a I-invariant lattice in
the representation space,

In Chaptér I we discuss the ldeas and objects involved in
the main theorem; Chapter II consists entirely of the proof of
the theorem.,

In §1, we precisély define GTFAVg and summarize Kugs's method

for constructlng these famllies. We also discuss Satake's clagw

gification of symplectic representations admitting a GTFAV. In




§2 to §6 we construct the number fleld, algebras, algebraic
gfoup;-and repreéentatioﬁs necessary for the statement of the
main Gheoren in §7.

| In §8 we show that any representation of G admitting a
GTFAV is equivalent to one of the representations defined in

§6. In 89 - §14 we construct a GTFAV from an "admissible" re-
‘presentation of the type defined in §6; the construction follows
:Kuga's program of §1,

An appgndix is dncluded on the theory of central simple
algebrag and quaternion algebras, which is used heavily 1in thig
paper,

Notation and cénventions. We assume that every ring has a
unit element, All algebras we use will be algebras over flelds.
By an i1somorphlsm we.mean an injective and surjective map.

The symbols Z, @, IR, I, and H denote the Integers, the
rational numbers, the real numbers, the complex numbers, and the
‘Hamiltonilan guaternions, respectlvely. By Mn(k) we mean the
algebra of nxn matrices over a fileld k. By GLn(k) aﬁd SLn(k)

.

we mean the general linear and speclal linear groups, as subsets

gonal and special unltary groups. For a k-vector space W and a
nondegenerate alternating bllinear form § on WxW, we let Sp(w,s)

denote the symplectic group of llnear transformations on W.

of Mn(k). We let 50(n) and SU(n) dencte the (real) special ortho-




CHAPIER I

§1. Group-Theoretlc Famllies of Abelilan Varletiles.

A group-theoretic famlly of abelian varieties (abbreviated
GTFAV) 1z a family of abelian varieties that arises from a Sym-
plectic representation of an algebralc group, In a way we willl

describe in this section. The maln reference here is [K-1].

“1.1. General theory. First we'discuss Slegel spaces and their
;various realizatlons. A reference for this topic i1s [5-3],
Chapter II, §7. Then we describe the construction of a GTFAV,
following [K~1].

ILet W be a reai vector gpace of dimensilon 2n, and B a non-
degenerate alternating form on W. Then the symplectlc group
wlth respect to B?is

SP(W:B) = (T € GL(W) : B(TV,TW) = B(v,w)

for all v,w € W} .

The symplectic group 1is an algebraic gfoup; If F 18 a @-vector
space, B ls a @~billnear form, and W = F %ZR, then Sp(W,) is
an algebralic group defined over @.

The épace

‘ %)(n) =~ A0.8) = Sp(W8)/ (nay . compact)

lg called the Slegel upper halif space. This 1s a hermitian sym-

plectle spaceys that is, ﬁ‘n) has a 8p{W,8)~invarlant complex




atructure.

Let S(W;Bj be the set of automorphisms J of W such that
2 —lW and B(u,Jv) is symmetric and positive definite.
Extend g and J to W ® I by (~linearity, and let W, (J) be the

elgenspaces of W ® I corresponding to the elgenvalues & 1 of

J, respectively. Define a hermitian form hB on W@ I by

hB(v,w) = 1p{Vv,w),

It can be shown that, for any J € 8(W,g8), g[W.(J) x W_(J) =0
and hBIWH(J) X W-(J) is negative definite.

let Grn(W®m) be the Grassmannian manifold of all n-dimen-
sional complex Subspaoeé of W® E. The space Grn(W®E) is known
to be a complex manifold, Let ©'(W,p) be the set of points V
(gubspaces of W ® E)Ain Grn(W®m) such that 8|V x V = 0 and

hB]V * V is negatlve definite. Then &!'(W,p) is an open subset
of an algebralc submanifold of Gr, . The map J ¥» W_(J) glves a
'onentouone corregpondence between G(W,B) and &' (W,B), and this
identification glves &(W,B) the structure of a complex manifold.
The group Sp(W,B) acts on 6(W,B) by g«J = ng"l for

g € Sp(W,B), J €S(W,B). By the identification of &(W,p) with
©!'(W,B), we have an action of Sp(W,8) on @'(W,p), which agrees
wlth the natural actlon:

1

g W_(J) =W_{gTg™") = g(W_(J)).

By means of thls action, ®(W,8) can be holomorphically identified



th éﬁ“)(wjg)j We will usually work with the realizations

hd Gt of.thé Siegel space.

. We can foﬁm the product spacé E = &(W,8) x W. The space R

a unigue cémplex étructure that makes 1t Into a holomorphlc
tor bundle, E = &, such that the fiber WJ above the point

€8 18 a complex vector space with complex structure J.

Suppose that Sp(W,B) is defined over @. ILebt G be a semi-
imple algebraic group defined over @. If p is a representation
of G into GL(W®E) that is also a rational map of algebraic groups,
;nd the map p 1s defined over §, then we say that ¢ 1s an algébraic
group repfesentation defined over Q. Congilder p restricted to
f%R‘ If g(p(glu, plg)v) = g(u,v) for all g € Gps u,v €W, then p
fis a symplsctié repregentation. . |

Since ¢ is semisiuple, Gp 1s a semisimple Lie group, and

X = %B/(max. cémpact) is a symmetric space. Suppose X 1s
fhermitian, so that X has a %R-invariant complex structure. An

Eichler map T associated to a symplectic representation p is a

map T : X = &(W,B) such that T(gx) = p(g)T(x). If a holomorphic
Eichler map exists, then we can pull back the holomorphic vector

bundle E = © to a holomorphic vecter bundle over X:

T (E)mmmmmmeey S(H,B) X W = E
Lo |
X 4 S(W:ﬁ)

suppose that T 1s a torslon-free discrete subgroup of ¢




that acts propérly discontinuously on X. Since the action of
G bn X is holoéorphie, I1\X ls a complex manifold., We assume
fﬁhat I" has been chpsen go that r\X is compact, "If there exists
& lattice L in W such that p(D)L = I, then I is an arithmetic
;éubgroup of G. We can take the semidirect product T A L of T

‘and L, which acts on T*(E) = X x W by
(v,v) (xw) = (yx,p(y)v + w).

The group T XL acts on X X W digceoentinucusly, amd the action

is holdmorphicu Eence the quotlent of X ¥ W by the-action of

I' ¢ I 18 a holomorphic filber bundle VL= U, where U = T\X, and

the fiber is the complex torus W/L. If B takes integral values

on L ®x L, then B8 provides'w/L wlth a polarization, sc that'W,L

ls an abelian variety; By applylng Kodalra's Embeddling Theorem,

1t 1s shown that both V and U are compact complex submanifolds of
a projectlve space, and therefore, by Chow'!s Theorem, are algebrale
varleties. In fact, the projectlion v :V = U 18 an everywhere-

defined rational map of varieties.

Such a filber bundle V <= U, constructed uslng W, B, G, p, 7, T,

and L, 18 called a group theoretic famlly of abellan varieties,.

2.2. BSatake's classification. In [S-1], Sdtake clasgified all

the irreduclble representations of slmple Lie groups . of non-compact
type for which there exist holomorphlc Eichler maps. Here we sum-
marize part of his argument and glve his results for the special

m . m.
cage uged in thls paper, namely, G = SL, (R) Yox su(e) .
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L Iy
R) x SU(2) -, and let p be a representation

Let %R

of Gg for which there exists a holomorphic Eichler map. Set

m

G = SLEGR) ©  and G, = su(2

m
1
ne )

E)

hen Gnc is noncompact, Gc 18 compact, and QR & Gnc G
Since G 1s semlsimple, p Ls the dilrect sum of irreduclble

‘subrepresentatliong. For an irreducible subrepresentatilon Py of

RER I

pj'
pj”pi

Such a repregsentation ls called grimary. We can wrlte p = ? p[i].
[1]

Then, as Sataké showed, each ¢ also has a holomorphic Elchler
map, which is determined by the irreducible representation pi
([8~3], Chapter IV, Lemma 4.2 and Proposition 4.3.) Thus the
problem of clagsifying representations is redﬁced to that of'
clasglfylng irreducible representations.

Satake shows that, 1if Gy € G, . then pi!Gj ig nontrivial

- for at most one Gj' {[5~3], Chapter IV, §5.) So if G = G
.then p mugt be of the form

=9 ® o .
P =99 M, R prog

where My 4 1s a multiplicity 1s an irreducible'reﬁresentation

on Gj’ and p:c'oj'j 1s projections G = GJ.
For G = SI, (R), 1f p is irreducible-and nontrivial, then o

‘must be the identity representation into Sp(2/R) = SLQGR). Hence,
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SLEGR), then a representation p defining a

SOTFAV must be of the form

}-LJ pI‘DJJ.

@
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2, &;gebrai

We flrast prove some results necessary for the construction
of the algebralec group G and the representation p. The pro-
pgitiong in thilsg sectlon concern constructing new algebras

rom a flxed algebra by changlng the scalar multiplication.

amma. 2.1, If k and K are filelds, o an embeddling of k 1lnto
and B a K-algebra, then ¢ provides B with the structure of

a k-algebra.

Proof., Define a scalar multipiication of B by k, u 1t kK ¥ B =~ B,

by ule,v) = ¢(a)v. For convenience, we denote w(e,v) by a.v.

Then, for «,B in k, and v,v' 1n B, we have

(ap) v = olap)v = o(a)p(B)v = a-{8-v},
(otB) v = olotp)v = w(a)v + @(B)V = a-v + B-v,

a(viv') = of{a)(v+v!) = a-v + o-v! B

We denote the k-algebra obtained from B via o by R _(B),

@
or by ©*(B), and the identity map from B to RW(B) by o*.
More precilsely, R@(B) 1s the pair (¢*(B),9*) of the k-algebra
9*(B) and the ring isomorphism o* : B = ¢*(B) with a-9*(b) = ¥ (w(d)b)
for oo €k, b E.B. The algebra Rw(B) is characterized by the '
followlng universallty: If B! isg a k—algebra, and ¢ : B = B! is
a ring homomorphism such that Pw(b) = 4(p(a)b), then there exists

a unicgue k-~algebra homeomorrohism ¥ : @ (RB) = B' such that the
I, ¥ E

followlng dlagram comnubes s



i._l
Ll

©* (B)

/N
ki

B ———% B

Proposition 2.2, Iet k and K be flelds, o an embedding of
'k Into X, and B a k—al_gebra. Then there exlsts a K-algebra §
‘and an injective ring homomorphism $ : B = B such that al}s =,
I © 1s surjective, then § is surjective.

We will use the symbol B%K to denote both the pa.i:f (B, %)

and the algebra B,

Proof. By Lemma 2.1, K = @*(K) is a k-algebra via the embed-

ding ®. We can then fprm the tensor preduct § = Bi%np*(K) of
k-algebras. We wlll denote this as § = B%K. We can also con-
sider B as a K-algebra in the usual way. ILet g : B = B be defined
by @(v) = v®1l., This 1s clearly a ring homomorphism.

We identify k with the subspace Xlg in B, and X with the

subspace lB®K in 8. For o« €k,
$lalp) = alp®l = 1;@a:1 = 1,9 p(a).
Hence Ok = o.

The kernel of u i1s {0}, i.e. & is injectlve. Suppose that
-1
(B)va

Thus ¢ ls surjective. -

o 1z a surjective. We can define EE“]‘ by EE“l(vt@B) = o



1.4

_position 2.3. let k and K be fielde, and ¢ an embedding

k into K. Iet B be a k-algebra, C a K-algebra, and ¢ a ring
omomorphlsm from B to C that Y|k = 9, Then there exists a
Ique Kmalgebfa homomorphism n from B :]3%E(tmic such that

e following diagram commubtes:

o/ \n

B ——u—a-C

If ¢ i a ring isomorphism, then n is also.

roof. Define a map f +:BXK~=Chby £f{v,a) = at{v). Claim:
£ 1s k~bilinear.

Tt is clear that f is bi-additive. TIf y € k, then

.
-

i

£lyvya) = ab(yv) = al({v)¥(v) = ap(y)¥{v)
= Y'Q¢(V) = y.f(v,a) and
f(vyyea) = (v-a)y(v) = y-£(v,a).

So f is k-bilinear., Also f is multiplicative in the following

sense. For (v,a) and (v',a') in B x K, we have

flvv',aan') = aa'y{vv'")

ol (v)a'y(v!) = f(v,a)f(vi,a').

i

Now, by the unlversality of the tensor product, there exis

a unique k-linear map m : B =IB%E§~*C so that the following

g
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am commutes :

B@K
¢
Tr///ﬁ il
!
BXK f » C >

re 7 sends (v,a) to v®a. Since £ is multiplicative, 7 is

B(‘?pK by n(v®a) = ay(v).

To check that this 1 1ls well defined, let ¥y be 1in k.

n(vey.a) = yea¥y(v) = o(¥)oy(v)
= $(v)ab(v) = ap(yv) = n(yvea).
'his map n Lls a kK-~linear ring homomorphism and makes the diagram

sommute . Hehce 1t 1s the unlque 7n of the previous paragraph.

ILet B be an element of K. Then

n(y(vew)) = n(vepa) = pay(v) = en(vea),

‘8o M is K-linear; that is, n is a K-algebra homomorphism.
We can 1dentlfy B with B x 1 In B X K. Then f|B = {, and

T|B = . Hence the diagram
B
$ il commu tes .

B ““*$“—+'C

Now suppose that v ¢+ B ~C 1s a ring isomorphism. Then
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|k = o is an isomorphism of k onto K, the center of C. So,

vy Proposition 2.2, § 1s a ring isomorphism. Then n = qroé"ﬁ"l

8 a ring lsomorphism ‘ B

By Proposition 2.3, B%K = {B,%) is characterized by
‘the following unlversality: Suppose (B',p'") is anocther palr

such that
(a) B! is a K-algebra

' ;B = B' 18 a ring homomorphism such that

(e) for any KQalgebra. C and ring homomorphism
§ :B=C wlith ¥|k = ¢ , there exists a
K-algebra homomorphism n' : B' = C such

that n'og! = {.

Then (f,9) i1s canonically isomorphic to (B',®'). That 1s, there
1s a unique ispmorphism € : § - B' such that €c@ = @'. This

justifiles the use of the notation B%K.

Proposition 2.4. Tet k, K, and K! be fields, o : k = K and
: K+ K' be embeddings, and_ B a lk-algebra. Then

(B%K)%K‘ = BdJ%cpKr’ canonically, as K'-algebras. That 1s, there
exists a unique K'~algebra lsomorphism v from (BgK)@K’ to

B® K' such that mofo®d = fowm.
R n.w P Yo



sof. Since ¢ 1s an embeddiﬁg of k Into K, by Proposition
2, we can construet the K-algebra B = B%%K and a ring
omomorphism ¢ : B = B so that ¥lk = ¢. Similarly, we can

netruct the K'-algebra BOK = (B@K)%]K' and & ring lsomor-

nism § : B®K = (BRK)®K!' such that V|K = 1V,
| @ ® Y
Now we use Proposition 2.3, The map Yoy 1s a ring lso-

orphism from B to (B%K)%EU with Foflk = Yoy, and fow is an

mbedding of k into K'. So there exists a unigue K'-algebra

homomorphism n from B$®EG to (B%K)%IU such that the following
¥ Ocp R

dlagram commutesg :

B“I?fPK!
ﬂ\ov&)/ \
B.osB®K » (BOK) @ K!
Foip

From the proof of Proposition 2.3, mn is giveﬁ by

End

1(vey) = y¥eu(v) = y((vel)el) = (vol)® v,
Slnce
(v@u)® 8 = (v@l)@_ﬂ,(a)g,

‘we can define n ((v®q)®p) = v §(a)p. It s obvious that

Momn™ T and n“lon are the ldentlty meps, so 1 1s an isomorphism. ®
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So we can identify (B%K)%K' with Z%@K’, and Teo& with L‘,IU:l"
romn
In partlcular, when K! o= Ky, then ¢ = ¢ Lls an automorphism

f K. Then we have

BOK ~ (BOK)QOK-tm B ©® K .
@ ¢ /o = gowp

ince m 1s canonical, we 1dentify mes with . If 7 and ¢ are

automorphisms of K, then we have Tog = Too 1 B®K 2B © K.
¢ To o 1p
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3. Scalar Restriction

In order to construct an algebralc group and a repre-
sentatlon defined over @, we will use the scalar restriction
functor, Here we summarize some facts about the scalar re-
striction functor for algebras and the corresponding functor

for algebraic varieties.

3.1. If B is an algebra over a field L, K is a subfield of I,
and 1 :+ K = L the lncluslon map, then Ri is the functor des-
cribed in §1. Namely, R, 1s the palr (1*(B),1*), where 1i%*(B)
18 B considered as a K-algebra, and i* 1s the identity map
from the L-algebra B tb the Kmalggbra 1*(B). When K is a sub-

field of L, we write RL/K Instead of Ry and RL/K(B) Instead of
1*(B).

Propogition 3.1. Iet k be an extension Dle of degree m,
and ® = {@;,....4 } the set of embeddings of k into L. Iet L
_be a field contalning the compositum wl(K)°'°@m(k). Then, for

& k-algebra B,

R /n(B)®L = & (BSIL)
KA g ety
i
canonlcally as an I~-algebra.
~ In other words, there exlsts a unique isomorphism j of

R&ﬁQ(B)g)L Into @I%?]; that makes the following diagram commute.
i



Here the map @Eﬂ‘means ($1’°"’$ﬁ)°

The preoof of Proposition IT.2.1 will be delayed until

Section 3.3.

3.2, Now we discuss the functor which restricts the fleld of
definltion of an algebralc variety. Some detalls and proofs can
be found in [W-1], §1.3. Unless otherwlse stated, we consider

algebraic varietles and algebralc groups to be subsets of an

affine space AN(Q) pver a unlversal domaln ), which 1s algebrai-

cally closed. For simplicity, we assume the characteristic of
0 is zero.

Let k and k, be fields such that k, € k € 0 and [k:k | = m,

0
Iet & = {$1""’¢h3 be the set of embeddings of k into Q fixing

k Suppose that V and W are varieties defined over k and kq

0"
respectively, and p 1s a morphlsm from W to V defined over k.
If T 1s the ideal defining V, let I© be the ideal of all poly-
nomials in I with © applied to their coefficilents. Let

v® = V(Im). We can deflne a map pcp s Wom 7P by applyihg this
\g] mm):

procedure to the graph of P. If the map.(p ,;..,p
ig biregular, then we say that W is the variety

© -
Ww - V Tx.. oz



obtained from V by gcalar restriction from k to ko. We write‘

(W,p} = &k/ko(v)’ or slmply W = &k/KO(V)" The exlstence of

such a variety is proved in [W-1].
As an example, let V = A"(9), the affine (actually linear)

¢®
space over O, V 1is defined over @. So V L. An(n), hencs

OR
v - = a"(Q). Also, Ry (A™(Q)) 1s known to be A™(Q), and
the map

b RK/KO(A“(Q)) = AT () - a%(Q)

- 18 a surjective linear map defilned over k. The map

Py g

L, n - n L amn

o

is a bljective linear map defined over K = ml(k)---$m(k),

Actually, R 1s functor from the category of varieties

/K
defined over k to the category of triples (W,V,p), where W and

-V are defined over'ko and k regpectively, and p 1ls deflned over k.
Since an algebraic group G deflned over k is a variety to-
getherAwith operations whlch are k—rationalrmaps of varieties,

G can be considered as a collection of commutative dlagrams in

the category of varileties over k. Because &k/ko is a functor,

1t takes these commutative dlagrams to commutative diagrams d=-

‘ o SO that-ﬁk/kc(
group defined over k. The map p : Rk/kb(G) - G 1s a gurjective

fined over k G) can be consldered as an algebraic

. P
group homomorphlsm deflned over k, and T pwl H (¢) = TIG ~ 1is
1 k/ko i

a group ilsomorphism defined over X.
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The same reasoning applies to algebra-varietles., .(&n

lgebra-variety lg a k-algebra considered as a k-varilety,
hose operatlong are k-rational mape.) Algebralc groups
nd algebra-varietles will be discussed further in §3.3.

Let X be any extension of k and let @ be a fleld con-

OJ
aining K. For k and ¢ = (g} as described above, we say that
9y~ oy 1f there exists w € AutK(Q) such that @ = Wo. . Tet &'
be a set of representatives for these equivalence classes. We

have

Proposition 3.2. ([W~1], Theorem 1.3.1):

. 21
M e (V) gtchi(k)K/K(V ")

Proposition 3.3. ([W-1], Theorem 1.3.2):

(Rk/ko(v'))K ~ g[(v ), (1)K

canonlically.,

3.3, In thig section, we discuss the relation between the functor

R

k/k for algebras and. the functor R

%/ for varleties, algebraic

0 _
groups, and algebra-varletles,

0

Let B be an n-dimensional k-algebra. We wlll construct an

algebra-variety U(B) defined over k. Choose a basls {el,.«.,en}
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for B over k., Let the varlety v(B) be BE?Q congldered as the

ffine space AT(Q). Tence V(B) has an addltive group siructure

over . If multipllcation in B is defined on the baslsg elaments

v ei'ej = X C?jeh’ with C?J € k, consider multiplicatliorn in V(3)
b

We scmetimes write ¥(B) as U(B/k) to emphasize that B is
& k-algebra, and also to Indicate that ¥{(B) ig defilned over k.
The algebra-varlety U(B) has the followling properties.

(1) U(B/k)k = B, where ( )y means the set of
k--ratlonal points.
(i1) For any field L, with k « L & 0, %(B/k) = B%L
(i14) 1J(B§L/L) = (B/%).

(1v) (B EBBE/I{ = 'U(Bl/.k) @ ‘U(Bg/k).

(v) If o 18 an embedding of k into Q,

v(B/k)? B®cp )/w(k

i

I ¢(k) = K,

'u_(tB/k)tp = U(B?;K/K)

For any variety W defined over k, we have (Wk)CP = (Ww)m(k)'
By takling the @(k)-rational points of both sldes of the first

formulae in (v), we have

Il

u(B/k) )% = (W(B/5)%) )

I!

B% )/ (k = Bgm(k)-

cp(k}
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oW U(B/k)k = q, By applylng the fileld homomorphism o to thelr

cordinates, we have the set of (k)-ratlonal points of

B (k) /w{k)), which is B?Ecp(k). The map from B to B?pcp(k)
@ |

resuiting from applying ¢ to the coordinates 1s essentlally

the same as the "1ift" @ of @ constructed in §2. That 1Ls,

% is the map just described followed by the incluslon of B§§¢(k)

dinto B@K,
- @

(vi) For a subfield k., € k of finite index, ¢ = [@i}

0
the set of embeddings of k Into 03 over ko, and

K— = q)l(k)°"gpm(k)s

®s
® ¥(B/k) " =9 B(Bgiwi(k)/c@i(k))

i - ? u(%gK/g);:u(guiggl/K).

Similarlyﬁtorthe algebraic group situation, Rk/k of an
0

slgebra-variety ¥ 1ls an algebra-variety. The.map p Rk/k () = U
‘ <o

is a surjectlve algebra homomorphlism defined over k, and

P

0.
Sp o Rk/ko(k) -@y -

: ol
18 an algebra i1somorphism defined over K. Here, since ¥ i
an Q-algebra, we use the direct sum instead of the cartesian

product.

For a k-algebra B, we have

(vit) S e (W(B/K)) = ulBy e (B)/h5g)



(viii) The set v(B/k)™ of invertible elements of
v(B/k) is an algebraic group defined over k,
and- U(B/k)y = B,
(ix) Suppose that B hag a norm map V3 that 1s

v 1 B =k is a polynomi&l map defined over k

guch that vixy) = v{x)v(y). Extend v to B®qQ.

Then v maps B> to k- and (Be0)* = w(B)* to oF.
Denote the kernels of these maps by BT and 'U(B)l

respectively. Then Y\ B)l is an algebralc group

(
(

defined over k, and u(B); = BL.
(x) For any field I, k ¢ L & Q,
1 1 1
V(B/K)T, = (U(B/K)p)™ = (BSL)™ .

Finally, as an appllcation of thesge formulae, we prove

Proposition 3.1.
P
Apply the map > p

of the paragraph before (vii) to
¥ = u(B/k). We have |

- P P @
% p oy Ry /g (V) = @ v %,

©
so we can take the IL~rational points of both sldes, since 2 p L

©
is defined over X ¢ L. By (v), we have v(B/k) 1 U(Q%F/K).

Since mi(k) c K ¢« L, we can take the I-ratipnal polnts

Uﬂ&%f%£=1ﬂ%TVML=(%%Q@L::%gL

(by (ii).) On the other hand, by (vii),



Q.

(B) % L= &k/Q(U(B/k) )L

.
= @(U(B/k)Ll - @B®L,

1

and we have proved the propositlon..

= RK/Q(B)®L, by (
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. Constructibn of Fields and Algebras

Iet k be‘a'totally real algebraic number field, wilth

ree m over Q. et & = {@l,...,mm] be ﬁhe distinct
mbeddings of k Into R. (Equlvalently, ¢ is the set of in-
inlte places or completions of %X.) For convenlence, we put
= {1, . ..,m), the set of indices of .

. Iet X be the compositium of ml(K),...,¢m(K), so K is a
Ubfie}d of R. If {¢l""’¢d} ig the set of embeddings of K
: nto m,lthen whomi is an embedding of k into &, hence equal to
ome @ Since the elements of the fields @j(k) generate

K, ¢h(K) = K for all h; thus X is Galois over @ and totally

eal.

:Propositioh 4.1. - For a subset SO ¢ 3, there exists a guaternion

algebra B with center k such that

® H 1f 1 £8,

Proof., Iet S, =8 = 5 Pick any finite set T of finite places

0"
:of k such that fSlf + |T| is even. Then, by Theorem A.2, there
exists a (unlque) quaternion algebra over k ramified at exactly
the places in Sl U T, VIn particular, at 1 € Sl B%?R ls & divi-
sion ring with ceﬁter:ﬁ, hence isomorphic'tolﬁ. At the other

places of 8, B is unramified, hence BgﬂR = MQGR). "
: i

We form K-algebras B®EK, and denote B®K by B, .
':Pi Qpi X
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Tet ¢ = Gal(K/2) = {di : 1 =1,...,d}. Since Cotp, maps k into

R, oo, is one of the @j, Hence ¢ acts on &, and on 5.

If c € ¢, then o : & = & 1s one-to-ocne

Proposltion 4,2,

and onto the actlon of G on ¢ is transitive.

proof, The action of ¢ € ¢ on & 1s one-to-one, for 1f

Gotp; = oomj, then G_loqowi = U“loﬁo$3, 80 @, = mj. Any mj
is the image of Gﬁl(wﬁ), so o is surjectlve,

Now, we wlsh to show that for any mj € &, there existis

T € G such that Top, = 0+ Since-@i(k) and @J(k) are both

isomorphic to k, we can find an 1somorphism T i ml(K) - mj(k).
Since mj(k) is a subfield of R € I, T can be consldered as em-

bedding of mi(k) into . We can extend 7 to the algebralc ex~

tenslon K of ¢, (k), and call the extension ¥. We have the

following diagram:

K
~ -
o F
Cp ) S,
ki g (K) — oy (k)7s T,

" But K 18 Galois, so the image of K under T is K. Hence ¥ may

"be considered as an element of G. Restricting T to wl(k), wa

have Tog, = P,

If we let 1+ denote incluslon of K Into iR, by the remark

after Proposition 2.4, we can identify



0
(BRK)®R = B@R == .
oot A ‘"[F 1f 1 £ 38
- : 0
We denote Béiﬁ by BiﬂRf
We can alsc.take tensor products of the algebras Bi‘
For a subset A of S, A =¢gl,}..,a }, we let
=B =B ®B @ ---@B » For a finite collection A
i 4 a, K an K E & :
1 i 2 T
of such sets, A = {Al,...,Ad}, we denote B, = ?}%ﬂj: BAlO~-v
write BA,IR for BA @R and B@;,]R for Bz?lx %IR.

?Terminology. We will use Kuga's termlinology for degcribing

polymer, Sometimes we write A = Ay

contains the game number of atoms,
| since ¢ acts on atoms, 1t acts on molecules by
s{al,,..,ar} = {s(al),...,ﬁ(ar)}, and on polymers by

OBy, e eshg) = (0(Ay), v 0(ay)).

@B

an atom. A set of indices A = {al,..a,ar} corresponding to a

We say a polymer 1s homogeneous if each of its molecules

A

these algebras, An index 1 € S of an algebra B, wlll be called

tensor preduct wlll be called a molecule. A set of molecules
iﬂ =~{A1,...,Ad} corresponding to a direct sum will be called =
+"'+Ad' We will also refer

to the corresponding algebras as atbms, moleculés, and polymers.
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. Construction of Algebralc Group
§5 g Jn.

From the algebra B of §4 we will éonstruct an algabyalce
‘group defined over €. The real polnts of this group will be
a semi-simple Lle group.

From now GHIK and K wiil be the totally real number flelds
of §4, and the universal domain O = &. We ldentlfy 5 with the
;set of infinite places of Kk, SO the subset of 5 for whlch B 1s
unramlfied, and 5, = & - 545. Let v be the reduced nore of the
falgebra B, or its extension to B®L,

Let w(B/k) be the algebra-varlety defined from B, and set
gt = ‘U(B/k)l ~ the kernel of the norm map v : V(B/k)™ - .
;By §3.3{(ix), G! 18 an algebralc group defined over k. 32t

G=%

k/®,
‘defined over ®, and V¥ 1s an algebra-variety defined over Q.

(G'), and v = ﬁk/Q(U(B/k)). Sc ¢ 18 an algebraic group.
Note that RK/Q(B) is a @-algebra, and v = U(RK/Q(B)/Q), by
- §3.3(vii). We have

_ XH XsEX'
GI'{—GQ.C_:UQHRK/Q(B) = B,

 Propogition 5.1.

8 BY®R = &(BO®R) canonically
( ) Rk/@,( )Q S( q)i ) LY s

tha QM = ® 1 = .
so that RK/Q(B)Q;R S@OMQ(IR) @Sle mOMg(lR)CBmJ:IH

1 | g g
b = I(BO®MR)" canonically, so that
(b) G =1 o ) I
m m
G, =1 SL.(R) x I HY = 8T, (R) O sg(a) L,
R g 2 a 2

0 1



'__P_l

*

Py

in §3.2. If
Thus the set
just &,

We have

G

b@1 in B@®&

B®R &= ME(IR)

BER e M, (R) 4t

Part (b).

1 # 4, there is no w in Au%R(E) such that wee,

H1

1l

reduced representatlion.

f=

.

i ES.,amiBgfiﬁﬂiifi

0

irst recall the equivalence relation on @

of representatives of equivalence classeg is

(R /(@ g = By g (V(B/X) T

1 (u(B/) )t

[¢]

Mn(m), . Since, for i €

B®L == MQ(E), we have

o,
g

(BO@R)" = (M € M (R) : det M
CC [
3

oof. Part {(a) ls exactly Pfoposition

~

be

il

(W

together with the fact that B was defined

O’

L

1;

g

£

J

with L =

!

by Prop.3.3

I

bl

nat

¥

Now the reduced norm of an element of B ls defined to he
the determinant of the image of the element in Mh(m) under the

The reduced representation sends b to

Ble {R) .




Congider the represgentatlon g : H = M?(E) defined by

, i 0 Q o 1
i I, ik i B o .
> Loiwn g ) dr (0 sk ()
For x = X =1 Jx, + kxA
’xl X, Xq + ix)
g(X)"v—'-' .
~Xq t IXy Xl'"ix2 /

So the image of H is the get of matrices in Mg(w) of the

a  BY
form ) We have v(x) = det o(x), s0 HY isa igomorphilc
o B
to the set of elements of the form i@ having determinant
~ o el el
one. Hence, for 1 € 8., (DOTR)™ = = 3U(2),
@,
i
Fiﬂally, we have .
II(B®1R) SL,{R) x T 3U(2) . K
® g 0 SO 2 8,

We have shown that Gp 18 a semisimple Lie group. Noftice

1 2 2 2 2
that, since B = {(Xl’XE’XB’XM) PRy f Xy + Xg X)) o= 1},

1

T~ = SU{2) ig topologically a 3-gphere, hence compact. The

maximal compact subgroup € of %R is g s0(2) x U su(2), so the
: b3
0 1

symhietric space %R/C ls

=
wn
P
o
L
—

(T SLE(}R) X T 8U(2))/(n s0(2) x
3 ' S, S :
0 1 O 1

02




=T (SL,(R)/80(2)) x 1 (8U(2)/5U(2))
SO 7

11 Hﬁ X ﬁ p :,5 O *
S ~1

[d5]

i

Here p denotes a single polnt. Since-i)is known to be an

hermlitian symmetric domain,-qﬁ/c ls also.

&8}
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§0. Representation

¥or any polymer A we willl define a representatilon Py of

the algebralc group G.

Following the proof of Proposition 5.1(b), we see that G,

)

congidered ag hne set of its complex polnts, is

_ _ ‘ 16 m
G = Gy *g(}g@) M)~ = 8L, (E)",

@ | 2

L .

Iat proj be the projectlon map of G onto lts simple factor

i SL?(E). For an atom a, let p_ be the map proja

_ ) . ‘ 2
congidered as a representation of G on the vector space { .

For a molecule A = {al,.,.,ar}, let py = p, ®...®p, . For a
. 'l 'I«

@;'”®9A .

polymer & = [Al""’ﬂd}’ let %A = J 4

fa




§7. Gtabement of Main Theorem

Recall that, in order to construct a group~theoretlc famlly
of zbelian varietleg, 1t 1s necessary Gto have: a semisimple
gebralc group G defined over § such that X = qm/(max, compact}
{s a hengitlan gympe tele spacey a §-vector space P and a non-
SEENErETE alternating @-bllinear form B on Fj an algebralc
group representation p @ G = Sp(FeL,8) deflned over €; a holo-
‘morphic Eichler map T @ X = 1¥N) ﬁhat is compatible with p]qmg
a cocompact torslon-free arithmetlc subgroup I’ of G; and a
lattice I € 7 @R such that 8 takés integral values on L X [
and p(T)L = L. When we say that a representation p defilrnes a
GTFAY, we mean that there exist . F,B,7,T, and L that sac £y

3

all thesge condltions.
' ot
We will say that a polymer is admiesible if it is G-inva rdant

and every molecule of the polymer contalns at most one atem form SO’

We asgume that the quaternion algebra B is not Mg(k).

Main Theorem, Let G be the algebralc group defined in 5, and,

for a polymer A, let P be the assoclated representation of G

(L) Suppose that p is a symplectic algebralc group repre-
gensatlion of G, defined over @, that defines a group~theorstic
amlily of abellan varieties, Then there exists an admissible

oiymexr A such that g~ %A over L.
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{(2) Tet A be an admissible polymer. Then some multliple

“%A of %ﬂ ig T-equivalent to an algebralc group representation
P of ¢ defined over @, and P defines a group-theoretic family

of abelian varleties.




i

LHFF BR T1 -~ Proof of the Theorem

. &8 . _Efl‘oof of the First Part

We are given an algebralc group represaentation p

B

of 3 lnto Sn(F??E,B) defined over @, and an arithmetic
"ij

gubgrcup T of G. The regtrictlion of p to %R is a

representation of Gy into Sp(FOR,g) = Sp(W,H) that

‘defines the GTFAV.

) ¥ a3 ‘ F] - \:L . l
Write ¢ R for the gimple component (BSJR) = By g of Oy

-

is
hat - Tl LI = t 1o g celle
so that Gp g, Ci,IR‘ Let G, il Gy X1 {1}, which ls called

1 - L
- 50 Sq
and let G, = II {11 x I g

1

the non~compach part of G

‘R i05°

compact part of G.. ) Ve g a7
ompact part of Gp. We have Gnc ‘ L,

Let p, denote p considered as a representation of Gy lnto
GL(WE). Then py 1s E-equivalent to a direct sum of irreducible

representations:

(g, 0p")

P ~ P .

Each lrreducible subrepresentation p(j) 1s of the form

p

2

(3) - o(o...ep(3)

and p(j) £ )Gproji, where proji is projectliaon of %R onto G,
(3)

i,R?

and Ty is an irreducible representation of Gi,IR'
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Let Gm be the complex polnts of the algebralc group G,
. _ 1. .1 o ar .
and let Gm,m = (B?;E) = Bijm ~\SL2(@). Then Gi,m

:cwmp}@xifluaBLOﬂ of the Lle group Giiﬁ? and Gm = g Gi;m

1 the

o= bLE(“

The representations P2 p(J) are heolomorphic representations of

G = Gg, and pe = p. S0 r( igs extended to a holomorphic repre-
okl I 1 _ P
).

sentation of Gy (m

m -
J
Tt 18 well known that any lrreducible holcomorphic represen

tation of SLg(m) 1s @-equivalent to one of the symmetric tensor
representatlions, s, of dimension n + 1. For n =0 or 1, s, 1s

the trivial crepresentatlon and s, - 1s the identity representation.

1
! (3)
Hence we can pub ri _ Sn(j,i)' Sc we have
= ® b= L ZOPYOD n‘b
P 1 €9 n{d,1i) P jl
Since the representation p = O of %R defines a GTFAV, p
ust be compatiblie with a holomorphic Eichler map 7:

Pt S (Vs 8)

m |

,% 0 Tmmmm,@.ﬁ (N)

=

P

whe re ?;N) 1s the Siegel upper half space of degree N. Now,
the action of G, on X is trivialj hence pIGnC must be compatible
with the Eichler map :

m p|G

jin]
0
b

G o= SLEGR)

Sp (W, 8)

| |
- B ' , p(N)
e | D
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Satake hag completely classified the representaticns of SL @R)M

2
compatible with a holomorphic Eichler map. (See §1.)
By hls results, p[Gnc must be of the form

(*) olGe ~ ©  hy(sqeprod,)
| 165, -

where the multiplicitiles g are nonnegative lintegers.

Wa also have

p o~ ®( ® (Sﬂ(j,i)oproji))’

J ies
go that
() Pl ~ ?[Ség Sn(J,i)°prDji)®(h25 Br(g,n) 1)1

O 3

e igejso(sﬂ((i,i)"pmji”’

where the multiplicity A I (n(j,h)+1),

h&Sl

since Sn(j,h)(l) 1s the identlty matrix of size n(Jj,h) + 1.
Comparing {(*) and (**), we see that, for all J and 1,
n{j,1) = 1, and that for each J, there 1s at most one 1 such
that n(j,1) = 1. Thus any ilrreducible subrepresentation p(J).
of pg has the form | |

(%¥*) : ((Sl°pr031)®( ® Sn(h)oprojh)

T h&s,

p<j)ﬂ-‘< or

h%slsn(h)°pr°jh




where 1 € B,. Nobte that Sloproj, = proj, .
: / : i ' i

Now we will show that, for h € 8, n(Jj.h) is also zero
or one. We must investigate the represenbtatlion projj morea
closely.

Recall that ¢' = U(B/k)l is an algebraic group defined

‘over k, G = RK/Q(G') i an algebralic group defined over @, and

: ¥ o { : X = , X &
that G ¢ RK/Q(V(B/E)) h(Rk/Q(B)/Q) . Since K/Q B)/®)
= @ (BOK/AK), wa have
: @

X ps
RK/Q(BJ/Q) = HU(B%K/K)

Denote by proj. the projecbion of u{ (B)/®) to the ith com-
i h/Q

ponent V(ﬁg'K/K) of the direct sum, Thig is a homomorphism of
i

algebra-varieties defined over K, We also denote the restric-

[

tlon of proj, to a subgroup of U(RK/Q(B)/Q)X by prod ;.

Then the projectlon of V(R B)/Q) to U(§§>K/K) is an
1

K/Q
algebralc group homomorphism deflined over K. So the restriction
cf this homomorphlsm to G 1s also defined over K. Since K €1R,
we can btake the real or complex points of these algebraic groups.
We have

(prod R

Gy : m(BgiK/K)I’é = (Btpéim)x

GLo, (R )



and

(brbj,) .
= 30 S e
: » W BE K/K B® I

(,mi / )m ( mi

The maps (projiﬁR and (proji)m are the same as the representatlons

S

9]

i

g )* = 61, (E).

described above. lence the representations proj, in («), (%%), and
(#%%) are rational representations of the algebraic group G
restricted to %R-or Gy | |

Iet Inj(T) be the sget of injective homomorphismg of & into

r. Any o € Inj(&) induces an automorphism of §, and, conversely,
?any sutomorphism ¢ of § can be extended to an element ¢ of Inj(T).
We also denote by o the restriction of g & Inj () to a Galols
cextension K of §.

Since proji is a ratlonal representation of the algebrailc

)5

group ¢ defined over @, (proji ls also a ratlional representa-

tion of G for any o. BSince proji ls defined over K, proj§

depends only on o|K, that 1s, on o considered as an element of i

Gal (K:®@).

: B o :
. Proposition 8,1. (proji) = ProJy(q)-

Proof. Apply (v) of § 3.3. For ¢ : K » K £ Q = L, we have
B2 k)7 = ® K)QK/K)
V(B2 K) v(CBcpi&),o /K)
= V¥(B_ ® K/K).
)

proj,
Apping o to B(RK/Q(B)/Q) "“_“—;**”1JUB§]§/K), we have

IS



ho

1 /o) EEiiiiiim &« w9 - & l
{RR/Q(B)/ Q) — ? U(BCPiK,K) 1;(13%«(1)}{/&).

Since proj, ls surjectilve, projg is algo surjective. We have

i
_projioproji = proji, 80 projgoprojg = projf; l.e., projg 1s

‘also a profection, The kernel of proj; is @ u(B® K/K), so the

JFL %
kernel of'proj? is ® WBOK/AK)® = @ y(BEK/K ). The pro-
- ogA T gken)
‘Jectlon projg(i) ls alsp surjectlve, and has the same kernel.

n

So both projg and projc(i), restricted to the it component,

are automorphisms of the 1th component. Since W(B_ © K/K) = M, (T)

(
u(i) 2
is a U~slimple algebra, evaery automorphism 1lg lnner. Hence there

is a matrix A € GLQ(E) such that proj?(x) = AxA™T For all x in

U(Bc ® K/K). Since projg(i) ig the identity map, we have
Po (1)

B ¢ _ . -1 . ¢
plogi(x) = A progﬁ(i)(x)A 3 that Is, proj, Vprojc(i) over [
as algebra homomorphlsms. Restricting to G, we have projg ~ projﬁ(i)

a8 group representations, over . - B

Proposition 8.2. For p ~ ®(®(s °PTOJi)): p = p° for

Jji n{J,1)

all ¢ € G.

Proof, Flrst, p 1s a rational representation. Because p defines
. AV T . tt ) = V
a GTFAV, p(T) fixes a la#tice I, where I, RK/Q(BA) U(RKAQ(BA)/Q)Q,
Also, T & = x, . ,
S0, = GQ U(RK/Q(B)/Q)Q Hence both T and L subsets of

@-points of varietles defined over @, For Yy € ', X € I, we have
p(x){%) = 1" for some A' € L. Applyinga, we have p"(¥%)(2%) = (1")°

F
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R TIVIC U R ) e .
or p (¥){n) = A'. Since T spans the linear space BK/Q(BA)’

plvy) = pg(y) for all ¥ & T, Now T is Zariski dense Iin G, so

p = 0% on G, : , "
e have p = p° ~ (P(l))c@ueo@(p(m))og 8o each (P(h))g
igs egulvalent to one of the origlnal irreduclbl p(J). Also,
(p())0 h),o (h)
()7 = (@p(M))7 = a(p(P))°,
i i i i

For each %, (p_(h))c'r
3

= Sﬂ(hli)oprojg(i)' Since G acte transitively on 5, we can

= (Sn(h,i)“proji)g = Sn(h,'j.)G"Prng =

choose ¢ so that o(l) € Sofariiﬁ 8,+ Hence n(h,i) is zero or
one, Thus, for I £ 54 pgj) is sloproji pr sooproji.

We have s@own that any repregentation pQ of GQ gueh that
p defines a GTFAV is equivalent, over [, to a representation
.of %R of the form 7

P ~§f> uj(ig\.proji)
d

where Aj 1s a subset of S, and AJ N SO contains at most one
element. We have also shown that p is invariant under the
action of G.

Fopr an atom a, once an lsomorphism ls fixed between Ba;m
and SL,(R) or sU(2), the representation p, of Gy 1s equivalent

to proja. Hence we have shown that p 1s eqguivalent over I to

the polvmer representation gﬂ,_where A = 2 UJAJ‘ -



il

$§9, Proof of the Second Part

B, Multiplicity and Ratlonallty of the Repregentailon

There are three reasonsg that the multiplicity of an admis- |

gible representation may have to be lilncreased.

9.1. The constructlion of a GTFAV In thlsg paper uses a polymer

of the form A = = o(A), where A 18 a molecule. While A im
Uel

clearly G-lnvariant, 1t may not be the smallest G-invariant

polymer conbalning A. We call a polymey prime 1f 14 contains

no proper (-lnvariant subpolymers.

Proposiltion 9.1. Every G-lnvariant polymer 1s the gsum of prime

polymers. If A = 2 ¢(A), thenA = u ', where A' is prime,
Every prime polymegcgs homogeneous.

Proof. Suppose that a polymer A 1ls G-lnvarlant, but not prime.
‘Then- there 1g a gsubpolymer A" # A that 1s G-invarlant., Since the
actlion of G on the gset of atoms is oﬁemtohone and onto, the actlon i
of G on molecules is also one-to-pne, Because A 1s G-lnvarlant, ,
¢ 1s an automcrphlsm on the set of molecules InfA for ¢ & G.
This is also true of &', so ¢ must map A - A' to 1ltgelf. Hence
£ 1s the sum of two proper G-invariant subpolymers. Becausde A |
has finltely many molecules, we wlll have reduced A to the sum |
of prime polymers in a finite number of steps.

Let G, be subgroup of all © € ¢ such that g(A) = A, "Clearly

g{A) = g'(A) 1f and only 4f o and ¢' are 1ln the same coset of Gy «
L3




Hence A = X @{A) = l6,] 2 ofa) = |Gy |A'. The set of coset
s o&q 0 €G/G,

repregentatives for q/qA acts transitively on the moleculeg of
A', so A' has ﬂo G-invarliant subpolymer, Hence A' is prine.

| On the other hand, any prime polymer containing A must
also contaln all the dlstinct o(A) where ¢ € G. 8o every prime

polymer is of the form z g(A), and, in ?&rticular, 18 homo-

0€5/5,

ZEeNneous . B

In order to construct a GTFAV, we need a polymer (or a

sum of polymers) of the form 2 ¢(A). Suppose the gilven polymer
o €G

A 1s prime. Then [G,|[A = 2 o(A), where A Ls any molecule of A.
o €G |

If M = w@d', where A' 1s prime, then k|G |A' Ls of the desired

form. If A = Zuh,, where A, 1s prime, then,ZuiIQA lmi is a
: i

sum of polymers of the degired fprm. If we let p be the least

common multlple of the integers [qA |, then p A is the sum of
1

polymers of the desired form. Henceforth we will assume that

the given G-invarlant polymer & is 2 o(A). |
) - A '

9.2, Whlle the polymer reprentation Pr is convenlent to describe,
1t 18 not always deflned over §. Because-%ﬂ 1s the direct g um

of ftensor products of t@e representatlions proji, our proof of
Proposition 8.1 shows that Pa is an algebraic group ﬁomomorphism

(but not necegsarily an algebraic group representation over @.) .

In this section, we construct an algebralc group representatinn
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j%ﬂ of G, defined over @, and U-equlvalent to 23 for some multi-
Cpliclty . (Actually, W 1s one or two.)

In order to descrive %ﬂ, we wlll use the scalar regtriction
- functor RK/Q for algebras.

If B is a k-algebra, and k € K we have the natural embeddling

LB BOKby bP D@L Since the scalar restriction funchor

- glves an isomorphic ring, we have the iInduced inclusion

RK/Q(B) - RK/Q(BEK),

We denote this incluslon by rK/Q(i). The new symbol is needed
because 1 18 not a morphism of K-algebras.

If @ 18 a k-algebra homomorphlsm from a ke-algebra B to a
K-algebra C, then ¢ induces a K-algebra homomorphism ¢ : B E K= C,

So we have
RK/Q(@) : RKAQ(BgK)-ﬁ RK/Q(C),

Comblning this wlth the result of the previous paragraph, we have

RK/Q(m)OrK/Q(i) = TK/Q($) ! RK/Q(B) - R&ﬂa(c)'

We can also define RK/Q(m) and rK/Q(m) for multilinear mapsr
and for multlplicative maps. The resulting maps are again multi-

ilnear and multlplicative, respectively.

For an atom a, let ® : B = B be the map defined in §4,
P, a

For a molecule A = [al,.,.,ar}, define

"~

®, BB = & B
A A ajEA By



by

(b)@.,,®$a (b).

aﬁ(b) = $
1 T

a.

Then §, 1s multiplicative (but not linear).

Let FA

by left multiplication, of B, on ¥y by 4,. In fact,

pe s mlnimal left ideal of By 3 denocte the actlon;

LA : BA - EndK(PA) is a XK-algebra homomorphism. We have the

following maps:

L5 “h
B B et EndK(EA)
U U U
% &
x _ A % A
BT et By et AutK(FA) .

Since @A is multiplicative and LA is a K-algebra homomorphilsm,
%Aoﬁh ig multiplicative, and so LA0$A induces a group homomor-
phism of B into AutK(FA); Hence we have a representation of B
or any subgroup of BY into AutK(FA).

Now since RK/Q(B) = B and RK/Q(BA) = B, canonically as rings,

we have the map

I‘K/Q@A) : RK/Q,(B) = RK/Q.(BA)'

Sidce §, is multiplicative, so is rK/Q(@A)‘
Because RK/Q(BA) = By as rings, their ideals are in one-to-

one correspondence, Hence RKAQ(EA) is a minimal left ideal of
rd
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!

5 The - S ’f—! 11 Ces - < .
RK/Q(FA)* thiK algebra homomorphism i induces the @-algsbra

homomorphism

Regn) ¢ Ry /q(By) End@(RK/Q(FA)),

and the actlon of R on R F ) 18 left multiplication.

KJQ
"k /@ ¢A

K/’@g('L

For brevity, we get @ and L, = K/Q . Com-

bining the two maps, we have

' EA LA
RK/Q(B)M ]-:{K/Q(Bj_\&)"‘—wm"——hm+ EHdQ(RK’/Q(FA) )

U U U

ok 2 Ly
B i ] et
Rk/QEB) RK/Q(BA)- — Aut, K/Q(F )) -
Because 5A 1s multiplicative and L, is an algebra homomorphisn,
Iﬁo$k 1s multlplicative, and Induces a group homomorphism of
X s : X
RK/Q(B) into Ath(RK/Q(FA))' In particular, since Gg © R/Q(B) N

1%93A restricted to GQ glves a representation of GQ into

Ath(RK/Q(FA)). Let Bp = Iyeo AIGQ

Although our obJective 18 to construct a representation of
G into AUtQ(RK/Q(FA))’ and later to construct a bilinear form
and a complex structure on ¥,, we willl generally do this for the
algehbra RK/Q(BA)’ then restricst ﬁo the 1deg1 RK/Q(FA)‘ We use

the followling notatlons:

A ] <+ .!' £
&A is left multipllcation of BA on By,




glving an algebra homomorphism of B, into EndK(BA)
‘ 5, B
1g left mulbiplication of RK/Q(BA) on RK/Q(BA)

= D oF [G

A A

i
B

QO

Sometimes we will use ﬁA to denote BA'

AR and LAQR be the scalar extensions of QA and Lg
from ¢ to IR. Then

Let &

"~

@A,]R' : CﬁR - F/@, B )@]R) = GIELQ(BU(A)JJR

= p¥

)%
AR

We also have

o . X
Similarly, QA,E maps GE into %A,m?

by m

© o

R ~ Autp (R K/@ ) JEIR)

and
x

LA,,(& t B@’m - Autm(RK/Q(FA)@{E).

Combinlng thege maps and restricting to CRr and Gp, we have

representatlionsg

%ﬁﬂR t Gp ﬂ'Au%R(RK/Q(FAﬁER)

Simiiarliy, we have

%QR : O AutB(RK/Q(BA)@]R)

_%\,m :, G H Autm(RK/Q(BA ).




of -

Mlrat wa need teo know more about the ldeal Eﬂs

Proposition 9.2, B, 1ls isomorphlc elther to MN(K) for soms N,

o1 Lo MN(B(A)) for gome N, where B(A) 1s a dilvislon gquaternion

algebra over K.

Proof. If we prove the result for |A] = 2, the rest will follow

by induction. So let A = (i,J). Let hi{B) = (hl(B),hg(B)g..,,hr(B),ﬁa}
€ /P Xu o X7 /270 X% Q/Zix.., be the Hasse invariant of a simple
algebra B 1in the Brauer group of K. The flrst m places are

understood to be the Infilnite places of K. The algebra B is

trivial {that is, lsomorphic to MN(K)),if and only if h(B} = 0,

By the remarks in the appendix on central slmple algebras and

Theorem A.2, B is equivalent to a quaternion algebra B' (that 1s,
N(B')) if and only LF

isomorpnle to M
(L) |Ram(B)| 1s finlte and even and
1

(i1) for every place L € Ram(B), hy(B) = 5

So we must show Gthat Bi ® Bj gsatligfies these conditions, or that
We will abbreviate Ramr(Bi) by Ry, Ram(Bj) by RJ, and
Ram (B ®BJ) by R. Let p(S) be the number of elements 1In the set

1
S, mod 2. ¥First suppocse that Ri and Rj are dilsjoint.  Then

R =Ry U Rj clearly satisfles (1) and (il). DNow, 1f R, and RJ.
are not dilsjoint, set T = R, n RJ.. For & € T, h’L(Bl®B2)

- P E'Ll 33 e o~ AT » i
= hy (B,) + h%(Bg) = o+ & =0, Since R, - T and Rj - T q;c



dlsjoint, R = (Ri~T) U (RJ"T},-SO that R is finlte. Now

p(R) = p(R;) - p(T) + p(Ry) - p(T) = p(Ry) + p(Ry) = 0 mod 2, %

it

Ny
Condition (11) ls clearly satisfied. We have shown that

B, ® Bj ﬁD{E(B’) for a guaternion algebra B!. If B' 1g not

a division algebra, then B! EiME(K), so By @ Bj 2 My (K). B
We have shown that B, is isomorphlc to Mh(K) DT'MN(B(A)).

In fact, 1f B, =M (K), ¥ = 2", where r = |A], and, irf

o~ : -1
By, ——MN,(B(A)), N' =2 .

: . N _ N o
Case (i). If B, =M (K), then F.. =K', the direct sum of N
coples of K. The representatlion ﬁ% maps GQ into Aut { K/Q(b )).
- o N PN .

Since F, =K, RK/Q(BA) =Q ", where d = |[K : @|. Hence Gp, 8

Nd)

mapped Into Ath(Q « EndQ(QNd) 2= MNd(Q). Also, Eﬂ o maps
2

Nd

. . Nd .
Gy into Aut (Q %) < Endm(m ) E.MNd(&). Since Gg € Gg» e

can consider %A,m as mapplng GQ into MNd(m)‘

. ) 3
Case (iL). If B, =M (3(A)), then F, = (A)N . Then the re-

tati . !
presentation Eﬂ maps GQ into Aut RK/Q A) )) Also, Rﬁ,ﬁ
maps G into Autm RK/Q )gm) We have

1

Re/q(B(A)Y) @ T = [R 4 (8(8)) & oI

=& (3(1) e )" = [uy(a) )7,

o€G

o | N'd N'g
Hence %A,E maps G, and GQ, into Autm([Mg(m)] ) o Endm([Mg(m)}
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Now we return to the representation o Recall that we

have agsumed that A 1s of the form A = 2 o(A). The represen-
o &l
tation gends G, € B into @ @ B & via the ma
g ¢ céq(aiGA( cy(a‘i)K ) g
czq@c(ﬁ), _We have
@ ® B & T = @ (@B S0
Ueq(aiEA( o(ay) & )) @((A @(ai))K )
= @B @IL) = @B, L
C}( U(A)K ) Q(Ag )

In fact, % $S(A) =2 RK/Q(&ﬁ)' On the other hand,

“’g(f(%(a.i)?“‘” ””“E?%E (L)) = My (L) = My, (@)
where N = EIAI.

.Thus, as set maps of G into RK/Q(BA) g C, pp and ﬁﬁ,m
-are ldentical. However, the representation spaces of P and
%ﬁ r &re sometimes different. The representatlon space of £
X .
is a minlmal left ldeal of MNd(E), hence lsomorphilc to ENd.

In Case (1), the representatlon gpace of L 1s also mNd.
. 2

Since WA and %ﬁ,m are the same as set maps, O ™ Pﬂ,m over (.
In Case (il), the representation space of By . 1s iso~
1 ’
morphic to EAN d - mENd, since N' = 2{A|~1' The representation

space RK/Q(FA) @ L ig a left ideal of RK/Q(BA) ® &, hence 'the

direct sum of minimal left ideals. We have just seen that a




3
~)

that a minimal Jeft ldeal of'RK/QCBA) ® @ 1ls isomorphic to

JA N
mhd, and the representatlon space of Fy . g g9, Hence,
A 4

in Case (1), 2fy ~ Py 5 over &.
iy

In the construction of the GTFAV, we use the representa-

tlon Pﬂ;ﬁ* Ag we have Just seen, Pﬂ;ﬁ is equivalent, over {,

=

LI in Casge (i), and to 20y in Casge (ii). The representation
apace of %ﬂﬂR is RK/Q(FA) g:ﬁ. We wlll gall this vector space

W. We somebimes write W, for RK/Q(FA). If we get A = (Alé...,Ad);
then W 1s the direct sum of d vector spaces, each corresponding

to a molecule. We wrlte this decomposition ag W = WA ®,..@WA »
1 d
or someblmeg W == Wl®-eacw .

In Case (1), for each 1, W, = 2% R, where ]Ai[ =r., In

Cage (41), Wj e 2.27 or wi = ET"lﬂH. In the second gltuation,

we consider I ag an R~-vector space by letlbing H act on ltsell
by the regular representation.
-When considering the representation %ﬁ;ﬂ’ we denote the

representation space RK/Q(BA) ® R by ﬁ. We set BA ® R = ﬁA.’

i i
so that § = ﬁ‘A @...@ﬁA .
1 A

We set PAj = A;RiWAi, o that By = ® Py , and

i
%A. = @&,'IR {&Ai’

S0 that;%
5 Fid)

=@ﬁA.

SR 3

The third reason that a multiple of A ls needed wlll appear

later when we construct a bllinear form and complex structure,
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o

§10. Construction of the Tiber Bundle V L= U

In thisg gectlon, we find an arlthmetic subgroup T of G

and a lattlce L In W.

Theorem 10*1,-([V}, IV, Theorem 1.1): Lest

= N SL(2,R)., Let ® be an order in B, and o

lESO

the group of units of © wlth norm one., Denote by § = 3 Ej

; . 1
CTI'}. e HU B 1R
iQuO

the standard inJection of B inte R By g+ Then the group
1€S ?
0

5(@1) ig isomorphic to 67, It i1s a discrete gubgroup of G_ .
P P ne

Gnc/ﬁ(Gl) hasg finite yolume, and ls compact if B is a division
ring. |

In fact, if B 18 nct a division ring, then B = Mé(k), and
%R-z Gnc' The congtruction gives a Satake type GTFAV, wilt
Gnc/ﬁ(él) non-compact. This 48 the reason we have required

that B # My (k).

Proposition 10.2. ([V], IV, Proposlition 1.6): ILet ot be as

1
above. Then & contalns a torsion-free subgroup of finite
index.

Let & be any order of B, and'@l l1ts group of norm-one units.

Let T be any torslon-free subgroup of @l} If we consider I ag

o So T' is also a subgroup of

G, via the map & o of B Into g BiﬂR‘

a subset of RK/Q(B), then I" € ¢

3. Let C be the maximal compsact subgroup of O -




i

Then U = \qm/q ig a compact complex manifold.

gl a4 - = ) 1 a n ‘7'a T X 1 g
Proof. Since Gp = G . X G, and G, 1ls compact, we can ldentify

QB/C with GHC/C”Gnc’ and T\cf[R/c with \Gnc/ « By

(TﬂGnc) (GﬂGnC)

Theorem 10.1, \G,_ ./ is compact, so \G,/C is alsc
(Tne, ) "% (cna,,) T e

cotipact, Since T hag been chosen to be torsion-free, \%H/C
T ,

o e
ig a manifold, Now QR/C = % . It 1s known that ﬁ is a
n
0
complex manifold, and O acts blhomomorphically on ﬁ, . (8ee,
e.g., [5-3], II, §7.) Thus \Gg/C inherits a %B»inVariant
T

complex structure. #

In fact, ﬁy the general theory in §1, U = “\QE/C is
algebraic.' | ‘ .

We recall some number-theoretlc definilitlons énd facts.
(see, e.g., [W-2], especially V, §1, §2.) Foi k a number fleld,
a k-lattlce 1n a flnlte-dimenslonal k-algebra B 1s a finltely
generated ©, module that contalns a basls for B over k. .(@K
denotes the ring of integers of k.) AnR-lattice in an R~
algebra 18 a finiteiy generated dlegcrete subgroup that contalns
a bagls. Any R-lattlice in an n-dimensional R-algebra 1s i1go-
morphic to Z°. |

An prder in a k-algebra 1s a subring that is also é k-lattice.

Let k! be a finlte extenslon of k, and 6. thelr rings of in-

O K

tegers, and A' a k'-algebra, If an @k,~module L is a k-lattice
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in A', then it,is a k-lattlce in Ryl/k(Al)‘ The intersection

‘ol two k-lattices is a k-labbice. For any two k-lattices I, and
L', thers exists an Integer n such that n L = L',

Tet 6. ba the maximal order of B that contalins the order &

B

‘uged In the selection of I'. The image of 6y under ﬁi is con-

tained in 6 @ @K = 6, which is an order in B,. Hence the
~ 1 ] i
Py (Oy) _
und ey QA 18 contained in & ® ...® ©_ , whilch 1s
a a
1 @K @K by

an order in BA’ let ﬁ denote @A congldered as a subset of

RK/Q(BA} = RK/Q(?A)' Set L = [ n-wQ, where Wy = RK/Q(FA)‘

image of @B

Proposition 10.4. L 18 a @-lattice in We s p(TYL = L, and W/L

18 a real torus,

Proof. Since @A 1s an order in BA’ it 1s a K~latilce. Hence
ﬁ is a @-lattice 1n RK/Q(BA)* Slince ¥ is an ideal of B,, L
ig a finltely generated Z-module 1n WQ. We mugt show that L
contains a @-basis of WQ. Take a basis [el,...,es} for WQ

. . . H
and extend it to & basils {el,...,et] for RK/Q(BA). Let L' be
the Q—latticeEZel+vno+ZZet.

that nL' = ﬁ. Hence nL' N WQ

and the set 1s a basis, L is a @-lattice in WQ.

Now, thers is some Integer n so
cfn WQ = L, Since {nel,.,.,nes}

ig 1n nL' N W s

Now we will show that p(T) maps I, onto itself. BSince

p(T) = g, (T) Q_%A(QB) < ©,, and &, is a ring, p(T)6, & &,. By

definltion of p, p(I‘)WQ = WQ' Hence p(T)L £ L3 that 1s, for

any ¥ ¢T, p(y)I, € L. So also p(y—l)L ¢ L, and hence




Hl)L ¢ ply)L, We have

L ¢ p(y)L el for all v €T, so p(y)L = L.

We have shown that L ig a finltely generated Z-module in

W® that contalns a basls for W S0 L ls a finltely generated

4 @J‘
dlscrete su?grcup of W m—WQ ® 1R whlch contains a bagisy namely,

AimW

I, 18 an R-lattlice in W. Hence T, &7 , and W/L ig a real

torus., , ' @

Ag described in §1, we can form the semidirect product

\XXW T

I' ¥ I.. We then have a fiber bundle V = ML e T\k er,

where the base space U 1s the compact complex manifold \%R/C
o

and, for any x € U, the filber W"l(x) is a torus lsomorphic

to W/L.




§11. Alterpating Billinear Form

In order to show that p defines a GTFAV, we must produce

a real-valued bilinear form B on the representation space W

such that

(£) B is alternating and nondegenerate,
(41) B is invariant under the action of Gy,
{111) B takes integral values on L % I, and
(iv) if g, 1s the complex structure on the fiber
W, =W above x € X, then B(u,JXv) is symmetric

and positive definite,

Properties (1) and (i11) show that p is a symplectic represgenta- i
tion. Property (1lv) -will be used to explicltly construct the |
Eichler map. Properties (i), (iil), and (iv) provide each fibevr 5
WX/L of the fiber bundle V = U with the étrudture of polarized

‘abelian variety.

In thig section we construct 8 and show that 1t i1s alternat- i
ing. The nondegeneracy of g will follow from the faét that
B(u,JXv) is posltive deflnite. -

We will define % on RK/Q(BA), then restrict to B on the

ideal RK/Q(FA)'

11,1, The construction of B differs according to the type of

the moiecule, For an admissible molecule A, we say A 1s of

type I if [A N SO[ = 1, and of type IT if A N SO = ¢. If every
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molecule in a polymer ig of type I, we say the polymer is rigld,
D _ . 3 P g

Tf nobt, we say 1t is of mixed type. Wote that, if S, is non-

? . 0
empty, then there 1s at least one molecule 1in & of type I: ir

[¥a]

a €A €2 1s an abtom, there exists o € G so that o(a) € 2

and a{a) € ag(A) € g(A) =MA. So 1f all moleculeg of A are of

o
<G
e

o

= S~

i~
A"

ct

=

D

]

2

]

‘Slk Hence QB 18 compacht, X 18 a slingle point,
and the famlly of abelian varletles is a single abellan variety.

First we prove a few lemmas necessary for the construction

Temnma 11.1, There exists & nonzero element m in @B such that N

n' = -1, and fgrewyyj;és, mi(v(n)) is positlve.

Proof, By Theorem A.3, B contains a fleld L which is a totally
imaginary quadratic extension of k. Hence L = k{(4d), where

d € k is totally negative; that is, mi(d) <0 for all i €35,
Iet ﬁ = Jd. The involution on B induces the nontrlvial CGalols
automorphism ¢ on L, where o{n) = ~n. So, 1f we consider 7 as
an element of B, then n' = ﬂn.r Now v(m) =mn', so mi(v(n))

= mi(ﬂn‘) = mi(“d) » 0 for all L € 5. If m is not in &, we
can mulbtiply 1t by a Suitably large rational Integer N3 the ;

same propertles hold for Ntu. &

We note for future reference that, if @ € 6_, then o' = «.

If o is a nonzerp element of Gk’ then an € @B, (un)’ = -om, and

vy (Vian)) = @i(ﬁeV(ﬂ)) = wi(u)zv(ﬂ) > 0.




For any simple algebra B over a field K, let TB denot

reduced trace in B.

Lemna 11,2, T, (b) = 0 7o (b
- ' A aiﬁA fy

Prouf. The reduced trace ig the trace of the reduced represenia-

tion, where pred(b) = bh®1 elaﬁ{ﬁffN%(m). Under the isomorphism

B, ®F)®.,.8(B, OF)— B, @I

the element (b, ®1)®,..®(b, ®L) goes to (b, ®...®, )®1. Hence

a a a a

1 r 1 r
the reduced representation on BA 1ls the tensor product of the
reduced represgentatlions on B, . The trace of a tensor prolducs
, A

of matrices i1s the product of the traces of the factors so
t_{b)= T 7_ (b ) ‘ z
Ba aiﬁA Bai &y '

Lemma_11.3. The canonical involution In B, = B K 18 1lnduced

i
H
from that on B by (b%’a)1 = b gba. There 1as an Involutlon on
' , i i
t t
B, =B ®...®B_ deflned by (b_ ®...8b_ ) = Dbl ®...® .
A aq a.. ay a., a4 a.,

Proecf. The map ( )[ on By ig well defined because

t
b, ®a + b/ '

i 2

® g = (-btl+bé)®{x. = ((by+b,)6a)

!
= (b,®at+b ®a)' = b, ®a + b

1®atby 1 ® 0.
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t ! . 1
+ b ®a, =b @ (al-k(i-z) = (b®(al+a2))

Il

(ogay)' + (b2ay)' = b ®ay + b'®ay,

and, for A € Kk,

(oga)’ = (M) ' ®a = A'®a =b' &g (Ao = Db &N
= (b®.q)'.

The map clearly fixes K, so the map 1s K-llnear. Moreover,
the elements of ¥ are the only elements fixed by ( )'. Fix

a basis (e ,en} for K over ¢{k). Then x € B, 1s uniquely

l}t.l
t f
agsed a = . ¢ B. = . ®e, .
expressed as x‘ 2 QL%EHR with bi € B_ So x 2 bl el It
X o= x', then bi = bi’ by the unigueness of the expression. But
the only elements of B fixed by the involution are in k, so

b, € k: hence x EK%K?—‘K.

i
The map 1lg antl-multiplicative, since
t 1 1
((bl®@l)(b2®a2)) = (blbé®&1&2) = (byby) ®a, 0,
= blo!®a.a, = (b,®a) (bi@a. )
2b1 " %2% p¥0p) AP FR; /.
Also (b®x)'' = (b'@)' =Db''a = b® g, so this map must be the

.

canonlcal involution on Bi'
Now we consider the map ( )’ on B,. By the definition of
the tensor product, the map is K linear. The map ls anti-

multiplicative:



H2

The map compoged with itself 1s the 1ldentity, since this 1s

true of each component involutlion. Hence the map is an in-

s volution on BA' B

Lemma 11.4. For u € By, Tg (uf) = 715 (u).
. A A
Prooi. The element u is a linear combinatlon of elements of

P . f _
the form u,®...®u , where u, €B_ .. If - (ui) =T (ui),

r ay ay
then clearly the lemma is proved, by 11.2. Under the

reduced representatlon, the involution 1n B, extends to the

o a b l a byt A& =b,
unlque involution in Mg(m). For (C q) € ME(E), (C q) “(~c o
. a b '
If we set p. . {u,) = (] 4), then m(ui) = tr(pred(di))
d -b
= tr(pred(ui)') = tr(, ;) = a+d = 6T (Prgq (Uy)) = T(ui). 2

Iemma 11.5. Tet fl""’fn be bilinear forms on vector spaces
Vl,...,Vh respectively. Then there 18 a unique billinear form

T :'®fi on ®Vi defined by

fr{ev oW, ) = Hf&(vi,wi),

i)

If all the fi arenondegenerate, then so is f. If an odd number
of the fi are alternating and the rest are symmetric, then f is
alternating. If an even number of the fi are alternating, and

the rest are symmetric, then f 1s symmetric.
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Proof., The first two statements are proved in [B}, Chapter O,

e

§1L, No.9. Suppose that all the fj are elther alternating or
symme tric, and that the number of alternating form

suffices to check vectorsg of the form v = &v

g9 W= ®Wi" We
have
f(W_,V) = I fi(Wi,Vi)
= 0 (e vyewy)) B (viw) = (-1 (v W),
£oalt. 1l £ysym. 9 d ’

So f is alternating if m is odd, and symmetric if m is even. &

11.2. Type I. Here we construct a bilinear form BI, We will

see in §13 that, for the complex structure J,. to be defined in

§12, @I(u,Jyv) is a gsymmetric form that is positive de-

finite on subspaces Wi coffesponding to mplecules of type I.
By Lemma 11.1, we can choose 1 € @ﬁ,such that n' = -1 and

mi(v(ﬁ)) is positive for all 1 € 3, k

FPor use in §13, we have the followlng lemma.

Temma 11.6. There exist matrices Mi in MEGR) and real numbers

li such that

whers 1 € SO.

Proof. Since B, ® R 1s a matrix algebra, the trace of $i(n)

i

as a matrix 1is T(Ei(n))s and the determinant of Ei(ﬂ) 18




6L

{
o

H?(mi(ﬂ))° Singe n € B, we have, from Lemma 11.3,

tr (e, (n)) = 7@ (n ' =& (n) + & (n)

W

!

i

%i(ﬂ) + %i(ﬂ') = ai(n) + $i(—ﬂ) = 0.

Also,

det(§, (n)) = v, (n) = & (W, (n)
= @i(ﬂﬂr) = 51(\’(7})) » O,

by the cholce of mn. Hence there ls some Ki € R such that

i)

det(@i(ﬂ)) = xg. We may assume that ), » O. So the character-
2 + k2

L= G, and 1ts eigenvalues

lstic polynomlal of Ei(n) ig X

are & /-4 Moo

| oy . |

The matrix ( ) also has trace zero and determinant
Ay O

o A

ki. Since ﬁi(ﬂ) and ( i) are both matrices with distinct

-}\i O
elgenvalues and the same characterlstlc polynomlal, they are
gimilar, Since they are real matrices, they are sglmilar via real
matrices; that is, there exlsts M € MEGR) such that

0 A

From now on, we will fix isomorphlsms between Bi ® IR and

MEOR) for i € S, SO that
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I 1 £ B4+ we fix an Ilsomorphism arbltrarily. (Actually, in
thils sectlon and ih §13, we will adjust 7 by a multiplicative
'conatant o € ®k' Howevér, here we will assume that the proper

cholce of m has already been made.)

Define maps e asnd f from Ba X Ba to Ba

by

e(u,v) = uv'

H
j
-
<
I

utp, (n)v'.

Let 7 be the reduced trace on B,. Then Toe and Tof map

Ba b3 Ba to K.

Lemma 11,7, Tee and Teof are K-bllinear forms Toe 18 symmnetric,

Y

and Tof 18 alternating.

Proof. Since the involution is K-linear, the maps e and f are
K-bllinear, Slnce 7T 18 K-llnear, Tee and Tof are K-bilinear.

Recall that T(v') = 7(v). Then
Toe(u,v) = T(uv') = T{(uv')') = 7(vu') = Tee(v,u),
sp Toee is symmetriec., Alsp,

Tof(u,v)

T(up, (n)v') = r((uy, (n)v')")

= 1(v§, (n)'u") = T(vy,

(nt)u')
= n (v, fut) = ~Tef(v,u),

go Tef 1s alternatling,




on

We sometimes write

E = Tof, ®{ ® Toe_ ).
By Iemua 11.2, we can also wrlte

Ea. = TO[f'

e
&)
e
4
’—TI
@
o
o
o
I_I:

where 7T 1ig the reduced trace in B,. Agaln by Lemna 1i.5, Ea

: J
ig alternating because Tef 18 alternatling and Toe Llg symmetric,

The map 2 E_ 1s again an alternating K-~billinear form
a.€A ©j
J .
on B_lﬁL X B,, since all the summands are. Silnce this function has
b2

values in K, we can apply the trace'th/Q of number fields, which

nas values in @. Recall that 1* is the identlty map from B, to

RK/Q(BA)' Then we have

S R, | =B t _
.. (%) {1 o I
RK/Q(BA) X RK/Q(BA) 7B, KBy K @.
let
I | %y~ %4-1
BL = hp  o( s m. )e(1¥)7T x (%)
K/Q aJEA aj .

Except when we wish to make a distinctlon, we will use 1¥* to
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: ' AT .
ldentify B, am% RK/Q(BA)y So we abbreviate ¥~ by trK/Q 5 Eaj.

We -have

(11.8)  B7 = tryg o 2 Ha = Vgse® s rir, o @ e )]
. i 314 1

—tr, ,eTo = £ O®( ® e_ )
K/Q a € 73 14y %

gince T 18 linear.

Proposition 11,9, The map BT
(a) is an glternating @~bilinear form on RK/Q(FA) X RK/Q(FA)’

(b) takesg integral values on L x L, and
(¢) 1s invarlant under the action of G,; that Iis,

L

BBy (2) (), By (€)(v)) = p(u,v) for all

g € GQ and u,v € RK/Q(FA) = WQ.

Proof. We will prove (a), (b), and (c) for %I on RK/Q(BA)5 the

same facts are then clearly true when %I is regtricted to the
ideal RK/Q(FA)’

(a) Since trK/Q and 1* are @-linear, and Z E_  1s

: , J
K~llnear and alternating, %I 1s @-linear and

alternating.
AT
(b) By (11.8), B = tr, ,eTeX f ©( @e_ ).
| K/ ey tagy ey
By Lemma 11.3, the billnear map Z £ @( ® e, ) can be written as
| _ 3 1A T2 -
un,v', where u,v € By, and my = 3 l®...®§é (n)®...@1l. Since

A -
: . €A
aJ J




o8

@a'(ﬂ) €6, , and 1l € 6, for all a,, m, € 6y -
d J 1
Since @A is an order in the K-algebra BA’ there 1s a finlte

set {elﬁ,.‘,es} of generators for €, ovexr &,. So any v € 6, can

8 4 — - ! .
be written v = X Cy8ys where each Cy € QK. Then v'! = 2 Cq€ys and
the elements e;, are In BA, but not necessarily in 6,. However,

_ N N
5 such that dici

Let D be the least common multiple of the d,. Then Dv' € &

for each ei, there 18 a rational integer d € 6,
for any v € QA*

If we replace 7 with Dr, then Ta 1ls replaced by DﬂA, and
for any u and v 1In O ubmn,v! € 6,. Nobte thatD €% ¢« 8., 50
Dmn hag the propertles stated 1n Lemma 11.1.

For this new m, unAv' maps ﬁ X £ 5o 6,. Since 7 maps €,

A
to &,, and tr maps 6, to Z, we have shown that %l takes

K K/& K
integral values on ﬁ X ﬁ.
(¢) Recall that ﬁﬂ = ﬁAogA is a map from G, to Ath(RK/Q(BA))*
If g € GQ, v € RKAQ(BA)’ then %A(g)(v) = ﬁA(g)v. If
we use.i% to identify B, with RK/Q(BA)’ thgn we have
%A(g)(V)-= ©, (8)v.
So

(x) $L(E, (2) (), B (a)(v)) = B(E, ()u, ¥, (e)v)

{l

try " (By (8)uny (B, (g)v) 1)

= trK/QT(gA(g)unAV!gA(g)r}'

4

© t = ® (o ', congiderin € G, €R B)*
'A(g) aiéA(mai(g)) 2 g £ Q ,k/Q( )
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By the same argument used in the proof of Proposition 5.,1(b),
) ,

QK = i%qﬁik The inclusion map GQ - GK is glven by
g ($l(g),...,ﬁg(g)), considering GQ as a subset of B, So if
g & G v(ﬁi(g)) = 1, where V 1s the reduced norm in B,. Since

B, 18 a gquaternion algebra, 1 = v(%i(g)) = @i(g)(@i(g)}‘e
Hénce w, (g)! = ai(g)_l for 211 1 € S. So aa(%)l = ®(% (E)JM1

= wA(g) “. Then the last line of (*) becomes

-1 AI(

) = trK/QT(unAv‘) = B (u,v),

b g7 (B (8)uny V5, (g)

. : : . AT
since T Is Invariant under Inner automorphlsms., Thus BI is

lnvariant under the actlon of GQ. &

' A
Wa have constructed @-bilinear forms BI and BI on QQ X QQ

and W@ X WQ with values Iin @. The formg can be extended, by

@

= Q@ @R =R . sand Tt W, BT1R X W, @R =W xW -R. Then
Q P Qq Qq

these forms are clearly alternating and R-bilinsar. Since

R~linearity, to bllinear forms %I : ﬁ@ giﬁ X W g:m = ﬁ X'ﬁ

I

L € W, € W, property (b) of the proposition still holds. By
the same argument as in the proof of property (c), we see that

QI and 51 on ﬁ X Q and W X W are %R~invariant.

I£ A is a rigld polymer, we set B = BI.

11,3, Type IT. If A contalns molecules of type II, it is nec-

egsary Lo construct another bilinear form BII. To do thisg,

we must use the polymer A + A = 2A, Then 24 = 3 2c(4).
o&g




Denote BA & By by BEA’ and the l1ldeal EA @ F, by FQA In fact,
i) .
5. @ = -
-bA @ BA BA % IS :.and
= Ry ® R, . (B,) =R (B,) ® th
K/Q /Q CK/@ A K/Q 87 ¢

o at N 2
Simllarly, FEA _-FA % K™, and

' - . . é . 2
RK/Q(FEA) K/Q(FA) @ RK/Q(FA) RK/Q(FA) % @

Tet g be the alternating bilinear form on K2 X K2 defined
0 -1 '

(] 5
B, defined 1n §11.2, As before,TOe 1s a symmetrlc K-bilinear

by the matrix et e be the functiocn from B X B to

form on Ba X Ba“ By Iemma 11.5, we can define a K~bilinear form

2 2
C on BA ®7K % BA ® K by
C(uRa,v@b) = ® Toe, ® g{u®a, v&b)
: a. €A L
i
= 1 T°e(ua 2V Jegla,b),
‘ aiEA 1 71
- where u = ®u and v = Qv are In B,, and a and b are in K2J
ay ay A2 ,

Since Tee is symmetric and g is alternating, C 1s alternating.

By Lemma 11,2, C can be wrltten as C = 7( @ e, ) ® g,
' a. €A 1
i
As before, we have a sequence of maps o
~1 ~l ' tr

: ) x (1%) C., K/,
Ry /i, (Boa) % By g (Bop) T Bop X Bpp K Q.
fet D be btne positive integer in the proof of Propolition 11, 9 {b),

and let 6 be a positive Integer tov be fixed in §13. SZet
ATT ATT

87T = b, 06DCs (1471 x (1%)7Y), or, briefly, Bl < tr osne.

K/@ K/®
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A i
gt

o TT , |
et B = E;K/@(EEA) % Ry s (Fpp) e
' |

| T
Proposition 11.10. The map B :

{(a) 1s aﬂ alternating @~bilinear form on WQ b WQ’

(b) takes integral values on L X L, and

(e¢) 18 invariant under the action of G

Qv

. ‘ s AILI
Proof, Ad before, we prove (a), (b), and (c) for B~ i the same
things are then true for BII,

(a) Since 1% and trK/Q and @~linear, and C is k~bilinear

AIT

and alternating, B ls K-billnear and alternating,

(b) The lattice £ we get using the polymer 2A is
2

1%(e,) @ :L*(@A) = i*(@A%z ) in By, .

. : ! ' f
SH V) e A, rite
Since e(u&} a): u v, we can w i.

for u,v € BA' Then, for u,v € @A, a,b ezfi

II(

g~ (u®a,veb) = trK/Q(&D-T(uv').g(a,b))

i

ey g (37 (V! ) < (a, b)),

By the choice of D, Dv' € &,, so uDv' € QA,'and T{ubv!) € & _,

A K
Clearly g(a,b) €7, and & €%, so 6T(uDvt)vgl{a,b) € 6. Slnce
trK/Q takes ®K to Z, we have shown that %Iilﬁ X i» iz Integral-

valued .
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Mo

(c¢) We mugt ghow that, for vy € ¢ . and u,v €
ATT

By
BBy p ) (u), By pv)(v)) =

> &

. ITT
(uJV)*

o . _‘,Q : . ] 2 1 o o
VNDUt Lhat gince BEA = BA @ K7, %bﬁk decomposes as a tensor

product.@ BT % @ 1 o+ Then

K
@H(@%(Y)(u@@a), ﬁ*gm(?)(\@b))

= 3By (v) (w)ma, By (1) (v)e0)

b7y s (D7 LE, (1) () (v) (v)) Ve (e, ) )

Ag In the proof of Propcsition 11.9(c),

%A w ﬁ (V) (V)11 = g, (v)ulg, (v)v]'

i

( juv! cp (v)! ﬂ'ﬁA(Y)uvi'cEA(y)"l.'

Since the reduced trace is invarlant under loner automorphisms,

we have

AT CATT,

B I(ggﬂ(y)(uf@a), %Em(wf)(v@@b)) = ¢t (u®a,veb). L
For a milxed type polymer A, we use /A to construct BI and

28 to copnstruct BII. Set B o= BI @ BI + BII,.which 1s a bilinesr

form on RKAQ( 2A X RK/Q 21[_\1) = WQ X WQ. The map clearly satis-

fles properties (a), (b), and (c) of Propositlons11.9 and 11.10.

As before, we can extend B by R-linearity to an alternating

R-bilineaxr form on WXW, which

G

on wa which has the same propertles,

1s integer valued on IXL and

'_z.

A N
riant . mllarly, we can extend & to an RR~bilinear form
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§12, Complex Structure

In thils sgectlon, we define a complex structure on each
fiber W = Whl(X) of the fiber bundle XXW-EM X. This 18 sc
we can explioitly construct an Eichier map in §14. For the
polymer A = o%gG(A) = 3 Ai’ let WAi =Wy o= FAi ® IR be the sub-

space of W corresponding to Ai We wlll construct a complex

structure J for each subspace.wA 3 the construction depends

By Ay
on the type of Ai.
Flrgt, let A be a type I molecule. Let J be the element

of G, = 1 G, x 1 G

R 1 h*
168, h€s.,

J = ((,_g l):**o:(_g l): :“'-:l):

where each 1 18 in Gy, for n € Slu We can conslder J as an
element of Qm because we have fixed lsomorphisms in §11.

For the molecule A, set

L _
SA - QA,}R('j)
I _
Tp = By ()
Since je = -1, 9% and Ji are complex structures on ﬁA and WA

regpectlively.

If A is a type II molecule, we must use the molecule 24,

Then, as in {11, By, ® R = By R @ By g = By ®:B AJR & R®
Since we have fixed isomorphlsms, B = R IH. Let 1+ be the
- AR aiéA
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§L2. Complex Structure

In thls sectlon, we deflne a complex structure on each
fiber W_ = 7 "(x) of the fiber bundle Xxif = X, This is so
we can expllcitly construct an Eilchler map in §14., For the
polymer A = % g(A) = 3 Ay, let W, =W, = F " ®R be the sub-
: o EG i 1 :
space of W corresponding to Ai; We will construct a complex

structure J for each subspace WA s the construction depends

by 1
on the type of Aj.
First, let A be a type I molecule., ILet J be the element

of Go = I G, x T G

R 1 h*
i€SO hésl

0O 1 o 1
J = ((,..j_ O)"“’("l O):ls*'ﬂ:l):

where each 1 ig in Gy, for h € Sl” We can conslder J as an
element of Gp because we have fixed isomorphisms in §11.

For the molecule A, set

T
9}_\ = QA_,]R(:])
gL = p

A A,]R(J)'

2 AT

Since j- = -1, J7 and Jg are complex structures on ﬁk and WA

regpectlively.

If A 18 a type II molecule, we must uge the ‘molecule 2A .

2 . 2

2A®m_BA,IR®BMR.__BA§:B —BA,IR%IR.

Slnce we have fixed isomorphisms, B ®@ M. TLet 1+ be the
_ AR aiéA

Then, as in §11, B
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- _ , _
autnomorphism of IR defined by (..,g %), and let 1 be tGhe iden_af:.ity

trangfornaticn on BA' Set %gl = 1 & 1, Then ﬁil i1s a complex

structure on Q?A = QA ®ZRE,'and regtricts to a complex structure
LR _ 2
JA on WEA = WA ® R,
If A 1s a rlgid polymer, we set
[ /\ )
3 = @ Ji = (91!:& yoaa;ﬁi- )
Aieﬁ i 1 d
on Q = @ ﬁ s restricting to J = CUI on W=@&W, .
Ai Ai Ai

If A d1g a mixed type polymer, set.

= @ (ﬁi@ﬁi)@ o g1t
AjER LML ALen "
typel - typeIT
T AT I AT AIT T
= (AT pL AT AT vo., HTL
Al’ Al, ’ Ac’ Ac Ac+l’ ’ Ad-
on ﬁ = @ ﬁEA . This restrlcts to
1
T @ (fery)e e 3,
Aytype I 71 71 J
Ajtypejlu

m
: - 0
Now we fix a base point Xy = (1, 000,1) in jx.,.xg = § = X
Tdentify x, with the coset C of %R/C. Let the complex structure
J_ -=dJ, on the fiber Wx

O
G . 0 :
arbltrary point x € X, take g € Gp guch that gx, = X, Let

above X4 be J as deflined above. For an

I, = P(g)JOP(g)“l be the complex structure on W,, where P = Taw



o Pg@jﬁ’ depending on whether A is rigid or of mixed type.
R

Alsn let ﬁy = ﬁ(g)ﬁoﬁ(g).

Proposition 12,1. JX is well defined.,

Proor'. I& suffices to prove that ﬁx is well defined. We must

show that, if x = g1Xy = 85%qs then ﬁ(gljﬁoﬁ(gl)"l = é(gg)goﬁ(gg)“l.

]

‘o T Bo¥ys then'gi'ggxo = X5, S0 g11g2 € ¢, where

m
¢ =so0(2) 0 x su(e) *

ﬁ(g)g %(g)_1 = 30 if g € C.

. S0 the problem reduces to showing that

@ % g If A is of mixed type,

TR 1s rigid, P =B = :
AR A, €n A T

then ﬁ = ﬁQ&jR = %AJR @ %Rg, If g = (gl""’gm) is the expres-

slon for g in Lterms of the simple components of G, then %

A, R

, i’
sends g = (g,,...,8. ) to ® g € B . If A ig a type T
1 m a €A, o Ai;R =

. h™ 1
molecule, we have

B

a (88 1 (D8 n(@) ™ = 8, pleie™)

o 1, -1 -1
= B ® g e, ) e (@ g g )]
AJB[( a, ‘=L 0/=a a, “a
: ahQSO h h ahesl h “h
o 1, -1
By ml( ® g Je. ") @ ( ® 1)1,
A’}R\ a "loa o
ahGSO h h ahébl
A stralghtforward calculatlon shows that g_ ( 0 l)g"l = 0 l)
e T o ay -1 0 ay ~1 0

if and only if 2, € S0(2). Hence we have shown for type I

h
molecules that ﬁ(g)ﬁoﬁ(g) = 30 1f g € C.




If A is a type II molecuie, ﬁe have

@EA,]R(g)ﬁ%I iéeAma(g)—l
] ' -1
. (%A’]R(g)%a) (15,0) (r@m(g)%e)
-1 ALT
- iBA’]R(g)éA)B(g) ©t =1y ©1 =gk,

is well defined, and in fact, 9§I = 9%1 for all x € X, ®
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$13. Positive Definite Symmetric Bilinear Form

In this séction, we show that the billinear form

sx(u,v) = a(u,JXv) 18 symmetrlc and positive definite on WXW.

In dolng this, we fix the constants Tl and 0 used in the con-

gtrouctlon of g, ‘ ,

13.1. Preliminary lemmas.

Proposition 13.1, ILet & = {mi} be the set of embeddings of a
totally real number field k Into R, S the set of indices of ¢,
and T a proper subset of S. Lebt m = 8| = 1. ILet @k be the
ring of integers of k. Fix a real number N > 1 and set

1 ‘
‘1~m, 8D tpat 0 < € <1<N., Then there existg o € @k such

'wi(a) >N for 1 €T
0 < mi(a) < € for 1 € 3 - T,

We need a lemma, which uses several standard theorems of

number theory.

Theorem 13.2, ([W-2], Chapter IV, Theorem 5). For every place

vof k, let [ [ be the valuation at v. If z € k¥, then Mz =1,
v

Iheorem 13.3. ([W-2], Chapter V, Theorem 1). .For every finite
place v of k, let ro be the set of elements x of kv such that

|| = 1. Then 6, = n - (khr. ).
v Ly e . Vv
finite v
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theprem 13.4, (Minkowekl's Theorem). Let T be a lattice in

‘R, and let V be the volume of L. If D 1s a convex subset of

IR“, symmetrlce about the origin, wlth vol(D) » 2nVJ then D con-

tains a non-zero lattice point,

Lemms 13,5, Given N » 1 and one Infinite place J of k, let

1
€ = Nlhl, where m = |S|, Then there exists q € QK such that
() > N
O<cpj(a,)<§ for 1 €8, 1 #j.

Proof. ILet % be the injection ¢ = (ml,...,mm) of k into

ok SR =R". By the proof of Theorem 12.3 in [W-21, @, (6,)

o,
i
is a lattice inlﬁm. Let V be the volume of this iattice,

Choose a € R such that a = max {N,V}. Define a rectangular

parallelopiped D in JRD by
D = (--€,E)x...x(~€,E)x(-—a.,a)x(-E,E)x..ﬂx(—é €},

where (-a,a) 38 in the J-th place. The get D 1ig Couvex, sym-

metric about the orlgin, and

vol(D) = (2€)" loa = SRl 5 plgn-lylom | om

50, by Minkowski's Theorem, D contalns a nonzero point of
@m(Gk)* That 1s, there is ¢ € 6 such that ]mi(a)] < & for
L #3 in 8, and [mj(@)] < a.
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It remains teo be shown that Imj(m)| ls actually large,
!
and that ¢ can be chosen so that all @i(a) are positive,

Bince o % 0, by Theorem 13.2, ﬁ]a]v = 1, where the product

is taken over all places of k., Then

_ -1
(«) 1 =1llal, = I (g ()] T  Jafl <& e (a)f T ol .
vV ges Y Tpinite v Y ) rtnite v Y

Theorem 13,3 says that o € r, for all finite places v, &0

il || € 1., Combining this with (%), we have
finite v

1< Em'lfwj(a)[, 80 |mj(a)J 5 el-m N.

L)
If not all the g,(a) are positive, replace a with a”. Then

: 2
$i(u?) = (@i(a)) :_lmi(a)|2, so that
mi(ag) < € < g for 1 # j
and !
cpj(ag) > N2 » N. .

Proef of Proposition 13.1. Choose GO 8o that
L
€, < min{(1+|1)"Me, [7|"Le),

&H:NO = éé_m. Since € < 1, éo 1s also less than one. By the

previous. lemma, for every place t € T, we can find u(t) € QK

and MO depénding_only on @k and NO such that

MO = @t(u(t)) - NO

0 < mi(a(t)) < € for 1 € 3, 1 # ¢,
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Tet o = % a't), for i €8 - 7

LET
| wi(m) = % ¢i(a(tJ) < | €, < €.
For J & T,
- - (3)y . (t)y
‘(J(q') - CPJ.(CC ) L tZETCPJ'(C(' Y
b4
m (3) . (%) : —
o, (a?’) - Foe(at) 2N (JT]-1) €
! 64 Y 0 0
>(1+|T|)N~{Tl+1>1_\1+1>1\r. =

Lemmz 13.6. Let {Bi} be positive definite symmetric bilinear

forms on real vector spaces [Vi}. Then @)Bi 1s pogitive definize

on Vl

Proof. By Lemma 11.5, €>Bi is well defined and symmetric,
Choose bases for the gpaces Vy so that the matrices for B; awre

’diaggnal,with diagonal entriles k% > 0 for all 1,3J. Then the

matrix for @)Bi is also diagonal, and its diagonal entries are

of the form II R?. Since every K;
i

posltive, and ® . i1sg positive definite. ®
pin l .

is posltive, all products are

Lemma 13.7. ([B], §7, No.3, Proposition 6). TIet B, and B, be
symme tric bilinear forms on a real vector space V, with Bl‘

positive definite. Then there 1s a basis for V such that the
matrix of B is the ldentity matrix, and the matrix of 82 is

diagonal.,




&1

Coroliﬁgg;gglﬁf Ir Bl and Bn are as above, . then there exizts

el o s 2

a real number ¥ such that NBl + B? 1s positive definlite.
Precof. Chopse a basils for V as in Lemma 13.6, and let

dilag{d

12++-»4,) be the matrix of B,. Chopse N » max{|di]]ﬁ 5

13.2. In thle gection, we show that the bllinear forms
s {usv) = s(u,JXv) are gsymmetric and positive definite.
Lemma 13.9. If s (u,v) is symmetric and positive definite,

0
then do 18 SX(u,v) for any x € X.

Proof. Since B is CGp-invarlant, we have, for g(xo) = X,

s (u,v) = B(u,3,v) = 8{u,P(g)TP(g) V)

- 1, -
= B(P(g) M, P(g) "P(g)IPR) V)
-1 -1
= SXO(P(@;) u, P(g) V).
So 8 1s symmetric and positive definite ies, is. B

0
Throughout this section, we consider é as an IR-bilinear
form on ﬁx\. Recall that

f = R/ (Py) 8 R = c@éch(A) OR = CR A

Slnce ﬁ was originally defined on (B, 1, % as a form on ﬁ

A A AL
BU(A)’ where EU(A) = ﬁiﬁc(A)' The same

Frs

decomposes as é = @

-

remarks hold for 8 on W.
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_FProposition 13.10, If A is a rigld polymer, then

B{u,v) = @L(u,Jv) 1s a symmetric form on W¥W.

Proof. It wili suffice to prove this for @A on ﬁA for any
molecule A. For each A, 9A = 91. For simplicity, we will
drop the subscript A, First note that J' = 51, and recall
that T is invariant under inner automorphishs and the involu-
tion ( )' on B,. For u,v € ﬁA’ we have

= Eai(u,?v) = 7(un, (3v)") = 7((un, (Bv) "))

a., GA
1

= T(ﬁvn};u') = +[~§vﬂﬁu')

= 'r(-ﬁzvnﬁu'g"l) - 'i"(V‘nA(gu)I)

Il

ZE (v,ﬁu)a'
a.
i
Hence s{u,v) =‘S(v,u).

Proposition 13,11, If A is a mixed type polymer, then s(u,v)

= B(u,Jv) 18 a symmetric form on WXW.

) A
Prpof. Since A is of mixed type, 6 = Bz @ %I + %II = €I® 15 @ %II

_ R
and, for each molecule A of A, 9 == SI ® 2 or 9 2 311 = 1 ® 1
A 2 B
R AR
on,ﬁgA. It 18 sufficlent to check Q(u,v) = @(u,?v) on,ﬁEA. We
have four cases.

(&) éI ® 1(ﬁ®a.,31®1(v®b))
= /E}I.?I ® 1(u®a,v®b) = QI(u,gzv)l(a,b). '




&

]_J-

This is the tensor product of two bllinear forms. Slnce 1

A A . . - -
symuetric, and BI(U,JIV) is symmeteic, by Propositlion 13,10,

thelr product is gymmetric, by lemma 11.5.
% 'f‘\-
(b) £ (usa, o1 (ven))

= %II(u®a,§Iv®b)

i

T @ e ®g)(u®a,31v®b)¢
aiEA &y

It ig enough to check symmetry on elements of the form

U= ® u, ., v= @ v If a, 1s the atom of A which is in
a; €A L a, €A 71 )
1 i
SO’ then
Hob=re( e 1),
ai%ah
where 1 = (_g é). So the calculation above becomes
tDevoe(u_ ,1v,_ )=+ Il Toe(u_. ,v_ )-gl(a,b). We have
*n ®n’ ih 8 M '
3
vee(u_ ,iv. ) = T(u, (1v_ ) )
a.h a-h El.h d;h
=t ((uy (sv, )1)') =7 (1w, ul )
a, " ay 8y, 8y
= v,y fo,
= T(t vahuaht ) —T(vahuant )
= —-T(V 1u ).\
ah’ By

so this form is alternating. The form g 18 alternatlng, and

AT

AT )
Tee is symmetrlc, by Lemma 11.7. Since Ell(u®a,J ®1l({veb)) 1is

a constant times the tensor product of all these forms, 1t i1s




symuetric, by ILemnma 11.5,
(e) @I ® 1(u®a,311(v®b))

= @I ® 1{u®a,v&ib)

A A ‘
= BI(qu)l(ath) = BI(U,V)t(a,b).
Here we have considered the linear transformation 1 a8 a bilinear
‘ T .

form, Since B~ and 1 are both alterneting, thelr tensor product
ls symmetric, by Lemma 11,5,
' X A

(@) - @Il(u®a,JII(V®b))
| g%U®a,V®tb)
= 6D»( @ rog )(u;v)-g(ajtb)

a,
aiEA i

= D+ (®T°ea.i) (u,v)+gt (a,b)

)

= 5D;(®Toea )(u,v)-l(a,ﬁ)*

i

Since this ig a constant times the tensor bPreduct of symmetric

forms, it is symmetric, - H

In order to prove that g(u,v) 1s positive definite, we
examine more ¢civsely the behavior of linear functions under
scalar extensions,

First, note that the isomorphism

. B ®]Rﬁ®B @R = @ @ @R

RK/@,(A)Q ¢ Ag G o(d) x
is glven by

u@rk2au)er,




On the lerft gide, u 1s consldered as an element of R

(B

5 )3

on the right, it 1s consildered as an element of BA’ by the

K/4

identification 1%,

If £ ig a @-linear map from RK/Q(BA) to a @-vector space

V, then its R-linear extension

% : RK/Q(BA) gIR "*V%IR

is gilven by %R(u®r) = f{u) ® r. For brevity, we will write

f(r«u) = r«f(u). Using the lsomorphism above, we have, for
u € RK/@(BA), r €R,

frn(u®r) = £ (36(u)er) = 3 glu)er).

R(5r) = (38()er) = 2 g (§(u)er)
Tdentlfying By with_RK/Q(BA), we have

fo(uer) =5 £(g{u)) ® r.

3 (987) (w)) 8

"If o € K, then

I

%R(mugr) =z %R(F(au)%r)-

s fp (0 (@) () er)
= 3 %(S(u)gc(a)r)
=% £{g(u))®c(a)r,

- K

or briefly,

flr«(ou)) = % ola)r-£(a(u)).
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The following Jemmas will be vseful in simplifying the
proof,

Lemma 13.12. If a € S,, then the bllinear form cha(u,@n(j)v)

Car

ls positlve definite on B,

R
Proof Since a € 8 ﬁ (3) = ( 0 l) = 1 Recall that
AT BANE 0’ "a -1 0 + NREE Y
rla,v) = u@é(n)v', where u,v € BaﬂR ﬁ'MEGR)p Since we have
_ ' 0 x
N P o _ &y _ \
fixed an isomorphism in §11, ma(ﬂ)_~ (”ka 0 ) = lat, with Ay

a positive real number. Set u = v # 0. Then

Tofa(v,%a(j)v) = T(vhat(1VJ')

Il

ty £y
kaT(VtV 1y,

t

A ealeulaﬁion ghowg that, for any v & MEGR), vt = v, So the
previous line becomes xaT(vtv). For v = (2 ,g),
t a?+b2 ac+bd
VvV = ( ) 2) E]
act+bd =~ c"+d
s0 that
A, T( vy = xa(a.2+b2+c2+d2) >0 G

Temma 13.13. TIf a € Sl’ then the bilinear form Toea(u,ﬁa(j)v)

1s positive definite on BaﬂR'

— e a €
Proof. Since a & Sl, Ba}.[R

= v o=atbl+ el +dk #0 in By

&1 and P (j) = 1. Take
a

Then
SR




=
<
D
-
<
A"
F>
P
L N
p—
<
s
li

T{vvl) = 2viv)

== 2(a?+b2+c2+dd) » 0. : S

Provosition 13,14, If A 1s rigld, then 8 (u,v) = g(u,Jv) is

r

positive definite form on WXW.

)

Proof. It suffices to check @(u,ﬁv) on xR, We will first
investigate the form on a molecule A €4,

Suppbse that the atom ag of A 1s in SO. Replace the ele-
ment 1 € B used in the construction of BI with @n, where o 1ls

a nonzero element of 6 to be flxed at the end of the proof,

k

Th for u,v € B of the for = & v = © s

en, o s B m 1 Drm u aiEAuai, auéAva‘

. i

f\
B (u,? v) = = E_ (u 5 V)

A A aiEA a-i PUA

= 5 [Tof ®( ® Toe, )](u,ﬁAvj

= 2 r(u, o (am(tv, )DL Toe_ (u. ,v. ).
a €0 7104 *1 " hA *n " %n

Since B, (an) = © (a)p, (n), and w_ (o) € K «R, we can fachor
a. aq ay 84 _

®, (o) out of each term of the sum. Since we showed in Pro-

ok
poglitipn 13,10 that the forms Ea (u,ﬁAv)‘are symmetrlc, we can

J _ .
conslder Ea (v,ﬁﬁv) ag a dquadratic form. So, we rewrite gettlng u= v,
4 \
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the last line of the calculation above as

2z p (@)Q (V)J
a, €4 24 &y

where §_ (v} = Tof, @( ® Toe, )(v,ﬁAv). If a, =a
1 i hfi o n
and &, € 3, for h # 1. We have shown Iin Lemmas 13.12 and 13.13

that each factor of thls tensor product is positive definite.

50, by ILemma 13.7, Q, (v) 18 positive definite 1f ag € 8y» If
2
ay £ 80 then Qai i1d not positive definite,

By our remarks on scalar exténsions, for v ==®V6(A) € Eﬁjm’
J ks

A A Ll

B(v,dv) = 2 2 oot (a)Q (v )

’ 0€G a € o1 ofay ) To(h)

zéQ%%%@ﬂ“m%WﬂwﬂML

The form QU( 1s positive definite when c(ai) €S By Corol-

ai) c*
lary 13.8, for each molecule 6{A), there exists a real number

NU(A) guch that

NG(A)Qo(ai)(Vc(A)) + hich(ah)(vo(A))

is positive definite, where ¢(a;) € 5,. Take N = max{Nc(A)}.

By Proposotion 13,1, there 13 an element g € @k such that

qb(ai)(a) > N for~c(ai) € 80 

0 < wg(ah)(g) < 1 for G(ah) E‘Sla



Tix this a. Then

Le positive definlte.

Proposltion 13,15, If A is of mixed type, then s(u,v) %'B(

1g & pogitive definite form on WxW.

A
Propf, Again, we need only check B(u,ﬁv) on Wil Tirst we in-
vestigate the molecules separately. As in Propositlon 13.11, we
have four cases., Let A be a molecule of A,

A

(a) From,the proof of Proposition 13.11, Case (a),

AL

fr @ 1(usa,d,@1(veb))

='%A(u,giv)l(a:b)t

So this form ils the tensor product of the forms gﬁ(u, iv), dlg-

cussed above, and 1(a,b), which is posltive definite. We will
uge a different constant o, which we will f£ix at the end of this
proof. Now we consider gﬁ(v,ﬁiv) and 1(a,a) as quadratlec forms.

Using ﬁhe,notation of the procf of Proporition 13,14, we
have

-gi(vﬁﬁiv)l(a:a)

= [epé,j(a)eza () + 3 ey (08, (V)I1(a,0),
hL

i 3

U’JV )




S0

where ay is the atom of A that 1s in SO‘ for clarlity, we

put Qi’l fer @, « To gimpilfy the notatlon, we put
' “h
I,I,8 _
’70 i,1L
Q = ¢ ()7 1 ,
A a,i El.i :[Rr_
and
I,I_,L) T _[ -
Q' F=4 [ ([I,)Q, - & l :
A a, €5.%0  ®n  RZ :
g0 that _ : |
I,1,8 1,1,9
I 2 3 O & 4 1
Aviiae) = (@ T, T)(vea).

The proof of Proposition 13.1% showed that Q7’7 is positive de-

- 1 T, L8,
Since 1 o 1s posltive definlte, Q?

finite 1f ay (G
R

O.
ls positive definite,
(b) Since BII u®a., 31 ® 1(v®b)) is a symmetric bilinear

form, we can consider it as a quadratic form. We set

IT,T . I
@, " (v) =DT( ® e ®g)(v,(§ ®1)v),
A aiéA 24 A
so that
gil §I®1 _ 6QII Iy, |

Combining this with the form of Casge {(a), we obtain an expression for

A A
SA(V,ﬁAV) B(V,Jv)|ﬁ2A, where A 18 type I1:

) By (v, 0v) = (Bpo1+y ) (v, (3y®1)v)

I,I,SO I,I,Sl
= (QA : ﬁQA

+0a ) (v)
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T,7,8q ' I,1,8,
Here Qq js positive definlte; Qp and QA

are nob.
(¢) TIf A 1s a type II molecule, then
ﬁi ® l(u@a,ggl(v®b)) = gﬁ(u,v)i(a;b)
is & symmetric form, In fact, thils can be wrltten as the sunm

pf symmetric forms:

8y ® 1 = 3% E ®©1 =37f & e )] ®1,
A a; €A &y %9 h#

Replacing mn by am, we have

éi ® 1{v®a,v®a) = 5 'T[va 5# (un)v 2( ® e, (va sV, 131 ® t{a,a)
a, €A 11 1 h#&l *n ®%nh° Gn
= 2.9 (a)r[f_ (v ,v_)e(®e (v, ,v_))]®t(a,a).
. €A ay Byt ey’ Ay ey Ay ey
Sef |
I,3T AT
QA “ﬂBA®t
and
QI’II(v®a) =E_ ® 1(v®a,v®a),
a a
1 : 1
so That
1,1 I II
Q" = 2 e, (a)Q,’
A en &y

&4
(d) When A is type II, we have

AII u@a QII v@b)) = &( ® #oea )(ujv)~l(a,b),

Pt .
aiéA i

-
s
0}

e
Hy
a

N

We showed 1n Lemma 13,13 that Toe, 1s positive defin




9z |

whilch is true for every a, €A, BSince 1{a,;b) 18 also positive
definite, thelr tensor product is pogitive definite, by Lemma 13.6.
Bat

QII’II(V) =De[{ ® Tee, J®LI(v,v)

a, €A i
1

a0 thatb

ATT /\II IT,IT

By (v,« Ty V) = 8y (v).

Combinling this wlth the result of Case (c), we obtain an expres-

ATT

sion for 6A(v I V) = A(V,Jv)lﬁgﬁ, where A is of type II:

o

ATT (v’ﬁilv) ='(Q1’II+6QIT II)( )

(v.800v) = (Bren+f,T) :

Pa

Having found ekxpresslons for A(v,v) on each subspace Q?A
of ﬁ, we are now ready to choose the cénstants o and b, Note
that the quadratic forms QI I, Q”’II, QKI’I, and_Qi s L1 are in.-
dependent of ¢ and §. |

The constant o wlll be chosen so that

¢, (a) » N for a € 5,
0 < @a(a) < € for a € 8
- :
for some N » 1 where € = N'T7B, so that € < 1, Eere m = [3].

If A ls a type IT meclecule, then every ay €A 1s iIn Sl’ Hence

P, () < 1 for svery a;, € Ay thls fact does not depend on the

choice of g, as long ags e« 1s chosen as above. Thus, for any




T,TT T,TT
o, (a)as? " (v)| = Jo;2 (v)].
1 1. &y
Recall thatb Qy* T = QL TI. If F iz a positive definlte
a, 68 & '
1

quedratic form such that ¥ + % Q°TT fs positive definite,

a, 6A %1

1
then because ol the lnequallty above,

a,
i
is positive definite.
Ir, 1T | ‘ : .
Now, lnﬁe Q is posltive deflnlte, we can find NA T
X
for each type IT molecule A such that
Nq IIQiI’II Lo QI IT
hiid aiéA &
. L, 1T L L,EL
1g positive definite., By the pleceding remarks, NA IIQ + Qy

is then positive deflnite. ILet Ny = max {N Choose & €72

A,II}'
s Py 1 i - K
‘guch that & » NII’ g0 & & NII,A for every type 1L molecule A,

Then
ATy = (et T, Q) (v)

1s positive definlite for each type II molecule A.

Now let A be a type I molecule. 2lnce QI sTyg pesitlve de~
3

finlite, there exlsts Ny such that

s I

]
No 1R+ s Q + 6QII T

J Ay, €AﬂS n

is positive definite. ILet N, = max{¥

T By Pronos tlon 13.1,

A, I}




we can choose ¢ € G, such that

epq(a:;l = W for a € 8,
i
G o« @i(a) < ey for a € Sy
n
, _ elem
where Gy = kl < 1. Then
(o, (w2t + = o (0@l + say™ T (v)
' 5 a,#a, “h h :
g
T,1,85 T,T,8) oy 1.
= (Q'A +Q’A +6QJA * )(V)
_ A I

is positive definite for eVery type I molecule A,

We have shown that each compenent %A(v,ﬁv) of @(V,ﬁv) is

A
posltive definlte, Hence B(v,gv) 18 posltive definite. L




§14, Wichler Map

Tn this sectlon we show that the representation p

adimits a holomorphic Elchler map. Thaﬁ”isg_ eJC§th 

holemorphic 7 @ X = QR/C - & (W,B), where @i(WQ .

upper half space discussed in §1. The map v ﬁﬁétﬁs'
plg)r{x) = m(gx)

for every.g ¢ Gp» * € X. By the general theory in §1; ﬁﬁisT

shows that V-5 U ig a holomorphic fiber bundle. |
Flret we prove a few lemmas. Recall that, for a complex

structure J on W, W_(J) 18 the -l-eigensapce of the U-linear

extenglon of J on WeT.

Lemma 14.1. W (J) = {v + 4Jv : v € W}.

) .
Preof. J(v+idv) = Jv + LIV = -iv + Jv = -L(v+iJv).
Lepma 14.2. Let W =TR°. Set Q = SI,(R), C = S0(2), and identify

a/c withrﬁ by gC ¥ g(i). Let Jy = (_g' é)‘and J, = gJigml for

x = g(i) € ‘5. Then WM(JX) i8 the gubspace {(%)z iz € I} of Wel,
Proof. Tirst note that, for (¥ ?) € s (m),

1{actbd) =1 + 1(al+b)(-cird) = -1 + 1(-ai+b)(clHd).

Take (é),_(g) ag a bagls for W over R. -Then
1. 1 0 . O
{el = (O} + iJX(O)’ 82 = (1) + 3-”}((1)}




i1g an R~bagis for W _(J

Thern

I

~ac-hd
~1,1
e ()

1
L= () o lenen T (G) = (g) + i(“cgmdg)
- d \
1 -i(ac+bd) 2 2 [ 1-1(sctod)
= 5 o = "‘i( Hd )& A -E -0
x*‘i(c “{‘d ) % —*i(c +d )

and

&
(© 240 - @ 4 o

) + lgd 1

jl
o
{

Lg \ac+bd

2 .2 _
Hamet) i(a2+b2)
= — d
1+ i(ac+bd) (L + 3{aetbd)) T+I(ac+bd)
1

/ (~al+b)( ai+b)
k (—alt+b) (ci+d)
X
1)

i

(1 + i (ac+bd) )

i

(1 + i(ac+bd))

W (T ) = {rel + se, 11,8 € R}

= {[r{-1)(c®+a?) + s(1+1(a.c+ﬁd))J(?) :r,s €R)




o7

!

he last equality is true because 1if we set z = u -+ lv, u,v €,
B !
wa can solve for r and s

v = 4 iv = r(~i)(02+d2) + s(l+i(dc+bd))

2

=g + 1[-r(c +d2) + s (ac+bd),

u{actbd) - v

. :
c2 + d2 :

80 8 = 1 and r =

Corollary 14.3, Iet G, C, Jy, and J be as In Lemma 14.2. Iet

ﬁ = M?GR)G Let ﬁi (respectively ﬁx) be left multiplication of

s (respectively Jx) on ﬁ. Then the -1 eigenspace ﬁ"(gx) is

(D)2 :z e} o 12,

~Proof. The left multipilication of J,. on MEGR) is +the same as
the actlon of J as an automorphism of the direct sum of the two

minimal left ideals of M,(R). Thus
_ 2
ﬁ_(ﬁ\x) = W_(JX) ® W_(JX) = w_(JX) ®

= [(?)z 1z €L} ® EQ. | B

We will construct an Eichler map T : X = &'(W,B) by first
A : ' A
congstructing T ; X = 6‘(Q}@) using the complex structureSJX, and
then restrlcbing to W. To ensure that this works, we have the

following lemmas.

Lemma 14.4, TIet W be an even dimensional real vector space, and




-
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g a nondegenerais alternating R-bllinear form on WXW. Iet W,
e | L

bz a subspace of W, and let B, = B|Wl X W,. BSuppose that

X W*ﬁ(w;e)iis a holomorphic map of a complex manlfold X

into the Slegel gpace. Let Iy denote f(x) congldered as a
complex structure on Wi silnce U € &(W,38), B(u;JXv) is symmetric
gnd posltive definlte. If Jx(wl) = W, for all x € X, then

Bi i nondegenerate,

1.

the map £, : X w>C"§(Wl,61) defined by

x P J_|W, is holomorphic.

)
b} W, is evendimenslonal, and
)

Proof. Iet dim W = 2n. Set sx(u,v) = B(u,Jxv), and let B

denote g restricted to w] Since 8 ls symmetric and

L4
S 1

AW

positlve definite, so is s Therefore, By lg a nondegenerate

L,x”
alternating form on W, X W , 80 dim Wl nmugt be even, Set dim W, = 2m.
We use the identification of S(W,8) with &' (W,p) described in

¢l to consider §(W,8) as a subvariety of the complex Grassmann

variety Grn(W®m), Clearly, the elgenspace Wy _(Jx) is
. ' 3

W_(Jx) N (wl®m), Therefore, wl,“(Jx) ig a point in the Schubert
variety | |
sn’m(W®m,wl®m)
U : U i8 an n~dimenslonal T-subspace pf W e I,
= dmy (UN(W,®L)) = m | . |
The set Sn,m(W®m,Wl®m) is an open subset of é gubvariety of ‘
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i

Gr {(WeL). Let g be the map of 8

L ®L) W@
W@E,Wl&E) to Grm(hl )

Jm(

glven by g(U) = Un(wl®m), Then g 1s a holomorphic ratlonal
:

map. We have Wl AT ) = g(W (J.)), or, in other words, £ = gof,
, b ~ Y% 1

Since I and g are holomorphic, fl 1g also. ©

Lemma 14,5, Tet Wl and W2 be T-vector spaces, J a semisimple

endomorphism of Wys and A an elgenvalue of J with eigenspace

Wl(k) < Wl. Then X\ 18 also an elgenvalue of the endomorphism
J @ 1.,
W o

c Wl & W

is wl(k) @ W

of Wy @ Wy, and the elgenspace of J © lw >

2
2‘-
Proof. Let klyu.,,Kr be the elgenvalues of J and Biseaes€g the

elgenvectors of J. Since J is semigmiple, el,...,eS span Hq.

Assume that the first ¢ vectors ei,,..,eq gpan wl(x). Take any

basle fi,...,f of W Then B = [ei ® Iy 1l =1,000,8; 0 =1,....%])

§ 2 ]
ig a bagis of W, ®W,, and By = {ei ® fj sl =1, 00,a03 3 =1,...,

o
[

spang W, (X) @ Wy. Clearly, (J®1Mei®fj) = x(ei®fj) if e; ® £ €3, .

Conversely, if A! 18 an elgenvalue of J ® 1 with elgenvector

ey ®:%,then Al is the elgenvalue of J corresponding to e that is,

| il
if AV = A, then ey € Wl(X), ey ® fj E B, - | B

' A ' A
Propogition 14,6, Define T : X = 6?(@,%) by T(x) = ﬁ_(ﬁx), where
A, ,
jx ig the complex structure defined in §12. Then the restricted
map T : X = &!(W,p) described in Lemma 14.3 is well defined, and

T 1s a holomocrphic Eichler map for the representatiom Py R*
E

A A
Proof, Flrst we prove that 7 is a holomorphic Eichler map for Eb.ﬁ.
=T . Lj

b
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- B - . .« f} A -t ﬁ AL, S
Ag explained in §1, the action of Sp(W,B) on 8 (W,p) is given by
v B (o) = ooyt
Then, for g € %B’ x € X,

Mexy =03 ) -f (@2,

gx AER :%X
-1
- (e Aezr-xﬁ ,)ﬁA 5!
- ﬁ-@m,m(%)(;zﬂ 1A B(g)"l)
= (B ple)d By g(@™)

A 2 A .
Here J, and ?Aﬂﬁ-represent dop and §2A;R.lf A d1s of type LI.
Thus we have shown that Q ig an Eichler map for %ﬂim
2
Now we show that $ is holomorphic. We willl also use ﬁA
to denote ﬁ?A if A 1s of type II. We have
by = 0o, = ey (.
T A€ AE&
Hence 1t suffices to find the eigenspacé of SA x On QA for each A.
2
Write QR = Glx...xGm in terms of 1ts simple components, and

X =X x...xxm as the corresponding decomposition of X. If

1
h €8 0 X, = /%, If h € Sl’ then Xh ig a single polnt; we
A =
identify Xy with the point {1} 1n G- Let M, di@R(QA).
If B is rigid, then 3 31 for each molecule A. Let

A,x
g = (gl,...,gm) be an element of qﬁ.such that EXy = X, where

T




107,

]
!

X = (xl,...,xm);. If h € 5,, then gh(i) = Xy,

Suppose a_ ls the atom of A bthat is in S.. Recall that
g _ -0

. 0 1 : o 1
3 :((ul o)"'ﬁ’(ml O),l,...,l) € Gp. Then

Bpx = Py @By w8, p(@)™

 —1 o 1, -1
= gA;['R(ng Y =g, (1 gle, ®(® 1)
s s a, fa
h s
- 0 1, -1
- ga, (—l O)ga ® L a 3
S 8 8
B
a. .
where B ° = ® B_ . By Corollary 14.3, the -i-elgenspace of
a, €A “p
h/
s
x A
ga (_g é)ggl ls the 2-dimensional subspacef/ as} %oz E mt}® m2
s q : \l /4 j
h | ' 0 1, -1
of & . By Lemma 14.5, the -i-eigenspace of &, (~1 08, ® 1,
s S B 8
a., ﬁ
. cn (BaS®B ) ® k=B, ® L =W, ® T 1s .
' ¢
(/ LY \ Lm
A A A
o s lz 1z el ® E2 ® EE' =< [ *a Il ! z; z € m2 ;.
8 : 1 8 "—'MA d
2
\ 1
_ ;iM
| 2 A J
Here Il leg the ildentlty matrix of size %Nﬁ
=M
2 A

If A is of mixed type, and A 1s of type I, thenlthe argumnent

akove holds. Then

£ AT

. A
®L) = < 7z € ’

Wop, - ( A,x




where a € A is the atom in SO’ If A is8 of type II, then
0 1
)

B ~ 0 1 1
A,x T Y9 < lﬁ ® (1 o) ~1 0
A

The -i-eigenspace of (
1 ' .
({(Pz =2 €L,
50, by Lemma 14,5,

T 3 |
ﬁaA,“(ﬁA,x)“{(i)z?ZE(E}@EA= Aty iz eg®

=
\________.._3; et

So, 1 A 1s rigld,

i
T _
I T ?MA\ Sy
ﬁ_(g ) = ®'®A ”(ﬁA ) = @ - Zz 3z € .
AER s X AER Y

et

If & 1s of mixed type, then

IR,

- ® Wy, _(ﬁjf Bl e ® QEA Jﬁilx)
A type T 7 ! A type II ™ ’

*a . Ty A M Xa,hIM A M j
= @ Z 2z €07 )@ @ Zz:z €0 °
A type I L _ A type II L

My \ M,

%)

-~

Here, &y is any atom in A, where A is of type II, and X, = i, the
h
only polnt in Xa . In both cases, the subspace ﬁ_(ﬁx) of ﬁ ®@ [
h

clearly varies holomorphically with each variable X Slnce this

A
map ¥ 18 holomorphic in each vairiable, @ is holomorphic,




Since we have showed in éravious sectlons that @
is a nondegenerate alternating form on Q, and that
§X(w) = JX(W) =W for all x € X, P x ”-67(&,%) satisfiés
the hypotheses of Temma 14,4, Then v : X = 6'(W,a) given by

well defined and holomorphic. ' B

n

X P WH(JX) 1

Thils completes the proof of the theorem.




two~slded ideals. The theory of central simple:algeb
cussed in detail in [W-2]. We will abbreviate "central

algebra" by CSA.

equivalence classes of CSAs over k forms a group under the téhSQT;
product, and ls called the Brauer group of k, B(k). The idenﬁi%y3”
element of B(kj is the clasg of algebras MD(K)5 any algebra in
this class is galled trivial. The inverse of an algebra A is
1ts opposite algebra, A, congstructed from A by defining a new
multlplication p(x,y) = yx.

If I, 18 a fleld containing k, and A ig a CSA over k, then
A ? L 18 a CSA over L., If L is aigebraically closed, then every
CSA over L is iszomorphlc to M, (L) for some n. Hence, every CSA
over k hag a representation into Mn(E)’ where kK is the.algebraic }
closure of k. This representation 1s called the reduced repre-
sentation, and is given by A ﬁ kK Ei*Mn(EU. This isomorphism is 1

|

unique up to inner automorphlsmsg. As a corollary, the dimension

of any CSA 18 a square.
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Proposition A.1. ([W-2], Chapter IX, Proposition 6). Lot k ba
an infinite field, and A a CSA of dimension no over k, Then
there i1g a:nonzero k~linsar form T and a k-valued poliynomial
function v on A; T lg the ftrace of the reduced representation

and v 4

rn

3 the determinant of the reduced repregentation., Both
T and V are invariant under inner automorphisms of A, and the
polynomlal function v has degree n and coefficients in k.
The maps T and Vv are calléd the reduced trace and reduced
norm on A, Clearly T(xy) = T(yx) and v(xy) = v{x)v(y) = v(yx).
If k 1g a number f£field, we consider the places v of k. TFor
any place VoA, = A g k, 1s a CSA over k. If AV‘E Mn(kv), we
say that A splits at V. If not, we say that A is ramified at v.
Ir kv = l, then the only simple algebras over kv are matrix
algebras, so B(&) 18 the trivial group., If kv = IR, the only non-
trivial division algebra overkv is the Hamiltonlan quaternion
algebra, M. Thus B(R) =%/27, which we will represent by [0,L).
If v i3 a finite place, 1l.e., kv ig a finite extension of a
p-adic fileld, then B(kv) 1s lsomorphic to the group of roots of
unlty in L. ([W-2], Chapter XTI, Corollary 1 to Theorem 1.)
This group L= iscmorphlc to ®/Z, which we will represént by the
set ol positive rational numbers less than one.
Let hv(A) be the Hagse invarlant of a slmple algebra A over
kv,'déscribed in [W-2]. Then hv is an isomorphism from B(kv) £0

Q/7% if v is finite and from B(kv) te {0} orZE/QZ:if v is infinite,
By Theorem 2 of Chapter XI in [W-2], the equivalence slass of

an algebra A over the number Tield k 1s
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unlguely determined by [hv(A)} for all places v of k. In fact,
suppose that, for each place v of Xk, h, is an element of @/%

such that h, = 0 for all but a finite number of v, % h, = 0, h

is O or %-if-v is real, and hv = 0 if v 1s complex, Tben'theré

is a OSA A over k such that h (A) = h .

A.2, Quaternion algebras. The main reference For this sectlon
ieg [V]. A qﬁaternign algebra is a CSA of dimension four. Thus
a quaternion algebra 1s either a division algebra or a matrix
algebra over 1tg center, MQ(K)' A quaternion has a unique in-
volution ( )'. The-map ( ) 18 a k-linear énti-automorphism
whose square is the 1dentlty map, and which fixes only the ele-
ments of k., By means of this involution, one can show that a
quaternion algebra A .ls lsomorphlc to 1ts opposlte algebra A%,
Hence A @ A = A @ A® = MA(K), 80 that a quaternion algebra has
order two 1n the Brauer group. So if k is a number f£ield, the
Hassé invariants hv(A) of a quaternion algebra are all 0 or-l,
and h (A) = O.1f v is complex. ILet Ram(A) be the set of places
of k at which A 1s ramified. Then, since = h,(A) = 0, |Ram Af

mugst be even,

Theorem A.2. ({V], Chapter II, Theorem 3.1). For every finite

set 5 of places of k such that |S| i1s even, there exists =
quaternion algebra A over k, unique up to isomorphism, such

that S = Ram(A),

In a quaternion algebra, T(x) = x + x!, and v(x) = xx'.




Every element o of A, « £ K, gatisfies a guadratic equatlon

e . . ,
X7 ~ 7{a)X + v(u). Hence every quaternion algebra contalins

a (non-unique) maximal subfleid which is guadratlc over the
center k.
If A is =2 quaternion algebra over R, then A E_MQGR) oT

A =%, The involution in MEGR) is given by

a byt . d -b
(c d) - (nc a)‘
Hence
8 by _ sa Db d ~b a+d 0 Y-}
rf(c d) - (e d) + (=c a) ( 0 a+d) tr(c
and

il

a b 1
det(c J R
‘The involution in H is given by

(atbi+cd+dk)’ = a ~ bl - ¢j - dx,

s0 that
T{at+bi+tej+dk) = 2a

and

v(a+bi+cj+dk) = a2 + b2 + 02 -+ dz.

For the rest of this section, k 18 a number field.

107

Theorem A.3. A quaternion algebra A over k contalng a maximal
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subfleld I, which quadratic over k and totally imaglnary.

To prove Theorem A.3, we need several other regults.

Lemma A4, ([V], Chapter ITI, TLemma 3.6). There exists a quadrabic
extension L of k such that Ly = L %‘kv 18 a quadratic field ex-
tengion of k, for a given finite set of places v of k.

Theorem A.5. ([V], Chapter IIIL, Theorem 3.8). A quadratic ex-

tenslon I of k 1g 5 subfleld of A 1f and only 1if Lv = I E kv ie

a quadratic extension of k, when v € Ram(A),

Proof orf Theorem A.3. By Lemma A.L, there is s quadratic extension
L of k such that Lv_:_L ? Kv 18 a quadratic extension of kv when

v € Rgm(A) or v 1s real. If v 1s complex, then k, = Ly = &. If

v 18 real, then LV Is a quadratic extension of kv :2&; 80 Lv = {l.
Thus I, isg totally lmaginary. Theorem A.5 says that L 1s a sub-
fleld orf A, | ‘ E
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