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Introduction

In this paper we mainly work with riemannian fibrations.
Some of the problems we consider are also interesting for
riemannian foliations, and many of our arguments are valid in
that case, in particular in the case of 1-dimensional leaves.
We study local properties and the global structure of riemannian
fibrations of R" over some conplete riemannisn menifold. In
general, riemannian fibrations do nqt exist, even loéally, for
a general ﬁetric. However, there are sz lot in case of constsnt
sectional curvature. The corresponding problem for euclidean
spheres, has been solyed by D. Gromoll and K., Grove [GG]. In
our case, it turns out such fiﬁrations are globally (not locslly)
féirly rigid.rThe techniques we apply are quite different from
the compact casge. Becaqse of the non-compactness of the fibers,
we cannot use the volume of the fiber as in the compzct case.
We have to apply the basic-construction of riemannian manifolds
of non-negative sectiénal curvature, Essentially we show that
non-trivial riemannian fibrations of flat euclidean space exist,
and they are all obtained by free isometrié actioné of lower
dimensional euclidean space . We should point out fhat for the
hyperbolic spaces, there is no rigidity. So the rigidity of
riemanniaa fibrstion seems to be = phenomenon of complete

riemannian manifolds of non-negative sectional curvature.




Let N and M be ¢ riemannian manifolds. By a riemannian
submersion , we mean a Coqwmapping J. ¢ R——=>M from N onto M
guch that (i) 9 is of maximal rank, and (ii)7f, preserves the
lengths of horizontal vectors, i.e. vectors orthogonal to the
fiber -ﬂf1(x) for x € M.Our main theorem is that every riemeannian
fibration from flat euclidean space R® onto some riemannisn
manifold M, which is necessarily complete, has a totally geodesic
" fiber in R°. By the existence of the totally geodesié fiber, we
prove that each riemannian fidration 7T ¢ Rq——dy-Mn“k corresponds’
to a Lie group representation of Rk in 0{(n-k). Hence we can
classify the riemannian fibration . of euclidean space with
(cbmp1Ete) connected fibers by grdup'representations of Rk in
Q(n—k). In particular, the riemannian foliations of RE* with one
dimensional leaves are fibrations and are classified by”the

(non-vanishing) Killing vector fields of K",

In this paper, we first give some known results znd facts
about riemannian submersions and riemannian manifolds of
non-negative sectional curvature. Next, we give an informal
discussion of the local properties of riemannian fibrations.

Then we study the global structure for the general k-dimensional
fiber case. Applying the basic construction introduced by
Cheeger esnd Gromoll, [Cd] , we prove the classification
theorem for riemannian fibrations of . Finally we look closely

at the riemannian foliation with one dimensional leaves. By




using elementary methods, we prove that any one dimensional

riemannisn foliation of R° is s riemannian fibration, =nd it

is determined by é non-zero Killing field of R".




1. Preliminsries

+

In this section, we outline some known results and facts
sbout riemannian submersionsand riemsmmian manifoldsof nonnegative
sectional curvature. For all the basic facts we refer to the
papers by O'Neill, Cheeger and Gromoll, and the book by Cheeger
snd Ebin.

Let 71 s 2%

. A submersion 7L is a differentiable
~ map such that at each point7f, has meximel rank n-k. It follows

- from the implicit function theorem thet 71':1(15) is a closed,

smooth k-dimensional submanifold regularly imbedded in N for
every p€M. The submanifolds 7f1(p) are called fibers for all
PE€M. Let V denote the tangent spajce to 7‘{,-1(;0) at qejz'?(p) .
Assume that N and M have riemannian metrics and set H = v+ . Wer
call H and V the horiéontal and vertical subspaces, respectively.
Hence a tangent vector to N at g€ 7%1 (p) is horizontal if
orthogonal to the fiber 7{'1(1)) , vertical if tangent to the

fiver.

L is called a riemannian submersion if 'ﬁ,*‘ g is an
isometry, i.e. ')T,* preserves the length of horizontal vectors.
Let ‘A and M denote the projections of the tangent spaces of N

onto the subspaces H and V¥, respectively. Define the tensor T

for arbitrary vector fields E and F by :

TpF = HV')/EVF + Yy HE -

T has the following propertiies :




1) TE is & skew adjoint. operator on tangent spacesof N
reversing horizontal and vertical subspaces.
3) For vertical vector fields V and W, T is symmetric i.e.

Along a fiber, T is the second fundamental tensor of
the fiber provided we restrict ourselves {o vertical vector

fields.

Define the integrability tensor A associated with the
submersion : AR éHEG{ﬁVF +)NZHEHF with the following

properties : N

- 1) "At each point Ag is skew ~adjoint operator on TN reversing -

the horizontal and vertical subspaces.

E = byp -

3) For X, Y horizontal, & is alternating, i.e. ALY = - AX .

2) A

For X,Y horizontal vector fields, V, W be vertical
A A
vector fielpq‘s, AY = %[X, ﬂ and VVW = Ty W + Y W , where \vJ
denotes the riemannian connection along a fiber with réspect

to the induced metric.

Definition : A basiec vector field is a horizontal
vector field which is 7[ -related to a vector field X, on M, i.e.

For X, Y basic and J{-related to X, Y, respectively,

2) {X, YD =X s Yudy -




) H [X,Y] is besic and [ -related to [x., ¥,] -
N .
¢) 7{\7XI is basic and 7 -related to ¥/ X*Y* .

Proposition 1.1

0 i N> M be g riemannian submersion. Let K, K

% and

~
K be the sectional curvature of N, M and the fibers. If X,Y are

horizontal vectors at a point of N, and V,W are vertical, then:

1) K(py,) = R(py,) -~ TV TwWo = [ Twp*

I viAswiz A
2) KL MXIFIVI® = <)y vxs + av® - re® .
_ O 3AYH”
3) K(Pyy) = K*(PX*Yl 0 XAY I ’

Proof : cf. 0'Neill's paper [01] .

Proposition 1.2

Let 77+ N—> M be a riemannian submersion. Assume M is
complete, If X,Y are hasic vector fields, then AXY restricted to
eny totally geodesic fiber is a Killing vector field of that
fiber. |

Proof : It is straight forward.

A curve in N is said to be horizontal if its ftangent
vector-fﬁeld ig horizontal. The projection of a horizontal
geodesic of N is a geodesic of M.

1f g: [0,11—>» M is a curve, X, € -71,'1(0'(0)), there is
at most one horizontal 1ift a, [0,1]—>¥ of @ beginning at X s

and the horizontal 1ift exists loecally.




 Proposition 1.3

Let 41/ ¢ R—> M be a riemasnnian submersion. If N is
complete, so is M. The horizontal 1lift of paths of M exist
globally, and 7£ is a fidber space. :

Proof : See [H1] y Proposition 3.2 .

Proposition 1.4

If ¢ :[0,1]=>M is a path, there is a diffeomorphism
-1 - , e .
he 39¢ (g7(0)) —s ﬁ1(0'(1-)) obtained by mapping each x_ in
-7E-1((T(O)) into the end point of the horizontal 1ift of @~
starting at X, Hence any two fibers are diffepmorphic.

Proof : [HT] .

»

If p, »p, €M are two distinet points, q, ,qi€-751(pi)=:F; ,

then‘dist(F1,F2) = digt(q1,F2)

dist(F1,q2)

dist(q;,FQ)

dist(F1,qé)

i
]

| dist(p,,p,)

which shows that every two fibers are everywhere equidistant,
Hence we have the stability property of the fibers : If one
fiber comes Qithin a certain distance of another fiber at one
point, it remains within that distance. Thus, if one of the
fiber is bounded ( unbounded ) in N, then every other fiber is
bounded {unbounded).

Preoposition 1.5

Let 7+ N—> M be a riemannian submersion. If Y is a
geodesic in N, that is horizontal at some one point, then )/ is

always horizontal, end hence 7] o y’is a geodesic of M.




Proof 1 cf., ['021 .

Proposition 1.6

" Let 7L+ N—3 M be a riemannisn submersion. )’ [a,b]—»N .
2 horizontal geodesic segment. Then the following integers are
equal :
1) The order of ¥ (b) as a focal point of the fiber F along Y.
2) The order of Y (a) as a focal point of the fiber F along Y .
3) The order of conjugacy of F_ and E_ along }’.
4) The order of conjugacy of the end points of 'fo}’ along 7Zo)/ .;

Proof : cf. [021 .

LS

In general, conjugate points occur sconer in M : if
Y(a) has a conjugate point )’(‘I:) » then there exists a

conjugate point 7[0'})(’0') of 7o )/(a) with t' £ t.

Propogition 1.7

X is a lift along the fiber F iff
Vv){ = AXV + TVX
for each vertical field V tsngent to F,.

Proof : c¢f, [011 .

It is an immediate consequence that any fibration is

determined uniquely by one fiber and a frame of basic fields

along khat fiber.




We recall the basic construction of [CG]

Let M be a complete riemannien of non-negative sectional
curVature. A non~empty subset C of M will be called totaIIJ
convex if for any p and q in C, and any geodesic c [O 1] s M

from p to q, ¢ lies in C.

Theorem 1.3,

Let C be a closed totally convex subset of an arbitrary
riemannian manifold M. Thén C has the structure of sn imbedded
k-dimensionsl submanifold of M with smooth totally geodesic

interior and (possibly non-smooth) boundary O Ce

For a closed totally convex set C, if JC # &

set c?= :{pec : a(p, 9C) 2 aj’ for a N0 .

Theorem 1.9

Let M have non-negative curvature, and let C be a closed

tofally convex subset of M with non-empty boundary. If

8oy = WBX {HG : ¢ 7-{45_} = max d(p,2¢C) ,

then dim camax & dim € .

A ray Y :T0,1]-3 M is e geodesic parametrized by arc
length, each finite segment of which realises the distance
between its end points. In any non-compact manifold M, there
is at least one ray starting at each point of M,

Let B (p) as usual denote the open metric bell of

redius r, centered at p. Given ¥ , define By to be LJB (Y (%))
t70




and Cy to be the complement (By)' of M. Since the balls
Bt(')’(t)) are open, Y(O)G(B};)' = Cy . Hence C}/-;lgf.

Theo;em 1,10

Let M be non-compact manifold of non-negative sectional

curvature, Then for any ray ¥ , C); is totally convex.

Theorem 1.11

With M as above and p €M, there exists a family of

compact totally convex sets C. , % = 0, such that

1) t, 3 t1 , implies Ctz::> Ct1 , and

I

i)

ct = {qé Ct d(q, D€, ) t2 - t1 3‘ , in particular
1 2 * EZ :
1Y Y
2) Uct =M.
t20
3) péC0 .

Theorem 1.72

M contains a compact totally geodesic submanifeold S
without boundary, which is totally convex, 0 £ dim$ £ dim M .
In particular, S has non-negative sectional curvature. § is

called the soul of M. The menifold M is diffeomorphic to the

normal bundle of S in M. In particular, M is diffeomorphic to

R® iff any soul S is a point.

10
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Theorem 1.13

Let M have non-negative sectional curvsture, C be

closed and convex (totally convex,respectively), C # gf ,
and let \rb: C—>R be defined by }é(x) = d(x,aC) . Then
for any normal geodesic segment s contained in C, the function
!f’oc(t) is (weakly)-convex, i.e. |
. N

I)boc(o(t1 +8t, ) ..ot\'liboc(tq) + ‘G}boc(tz) .
where oe,}_a,éo, o{-}«!}:‘l. | '

Yor the proofs see Cheeger and Ebin fCEj s or Cheeger

and Gromoll [CC] . .




2. Some Local Aspects.:

In this section we give an informal discussion about
local properties of riemannian fibrations. It will not be
esaentiﬁl to our main theorem, bﬁt.it has its'o#n interest.

We first consider the case that the fiber dimension is
one. Even for the one dimensionsl case, it is rather complicated
to analyse the local property of riemannian fibrations, Given =
- regular C3—curve c in R , we will describe the neceésary and
gsufficient condition for ¢ to be (locally) a fiber of some

. . . , n
riemannian fibration in R'.

We first derive a necessary condition. So suppose c is
a fiber of some local riemannien fidbration in Rn, which we may
assume 1o be parametrized by arc length. If X is a basic field

defined along ¢, then it satisfies the equation
X = - *
X=4T-XT1 , (%)
where T is the unit tangent field. Conversely, it is true if X

is » (horizontal) vector field along the fiber satisfying (%)

then it is basic. Using 0'Neill's A-tensor, we can define an

operator £ lon the horizontal space by 0E) = - A,T . Then
,f2, is p skew symmetric operator because of the skew symmetry
of the A-tensor. If we choose an orthonormal freme at a point

on the curve, say X; , then {1 = (a}ij) is a skew symmetric mitrix

12
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with ) 13_=<Ax Xy TY.

i

Lemme 2.1

{) is parallel, i.e. {}'= O relative to the induced
connection of the normzl bundle.
Proof : Let w(X,Y) =<Axf, T ». Then '

' (6Y) = WY - w E,Y) - wixy) .

Since W(X,Y)' = 0 as wKX,Y) is constant along the

fiber, and

W (X',Y) = (A, T = HAX', TY = (AT, AT )
=¢AT, YTy = (aY, Ty = -w(x,Y) .
Thus (' = O end hence {}!' = 0 .

. Since () is parallel, if we =are given,fl at a point, we
know £ along the fiber, It then follows from (¥) that any basic
- field X along ¢ is determined by its velues at that point. Now
let X,Y be basic fields along the curve c, i.e. satisfying the

equation (*). Consider the variation of curves

e (4) = o(t) + X(8) + €¥(t) . - i

For fixed t, ce(t) is s line segment in R", and

de =
de |t=o_ ¥(t),

dee = o(t) + X(t) +e¥(t) ,

[o(®)]? = |a2)® + (1=K )2 | 7y2




and <Y(t), éo(t.) S = <-i(t). Y(t)) = -<AY, T> where

T = ;(t). Hence Y makes constant sngle with ;o(t) along co(t) .
S0, the horizontal projection of Y has constant length along
the curve c  iff '7(x:= constant along c.

When ¢ is a fiber of a riemannian fibration with
projection j7 , co(t) is also a fiber induced by the basic field
X along c¢. Y is a 1lift (not necessarily horizontal) along c,
Then JT .(Y) is of constant length along j{ and this forces

= constant along c, provide .
X, tant al ided A,T # 0

On the other.hand, it follows from this discussion:
if }:x = constant elong the curve ¢ for each basic field X,
then locally we have a riemannisn fibration, by exponentiating
the basic fields =long c¢. Note that'7CX = constant 2long the

curve ¢ iff T!' is basic, since R,=<X T =~-<X T,

i

Also, a vector field X is basic iff X' = - ()(X). Hence the
necessary and sufficient condition for a regular CB-curve to be

a fiber of a locel riemannian fibration is that T' is basic, i.e.

L2(r) + 10 =0
on the horizontal space, prdvided 12.15 non-degenerate, i.e,.
det {2 £ 0. (Since {2 is parallel, det{2is constant along c. )
Let us briefly analyse the simplest nontrivial case,
‘when ¢ is a curve in RB.,JTL then is a skew symmetric operator

on the two dimensionsl normal space of. ¢. So either ftl: O, ox

Jﬁl is non-degeneraste. In the latter case, its action is just

14




a dilstation through 90O in the normal space. Using Frenet's

dT . dN _ dB _

) = Qixw) = MKB, Af O is the constant of dilatation,

T o= (R N)Y 2[3%.(% W) = )N +TxB
Since {2(T*) + T''= 0, we must have X' =0 and.xI‘r+yM) =0 .
S50 KX = constant along the curve and T = constant at the same
time, In this case, ¢ must be a helix in.R5, and even the iocal
fivers are "rigid". Notice however, that in the case.fz = 0, i.ef
A = 0, by the above, any regﬁlan‘cz-curve ¢ in R® is the fiber of
a local (flzt) riemannian fibration, so in that case the local
situation is highly non~rigid. Ifﬁdim ker£2=:1, then there
exists X £ O such that {Q(X) =0. If X is basic and (2(X) = 0 at |
one point, then.(l(x)‘z 0 slong the curve Cy o® Let us chsider
the neighbouring fibers induced by X, say c(t) = co(t) + x{(t) .

Then &(t) = co(t) + X(t) = T+ AT KT

i

(1 +X_)T_ . So in this case, (X)) =0 ;
21) the nearby fibers induced by sX are parallel to C, 3 end
hence there is no restriction on the curvature of the curve o
in X-direction.

{2 is skew symmetric on the horizontal spece K, end
E = ker L1 + Img). is an orthogonal splitting. Because ITL is

parallel, we 21lso have ker{l and Im{} parallel, thus there

exists a parallel frame field Ei along the curve c0 with

15
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il

) = Epipq Q(EZi-H) ==-Ey » 1&1i6ér, and

_g)ﬁE ) =0,82x2r+ 1. | ]
For the case S22 0, i.e. the flat case, there is no | ;

restriction whatever for the (regular Cg) curve to be a fibver

of a local riemannian fibration; as we have seen we can define

o riemannian fibration locally by parallel transport of the

tangent vector field in horizontal directions. This will give

us a flat guotient manifold.
From the discussion above, the case in between the two ‘
exiremal céses,f?.z 0 and f).non—degenerate, is somewhat more .
complicated. What we conclude is that the more degeneracy of
L is impesed, the less the rigidity of the curve. Only in
the case that 5:1 is .non-degenerate will the fibers of loeal
fibrations in R necessarily be faixly rigid already. As socon
aS‘j:Z‘is degenerate, riemannian fibrations in R are locally
" infinite dimensional™, end ample. Our main rigidity theorem

is.therefore s global phenomenon, and must mzke use of glotael

erguments.

For the general case of a k-dimensional fiber (n Qg 2 2),

the snalysis is more difficult. We just give the necessary

conditions for & k-dimensiocnal submanifold in Rp to be fiber

of a riemannisn fibration.

(1) L R(V,¥) = 0 on the horizontal spzce, l.e,

L(r,r, - 1,7 )%, Y S = {R(W, V)X, Y D = {VV(AXY),w>.(;{\,(AiY)}V> ,

WV
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where X,Y horizontel; V,W vertical; and R is the curvature ‘

tensor of the normal bundle. ;
< V1,50 > = (7, (T,X), U5

= (AXV, 'l‘wU_> - (AXW, TVU> .
These give the necesgary relations between the A-tensor with the
second fundsmental tensor T of the submanifold.

The case of fiber codimensional one is, of course,
rather trivial. Any hypersurfece in R is locally a fiber of

the unique flat fibration given by equidistsnt hypersurfaces

and fhese are all such _fibra'tiong.




%2+ Globsl Riemannian FPlbrations of Buclidesn Spaces

Let j: RP—s MK

be a riemennian fibretion of flat
. , n . \ -k .
euclidean spzce R°. From section 1, it follows that e is
complete,and M has nonnegative sectional curvature everywhere
( as a consequence of 0'Neill's formula).

We first observe that topologicslly everything is rather
simple. Our main concern will be geometric rigidity aspects of

thig fibration. Since'?&is a fiber map, we have the long exzct

homotopy sequence @
W‘:J(F)“ﬁ "n;i(Rn)“”f;i(mn-k)“3 ﬁj-a(F) '-%7{3-1(3%""‘“ y
where F is the fiber. Since R" is_contractible, 7T, (’) = 0

for j= 1; we have 7Zj(Mp"k) ?5ﬂ%_1(F), for j= 1. In particuler, {

when j = 1,7{1(M) = ﬂé(ﬁﬁ. So, if the fiber is connected, then
n=lk

% must be simply connected, i.e. 731(M) = 0, If the fibhers
—~
are not connected, we have the factorization Rnln-> M > M

of the riemannian.fibrationﬁT ' where‘ﬁ‘is the simply connected
covering of M, andgfkms connected fibers. Since the universal
covering?ﬁ-—aplin general is fairly well understood [b@] y we i
will from now‘on restrict ouf attention to the cage when M is
gimply connected, i.e. the fibers of 7 are connected.
For topological reasons [S] s 1t follows that both the
fiber F and the base M, being finite dimensional Cwucbmplexes,
must be contrsctible. In particular, M cannot be compzct. By 1.12,

[ca] , (&l , M is in fact diffeomorphic to R™™¥, and it will

18
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become clear in the following that the fiber is diffeomorphic
to Rk. Of course, a compact base M can arise in case of
disconnected fibers, for example, when 7L is the universsl
covering of flat torus M = T%,

& crucial step toward our main result is the following :
Theorem 3.1 |

If 7L : B2 "% {s & riemennisn fibration of flat

. 7 . . .
euclidean spsce R, and the fibers are connected, i.e. M is

simply connected. Then there exists a totally geodesic flat
fiber in R".

The proof of this theorem will be given in several parts:
Choose anj point pé M, let ¥ (t) be a ray enaminating from p.
Let Fp be the fiber over p and T any point on the fiber Fp-.,
Then through’ﬁ, there exists a unique horizontal geodesic ?(t)
in R® that covers ¥(t). Let B, be the open meiric ball in M

with radius t centered at J(t). Letfﬁ/t be the open ball in R"

with radius t centered at Y(t). Then

_I_u_éﬂmma 5e2
o~ :
0 Maps Bt onto Bt .

~ A~ A PP ~t
Proof : If %e€B,, then d(X, ¥(t))<t, but
~ o Y s T VA i
d{ 7% (%), (¥ (t)) £7a(x, Y(t))<t, since 70 is a
distance non-increasing mapping. Thus, 70 (%) & B, s so
~F

Conversely, if x& B, , then d(x, Y{(t))<t. Let g be a

minimzl geodesic between ¥ (t) and x with o (0) = Y (t),




20

6(1) = X. Through § (%), there exists e vnique
horizontal 1ift G- of ¢~. Then

d( (1), T()) = al g (1), 7 ()< t.

and 7L (F (1)) = (1) = x, thus Ir (§t)313t .

Lemma, 3.5

v ‘ -
Let B = U Bt end B = UB‘t y then B is an open "half
~ tro tro n —~
space” in M, B is an open half space in R, and 7] maps B onto B,
Proof : This follows directly from lemma 3.2

L n P :
Now consider C =M - B, C§=R -B .,

lemma 3, 4

C is 2 closed,r totally convex subset in M, ,E,‘:’.is a closed
half space of RY,

Proof : cf. [CG] .

Lemma 3.5

Let C =n’(.3v.§ y intersection over all 'ﬁﬁéFp. Then T is =
non-empty closed convex subset in Rn, and ‘7¢ maps,é/onto C.
"Proof : T is non~-empty because Fp = 7(,‘1(p)c8%; for all "56-751(13),
by construction. Since each Efﬁ is a closed half sp=ce,

this intersection is a convex closed subset of Hn. If

o ~— .
e Cf; for all pe Fp ’ 7’(,(3'(') cannot belong to B, otherwise

7 (X) e B, for some t>0, Then there exists a minimal
geodesic " from § (t) to 9 (%) with length d( Y (t), 7 (%))
= d(0 (0}, (1))< t. Through X there is a horizontal

1ift O- with F(1) =%, 7 T0) = & (t),and




d(B—’(o),ai(*:)) = d(g(0), 0(1))<€ t. We find a unique |
point in.751(p) saj'ﬁg such that F~(0) lies on the
horizontal 1ift of Y (t) through §, . Then 0~(1) =’:2Eg"§t
by the construction for "ﬁ"o s contradicting ?Ee'(\)‘i; for

211 T. If x¢C, then x 4B and hence 7N (=)NE, :%,

' ~J | o~

for all p. Thus, “30 (x)(: C. So, we have proved that

- ' S

7 () =C.

For each ray }(t) enaminating from p , we obtein a
closed totelly convex subset CYin M and a closed convex get
e
C¥ ' in R, If we take the intersection of these sets over all
possible rays from p , we obtsin a compact, totally convex

' Rty N}""
subset C =ﬂ£€ in M, snd = closed convex subset C =MC in

zulr:uaﬂw.r )

R, Clearly, 7’5-1(0) ="C. By Theorem 1.8 , C is a topological
submanifold of M of dimension O 4 m & n-k, with totally geodesic
interior and probebly non-smooth boundary & C. Since M is
contractible, ‘3}0 must be non~empty, unless C is a point. For
211 this, compare [CGJ . The structure of convex gets in A" is
elementary and well known. It follows that C is a convex set

o yol
with non-empty interior in some affine subspace E of R of

dimension m + k .

.Lemma 3.0

. - v -1 ~
7T 1( int¢ ) intC, - (2€)=pC .
Proof ¢ 7T - resitricted to?)‘ is a fibration over the manifold C

21
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with boundary. Thé fiber Is & manifold without bounda.rjr. Note

that 7L (C)

Lemma 3.

The closed convex (m+k)-dimensional subset (ajof 5 is

either E itself or T # 4.

. Lavd
Proof : Obvious, since C has non-empty interior in E.

If ¢ is = point, then C E is s flat fiber. 5o we may assume

oC }éff{. Let ug consider

cT ;:%xe ¢ : d(x,9¢0C) 2 rS‘ , for 0 £ rkt max»{d(x,:}c)lxécj:’
~ oS A o

gnd €T =§xec  d(%, 270) 2

Then ¢t is closed, compact, totally convex subset in M,

-~ . n
0% 38 closed convex set in R .

Lemma 3.8

o 1(cT) = TF .

Proof i If ‘% €TT , then ﬁ(:?’,:)'b) kN

a(50@), 20) = 4(F, (2 0)) =4k, 90) 2

nence 77 (C1)C.CT . If xé ¢®, a(x,2C) dr

then for/:t/éfﬁ‘l(x)

(:1(;: ‘7"&*1(?0” = E(;r a?f/) = d(x,?C)2r ,

beczuse of the equidistznce of fibers in a riemannian
fibration.

Let ¢(1) =NC" /5(1) =f\C¥ , then C(1) is also compact,

totally convex in M, with dlmC(1)< dimC, 0(1) is e¢losed, convex
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in B", dimC(1) = 4inC(1) + k. Clearly, of (c(1)) =T(1) . If
dimC(1) # 0, then by the above, SC(1) £F and DC(1)# &,
where 7} mesns teking the intrinsic boundary. Then by iterating

the argument, we obtain 2 sequence of subsets :
c(1)Dec(2)Dc(3)D ***, and
1 e io~e - LI
(1) D2y (3D ,

with dimC(1)> dimC(2)>°"* . Hence for some i, dimG{(i) = O,
. . Vg

i.e. C(i) is a point end thus C(i) is a flat fiber, since

- -
e(i) =w7£1(0(i)) is convex ahd > C(i) =)g/. So we finally

prove the existence of a totally geodesic fidbre,

Remafk 3.9 -

¢(i) is the "soul" of the menifold M, in the terminclogy
of [Cq] which is a single point in this case. It will follow
from our later discussion that this point ig actually 2 pole,
which provides a particularly simple argument that M is

k

diffecworphic to R'7%, Note that a point soul in general is

not a pole,

Now we can prove our main result.

Theorem 3.10

Let 7 : R s " pe a riemannian fibration of flat
euclidean space R® with connected fibers. Then 7j,is "homogeneous™,
i.e. there exists a free action of Rk on R by euclidesan motions

leaving 7, invariant, So, M is the orbit space of this action.

Proof : By Theorem 3.1 we find pé€ M, such that Fp is a totzlly
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geodesic flat fiber. We construct the action of Rk in
two steps.
First, we derive a necessary (and sufficient) condition
for the tensor A along Fp R
Let Xi be an orthonormal frame at p. Recall that X is a
horizontal 1ift iff $7VX AV o+ TVX y where V is any
vertical vector field. In our case, we restrict to the
fiber Fp » Wwhich is totally geodesic, t.gs, T = 0. So
the equation reduces to syvx = AXV « The horizontal
vector fields X, , 1 £ i £ n-k , defined along the fiber
Fp are the horizontal lifts of Xi iff they satisfy the
system of equations ‘7in = AXY for all vertical vector.
field V., Sinc? Fp is totally g;odesic in B° s W& Czh
choose a globally parallel orthonormal frame Vj '
14£ 3£k on Fp . Then the system of equetions becomes
n-k

1 i J=1

54
_¢<A X., v ) X.
J=1 xi J 1 J

It

AX Xj when resiricted to the totally geodesic fiber Fp ig
i
a Killing field. At the seme time, uﬁ X, “ is constant

along the flber. Thus ¢ AX XJ 1) nmst be constant on
i
1 ;
the fiber., Let aij = < AXin , Vl} y then the matrix

Ay = { é%j) is skew symmetric in i,j. By the theory of




differential equation, the system (*) is solvable iff

the following integrability conditions are satisfied

(%) Vv}vvmxi - vaV lei =0, 1%1&nk,

?E?
Vie have §7 L, = -
. Vl : J=1 1 J
Ty % == a, . X
Vm i e iJ73
ol V-5
X, = - a . = = a ’
‘7V1‘7Vm i 3=1 ij V1 3 i h=1 ij Jhxh
n-~k n-k
1 1 m
v X ==y 8y .Uy X, =21 al,alX .
‘<7VLSZJ1 i $=1 i Vm 3 3 h=1 ij "jh'h
Therefore (*%*) is equivalent to
(*‘N‘*) Z(a alzl.al)zo'1éh-f:ll'ka

3h ij “dh

Hence (***) ig the condition for A such that the system
(*) has global solutions.

Ve zre now in a position te construct the Jf ~invarisnt
free sction of RS, If X =§:aifi is a vector at p.,

then the horizontal 1ift of X along the fiber Fp iz of
the form X =§;aiXi , where ii’ X, are as sbove., If g€,

there is a minimal comnection ¢~ between p and q,

parametrized by arc length, g~(0) = p, g (s) =

X = g (0). The fiber over q is given by

(7 + x| ver, ]




X is the horizontal 1ift of X along FP « In other words,
every fiber can be considered as a graph of a function
F: By B?K 4y P where F assigns to each point p of
the totally geodesic fiber the vector sX(p). Kote that
the length ||Fjl is constant.

Let us consider the matrices <AX.Xj’ Vl> =: &),
1 £1 £ k . The integrability conditi;n (¥¥%) of A is
exactly the condition that all the matrices commute .
Since the matrices Al are skew symmetric, their

exponentials Exp A, are orthogonal. By (***) we also have

1
that those mstrices Exp‘Alcommute with each other. Hence,
we have a group representation of ; Rk——%»O(n-k) defined
by A (v) =kExp (AX_Xj’ V >, where v(—Rk .

Clearly, oL is a groip homomerphism. Since Rk is abeliasn
and.connected, so is its image oi(Rk).‘Actually od(Rk)

is contained in the maximal torus of S0{(n-k). The

maximal torus of SO(n-k) is of dimension r =[E§EJ ,
which implies the dimension of o((Rk) is not.greater
than'['g‘g-l-c'] .

We conclude that each riemannian fibration YT : Rn-—ﬁ>NP_k
gives rise to a group representation od: Rk—-* 80(n-x)}.

Let qe M, g as before, the minimal geodesic

between p and q. X = s ¢(0), where s = d(p,q). Let X be

the horizontal 1ift of X jalong the fiber Fp « The points:
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B + sX(P) form the fiber Fq over ¢, ’ﬁe Fp . The 1lift X
satisfies the equation vvx = AXV for every vertical
field V. So, when X is restricted to s streight line L
of Fp » the locus of the points {’i’; + 5)(("15)3 for

TEL describe a helix lying on a "eylindricsl surface"
with that straight line L as axis. Hence, every fiber
is orbit of the Ri-action @ on R" defined as follow :

n-k ~ _n

Let véRk, (a,b)E Rk + R = R~ , and

ol s B s S0(n-k) the group representation

constructed sbove.

Define é (\{)_(4&:,‘62 = (a.+ vy o(v)b )} .

‘So, ]6’ is gcting on the first component in Rk‘by
tran‘sla.tion and on the second component in gA-k by
rotation, i.e.,lg acts on R by "glide rotstion®". It is
clear from the construction that ‘3 leaves fibers

invariant, This completes our proof;

- Conversely, if we azre given a group representation
ol 1 Rk—> 30(n-k}, we obtein a riemannian fibration of R" with
k-dimensional fibers. Let ol : R —> S0(n~k)} be given. We define
the R -action f.‘l on K" g5 above :

veRS, (a,b)e RS + P ¥z g0

(e(v)(a,b) = { atv, o(v)D) .

This is 2 free action, since it is slready free on the first

factor.Rk. Let 7 be the projection Rn———>- Mn*k, where M is the

guotient msnifold. As (}. acts by isometries on 'Rn, the flat
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metric of R° projects to ‘a riemannian metric for M with respect
to which 7v becomes a riemannisn fibration. Therefore, we have

the complete classification result

Theorem 3,17

Up to congruence in o y riemannian fibrations
=n L=k
: B —> M™% are in 1-1 correspondence with egquivalernce

classes of (not necesserily faithful) representation

k

oL : R —> S0(n-k) .

Remprk 3,12

Qf course, the equivalence classes of such honomorphisms

-

ol are essentially just the homomorphisms of Rk into o maximal

torus of SO(n—k), up to the action of the Weyl group.

Remark 3.13
It follows from Theorem 3,10 that all fibers of any

n-k

riemannisn fibration 7L R ¥ are flat in the induced

metrie, (but usually not flat euclidean subspaces), since R ig

an abelian Lie group. Geometrically, they look like generalized
helices.
Remark %.14
) . , . n _n=k o
The riemannian fibration 7L : R —> M is
metrically trivial if and only 1if the representation

ol : Rk—~—a S0(n-k) is trivial .

We conclude this section with some examples.,
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e T 1 RP—> W2 .,

Since the fiber is one dimensional, the fibers sre flow
lines of a non-zero Killing field, which are helices in RB. The
homomorphism ¢A @ R—»50{2) = 81 is determined by some angle of
rotetion. If ol is NWon-trivial, M2 is a convex surface of

revolution asymptotic to a eylinder.

2. 70 3 BAes 13

Fiber dimension is one, ol : R~5850(3) has a fixed point,
since 81 is the maximal torus in S0(3), Lgain, the fibers are
flow lines of & Killing field (non-vanishing), and M = Mox &

isometrically, -

3. -77' H R4""—""» M2 ¢ .
Fiber dimension is two. o ; Ro—s $50(2) = § is either

trivial or z projection followed by a covering map. In.the latter
case, keri{ = RXT1, where T is the 1-lattice. By choosing the
base in Hg, we have two linearly independent vectors U,V € R2

such that of (tu) = 1d € 50(2) for all t &R and o4 (nv) = id for
n€&Z, The fiber of 7{ is a "ruled surface" which is generated by
& straight line in u-~direction moving along the curve |

e(t) = I(a-ﬁ-tv, A{tv)b) : teaﬁ in RY.

4 L i RP—s M,

The maximel torus in S0(32) is 81, so this is similer to

the Example 3. The fiber is a "ruled surface™.




Sa ‘7‘: H Rn——-—% Mf'l-1-

The fiber dimension is cne. ®: R = SC(n-k) . The

fibers are flow lines of = Killing field (non-vsnishing), i.e.
" helices" in B If n is even, M1 will split off a line.

6. T : B> NP2,

2

Fiber dimension is two. If olt R°—> S0(n-2) has &

kernel, then the fibers are "ruled surfaces™ as in Examplé Be

T. 7L ¢ R M1 = R is always trivial by Remark 3.14 .




4. One Dimensional Riemannian Foliations of J°

In the previogs section we have obtained 2 classification
of a1l riemannian fibrations of R" making very much use of ‘the
structure theory of complete manifolds of nonnegative sectionsl
curvature. It turns out that the case of fiber dimension one
can be dealt with more easily and directly in a way that does
not depend on a global quotient manifold and thus generalizes
to riemennian foliation of R" (which are understood to be
foliatidns of K® that are locally riemannisn fibrations). We

will discuss this case in this section.

Our main result in this section is the following :
Theorem 4.1
Any 1~dimensional riemannien foliation in R" ig
homogeneous, i.e. it is determined by a non-zerc Killiﬁg field.
In particular, F is necessarily a riemammian fibration.
Proof : Suppose we sre given a riemannisn foliation‘;: on R
with 1-dimensional leaves. A&s R" is simply connected, F
is given by a global smooth non-singular vector field T,
which we msy normalize to have unit length, i.e.\‘T\ =1,
iet Fp be the leaf through some point pé}Rn. Fp can be
naturally paresmetrized as an integral curve
e, R—>B" with ¢5(0) = p. Notice that F, is

necessarily complete in the induced metric, but could

be compact or a submanifold that is not a closed subset.
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Rather than looking at . local riemannian fibrationg:(whioh we
can do) we proceed more directly as follows :

Basic vector fields X along co are given by the equation

X ::2;‘1‘ + 'AXT y
they need not define vector field along Fp « Here again

j(x =<VTX,T >, and Ay is thg 0'Feill's form which is, of course,
globally defined. Now let Xo s YO be basic along Sy Extend
these fields to fields X,Y along t};e sur"i:ace Rz————éﬂn
(%) (480> o (8) = ¢ _(t) + sx_(t) |

g0 that X. is the tangent vector field of the horizontal
geodesic in direction X and T is determined by VXY being
vertical,(i.e. Y is related to a parallel field in = local

quotient along the geodesic determined by X).

Let cics(‘t) dcs
=<—-'""&-%"°-—-,T> s BO a‘%““«—-flT:Tv

s

and T vanishes nowhere, since for fixed s, (**) defines locelly

a diffeomorphism from R to Cg v Furthermore, we have the Jacobi

equation &2
L A =0
s
Notice that i Ty, X commute. Now define
~ Aenr L
A = (VvaT> =<VXY’T>‘<T*T> ? ='<AXT’Y> .

Then X A = =2 7{3{9& , since

A AL L
X b

XV T ST, T 7

i

i

X {4_ VT, 1T, T -%j
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- LoV, VLB XETSE XV, 7L<,y

+QTT,Y ><VK?E,N><’§:',"1"’ y=3/2
=K o = Kok |
-2 X A

X

Since o€ is (locally) constent along the leaf (by O'Neill's
formula) we have M= 0. It follows

0= et =Tk = -2(TK )X .
Hence if ol # O for some ¥, 7<x is constant along the leaf. In
case o4 = 0-for all ¥, i,e. A, T =0 along c_, consider the

(parametrized) leaves cs(t). Then T(t) = égt) = c’:o(_t) + s%x(t)

-

=T+ s‘?(xTo(t) + sAXTo(t) = (1 + szx)To(t) # 0 by the above
for all s; here we use that the fibration is "horizontally
complete®, Thus [1+s ’xxl never vanishes. This happens only
when % _ = 0 along c_. So we conclude that X is constant

x o X
along the lenves, for each basic X. The latier part of the
argument is global in nature. The last conclusion is in general

not true for local fibration,cf, section 2.

Now consider the global vector field X = T' on B,
Taking =an orthonormal frame Xi of basic fields along the

(parametrized) leaf o 1 We see that X =Z.7(i}(.l

where 7('3. = 7()( , are constant along Cy 3 gso X is basgic. We
' i

claim moreover, X is a gradient field on Rn. This is equivalent

to showing that (Vﬁx,B % is symmetric. It suffices to look at
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the following two csses locally :

(1) A = T vertical ; B = Y horizontal and basic along the leaves.
VLYY = (U LYY= =LV 0T = KT )

Since X is basic, [X,T] is vertical, AY = -AX .

§

(2) Both A = Y, B

<VyEZD

Z zre horizontzl and basic along the leaves;

T Tyl - T Z +< 7,7
(V8= Yyl V2 > + <V 2>,
- Now, {'VYT,Z‘> = -{AYZ,T> is constant along the leaves, so the

U

first term wvanishes. The bracket [Y,T] is vertical, therefore
LY,7] =4V, - Vp¥, T = - XyTy end the third term equals
~ Xy X+ which is symmetric in Y,Z. Finally, since VYT is
vertical,(VYT, VTZ Yy =4V y1s VZ'I‘ Y by the sbove, and the
gecond term is symmet:;ic in Y,Z.

Yow we can define a smooth positive function L on R" by
X = T' =Vlogll Note that TL = 0; i.e.Lis constant along the
leaves. Up to a constant, L measures locally the lengih of a
piece of a leaf under horizontal geodesic displacement.

We finally claim thet LT is a Killing field on R® . This
is equivelent to showing locally thet |
(1) W,(1r),rH=0
(2) <y, ¥>=0 , and
(3) < Y(IE) Y > 4y (i), > =0

for eny basic herizontal field Y.




Prcof : (1) <VT(’LT),T > =L <V T,T> = 0, since T has unit

length.

(2) ¢ T7HSLT),Y > = L(VfYT,Y > =0 by skew symmetfy of

the 0'Neill tensor.

(3) <Vp1m), ¥ > +<Py(1n),T >

= LKV, T,Y>  + :.YL;(T,T> + LS, Py

= - XyL +7(YL=0.
Hence we have shown that 1T is a Killing field. Since
the square of the length function of the Killing field
in-Rn is a quadratic function of the form ”Bx+b“ 2 with
B skew symmetric;Lassumes“a non-zero sbsolute minimum

in R™. The leaf through that critical value is totally

geodesic in R%, hence it is s straight line, F_ .

Cléarly, we have a global basic horizontsl framing along
the stresight line FO , which determines a riemannisn fibration
completely. Hence, we actually show that in our case, the one
dimensional riemannisn foliations of R® are fibrations. Note
th=t +this not true for the compact case, for exsmplet one

dimensionzl riemannian foliation of S3 need not be fibretions,

cf.[GG] .
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