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Abstract of the Dissertation
Groups of Conformal and Anticonformal
Self Maps of Riemann Surfaces
by
Andrew Howard Haas
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook
1981

We show the existence of Tinearizations for groups
of conformal and anticonformal homeomorphisms of Riemann
Surfaces. Finitely generatéd groups acting in the
plane may be classified in terms of specific Tineariza—
tions. These classifying groups are called Koebe
groups.

The existence of linearizations is applied to
prove the existence of canonical representatives for
plane domains called pseudocircle domains. In special

cases this gives a solution to the Kreisnormierungs

problem.
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INTRODUCTION

The first problem we consider js concerned with
generalizing several results about finite genus uniformi-
zations of Riemann Surfaces to treat uniformization
questions associated with Klein Surfaces. The main
theorem here is that any group of conformal and anti-
conformal autohomeomorphisms of a plane domain can be
Tinearized. This generalizes Maskit's results for the
conformal case [M2}. Our proofs make use of several
other of Maskit's results which taken together give a
detai}gd describtion of the linearized groups. An
important class of these groups called Koebe groups may
be extended to include groups with anticonformal maps.
An existence andfuniqﬁeness théorem for Koebe groups is
shown to hold for this larger class of groups.

The second problem we consider may also be called a
uniformization problem. <Classically it is a conformal
mapping problem, originally posed by Koebe and often
referred to as the Koebe Kreisnormierungs problem. The
question here is whether a plane domain may be mapped

éonforma11y and homeomorphically onto a domain whose

boundary components are either circles or single points.




Koebe was able to answer this question in the affirmative
for domains of finite connectivity and for domains of
infinite connectivity satisfying a symmetry condition.

A more recent history of the problem may be found in a
paper of R. J. Sibner's [S].

We develop a theory of prime ends for domains of
infinite connectivity which allows us to talk about
isolated pieces of the boundary. By linearizing a group
constructed according to information derived from a given
plane domain it is shown that the domain may be mapped
onto a circle domain modulo 1imiting behavior. This
limiting behavior-is dealt with by considering a wider
class of domains called pseudocircle domains. We prove

Koebe's conjecture for pseudocircle domains, thereby

solving the Pseudokreisnormierungs problem.




CHAPTER I

As background we present the basic theory of
Kleinian and extended Kieinian groups, sometimes from
the more general viewpoint of groups acting on Riemann
surfaces. Several results of a more advanced nature
are also included. The natural generalizations of
these results to the cases where the groups under
consideration contain anticonformal maps are stated

and proven in Chapter II.

§1.

The group of conformal and anticonformal homeo-

morphisms of the Riemann Sphere, €, will be denoted
by M8b. The conformal mappings in M8b, also known

as the Linear Fractional Transformations, are those

az+b
cz+d

numbers, and ad-bc # 0. The anticonformal mappings

of the form g(z) = where a,b,c,d are complex

in M8b, or the extended Tinear fractional Transforma-

= .
tions, are of the form y(z) = 2& b again where
cz+d

a,b,c,d are complex numbers, and ad-bc # O,

The subgroup of MUb whose elements are the Linear




Fractional Transformations will be referred to as
M8bT. In general, if G is a group of homeomorphisms
of an oriented manifold then G* will be the subgroup
of index two in G whose elements preserve orientation.
If G is a subgroup of M8b then &% = GnMsb*.

There is a surjective homeomorphism ¢: SL{(2,L) ~»

M6b*, where ¢(§ g)(z) = 2;:3 . In this way elements

of M8b* may be represented as 2x2 matrices of determin-
ant one. The square of the trace of a Linear Fractional
Transformation is well defined in terms of this

representation. The kernal of ¢ is the subgroup {#id}

10
01!

tified with the complex Lie Group PSL(2,C) = SL(2,C)/{+id}.

of SL{(2,C) where id = ( Hence Mob* may be ijden-

The eiements of Mob may be classified by choosing
a set of transformations in normal form so that every
element of the group is conjugate to exactly one of
these transformations. More precisely, every element
of Mob* is conjugate in Mob™ to exactly one of the
transformations of the form;

1. zw z+]

2. z e kz, |k| =1, k#l

3. zw kz, |k] > 1

Every anticeonformal element of M8b is conjugate in

M8b to exactly one of the transformations of the form;




4. zv Z

5. z v z+]

6. z & kz, k>1

7. zw eﬂ105m1, 0<o<1

The first three types of transformations are

called respectively parabolic, elliptic, and loxodromic.

A lToxodromic element for which k is real and greater

than one is called hyperbolic.:

Since the trace of a matrix is invariant under
conjugation, a simple computation reveals that for

geMob™, g # id,

a. ¢ is parabolic if and only if trzg = 4

b. g is elliptic if and only if Oitrzg < 4

g is hyperbolic if and only if trzg > 4

O

a.

if trzg satisfies none of the above then g
is loxodromic.
The transformations of type (4), which are

called reflections, are the only mappings in M8b

that have more than two fixed points in &. The fixed
point set of a reflection is always a circle or a
straight line (which is a circle passing through ).

This fact plays a crucial role in the proof of

Theorem I11.4 towards the end of Chapter III.




We now consider how a group acts on a surface.
Let S be a Riemann Surface and G a group of conformal
and anticonformal homeomorphisms of S onto itself.
Given a set of points X<$ we denote by G(X) the

stability subgroup of X in G; that is, G(X) = {g€G]g(X)=X}.

The group G is said to act discontinuously at a
point x in S if

1. G(x) is finite, and there is an open

neighborhood U of x in S so that

2. G(U) = G(x)}, and

3. g(u)nU = ¢ for all geG-G(x)

Denote by Q(G) the set of points in S at which
G acts discontinuously. Q(G} is open in S and we

call it the regular set. The complement of Q{(G)

in S is called the 1imit set and is written A{G).

It is easily shown that Q(G) = Q(G+).

G is a discontinuous group,or is said to act

discontinuously on S,if Q(G) # ¢. A discontinuous
subgroup of M8b is called a Kleinian group if G:G+,

and is called an extended Kleinian group if G # q".

If § is a compact surface of genus g > 1 then it

is well known that any group G, as above, is finite,

and therefore a discontinuous group; in fact, Q{(G}) = S.




If G is Kleinian or extended Kleinian then it
can be shown [M57 that A{G) contains 0, 1, 2 or
uncountably many points. Those G with A(G) finite are

called elementary groups.

A special class of Kleinian groups are the
Fuchsian groups. These are groups F for which there
exists an open disc A in @ (including half-planes in
C) so that F(A) = F. A{(F) must then 1ie on the boundary
of the disc A. If A(F) is the entire circle then F
is called Fuchsian of the first kind; otherwise, it is
of the second kind. Extended Fuchsian groups are
defined analogously.

We return now to the general case of a group G
acting on a Riemann surface S. Two points x and y
in @(G) are said to be equivalent mod G if there is a
geG with g{x) = y. Mod 6 is an equivalence relation,
and we denote by Q(G)/6 the space of equivalence
classes.

In this thesis we will be primarily concerned
with the equivalence relation induced by the conformatl
part 6" of the group G. There is a naturally defined
projection map II: Q(G+) > Q(G+)/G+ where II{x) 1is

the equivalence class of x. It is well known [M5]

that one may define a topology and, a unique conformal




structure on Q(G+)/G+ so that the projection map
I is a holomorphic branched regular covering; that is,
I is holomorphic and it is a regular covering if one
omits a discrete set of points on Q(G+) and their
images on Q(G+)/G+. In some local coordinate about
an omitted point the projection map has the form
z e z" for some positive integer n. The omitted
points in Q(G+) are the fixed points of finite
order elements in G*. With the induced conformal
structure Q(G+)/G+ is a countable collection of
Riemann surfaces.

The subgroup 6" is of index two in the group G
and therefore G¥ is a normal subgroup of G. Conse-

quentiy, for g an anticonformal element of G,

there is an anticonformal homeomorphism vy: Q(G+)/G+

so that yoll = Meg; that is y makes the diagram
commute:

a(ah) _J a(at)

4 \al
T Y

a(6¥) /6" —sa(6)/6".

Clearly, the map vy is independent of the anticonformal
element g chosen, and YZ is the identity. We call

v the anticonformal involution of S induced by the

anticonformal half of G.




The theorems that will be proven in Chapter II

are genevralizations of several theorems of B. Maskit's
from the realm of Kleinian to Extended Kleinian groups.
In this section we will state these theorems of
Maskit's and define several notions necessary for an

understanding of the theorems.

Theorem I.1. Let D be a plane domain, and let G be

the group of all conformal homeomorphisms of D onto
itself. Then there exists a univalent function ¢,
mapping D onto some other domain D', so that every

1

element of G' = ¢ G ¢ ' is a Linear Fractional Trans-

formation.

Proof. [M2].

If G acts discontinuously on D then G' is a
Kleinian group. The domain D' must lie in a connected
component A of Q{(G') which is mapped onto itself by
every element of G'. G' is said to be a Kleinian
group with an invariant component A.

If G does not act discontinuously on D then
Theorem I.1 may be easily deduced as a conseguence

of several classical theorems. This is outlined in

Chapter II1.
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A Riemann Surface S is said to be of finite
genus g if S embeds conformally in a compact surface
of genus g and not in one of Tower genus. Let S be
a surface of genus g and let i: S » S* be a conformal
embedding of S into a compact surface S* of genus g.

S is called a finite Riemann Surface if S$*-i(S)

consists of a finite number of points. S is called

a surface of finite type if S$*-i(S) consists of a

finite number of connected components.

Theorem I.1.has a generalization to surfaces of finite

genus:

- Theorem I1.2. Let S be a Riemann Surface of genus g. -

Then there is a closed Riemann Surface $* of gehus
g and a conformal embedding of S into S* so that, under
this embedding, every conformal self map of S is the

restriction of a conformal self map of S*.

Proof. [M2]

An isomorphism ¢: G - G* between Kleinian

groups is called type preserving if
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1. ¢ preserves the square of the trace of
elliptic elements, and

2. ¢ and ¢_1

take parabolic elements to parabolic
elements.
We denote by C; the set of finitely generated
Kieinian groups with invariant components.
Let G and G* be groups in C] with invariant
components A and A*. An orientation preserving

homeomorphism f: A » A* which induces an isomorphism T«

of G onto G* by g » f°g°f_] is called a weak similarity.

If the isomorphism f, is type preserving then f is a

similarity.

Let g be a parabolic element of a group G in

C1. g is called accidental if there is a weak similarity
1

¢ between G and another group G* in C; so that ¢ogo¢
is not parabolic.

A group G in C; is called basic if

1. the invariant component A of G is simply

connected, and

2. G contains no accidental parabolic elements.
A basic group G is degenerate if the invariant component
A= q(6).

Let G be a group in C] with invariant component

A. A structure subgroup H of G is a subgroup which
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satisfies the following:
1. H is a basic group
2. if a fixed point of a parabolic element
geG Ties in A(H} then geH.
3. H is a maximal subgroup of G satisfying
(1) and (2).
C0 is the set of groups in C] none of whose

Structure subgroups are degenerate. A group G in

C] is called a Koebe group if every structure subgroup

of G is either Fuchsian or elementary. Clearly all

Koebe groups are in the set C An Extended Koebe

0
group is an Extended Kleinian group G with an invariant

component and with 67 a Koebe group.

Theorem I.3. let G be a finitely generated Kleinian

group with an invariant component. There is a unique
Koebe group G*, and there is a unique (up to elements

of PSL(2,C}) conformal similarity between G and G*.

Proof. [M3].
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CHAPTER 11

Let D be a plane domain and let G be a group of
conformal and anticonformal homeomorphisms of D onto

itself. We say that G can be linearized if there is a

conformal homeomorphism f mapping D onto a domain D'

in the complex plane so that f G £

is a group of
Extended Linear Fractional Transformations.

In these terms Maskit's Theorem I.1 may be stated:
If G is a group of conformal homeomorphisms of a p]ahe
domain D onto itself, then G can be linearized. This

Chapter will be devoted to proving the following exten-

sion of Theorem I.1;

Theorem II.1. Let D be a plane domain and let G be a

group of conformal and anticonformal homeomorphisms of

D onto itself. Then G can be linearized.

In certain cases this theorem, as Maskit notes in
[M2], may be deduced from classical theorems. If D is

simply connected, then it is a simple exercise using

the Riemann mapping theorem, and Schwarz lemma. If D




has a non-trivial cyclic fundamental group then it is
well known that D is conformally equivalent to either
the punctured plane, the punctured disc, or an annulus.
In all of these cases a conformal or anticonformal self
map is an Extended Linear Fractional Transformation.

If the fundamental group of D is not cyclic, then
it may be deduced from the Uniformaization Theorem that
the holomorphic universal covering space of D is a
conformal disc. It then follows from a well known result
in the Theory of Fuchsian groups [K, p. 48], that a |
group G'of conformal self-maps of D acts discontinuously
throughout D. As was observed in I.2, the coset space
D/G+ has a complex structure which makes the projection
map holomorphic. The anticonformal maps in G then
project to a unique involution on D/G+.

Assume that the fundamental group of D is not
infinite cyclic. Let F be the set of points in D

fixed by non-trivial elements of 6*.

Lemma II.1. F is a discrete set in D.

Proof. Let {zi}?:] be a sequence of points in F with

Tim z2, =z where zeD. Clearly, G+ cannot act discon-

{ow

tinuously at z, which is a contradiction. =

14
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We know from elementary complex analysis that an
isolated singularity of a conformal homeomorphism is
removable. In light of lemma II.1, there is therefore
no loss of generality in assuming, for the proof of
Theorem II.1, that G+ acts freely throughout D.

We will also assume, for the remainder of this

chapter, that the fundamental group of D is not cyclic.

51,

We will first prove a "finite" version of Theorem
IT.1 which is analogous to Maskit's Theorem 12 in [M1].
It should be noted that whenever Theorem 1.1 [M2,

Theorem A] is cited, we could just as well use the weaker

Theorem 12.

Lemma JI.2. Let D be a plane domain as above, and let

H be a finitely generated group of conformal homeomor-
phisms of D onto itself. Then there is a conformal
homeomorphism ¢ of D onto a domain D' so that the group

1 is a Koebe group. Moreover, this can be

H' = ¢ H ¢
done so that the group H' does not contain any accidental

parabolic elements.

Proof. By Maskit's Theorem 1.1 H can be linearized.

Let f be a conformal homeomorphism of D onto a domain
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Dy so that Ho = f H £

is a group of Tinear fractional
transformations. As we saw in 1.3.0, H e is a Kleinian
group with an invariant component Af of Q(Hf), and

D]C < Ag.

Maskit's Theorem 1.3 states the existence of a
conformal homeomorphism h of Ag into the plane so that
h Hf h = H*¥ is a Koebe group. Then ¢ = hof gives the
first conclusion of the Lemma.

The fact that H* can be found without accidental
parabolics is an easy consequence of Theorem 1 in [M4].
More specifically, using this theorem one may specify
that every parabolic in H* is doubly cusped and corres-

ponds to at least one puncture on A/H*, where A is the

invariant component of H*. ®

With the normalization permitted by Lemma 1.2,
an easy proof of our "finite" version of Theorem TI.1

is possible.

Theorem II1.2. Let D be a plane domain and tet G be a
group of conformal and anticonformal homeomorphisms of
D onto itself so that 6* acts freely on D and so that

S = D/G+ is a finite Riemann surface. Then G can be

linearized,.
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Procf. We first show that G+ is finitely generated.
Since 67 acts freely, the projection p: D - S is a
regular covering, and the induced homomorphism p,: ﬁ1(D) +
wl(s) is a monomorphism. 6" acts as the group of deck
transformations for the regular covering and is therefore
isomorphic to the quotient group ﬂ1(3)/p*(ﬂ1(D)).
Since S is of finite type the group m1(S) is finitely
generated; hence, ﬂ1(5)/p*(ﬂ1(D)) 67 is also finitely
generated.

By Temma II.2 there is a conformal homeomorphism

-1

¢$: D+ D' in € so that rt o= Gt ¢ is a Koebe group,
b

+ . . .
I does not contain accidental parabolic elements, and

D' is contained in the invariant component A of Q(F+).

The anticonformal maps inT = ¢ G ¢"]

act a priori
only on D', but this action extends naturally to all

of A. To see this, notice that D'/I't is a subset of

A/F+ whose complement consists of a finite set of points
on A/T+. This set is the image of A-D' under the
projection map. The points in A-D' are theréfore isolated
from one another. This shows that they are removable
singuTarities of the anticonformal mappings.

Let v be an anticonformal element of T. We will

show that y is an extended linear fractional transformation.

This will complete the proof of Theorem II.2.
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v induces an automorphism vy,: r¥ .ot by v,(g) =
yogoy"l. Since I'" does not contain accidental parabolic
elements, v, and y;] must take parabolic elements to
parabolic elements. In order to see that vy, is type
preserving we must also show that it preserves the square
of the trace of elliptic elements, or equivalently, that
it preserves the minimal geometric generators of finite
cyclic subgroups of r*. The minimal geometric generators
of a finite cyclic group are those elements which in
ig

normal form (see I[.1) look like z+ e “z where |o]| 1is @

minimal over the cyclic group. The fact that minimal

genevrators are preserved is clearly a consequence of vy,

having been induced by a homeomorphism of A.

Let 3j: & + 0 be complex conjugation; that is, il

i{z) = z. j induces, by conjugation, an isomorphism
Jx taking F+ onto another Koebe group F* with invariant
component AY = j{a). Since j, is induced by a global
homeomorphism it is type preserving.
The map Jjey = ¢: A—+A* is a conformal homeomorphism.
+ * 1

It induces an isomorphism ¢,: ' > T by ¢*(9) = ¢ogod

¢y is type preserving, since it may be written as

bx = Jx°Yx»> 2 compdsition of type preserving isomorphisms;

hence, ¢ is a conformal similarity. Consequently, by

Theorme 1.3, ¢ is a linear fractional transformation,
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and vy = Jje¢ is an extended linear fractional transfor-

mation. =

In proving Theorem II.2 we have also generalized

Maskit's Theorem I.3.

Corollary II.1. Let G be a finitely generated extended

Kleinian group with an invariant component. Then there
is a unique extended Koebe group G*, and a unique conformal
similarity between G and G (unique up to elements of

MEb*)Y .

Proof. A1l that remains to be proven is the uniqueness.
Let A be the invariant component of G. Suppose that

G1 and 62 are extended Koebe groups with invariant
components A] and Do, conformally similar to G by
similarities ¢y and $po. By Maskit's Theorem 1.3

G; is conjugate to GZ in M8b" and the maps ¢7 and ¢,
differ by an element of M8b'. Hence, it suffices to
assume that GT = G; and that the restrictions of the
isomdrphisms induced by ¢, and ¢, on " are identical.

It follows immediately from Theorem I.3 that by and

Ly differ only by an element of M&bT and therefore we

may further assume that ¢y = 9,




We will show that G, = G,. The quotient spaces

N

, A}/GT, and AZ/G; all represent the same Riemann
surface 5 and the anticonformal parts of the groups
all project to the same anticonformal involution y of
S. Clearly, the set of all 1lifts of y to Ay = A2
gives the unique extension of G; = G; to Gy = G,. =
Proof of Theorem II.1.

The proof will be presented in two stages. In
the first the hypotheses of Theorem II1.2 are weakened
by requiring the surface S = D/G+ to be of finite type.
Recall that a Riemann surface of finite type is a Riemann
surface of finite genus which is the result of removing
a finite number of points and conformal discs from a
closed surface. We will be following, with only minor
modification, Maskit's arguments in [M2].

Suppose S = D/G+ is a surface of finite type.
Denote by y the anticonformal involution of S Which is
induced by the anticonformal part of G. Let p: D+ S
be the holomorphic covering projection.

Let S* be the surface gotten from S by glueing in
punctured discs along the boundary contours of S. 'There

is a naturally defined conformal embedding f: S » S*

so that the complement of T(S) in S* consists of a

20
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disjoint union of punctured discs.

Lemma II.3. S* may be chosen so that the involution

foyof-] of f{S) extends to an anticonformal involution

y* on S¥%.

Proof. A small neighborhood of a non-point boundary
contour of S is conformally an annulus. Choose a
collection of disjoint conformal annuli {Ai}§=1 on S,
one bounding each non-point boundary contour, so that
either Y(Ai)'= Ay or y(A;) = Ay for i # j.

Given an open Ai we glue on a punctured disc as
follows: map A, onto a standard annulus {z]1<|z|<K}
~in €. Then we may consider Ai as a subdomain of the
punctured disc {z|0<|z]|<K}=a*. This is exactly the appro-
priate complex structure oh AiUA*, which agrees with the
structure on all of S.

We now observe that y extends alttomatically when
S* is constructed in this fashion. If Y(Ai) = A,
then the involution induced by v on {z]|1<|z|<K} is the
réstriction of an anticonformal reflection of € in
a line through the origin. This defines y* on the
punctured disc. If Y(Ai) = A; i#j then representing

J

Aj as the same standard annulus the map induced by

y is again a reflection,
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Lemma 1I.4. Lef f, S, and S* be as in lemma I[I1.3. There
is a homeomorphism h: S > S* which is homotopically equiv-

alent to f and shich satisfies hey = y¥*oh,

Proof. y and y* induce equivalence relations on S and

5* respectively. Let S d S*
P Y ¢ /(Y) an /<Y*)

spaces. They are both manifolds, possibly with boundary.

be the quotient

f projects to a unique mapping f: S/<Y>+ S*A(Y*>'

be a homeomorphism in the same homotopy

Let

ey T oy
class as f. Then the orientation preserving 1ift of
h to S is a homeomorphism h: S + S$* which is in the same
homotopy class as f. Notice that this lifting may be
done in the sense of covering spaces away from the fixed

point set of y and then extended canonically. =

The projeétion maprp: D+~ S is a holomorphic régu]ar
covering. Since h is a homeomorphism the composition
p* = hep: D » §* is a regu1ar covering. By pulling back
the complex structure on S* to D via p* we get a new
complex structure on D which, in this context, we will
call D*. D* is topologically a planar surface; hence,
by application of the uniformization theorem, we may
assume that it is a plane domain. Then p*: D* » 5% is

a holomorphic regular covering. The group G on D

becomes G* on D* and the anticonformal part of G*




projects to v* on S*. S* is a finite Riemann surface,

so by Theorem I11.2 we may assume that D* is a domain in
the plane and G* is a group of extended linear fractional
transformations.

Since f and h are in the same homotopy class of
maps, f: S + S* lifts to a conformal homeomorphism ¥
taking D into D*. Then FogoF ! = gx acting on f(D)
is a group of extended linear fractional transformations.

That completes the first step in the proof.

We now proceed without any restrictions on the
Riemann surface S = D/G*.

Normalize D so that the unit disc A is contained in
D, and so that g(a) n Ao = ¢ for all g € G. Set M, = p(1a).
There exists an exhaustion of S by surfaces {Mm}, where
gach Mm is of finite type [A+S].

Let k be the smallest number for which M n Y(Mk) # @.
We will work with the exhaustion of S by y-invariant
surfaces (S 17.o where S, = M .. U y(M . )} n=0,1,2,...
Cfear1y, the S, are also finite type and S > p(a).

For each non-negative 1nteger n let Dn be the
component of p'l(Mn) containing A. G, is defined as

the subgroup of G which leaves Dn invariant; that is,

Gn = {gea|g(nn)=nn};

23
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Given a point z in D let w be a path from z to 0.
For n large enough p(w) < Sn, so w and hence z lie in
D.. It follows that D = uy D

n n’
n=0
1f g € G then there is an integer n > 0 that g(0) = z

In a similar fashion,

is 1in D,- Since D, is either mapped onto itself or
completely away from itself by g € G it must be that

g € Gn; hence, 9 Gn = .

n=0
Since the surfaces Sn are of finite type, we may
conclude from the results in section 3.0 that, the groups
Gn acting on the domains D, may be linearized. For
each positive integer n let ¢y D, > € be a conformal

n

homeomorphism for which ¢, G is a group of extended

n ®n
linear fractional transformations. We may, without loss
of generality, assume that the maps o have been normalized

so the near the origin ¢n(z) = % + I a

m
me
m=0 "

and so that
0 ¢ ¢)n(A).

Let A, = {z[|z|<k}, the open disc of radius k centered

at the origin.

Lemma II.5 (%ﬁtheorem): Let F: Ak > T-0 be a conformal

[00]

homeomorphism normalized so that F(z) = % + ¥ a z" for

m=0

zed, . Then F(Ak) >0 - A4/k'
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Proof. Consider a function f(z) = z+a222+-.- which

is one-to-one and holomorphic on By - We will show that

f(Ak):’Ak/a' When k=1 this is a well known corollary of the

area theorem, called the 1/4-theorem [R1, 714.14, pg. 278].
Let x(z) = kz. Then H{z) = A_]°f°A(z) is a con-

formal homeomorphism taking o into €. We compute:

H(z} = %[f(kz)] = %[kz+a2k2a2+..

_ 2 m-1_m
.] = Z+a2kz +...+amk Zot.e ..
H therefore satisfies the hypothesis of the 1/4-theorem.
We may conclude that H{(A) = Ayg- It follows immediately

that for(a) o 8y, g or F(8)) o Ay y-

To see how this implies the lemma set f(z) = ?%ET
Then f(z) = i ! = - ; = z + higher order
E+a]z+--- 1+a]z +...

terms. We may conclude, as above, that f(a.) > YT

and consequently that F(A.) o E—K4/k. -

Let K be a compact subset of D-{0}. Then for some
integer m > 0, K < D_A1/m’ and so, by Temma 5,
|¢n(z)] < 4m for all n > 0 and for all z ¢ D, n K.
In other words, the functions ¢, are uniformly bounded
on compact subsets of D-{0}.

The Arzela-Ascoli Theorem implies the existence of a

convergent subsequence of the b s which we will again
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call Gy converging uniformly to a function ¢ in compact

subsets of D-{0}. Then by Hurwitz's theorem either

$ is a conformal homeomovphism or $(z) = < for all

z € D-{0}. We conclude from lemma 5 and the normaliza- ;

tion that ¢ is a conformal homeomorphism on D-{0}, ;

and consequently on all of D. | |
It remains to be proven that ¢ G ¢—] is a group of

extended linear fractional transformations. This will

follow by showing that for a given g € G the sequence

¢n°g°¢;] converges uniformly to ¢ogo¢"1 on an open
subset of A. This clearly implies convergence of the ;
sequence {¢n°g°¢;]}, in Mdb, to ¢°g°¢"]. *

We will prove convergence when g is anticonformal.
The proof is analogous for g conformal and may be found
in [M2].

Let Ay = {z]|z-|<}}, and let &y = {z]|z-5|<g).
Set AT = ¢(A]). Convergence of the ¢ implies that for é
;](AT)cAO. Things were arranged so |
that g(A)}nA = ¢. Hence, for z€Ay, lg(z)|>1. By the {

large values of n, ¢

normalization. and lemma II.5 we may conclude that

|6,°9(z) [<4 for z€Ay. In other words ¢ (g(dg))ch,.
-4
dz
Consider the inequality

Consequentiy, ¢n°g)| are uniformly bounded in A,.

14090 (2)-4, 2904 1 (2) |<]9egos ™! (2)-0, 00707 (2) [+]9, 2000 (2)-0,°a°07 () .
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We will show that the two expressions on the right hand
side approach zero uniformly for z € AT 85 n approaches
infinity. For the first expression this is an obvious
consequence of the uniform convergence of the ¢, to

¢ on D~{0}., Given € > 0 the uniform boundedness of the
derivatives |é%(¢nog)! on A, implies the existence of a
6§ > 0 so that if |z-w| < & for z and w in Ag then
|¢n°g(z)-¢n°g(w)| < €. Then we may choose n large

](z)| < § for

- * - -
enough that ¢n](A1) c A and [¢n1(z)—¢
*
all z ¢ Aq. That proves that the second term in the
ineguality approaches'zero, and completes the proof of

Theorem I1.1. =

Theorem I1.3. Let S be a Riemann surface of genus g.

Then there is a closed Riemann wurface S* of genus g

and a conformal embedding of S into $* so that, under

the embedding, every conformal and anticonformal self

map of S is the restriction of a conformal or anticonformal

self map of S*.

Proof. Maskit's proof of Theorem I.1, in the last section

of [M2], goes through without modification in light of

Theorem II,1. =m
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CHAPTER III

As an application of Theorem II.1 we will prove the
existence of certain canonical representations in the
conformal equivalence class of a plane domain. These
are called pseudocircle domains and are characterized
by their boundary behavior. For a large class of plane
domains the representative pseudocircle domains are
actually circle domains; thus, in those cases, this
application provides a solution to the Koebe Kreisnormierungs
problem.

The statement of the main theorem occurs in section
o> with the proof following. We begin by investigating
some properties of the boundaries of plane domains and

their behavior under conformal mappings.

§1.

Let D be a plane domain. By the boundary of D
we mean the complement of D in its closure. Sometimes
we will refer to the boundary of D as aD. A connected

component of 3D is called a boundary component.
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Lemma III.]T Let D and D' be plane domains and

f: D > D' a homeomorphism. Then f induces a one-to-one
correspondence between the boundary components of D

and the boundary components of D'. In particular, given
a boundary component b of D then there is a boundary
component b' of D' so that if {zi}?z] is any sequence

of points in D accumulating exactly at pojnts of b

then the image sequence {f(zi)}?:] accumulates exactly

at points of b'.

Proof. Clearly the sequence {f(zi)}?z] in D' must
accumulate only at points of 3D'. Suppeose there are
subsequences {f(wi)}?=1 and-[f(xi)}?z1 accumulating at
distinct boundary components by and b, of D'.

By a classical theorem in plane topology [W: Cor.
3.11, pg 35] there is a Jordan curve ¢ in D' so that

bH and 52 lie in different components of the complement

of ¢ in €. Without loss of generality we may assume
that the sequences {f(wi)}?=] and {f(xi)}?=T lTie in
distinct components of the complement of o in D'. Hence
the sequences {Wi}?=1 and-&i}?z] lie in distinct com-
ponents of the complement of f'T(o) in D. The boundary
component b lies in one component of the complement

of f'](o) in D; therefore one of the subsequences,

lying in a different component, is bounded away from b.
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This contradicts the assumption that {21}?:] accumulates

exactly at the boundary component b, and therefore
{f(zi)}?=1 must accumulate at exactly one boundary

component b' of D', B

§2.

A point z in a boundary component b is isolated if
it is not a point of accumulation of other boundary
components.

Each boundary component lies in a unique connected
component of the complement of D in &. Let b be a

boundary component of D and let B be the component of

C-D containing b. T-B is simply connected. If b is
not a single point then there is a Riemann map ¢: &~B > A,
where A denotes the unit disc. The unit circle 3A is
the boundary component of the domain ¢ (D) corresponding
to b under the map ¢. We say that the boundary compon-
ent b is spacious if there is an isolated point on the
boundary component 3A of the domain ¢(D). This defini-
tion does not depend on the Riemann map chosen.

Notice that for a point z to be an isolated
boundary point of a circular boundary component C there

must be an open arc about z in C consisting entirely

of fso]ated boundary points. Consequently, the set of

all isolated boundary points of a circular boundary
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component must be a countable union of open arcs on the
circle.

The role of spaciousness in what follows is to
provide a gross measure for determining whether a
component of the boundary of a domain contains "isolated
pieces." Tﬁis notion will be refined and made more pre-
cise in later sections.

We will now prove two technical lemmas which
together imply the invariance of spacious boundary

components under conformal mappings.

Lemma IIT.1. Let f: D > D' be a conformal homeomorphism

between the domains D and D', with the boundary com-
‘ponent b of D corresponding to the boundary component
b' of D' under f. If b is spacious then b' is not a

single point.

Proof. We assume that b' is a point; without loss of

generality that point may be chosen to be the origin.
Let B be the component in the complement of D

containing b, and let ¢: t-8 - A be a Riemann map. Let

I be the set of isolated points of ¢(D) on 3A. Let

R(z) = L, reflection in 2A. The set w = ¢{(D)UTuR(¢(D))

z
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is a domain in €@, and R(w) = w.
The map h(z) = fo¢_](z) is a conformal homeomorphism

taking ¢(D) onto D'. Define the map H: w ~ € by

h(z} for ze¢(D)
H{z) = 0 for zel
ReheR{z) for zeR(¢(D)).

By the reflection principle H is holomorphic, but this
is impossible since H(I) = 0; hence, b' contains more

than one point. =

Suppose now that b is spacious. Then we can choose
Riemann maps ¢: &~B > 5 and y: C-B' » A, where B and
B' are respectively the complementary components of D
and D' containing b and b'. Let 1 again be the set of
isolated points on the boundary component 3a of ¢(D),
and let I' be the set of isolated points on the boundary
compaonent 3a of y(D').

1

Lemma II1.3. The map g = ¥efog ' taking ¢(D) onto

v(D') extends to a homeomorphism of ¢(D) U I onto

¥(b'}) u I'.
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Proof. Again let w = ¢(D)UIUR(¢(D)). As a consequence
of the reflection principle there is a holomorphic
function G defined on w with G(z) = g{(z) on ¢(D) and
G(z) = RogeR(z) on R(D)). G is clearly a homeomorphism
of ¢(D) u R(¢{D)) onto ¥(D) u R(¥(D')), and hence must
be a homeomorphism on all of w. It is evident that the
restriction of G to ¢{(D) u I is a homeomorphism onto

Y(D') u I' extending g. =

These lemmas have the obvious
Corollary: Spacious boundary components correspond to
spacious boundary components under conformal homeomor-

phisms. =

§3.

We present a brief summary of basic prime end
theory. For a more detailed exposition and proofs of
the theorems consult [C+L].

Throughout this section it will be assumed that
D is a simply connected domain in & and that E-D
contains more than two points.

A simple closed Jordan arc whose interior lies in

D and both of whose end points lie in D is called a




cross cut in D,

A chain in D is a sequence {a;} of cross cuts in
D satisfying

1. 4; N 95 = ¢ for 1 # j

2. q, separates D into two open sets. One of
these contains 9,-1 and the other contains U+7

3. Measured in the spherical metric the diameter
of qn approaches zero as n approaches infinity.

0f the two domains determined by qn one, which we
shall call dn’ contains all of the 9 for i > n.

Two chains {qn} and ﬂﬁ} are equivalent if for
all positive numbers n the domains dn contain all but

a finite number of the cross cuts qé and the domains

"dp contain all but a finite number of the cross cuts

dp -
A prime end of D is an equivalence class of chains
in D
The impression of a prime end P is the set
I(P) = n d_

Let f: D - @ be a function. The cluster set of

the function f at zpg is the set C(f,zg) = n 5; where
r>0

D, = f(Arn(D—ZO)) and A, denotes the disc of radius

r centered at Zg- This is the set of accumulation

points of the image under f of sequences of points

34
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in D converging to Zg-

Theorem P1. A prime end contains a chain of cross-cuts

that lie on a sequence of concentric circles whose radii

tend to zero. =

Theorem P2. Under a conformal homeomorphism f of the
open unit disc onto a simply connected domain D, there
exists a one-to-one correspondence between the points
z on the unit circle and the prime ends P(z) of D.

Moreover, C{f,z) = I{(P(z)). m

We say that a sequence of points {zi}T:1 in D

converges to a prime end P if given any chain {q].}‘;.”:1

in P then each domain d, contains all but a finite
humber of the Zs - Then we may describe the corres-
pondence of Theorem P2, between a point z on 3A and

a prime end P{z)} of D, as follows: a sequence of points
{21}?2] in A converges to z if and only if the sequence

{f(zi)}?=1 converges to the prime end P{z).

§4.

Now let D be an arbitrary plane domain and let b

be a boundary component of D containing more than one




point. The prime ends of b are defined to be the prime

ends (in the sense of section 3) of the simply connected
domain &-B, where B is the component of &-D containing

b. This is not the most general definition possible

and is perhaps especially unsatisfactory in that a

chain may not even lie in D; however, it allows a precise
characterization of the type of boundary behavior with

which we are primarily concerned.

Let P be a prime end of a boundary component b of
D, and let {a;} be a chain in P, As before a an
determines two domains in E-B, and the one containing
all q; for i > n shall be denoted by dn.

Again, the impression of P is the set I(P) =
n a"n.

A prime end P of a boundary component b is isclated

if there is a chain {q3)} in P for which the domains
dn all lie in D; that is, the dn-do not contain any
bdundary points of D. Evidently if P is isolated then
any chain {qﬁ} in P has the property that all but a
finite number of the domains dﬁ lie in D.

The following two examples should help to clarjfy

these notions.

For each positive integer n define the line segments

36
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L, = {z]0<x<2, y=%}. Also, set 2_ = {z]0<x<3, y=0}

and g4 = {z[x=0, O<y<2}. Then E =

e 3

Rn is a closed

n=0

connected subset of the plane.
Let Nk and Mk be the closed discs of radius

75T%1TT centered at ]+1§ﬁ%%$%7 and ]-i?ﬁ%gg%T-respective1y.

Let qy be the line segment joining the points
2+) and 2+

In the first example we consider the domain
D1 = &—(EUk§2Nk) (see Fig. 9). The sequence of cross
cuts {qk} determines a prime end P of the boundary
component E of Dl' P is not an isolated prime end since
each domain dk contains the boundary circles of the
discs N for n>k. The impression of P is the line
segment L = {z]|y=0, 0<x<2}.

Notice that the point %Alies on the impression of
P but is an isolated boundary point of D1.

In the next example let B, = &—(EU ?2Mk). Again
the sequence of cross cuts {qk} determin;s a prime end

P of the boundary component E of 02, which has as its

impression the 1ine segment L. In this example P is an

isolated boundary point of Dy
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These examples illustrate the independence of the
two notions: isolated points and isolated prime ends.
In the special case where the boundary component b is
a Jordan curve the two notions coincide. This is a con-

sequence of an old theorem [R,14.19, p.281] of Caratheodory.

We may now deduce the following generalizations of

AN

Theorem P2,

Proposition III.1. Let b be a spacious component of

8D contained in the component B of C-D. Let ¢ C-8 - A
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be a Riemann map. Then there is a one-to-one corres-
pondence between the isclated boundary points z of
the domain ¢ (D) 1ying on 3A and the isolated prime ends

P(z) of the boundary component b.

Proof. According to Theorem P2 there is a one-to-one
correspondence between the prime ends of the simply
connected domain &-B and the points on 3A. Let z be
a point on 3A corresponding in this manner to the prime
end P(z}.

We need to show that z is an isolated point of the
boundary component 3A of ¢(D) if and only if P(z)
is an isolated prime end of the boundary component b
of D. Suppose z is an isolated point but P(z) is not
an isolated prime end. Then there is a sequence
{z;}7.y of points in 3D so that if {q;} is a chain in
P(z) then for all n » 0,d, n {2{}#¢. By Theorem P2

Zi) = z, which contradicts the assumption that

z is isolated. The reverse implication follows in an

analogous fashion. =

Proposition 1 generalizes further to give
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Theorem III.3. let f: D > D' be a conformal homeo-

morphism between plane domains. Then f induces a one-
to-one correspondence between the isolated prime ends
of boundary components of D and the isolated prime ends

of boundary components of D'.

- Proof. Let P be an isolated prime end of a boundary
component b of D. There is a boundary component b' of
D' corresponding to b under f. Since P is isolated b
and b' must be spacious. Let B and B' be the complie-
mentary components of the domains containing b and b’
respectively. Choose Riemann maps ¢: &—B + A and
W &-B' >~ A. As in the notation of lemma 3, 1ef I and
I' be the isolated points of the domains ¢ (D) and
v(D') respectively, on 3A. ' :

By lemma 3 \yofoq)"T extends to a homeomorphism of
$(D) u I onto ¥(D') y I'. This gives a one-to-one
correspondence between points in I and points in I'.
By Proposition 1, ¢ induces a one-to-one correspondénce
between the isolated prime ends of b and the points in
I. Similarly, ¥ induces a one-to-one correspondence :

between the isolated prime ends of b' and the points

in 1",
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Following these correspondences from an isolated
prime end of b, to a point in I, to a point in I', to
an isolated prime end of b', and back again gives the

correspondence of Theorem 3. =

It should be observed that the isolated prime ends
are perhaps the largest class of prime ends for which
such a correspondence can generally be shown to exist.
The following example will illustrate: Let D be the

complement in € of the collection of lines S N

where for n # 0, 8, = {x+iy|ley<d, x=2 2 %} and
2

Lg = {x+iy|l<y<-1, x=0}. It is easily Shown, using

an old theorem of Koebe's on domains with reflections

[$2], that there is a conformal map f: D - D' under

which the boundary component 24 corresponds to a single
point boundary component z. Although there are an
uncountable number of distinct prime ends of the boundary
component L9 of D, the boundary component ¢ of D'

is without any prime ends to which these may correspond.

§5.

A boundary component b of a plane domain D is called

a pseudocircle if there is a circle C, and an open disc

A in & bounded by C, so that




42

1. Dn Ab = ¢ and

2. if P is an isolated prime end of b then I(P)
lies on Cb.

It should be evident that the impressions of the

isolated prime ends of a pseudocircie are exactly the
isolated boundary points on the circle; hence, in this
setting the isolated prime ends do correspond to isolated
boundary points.

A boundary component none of whose prime ends is

isolated is called a limit boundary component.

A plane domain D is a pseudocircle domain if

94 consists of pseudocircles, single point boundary
comporents, and 1imit boundary components--in other
words, every spacious boundary component is a

pseudocircle.

Theorem III1.4. Every plane domain is conformally

equivalent to a pseudocircle domain.

He first prove

Lemma 4. A plane domain has a countable number of

spacious boundary components.
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Proof. We suppose that D has at least one spacious
boundary component a. Let A be the complementary
component of D containing a. Choose a Riemann map

$: T-A > A. Then since spacious boundary components
of D are in a one-to-one correspondence with spacious
boundary components of ¢(D}), we can assume for the
proof that D is a bounded domain in (.

On each spacious boundary component b of D we may
choose an isolated prime end P{b). By Theorem P1 there
is a chain {qi(b)}?=1 in P{(b) the elements of which
lTie on concentric circles about a point z(b). Since
P{b) is isolated we may further stipulate that the
domains dn(b), determined by the cross cuts qn(b)’
lie entirely inside D.

| Let 6§(b) be the radius of the civrcle containing
q](b). Choose a cross cut qr{b) which 1ies on a circle
of radius less than &(b)/4. Call this cross cut q(b)
and the associated domain d(b).

For distinct boundary components b and b' we show
that d(b) n d{b') = ¢. If not then, without loss of
generality, suppose that q{b} lies on a circle of radius
greater than or equal to the radius of the circle con-
taining g(b'). Then z{(b'), which is a boundary point

of D, Ties in dy{(b). This contradicts our previous

assumptions.




Since the domains d(b) are all disjoint their number

must be countable. =

Starting with a plane domain D we construct a
domain p which contains D and is gotten by gluing
together reflected pieces of D along isolated pieces
of the boundary of D.

Before describing the general construction we will
iTlustrate the procedure with a simple example. Let
Ay and Ao be two disjoint open discs in € with disjoint
closures. Let R] and Ro denote respectively, reflection
in the circles 34y and 9d,. Let D be the domain
'&—(Kluﬁz). Let G be the group generated by Ry and R,.
G is an extended Kleinian group, and Q(G) will corres-
pond to the domain p. A]ternateiy; D may be gotten by
gluing together all of the pieces g¢g(D) for g € G along
their shared boundaries.

We now proceed with the construction. Let B =
{b1}$=], where K is a positive integer or «, be an
ordered set of all spacious boundary components of D.
Each bi is contained in a component B; of &mn. For

each integer n, T<n<w, choose a Riemann map ¢n: E-Bn+A.

Let I, be the set of isolated boundary points of ¢n(D)
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on 3A. I, is a countable union of open intervals on

ah.

D is constructed by gluing together pieces of
the form D* = Du(ng]In) and D* = D (n§11n). {Here
— denotes complex conjugation.) The pieces are first
indexed by elements of a group which corresponds, in
the above example, to the group generated by “"reflections”

in the spacious boundary components.

7.1

Let A be a set. A reduced word on the elements

of A is a finite sequence {ai}?=1 of elements of the
set A with the additional property that ay # aj+]
for all j=1,...,N-1. Me include the empty sequence
as a word.

Let B' be the set whose elements are the letters
By which cdrrespond to the eléments of the set B of
boundary components. Let W be the set of reduced words
on B'. MWe define a binary operation on W which makes
it into a group which we shall call G. The empty
sequence Will serve as the identity element and so we
denote it by 1. Suppose W and W, are two reduced words

in W, Wy = B, ,....B: , Wo = B, ,...,B8, . Let & be
1 i, i, 2 k0 km

the smallest non-negative integer for which Bj # Bk .

Then




g B ...B if n=2<m
kz k2+] km
Wy oy = Bjo."Bjn—R if m=f<n
B: +..B. By, ...RB otherwise
Jo Jpg K Ky

This corresponds to successively cancelling pairs of
“adjacent letters which are the same in the sequence
gotten by following Wy by Wo -

The group G is isomorphic to a free product of
groups Z, indexed by the set B'. We will continue,
where convenient, to represent elements of G by reduced

words in W.

§7.2
For each we G define
D* x {w} if w=1 or if the number of
D = letters in w is even

D* x {w} otherwise

DW is to be thought of as a copy of one of D* or

D* with gluing information appended.

Llet 6§ = U Dw' We define an equivalence relation
WEG

on § which accomplishes the gluing together of the

46




pieces D along the "isolated" boundary curves I3 X{w}.
Two points (x,w) and (y,w') in & are equivalent if and
only if there is a positive integer n for which
x = yel, and w = By"W'. We denote the equivalence
by ~.

Let p be the set of equivalence classes of § with

respect to this equivalence relation.

7.3

Lemma III.4. p possesses canonically, the structure of

a connected, planar Riemann Surface.

Proof. We will define open sets about each point in p
and coordinate functions on these open sets. By speci-
fying that these functions be conformal homeomorphisms
we define a topology and complex structure on p.

Suppose d is a point in p which has a unique repre-
sentative of the form (z,w) in &, where z is a point
in either D or D. Let v be an open neighborhood of z
in D {(or D). Then yx{w} is a neighborhood of z in
p and y: yX{w} » € given by y(z,w) = ¢ is a coordinate
chart about z.

[If d is not as above then it must have two distinct

representatives in &§: (x,w) and (x,g.°w)}, where for

n

47
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some positive integer n and w € G, x € I, Consider the

domain @ ¢n(D) U InUR(¢n(D)). There is a canonical

n

bijection between . and the subset {D,,~( Y Ijx{w})} U

n Jj#n

{D -( U I.x{g _cw})}/~ of » where w may be chosen
Bno jgn 30T

so that the two sets in brackets are respectively

(DUT)x{w} and (EUIn)x{Bnow}. Open sets are defined

via the bijection, and by making it a conformal homeo-

morphism we get coordinate charts about d which agree

with one another and with those previously defined.
We will show that p is planar by demonstrating

that any two Jordan curves in p have even intersection

number. Suppose a and y are two Jordian curves in
D which we may assume have a finite number of inter-

sections.

Clearly, o and y lie in a connected open subset

of D which is contained in the image of a finite number

of the Dw in &; that is, there exist distinct words [
n

so that auy < ( U Dw )/~. This is a consequence |
i=1 "

of the compactness of quy.

W},...,Wn

It is evident that any subset of D, constructed as

above, out of a finite number of the D
n

in the plane. Then { U D, )/~ is planar; hence, v and
i=1 "4

o must have even intersection number.

w® May be assembled
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We may further conclude that the Riemann surface

D is conformally equivalent to a domain in . =

§7.4

Lemma TII.5. G acts effectively as a group of conformal

and anticonformal homeomorphisms of I onto itself.

Proof. We define the action on generators, and points
in §.

(z,WOBn) for z€D or D

By (z,w) =
(z,WOBn) for zEIK for a positive

integer K.

This is well defined on 2 since if (x,w)} ~ (x,BKow)

for xEIK then {(x,weg } ~ (X,BK°W°B The way D was

n)'
defined it is evident that Bn acts as an anticonformal
invotution leaving fixed the points in In A1)/~

Notice that In X {1} separates D into two components,
and for K # n I, x {1} and D x {1} all lie in the
same component. B, acts by exchanging the two com-

ponents; therefore, Bn(Dx{l}) lies in the component of

D-(IKx{l}) containing Dx{1} for each K#n and is disjoint

from DX{1}. It is clear then that 1#we€G satisfies




w(Dx{1}) n DX{1} = ¢. This shows that the action is

effective. =

§8.

We now complete the proof of Theorem III.4.

By Theorem II.1 there is a conformal homeomorphism
f: D » 0 so that foGof | = G* is a group of extended

Hinear fractional transformations. Normalize so that

for some By» @ € f(DX{BK}). This is to assure that

f(DX{1}) is a bounded domain in €. Set fop of | = preMyb.

For a given n the map B; leaves the set f(InX{1}) '

pointwise fixed. Recalling the analysis in Chapter I,

BH must be a reflection in some circle ¢, in € {straight

lines are excluded by the normalization); hence,

f(InX{]}) < ¢, and f(Dx{1}) ties in the unbounded

component in the complement of Ch-
Consider the map i: D » D given as i(z) = (z,1).

i is a conformal homeomorphism. The composition

fei: D - € maps D into the plane and by Theorem III.3

induces a one-to-one correspondence between the isolated

prime ends of D and fei(D). In particular, if b is a

spacious boundary component of D, B the component of

C-0 containg b, and ¢: C-B +» A the Riemann map selected

in section 7, then i°¢_]: $(D) - D is a conformal
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homeomorphism that evidently extends to a homeomorphism

of $(D) v I_ onto DX{1} U InX{]}/N in D. The isolated

n
prime ends of b correspond to isolated points on 9A
under ¢; hence, they also correspond to isolated points
on the boundary of i(D) in n. This certainly is carried

over under f. =
§9.
As a corollary we can immediately deduce a theorem

of R. J. Sibner [S1].

Corpllary IITI.1. Let D be a plane domain. Then D is

conformally equivalent to a domain D', all of whose

isolated boundary components are circles or points. ®
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