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Abstract of the Dlisseartaltion

Alpebraic Oyalez in a Certain IMiber Variely

Mouwmching Tiiok
Dogtor of Philosophy
in
Depaﬁtmentrmf Mathematics
State Univeesity of New York at Stony Brook
1950
In this paper, we study the algebralc cyeles in a
fibey variety az defined by M, Kuga., We ghell congider the
algebraic cyeles in a fiber varlety V parametrized by a
guotisnt of a boundsed zyometric domaln X by & discrete sub.
group U [ CAut (%), where ¥ 1is the product of N coples «

the upper half-plane H = {zg €, | Imz >0}, i.,e,,
o= HE coe X H (0 coples).

reng

G

rally, in a non-gingular complex projective variety,

en algebralc cyele 18 z2lso a topologlcal cyclie, and sco 1Lt dater.

mines a rational homelogzy class, and by Polncare duslity, also

B

& cohomology class, Rational cohomology classgss on a non-singular

»

N
¥
L™

compiey projective varlety, leb us dencte 1t by , Getermined

in thils way ave called algebraic cohomology classes,




{A-3) Make intersections 7

- ; n . o -
Let us denote the subspace of H (%;5Q) gpanned by

algebralce cohomology classes by e(@ﬁ”(}f)j or by G@I } V),

1

"Our main result ig the theoren (8,1.1): Let V be

the total gpace V  of the. amaiy V ety U of abalion varle-

— A st
tles over U = FK@ s G=flned by a totally Indefinlte guaternion
algabry ‘@ with a totally real nunber Fleld T of degres N &z

camtefo For thils variety V.
i -
CERNe) = o ()

for 2%k { N.
. e oK
This dwplies the Hodge conlacture for H 7(V,@) with

2% { W auvtomatically.

Thers are three mathodsz of conatructlon of algebrale (¢o-)

\.—J"

4

cyclas in Vi

(Aml)‘ Teke algebraic cycle ¥  in the base space U, and make
the full inverss ](y) by the projection w ¢ Vw3 U,
(A-2) Teke algebraic cycle 7 in the generic fiber ip =

{p 1is 2 gzenevic polnt over a definition Tielid k), such that

7 is algebrailc over k(p), and make the unlon of all speclali-

Al

o
L{:
N
o
=
®
3

zation: k. We denote this by Locus (2/k).

.,.3-(y)‘chOCU:S (‘2/1{) of T




(Amlj and .LOCHS (Z/k) of  (A-2),

Actually in low codimensional casas of 2k { N, all

algebraic cycles are spanned by those of (A-1,2,3), Moreover

e

se that, if 2k { N, all of these algcbrelce cycles of

W
»

wWe oan

the typs of A-1,2,3) span the whole cohomology group

1 : .
LY : ) . .
5) (V,Q)J by essentially dimension caleulations,
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INTRODUCTILON

The purpose of this paper 1s to study algebralc cyeles
in a fiber variety as defined by M. Kuga in [61,[7]. More
precisely, we shall conglider algebralc cycles in a Fiber
varlety V parametrizad by a guotient of a bounded symmetric
domain X by a discrete subgroup M Caut(X), where X is

1

the product of N coples of the upper half-plans H = {2z ¢@
P Pr Iy 3

Im 7> 0}, i.e.,

X=Hx Hx ... £ H (N coplea),

As our main result, we shall show that the Hodze conitecture 1s
3 ] (4

true, up to a certain codimenslon, In this particular casge,

We formulate the content of the Hodge conjecture in

b

rather general context.

Let :§, be a non-singular complex projective varisty.
An algebrale cyele on % of codimeasion r, which we shall
dencte by 2, 1s also a topological cycle on :%, and so it

deternines a ratlonal homology claszs, thus by Poilncare duality,

. 2]
. : 21 .
a cohomology class c¢(Z)e U™ (¥,8). Rational cohomology class-
Y . ' -
as on :ﬁ determined In this way arve called algebraic cohomology
classes. Let ug denote the space of @-linear combinations of

algebralc cycles on ;% of codimension r by @ﬁ(gﬁ&ﬂ,- or by




.@(,r(}{-i), and also denote 6],%}5,@ JEs) ﬂ by 0 ‘4(} R), and

@1(%£ Q@ oy ﬁff%,ﬁ)o A-cohomology class in the r-th-
de Rnam cohonelogy group H”(}é) is sald to be of type (p,q)
 ifAiﬁ can be represented by an r-form which, 1n each local

coordinate system, 15 a sum of forms of the type fedzIAdEJj

where  |Il= p, {0l= g, and ptg = r. Lot H*Y be the

subspace of - 0 \}V) conslsting of cohomology clazses of type

(prd). Lefschetz has proved that

o (it

In general, it 1g the case that

E

i

2N
j‘slﬁH (J, Q).

Qp ) P PaER( ),

: o ]
and Hodge has conjectured “(6L (Eﬁ)) = Hp’pf\H"p(ﬁ,Q) in

each codimen ioq P

We shall now formulate our main re nit,

Theorem (8,1.1): For o family of abelilan varieties V uémﬁaU,
which ig parametrized by a gquotient of a bounded symmetric
domain X by a discrete subgroup [CCAut(X), where X 1ig the

product of N copies of the upper half.plane, Then

0" v.0) < (v, @)

]

For 2r{ N. Therefore tha Hod*e conjecture for HY(V) with

2r { N is true.

ha



This paper ls divided Into elght chapters. We now give

a brlef descrlption of thisg paper.

In Chapter I, we reproduce the conastruction of Famlly

of abelilan wvarieties V MQEA>U, as gilven by Kuza in [6]0 Wa

(L ) 1 N m . - Y W . . 1 1‘
flrst define V w2 T as toruz bundle, with torus as Llber;

thern we show that thls 1s indeed a fiber dbundle, iYhe complex

Tl

&
Loy 1

structure of V is introduced by means of symplectic tripl
The existence and uwnigueness of Tamily of ab&liaﬁ varieties 1s
proved‘by Kuga in’ {6], and in this lesture-notes Kuga also
showad, that V__is biheolomorphically isomorphic to a non-
singular projecﬁive algebralce variety, In 1.4, we describe a

partlcular i

-

rase of Tamlly of abellan varietlss V 4 U

]..m

where U = rxgj and X = Hx .., x H ig the product of N

: sl

coples of the upper half-plane, and & = SL{2,R) x ... x S0L{2,m);

T

thaen we the construction using results of Satake, In
51.NZ

o)

escyib
1.5, ﬁe showed that this particular example can indeed be con.-
gtructed out of totally indefinite guaternion algebra over a
totally real numwber field., In the casze N = 1, this was treated

in Xugaz' notes [ 51,

Chapter 11 deals with the zcohomology group on V, after
a short sccount of Matsushima-Murakamits theory of vector-bundle-
valued forma, we formulate the result of Matsushima-Shimura,

whlch is crucial to our proof. In thig chapter, we study the



.l!

s
42

cohomology groups of V, beginning with an isomorphlsm, which

obtained by Kuga, (see 2.3(1))

#Pv,e) = #P(rxm, ),

using Leray gpectral seguence and Hochschild-Serre spectral
gsegquence, the Epmterms of "poth sides turn out to be cohomology
groups of Matsushima-Murakaml types; and this can also be des.

cribed a5 an elgenspace of certaln striching operator defined
g 19 p

0

by Kuga in [6]. The most important results of the last sention
of chapter II are Theorem (2,4.1) (which 1s due to Kuga) and

the subseguent decomposition (1),

o

In Chapter IIT, we-atudy the algebralc cycles in a
generic fiber. Heve we nake two important assumptions on
algebralc cycles, whilch enable us to describe algebraic cycles
as intersectlons of dlvisors, Later, we shall prove that these

agsumptions are indeed true in our particular case, thig was done

in Chapter 1IV.

In Chapter V, we describe the algebraic cycles in the
total space V of the Tamily of abelain varieties V'mﬂ§>U3
generated by speclalizatlons of-an algebrale cycle 7 i1n a
genaric flber ‘Fp (which is defined over a generic point p in

U over k). In the following two sactions, we study the harmonic




forms on ¥V, and the description of algebratc cyeles as diffe-

rential forms. In particular, we show that the cohomology group

o Ia)
H{“N’2r>(V,Q) as subspace of H“N+QP(V,Q) is spanned by alge-

5
oy

0,21

a),

brale cycles; and so does the cohomology group ré

Ay

' Cer .
as a subspace of H " (V,Q), is spanned by algebralc cycles.

In Chapter VI, we dazcribe the algebraic cyeles in the
base space U, uslng the Chern class of a certain line bundle
over J. Our waln result is Cor. (6.1.4), which states that,

Hi?rﬁoy(

1f 2r ¥ N, then the cohomology zroup V,Q) is gpanned

1 ,
by algebralc cycles of type T H, A uoﬁf\&%_, whers T
1 Tr
means the nuanber 3,1415926... . Wa want to anologize for the

double uae of the symbol w7 In this chapter, in mogt casas,

the w's occurred in the formulaz arae the number 3. ihame2s, .. .
Chapter VII 18 devoted to the study of cohomology
{2p,2r - ; o ,
groups H Bs r§(V,Q), Wa show that, for 2p # N, the subgroup

> [ 27y
H{“p’ar}(v,a) of H“pkgr{vaﬁ lg spanned by algabralc cyc

]

o
£33

&

Finally, in Chapter VIII, we give the proo® of our main

theorem, utlilizing the results of previous chapterg.




“In fact, using Theorem (4,3a9), 2 can determlne the dimension

. o)
of HT{V,e) explicitliy.



APTER T.  THE VARIETY V

e A B AN Wherstboe e,

1.7 dorus bundle V aes U

Let G be a connected real semiwsimple Lie group
with finite center, and K be & maximal compact subgroup of
The space X = G/K is "therefore a symmetric space; and
'ié of purely non-compact type (i.e., all simple factors

of X‘ are non-compact) if G is not compact. If G is

compact, then X 1s a point.

Lisd - - g - 3 ‘ 3 >
Let (F,g) be & finite dimensional representation of
the group G over R; i.e., F 1is a finite dimensional
linear space over R, and- o 1is & homomorphism of G to

. £

~
the group GLIF/R) of all linear automorphisms of the vector

L

space i
p o G wmmis GL(F/R) o
We form the semi~direct product GxF by defining

{g,w)(g®,w*) = (99‘$§)<g)w‘4~w}s

~

for {(g,w),(g*,w') & GxF, and with this multiplication law
GxF  is given a group structure. In this group GxF, {1§XF

is cbviously a normal subgroup, and

3

GXI'/ ‘iij){‘i‘f‘ Ge



o

Furthermore, GxIF acts on the product space XxF in a natural

WAy, Le@a,
{(g,w)(x,u) = (g(x),P(g)u+w),

3 ~t
for (g,w)€ Gxl'y, and (x,u) & XxFe This action is transitivey

and the isotropy subgroup of a pointA (xogo) is a compact
group Kx{ojg where N :'V(i) ie the image of the unit ele-

ment 1€ G Dby the natural mapping y: G, X o 50 that

Gk

we have a natural identification

Lt
XxF

£l
Assume that there exists a lattice L in F, (i.e.,
. - ot N P e s
a dizcrete subgroup of F,  with compact quotient T\F) and
B - At
a discrete cocompact subgroup [0 in € with no finite order

element except 1y such that

%

(1) M C© GL(L) joeo(® | oL = L _}

From the data - {G, Ky X, ﬁ? £ Lﬁf‘j satisfying
(1), we are going to construct a manifold V which is a

torus bundle over U = FNXa

By the assumption (1) which means ?(X)L = L, for
all Yefl, @(X) induces an automorphism of the torus F =

h\?@ wWwe shall denote the induced automorphism by P(H):

(2) ?(y) - e P




Theé facts that [ 1s a dizcrete subgroup of G, and L
£
1s a lattlice In F, together with assumption (1), show that
b sa3
=L in GxF 1z a digcrete subgroup, which acts on  XxPF

propecly dlscontlnoously and wlthout filxed peoints. The guotient

FXL\XYF is then a manifold. We shall denote 1t by V. Since

R
[ 1g cocompact, V i1 compact,
. Our next step is to definme the Tiberlng shtructure of V

over a locally symmetrice space U = K.
- r

- Xxpt is simply connected, and [ xL operating on X

£ .
freely, therefore, the space XxF 41z the universal covering
5 (o=

4+

gpace of V,- and the coverlng transforwmation group [xL is
igomorphlc to the fundamental group of V. Now, slnce [1L}xI

1s a normal subgroup of xL, this group {1}xL corresponds

~
to a normal covering space \\XKF, which is natuarvally
' (1lzL

- ) fe!
ldentified with XxP, where F = ﬂ\F° The covering trans-

Tormatlon group of XxF over V ig \fﬁﬂg which 1s
{1}x1
canonically identified with .  Therefove, the space V can

be consldered as quotlent space

Vo= e\ |

of XxF by | . Here, the action of 7 on XxFP 18 given by



for every Yerm . (x,u)e Xx¥, where ?(f) 1s the oparation
of ¥ on F= I f gefined in (2).

- < ~ . [l ] 4 *
Now consider the projectlon 7. of XxF onto X: then
J k]

£

T, comsutes wlth the operation of [7; g0 that the following die-

gram is commutative for all  YE[

o [l . )
Therefore, T induces naturally e projection 7 of V onto

TN

U = X, And again we have the following comnutative diagram
!.,.,. & {2 e

Vv - XXy
T T
v Y 1
oo el v T ER L SR Oy X
U f\x & .

Since | has no fixed points on X, we can prove that

] + "“:j- . ;
the inverse image v “(x) of any point x of U by 7 iz

O

~
a torus lsomerphlc to F = ﬁ\§° In the seguel, we shall denote

I3

w‘l(xﬁ by



Summarizing, by our above construction, our triple

lv,®,u} is a fiber bundle

1. whose structure group is [, and the standard fiber
is the torus F;

2. which is associated with fhe covgring 2__£m%r%§ = 13

3. and such that the operation of_the structure group [

on the fiber F is defined by (2).

1.2 Symplectic triple (ﬁ,@QJ) and the‘ﬁymplectic

aroup

s, e b

"
Let O be a vector space over R of even dimension

e A Lriple {ﬁfﬁyJ) is called a symplectic triple if the

|

» sabtisfied:

"

following av

SR . o -

(8=1} p is an alternating bilinear form on F,

(S5-=2) & is a positive definite symmetric bilinear form on F
() : - ﬁ“: R 1 2

(S~3) "Jeé GL(F} such that J7 = =1,

(5-4) B{x,Jy) = Glx;y).

Note that two of (p,4,J) determine the third
factor; il.e., if (p,5,J) and (p,6,J") are both symplectic
triples, then J* = J. Or, if (p;6,J) and (B,0',J) are

symplectic triples, then &' = &,

Also ncote that, by taking a basis (Zi’ oo ’Z2m) of




F? a symplectic triple (Bs6,J) 1is represented by three
matrices (B;5,J} which satisfy
{BS~1) B = ~B,
C ey e
(BSw2) 5 o= S »0O,

2 . : ]
(B5-3)} J7 = -1, {(this is equivalent to BS "B = =8)
(BS~4) BJ = S;
and the matrix pair (By8) 1s the "symplectic pair® in the

sense of Kuga's noteg [61.

2m ; . . 3
On IR we defline the standard triple (J;l,;p) by
_ o 1\
' . ot ‘ N - m .
C30ey) = Tx y = 2; (Xiym+i “m+iyi) :
- o i=1

-

1(x,y) = "Xoy = E{ 4 X Vs

o
AN

2 : L 2
for x = x']_ € R m9 Y = y] € !R(m“
- ©
x



All symplecktic triples (p,d;J)  on 3 are isomorphic to the

standard triple. Namely, for a given triple (ﬁgﬁyJ) on g,

there exists a linear isomorphism T of !R2m to E, such
that

'ﬁ(TX?Ty) = J(x.y)

ST, Ty) = 1(x,y) ,

i

Jemso T(Jx .

In particular, the triple (wjglgmjr) is isomorphic

to (j,iggy); i.2., there is a matrix T‘€GL(m2m) such that
r _ o 1
TIT = wi, where j = : s
- -1 0
[, .
CIT = s
o 1
t . -
TIT = - where ;y:z N
g -3 o
For a given symplectic triple t = (8,6,J), define
G, = Sp(%?g) = {geGL(F) | Blax,gy) = plx,y) },
[ad [l -
50, = 50(F,6) = {gesL(F) | Slax,gy) = 6(x,y) j,
and \
K = (3 nSUt “



Then Gy is a real Lie group isomorphic to CSpl{2m,R)  and

K 1s g . maximal compact subgroup. Furthermore, in the
homogeneaous sSpace X, = G, s we 2hall define a G,-=inva-
t L/K t:
t

riant complex structure Iy in the following way.

The Lie algebra 9y of Gt is identified with the

e : '{EMG EI'ICJ{R(F) I {%(Mx?y) + [%(VX?MY) = 0O } ,

and the Lie - algebra E{ of Kt is

K, = {Mégt Z E(Mx,y) + G(x,My) = O }‘,

v s _ri\'vf w ] % My B @
By = 1MEg, [ Smx,y) = 6(x,My) = O }

Then Gy = ﬁt & By iz a Cartan decomposition of Gy

The natural projection map ¥ = yi from G, to X

induces an isomorphism of p. to T (X))

}
Vi lp,

The third member J of our triple t = (3,86,J) is

= e 3 - ~ L
a linear endomorphism of F, moreover, J‘QﬂT, this can be

shown in the following manner:

plTn,y) (?) =B (IR y=y)



15

= mﬁ(nyJJy) {since J2 mowel )
(2}
(j\ BT, JY) {by (S=4) )

2 ;

= =BTy, Jx) (since ¢ is symmetric )
{4)

= B{Jy,x) {by the same way as (3),(2),

(1} )
o wB{X,JY) (since B is alternating );

50, we obtain

(8)  plIx,y) + plx,dy) = O,

hence J €

Morecver, ‘Jé_gtﬁ. Again this can be verified as

follows,

S(Ix,y) = B(Ix,Jy) (by (S~4) )
= =B, JJy) (by (8§ )
= =G(%,JY) (by (S=4) )

therefore,

(68) 6(Ix,y) + G(x,Jy) = O,

hence J g _}g_,cﬁ '

Finally J belongs to the center of k. To show

tﬂ
 this, take an arbitracy Iﬂéj&ts Then




it
1

BMI%,y) =B{I% My)
=G {Mx,y)

+0 (IMx,v) ,

therefore,

B, IMy) 6(x,My)

=G IMX, Ty

peiMy - IMIx,y) = O
for every i,y&fﬁo Since B is non-degenerate, this means
(MJ ~ JM)x = O
for ail x, d.e¢y MJ -~ JM = O, hence [M,J] =0 for all
Mé?lgto QED .
; Now put ) -
jt = expl( ?}4 J)éK%lﬁ
Since .Ad(K£)Et = Doy Ad(jtygt = Do Also,
[Ad(jt)lﬁt](z) = JZ
for Z2& R To prove this, we need several lemmas.
Lemma (1.2.1): For ZE€pRy, JL % ZJ = O
Proofs BZI%,y) = ~BlIx,Zy) = B(x,JZy) = 6(x,2y)
= Gz, v) = Blzx,Jy) = mﬁ(JZx,ys
for JE€g .therefore,

= #

-



p((ZJ RN VA B

for all X;v;
Lemma (1.202):

(ad J)(Z) =
Proof: JZ =~ ZJ

Lemma (1.2.3)¢

FRINCNETRE S,

(ad ) 2)

Proof:

i

(ad J)az

i

{ad J)jz

4

hence,

sY) = O

ZJ + JZ = 0,

For Z gﬂt’ we have

L7,2] = J2 - 23 -

.M

=.(JZ + Z8)e 2IZ = O 4 2JZ.

For 2 Egt? we have

2 "2anZe

237 ]

[o,00,21] = [3,

szz ~ {(=2J7T)

w23%% - 23%2

43°z,

[J, 43%7 1

4JBZ ¢ 4J22)J

43%7 - (-4J°2))

o
8377,

2"y, .

237 a

QEDR

QED

QED




i8

Lemma (1.2s4): For -ZGMB£9
Ag (exp(ed)){(Z) = (cos (26)1 « sin (20)J)(2).

Proof:

P

i

{Ad (exp(@J) ) (2) (exp (ad(&J)))(2)

= {1+ @(ad J) + @2/2Z(ad J)2 t eee ){2Z)
| a"
. Z T (ad 1) 7(z)
R0 :
N
= L = 2haa)
N=0 *

( 2"
D L 5
=71 .

nt
~y 2
. ( 26)° ( 2en” ( 20"
= (1 .+ (0 20)0) » 775 1 - YT g e T
R [
( 26)° ( 26)°
- etV o T = cse V(2
¢ 200%  ( 200%
o= (j_ m 2! 4 41 = B ea )1(2)
(ng}g ( 2@}5
Y (( 2@} ann 3£ -+ 52 ™ aee )J(Z)

= {cos ( 201 + sin { 2e)YI)(Z)

Fid

(cos (20)1 4+ sin (28)J(2).

Using the facts J7 = ~1, J7 = «J, J = 1, etc. QED
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o ~
Lemma (1.2.5): For Ze&p, ¢End(F), we have

t

ad{j ) (2) = JZ.

Proof:

Ay o

13
2%

ad{}, ) (2) Ad(exp(m754 JN(Z)

= (cos (2 ) 4 gin (-z-z%)d(z)
= JZa QED

Therefore ad(jt) is a complex structure on By e

Since jt belongs to the center of Kt9 ad(jt) is an

Ad(Kt)minvariant complex structure on Bi» @nd thus induces

a Gfminvariant complex structure on Xt = Gt/K + From now on,
I —. . - - L

for a given symplectic triple t = (B,8,t) the homogenecous

space. X s always understood as the complex manifold with

t

respect Lo this complex structure J defined by jﬂ(jt) as

t?

above,  In particular, Ad(exp(ﬂ&4 J))  induces an  Sp(J) =

invariant complex structure on X, = Sp(J) and

1 JOCAY N spla)

with this complex zstructure X, is holomorphically eqguivalent
frn - _ i L , o
to »}, = ia(iM(m,m) : Z = Z and Im 4)43? « The equiva=-=

lence is induced by the mapping

A B .
c D)2¥Sp(J) %

AT RN
>
T

(

g

-



Therefore the map §T : Xtumm%,%T in the diagram

G ez SP(J)

L ;

m
Ky ey X ey
=

'\\«%m, Gy e

is biholomorphic.

"1.3 Complex structures on V and U

ot et

~ ’ ~e
A torus I\F is a complex torus, whan F hag a
-t .

structure of the complex linear space with a complex structure

f . X . .
Je The complex torus (l\ﬁg J) is an abelian variety, 1f and

¥

- . v . e e
only if, there is a real-valued bilinear form B(~,~) on FxF

satisfying

(i) . plusv) = «Blv,ul; 1cea, p is an alternating form,
(ii) . pluy,dv)  is a positive definite symmetric bilinear

farm of u,v.

{131} ﬁ(uvv} takes intearal values of LxL.

(Such a bilinear form p ils called a polarization of F =

~
AU

Fellowing Kuga, we make the following assumption,

20



o
=

whichk he called the Integrality Assumption 2 in {61, {(Chap.

L1, 55). Let {G, K, X, F, Ps Lgr'} be the datas chosen as

Integrality Assumption 2: There exlsts a non~degenerate

. R [ad
alternpating bilinear form ﬁ(u,v) on Fxﬁ, such that

{1y - ﬁ{?{g)uyp(g)v) = ﬁ(ugv) for all u,véF and ail
g G,
(ii)  plu,vy € L if (u,v) &€ LixLe.

Notes This form ﬁ is represented by an integral skew-gymnmes

tric matrix

pr

with respect to the canonical basis (21, ¢ o 322m) of F.

The matrix B satisfies obviously the following conditions:

{1) EF(Q)BP(qj = B for all gé&G,

(2) B 1is integral,

(4) det B # 0, ieee, B is the matrix discussed in [6].

By & Lemma of Kuga (CGJ, Lemma I-4-1)}, under the Integrality
Assumption 2, the bilinear form g 1is extendable to a sym-

plectic triple & = (p,G,J) such that

L
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(5)  p(x) ¢ k. = sp(F,prnsoF,e,

such a triple t = (FTS,J) will bhe called a very admissible

symplectic triple with respect to {G, K, Py ﬁSQ

Now take a very admissible symplectic'triple b= (B,
T,J) with respect to the system |G, K, p, pf, and define

GL(?)mvalued function

(6) I = J(a) = ~plgddp(g)™?

for x = Wwigle It is easy to see J(gk) = J(g) for k€K.

So, J{g) is actually a function of x = W(g). Then

(7) J(g(x)}_z g;{g)J(:»()p{(;;)m1 - for all xé&X and all gegG,

IS

(8)Y J(V))Y = p{E)J(x)?(F)M | for all xe€X and all gel ,
(9)  J(x)° = ~1.

Note that J(lj'm mp(i)JP(i)ml = «J is not the third member J

of t

= (B,6,3)3 1t is the negative «J of J, Also define
[ b -
.r L L3 sl it L] 3
symmetric billnear forms A(x) = A(g) on FxF paranetrized

by x

HY

» Wag)e X, by Alx)(u,v) = plu,Jix)u). Then (=p,A(x),

J{x)) is a symplectic triple for any x € X.

Property (9} asserts that for a fixed x&X, J(x)

- . g . -
defines a complex structure on the fiber F, in XxI7, and

ry . - . o s
on the torus F - in XxP  (with F = f\F)? therefore (F




J(x)) is & complex torus. Since (8) and P(Y): L o I
J{x) and J{¥(x)) give the same complex structure on the
fiber T in V. Furthermore, by means of Integrality

Assumption 2, F 1is also an abelian variety.

The Integrality Assumption ? asserts that the rapre-
sentation p is a hgmomorbhism of ¢ inteo Gt = Sp(f;,ll%)9

namealy

i

9(65 G, Sp(ggﬁ)@

The admissibility of t = (p,6,d) for {G, K, ¢ By

implies that ¢ sends the compact group K into the compact

group K = Sp(ﬁ?ﬁ)f\oiﬁ);

?(K) C Kt - Spt??pjr\ocﬁ)n

Hence the homomorphism P induces a mapping T of the

guotient space X = G/K intce the quotient space Xt = thKts

which makes the following diagram commutatives

.

]
s
N7
(]
[y
i

Sp(ggp)

T

b
L4
ped

.= G . ®
t L/Kt
The induced mapping T° will be called an Eichler map.

consider the case where X = G is a

o}
n
-
)]
ot
H

We JK

23
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hounded symmetric domain, it possesses then a G-invariant

complex structure J The guotient space U = r\x maintains

XQ
naturally the structure of the complex analytic manifold with

the induced complex structure J induced from J Accords

U X
ing to Kodaira, (see e.g., [14]) U is a Hodge variety with
respect to a Kihler metric dsoz, wherea dso2 is a hermitian

. . . . . 2
metric of U induced from a G-invariant metric dso of X,

nereraore 9] a lneorem O \odalyr is & non-singular
th £ g by Theor f Kodalra, U S gul

projective algebraic variety.

Finally, we want to define the complex structure of

the totsl space V. We begin with the following

Definition:s A complex structure Ty of V is admissible
1f i1t satisfies the following conditions:
(A~1) the underlying real analytic structure of JV coincides

with the one V already possesses,

(A«2) the projection map T: VepU 1is holomorphic with

respect to JV and JU’

{A-3) +the restriction of JV on each fiber FQ colncides

with the JQ {and this coincides with the complex structure

defined by J(x) = plg)(=Dp(@) ™" for x = V(g).)

Assume that (Vy JV) be a complex manifold with an

asdmissible complex structure J Lift this complex structure

v




o . T e
JV of V +to the complex structure J of Xxﬁu Thus, XxF

. f s : . I
is a complex~analytic manifold with the complex structure Jj

7 P [
= we denote this by (XxF, J) -~ and D AHF et V18 hOlo-
morphic; and operation of every element (¥,a) in "L on

XxF i Biholomorphic. The condition (A=2) implies that

. i o
the projection ﬁ?: AXF ==y X 15 holomorphic, so that every
fiber WEMECX) =2 {x}x? 5 ﬁx is a complex submanifold. The

g - . 0
submanifold Fx has a structure of complex linear space of

whilch complex structure is given by

Jlx) = 9<g>(“J>9(g>“1o

11

The complex structure g!ﬁ of the complex submanifold ﬁx
: e

colncides with J(x), a fact which is implied by (A-3).

A2
On the complex structure JV (or J) we assume
(A-4) (1) For any two holomorphic local gections

st A oy Y .
S, & Qiumwe-Xxﬁ
defined on the same open set A4 in Xy, the mapping
5, * Szznmﬂfyx mm@»sl(x) i sz(x) is again a holomorphic
local section.

{(A-4} (11) For any holomorphic local section

S >
s 5 (A e XXF,
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the mapping /]j{x@ fa(x,t?) — ﬂgs(x) ef ¢ '?I"’Zml(ﬂ) of Mxe

)

into XxF is holomorphic.

nd
Tf an admissible Jy {or J) satisfies (A~4) (i),
{(iiy, then Jy (cr J) will be called very admissible,

Very admissibility implies that the section §: XD Ky (%,0)

& XxF  is holomorphic, so that the section of origin
$ 2 UwewpV must be holomorphic. In [61, Kuga proved that V
has a véry admissible complex structure, 1f and only if, the

Elchler mapping Ti X ey X is holomorphic, and if J

t

exists, then it is unique ([6], Theorem II~6~3).

vV

If the Eichler map T is holomorphic, denote the

+

unique very adnissible complex structure of V by J Then

Vm

the Riemannian metric

(10) ds® = dsoz # AG (dE(w) g ()

iz a K3hler metric with respect to Jyi; here dsoz ig the
Kéhler metric of U = fﬂ%ﬁ and
lf'ﬂ( u}

o

i?m(u)

are the real coordinates on Foa Rgm with respect to the



standard basis

1 O
29 = |9 R .
O 1
of IRng The complex manifold V with the complex structure
J is a Hodge variety with respect to ds2¢ Hence by a

Theorem of Kodalra, V is biholomorphically isomorphic to

a non-sinqular projective algebraic variety.

1.4 The case of a product of upper half-planes

In this section, we discuss an example in which X
% P
is the product of N-coples of the upper half-plane H = i 2

= X4+1y & @ I‘m zx0 5 o

Let G be the product of Nwcoplies of BSL{2,R):

G = SL(2,R) x SL({2,R) %X .e. x SL{Z,R) (Netimes).

The i-th component of the product wiil be denoted by Gi; SO

* G ¥ oeee X G

This product ¢ operates on the product

[pe]
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XﬂHKHXQGBXH

of the Ne~copies of the upper halfwplane H = i 7 o= X+1ly,

Im z 20 jj by the fracticonal linear trénsformations

applied-component-wise, i.e., the action of g = {gigg?,u@o,gm)

€G on g = (zi,zzsguayém)elx is g(z) = (91{21),g2(22}?090¢

qN(zN)); where

ajzi + bi : ai bj
g;{=z,) = - s for g, = s ] & SL{2,R).
iY77 _ i
c.z, + d, ., d,
i7i i 3 i i

This action is transitive, and the isotropy group K at the
point. I = (i,1,ec0,1) 18 the compact subgroup K = S0{2) x

eme X S0(2). Therefore, X 1is ldentified with G, ¢

S

G(1) grammmd Ko

‘Consider a discrete subgroup [ in G; without finite
subgroup except fi}, and G is compact. Then [ acts on
X properly giscontinuously, and the quotient space U = r\x
is a compact manifolds Moreover, since the actions of elements
g of G on X are bi-holomorphic, U becomes a complek

manifold, with induced complex structure from X; and actual-
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1y U is embeddable in a projective space, and is an projec-

tive algebraic variety.

We are going to construct families of abelilan
N L4 ; . . -
varieties V% U over such U = r\x with a good cholce of
[ . For this purpose, we have to discuss representations

of our group Ge.

The trivial representation of SL(2,R) will be
denoted by Y. Since SL{2,R) 1is a group of matrix, the
identity mapping 1d which sends g&SL{2,R) to ltself g

is a matrix representation, which we dencte by id. The

representation space ’U;d of id is iREQ The symmetric

[y
[

tensor repregentation of SL(Z2,R) of the degree m

fal T . s .
denoted by 3( }; which is defined as follows.

For g = (i g)é'SL(2?R)? define a matrix g(m)(g)ﬁ SL(m+1,R),
by .
m A
uly L
' o ya(m)
utuifj = ﬁ (g RLUE ;
' M2 2
me2 2 u v
1 T ,
7\.’ m ) vm



where u,v " are variables and UV, are another pair of
variables related with wu,v by

Ul\ a b u

2 c d v

Then the mapping
SL{m+1,R)

symmetric

sentation

denote by \f(m)g' Obviously,

for m= 0,1;2,ce5

irreducible
representation id =

in this

is obviously a representationg

tensor representation of the

sBpace Qfﬁ{m) " of

are all irreducible,

(continuoug) representation of
(1) (D

SR Rl

investigatione.

?(m): (e f(m)(g) of SL{2,R) to

this is called the

degree m. The repre-

which we also

gﬂm} is Rm+1?

WMoy g '?J/*-(i)

L
id. a(uﬂ
and they exhaust all

SL(2,R) . The

is particularly important

')
ey

Denote the symmetric matrix {S ) by

—%

S/mm? which is defined on Mii) §1R2p the symmetric bilinear
Y1
. ‘ X,
form S (x,v) = "XS_ ¥y = X Y. + X,¥Y,s, fOr x = I PR VA
.~ N7 i 212 X
71
Yoi®
mi- - e — . ( .1) " L] - n - .
The eorthogenal group SO(V’ sS ) is exactly SO(2,R),
N
which is the isotropy subgroup of the point «=1€H, in

a2

SL(Z,R). :

FO]? g o= (

-

2)6 SLIZ2JR), put =z =
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this is again a positive definite symmetric matrix. SZ is

well defined, i.e., for two g, ,g, with gi(J?ﬁ} = gz(JTﬁ)g

then tg,Jmismm_glw‘l = tgzmjs agzmie The orthogonal group
BRI o , y=1

SO(ﬂfﬂJ-S ) o= ikéégL(Z R) | bvs x = 8 is the isotropy
'S, ‘ JR) | ks S, 5 :

group of the point =z &H,

The matrix ( 2 é) is denoted by J__. Since
- g1
e 2 L. - - .
(00 )% = =i, J_ - defines a complex linear structure. on
ol o]
L =1
qf(i) = [R7;  and (‘ﬁi)g J_ ) = €. The matrices k in

wa

SL(2,R) which commutes with this %m” form the subgroup
Yo ]

SO{2,R). For an arbitrary element geSL{2,JR), put 2z =

g(J=1), and define g, by

#)

&
.
i

J, is well defined, l.e., for gi,g2i§SL{2ym) ‘with gi( h)

— e -1 e elemanta K
g,(J=1), then 90 9, = 9,J_Gg, "o And the elements Kk

O] frog

of SL{(2,R) "which commute with J, form the orthogonal group



SO(UIi), Sg}u J, 1is also

n

a complex linear structure of HU{lj
= R St J) o=

et G = G, X G

| y X sae X Gy ® SLI2,R) X ceo X SL(2,R)

N

be our group. The projection of G to the i-th component G,

= SL(Z,R} wilil be denoted . by projj@= The representation W(m)

of Gi = SL(2,R) combined with p.r:c:j_..L is a representation of

G which we denote by W}(m); Le@ery

Wi(m)

A

A
z(m)oproji $ G g SL{M+1,R) .

The representatlion space of Wl(m) is denoted by qf;(m)e

f (ng)

The representation Xz(n‘)ﬁ B) R oo @ ?h(nﬂ) with

the representation space {U1<n‘}®‘02(n3}® cws @ }&(n%) is

. ISP P oe gyl (N sNa s 006yl
simply dencted as g( Leiige” » ) and Qf( bsllgs 3 Npa )

espactively. Cbviocusly

[

o

ﬁ'(h) L ﬁ(oge@o?n;0,¢ﬁ4,o)
i
i~th place

It is known that all irreducible (continuous) representation

. . ’\-( 3] \ n voae all )
of G apre ﬁ R A PN g (ﬂi = O§1,2gomm)c

The Satake's list of admissible representations, i.ee,

3



those give rise Lo a family of abelian varieties, tells us

that the admissible representations of our G = SL{2,R)

X ® & ®
% SL(2,R) are only sums of trivial representations and i(1)
rid )
(i = 1yse6yN} with multiplicities. Namely, if (F,P) is an

1
v

admissible representation of G SL{2,R) % a.e x SL(2,R),

then

N (?) @ m(1)y

= (1) - (1) N
Bomom, Uf}. ® m,\f, ® ooe @ N

0
N

3 ofe (1) (1) e (1) _
P omy 51 @ m, fé @ coe © my 5N @ m{1l) «

From now on, we shall discuss only the case without

trivial factor; le¢e., the case with m = 0. S0, let

; (1) # (1) (1)
P o= miﬂga @ m, 0, D coe @ m }N R

(L) (1 (1)
m,lf)r,i o n, \/ © aeo @ m YV

F o=
- (’\)h,]”‘) Q'\E(“) @ (’U;(” O oo @’V”z(j‘)) O oo
1 . 1 2 ,
., M.y
e (\f (D 6 L. eqn By
N YN
klw.-:nv,nm:zf
., mN
For a point =z = (zlgzz,gga?zw)é X o= HN9 define a complex

linear structure JV on F, as follows:

Ca



J,o= (3, 0. 03 )0 (T 9 ...0T )6 ... 0
2

Then (%3 JZ) is a C-1linear space of EC-dimension Zi:? my

Now, for the discontinuous group ©, 1f there is a
- ) ’
lattice LCFH, such that P(FjL = I, and a bilinear form T

on %ﬂ satislylng

(1) B, L) CE,
C(11) B(XyJZy) ig symmetrlc and posltive definita,
(111)  Ble(g)x,ple)y) = Blx,y) for every g&0;

, T
then we. can construct a fawmlly of abellian varletles V e U

= r,v\X R

1.5 Case of guaternjon algebra

This section is the continuation of 1.4, and we ave
going o discusgs cases in which the lattice T and the bilinear

form B are actually constructable,

Let Xk Tbe a totally real algebrale number fleld of
degrea N, d.e., fk:Q] = N3 and let ¥ be a totally in-

definitely guaternion algebra wlth center Ik,




Take a {maximal) order ( in 5 .
AV

Let |7 be a subgroup of

o, v
v

of all units

F24 1@ r‘(L}?

35

and the group

of 0’ wilth the reduced norm

1y with finite

index and without Ffinite subgroup except {1&0
Take an element $ of B , such that
(p-1) pe( ,
([~2) pi = «f, where 4 1s the canconical involution of the
guaternion algebra @53
(p-3) the reduced norm Y{g) of B is-a totally positive
element of k.
Make the bilinear form fﬁ(x9y) on B Dby
fﬁ(xsy) = ot (xﬁy*)? for x,vy G%} 3
where tr means the reduced trags of ﬁgg f?(x?y) is a
ol

bilinear form on ﬁg/k, with values in k. fﬁ(x?y) satige~
fies the following properties: ‘
(frfel) fP(x,y) are integers in k, if x,yve(} ,
(fwpe2) 'fﬁ(yﬁx) = mfﬁ(x?y)g
(f=p~3) f{‘3 is non-degenerste,
(F~ped) €0 %, y) = £,(x,y) for ail YFEéf .

pro p
(Proof: (1) 1if x,ve(}, then xﬁy*e‘éfg 50 the value of
tr is an integer in k.
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it

(2) £,y = &8 (yBx ) = tr ((px ) ) = tr (xphy®)
= tr (x(up)y@} = -tr (xﬁy@) = mfﬁ(x,y)9

since tr (z%) = tr (2).

{3) Since tr (xy) is non-degenerate and f - is invertible,

il

(4) fﬁ(Fx?Xy) = tr (Kxﬁ({yﬁ’) tr {Exﬁy@fﬁ

= tr (Yyspy*) = b (VW)
I (_‘}g{'}?"b) = f:ﬁ(xyy} 5
since E&X'm V(¥) = the reduced norm of = 1. QED )

Wa form a direct sum of m copies of the algebra B?

~

denote it by F, l.e.,

¥

%‘?I = ﬁg) @ ¢ oo @ .&% 6
. @m,,!ﬂmﬁr ’
I

» :
On F; the group [0 acts (on the left) through the left
multipiicatlions:

=
o a(bi,bZ?GEOPbm)

(Fbyy Woysene, D)

—
g

(1)

This action is denoted as o (= P )
(%) P o [Q— GL(F/R)O

The lattice



I, = 6@§ W F oasw @(}
[

A3 .
in F 13 obviously

Define a (k-valu

o
linear space F Dby

(m)(x?y) -

ffj Lj_:;i p

where

i

B =
o= (Xigxegmo&yxrn)é’:}'

. i
{Y19Y29°°5¢Ym}€ I

e
!

Then we have .obviously

(m)

(fwmm@ml) fﬁ (x,y) ar

(1}
P

()
8

(fwmwf¥2) £ S

(yyx)
(ferm=p=3) f 18 nop-

(fmmwﬁ~4) fg(

We danote thae tra

tr K /@l and let
o (m) A .
Fa {(yy) er/@ (f

Then

" e, ey) = f

c

Ley]

invariant.

ed) bilinear form f on the

@ integers in k, 1f x,ve& L,

o 7 (m)(xgy);

g
degenerate,

{(m)
P

{(x,v) for all

ce map of the field k¥ to @ Dby

{m)

B (%,¥) )0

vel

K e

Ll
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(Pummﬁmo) 'Fﬁ(m) is'a @-bilinear form on the @=vactor space
.
/@
(Pt ) Fﬁ(m’(m)@l if x,yeél,
(f'._,,mml'»},m?_) [«‘?)(m)(y?x) = MI“E(IH)(Kply)?
(me;ﬁmg} Fﬁ(m) is nonmdggenerate9
(Femep-4) P, ™ (0N x,00y) = £ ™, y)  for al1 Ve[ .
A A p

Since ﬁ% = =, ﬁa s mﬁﬁ¢ = «¥(B); let this element
y{f) be de&k; Dby the condition (ﬁMB) d 1Is a totally

positive element of k.

The totally indefinite quaternion algebra B over the

center k, which is totally real of the degree N, has N-
distinct representation <¢lasses into MQGR)a We dencobe them

by [wigy cee 4 [Wn] and take a representation

QE; @5 MZ(Rj? from each class r@&], (1 = 1ly00esN)a

2}
i

Other representations in the cla

s PWij are

-

A ’\!(jhhm“IL : 1:{3 S

3 M, (R)

D ey A (D) AT

where P\éGLZ{m)m The restriction of Wi to the center k




" W, (a) 0
k Ja el ’%&(ai) = s
o \Fi(a)
whera wi: ke3[R is an injection of % to WR. Moreover,

L . b v E fle el d : { . '
¢; is independent of the choice of Mi from Fwi]* and

therefore determined by the class PWEj? and if [@g] £

¥

[‘ft}«j“i then  {. # ¢, (1,0 = 1,2;c00,0. S0 i‘?ﬁ‘fgs”w‘f’l\;}

are the set of all distinct injections of Kk into R, and

¥, characterize [ﬂ%}e ‘

Define an involution 4 of M, (R), Dby

fa b\ f d b

¢ 4 e &

then the diagram

. 5:
B Vi 5 M, (R)

fefl 4

- W, '
'@) Ll ey MZ(fR)

is commutative; and

B Y s M, (R)
te ) , tr
v iy .

< » R
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and
W. ‘
i .
@ i Mz(R}
VL i det
' 95 M
k — S ¢

are also commutative.

ir

‘Now the matrix @&(ﬁ)@tﬂZGR) has tr (Qﬂ(ﬁ}) .
qi(tr<$5) - ¢, (0) = 0 and det (W () = VR = g (D) 0.

ZURTE ]

put A% (d) = A, €IR and consider the matrix
Y1 i L : .

0 K
L

=
!

So both Wi(ﬁ) and A. are both real semi-simple matrices

1
with the same trace; and same determinant, i.e., with the soamne

3

e . 2 s
characteristic equation X7 + {E(d) = Q3 lece., with the same

characteristic roots iJ:ﬁg(d)e So there ls a peal matrix A,

&cnﬁﬁm) such that




—_
Ay wi(ga)z\i = : R
- A, 0
1

Now denote the representations Aiﬂ&Aiw (1 = JyacayN) by

¢, (€ (W 1e Then

@i(a) - (?:i._(a)i7 for aeak,
‘ O %
¢, (p) =
~k O

and the diagrams:

N {';'is
A% iy M 5 UR)
% %
$s ¥

M, (R)

<=
4

and
b
r{B n, MZ(LR) ]
e lv tr i det
7 . *
K. - » R

are commutative,
Now, since [ is totally indefinite, ZE@@R is

isomorphic to M,(R) & c.o @ M, (R), (N-times). An identifi-

+




cation I -of

o' . N
gbamﬁ with Mz(m) s

B ew . Mo (R) @ oue @ M, (R)

is defined in such a way that og%  goes to:

I(de 1)

(@.}(&)rg @2(9!._)? EE-) g(i]N(i?!u)};

we have

¥ - . I n . A s
A e 55@65 ey M, (R) @ woe @ ML (R)
2l
{){u t % ((i)“].((‘{} y eeo g (E)N({}L ))c
From now on, we ildentlfy ng@ﬂ with Mz(R)N by
this identification I:
I Q(Qh_{ == ?\f;ziﬁR) @ [ - @ !\@2({?{) &
1
. Define WR=bilinear forms on the ®R-linear spaea M?(ﬁ)
by ‘
0 AN 4 .
fi(XyY) = tr (X Y) (l o= 1gen@gN)a
. ’ -X O
i . l
Then
{F=0) fi(X?Y)-ﬁ ﬁi{”K12Y22 + X22Y12 -

Kqq¥pq *

XoqY4q)




a3l

11 M2 Y19 Y92
fOL" X = 9 Y = [
a4 Yoo Yoq Yoo

(£=1)  £,00Y) = =£ (¥,%),

(f=2) £. 4g. non-degenerate,

(f=3) f.(a¥X,qg¥) = det () fi(X9Y) for gg;GLz(m),

‘ EEAWRETAY /%21y Y21
Ai S « , + 8
“ 214\ Y21 '

|

(.L‘"”‘l} J.:L{KSJ‘ZY) A 2

ool Yoo/

g0 bthis is symmetric and positive definite.

Proof: {(f-0) can be proved by simple calculation, and {(£f=1)

e Lt 2 X

by ({w0).

(£=3): £, (gX,q¥) = tr (g¥ (gv)® )
L
“v\‘j QO
O A, 0 AN
= tr {gX 1ovtgPy = tr ¢ glax 1 ovhy
= A, 0 ~ s O
- ' 0 %i .
= det {g) tr (X Y'Y = det () f,(X,Y),
A
L

since  g'g = det (g)l?e



For the proof of (f-4), we need two lemmas.

: o 1 .
. . . v 0O =1,,.,t
Lemma (1.5.1): ({ _4 o) ¥Y) = (5 Y o
Proof:
& 3
0 1 _ 0 14" o =1
( ¥ o= xb - y*
] O -1 0 1 ¢
\
Yop Y\ f O “Yao  “Yap
“Yo1  Y1q 1 © Y11 Y219
O Ny e 0 TN Y ey | Ve ez
i 0 1O NV Yo Yo Yoq
= A, tr (XYt)
bs Y. I X, Y
- h 5 11 11 s 5 12 12 9
where §_ is the guadratic form defined in 1.4,
Vel
Proof:
- o Ay fo 1 4
£o04, 3 Y)Y = tr (X AN Y) )
: =7 ~hi O -1 O




4.5

o /o0 -1

- tr (X : vE o er (D)
m?tj Of v 1 0 ' 1 .
¥, X, . Y ¥
- Nt ( 11 a2 11 Yeay
Aoq Foof\YV9p Yoo
- S EREEARE IR o
=0 >}. j_i r
» F21Y01 % 00Y 20

) ?% Loxqq¥aq * Xqp¥qp * Xpq¥oq + %pYp, |

.- ' - bl g }; T 7 X .- Y
s A (S s | | B Bl [ B AP
147 X1 dN\ Yoy V-l VARV

H

i(xy J__¥) is positive definite, symmetric bilinear form.

particular, fi(X?Y) are non-degenerate, this proves (f-2).

.0 T, for g€ SL(2,R). Then

o -1
£ (X, J,YY = £.0X, ol g Y)

i

=3

o fi(ggmixy gJ g "Y)
) w7,

i w
= det q) £.(g "X, J__g Y}
i ¥

o

] P T
= M tr (g7 "X(gTTY)T) (vy Lewmma 1.

R

>
no

——
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%)
P

= A (?rn(ist column of gmlx),(ist column of gm1Y)f
-

+ %mm(an column of gmix)y(an columnn of gm1Y)))
Y1

= Ki'(Sz (ist column of X, 1st column of Y)

+ S, (2nd column of X, 2nd column of Y))

"

=
N
Y

*11\ f Y11 ' %21
2 o S_( 1 ) e

= A, (5 (
o7 xzij* Yoq “ %00 7§

<
.
[x]

This concludes the proof of (f-4),
Let

»

. I bieR
(1) F o= B

Then by our previous identification, we have

i ) m N, m Nm
o 1 3 = g r el o
(2) F &dR Engdm) (11, (R) ) M., (R)
{2¢%) = (MZ(R)QGQQQMZ(R)> B ee. © Lmz(m}®ogq@M2(m)) .
m m
N

. P m
The image of (K= (&1,@{29 see yoh ) E E%

[
=

MZ(R)Nm under

ol hﬁﬁgi§ d &l is then:




(3) (hy()y vew y (AN @ con © ((R) 5 ouw 4 b (D)o
m--times

Define a bilinear form §(X9Y) on MZUR)Nm by

(4) %\5: (fl {:9 % o & @ fN) @ e e & @ (f @ ce® @ f )

e lmnes

where f. are those oeewrring in (£-0) to (£-4), . Then ths

pull back of £ under the Injectlion

~ 2@ 1

;
A el M?(R)“m

ig the bilinear Form Fﬁﬁm)

pccurring in  (F-m-p-0) 4o
fiem-p-4);  f.e.,

{(m)

5(X®1,.Y@1) = T

(X,Y) .

From now on, we denote ithis F by { (m)

: >
ITdentifying szm) with Rz @ IR by

aq *42 %11 X2
_ _ o 9
Xoq  *on X9 Xop

then, we have

(5) MQ(R)N = (82 @ mz) @ (Rg @ RZ) @ cee0 @ (m2 & Rz)

N~times




and
_ Nm o N N
{(6) MZUR) N.MZ(R) D sue @ M2(m) o
m—times
(1)

pDefine a complex structure JZ on MzﬂR)N for 7z = (%

zzg&ng?zN)é X, by

D R ; ;
(7) J . o (J @ J7 ) (9 (JZ @ JZ ) Q:) ¢ & @ @ (J-Z £ J )

4 “q “q 2 2 N ZN

according te the decomposition (5); and & complex structure

gm0 Moy N

Z 2 by

(8\‘ J (n}} w " J ('1}@ J (1) -G ﬁras @ J'_(j)
Z Z L zZ

according to the decomposition (6)s Therefore,

{m)

(9) &

o= ((L} @J ) @ e &9 @ (\_Tr @J )) G} 3 o e @
- 29 “N “N

(g, @ T ) B eee @ (J @ T ))

-

1 1 “N 2N

m—-times

according.to the decompogsition (27).

.

Also define a positive definite quadratic form

g (1)

8,2 on MZ(R)N by
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‘ﬂr 9

L . {1) s ¥ ) 1}
(10) uﬁgz = (}%,182 & ?\182) & (f\ZSZ 1 >\2SZ) D see @
1 1 2 2
(ANSZ @ %NSZ)
N I\
according to the decompesition (5), and define Sﬁ (m) on
3, 7
M, @) py
: (m) (1) . (1)
1‘,]) S =z S @ R @ =
( $s7 Pz "Bz
according Lo the decomposition (6).
The representation 8(1) of G = SL(2JR)N on MZGR)N
is defined by
| TRELS Y (1) (1) (1)
(12} 9(") m'(ﬁﬂoprOJE & &?épiji) @ (} o@reli, © o pro 2)

ﬁ.(l‘) ) X&l) .
@ e o4 @ (’E OI’)KOJN @ Qpr‘OjN’)

according to the decomposition (5. This can be written in

matrix form

(13) Q(“(g)

il
s



{m)

The repreﬁentation ? of G on M?(R)Nm

is defined by

(m). (1) {1 (1)
{(14) ? = ® P @ ces @ P

metimes
according to the decomposition (6). Then the inclusion

(15) B - (P = MZUR)N

induces the inclusion
wo . . N
(16) [ e SL(2,R)7 = G,

and the representation p defined by (8§}, of [T into

& : 1 (m) oy Nmy , .
GL(k/k?, .dnq the P of G on GL{Mz(R) ) m CL4mN(m) is

compatible. Here f  is identlfied with P @ 1 3in F ﬁéﬁ =

L+ Nm
v (f
HZfH) 7@7

Summarizing, we have

(1) '(Jz(m))2 S
£ {m) {(m) ., a (m) .
(11) jﬁ Xy I 77¥) = S,z (X,Y)3
) e o i
(ITI) S:-ﬁ(m)(x?y) ¢ if X,Y&L; where LCF =F@ 1
M2GR)Nm is the lattice defined above;

(IV) §P(m) is alternating, and non=-degenerate;

(m)(X?Y) for g&te

m F e pem-],



Then, from the following data

K = so(2,0)"

X 2 HX see x H = H

M e Mo, veo J
. - . "

3 -_»_.M?(R)Nm = FaR = MY g R = AN

{(m) _ )
prE G Gl (R)

atd
't

i
I
k

| S Pl [
L= G e f"e B

£ (m) '
v [% ’
J_(m)
;
g (m
= .
q {(m)
we define the family of abelian varieties Vp{m) Bnm% U =

e

The purpose of this paper 1s to investigate aslgebraic
(m)
P} °

cycles in the algebraic varieties V



CHAPTER I COHOMOLOGY GROUPS OF Vv

In 1.1, we have defined V = rxﬁ\XxF, the quotient

3 . "9 L L]
space of a contractible space XxP by a discontinuous sube

- L . . \
group  {xL (€ GxF). Following Kuga and Matsushima=Murakami,

we shall define the de Rham cohomology group of V.,

2.1 The Matgushima~Murakami's theory

For the moment, we let G be g group of automorphlisms
of a bounded s?mmetric domain X; on which G acts naturally,
and 7 be a discrete subgroup of G with compact quotient
FhG? and F] actg on X Qithéut fixed points; anﬁ let P Dbe
a representation of 6 in & complex vector space, say E.

Let AK(F,X;P) be the complex vector space of all EBevalued

reforms &3 defined on X such that
(1) c;:ng. = PIY)

s
for all §€0, where Ly dencotes the transformations of X
defined by Y. and @oLy denotes the r-forms obtained
by transformiﬁg ¢ by Lg. The exterior differentiation d

Ar+1

sends forms in Ar(rwxgp) to (Iyx,pP). Therefore, d

defines a coboundary operators of the graded module A%(F,X,P)

P )
= Lr AK(F?X?P)@ The r-th cohomology group of the complex
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(A"(,%,P), d) is defined by

HO(, 4, P) = ker {d: AV(ILX,P) s AT T

CXPD san™L(r,x, 8) -

. | ) 1
The cohomology group H (7,X,P) 18 also definable az de Rham

cohomology group wlth vector-bundle-valued differentlal forms.

Let M be a compact manlifold, and ey M 18 a
Jocally constant vector bundles over M. The vector bhundle

s M 1 Tocally constant means that, M Iz defined hy a
sygten of transltion functions [fuvgfu,] with respect to an

open covering QA cf M  such that each

Cyy 2 VAV e Gj:,n@{)

is a constant mapping. Bgulvalently, W Is a vector dundle
, s
asgociated to the wilversal covering M-—SsM az its principal

bundle. Thenlthe de Rham cchomology group HTDR(M’ ) is defined

a3

, xer {d: | (M, E@.AT(T*))"m%fM(M, ﬁ@,ﬂr+1(T*))]
HFDR(M, ) = — et e e,

i {6z 7, B2 ATTNPTYY —s (M, w2 AT{T)Y)

Here T ls the cotangent bundle o8 WM, A?(T ) 1s the r-th

[N
-
)
-
(]
T+
o
)
n
O
o]
=
o]
h
=
[
ol
&
fez]

I . . . * s-rf 1*
exteriov power of T, E® AT{T) is

bundles over M and My - means the apace of gectlons,
. ) [




X 4] ) ¥ ry, * -
The exterlor operator d means 184 In @ ® X{T )y 1t is

wall deflned, since E is locally constant,
Let - C(E) be the sheaf of garms of locally conatant

A .

. . ' - s
sections of B over M, Then the cohomology H (M, €(E)) of

n

48]

M with coefflcients 1n {(E) canonically lsomorphlc to

the de Rhoam cohomology 0

iy,

C3 g MY :
) B, fe)) B on prl B).

AV

(

T,
To Interpret our cohomology group H (fsij) in termns

S o .
of H D?(M’ i), we construct & locally constant vector bundle

Ep over M = F\; ( = U in our previous notation, in chap. T).

o _
SThe representatlon gpace QV% of our representation
P has been denoted by E. Construct the product spacze XxE;

and on which we let the group ra acts as

-2 S e
[mmmmcmcccees (Y (%), P{Y)0) € xR

The actlon of r‘ on Xx® 18 properly discontinuous, so lat

the gquotient V\§XE ve denotaed by e By with the natural

mapping we

— M making

P




Fg%xﬁfm By XxE
T J pfojl
= < X

a commubtative diagram, 1s

to bthe unilversal covering

a vector bundle over M, azsoclated

g (A

| o
1 2 . o
The space of sectlons F (M, B2 AT(1)) 1s canonical-

1y isomorphic with AT {[,X,P), and therefore we have

(3) BEY(LX,P) 2 W

DR(

M,

o)

Since X 1z diffeomorphic to an Euclidean spaces, then wa have

NED I

T, K P)

I

o
_—
3
s

‘o LA .
where . H ({"; E) 1ls the

growp |

(5) HY

r
[x,p) & H M(

r-th cohomology group of the abeiract

with ceefflclents in the [F-module E, In summary,

. _ T " |
M, B,) & W (w, U(Bp)) ¥ wi m).



W
o

2.2 The main result of Mabguzhima-Shimura

et X be the product of N coples of the upper hill-
plane, l.,e,, X = H=x ... x B (N copiez) with H = { zel;
Tmz >0}, Tet O = SL(2,R) x ... x SL(2,R) (N coples), aund

let K = 80(2,8) % ... x S0(2,R) (N copies), ILet I be a

Cu

lscrete subgroup of ¢  wilth compact guotient space r e

acting on X without fixed points. Finally, let [ be a
representation of G in a complex vector vector gpace H,

We retaln our notatlons i 2.1,

(=]

The complex vector space of all B.valued r-forms
i hTa ' . - 3 x| 1'i . 7 7 4
on X has been denocted by. A{T,X,P), and its r-th co-

homology group by I (X, P).

Now we define a hermitlan inner product on the vector

—’r' RO VA 3, ~ (3 “ = -
space A {[,X,P). For this let g be the Lie algabra of G,

let ‘E he the Lie algebra of K, and Ilet p be the ortho-

gonal complement of k in g wlth respect to the Cartan

decomposition,



et EEmeﬁ>X be the veztor bundle azsocliatzd to

Fu

X'“““%’fﬁ§ by the representation P[ of (7, 3By a lemma

of Matsushima-Murakemi [13], we know that EP iz also asso-

cilated to the bundle

. >E;§K by the represantation

P[K of K, Now 5  ‘belng a complex vector space, there exists
a positive definite hernltlan inner prodact (ujv)p on R
guch that

(B(Vw, vy = ~(u, P(V)v), ~ for Y€k,

(P(Y)u, V)E = {u, P{Y)V)E tor Yé¢p.

The repressatation P of g belng extended over B the

complexliied Lie algebra of g, 1t Follows therefore

(P(Y)u, VJE = o= -(u, P(Y)v) for Yeky =k 2.,
(P{¥)u, V)E = {u, P(Y)V)E for Yepy = p 8L

fl

The flrst conditlon is sqguivalent to say that P{k) (keé&X) are

1

unitary operators with respect to the luner product (u,v)Fn



"

oo

Therefore, this lmer prodact defines hermitian metrics In the

oY

fibers of EPo Using this and Riemannian metric g 1in rxﬁj

i

w2 nmay dafline successlively Inner product amongz §

APwvalued

forms,

With respect to this positive-definlite ilnner product,
we dafine the adjolint operator § to d, and thus the

Laplacian operator A= df + §a., A form e AT(7, X, P)  is

called harmonic, 1T ﬁaw = 0y a result of Matsushima-Mura-

kami [11] asserts that every cchomology class of H
is repregentable Ly a unigue Torm, Denote the space of all

harmonic r-forms on AY{[X,P) by ”{ (. X, P}, then we

- "x. '. - o0 iy -
(l) Hl([sxﬁf) = 2{_, (r‘;:\--sp)v



The G-invariant complex structure on X also gives rise to

a bigraded complex Ap?q(r,xﬁP), and the direct sum decompo-

sition

(2) Ar(rsx,}% = Z; Ap?q(FEX;P),
‘ pg=L

where Ap?qir}xg’) is the complex vector space of forms of

type (p,a). And we have the corresponding decompositions for

HOO, X, B and (X, B)

(3) Hr(r}X$£3 = ZL; Hp?q(r}XwP?s
p+Q=L
ané
( REEGn = 2L KPR .
} pgsr

Denote by b ({,%X,P the dimension of ?{r(r}x;?)y and

W9 (™. x, B the dimension of Jﬂpsq(rZX, B Then by the

decomposition of Hodge type, we have

' : lih =1 =9 :-’
(5)  dim., H ([%,P) = bi ([, X,p) = ., W Um, B,
p+q=r

If the representation P of ¢ 1s reducible, then P can
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be written as the direct sum of the representations ]%9 s e g
' r
P.; and the cohomology group H ({,X,P) decomposes accoide

el

ingly into direct sum of the cchomology groups H”(F}X,}ﬁ)g

i

where P . - (i 1, s0e ¢3) are the absolutely irreducible

representations of G.

Now let G = G, X see x G

. with G, = SL{2,R) (i =

N7

iy eoe 4N} The representation of G in the vector space

F o ﬂfﬁ B eee @ %ﬁ; ig defined by

1 : N

{(M,eeam } m AT m
¥ L Pl 2a eV

. w ‘ A -~ . .
with m. = 0, where 'b (mi & 1) dencteg the represéntae

tion of SL(2,IR) 1in the complex vector space ﬂﬂﬂ of all

symmetric tensors of order my constructed over €, asg

definaed in 1.4. Then every absoclutely irreducible representaw

m = o Q.ITE
tion of G 1is ©of the type 'y 1 Nw

Now we formulate the result of Matsushima=Shimura

[147.



£ﬁ§g£§ﬁ (Matsushima-Shimura) (2:2.1): Let us rotain the

notations above. Then we have

a oo Grng\l

m
(i) hp’q(r,x, Fpl ) = O if p # g and p+g & Na

M, eeell
'b"\, 1 N N T@Jyggoeo_’()

(iiy If = the trivial reprezsuntation,
then
M, oeaelll
oo R ! N N
h“p_(f“,h.;?j Vo= () for 2p # Nj
. {.n,v@lom QD0 c00s
if 5 N oy POs0s e e »  Ehen
.. N m o e ol - )
R - .
WP P, Y=o for 2p AN

A e R e

Proof: See Matsushima-Shimura ( [14]? page 445) .

o, we have
Gorollary (2.2.2):

dimg HICU,R) = dim, HY (7, X, trivial)
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(0oos0)
w ZJ h(p’q)(fﬁx‘; X‘ )
p+q=]
- j 0 if j = oddy, J # N,
N L
f oz 2 ’é Na
(p) 1 J poé

&

Corollary (2:2.3):2

[y SRR Y S

Corollary (2.2.4): If
by o, A coo AU,
. iy L

Since these are

forms

., Aese NG,
i i
1 )

linearly independent.

' A
Corollary (2.2.5)¢ Hr(r,X,h

e

is odd and

if r

Since our group

factor; any representation

reducible {over )

P, @) = nPrPru,a)

into a

2p # N, then Hzp(Ugﬁ) i spanned

L

where Cﬂi e (dxiﬁdyi)/ .
' Y

exactly harmonic differential

N
(p)

éeoa‘sj.

Lydis P and they are

]n,.Le & on‘]]\i
; } = O for any (m,l””F

r f-’g Na

YN without compact

G is  SL{2,R

(Qjéfp} of G 1is completely

direct sum of absolutely irredu-



(M eaem ) (M weom,)
v . D N
cible representations (\} 1 N , 1 Ny

mlaﬂsm ) {m.

, : o0alll )}
l N 1 N
(fu'p? P) = O El(n},{ﬂuom[\])((\)‘ b ‘J‘, )

where p' are multiplicities. Among irreducible
_ (mqﬂn@mN) _

j&oﬁ@oo)

components, is trivial and all others are noie

trivial. The part of Qf’ which corresponds to the trivial

PS

| (
part o, oy T“O“°®O? is denoted by X}G, and the

fD!\, G

restriction of P on P

s Wwhich 1s P(o;euo)wald of

trivial representations 1s denoted by PGw Similarly, the

part of -U corresponding to the sum of other components:

P
-
‘

(m1$“”mN) £ (0aoaC

@ o %N J

o Flm N

) V(miaoomN)\ ]

is denoted by (U}varg and will be called the variant part

e
i

of “&; the restriction of P to ,v;var denoted by

(qrpg'p)v - {ijG? PG) @ (ifpvarg pvar)o

Taking cohonology:



P Yy w i PV, 18y 0 n P D (L, ALV

By Theorem (2.2.1), we ilmmediately have
‘ (pea), - o var
(7 P, gL -
if  p+g & N.

. . »
Now, since ( ﬂ}G% pb) o (CU9 pefold of bxoovno))

l(om&ao):

where o= ;7  we have

() P, % 2 plem ol (m @y ey ee0),

- {‘ o ‘4 2 @ &
= H‘D‘:‘Q)([“'EE:){9 é‘"(O C))) Q

LG
c d},ﬂ

Combining this with Theorem (2.2.71), we have

(9) H(p"‘q)(?’gx? f‘i!;G) = O if p# q. ptq # N
and

{ ) G () ~ G G ()
(10) BPPT, Y e Poe V7 = (A, P

N

P
c
5y
N .

o
e

and as corollaries, we have

e
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Corollary {2.2.6):

i i v

Ht %, 55 ¥ 0 for r odd, r # N,

2p # N

—

-
Gl
o

h

o)

]

5

i

Gorollary (2-.2.7):
; 25 r,r), - G

KA, %, Vo) = mTlx, VE_,G) T AN TS "U; )

Corollary (2.2.8): If a is odd and a # N, then

HY (%, ALY = 0

for any representation (ﬁfp, P) of G.

203  Cehomology groups of V

In this gection, we shall apply the de Rham theorem of
2.1 to the case Xx¥, {"xL, and the trivial Tepresantation of
["xL., Where IxL 1s the semi-direct product defined in 1.1

with the represantation P Then the ds Rham cohomology group

HPDR(V,ﬁ) of "V is canonically lsomorphlc to the abstract

cohomology group H(["xL,¢)

of  I'xL with trivial representa-
tlon:



. " P fpa,
(1) H(v,e) = W (rxngg) .
Our next step is to study the two cohomology groups of this
lsomorphism, Flrst, following Kuza, we use a theoran of Hoch-
gchild-Serre to lnvestigate the cohomolozy group HP(TXL,@)Q
Now, {1}x7 1s a comautative novmal subgroup of ["xL, and
[J}Wﬁ\?xx = [, The following theorem of Hochschild-Serre gives

- : .

a relationship betwsen the cohomology group of a group A and

e
Y
o)
3
-

homology group of a guotient group BK% of A by a

normal subgroup B,

Theovem (Hochschild-Serre) (2.3.1): Let A be a group, B
e . g
a comnutatlive normal subgroup and = B\ﬁ; Hi(BD@) is cone

sldevred as a [ -module, Then there exists a spectral saguence

Py

such that

(=, 4 et a )

e S~ W, wl(m,0)) ,

) ﬂpﬁ q ™ A1
-rL|l = _j
Lp e Hj(ﬁ,ﬁ) .
In order to apply this theorem for A =[xL, B = {1}zl

= L and =1, to get Hp(FxL,@), wa have to determine

Hq(L,@) and the actlon of [~ on it,

.
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, . . o oill . .
Since L 1lg a lattice group ( = &™) of rank 2m, el
cohomology  ~oup Hq(L3®) la determined in the following way,

. - ,]I‘_
Cornsider the dual space Aq(me) of the g-{th homo-

geneous par ﬂﬁ(L@@) of the exterior algebra A(ILRC)  over

ILeC. Por an element £ g(L@C) s wWe can define a ge-cocycle

Cp of I. by
: : " G 1. $
cf(uoyulﬁsuaﬁuq) = Ziw (1) 70 (u Ao e o Uy A @gsﬂuq)
=0,
) + wux “em —E
= i((ul uo)ﬂ(gg uO)A Q,Ofi(uq uo))g
and we can prove that the mapping f»uavg indaces an lso-

. T
o y Lr j Ci 5 B -x- -y ) q 11l u o
morphlsm of ViLet) onto HYIL,®). Thuz, we have obbtalned

a canonical idantification

i, e) = AYran)”

which associatez a clasgs ¢ of Hq(Ls@) to an element £ of

, * . .
A (18ee)” . The operation of YEI ( = ;\fo ) on the

(1)x
2m

normal subgroup {1IxL & L ¥ 7 is jFust the watrix-multiplica.-

PN I | ‘
tion of P({) from the left., In fact, takling a representative
(Y.u)e s, of YE[, and letting nf = Tﬂlufi, we have
¥ . Y }/ -1 -1 , X -1
u s= (-l‘-s,_u) = ( 90) (1511)(}”30) = (Y ,O)(Y,D.) == (15(3( ) u)*

.
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Thevefore, the operation of ¥ on the coeycle ¢, is glven by

i
—~
>

\.‘Q

“"O

f)((u,j -0 )A oo oA (uq«ug))

A (uo}uljoaa‘gu )n

SA%(r)) e !
Hence the oparation of 7T&[™ on Hl(IYL ¢) f\ Iﬂ@)' is
Just multlplication by the matrix
G N Fow T Ad, vy~
(A% ") = "ANemn™
Namely, H3(IxL,€) iz the representation space of [T, whose

=+
matrix representation is  (A%.p)’, eo that
1 3

IS

(2) HYP, BY(1xT,6))

(A%ap)”

Hence, we have determined the ED ~terms of the spectral

sequence of the theovem (2,3.D]), i.e., Ep’q ol (ﬁﬁ‘g

¥,

Actually, we ¥now that Ty = Em in our casa, There are several
proof of thls fact. Kuga proved thiz by usiig harmonic forms on
V. Dellgne and 3atake showed 1t by fiber stretching operators

¥ .
0. (sbb next section).



Thiarefore we have, by the theorem (2.3.1),

Theorem (2.3.2):

(v,e) £ 6 10, (A%p)T).
- p-¢=m : :

The Hochschild-Servetls spectral seguence {Eaﬁq] Tor tha
group btriple [A,B,[7) = { ["xL, 1xL, [} cean also be described
by means of the Leray’™s spectral seqguence of the flbering struc-

EUTE TV mwmey U, We shall describe it hriefly.

suppose given topologlcal spacez X, Y with a continuous

mapping £: Xe—sY and a sheaf %% over ¥. The Jg-th direct

image sheal 1z the sheaf qu(g?) on Y assocciated to the pre-

N s 5, T,

whers Qﬁ iz some open set in Y., The Leray speclral sequence

o

ls & spectral sequence {E_ ] with
gy Py, R M),

. . ’ (£} " -
In our case, V’mxnﬁ@U iz a C ~fiber bundle with compact

O
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Fiber ¥, " Thus V, U and [ are manllolds, % 1is a Cwamappm

ing, and

'rrmj'rl}i. = {MXF

for sufticlently small open sats ﬂ/{(’;Us For the constant

sheal . @ on V, by.the Xnmneth formula,

Thisz shows that wa(@g) = Hb(F',Q) as the locally constant

sheaves. The action of the fundamental group w\](U,p) 2 on

Bro < . \
H (FD,,Q} 1s known, and i1t iz the same as the reprezentation

iy

PR o ; ) . L )
(faog'}) of | . ¥From thess facts and the fact that the space

X =1 is contractible, we have

AL

(5) wpr® = m(u, B(FLe) £ out(T, (W),

Namely, the E.-terms of both (Hochschild-Servets and Levay's)

spectral sequences coinclde. By this isomorphigm, using the

following theorem of Deligne, we can have sacther proof of the

degeneration &, = B, of the Hochschild-Serre spectral se.

gquence of the group triple [ =L, Ixi, .

Remembering that V and 0 are compact Kihiler manifolds

and




TtV e U

is a surjective, holomorphlc mapping of maximal rank. Moreover

the fibers W“l(p) = Fp are algo compact Kihler.

Theoren (Deligne [11,[3]) (2.3.3): In this situation, the Leray

) N TT e~
spectral seguence 0f Ve-3U degenerates at Eg, ilce.,
¥
E2 = Em s

50 that

3

o u*(u, R (@),
atb=r . :

(6) u"(V,q)

et

On the other hand, since XxF 18 contractible, the

I

conomology group H{V,®) of V = - \éXK%) 1s isomorphic to
: : xh

T - w an
he group cchowology H (TxL}. Combining 21l these, we have

(1) W) & e BT L (APp)).

ath=r

This show the degeneracy of The Hochschild-Serre's spectral

sequencs.,



2,% We now deflne the flbev-stretching operatorxr Gan
(n=0, +L 5 42,,.0.) of ¥V onto V. Frst, we do the N-

multiplication of torus (Ng#Z). For this, we consider the

following dlagram

e o
B I
’

o '
N AN

Gince NLCL, multiplicatlon by W in % defines the ma

e rg‘ N e ) Ch e e o R
@N :. ﬁ\?'ﬁ”ﬁﬁ M\ff I we do the N.multiplication on the

flber, wae have

(L%

o ) { F
- YA

X ﬁ)
JKL\\J a

&
G e <

M

The right-hand-.gide vertical wap sends (x,u) onflc (xﬂgnu)@

Thus we obtain a holomorphbic map of V onto V (which 1s not

one~to-one, because o, 1is not). By 18 a holomorphic map,

whilch iz compaylible with fiber-structure:

-




v b T
ki m

14 v

i id o J o

farthernore, we have the induced map

BV, Q) ety T (V, @)

(and respectively, over R and ).

due to Kuga.

of cohomology groups

The follcwling theoram 1ig

Theorem (2.4,1): The eigenvalues 1\7 on H Fvﬁ Q) are
NO,wt, ..., W%,
) M \
'g{ a,briy g) - (xed (v,q) | EN N°x, for every i),
with & = r-b. Then

(v,Q),

9
- atb=1

g{(a,b?

And

T‘3



‘ a., ] , R "
8chb)(v3@) = ?ﬂ<i’bf(V,Q) R € = Ef’b (canonically).
Obviously,

il

(1) H(v, o) o WP (v,0).
: B a4-Dm= -

On the other hand, gince V  4ig a Xdhler manifold,

o2}

3 D

@?J(V;@) can be decomposed In the following way, due to Hodze

i
2]

prg=T -

?’/C( PsG) (v),

(2) T (v.e)

where gE(PEQ)(v)- ig the space of paraonic (p,q)-Fforms on V.

sy

The relatlion of descompositions Just shown above i glven by the

following

I_.JI

) and (2) are compati-

Lemiva (2.4,3):  The decompositlons (

ble., For ath = pH =¥, pub

"’J{(PJ Dy NFEE Py 2 Hreobivs )y,

Then



-
1

a{<ljy Q)(V) - D "(}C (a.s bﬁ'ps Q)(V) s

Ath=1

Ca, b,

Il

' .

@ ?6 \c.).‘, -b'_gpﬁ q_) (V) .
e O

prh=T :

Proof: @jN : mem§v is a holomorphlc mapping. The reztric-

tion of @N% to ?ﬁ;pJQJ(V) A S g%(p’q)(V)mmmg g{(p3q>(v)>

namely the image of @Tﬁf Kﬁp”Q)ammm% ﬁ%N%((w(p’Q)) ls agailn

of type (p,q)-.

By means of gtretching operators Qn s Deligne and
sataks proved the degeneracy B, = L of the spectral csguence
o oo

of [{"sL, L, "J. Let us sketch that here.

- H s .
Let “stretching opsrator” 0., operates on [ xl (eswui-

direct product through @), by

Qn
P xi » [UxkL
13 s
(Tsd} g (2{9 l"l(i) -

@n’s (n = 0, +1, jQ, vos) are then endomorphlsms of the groups

xL. 1xT, is the invariant subgroup of 0,'s, and 0O 's



. . =y *
induce trivial maps on r o W induces homomorphism @n of
HI(FXL, @), Since the spectral gsquence 1z constructed func-—
torially, the operator @1 also induces operators @n on each
term Ei’b of spectral sasguence, commuting with d's. More-

e s . ) o * a,bh .
over 1t iz proved sasily the actlon @n on  EJ is the
L - -2...{ o ! . : b . W o, k " -

gcalar multiplicatior of n~ . 8o we have the dlagram:
&, b d, Ak, D2
..l,.: - - “';_ ,|2
b b2
n n
2 I
Fajb d? . anl,b+2
-2 = ¢ o
whilch 18 commatative:
D42 ) b Dy
(%) 2™ (a,y(x)) = a5(nx) = n®(d,(x)),
B
for all Xeémg—bu
Since Eg’q are vector space over @, (#*) implies
d,(x) = 0 for all x, l.e., d, = 0., This means:
E2 [ = ES - . [: E% . QFD .



CHAPTER ILIL. ALGEBRALC CYCLES IN A GENERIC rIBER

In this chapter, we sumnarize a result of Xuga [8],

on aigebraic ¢geles In a genevic fiber Fp of a famlly

V‘HMEQ%TJ of abellan varletiez, (See also [9]). TFor this

purpose, we have to investigate the action of vl(UBp) =

o HT(FPjR)H

3.1 We recall that an algebralic cycle of codimensglon »
I
on a compact smeoth algebraic variety, say, '}J s 18 by defini-
tlon a formal 1linesr combination Z = Zi_hﬁYi of irreducible

subvarieties. Yi of codimengion v wlth rational numbers )\i

ag coefflcients. The group of all algebralc cgeles of ¢ow-
- o o 3 - £ Lot e D A T, . T - T
dimension » on  f is denoted by | L (%, &), or simply e

plso we put [ (L R) = jl"(“}«i} R) BR,  and VO @) =

T
6\, (f*“) Q@a
ILet m be the complex dimension of the algebrailc

variety %J@ Algebralce cycle 7 = 2 AiYi of codimension r

is also called algebrailc cycle of dimension wm-r, and

fi°(E ® 4o aiso denoted by ol % e 7R -

\ Y N oo At ] I o f}g:.
mur(ﬁ’ Q), Algs we use notations (‘mmr(ﬁ* R) and

mm;«r(}e" ), which are actually @r{(}ﬁ, R) and ﬁiq% ®)

7




respectlvely. Also we us2 the notations FLF{ F@ R

wr R . : 1Y - ey o -
and @Ld}_"~0%p13@ foxr Cm S},le) and 6£ $P} ¢) res-
pectively.

If Y is a subvariety of codimension »r In }f} it

. ‘ . s ,
defines a homology class on K. We shall denote it by «(Y),

and wa have

Y
) €: Hf)\ﬂ "qu\}l(\uj Q) o

This definitlon can be extended by linearity to glve the homo.
- I
logy class c(z) of any algebraic cycle 7  on %n Tharafore

wo have thoe ful owling map ¢,
- c N
(1 [l =S Lo @

This naturally indJacas a map

e

S o) ‘ p%
gg) Dtn“F;E ”mﬂm%’HQmMQPFA’ R),

which is alsgo denoted by c¢. Also we conslder

w T YooY . EOE @
Ctmmrg@ B éi & ““““““%§ H21"9T(}J ¢) = I ?ﬁ; ),

oring with €.

.

o
<
o
®
3
‘JJ
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et vs identify the cohomology group with homology

group,

KUY, R)

W

) v
::T@mﬁﬁ%’mh

by Poincare dualiéyn Then the above map ¢ in (2) is also
describad asz

g I c 2 ¥ ,’r\;

O{, o o iR H \J T ER) o

the {co-)homology class
called also

or algebralic cocycle, Also an algebrale

_ : N A A o P P . S
cyele Y & () g f) = [mmr\jj @) 13 sometimes called

¥
]
—c

v

3,

group WI(U,p)

Hb(ijm)

of  {V,r,U}

the flbers

R
( HQ(Fpgm) ) of the fiber R (o)

over a path K from p

ilally when 1ts image ofY) is

£
’-‘nn Kl\\.j"«e

o
=
o
i
v

Q)

iz consldered as an cohomology

ther than homology class,

Teka a base polnt p of U, The fundamental

acts on the homology {cohomology) groups

over pé U

by the "displacement” of (homological) ecycles in

to p, The "displacement”



8¢

induces an”auvtomnorphlsm y; of Hb(FPJR) that depends only on

the homotopy class of Eio

Tf we take a peint a&X, which covers the base point

pEU, then we can ldentify the fundamental group vl(Upp) wlth

the discrete group |7 as folleows, For an element Yeé[ . con-
sider the curve C(f) which connect 7Y(a) to a2 in X, and

conaslder the image of C(Y) (%) in U = VKFG The image of

() 1is a clesed curve in U, defining a homotopy class in

Wl(U,p)o Then the map

(1) [ 5% |enmmnemeeas (the class of the image of ()

- gy (U, 0)

nis isc.-

18 an lsomoryphism beltwasn [ and WZ(ng)D By ¢
morphism we Ldentify 'nj(Ujp) wilth 7 . The igomorphism

depends on bthe cholce of a &X.

i

QXF

=<
%“%mhm__“,ﬂﬂf#f'“gTL
A

l VARE
T | T | T
R — e )X




Using the above cholce of a€ X, we can ldentify the filber

i
Tty L) ET ety T D
o \L
i b (8,0) ey py (8,0,

By thiz identiflcatlon
2 Fo=F
(2) .

the homology group of F is

(3) Hf(Fpgﬁ) - Hl(F,z) = T,

and

(4) H}(ijm) = Hl(F,B) = L&RKR = F.

Also with the identifilcation (2) and the identi.

fication (1): [ = wl(ng), 1t 1s easy to see that the

action of Wl(U’p) on the homology group Hl(Fp:B) = is

1dentifled with the actlon ?l of -

F o= v"l(p) over pe U -with the torus ¥ = Ix?, ag follows:

&1
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on F,; defined in 1.:1. Note that our QEF

is a restriction of a symplectic representation of the Lie
> P

group Ge. Namely the action of ﬁj(U?po) = [  on ‘Hl(Fp S
) Q

= [ 1is 'extendable to an action of the Lie group G. Also
note that an extension of a representation of [ to G, if 1%

exists, must be unique, by a theorem of A. Borel.
Since

H (torus, R) = ﬂr(Hi{torusﬁm)) ,

H (P, R) = AT(F)
L pO'

and the action of G on Hr(F JRY = AT is equivalent

Po

50 ﬁF(F} = P ﬂowu[\? {retimes).

Analoguously,

. P"','

ut LR = Rl
Po

Hr(lT‘p JR) = AT(E,

and the action of ¢ on Hr(Fp JdRY = AP is equivalent
Q

to (Ar(?)}ﬁ, So the action of the fundamental group



nj(U,p) = | on the cohomology group Hr(Fp,m) = ﬂ?(ﬁx) 18
, ' ¥ * "
the restriction of the representation (A (F)) of the Lle

group G.

3,3 ILet k be z fleld of dafinitlon of the algebrailc
varlety T, We assune algo Ik 1s an slgebrale closurs of &

flnitely generated fleld over &. Let p bhe a generlc point

o o 1 : f
of U/K3 and Bp = “(p) the generic fiber, which iz defined

over k{p).

i

Now by Kuza [8], we have

(:) gl
Eﬁfﬂﬁfﬁ (3.3.1): 0 L0)) HoT Fp,@) = H” (Pp €)”,
where
. i BT . . . -
H (Fp,,@) =[x el (Fpm) | Yox = x for all Y& Y,
HE?T(FP,@)-G = [x@HQr(Fp,@) | g.x = x for all gea),
Proofl: The non=trivial eguality 1z due to A, Borel., For the

proof, ses Kuza [8],
3.4 We conzider now when r = 1. Then

(1m0 o AP(FHY .

c(éﬁlfﬁksﬁ)) 1s the space of all cohomology classes of C.linear




combingtions of divisors., And we shall make

Asasumption

.1
(c-1) e(ff (¥
Indded this assumption is true In many casge
for symplectic group G without compact fa

VY,

From now on, denote the linear spac

slaplicity: so (C-1) is written as

i

et
§9m1) GL FPpgﬁ)

2 G
ATCRD)T
conslder the fTollowing inclusion

Now,

-zfa(gr)C% C?/\even(gr)?

the Tollowing

3, in particular,

ctor, (Sze chap.

and look at the G-lnvarient part; so we have

/\even(%T)GvCT/Vﬁven(gy)w

=
2
=3
@
o
—
—
o
e
b=
o
=
et
o]
0n

acond assunption

(0-2)  APEYT < AP AR A

m timeg

O /ﬂ\ /\2(5@-)(}5




for 2m = 4,0,000 o

Therefore assumptions (C-1) and (C-2) imply

et
2

v

(1) .c(ﬁ{fm!;Fp,@)) - _/\Em(f{;

for all 2m = 2,4,6,... . .Moreover, all algebralc cycles are

horologously intersection of divisors:

rgmnﬁgl- o& oo ue\gu = /\9"» A f&, Moo o fi !\,(}"« (m times).

- In gummary, we have the following

Theorem (3,4.1): Under the assumptions (C-1) and (C-2),

for all r, -and moreover, all algebraic cycles in Fp o are

homologous to linear comblnatlions of interssctions of divisors,

Finally, we remark that the assumption (C-2) is true

for G = Sp(n,R).



3.5 In this section, we analyze the assumption (C-2),

Let G be a connected, seml-sinple TLie group, and ?i

the linear space on whieh G  acts, Let us consider the tensor

e

algebra. T(g?), and let \9 be the ldeal of T(g?), generated

by {xRy + vRz | x,yeT(® )}, so that the Grassmannisn algeobra

Ay Y

of gg'is AR = T(g;))ﬁ . Since G actz on %?3 there-

G acts on :?3 T{%:) and fﬂ(g?), Taking the G.invariant

part of the shors exact seguence

wa have (if we congider the casa of degree m)

0} - Ie J. v ——
(2) 0 s JM B )T SRy AE)T s o,
(Note that arrvows " o2 dn (1) are degree preserving algsebra

homomorphism, )

(Proof: We Torm the longer exact seguence

0 ey f]m{;' B g )a ]

AU
P

Now, we have Hl(§,71n) = (0)

=
1
%
vﬂ
|
¥
e
i_{
oD
"
e
=
|
i



_ moo, . . . \

gimple, and therefors fj 18 completely redacible, Further.
my G \ . O/n my

more (2‘7 )7 may be identified with (G, ‘\7 y, and

G
NG with (e, A™F)),  ete,

’By sunmning up  (2) for all m = 0,1,2;3, soo 5 W&

(3) 0 w——p S G S, 'I‘(ai? )G ez (‘:ﬁ )G NS

Taking even m's; we have

(%) Teven(\gj‘; )Cr N /\even(%‘: )G —s O,

Consider (2) for m= 2, we have
2 G 2\ G
(5) (R e AT s 0,

ol

Summarizing, we have

Corollary

{(3.5.1): If Teven(éﬁ )G is generated by T“('ijfm)gr

n

then /\even(%: )G is also generated by /\E(g? ).




o d T it 7T s e

CHAPTER  IV. ALGEBRAIC CYCLES ARD P INVARTANT CYCLEL

fn this and proceeding chapters Vv, VI, VII, VIII,

we investigate the space of algebraic cycles c((ﬁr(vgﬁ)) in

the cohomology group -Hzr(vgﬁ) of the total space V of the

T
family of abelian varleties V.Ji% U, defined in

Chapter T. In such a family the base is the gquotient
, . i _

U = F\X cf the product X = H of N coples of the upper

half-plane, and the group G 1is SL(2§R)Nm Famil les

v.jiﬁyu ~of this kind hayebeen constructed in 1.5 of Chapter

T Cout of tcﬁally indefinite qﬁaterﬂion algebra iﬁ over n

totally real number fleld k&  of degresz N over @, Here ws shall
not recall the details of the construction. We only need the
facts, that such a family exists, and the representation (the
Satake'represehtation) (%ﬁP)- of G, defining our Vv, must

be of the form

A x?m - (1)
PR R
N (1) (1) (1)
P = Z; me s where Yz = Eu" ﬁpfojiy

for some Iinteger Mys coo yMye

.

88
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Moreover, in the guaternion case as described in 1.5

of Chapter I, these multiplicities My eao sl have to be

In the case N = 1; ieoy - in the family of abelian
,-3,."_\‘-.,":. ﬂ - 3 -‘l‘ b.. S - ] o ~y s (:.ik.'.
Varlatles Vo amwey U = ﬁ\hg algebraic cydiles waere investigalted

in Kuga-Hall [91@ There, all (col-homology classes generated

by algebraic cycles were completely determined,
g j Y

In our case of N ¥»1, we cannot expect such a strong
result, since the algebraic cycles in the base variety U =
F\X are already very hard to determine. Al)l we can do in our

case haere is to determine the cohomology classsy of algabraic

cycles in the relatively small codimensional cohomology groups

HOT(V,R)  For. 2r ¢N.
In 3.3, we have seen that

a2(r o) = H%ﬂp?@:)G

y , f"iw &
b a5 cf Uy \Fp;u)}

for a generic fiber Fp of a family of abelian varieties

i . .
V oeoiy U M.oreover, we have sceen that the assumpticns
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(Ce1) 1 BAF Laf e o G"Lj”"pa-@f)) y
and
(c=2) + . APEOHE < (AR GAT,
imply

23 SN 21, . NG R .
R CRT O < (F @)

i

In this chapter, we shall prove that the assumptions
(C=1) and {C=«2} are true in our case of (G = SL(2,R)N and

X o= HN; hence that the space of [ =invariant cocycles

Hzr(Fp,Q) ~in a géneric fiber F s generated by algebraic

cocycless

4.1 The proof of (C=3) in the case of G = SL(ZEW)N?
}{ = HN.
Let K = SO{2,R)N5 o | This is a maximal
. compact subgroup of G = SL(2,R)N9 K is also commutative.

From S0{2,R) to K, an isomorphism A 1is defined

oy




1

for te€Ss0(2;R). And from IR to K the homomorphism W9 is
defined py
cos @ sin ©
wa) = a) ) e
‘ «-3in @ cos 9
The complex torus FZ defined in 1.4 and 1.5 of

the torus

) g5
Chapter I, is Fo= Wy

with the complex structure

J. defined in 1.4, it is easy to see that
J A (- (Eﬁ'mi) for & (g}
z = P9 ? o) G y roz o= ¥agle
An important fact is that the . J is in the image ?(G)C’

, B2 : . . .
GL{F). of our representation Qo

The harmonic 2-form

lifted to a 2§form

Ii

| 3

63 = D, a. Al acl. o+
LAYy =,
: 1] 143

coeflficients

with constant

G =

L

Big0 Pige G4

d-linear coordinategs of the

on the torus F

bijdéiﬂdfj

™
]

.t
c..; and the L’i's arve

C~linear space




sody TGP
zZ (Il) %l “

. 2 .
Therefore, the action of J_ ° on & is

3

.}z’_’.
o { =
3, {1 a

M

4, 40 Y
13 9z (Af) A 3,7 ah)
Lo ,
%, Lo, T
v L bij J, (dgi)fadz (q§j)
.lg_f
M, LT
- % i3 g, (dgi)f\Jz (déj}
¥

o
L

s e Zz a’_ dr;j_f‘\ d?; t Zj b, _] dgiﬂdfj

i

Therefore, we have

Lemma (4do.l.1)¢ W

}--
]
o

(i,1)form 1If and only if

J, (£3) = &Y o
Since JZ:€§DUE); this proves

Corcllary (4.1.2): G-. and therefore

M=Invariant haraonle

2.Torus on F7 are autematlcally of the type (1,1);

A

il.e.,

r

3
HO(F_,¢)

< HIHY ey,

Z




[N
Lt

Next, . consider the , structure of the linear
‘ e ARt Y: .
gpace [ and ’3; = Fy by means of the lattice 1. and the

\ . . ; . g

dual lattice L _ C:“é’-o Namely, a vector x in ¥ {oi in é’ )
s

is Qerational if and only 1f xe€¢L@ (or L';ﬁ) . A kedimen-

sional linear subspace WCF {or in fj’/) is defined over @
if and only 1f WAL contains k  independent vectors; so

that
W o= (WAL R = (WALD) R

and WM LA is a kedimenszional @-linear subspace of L@
This @-rational structure of F (or ;,E) automatically

' . ; ) R r, o v, f
defines @=~rational structures in AN (FY  (or N ("%1)e By

the identification Hr(Fp ) = /GX-?)? the subspace
: Q

/\‘T(é{-)w of all @-vectors :'L_n /\r("g) is identifled with

&
S PUR/ AN v,
NCY g = R, 0

e

The action /\F(P%)(}{} of Yef = T, (U;p,)  on

Hr(E‘p JR)  sends Hr(b“p s [} onto itself., Therefore it sends
Rel o)

/\f(fg)ﬁ onto itself, i.e.,; the linear automorphism



ﬁf(?%)(f}'uof ffk*g) is defined over &. Therefore, if an

eigenvalue A of ﬁ?(?%)(Y) is rational, the corresponding

igenspace

Iee NCh | AT Mx = ax ) = ker (AL - AT a0

is defined over @. We have

Lemna (iriu C3)s H(F s.G.')rm = (\ er (1 - /\F(F'}%)(E’))
ig therefore defined over (.
Néw? recall the following theorem of Lefschetz,

Theoramn .(Leﬂschetg): Eor‘a projective algebraic variety WC

<1 “(\'}ﬂH (W,®) = cf Giiiw,@))@

iyt e e (R 4

. .
Corollary (4.1.4): If a cohomology class ﬂffﬂ(i 1)( W) H (W, )

iz defined over @, then x¢gcf 611{1«},(!2'))3

Now using the lemmas (4.1.2), (4.1.3), and corollary

(da1.4), . ‘Hz(F 9@fm has & basis of
Po
b} e o b . (1,1 )
O-rational vectors; , they are in H (Fp )y and
' o
therefore in <l GFI(F ,E)) . Hence Hg(p @)rcjcz(ﬁmi(F )
. ] po poﬁ pO $ @



On the othdagr hand, we already know that

w2 Lof 7y (P e,
P - Py

O

Thud we have

Theorem (4.1.5): The assumption

(et v Lol = ety o,

O e

is true in our case of G = SL(Z,H)N N

4o2 SL{2,R)=invariant tensors

_ 2
Recall that the reprezsntation (R ,1d) of SL{2,R)

hag been denoted by (ﬁj(l)g‘ﬁ(l))e

In the book [19) of H. weyl, TURE)SL(Q’Q) is shown
to be generated by T (IR ) L2, R) le€ay
o, (if p = 1 (2))
b CU.,( 1) )HL.() R}
&

SL(2,R)
(T~ (Nr(i) ’ (if p = 2n).




0
o

Actually, in T2(1j(1)) = qy(1)®qj(1)? the one-dim-

ensional subspace

/\2“\)’(1)) = {}{Gﬁy - y@x ‘ XY & l\)"(i)

is

the SL(EgR)__an‘variant pa}?tg iﬁegj
f\i({UV( 1}) . (Tz(/U( ﬂ')))SL'(ZQ{R)Q

Then, for o= 21,

) (1) SL{2,R)
?}(\r ' = i (xtayi) & (Xzﬁy2) @ eea @ (X_Ay )j R

whgrg xﬁy means rxﬁy o YVEX
. Now we consider the representation
(-[;ﬂ p\)( 1) '9 " '}ﬁ{ 1y
of SL{2,R).

Since

T(mfvii)} - T(ﬂj(l) & ou. © qf(i))

4

AR t['(fUH')) & oos 8 '_i:*((\)'(j‘))

\

as  SL{2;R)-modules, we have




T(“)(mvu)) = & Y e Ll e T(v'?”)(’\j'{'j')}
= Ve Ve e 4 U

("l‘]"' o 4 a '}'Vﬁi)

(\f(i))

v plp,m T(P)(Qf(l)}

ag  SL{Z,R)~modules, Here [(p,m) is the number of solutions
{V{aig‘\'}}jg L O ) 5'\-}-)

m

ophantine equations

o
.o b
+
—
Y
2
=S

v T Yy b ewe N =,

O & N, .
1

: (1) SL(2,R) '-
. Corcllary (4.2.1)y T(mAJ" ") is . generated by

. SL{2,R)
TZ(m ‘\[ii)) ’

So by the Corollary (3.5.1), we have

(qy SL(2,R)
: /Kﬁnﬁ} ) is generated by




. SL(2,1R)
fVeUnﬂ](i)) ; deeey

44

0] for F z
SL(Z,R)

il

/ﬂwﬂl\ﬁ§}>

L(2,Rr) W

: ) bt
(( /\z(nlﬂf(l)) i€

SL{2,8)

1

The dimension of /Vlhn@j(i)) o is determined

SL{2Z,R)
f5]; where din Apimﬂf(i)) s

anag

i 2" . m i for u
) P/? p/? + 7 j p/z =7
a(m,p;0) = e B
O for p

443 gL(Z?R)Nminvariant tensors and the proof of

{C-2) _in +he case G = SL(2,R)

We begin with some easy fundamental lemmas.

For & representation (F,P} of a group G, i.e.,

v

e
3

B

985

(21,

P = 20

in

is denoted by al(m;p,0),

Fools a vector space (over some field k), and P is a homo=

morphism of G to GL{F"), we denote by PO the set of all



vectors v 'in  F. such that P{glv = v for all ggG. We

G ¢ . ' ‘o .
call F the "invariant part® of F, or "trivial part™ of F.

The first two lemmas are obvious.

Lemnma (4.3.1)¢ Lekt G be a group and (F 9Pi) {3 = 1y eeo 4

i
k3 . representations of G, Then
- N ¢ . G
(ii G cus @ P = P78 eee @F T

[l USRI

Lemma (4.3.2): Let (Figpi) (1 = 1,2)  pe twe representa-

tions of G, such that the operation of G on (FP?P?) is

{g) = idF “for all g€ G. Then in the

trivialy le.ec, P
: 4 5

2

representation

% P,y P& P,)

of G, the invariant part is

N S < .
(Pi & Pz) = Py & Fo e
Let Gyy Gy he two groups, and let (Fi’Pi) be a repra.-

(i = 1,2). Then (F,@ F,, P& P,) is a

sentaticon of G 5 .

representation of G = G1 x Gos which is gotten by ldentlfying

P, wlth P,eproj, (1 = 13’2),.« 5o that



(Po@ P)(g) = Po(g) @ Pylg,)

for g = (gi?gz) G %G, = G

Now, in this situation, we have

LG G
Lemna (4.3.3): (P, @ F )0 = p, Ter,

e goas rm

Proof: By identifying G, with G1Xi12? G, with {1}XG?9

G 2G,. Elements in Gy
P A&

1?‘

62 are normal subgroups of G = 91

and in G? are mutually commutative, and a vector is Geinvae
riant; if and only if, it is quinvariant and G, =invariant.

Therefore,

‘ NG Doy 1,02
(P, 8 F )7 = ((Fp@F,) )
G G G G o
= (Fy ‘e F,) 2 = F, la r, 2, QED

Lemma (4.3.4): Let G,, G be two groups, and let (P,,P ) He
LEmmE 1 2 ' KA |

a representation of G, (i = 1,2). Then (F1®F2? p

1@Pz) is

a representation of G1XG25 identifying Py with Pi°proji
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- NG - 1 2
; P = B 3 R
(1 1 @ 2) f @ . ‘

G G

i Ml " G 1 " 2
'1(11 O F.) & T(Fz) y

2

il

S c -
Ate ze F )¢ Arp e Ary

o Pt o e

= e [ ] - O 0 : =1 3 !
Proofe .hlnc§ I(b1 & F2) T(Pl) & T(Ez), and

G
(e o r)e o My e 2 M) () ©
L T T B ¢
1Mo
G G
= 0 T(N’)(Fi) 1g T<N@)(F2) 2
NN, =M

(by Lemma (4.3.3)).
Therefore, guumning over MM we have

G G
(; — o "l ‘l
2? = I(hi)

2

1(%1 ® F @ 3(52) .

Similarly,

Corollary (4.3.5): Tel G 3G,y «us ,Gy be N groups, and let

N

(Fi’pi) be a representation of G, (i = 1y000,N)o Then in




P, ® .o @ P} of G =

the repregentation (I~1 @ oo @ FN, 1 N

v

Gy X ees X By {(identifying P, with Piaproji),

N G,
T(F, @ ... 0 FOC = T

N i1
N G,
. .G 7 ]
ME, 0 e 0 F)T = @ FATS I
i=71
LEL G s ST.:(E?fR)N = G,.I X e e GN§ Gj = SI.J(?.pER)? 13@

=

the same as in 1.4 and 1.5 of Chapter I, and Jlet (§;P) 1

the Satake representation (as in  1.4); l.e.s,

'f‘—‘l‘-‘:-' E“i @ [ @ f::

where

e (1) 1 ak(2 :
P, = my hi lf ' i( ) = X{ )@prOJi@

Therefore, (Fi,Pi) is essentially a representation of the 41.th

component G, of G.

o]

In this section, we shall investigate the structures
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of T(M% ana  APHC,

y corolléry (4.3.5), we have

T(F_ ) & T(F.) 2 & g T(F )GN
--w- 1 ts 2 = t G 9 ' R N

G G
(1) Tm© 1 .

Now, since

o

'1:; o L 1) 'L(j.} w e . e oA X
lini) “‘(mi(U RN h ) as a representation

of G, = SL{Z2,R}, by the result in 4.2,
G. . SL{2,R)

4 M. G - t 'f:f X [6d X f (1) ’
L L LS I (T V A |

is generated by

G, , - SL(Z,R)

il B Loe 2, Al i
T(F ) = T AT .

Thusg we hava

: ' N G.
8 /
Theorem (4.3.7): M . Q; T(Fi) * is generated by .
i=1
N o, . G,
@ T(H(F-} le
. i
Je=
By the last corcllary of 3.5, we have
) o N . G,
Theorem (4.3.8): A(P® = @ ‘

f\(}f‘.}‘l

i is generated by
T




., G,
G Az(ﬁi) 1n

Namely, the assumption (C-2) is true for our case of G =

: ¢
SL(25R)N? X = HI\s P = the Sataske representation.

Considering the Moty degree part in /ﬁ(g)g =

N, G,
& /UF}) *, we have
iml
: : an : .
4 ; . | P e G E“l ! G
AEE - © 4 MEY e soe ANVED N,

P1+P2+9GQ+PNEM

By taking dimensisng and 4.2 (1), we have

\ - £ =
Theorem (4.3.9): dim A(HY = [ (]l

a(mi9piyo))9

where

m m r m

p/2 p/q +73 Pya —1

<

a{m,p,0) =




4ot . Summary of our results in 4.1 « 4,3

Theorem {(4.4.1): Let Vmﬁ;ﬁ>U be the family of abelian

varieties defined by

G = SL(2,R)N
| N
K = SC(2,R)

with r: L, §s ¢ appropriately chosen Then in a generic
fiber F_ = ﬁ”i(p}? (where p is a genevic point of U over
a certsin field of definition k), the space of algebralc
cycles 128 the space of [" -invariant cycles and they are
homologically equivélent with linear combinations of homology

classes of intersections of divisors, l.e.,

c(@Lr(Fpﬁ@}) Har(l"ps@)r ,
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8
P = DA Ao o ARD

St s, e sing aseLE T
e

C((K

r
where q(}’* = of OTl( Foy@)) e
Proof: . - {C~1) and (C-2) are true.

- . . . s 8 L 2r, L .G
Iheorem (4.4.2):  dim, o 0 (Fo,@) = dim AF )

T ) e N
= ZLJ ” a(m132Ai90) N
: FAY oee b mr o il=1
;ig“' }\2 © }\I\] L 1
. el g . .
Proof: Fom 7l a5 (G-8paces, 50 the formuls iz equlvalent to
RS AT ® 9

the formula in Theorem (4.3.9).




Ve.  ALGEBRAIC CYCLES GENERATED BY JTNVARTANT CYCLES

5.1 In this section, we shall describe algebraic
cycles W in the teotal space V  of the family of abelian

. . i . . s
varielties V am.p U, generated by specializations of

atgebraic cycle 2 in a generic fiber Foe see [8l, [9].

Take a finitely generated field kj (e of

definition for Vv, U, T ; and denote by k the algebralc

clozure k1 of k ko= Kk ig algso a field of definition

for Vv, U, T.

Let p be a generic point Iin U over k, andlet. P =

;K”¢(pl be the corresponding generic fiber in V. Then Fp is

defined over k(p). In a given homology clas ¢ o in

k6]

c(@lr(ﬁpyﬂ)), choose an algebraic oycele 2 é(ﬂr(Fp$@)9 guch

that C = c(Z). By Chow's moving lemma, there is an

algebraic cycie Z'e 6{r(Fp,®) such that

(i) P is rationally equivalent to 2 therefore homoe
‘ q 3

logically equivalent to Z; c{(Z2°%) = c(Z) = C.

(iiy 2* is defined over some algebraic extension of kip).
. d =

Therefore, we may assume 4 1s defined over

k(p) (. the algebraic closure of .the field k(p)).

First assume that Z 1s an Lrreducible algebralic zub-

107
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variety“ef'"Fpu Let K be the smallest field of definition
for 2 containing k(p)e. Then K is an algebrailc extension

of }C(p) @ I.}f:_’t- {’{’fl = id, 5?9 & & B § qu 1; d o) EE{:k(p‘)j ‘O@
the set of all isomorphisms of K  over k(p) into the

. . L6 ‘ o .
universal domain €, Then %ZGI = Zy ZGE? ces g Z)ﬁ‘% is the
complete selt of conjugates'of Z over k(p), and therefore

the cvycele

o =" _:: (/{-’
K}m 200, 265 b oeee 4 2

ig a prime rational cyclie in Fp over k{p). Since p 1is
a generic peint of U over k, by a theorem of A, Well ﬁﬁ}
{Theorem 6, p. 248}, there exists a unique prime rational

cycle W in V  over ke such that

Since -k is algebraically closed, W 1s an 1lgreduci-
ble subvariety of V. Moreover, the projection of W to U
is surjective, and

dim, W = dim gy + dim, U

« €

= dim, Z + dim, U,

t—\'
0
I

9]

93]

denote this variety W by

W o= Locus (f%) = Locus (2y/k) = Locus (Z/k) 3
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p
and call it  the locus of é-(or of 2) over k. Since the

codimension of W in V is dim V = dim W = {dim U + dim FP)
- (dim 2 + dim U) = dim Fp = dim Z = the codimensicn of 2 in

Fpﬁ and hence equal ?0 r, weé(ir(VgQ)a
For an algebraic cycle

2w [, 7y € &E(pr@)f

P

where 7, s are irreducible subvaricties defined over k(p), and

n, €4, we define

t—l

n, Locus (Zj/k)9

Ry

-

cus (Z/k) =

so that TLoecus (Z/k) ¢ CRT(V,@ES

Dencte by OE (b )9@) the space of @-linear
combinations ‘2: N,z (nié @) of algebralc subvarieties

-

Zy of codimension r in Fp9 defined over ki{p); and by

Cﬁr(vfiyﬂ} the space of @-algebraic cycles rational over Kk,

then the ' "Locus® 15 & map of fopr%TE),Q) to {ﬁr(v/kQQ}e

Now we are going to determine the relation of homelogy

o ey e i - W A N e
class c{2)&H (Fp,@) of Z€ CK (§p/ﬁ(p)*@) and  c(W) &€




HETV @) of. W s Locus (2/K)6 (JIT(V 4 @)
First we assume that 72 1is irreducible subvariety.
Let = 26' ¥ Zﬁé + eew I Zéd be the prime rational cycle
{
in Fp' over k(p), then the proof of the Theorem in [ﬁ]w
[10]$ shows that ‘ ‘
C(Z}. = C(ZO‘ } = C(Zgg.) o e e o2 C(Zﬁi) ¢

hence : :

c(?r) = dec(Z)e

5.2 Harmonic forms. on V

in this section, we retain our notations in 1.4 and

1.5 of Chapter 1, in particular; G = SL(E?R)N? A = HNG

By Thecorem (2.4.1), we have

tl

HE(v,E) = @ i P2 ()

a+h=r

2

HEOPY vy = dxentn | oo x = nPx i

B

2 w3, Ncn.
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In order to adjust different notations used In 6],

iiij, and E14j? we introduce the following convention.

s N
The standard complex coordinates (2,.%,y eoe 9ZN)GH

2

give  the associated real coordinates

{xieyiixgwyzf °“°“XN5YN)”

Putting

s
=
=
+

9N
=
J..

M

_jg ® wE .}':29‘03::@‘ 9 s = XN9 pe T Y,l? x = y29
- S ¥ lx = \[N?

we introduce a real coordinate system

This X . alse denotag the corresponding point in  Xe
‘We uze both real coordinate systems

1 .2 2N |
(%7p%x%, oo §x7 ) @nd (X, Y 9Xp9 Yoy wee ngny)

ar

(21T22’ sre 9ZN)

for our convernience,
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Put

dxi/\dyi

LJ' e A iy AR (j S igeamgN)G
1 2
b

They are Ge-invariant differentlial 2~forms on X = HN, so they

also represent Swforms on U = Ko (. A oeo N, are
- F q ta

also considered as differential 2a-forms on X, as well as

on  U. In particular, Ml

A 3] GA(A‘)N j_g & ENL"‘fOI‘n.ie WEE

denote by vol(U) the total integral value:

(1) VOl%U) “—‘f < c‘\}/(.ﬁ‘wnﬁiﬁ L’b

{ﬁx N

Also, we put

(2) it L Aeeortd .
“g;lu vol(U) 3 "

Let %1f§29 eco ,ﬁzm be the R-linear coordinate

- i - ) Ly h
system of F; where 2m = dJ.m[R Fy with @& set of generators

fo]

[eig 0w Feqm]. of L as the coordinate basis. A vector u
. r-

: o ‘3 1 2m .
in F has coordinate (47, ce. g7 if
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gnd ue&l ‘if and only If fli vao ?f2m€323= Therefore,

’ » »] e
(3) a A AL oA d*«f‘“ - 4,

L\
L .o pl 2 _ . - .
whers we congider dg ﬂgn@!\d% as an Z2m=form on the

Falt -

Lorus L\b'g

Similarly, ﬁ = chf . dflﬁﬂgaﬁ dfhb i

_L [ I ) -1_ ('
1 b
sidered as a b=form on the torus I\E = e Hence, 1t will

Mels!

also be congidered as & b-form on the product XxP. There-

' = ' : .
. . ' # 1 i -
fore, if T = LAL s di TAhooeA di‘b is moreover -
.L @ R .l.
. 1 I
invariant, ?? may be considered as a beform on r\ﬁx? = V,

: . glo. b
The set of all such beforms on V 1s denoted by g{% f }z

19 40, by f o 5 81 o1 S . {
A i 5 - - o f . ; I R s ariant f.
(4) QC = 1q Zﬂcije@eib A Aeeshn dE s 7 Lo LHVWLLQHLJL
. s w _ }
Also, via the projection V s U, aeforms

A : : .
Ly = ?Zf\(x) dx are considered as forms &} on V; i.e., we

}..J-

identify ® 6 with & . Tn Kuga's note E6]§ it is shown
that if & is a&a harmonic form on U with respect to the

* % r - .
metric dSO R T = is also harmonic on V  with res-

pect to the metric ds® = dsoz + A(“)(dg?d§)° The set of such
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¥

o

+

. e ~“pda, 0
harmonic forms on V 1s denoted by éﬁ “r

Kuga slso showed in [6], that
(i) g{}a?o> is the space of harmonic forms representing

the subspace H{390}(V):

(57 PHOT L

by the identification of harmonic forms with cohomolog
Y 3y

classes. Therefore,

(&) gﬁ"‘a?‘““'m g 1.

¢

.. S 2 le T o% s . ' . .
(ii) J? s is the space of harmonic forms representing

4

the subspace Héo?b?(V);

(7) g{{ogb? - ]§<O?b>(V)a

Proposition (5.2.1): By the identification of homology groups

H, (V,®) with cohomology groups H2N+2mws(vy@) via Poine

card duality,

H(V,0) = peNFENS (g gy

We have

(i)  The (point)gfﬂﬁvga) goes to

.




"

6
(p@i.nt:) :::‘-,. Q Ad}iTA C WA d%‘:zm
U

e 0 Moo oA A di‘fim .o A cﬁ?gz”‘@
vol(u) '

The oriéntation class [VieH

——
e
[N
b

—

2N+2m(V9@) goes to

?( vy = 1e u®(v,.

For any point QeU, the fiber

FoCV  is an  Zmes
Q
dimensional cycle in V. Since FQ s FQ are homotopic in V,
1 2

their homology classes are the same; therefore, EFQIQSHGm(V)e
L £
Tdentifying tha homology group Hgm(v)lwith the cohomology group
2N \l - 1 L] L PN - JrRpe. T £ - - ey e S .
HT (V) we shall determine the harmonic form representing

the {(cc)=~homology class [FQJ = C(FQ}¢

Pronosition (5.2.2): By the identification & in - Props

(5.2.1), [FQ]EHZm(v) goes to

£ R | 1 - (2N, 0
(e = R SN N AN - A

n 2N 0% (uy N gy,

N

B e} o mmcet et

Proofs Thig is given implicitly in Kuga's Notq;([6]g Chape LI},
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. - 5 -
The section s 0f 2ero : Uwemey V, defines a sube

manifold s(U)<CV which we often identify with U. s(U)

4

U

defines a homology class [s(u)] = EU}éiﬁngV)e

proposition (5.2,2): The identification [ {n Props (5.2.1)

sends EU] Co

Bofuh = af’aai®accon af?l e {80027 L o2y,
ey,

Proof: See Kugats Noteg (C6]9 Chapter II).

penrEnE—

5.3 Description of algebraic cvcles ?égiﬂ a5

differential forms

Take an algebraic cycle Z  in the generic fiber F
.

of codimanzion r. Represent the corresponding cohomology

class - c(Z) ¢ H2r

formsas C H

. a1 ol
e = = - . Y i f A & 2 @ "
{2} = Z EJc(l/nﬁmlr)oi A A di .

(F_,R) = ﬂ2r(§“) in terms of harmonic 2p-

Here «c .y are constants, since g is harmonlc. Mores

¥

GVer q is Ge-invariant, because c(2)& f\gr(g~)6" there-




2 . .
fore H is considered as a 2Zr=Fform on V.

Now the inclusion Fp(ﬁ$-v induces gy {nelusion

f..}%( E‘p) QM_&? H%(V) 9

50 the cycle c{(Z)E& H. AP ) goes to a cycle ﬁﬁc(z)éﬁ

1i2nh=21f(v) :

Propesition (5.3.1): By the ildentification @ of homclogy

and cohomology, @ﬁc(z) goes to

E}(‘I’WC(Z)) 52 SZ /i‘(;} é “2N+2r(v)e
HAd U .V

Proof: For the proof, it 1ls sufficient to zhow that the

equality
(1) 5 L= () ArAw
Z Y U

holds for any harmonic form (W of degree 2m-2r.

X : - ra
Now Z  1s a cycle in Fpl and c(Z) = G, as

: . 2r .
cohomology clas=3 in H r(Fpgm)e This means that

o & e “
{2) QS\Z 17 - Lﬁ q A ‘zt) ‘
. p .

for any harmonic {2m=2r)-forms g on Fp°




T

Now . in order to show (1), we have to determine all

harmonic forms in Vi this has been done by Kuga in (s] .

sH

[

ALl harmonic forms of Hk(v§m) are of the form

: : A B
(3) ) = o, LX) dx fadf; ,
: (Al Bl =k 77

whare A = (ilgaeoﬁiq) is an oriented subset of indices
L

{1?2ye@a,2N}5 and B = (quﬂsa?jb) Cis an oriented subset of

+

A L] :
L and A stands For dx 'A...A dezf and

d@ for 'dij'ﬁeeef\dq}kg and f (x) is some real analytic

ALB

function. of {ha varlables x%.

{a, by

Harmonic forms (3 belonging to H (v are of

the form
{4) £y = L.t f {x) dxﬁ'/\ d};B o
tAl =a,

FB Q =
. s s o 2= 21 ot
Now, take a harmonic form W EH {(V)s Denote
<a7 13} 2 1 . g * s . -
(o to be the <{a,by-part of & according to the decompo-
Dy, -
sition R zr(v) = o Héd?b>(V)e Then

a+b=2m-2r

{a, by
(3 ‘

W=
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Let.
RAR L Z,_J £Lop0 axaag®
!Aixa$ : !
EBE’;D

Now, the left-hand-side of 5.3 (1) is

o La by
AR SRS
7. . a+h = 2m-2r Z

Tf a» 0, ° than

e (x) ax™natP

AP
5 , AyB

sl
:
3t

is 0, since Z(:Fpg therefore, & 0 along 2. We

have

{o, by ?f i
Ly 7 = f 3 -

= 21; fg?B(x) jF g/\dzm
P

{B] =2m=21

o -
h'{?ﬁ . &..Z B

(by (2))3

N mf‘iﬂ, 2?[1‘“’23:',)' & H {OS 2m=‘2t‘>( v) . J{QO? 2[\"[‘“{;]3‘}
I i/éijc.. j dzijrﬁonmf\ dé’j?,f%’lmzf“(;.éin\rariant R by 5,0 (/{) ,
TATET S 2men 20 )

I3




5.2 (7), and the coefficients f@ p  Must be constants;
o B

fng\x) = cgsgﬂ We may write
{0, 22y VA 7 ¢B
w = > : = [ ,c. L AdY
Wz vz Z‘JQ?B‘FJ ’
P
< o - ?»B
B (‘v:,a LJ?A( LB C@g}:‘} dg )7
L
p
o X Loy 2n-2ry  F £n
where £ u £JC@9B dg “

Secondly, the right-handeside of (1) is

' ' 7 - : g7 La, by,
V{QU!%'(;)M@ = LQU/H.;A(L,&J P .

By 5.2 {2);, we have

Q = mi,,,,mm AP RTAN )
u vol{u) '
: +1 .
e AKX AARE A w o A dxaN/ , -
vol(u) (ylyggmuyw)

{a, by A B
RAYiYA) P = .(2 /’\( o fA B i /\d{: )] = O
] . =0 Al wd, L
B =h

e T B e T




.
v
Thereforea,
(} ACIAR = ( A &y Awdoyﬁm’*"ﬁf‘e” i
7
v | MY U
i ’ £o. 0 w2 P Ly L ' . .
Since mSp,Em 2r? = ZJCQ B diB with constant coefficlients
B b
C@,n*
= ' ‘{‘,:,“
™ 4 ~ [ 1"}3
AL ALY = Z,._ac-f g Q AL /\dl .
v LLU 4 LIV TR KA
.
- By Fubinifs theorem, we have
) ’ ‘ L i . = [t
’ £ 4 - e &_ 11""
Q #Tak a5 () o (G Adg™)
..‘V U Jy it “ .
X

7o ( (T pab®y)
Leg w ARVESNY e

' ' . ' R 5
| a ?:cggB (Q/\dg }

E:"
p
o 3 (O 2m=20 3
e , = A L3
J (o
o P

This is equal to the left-hand~side, so we have proved (1),

. hence Proposition (5.361).




Finally, we consider the cycle W = Locus (gmﬂc)a

‘Since c(/ﬁ) = d.e(Z), c(ﬁr) ig represented by +the
? .

harmonic form d. fﬁ & H )e

Propo ition (5.3.2): By the identificatiocon &5?

. - ( K - 2
cl{w) & “2N+“mm¢r(V) goes to @(c(w)) = dn§ € H" (V).

Proof: To prove this, it ls sufficient to see

omm et

() L =al €aw
SW V'ﬁ ’

for all harmonic formsg{y of degree 2N+2m-2r in V.

For & point x €U, ~ denote PXQW s (ﬁw' mhen for
t . ' “he a2 :
generic point xX U, &Kg é:: jb are homotopic to each

other in V; therefore, they belong to the same homology

. £ X . u . .
class: l.8. cahomologous to  de. {via the identification
5 &

g; Yo

Let

() = Zméas]37

da, by , A B
) = 7" fA B(x) dx /\dg .

X=
b o

il “i.

Al
! { -

Then the left-hand~side of (5) is




W wo DB
' 5 B, . A
& y £y p{x)( af® ) ax
et - LB
e WA EE, 7
ftb=ar 5y p 0%
by Fubini's theorem. '

If a4 2N, then the integral is 0, therefore

2N, 2me 2y .
&‘) = C;Q

W W

)
oL
r
=
o
joR
5¢
.

’ , U 5}

- cimf ZB £ 500 J £ a afax
U F
: 3

- d. \ ?j £ (x)dx” ( T?ﬂdgg

~
&2 ‘ L\F

whare 5 = 51,2;»e¢,2N§ -

Now, the right-hand-side of (5) 1is
, e~ la b>
ds& g &f\[q) i do j if‘z{\,j ! [
\v.l) V‘i’) = B

VﬁAgfa“ﬂ = 0 if a # 2N,




P

This 12 =squal to the left-hand-gide, and proves (5} and

Propogition (5.3.2),

Covollary (5.3.3):

SR
—
Q
—_—
=
—
S
B!
far X
N
T
IS
=
nS
}——\".i
g
—
<3
et

" o ! . EX S e
The space of algebralc cycles c(@i (ijm)) ig equal to

HEr{Féﬁm)G - hzrkmg)G by Theorem (4.4.1).

2 a
Let h=h_= dimﬁ,ﬁ“r(ﬁ‘)J and take a basis 633 coc 3

- 2 [* G ) . Y r ¥
{;1 oF /\LL(ﬁé) . Take algebraic subvarietles Z,, ... , Z, €

: - ' CON, 21
(ﬁl(pp), such that c(Zj), coo 3 c(Zh)GTH NJ?I’(v) are

represanted by Jzuzﬂilg a0 3J2Ufﬁﬁh .
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They are linearly independsant, and we have

1

oy . . " &0 r
dim fxg‘-(“gz)("' eh o= aim (et QT A a2 gy
£ aim (0N 0yyy,

Since

HEE 2 gy PN, AR
- B HzN(F}Xf.A?r(f)(5 (by Cor. (2.2.7))
= HN?N(F}X9 A?f(if)g) {by Cor. (2.2.7))
N
e )
2 (A

2r, F .G

= N (zf)Jg

since 2N # N. Hence
G

N+ 1 2N 21>

il

(6) dim AZL"("g) aim (e N F o0 AH (V)

H<2N§2r>

= diﬂ'ﬁ { (V) )n

From this, we have

' RN £2N, 253 2N, 207,
Corcllary (5.3.4)¢ C(ﬁv|4 (V,2) N H PRIV, M) = H ; L?{J,@)?

T T T

IN LD 2Ne2r . ;
ie¢., the subspace N L}(V?Q) of H (V,@) is spanned
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by algebraid”(co}mcycleso

Finally, we consider Wi = Locus (Zi/y)a By Proposi-
tion (5.3:.2), @(C(Wi)) = di?fiy where d. are positive
integers. Therefore @(c(wi)) i = 1, eva 4h are linearly

independent algebraic cocycles in H(O"2r>(v)w . W2  have

the following inecgualities,

h = din /\“(*ﬂl’} )¢ £ aimg, e, ar 2 e
£ dim, (P2 v ).

Sirce ’ -

HEO P Y vy e RO, ATCEDY s m®rx, /‘-zr('éf)c}

N
i LD .
B (/\21'<§>(’> © = /\2""'("(?&

again, we have used Cor. (2.2.7), hence

. Lo, 21y . {o,2ry
dimg, (H*77 (VyQ)) = dim, (HTT? (V,iR))
= dim ( /x“"('{‘? ) Oy « .
And, we have :

Corollary (5.3.5)¢: C(@fwvy@){\H<O’2r}(v?@)) . H4092f}(v?@)$
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2

by

d

g1

gpan

is

]
e Sl

I

algebraic (co)-cyel

T

b




CHAPTER VI. ALGERRAIC CYCLES WHICH COME FPROM THE BASEH

SPACE U

6&‘1 w. (i = j..g, & oo gN) on U

The factor of automorphy Ji(F?z) = (Cizi + di)

defineg a line bundle L. on-the variety U = Vs and

N &,

a L& T i .
J1L‘ cre J M = (i~1 (coz, o+ d)) corresponds Lo the line
bundle

a L, + ali. 4+ coe + a Il
272

The space of sectiong to this line bundles is isomor-
phic to the space of automorvhic forms:
- - &y
i = ( f = 7 [' {c . st
rw(U? [Jajhi) i F[%ﬂﬁz) =) (cyz, di)
= )@

3 gl
g(ai’az’““‘am}(r

If a, are all sufficiently largés then the line

bundle is very ample, and the Chern class

i

e ) S
ZJai %\Li

g\?;aihi}

is the cohomology class &(D) of the divisor D defined by
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o



Q 9

On the other hand, the

given as de Rham cohomology

2
€ -
P8 a, a1

Chern class

class of

dzy Ad2y

O

~3

= S,
(zrgaibi)%l-i (U,R)

B0

differential 2~forms

a

E—I-N

B oA
—

Yy
{see, for instance, Gunning

‘Now, since

N . Y . . y" _

theraefore,

[4}9 Chapter

iz AdZ (dx+idy) A (dx~idy)
5

7).

" mgi,gxf;di :

[

¥

N e~ N ax, Ady,
C { ? aj L 1 ) = e Zw: & 5 { N ““‘““‘J"‘"”') ) ;
=oAL il Y :
o ‘ > N
Fr— -6-;: { ZJ A, {&} ) e
2 it i =] ) -

We have,

Corollary {(6.1.7): -ﬁcai,.,

A h%“c’!}m g cf 6@1([}9@))6 Hz(U?@) o



1 r

By identifying TR with {5 , we have

2r

L Aeeent e T, entiv,e.
9 ;

r

2F(U,@)) " H<2rgo}

Since 47 (H (V,@), because of 5.2 (6),

(1) S (B, A weehly )E g PTI0Y (v g .
4 r
N ) . . .
‘hesa I =differe N M CL) . e & e . i A e o e i
These (r} differential form 11/1 f\@lr (i1<L2< élr}

. -

are linearly lndependeat, and we have

Q&iﬁi&ﬁﬁﬁ (6.1.3)¢ (S) & dimQ (c((ﬁf(vg@)f¥H{2r’O}(V?@))
£ aim, W v ey
On the obther hand, since
H<2f’0>(vgg} = HQE(F}X,APQ?%) - BV (X, trivial)

1

Y-
HOT(U,R)

and by Cor. (2.2,2), dim Hzr(Ugm) = (i) for 2r # Nj

¥




comparing the dimensions, we have

[ERENRICE PRSI

Corollary (Goledys IF 2Zr

p&2r 0% ¢y

ey = mEEEOY (Y gy,

(Vv,® is spanned by algebraic {(co)-cycles of

1,
e ool {}Jl [




VITE.  THE COHOMOLOGY GROUPS n<2Pr2T7(v q)

FOR 2p # N

7.1 By

H(Engr}(vgﬁ) o HZp(F;XQ ﬁgrktg))a

.
ging Cor. (2.2.6}, we have
(M)
20, = 21, 0 2 2 G v, LG :
wP %, A (‘fg yy = uP, X, /’U(‘ff) - ACF év)c’ g ¢ P,
if ~ 2p # N. Now, consider differential forms
'l}. Y 1 L7
S (AR A A By O L”
to 1 2 P 5
where: f,yfm? ‘e gf?, & /th"f)G are those forms represente
B R 7}1r
inc C(Zq) as in 5.3. These (g)¢hr harmonic forms
i
e ({:&)_ A e o oe A C’i). ) A ?-
P i, _lp j
(fFor ij{iz{g“f; i, and j = 1, .. sh) are linearly
independent, thay belong to H<2p92r>(v), and are algebraic
cocycles. Theretore,
- . L 4 s ”~
. (1) kp)hr L dimg (C(GD (V,@))(\H€2p73r>(v))
- : .
o




. . |
. ' & dim, (P v, o))

7 : | ’ - N . 20, Jf
- = d A~
| 7 (p)_ im A {é

. . N '

in (1) ave in fact egualities, hence

3

!.J a
cF
I
@

The lnegual

7 3 P 3 (SR
ton (7.1e1): c(GEP*L(V?@>)f\Hé‘P?‘Ff(v?@> o N

{2p.2r

' >(v9@)

Proposit:

4 42p, 20y

if 2p £ Ny i.e., 1if 2p # N, the subgroup (V,@)

Lo 2p+2r . . - .
o of " uP (v, &) iz spanned by algebralc cycles.




CHAPTER VIiZ. PROOF OF THE MAIN THEOREM

FAnICVIPIREIE R

Tn this chapter, we finally determine algebralc cycle
of codimension 2r< N, in the total space V of the family

of abelian varieties sziﬁau, with U = r&f, X = N G =

M

S0 7 ,IR)

o We state our maln result:

e

(8.1.1)¢ c('[L{V?@)) = Har(vyﬁ) for 2r € Ne

L]

7.1 By Cor. (5.3.4) and (5.3.5), cohomology

classes of Hézm?g}‘ﬂ}(v}9 H<0?2r>(v) are generated by

algebraic (cd-)eyeles 5 and by Core (6.1.4), 1f 2p # N,

2p, 0 . : . )
HEePe Y9 vy is mlse spanned by algebraic (eoweyeles, Purther, by

Prope (7.1.1), if ép N, HQprzrb(vgﬂ) is also spanned by

algebraic (eokjeycles

o

+

Now

[

o uPYv e
a+bh=k

Hk(v9®>

and

H$ P (v ey 2 e x, APCE). =




This iz egual to

analcgous to 7.

8, L 4D
HY T, %, A

if a o= Ap # Ne

following way,

HO(V @) =

' o N ,-
Here HAUKNIy @) =0 if

if k iz odd. The dimension of J«zr(%f)e is

Theorem (4.2.9),.

TN

(oY if a & 1 med (2) and a # N.
1, we have
N ( {0} 1 b=l (2)
£, G . 4
)y e /\b(é‘i}cfacc P - (1
D . BTy
-A"i(%)C q @ P IT =2

If we rewrite the decomposition in th

9 He

adb=lk

@by @)

N ke
N KNG (g ey

fa.bS .
@ ( o B Pr ey ey
a+b=k
a?é}\i

pEN RN ( o APY( S ARSI

pir=k/2

k4 N, and the second

Tt ois

¢ - ZMJ cff "
izl

3

-“;"a R ‘!'tNZ::_)K‘

ti are aven

a(pigti?O))

=1

N}

sum is ©

given. by




where

2 Y

A p p t=0 (2
t/ ~ &, L t oy =1 = ,

2 2 2

a(ilstsﬁ) = r . / ./
0 . vl (o)

CNow, if &< 2N,  then
(1) 8%v,q) = (0} for odd Ik
N
(

e CEg% AN Y or even k = oM,
(2} n (Vv,e) = @ . (A ( {) Qg P for even %k M
. r-p= L

o
2
i

Proof of Theoren (8.1.1)

Eh 3 ¥ s
Y, a) = o H D (y 4y - o §ePs2r (V,0)
galb=PM Lri-a=M
Becauge a = MO N, if g 4s 2dd; then H 2, b = 0; ang irf

&
i
v

P Tthen




N
p)

(

-

péR020y ey = PP, X, ﬁ?({fﬁ;)) - AP0 % e ¢

and this is 0, if b is odd. Now,; by Prop. (7.1.1),
20,20, ' '
H<*p*2£}(V9@) is spanned by algebraic cycles, since 2p = &

o
¢ Ne. Therefore, the total cohomology group H“M(Vg@) is

spanned by algebrailc cycles. _ QED .
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