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Abstract of the Dissertation
SPECTRAIL INVARIANCE FOR NORMAL OPERATORS
UNDER TRACE CLASS PERTURBATIONS
by
Scott O'Hare
Doctor of Philosophy
in |
MATHEMATICS
State Unlverslty of New York at Stony Brook

1979

In this paper we generalize an important result of
Perturbatlon Theory knoﬁn ag the Kato-Rosenblum Theofem.
This theofem asserts that the absolutely contlinuous parts
pof two self-adjoint operators whbse difference ls trace
class are unitarily egulvalent. We shall obtaln the same
conclusion for a broad class of normal oparators, at the
pame time developing gome rather interesting technlques for

the treatment of spectral invarlance problems.

The Direct Integral representation for normal operators

is uged throughout); unitary equilvalence of the absolutely con-
fnuous parts (wlth respect to ﬁ g-Tinite Borel measgure )
translates in this context to the p~essential eqﬁality of the
‘spectral multipliclty functlions. For a subset I' of the complex

plane, and ¢ &s above, we say the K-R result holds for (T,u)




provided the spectral multiplicity functions of normal
vperators Ni’NQ are uueséentially egual whenever N2 — Nl

is8 trace classg, and the spectra of Nl,N2 lle in T.

The new techniques of this paper glve a particularly
simple proof of the K~R result In the unitary case (when T’
1s the unit circle and p 1s Lebesgue measure). A noticeable
feature of the method 1s that it is necegsgary. to examlne only
the geometric and meagure theoretlc propertiss of T. As we
dlscover, the conditlons Imposed on f need not be especially
gtrongi a rather large clasg of Jordan areas.f can be defined
(the class AC,(I)) for which the K-R result holdg. This clags
containg the ot homeomorphic images of the unlt arc I, together
with the convex Jordan arcs (those which form part of the
boundary of a convex region), We also éonsider homomorphic
transformations of T under whlch the problem ls lnvariant,
and conclude from the existence of certaln such maps that T
need only be "loecally ACY(I)" order for the K-R result to hold.
Thus we obtain our main result (Theorem 7.2). Since no bound-
edness conditiong on T' are ilmpoged, there is no such condltion
on the normal operators either. Finally, we discuss a natural
énalogue of the Kurbds Hypothesis for the problem, and show
that, just as in the self-adjJolnt cage, the unitary invariance
lbf abgolutely continuous parts gt11ll holds,
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§0.  INTRODUCTION

The "diagonalizatlon” results of Weyl (1909 [19])and
.von-Neumann (1935 [18]) may be sai& to have initlated one of
the major investigationé in Operator Theory. Glven a self-
adjoint operator A in a separable Hilbert space ¥, we may find

by the Weyl Theorem a compact operator K such that F=A+XK

is diagonal, that lsg, there exists an orthonormal basis for #

consisting of elgenvectors for K. Moreover, we may take K so

that
1
1) |k, = sup {|x] : X 1s an eigenvalue (K*K)%)

is arbltrarlily small. The von-Neumarn Theorem asserts that K

may be a Hilbert-Schmidt operator (K € £2) with Schmldt norm

EHKHE arbltrarily small. In 1958 Kuroda [11] showed that XK may

be chosen to lie in the p'" Schatten class Jy» With HK“P as
small as desired, for p > 1.

However, the case p = 1 1g specilal, as usual. In 1957,'
T. Xato and M. Rogenblum published results which show that
’h?_absolutely continuous part of a self-adjoint operator A

'H 1g invariant, up to unilfary egulvalence, under trace class

. perturbations (see Theorem 1.1). It 1s therefore impossible

Mdiagonalize" A with guch a perturbation.

An analogous theory, Inltiated in 1971 by the Important

rs of Berg [3] and Sikonla [21], hag been developed for

operators. It is presently known (c¢f. Volculescu [16])

normal operator may In fact be dlagonalized by a Hilbert-

~1-




2

Schmidt perturbation. Also, in 1974, 1t was ﬁointed out in
a Doctoral Dlsgsertatlon by J. Volgt that the absolutely
continuous part of a normalloperator, with respect to planar
Lebesgue measure m, is unltarilly invariant under trace class

.perturbations [16].

However, thls latter theorem falls short of adequately
generalizing the Kato-Rosenblum resulte; in fact, 1t 18 easily
seen that there is a major class of normal perturbation problems

about which nothling at all is sald. Suppose for instance that

m2(°(Nl) U G(NE))7= 0

for some normal operators Nl’ N2 in ¥3 then the equivalence of

absolutely continuous parts is a triviality (Proposition 2.1).
It is not hard to find important types of Normal Operators that
fall Into thls category. . |

One sgenseg that we need expeét only "zero dimensional"

differences in the spectra when N, - Nl ls trace class}; 1t is

this sort of generalizatlon of the Kato-Rosenblum Theorem (1.1)
fhat seeﬁs most appropriate. In‘the context of the result
clted above, thls means that not only should we have invariance
for the absolutely continuous part (with regpect to me), but

or a good deal of the "singular" part as well.

-

In the present paper we go a long way toward substantlating

5 conjecture.




We begin by taking T' < € wilth ﬁ a posltlive o-flnlte
Borel meagure on Iy and ¥ a normal operator in ¥ with
o(N) ¢ T'. One can define in a natural way the absclutely
contlinuous subépace for N with respect to p (Proposition‘z.l).
The absolutely continuous part of N isg then the restriction of

N to that gubspace, Given a palr of normal operators Nl’ N2

with U(Nl) U G(Nz) c T', we show that the absolutely continuous
parts with respect to p are equivalent to iff the spectral

multiplicity functions &y , &y are equal a.e, (w). Then we
1 2
ask what conditions on (T,p) are sufficient to guarantee that
b = & a.e. {p), whenever N,, N, are normal operators, as
N, N, 2 1
above, wlth N, - Ny € Jl. Under such conditions we say "the

K~R result holds" for (T,u).

"In §4 a method is introduced which gives a rather elegant
proof of the K-R result for the unitary cage @T;m) (I is the
unit circle), These methods are then formallzed Into a set
f sufficlent conditlions for the general case (Proposition 4.6).
‘An important ingredient here is the fact that the trace class
eiturbation remalns Invariant under the holomorphle functlonal
alculus (at least when Ny, Nzlare bounded ). This turng out to
' a speclal case of results developed by Blrman and Solomyak

ol.

- Sections 5 and 6 consist of geometric and measure-theor tic

1lysis: Convex rectifiable Jordan Curves in section 5, and
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g more general class of curves, called ACY(I); in section 6.
The key properties turn out to be locali thus 1n section 7 we
see that (T,u) need only be "essentlally locally" 1ike a curve
in ACy(I). In particular T need not be bounded (thus N, Ny
need not be bounded elther). Also a rather broad élass of ¢t
curves are'covered by thls result. We conclude by extending
our result under the so-called "Kuroda Hypothesis" (§7.4). All
of the spaces (T,pu) have the properﬁy that mE(T) = 03 that is,

the measure p 1s singular with respect to M o

Where does this leave us with respect to the diagonalization
problem? One suspects that the parallels with the self-adjolnt
case will contlnue to hold. Thus we mlght anticipate that normal
.pperators of the kind discussed here may be dlagonallzed by

pperators K € J with 1 < p < 2, and “Knp arbitrarily small.

_ P
Techniques from the present investigation mlght combine ‘with

he methods of Kuroda's paper [11] to deal with this possibility.

Flnally, wermust mention the followlng: The classical

oof of the Kato-Rosenblum Theorem involveg demonstrating
stence of certain strong operator limlts known as wave
_erétorsw These objects are themselves of substantlial interest,
_iéularly in that branch of quantum dynamics known as

ttering Theory. However, we shall not be concerned with
operators here, confiﬁing ourselves Iinstead teo the spectral

{ance problem.
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Before we begin, a few brief notes. For a topological
space X, we shall let ﬂx denote tﬁe Borel subsete of X.
# shall be a seperable Hilbert space throughout, with ' is
‘a subspace of ¢ and p will be a positive o-finlte Borel
measure on T'. The bounded operators on ¥ are denoted by B(¥)j
the bounded linear transforms from a Hilbert space ¥ to a
gecond Hilbert space ¥! wlll be written B(¥,H'). The compact

operators in ®(¥#) are denoted by J_.

Fach K € d_ can be represented in the form
o0
K = nilsn(',wn)en
where the collectlons {wn} and {Bn] are orthonormal systems
in ¥, and the sequence {sn} tends monotonically to zero. The
‘s are the elgenvalues of the positive operator |[K| = (KK*)%.

n

K is gaid to lile in the Schatten class Jp for 1 £ p <o

provided
1

@ T

Il = €5 18, [PY <
n=1

;\Kum is.defined by (1)). The Schatten classes Jp are ldeals

B(H), 1 = p £ », and are also Banach spaces wlth thelr

spective norms H-HP. The relations
sl = Q) ), B

also well known, for A,B € B(#), K € Jp. d, is called

race clags, and J2 ig called the collection of Hilbert-

dt operators. (See Reed and Simon [13]).




§1. gpectral Theory

Iet N be & normal operator with domain 8(N) dense in a
sepérable Hilbert space H. A unique, finitely additive, pro-
jection~Valued.measure E 18 assoclated wlth N, defined on the
Borel subsets B of € and supported on o(N), with respect to
which N = [ X dE(\). Integration dE is a x-algebra isomor-
phism from the clasg of E -~ essentlally bounded functlons
L (E) on o(N) to a W*-~algebra of bounded operators on ¥

(generated by N if N is bounded).

For x,y € ¥ the relation E (w) = (E(w)x,y) for w € 8,

Xy ¥

defines a complex measure Ex v on ¢ satisfyling
. i

(6(N)x,y) = [ @ dE, o o ¢ L°(E).

‘or x € H, Vo = Ex x 18 called the gpectral measure assoclated ;
s |
|

(ith x3 8(N) consists of those x € ¥ for which I]x]g dv, < w.

s called the gpectral resolution for N. (cf. Rudin, Functional

nalysis [14]).
For a self-adjoint operator A in ¥ the collection

a— it} — -
Hac(A) = ﬁac(A) = {x €U : Yy < <m}




parture.

1.,1. Theorem (Kato/Rosenblum) ILet AlsA, be self-adJolnt
Then

pperatorg in ¥ such that A2 - Al = T is trace class,

there 1s a partial isometry V € 8(¥) with Initial space ﬁac(Al)

and final sgpace ﬁac(Az) such that VA, = AV,

One proof of 1.1 proceeds by establishing existence under

the hypotheses of the strong limlt.

itA2 -—itA1

W, = W+(A2,Al) =8 - 1lim e e P

o

where P iz orthogonal projectlion ¥ - &ae(Al); This is done first

for finite rank perturbatlons T, then varlous esgtlmates are

‘used in.passing to the limit In trace norm. The wave operator

W ig then the desired partial isometry.

A second method produces_w+ as the lmplicit golutlon to

the Friedrilchs integral equation

1tA HitAl

B 1
W, = 31 + 1 j: e T, at

ere the integral agaln 1s evalﬁated as a Btrong limit. The
: t itAl -itAl
g -~ 1n [~ e Be dt which is defined on

T 0

o
[y
e
o]
i
L |
+
td
i

Bu = [(T"B)A, - AT (B)Ju; ues(a,), B € 8(T").

. methods can be found in full detall in [ 9 ]. We shall




glve a new ;ﬁd rather dlfferent proof in §3.

One of the majJor distinct forms of the Spectral Theorem
aggerts that each normal operator in ¥ acts ag multiplicatlion
by the identity on a suitable "continuous direct sun" or direct
integral of separable Hilbert spaces over G(N). Thig version
of the Specfral Theorem generates all the others, for once 1t
is established, the various results known collectlvely as "the
Spectral Theorem" follow as easy corollarlies. In the context
of the Dlrect Integral Representation,'ds thils vergion 1s
known, the Kato~Rosenblum Theorém undergoes a definite gimpli-
fication. Although we shall not prove the Direct Integral Re-
presentatlion Theorem, we Shall aketch in some detall the theo-
retlcal background. In so doing, we shall develop machinery

which wlll subsequently prove useful. Our outline follows

. Dixmier's presentation {5 ],

A fleld of separable Hilbert spaces on a set X is an asgign-

_ment g ﬁ-ﬂg of a separable Hllbert space ﬂg to each E € X. An

element x = {x(E)} of o ﬁg is called a vector field on X; these

form a complex vector space.

Suppose ¥ 18 endowed wlth a positive, o-finite measure .

hé field {ng} is called p-measurable I1f there 1s s subspace

of vector flelds =such that:

a) & - (x(g8), y(€)) 1is a p-messurable function for



every x,y € V.
b) If y 18 a vector fileld and & = (x(8), y(&)) is

u-measurable ¥V x € V, then y €V,
c) There is a sequence YysVps®® of vector filelds such

that [yk(g)};=l generates ¥ for each §.

Under these clrcumstances, the multipllclty functlion
5(E) = dim ﬁg i1s also p~-measurable, Further, an analogue of

the CGram-Schmidt method allows ¢) to be strengbhened so that,

for each & € X, the sequence {yk(g)}ﬁii) actually forms an

‘orthonormal basis for ﬁg. The collectlion {yk}§=l is then called

a field of orthonormal bases for T ﬂgg V 1s the collectlon of

. gex
. y-measurable vector fields. Given a fileld {yk]§=1 of orthonormal

‘bases each x €V has the expgnsion

1) x(g) = 3£ (8)y, (%)

- . Je=1 -

where fk(g) = (x(@),yk(g)) 18 a p-measurable functlon on X,

Conslder now those X = {x(£)} € V which are "square in-

egrable", that is, for which

Iell® = [ (1 an(s) <= .

iege obviously form a linear sdbspace of V. If we factor out

cloged subspace N = {x €V : |x|| = 0} we obtain a Hilbert

ce ¥ whose inner product is given by

(x,5) = fx(x(g), y(8)) au(g)
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(Verification proceeds precisely as in the proof that La(u)

is a Hllbert space. With one or two exceptlions we shall

allow the identification of an equivalence class in ¥ with

its representative.)

¥ 18 called the Direct Integral Hilbert Space (or Hllbert

Integral) for the fleld [ﬁg) and measure W, symbolically

¥ - (O, au(e) .
Ixﬁg u( ) |

Also the notation fix(é)du(g) denotes those x = {x(g)} which

are elements of ¥, When p 18 counting measure we have

%= @ %
EEX

(this accounts for Naimark's term "continuous direct sum" for

¥ referred to earlier). Another noteworthy case occurs when

5(8) = 1 on X; then ¥ = 1%(n). If {y)y_, is a field of ortho-
normal bases, observe that the ¥, 1le in # 1£f the measure uy is

finite. On the other hand, for x € ¥, the partlal sums of the
"Fourlier expansion" glven by 1) are square integrable vector

flelds which converge to x in ¥®.

Suppose now we are glven two (u) meagurable flelds {ng},

g} of separablé Hilbert spaces on (X,u) wilth Hilbert inte-

1s ¥, ®' respectively. We define a meagurable field of

unded linear transformations to be an assignment of some

?_ﬁ(ﬂg,ﬂg) to each § € X, with the property that {Tgx(%)]




11.

is a measurable vector field whenever {x(g)} is. The function

6(E) = |IT(E)|| 1e then measurable§ 1f 8 € L”(u) the field {Tg]

is called essentlally bounded and' the relation

11)  (Tx)(8) = Tgx(8) 2 ex

defines a bounded linear transformation T : ¥ -~ ﬁ', symbol-~

leslly,
111) T = j‘@Tg ap(g).
X

In the event 8 L7 (p), iii) defines an unbounded transfor-
mation T whoge domalin 1g some proper subspace of ¥. Linear
transformations arlsing from measurable fields {Tg] in this

way are called decomposable. The field {Tg] corresponding to

a decomposable transformatlon ls p-essentislly unique. If

@ @
S = |8 du(g), T = Te du(g),
‘Yx £ jx g Au(E)

o= (Ol qu(e i
IX'Q 1 ( )

are decomposable transformations with S, T € B(¥,8),
T' € B(¥',¥4), a, € € then it is easily verified that oS -+ BT,

T'S, and T* are decomposable transformations in g(¥,%'), B(%),

and B(®',¥), respectively with
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A specilal class of decomposable operators in B(H) are
the dilagonal operators; these are the multiplicatlion operators

M. for £ € L°{u) defined by

T

(%) (2) = £(2)x(8), x €4,

Iet §' = j ﬁ du(g) as above, and let the diagonal operators in
&8(¥') be written Mf, £ €L”(p). We then have the followlng

characterization of decomposable operators in B(ﬁ,gt):

1.2, Theorem: T € ﬁ(ﬁ,?') 1s decomposgable if e = M%T for

every £ € L7(u).

If X 18 & subset of the complex plane and f 18 the 1ldentity
function on X we wrlte simply M for Me ( even if £ £ ﬂw(g)),

We now sitate the Direct Integral Representation Theorem for

normal operators.

;1,3. Theorem: Let N be a normal operator in H. Then there
ig a finite positive Borel measure v supported on o(N), a
v-measurable field [ﬁ } of separable Hllbert spaces on o(N},
and a unitary transformation U ou =¥ = j E dv(g) for
which UN = MU. The measure v is unique up to mutual abgolute
ntinuity, and the multipliclty functionle(g) = dim ﬁc is

~egsentially unique.

In this representatlion the spectral resolution 18 gilven by

B(w) = [, (O)189(¢)




g 13 »
. when I; 18 the ldentlty on ﬁc. It follows that the spectral

measures V. = Ex,x satlafly

) ve(w) = [x(o)Pav(c)  wes

i.e. dv, = l=(¢)||%ay

(we shall frequently identify x € ¥ with its image Ux € ¥),
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§2. Absolute Continuity and Spectral Multiplicity

In thig section we make the simplification of the Kato-.

Rosenblum Theorem promlsed earlier, and develop appropriate defl-

nitions for the normal case.

ILet ¥ be a normal operator in ¥, and let y be a posltlve,
Let H = j®ﬁgdv(g)

o-finite Borel measure in the complex plane.
be the direct integral representation space for N, b5(g&) the
and U : ¥ = ¥ the unitary which imple-

multipllclty function,

ments the representatlon. Also let Vac? Vs be the absclutely

continuous and slngular parts respectively of v in its Jordan

Decomposltion wlth respect to .

Finally, set
(W) = (x €¥ 1 v, <<y
here Vo 18 the spectral measure assococlated wlth X,

.1, Proposition: ﬁu (N) is a reducing subspace for N, in

fact Uﬂu = I Egdv (€), and .this latter space 1s unitarily

jquivalent to I agdu(ﬁ) via a  decomposable trangformation,

That UHp I ﬁ dv, (E) 19 immediate from iv), and
1s evident from this and the representatlion heorem
(N) 1s a reducing subspace for N.

Now set § = (& : %ﬁ(g) > 0}; then & 8' © ¢\S with

vS(G\S’) = 0., Since v(E\(8 U &8')) = 0 we may set
{0} for € £ 85 U 8! without changlng ¥. We then have
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v) (S au(e) = (S an(e).
¢ ° 8
Write ﬁ j He du(g), ﬁgc = j ug d"(F_;) du(g€). Define Ve € ﬁ(ug)

(%) zx, and V ﬁﬁ - ggc by

c1<

for §E € S by Véx =

vi) (w)(8) = Vg(x(8)) = £28) Fx(e) for

™
it

x(g)} € ﬁﬁ. Then

i

(Hvagu

ac

il

@ % 2 - (lx o
IS lx (8)H= an(g) = (}) nﬂg)

80 that V 1s isometric. Since V'™ may be given explicitly by
the formula (V-ly)(g) = gly(g) = %%(§)y(€) for y € ﬁzc
- IC% dvac(g), we have shown that V is unitary. Finally, it

is obvious from vil) that V 1s decomposable. ®

(N) is called absolutely continuous gsubspace for N,

:With respect to M.

2. Theorem: Iet Nl’ N2 be normal operators in ¥, | a o-finite

osltive Borel measure on C. Then the following are equilvalent:

a) The spectral multiplicity functions for Ny, Ny

are equal a.e. (p) In €.

. M - yM
b) There isg a unitary transformation W : HaC(Nl) ﬁaq(NQJ

such that Wﬁi = ﬁéW; where ﬁi 1s the restriction to

2 I v ()12 §(8) au(s) -
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ﬂac(Ni) of N, for 1 =1,2.

Proof: Let jcﬁé dvi(g) = ﬁi be the dlrect Integral representa-
tion space for Ny 1 =1,2. Given a) 1t guffices, in view of
Propogition 2.1, to exhiblt a decomposable unltary transforma-
tion U ﬁi - ﬁﬁ, whgre ﬁi = j®ﬁé du(E). Therefore let {yi} be
8 Tield of orthonormal basgses for {ﬁé}, 1 = 1,2, and define

Ug 1 E% - u§ by Ug(¥;:(8)) = yi(@) for all k, §. Since

dim ﬂ% = ﬂg a.e, (p) we have Ug unitary a.e. (p). Therefore

U = I@Ug du(g) is unltary.

Now suppose b) 18 true. Applylng Proposition 2.1 and theorenm
1.3 ve obtain a wnitary U : ® = ¥} satisfying UMy = MU (M, is
multiplication by the ldentity in ﬁi, i=1,2). Let E,E, be
the spectral resolution for M,, M, respectlvely. Gilven w € &
1t is easily verlfied that U*Ea(w)UMl = MlU*EE(w)U, and there-
fore {(cf Rudin [14 ] Theorem 13,33) U*Ez(w)U commutes with El(w')

for all w' € B.

Take B € C compact, x € I@ﬁ% dp(g) = ran El(B), and let
B
= {€ : Jlux(g)]| » 0}. 1Ir B(B, y\B) » 0, then ¥ z, €C, p > O
sU 0
uch that B (ZO) NK =¢ and u{(w) » 0, where w = BQ/E(ZO) N BX,U’

W2 au(e) = 0% |Iyl®.

2 (e
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On the other hand,

N(zg - MOPIZ = u(z, ~4)¥IZ = (2, - M,)uy]

n-

2y = Mp) Ep(w)Ux||® = 1B, (w) (2, - 10,)E, (w)Ux]|2

2
= [yl%0 = 817 Implw)ux(e)]® an(e) = £ i, (wyux|®

2 .
~ £ Iy, This contradiction shows that

(B, ;\B) = 03 it follows that
X,U .
vii) EE(B)UEl(B) == UEl(B) for compact B C €,

Now take arbitrary B € B. By regularity and o-finiteness of u
we can {ind gubsets Wy of B, 1 =1,2,... each of which is the
countable union of compacts,with p(B - wg) 0 as L~ w, Fix
x € ran E;(B) and let By, U = {8 : Jlux(€)]] » 0}, ¥ = BX,U\Bq
Then obviously HEl(B\wJ)XH ~ 0 a8 1 - wy algo by vii) we have

"~

Ez(w)UE(wj) = 0, Therefore

B, (@)ux)| = 1B (W)U, (B - wy)x)| <[5 (B\w,)x|l, so that
E (@) = 0, u(W) = 0, and vii) holds for arbitrary B € §;

therefore

EH(B)U = EQ(B)U(EI(B) + El(m\B))

il

Ea(B)U El(B) + Ey(B)U El(m\B)

U El(B) + EE(B)EQ(G\B)U El(ﬁ\B)
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In other words, U intertwines multiplication by characteristic
functions. Since simple functions are norm denge in Lm(p)

(even in the wnbounded case) we have

MU = UM, £ €r1L”(u) O F € L7 ()

£

so that U i1s decomposable, U = Ichg'du(ﬁb by Theorem 1.,2. Since
U is unitary, Ug mugt be unitary for uéalmost all €3 consequently

1

dim Hp = dim Hg a.e, (M), ®m

The Kato-Rosenblum Theorem 1.l may now be stated in the
following equivalent form, As we ghall see, this form of the

theorem is well suited to generalirzation.

2.2. Theorem: Iet Al, A2 be self—adjoint'operators with
T = A2 - Al In trace class. Then the spectral multiplicity

functions for A, A, are equal almost everywhere (m) in R,

The last result of thils section glves a "factorization"

¥ for Hilbert Schmidt Operators on ¥.

4, Propositlon: Iet ¥ be separable Hllbert gpace and [ﬁg}

fleld of separable‘Hi;bert spaces over a measgure space (X,u),
here p is o-finite and positive. Suppose U : ¥ = ¥ = j@ngdu(g)
a unltary transformation, and K € B(¥) is Hilbert Schﬁidt;

en a representative may be chogen from each element of ¥

that the equation
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defines a Hilbert-Schmidt transformation Kg t - ﬁg for

each E,.

Proof. We first choose a countable orthonormal basls {en}

'for ¥ and let Y be the set of finite linear-éombinétions of
these wlth complex rational (CQ) coefficients, Y 1s countable,
Y = {yl,ye;...}, and dense In ¥; also Y 18 a linear manifold

over CQ. Now fix a representative u for each Yy €Y. Given an

k .
ordered  H4-tuple & = (r,s,ql,qQJ, where r,g are positive in-

tegers and dysdp complex ratlonals, define

W, o= {g €X : uqur + quS 74 qluyr(g) + Clguys(g)}

Since vector space operatlons are well defined on equlvalence
classes in ¥ we must have w(w,) = O for each a. But the o are

countable, therefore u(B) = O where B = Hwa‘ If we now re-

define the uy to be zero on N, then viiil) defines linear

K
transformatlions Kg H ﬁg, E € X.

By Monotone Convergence,

tx) ] iegenll®) an(s) = 2 [ Ige I aus)

= £ ] l(oxe, ) ()% au(s)= £ Juke, |

= k|3 < =

here ||+||, 1s the Hilbert-Schmidt norm). It follows that the




20.

© 1 .
quantity HKgHE g = ( ZlﬂngnHE)z satisfies
3 = )

x) HKgng,g <

for p-almost all E € X. By sultably expanding the set N on
which the Uy vanish we obtaln x) for all € € X, Then for
K ' .
k

y =n§lanenl €Y,

jid k .k
<) Mgyl = 3 loy | Iicgepll = (3 Je [H¥C 3 Iige 1)

= HYHHKgug’ E

8p that each Kg extends in unique fashion to a bounded operatox

on H, with

xil) an\l = HK§”2,§ °

vector field uh(g) defined by u, (§) = Kgh is 1in fact a repre-
sentatlve of the equivalence class UKh. We take a sequence
{yh} c Y with Yy ™ hin ¥ and let u = fu(€)} be any represen-

tative of UKhj the idea 1s to show lu - uhnﬁ = 0. Now for

(8) - v (0))3u(s)

(continued)

: Moreover, x) shows that each Kg 1s Hilbert-Schmidt, with Schmidt

norm “Kgnz}g » It remains only to verify that, for h € ¥\Y, the




21,

2 [ Ny (8) - up(2)]® aue)

=2 [ lla(e) - uyn(*:)n2 au(s)
=2 [lukn - vy ||® + 2 | “Kg - )% au(e)
< 2 Ilkliellyn— nl® + 2 |y, - nli? J‘XIIKgn?' an(s) .

But | el du(e) = [ ieglZ ¢ an(s)

mu-%%)

Now take 1imits ags n = =, n

%= 4 K2y, - Bl

Obgerve that 111) may be rewritten as

x111) UKz = Ingx aul(E), x € H.
X

= “KHS by ix}j therefore

The adjoint meps Kj ¥g = ¥ are all Hilbers- Schmidt with

Schmidt norm ”K*H2 g = HKgHQ g. Analogous to x11i) we must

glso have

Cxidl)' KUK = I KX

*
Here we have used llKgllg’g

;Xaixgz(_;nl___qg(a) < fangu I%(8)

= ([ gl g

~

E_'.) du(%), X

To see thls, obServe first of all that

I au(s)

€ ¥

S Igl® aneFp IEo)I? ap(e))®

au(e))® I = Il I%]

= gl g = Tglly o)

Since H ig
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separable, this implies the integral j K X(E) du(g) exists
in . Now let y € ¥ be arbitrary; then

il

(J‘Xxgszmdu(z)m [ gE(E), v aue)

= NE’K d€=~3 . ’
IX(X( )sKey) du(®) = (x UKy)ﬁ

which proves xiii),
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§3. A New Proof of the Kato-Rosenblum Theorem

We proceed to glve a direct proof of 2.3 which, ag we
havé already shown, ls an equilvalent formulatlion of the Xato-
Rosenblum Theorem 1.1. The method employed here 1s from an

unpubllshed sketch of Brown and Douglas, dated 1973,

§

‘To begin with, we shall assume the trace class perturba-
tion T = A2 - Al 1s positive, since by elementary spectral
theory T 1s the difference of posltive trace class operators.

We shall also let K be & Hilbert~Schmidt operator with T = KK*

-

r

3.1. Lemma, ILet M be a reducing gubspace for Al contalning

ran T, Then M reduces Ag, and Al = A2 in M*,

Proof: ILet PM be orthogonal projectlon onto M; we must show
that PM(AS)(AQ)) o &(Az) and AE(AQ(AE) NM) €M, The first rela-

tion is obvious, since 8(A;) = 8(A,) and M reduces A But

lt
then also

A2(S(A2) NM) = (Al -+ ?)(&(Al) NM)cM+ran T = M,
'fFinally, M* < ker T by self-adjointness of T so Al =.A2 in M*,

From this it 1s clear we lose no generality in taking ¥
to be the smallest reduclng subspace for Al which contains ran T

(giVen the existence of such a subspace, which 1g obvious). Now

1
vy
H
[
=
o,
1

1,2,
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Then
81(8) - 8,(8) = K*(Ay - ©)7F [y - 8)] = (A - ©)1(a, - 8) 7k
= K*(A; - 5)“1KK*(A2 - )™k
« 8 (8) 2,(8)
sp that |
xiv) (T -+ 8(€))(T - 8,(8)) = I, | ,

Likewige, a stralghtforward calculatlon glves

xv) (I + 8 (8))Im 8,(2)(T + 8,(8)% = In &, ().

Let ﬁi = @iﬂi-dv(l) be the dlrect integral representatlon

space for Ai’ 1 = 1,2, B3ince the vi are finlte measures we have

X%i) IW dVi(t) ..
- 1y (2 )

Define the Hilbert-Schmidt transformations Ki t H - Ri for
each 1 ag in Proposition 2.4. Since ¥ 1s the smallest reducing
subgpace for Ai contalnlng ran f, 1 = 1,2, the range of Ki must
be dense in ﬁi for Vy - almost-all A ER, 1 = 1,2, Otherwlse,
1t is falrly simple to congtruct a proper reducing subspace for

iAi containing ran K, and hence ran T. Thls fact wlll be cruclal

at the very end of the prodf,

3.2, Lemma: For each 1, 2,(§) is the integral, with respect




to vy, of the trace class valued function X = (Ki)*(k - §)—1Ki

That 1s,
*Ki
AL LV 1,25 8 gJR :

: i
K
xvii) @i(g)_ = Ioo ( A

Proof: We shall suppress the index 1. If H-Hl is the trace

norm in Jlgﬂ), then we obtain, using ix),
o Ay - 1y 42 . 2
| “K—:—Eul dv(x) = [Z, In - g] HKng dV(k) = |kll; SmE.

This, together with the fact that (Jl(ﬁj, -ll,) is a separable

Banach space, glves existence of the integral in xvii). For

X € ¥ we may write
LT MY "1 ¥, )
$(E)x = K*U*U(A - E)™~ U"UKx.
Now apply xili), xiii)', and the fact that

- -1 %
ua - g)" ot = L= (@
(r-8)"F mA-E

to obtain xvii)., =

Iet us continue to suppress index i. From xvil) 1t follows

e KK, o
Sm ¥(x + 1y) = [ TR av(\) = T[T P (x - MK dv()),
here P_(x) = 5 Y 5~ 1s the Polsson Kernel for the upper
Y 7 (x5 + y°)

Therefore we c¢laim
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= ty oo 4V *
xviii) lim Im §(x + 1y) = ¥8(x + 407) =7 (KK

y—0

(e}

where the 1limit 1s taken in (J],u‘“l), for m - almost all
X €IR, This 1g a result of the following generalization of

Fatou's Theorem:

3.3. Theorem: Let u be a positive Borel measure on R with
Im%‘(m‘
14+t

Let (B,]|-]|) be a Banach space, and ¢: B~ 1B a Bochner Integrable

functlon with respect to u. If we form the Polsson Integrals
:‘ o
Cep(x) = = [T R (x = Me(h) ap(d) ¥ >0

then for those x for which %%(x) = p'(x) exlsts, we have

un oy (x) = @(u’ (x)} = o.

Proof: We assume that the scalar case B = ¢ (Fatou's Theorem)
ig known (Hoffman [ 8 ]). But the general case reduces to this,

. for if iy im the gingular part of W with respect to m, then

lleX)u'(X). ~ o_(x)e]

J

< flo(x)u'(x) - I]RPy(x - Molx)u' (x) arl
HI By (e = Vo) aug ()]

< [ 2,0c = 0) Jolnt (x) - 9(0n' (V) an

LB =) lo(u)) aug (r).
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Now apply the Scalar case to the lagst two lntegrals to see
that the 1limit is zero whenever p](x) exists. B(It should be
remarked that the resu1£ here hag mot been sgtated in 1te
maximal generalityj 1t holds, for Instance, wlth nontangentlal

limits, ag well as withLB-valued measures p satisfylng

J'm ._.].[_Hn_ﬁ__l<oo,)
1 + t

In any event, xviii) has been established. Another well-
known result from Analytlc Functlion Theory can be generalized

to the operator valued context as follows:

3,4, Theorem: Iet ¥ be a separable Hilbert space, and
¢(€) = ¢(x + 1y) a bounded holomorphic B(¥)-valued function
in the half-plane y ='Jm E » 0. Then lim ¢(x + iy) exlsts
y”O
In the strong operator topology for m - almost all x € IR.
The proof of this result, which is falrly strailghtforward,

may be found In the excellent treatise Harmonlc Analygls of

Operators on Hilbert space, by Sz-Nagy and Folas.[6]. Observe

now that

L18(8) _ iRed(Z) -Imd(E)

Batisfles the hypotheses of 3.5, for 1f we apply the spectral
- theorem to the self-adjoint operators Re ¥(E) and Sm &(E) we
obtaln, respectively, ”eiReﬁ(g)n < 1 and “e’Jmé(g)H % 1 (the

atter becauge Im 3(E) > 0)., Thus by the above,

g8 - 1im ei@(x+iy)

y-ot
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exigts for m - almost x €IR3 moreover, 1t 18 clear this limit
can be zero only for x comprising a set of Iebesgue measure
zero, in view of xvili). Thus we conclude that
xix) & - Iilm &(x + iy) = &(x + 10™)
y=0"

exlgts for m - almost x €R., The same can be gsaid for

3(x + 107)" = 8 - 1im ¥ (x + 1y)*, since

8(8)* = k*((a - 8)™H)* = k*(a - §)7 )k = #(%), ,
and we apply the results for the lower half plane to 3(g).

Now take a sequence of positive numbers Y1s¥psao. decreasg-
ing to zero, and set %n = X + iyh. We may rewrlte xix)‘and

the corresponding result for adjolnts, ag

) o= 8(x + 107

8 ~ lim 2(8

nre

g - 1dm 2(€ )* = 8 (x + 10H)¥ a.e.(m).
n~ 0

Since for sequences, the product of s-limits equals the
8-1imit of prodﬁcts (Reed and Simon [13]), we may pass to

the strong limit in xiv) and xv) to obtaln

(T + 8, (x + 107))(T - 8,(x + 107)) = 1

: av ay
+ 2 o.% D Fyxy 71 1y* 1
I+ @l(x + 107)) Eﬁ~(x)(Kx) KX(I-+ @l(x + 107)7) = aﬁn(x)(Kl) Kx

respectively, for m - almost all x €R. We recall that Ki
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hag dense range for almost all xi thus the corresgponding trans-
formations (Ki)* are injective. Since I + @1(x + io+) and

I+ @l(x + 101" are invertible we obtain from the last
equation ' : -

dim(ran XK2) = dim(ran K2)

for m -~ almost all x. By sgeparabllity of the H; we have
dim(ran Ki) = dim HE
' X X

whenever ran Ki

. 18 dense in Hi, and therefore

2

1
dim Hx = dim HX

for m - almogt all x €R. 8
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§%4. The X-R Result for (1',m)

4.1. Definition: Given a subset I of @, with U a positive,

o-finite Borel measure on I', we shall say that the K~R result

holdg for (T,u) 1f for any normal operators Ni, Nelin ¥ such

that N, - N; € 8, and G(Nl) U U(NE) < I, the relation

i

aNl(z) = 6N2(§)

holdg for p - almost all E E'T, where GN is the gpectral
i
multipllcity function for Ni’ 1 =2,2.

In terms of thile definltlon, Theorem 2.3 asserts simply that
the K-R result holds for (R,m). The K-R result is also known
for the unitary case (T,m), that 18, the absolutely continuous
parts of twe unitary operators whose difference is trace clags
muet be unitarily equivaient. For a publishéd proof one may
consult Blrman [1+]J although a much gimpler approach involving

Cayley Transforms can be formulated.

- In addition, we intend to give our own proof of the K-R
result f;r (Itym). We do this to introduce a new technique
which shall be applied subgequently under far more difficult
circumgtances. In the'unitéiy éase, very little registance
ils encountered, and the resulting proof 18 qulte simple. In
the general situation 1t shall be necessary to develop a number

of auxlliary techniques.
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First some notatlon: ZXach angle ¢ determines the line

Ay =el® | @ <r <w)inq,

‘together with two open semicircles of the unit circle T, namely,

ot = {ei(¢+a) : 0 < g <)

¢ = [ei(m$“) T <o <27},
The map T@ 1 IT = Am denotes orthogonal projection, that is,
-4) ww(c) - ei$Re(ehimg) ¢ €T,

h.2, Lemma: Suppose 8 €T, with m(S) » 0. Then we can find
an angle o and a subset E of /\QP with m(E} » O such that

-1
E) ¢ 8.
Teo (E)

Proof: Iet I be a subarc of T and take ¢ so that A bigets Is

(*
we shall write B = B 0 cg, B.=BNTI, and B* = {§ : E € B)

I
for B cm, If’m(eim((e"ims;)*) N 87) = O then, since

eiw((e”imsé)*) c I7, we have
= m(sT) + m(s]) = m(e ®((e™M9%)*)) + m(s])

n(I),

S m(I7) =

o] s
B

m(I) we obtaln

v e

Therefore, simply by choosing I so that m(SI) >
m(¥) > 0, where ¥ = eiw((e7im8;)*) N Sia Set E

i

By oA
TolE) S A

Then m(E) > 03 also
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E C wcp(eitf’((e““"s;)*)) = Trcp(s;) by (1) above.

Thug E © 7 (ST) U T(57), end it follows that

®
~1 4 -
T (BE) < Sy U Sy © 8. .-
Now let Ul’ Us be unitariesg wlth spectyal multipliclty

functions ﬁUl, 5; respectively, and T = Uy -'Ul €9,. If

2
m (¢ €T 3 8; (L) # &y (¢)} > O ther there 18 a subset S of T
1 2

with m(8) » 0 on which one multiplicity‘function 1g strictly
greater than the other, say b, > &y on S, We can apply

1 2
Temma 4.2 to 8 to obtaln angle @ and subset E C Am with m(E} > 0

and W%l(E) cs.

Consider now the operators m (Uy) = e*Pre @1, ) derined
through the functional calculus for k = 1,2. Each by = Re(eimUK)

ig self-adjoint}; moreover,

- A, = Re(e"iq’(u2 -Uy)) = Re(e“imT) € d

2 1 1’

go that by 2.3, &, (r) = 8y (r) for m - almost all r €R, Since
2 1

6 (e”;mn) for m = ret® ¢ A$, we see that

H

(n) =

ﬁvw(Ul)(ﬂ) = QFU(UQ)(n) a.e. in Nep*

However, for M € E we have thl(ﬂ) C 83 therefore
) (n) = s, 6. (g) > P> 8. (§) = & (n) n € E.
TPl e tmy YT T cer hm) Ve TolUe)
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Thils contradiction shows that m{S) = 03 hence we have proven
k.3, Theorem: The K~R result holde for (T,m).

From here we go on to digcuss more general palrs (T,u).
Suppose Lemma 4.2 could be proven exactly as written for (Tyu)s
that is, suppose for S ¢ T, u(S) > 0, we can find ¢ and E < A@

with m(E) > 0, w;l(

E) €« 8. Then the same argument used above
would go through wlthout a hiteh. ﬁnfortunately, even ln the
cage of the convex rectifiable Jordan curve, which we conglder
next, ILemma 4.2 fails to hold. But as the following result
Indicates, we ghall first bhe allowed to transform T with
analytlc mape, at least In the bounded case; thisg greatly

Increases the applicabllity of our method.

L4, Iemma: Suppose that A and B are bounded operators with
T =3B - A 1n trace clags, and ¢ is some functlon holomorphic
in & neighborhood of o(A) U o(B). Then @A) - o(B) is also

trace class?

Proof: Let U be an open set contalning o(A) U U(B).such that
'¢ 182 holomorphlc In U3 also let V € U be open, wlth o

6(A) Uo(B) €V and Y = OV the flnite union of rectiflable
Jordan curves (for existence, see [15]). Applying the Rilegrz

Functiopnal Caleulug, we have

o(h) ~ o(B) = [ o(C)(A - ¢)Ha¢ - jycpm(:a - §) g
' .

*For a rather general treatment of this sort of "perturbation
invarience problem", see the paper by Birmen and Solmyak [20].
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= [ e)r - O™ - (- o) tag
= [ o)~ om - ¢)tag
Y : .

where the integral i1s evaluated in 8(¥). However the in-

tegral 18 trace class for each #, and since
[letera - o)™t (e - ¢)™Y,ac
Y

s Iy|¢(g)| Ha - o™ - ™ Jully log)

2

= lelly, o 1Tyl aly, o(a) v o()) [, lac]

The Integral exists in (Jl, ”‘“1)' Thls shows that 9(A) ~ ¢(B)

is trace clasgss with

le(a) - o)l = foll, ., lizly aly, o(8) v ¢(B))" IY lakl, =

Observe that the trace class may be replaced in this proof
by any 1deal & < @(¥) endowed with a norm H«HJ making it into
2 Banach space, and satlsfying [|AB]| = ||al) Bl for A € a(u),
B €Jd. For example, the compact operators wlth the B{¥) norm,
and all the Schatten classes JP, 1l =p = w, fall into this

category.

4.5, Definition: A bounded Borel function £ on T will

be sald to preserve 4, - perturbatiors on I' provided

*f(Né) - £(N;) €9, for every pair of normal operators N, Ny

¥ (not necessarily bounded ) such that No - N; €34, and

(Nl) U U(NE) © T'. For example, when T 12 bounded and o 1g
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holomorphic in a nelghborhood of T, then ¢ preserves Jl

pexrturbations on T' by the precedlng lemma,

We shall now state a sufflclent condltion for the X-R

result on (T',p); note the incorporation of a generalized form

of 4.2 into the hypotheses.

4.6, Proposition: Suppose for each 8 € T, u(sS) > 0, we can

find a bounded meagurable functlon ¥ whlch pregerves &lu

perturbations on T, together wlth a line A and subset E of A,
m{(E} > 0, such that (FkY)"l(n) 1s a finite subset of S for each
n €8 (%k t ¥(T') = A is orthog proj.). Then the K~R result
holds for (T,u).

p N €Jy,

G(Ni) U G(NQ) < T, By symmetry 1t suffices to show p(8) = 0

Proof: Let N,s N, be normal operators in ¥ with N

when S = {{ €T : by (¢) » by (€)}. It is known (c¢f Rudin
[14], Theorem 13.24) that m(Nl), ¢(N,) are normal and by
&.5,cp(N2) - p(N;) €9,. Hence (FAcp)(N'l) € 9., and applying
2.3 as in the proof of 4.3, we gee that
6 =08 a.e. {(m) on A,
F@) () () (1)
But because (?k@)'l(ﬂ) is a finite subset of S for m € E,
we have (just as in the proof of Theorem 4.3),

(n) = 2o s (6) > E 8y (€)= 0 (n)

(7o) (1)) CE(Tye) ™ (n) M1 Ce(Tae) () N2 (Fye(iy),




and agaln, the contradictlon gives n(8) = 0. =

Perhaps the maln significance of 4.6 is that it_féduggs

the operator theoretic questlion to & problem of geoméﬁrié/~

measure-theoretic analysis of the spectrum.




§5. Convex Rectifiable Jordan Curves

In this sectlon T will denote a rectifiable Jordan curve
in @ bounding a region G. ¥ :D = ¢ will be a Riemann map
'establisbing conformal equlvalence of the open unit disc:D

and G, and ¥ the homeomorphic extension of F toZD. F].]]j will
be denoted by ¥.

It is known (cf. Privalov [12] Ch.III for this paragraph )
that v must be absolutely contlnuous, so that arc-length measure

pon I is glven by

1) u(v(®)) IIY

for (Lebsesque) measurable E'&tmo Since ¥ : T~ T 1g a homeo-
morphlsm, the Borel sets in T are precisely the sets {¥(8)}

where E 1s Borel in T. The map Y"l ig also absolutely con-

tinuous so that an equivalence of the measure spaces (T, m)

and (T,p) 1s established.

In the case when I' 18 convex (L.e. G 18 convex) we claim
the K-R result holds for (T,u). The goal of thig section 1s
:to establish certain properties of I' (particularly 5.8 ),
:whence 1t follows, in a latbter section, that the hypotheses
of 4.6 are satisfied. For now, however, we shall not assume
onvexity of T, Lethl denote the gubset of T wheré

Ht) = dty( t) 1s deflned and nonzero. Now Y'(%t) is defined
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almost everywhere while If y'(t) = 0 on a get N c I with
m(N) > O, then u(y(N))= [ |y'| dm = O which contradicts the
N

measgure space equivalenée; therefpre we have mﬁm ~ T = 0, .

1)
Thus we can define O(t) = arg Y!(t) for t €T3 let this be

done in such a way that 0(t) € [0,2r),

We shall genexrally abbreviate t for eit

in T, as 18 com-
monly done - more expliclt notation can be employed when ne-

cesgary. Arguments t will also take values only in [0,2r), s0O
inequallties involving arguments have a very explicit meaning;

for instance, we have the rules
ii) a+b=a if b <27 - g
i11) If a + b = a then a + b' = a for b' € [0,b],

By contrast, equalities of arguments (mod 2r) requive no gpeclal

handling,

A related congideration Involves limits. We must dig-
tinguish between the "Real' and "Gircle" topologles on [0,27)
thege have different neilghborhoods ofro. A useful fact here is
the following: |

lv) Let f be a continuous T-valued function, with
‘ran f c [O,b] for some argument b < 2y, Then f 18 continuous

as a real valued function.
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5.1. lemma: For t €, S € (0,2r) define

i

0y(s) = ara(r(t + 8) - y(8)) € [0,20)

then 1im, «, (s)
sﬂ0+ t

Il

8(t); 1im _ Oy () = e(to) + T,
- s72T 0
in the circle topology.

Froof: arg : ¢\{0} =T ig a continuous map. Thersfore

lim, o, (s) lim  arg(y(t + s)‘—_Y(t)) | /

&-0 g0

I

i

iy el L) ang a1 8 = we),

=arg y'(t) = 8(t)}

here the interchange of arg and 1im 1g Justifiled by the fact

that y'(t) exists and 1s nonzero, Likewise

Tim _ arg(y(t + 8) - y(¢)) = 1im+ arg (y(t ~ 8) -~ y(t))
B2y 8~0

arg :L:Lm.jL(x—(-t - :) - Y(t))

. Y(t - 8) - y(t), =
= lim+ arg( = ) a0

8=

=arg(-y'(t)) =7 + 8(¢t), =
We will assume, without loss of generality, that the orien-
ation induced by vy on T agrees with the usual counter clock-

ise orilentation. Intuitively, +this means that a person stand-

Ing at y(t), & €T, and faclng in the direction 6(t) would have




the reglon G on the left and the exterior regibnjﬁ

on the right. (é 1s the complex sphere). With'fhiéfin

effect we have

‘5.2, Lemma: Suppose t Gfmlg W/é > ¢ » 0. Then 3565>3Q guch

that

f y(t) + ret(8(t) + 8') €a

y(t) - rel(o(t) + ot) € &

for all r € (0,8), 6! € (e, w - €). ‘ -

Proof: Let Ay, be the line (y(t) + rel (8LE)H01) ) < p < o),

By 5.1 d open subarc J of T, Y(t) € J, such that for every

0" € (e, ™ ~€), I N Nyy = {Y(ﬁ)]. J 1s open in the G-subspace
topology on I', so ® & > O with Bg(v(t)) N T ~J = {y(t)}. For

&

each 0! € (¢, 7 - e) the open segments 4., are disjoint*from T;

el
hence connectedness, together wlth our cholce of orientatlon
+ -
shows that LG' € G, It remalns to show that LB' c g.

-—

Assume the contrary, namely LB’ G, Let ¥ :D = CL(@)
be the homeomorphlem obtalned by extendlng a conformal equi~
valence'f :D - @‘\G (@ is the cbmplex sphere). Then & p » 0
with U = Bp(t) no < Y_Q(Bﬁ(Y(t)) N ¢1f). U NT is an open
contalning t3 also, if U, =U -~ I, = U ND then

1 0 1
=V 1g an open connected subset of @, and I, = ¥(I,) 1=

- subarc I

Y(UO)

"an open subarc of T with y¥(t) < I, © oV. Setting
U {y(t)} v La, we then have tg: N Bb(y(t)) N =g

i(e(t)+9')lr

Where we define L?, = {y(t) & re € (O{§)}'
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and hence A NV =9

el

Now V 1s connected, so V € h for one of the two half
planeg h determined by Ag1> hence aleo I, & L. But obviously

no open subarc of T containing y(t) can have this property since

Agr 1s not tangent to T at y(t). This condition shows Lgr c G,

and the lemma follows., B

CYGOVIW

5.3. Definition: Recall that the rectifiable Jordan curve T
is called convex provided it bounds & convex region. A subare
J of T is convex provided that, together with the line segment

Joining its end polnts, 1t bounds a convex region (possibly empty).

We also need a notation for subarcs of T and I'. First, for

<
tl < t2 s 2r we get




oo

£ .
(t1stp) = (™ 1 6] <t < t,) (t, < 2r)

with appropriate modlfications for square brackets. Using

this we define, for 0 = by < 6 = 27

(tl’tQ) = (tl,QF) U [OJtE)J agaln

with appropriate modifications. Finally for distinct z €T

12%o
we let

‘ -1 -1,
(Zl,ZE) = Y(Y (Zl): ¥ (52))~ ) !
The notatlon is consgistent with our orientation on T.

5.4, Theorem: T 1s convex if for each t Gtml the function

|

at(s) ut(s) - 08(t) € [0,2r)

defined for 0 < g < 2y, is ﬁondecreasing.

Proof: ILet I be convex, and choose to Gtwl. e Et (g) » 7

0
for some 8 € (0,2r) then

ato(s) = e(to) + T+ 8!

where 0! = Et (8) -1 € (O,w),”so that for p >0

0
i“to(s) 1(8(ty) + or)
Y(tg) + pe = ¥(ty) ~ pe .

It follows from 5.2 that part of the segment Joining y(to)

and Y(t, + 8) 1lies in &, contradiction. Therefore

v) Et () = 7, s € (0,2r)
5 .
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and Q. 1Bcontinuous as & real-valued function by iv).
0

Suppose now that &to(sl) > ato(sz) with 0 < 8, <8, < 2r,
F o~ 1 o~
By continulty & ' € (81,82) wilth ﬁto(ﬂl) > Gto(t ) > a, (32) = 0,

and gince lim+ Et (8) = O by lemma 5.1 we may, agaln using con-
§=0 0
tinulty, find t" € (0,s,) such that G (E") =@, (t1),
. B 0 0
T o~
. x%G) _ /
' 4 ; » S
0 t 5, B g

But this meaﬁs that the three points y(to), Y{t'), y(t") of T
are co-linear. Convexlty of T now demands that

{y(tD + 8) 105 s S t'} is a line segment, hence ﬁto(s) = const
for 0 = s < t'. But sy < t' and Eto(sl) > Eté(t') contradic-

tion. @_ (8) must therefore be a nondecreasing functilon,
. 0 , .

Suppose now gt(s) 1ls nondecreasing, as a map into [0,27)
for each t© E'El. It follows by 5.1 that &t(s) Srw for 8 € (0,2r).
If T 1s not convex we may find polnts Yo = Y(to), Y, = Y(tl) €T
such that some point ¢ of the ségment ?6?, lies in G. Per-
turbing an endpolnt if necessary, we may take ty GfElo If the

open sgegment YOC doeg not lie entirely in @; then 1t intersects

If 8, < s, then Hto(s) T const for sy =5 2,5 irs <s



b |

then E (s) const By =8 % 8,, In elther event the entire
O
segment ZY ,which includes &, lies inT
Now supposge the entire open segment Yps5 lles in a.
Evidently this implies & (81) £ (0,7) otherwise the pre-
0
cedlng lemma (5.2) shows a small plece of Yo,g lying in G.
But a (g) € [O 7] for all gj consequently §, (sl) is either
O 0
OQorw, If ¥ (s.) =0 then & (28) = 0, 058 < g, because
tO 1 tO 1

@, 1s nondecreasing. Tikewlse if A (al) = 7 we have

0 .
@ (8) =7 for s, = g < 27r. In elther case Y,¥. © T and again

to : iR 0'1

we have a contradiction. Thus the theorem 1s proved. a

We should remark that an analogous result holdg when T

has the reverse orientation, namely, T ig convex Lff the &,

are non-increasging, t Eiml.

5.5. Corollary: TIet I be convex & € I Then

0 1*

a) a, (8) 18 a continuous R-valued funetion on
(0,2r), taking values in [Oy1].

b) ato(so) = 0 implies the subarc [¥(t5)s ¥ Y(ty + 5,)]
1s a line segment If §, (SO) = 7 then

[Y(to + so), y(to)] 1g a line segment,

¢) Define Ito = {t EEEl 2 8(t) = e(to)} and Jto = y(ItO)D

Jy, 18 a line segment in T.
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Proof: Part a) wag established in the proof of 5.4, If
Eto(so) = 0, then &to(s) =0 for 0 < g =< Bg» and therefore
arg(y(tO +8) -~ Y(to)) = congt .= e(to) for 0 < g = 85, which
establishes the first assertion of b). The second ig proved
sgimilarly, To prove c) suppose t., t, ETEl with G(tl) = e(t2)3
then the tangent 1lines 15 1, at Y(tl), Y(tz) respectively
are paraliel and have the same orlentation, G'\{i Conglgty
of two Dpén half-planes, the "erft" half-plane hi, and the
"right" half-plane hi, 1 =1,2 and 5.5a) says that T c ce(ni)
for both 1. Clearly this cannot be true if Ll and Le axre
distinet, Thus, in particular, weAhave Y(te) € &1, whence

o, (t, - £,) =0 op T, and the result follows by h).
tl 2 1
Until further notice, T will algo be assumed convex.

Write Jt = {Yg,Yl} (the brackets t % Indicate that the
0
endpoints may or may not be included), If Y(to) is not an

endpoint we can find cl, o, € (0,21), o0, <« 055 wlth Yy

1 ,
= Y(to + 010, Y, =’y(to +05). If Y(to) =Y; set g =0, if
Y(to) =Yy 88t 0, = 27, We shall define a real valued function

8, (s) by
%o

o  1fo<g s o,
eto(s) = e(to + 8) - e(to) Ifo) <5 < 95 andrto ts €q
2r o 1f oy, =8 < 2y,

180 we may abbreviate T+ = (0,0.1, % [6552r), together with
to L to 2 ?



S, =18 €(0,2r) ¢+ t5 + 8 €U} and I} =8, n (61,0,

0 to tO
5.6. Lemma: For each t, €T we have

a) Et (s) = 8, (a) 1ffs € I%
0 O 0

b) G, (s) + 7 =6, (s) Lfs € I2
0 C 0 ‘

¢) ® (8) <8, (8) <& (s) + 7 ror s € I}
0 0] 0 ' 0

Proof: For g. € It » Y(E,) Y (5, + 8.7 18 a line segment so o
e 0 tO 0 0 0

@ (s) 1s constant for 0 < g < 85+ However, i&g+ 8, (s) = 0 by
+ 5 - e 1
5.13 thus at(so) w0 o= ato(so), 8 € Ito. The identity

vi} ‘ato(a) = oy + at0+s(2? - &)

holds for all t, €T, s € (0,2r); therefore
vit) @ (8) - 8 (s) = qa, (8) - 6(t, + s) =T + o (2r - 8)
to to to 0 t0+s

for ty €M, 5 € Sto' Thug 1f ’c‘.’to('é“) = eto(“s‘) for some

s € S, we have, equivalently, '&‘t +;s.(21r - 8) =m. By 5.5b)
0 0

[y(ty)s -z(to + §)] 18 a line segment, and it follows that

@, (g) = o, (&) = Os 8 € (0,§]. Thus a) 18 proven. The proof
0 G _

of b) proceeds In like fashlon.

* A hard —
s @, (8) >0, (¥). Then

to to to _

& (8) - 6, (8) > 0, which is impossible by vil). Similar-

0 0

As for c¢), suppose § € I

o

ly, if 5 € Iy » 8, () > %, (§) + 7, then 2r > 6, (8)- 4, (8) >,
| 0 0 0 0 0




y bt

ie.m » at (8) - et (8) > 0 and the same contradiction
#] 0]

results, This proves c), hence also the lemma, =

5.7+ Theorem: TFor each to €'E, et (8) 18 a nondecreagsing

G
function on St .

0

Proof: We must gshow for 815 8y € Sto, 8, < Bos that
6. (=7) = 6, (85), and it clearly suffices to do this for
to 1 : tO 2

* — —
S81r 8, € Ito, We shall get 6, = to T By by = to + 84, and

B = 8, - 8.
Now, 1f @ (2r - %) = 6, (2r - 5) then 2r - § € I} ang
2 2 2
e(tl)l
thus 6, (s.) = o, (g ) and the theorenm holds, Thusg we may
R 6y 52

i

the preceding lemma gives e(tg) = e(t2.+ 2r - §)

agsume (2r -~ F) <8, (25 - §). This gives
b2 ba

'a’te(zqr - 8,) = '&tE(E?T -~ §) < 6, ( 2r - %)

= 9(t1)~ e(tz) = 27 - 8t1(§7

and therefore, by i1),

T, (2r - s8,) + 8 (5) » 8 ().
t2 2 tl tl

The preceding lemma, together with the identity vi), now implies

E(2W~S)+B(§')+B-(S)=a (aqr-s)-e(t)
Tty 2 by ! bgtes 2 0

=7 + &to(se) > 7+ &to(sl)

> Bt (gl)'
0
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Now apply 1ii) with a = 0, (sl), b :'Et
0 .

(2r - s,) + 8, (¥)
2 S R

and b! = etl(Ej, to obtaln

) 8 0, (B) = o .

Now, & bounded monotone function on (0,2r) is dlfferen—

tiable at almost every point.eth is not defined on all
0 ‘
of (0,2r), but clearly a slightly modified form of the same

regult willl hold, For instance, it isg easlly deduced from the

precedling that 8¢ is "essentilally" the domain of 8. + We can
| 0 - 0

eaglly extend et to a monitone function et on the whole 1n-

0 0 ,

terval by setting

8, (a) = sup {6, (¥) : §<s, T€g, )
%o 2 ’ %

for & € (0,1).8, . B, (s) has a derivative 3’ (8) almost
o % bo
everywhere in (0,1), hence a.e. in S, » and if Eé (8) exlsts
0 0
for s € St then evidently

0
B, (s +¢) -~ 9 (g)
Eo to

@é (s) = 1im
0 =0
s-+e€S

s .

o

In this sense, then, et has a derivative almost everywhere;

0

In the came sense we can also say et is continuous. In ad-
0

ditlion 1t 1s not hard to see that the same result, in the same

- form, must hold for 8(t) = arg y'(t), which is defined on Ty,

- and takes valueg in [O,2m). For if we fix tq Efﬂi, then with

the posgsgible exceptlon of endpointe we have




Il

6(t) = const = 0(%

2
!
for & - g, €1! y 1

I
o
1
ot
m
=
*

0(t) = eto(s) + e(to)‘ for s

and thereforefe has esSentially the game differentiability

and continuity properties ag et + Thus we obtain the follow-
: 0

ing corollary s

5.8. Corollary: The function 6(t) = arg y' (%), defined on

Ea'and taking values in [0,2r), is differentiaple almost every

where in 1ts domain. That 1s, for m - almost all to

o(t) - e(to) .
lim exlsts, ags t = t_ in [O,27)
t = 6y ‘ 0

We shall soon see this property characterizes a much broader

clags of curves for which the K-R regult can be obtained .,




§6. The Class ACy[a,b]

6.1. Definition: ACy(I) = ACy[a,b] Will denote the class of

absolutely contlnuous ¥ on I = [a,b] € R for ﬁhiéhﬁthere éxists

8 meagurable subset IO of I (dependent on Y) Saﬁiéfﬁiﬁgf

a) m(IN Iy) =0
b} y' 1l defined and nonzero on I, |
c) 0 =argy' is a continuous map from I (withvthé

subspace topology) to Tr,

We say that y' is pseudocontinuous on Iy 1f b) and c¢) hol&?if}?5
thus ACy(I) 1s the collection of absolutely conbinuous funég_
tlons on I whose derivative is pseudocontinucus on subset of I
having full measure. ACYCT), and ACY(J) for subarcs J of Tr,

are defined in the same WEY »

For example, if vy € Cl(I) and v'(t) # 0 almost everywhere
then obviously y € ACY(I). Additlonally, in §5 we developed a

clags of functions in ACy(T'), namely, functions Yy which are
boundary values of Rlemann maps @ from the unit disc onto

bounded convex regions of the complex plane.

Throughout this sectlon Y will denote an Injectlive function
in ACY(I) where I = [0,1], and I, shall be as described above.

(The injectivity will be substantlally relaxed later on). By

absolute continulty, arclength measure w on T = ¥(I) 1s defined




by formula 5(i); since y is homeomorphiclwéise again that

p 12 a regular Borel measure on I'. We shall Prov :in this
section that (F,p) gsatisfies the hypotheses'of and hence

that the K-R result holds for (T,u)e

We begin with a local construction and analysis, which

will be uged throughout.

Write 16 I

For t, € Ié we find, by 6.1 ¢), an open subinterval I 0£ (0,1)

contalning to with the property * that

0 N (0,1) and choose & positive number a:< e

1) Je(t) - e(ty)] <o fort €I,N I .

Now ¥(I_ ) is open in the subspace topology on I'j thus for each

o
t € Ia one can find an open dlsc D centered at y(t) such that

DNT c Y(Ia). Let D be such & dise centered at Y(t,) and let

o)
R = rad D. When we refer to "local coordinates for a,R at y(ty)"
we mean the coordinate system corresponding to a tranglatlon and

rotation (together with a reflection, if T 1g negatively oriented)

of ¢ in which y(%

o) appears ag the point 1R, and B(to) = 0.

Suppose now that local coordinates for a,R have been es-

tablished at Y(to)° Then 1) becomes
1) |e(t)] < e, t € Ig 0 Tyo

For tl, t2 € Ia’ tl < ty, we have

* In keeping with our convention that all arguments take values
in [O,2v) we define [0] to equal min {8,2r - 8].
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Diagram l: Local coordlnates for a,R at Y(to)



fying Y(x(t)) = Re y(t), x € Ta' It is not h&f&ft’
x(t) 1s absolutely continuous, and that~x'(t) =;ﬁé:
particular, 1f T, = Re(v(I, N I,)) then m(T AT : .
define ¥(x) = o(y"'¥(x)) for x € ¥ N T . Using the change of
Variable Formula (Rudin, [15] p. 186) VWE See'that,.fsf.
Borel sets B © I, -

ii) p(B) = Iy"l ]Y’(f)ldt = _1, .8ec 8(%) Re Y'(t)dﬁ  ,i?i

(B) Y 7 (B)

= jRe(B)SeC T(x)dx.

We'therefore have the egtimate
1i1) m(Re B) = pu(B) = m(Re B)sec «

Now take arbitrary t € I, = (lewg) and guppose we
had originally chosen o < T/L. Then Re ¥'(g) > dm Y'(8) for
8 € I . Iet us observe what happens to |y(t + e¢) - y(t)| as

€ increages from an inltlal value of zeroj we have




_ ):

+ Jme(

Y(t + €) - y(t))

=2 Re(y(£ + € = f(t)) Re y'(t + )

+23m(y(t + e)) - v(t)) Imy'(t + '551 _.

=2Ray' (t + e) [® Re y'(t + r)dr
' 0

That 18, 1f t € I, |y(t + ¢) - ¥(t)]| 15 a strictly increasing
function for 0 = e < TE - t, In fact, |v(t + &) - Y(t)| i$;§iso
strictly increasing as € decreases from O to T, - &, by an

identical argument.

_Geometrically speaking, this tells us that 1f we find an
open digc D, =D (y(t)) such that T N D, < ¥(I_ ), then for
r, Ty ry o
the circles C = Cr(y(t)) = aDr(y(t)) each interset

0<I’51‘O

?(Ia) in exactly two polnts, and each Jp = Jr(y(t))

=T N D (v(t)) is an open subare of Y(Ia)'

Let us now briefly review some elementary concepte. A

k

sequence (E,} of Borel sets inR® ghrinks nicely to x, € R if

0

there 13 a constant ¢ > O and & sequence {ri} of positlve numbers
convergent to zero, such that K c Bri(x and m(Ei) z ¢ m(Br (xo))

0’
for each 1. The Lebesgue set L, of a function I € LlGRk) 1s the




collectlion of X5 E:Bk such that

known and Important theorem agserts that the compl

is & set of Lebesque measure zero for each £ € L* GRk3

Rudin [IS'] P )-.v

If 7 1s the characteristic function for a measurable set

s c®S,

m(S) > 0, then the poilnts of § N L, are called Eoints
of dengity for 8 with respect to ILebesque measure. In this
case, (1v) becones

m{s N E, )

v 1im ——— = ]
) 100 m(Ei)

for each sequence {Ei} shrinking nicely to a point 8, € 8 N Lo
The points of densgity for S thus form a subset of S having full

measure,

6.2, Proposition: Suppose Y 1s a one-to-one function in ACy(X).
and u isJarclength measure on I = vy(I). Iet S be a p-meagur—
able subget of I'y Then for M - almogt all s € S we have

1) 1im (s N J (2))
Y 0 K(T.(8})

where, for r > 0, J, =J (g)={v(t) €T : |y(t) - &8] < r];

A polnt 8 € 5 gatisfying vi) will be called & {-concen-
tration point for 8.




p-measure zero, and hence u(S\ S(u)) = 0 by reguléri”“
Therefore select 8y = y(to) €S, and fix o € (O,?ﬂ);7'

is defined by (i)).

For some R > O we may establish each coordinates fof u;ﬁvh
at Bys Write s% for 8 N Y(Ia) and let T, be the collection of
points of density (with respect to m) for 8% = Re(s8%); also |
set L = ¥(L). Since m(8%EL) = 0, 1t follows by 1) that

vii) u(SU‘\lL) = fga\LSec B(x)dx = 0.

Now fix ' = y(t!') € L; we claim s' isg a p-concentration

point_of g%, Teke a gequence of open discs Dri = Dri(s'),

1=21,2,..0y wilth radil Ty decreasing to zero. For ry suf-

ficlently small we have T N Dr C Ia5 we may agsume the number-

. 1
ing of the D, = D, (s') begins at this point. As we have seen,
' i i :
the sets J_ = t) = .
e r, Jri(s ) =T nN Dri are open subarcsg of I, Ve
claim the sequence Ei = Re(Jr )» 1 =1,2,..., shrinks nicely

i
to x* = Re(s'), with respect to m,
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For one thing, we have Ei o Ir"for each I, where
I, (x') = (x' -~ r,,x'" + r,). Secondly, the estimate pu(J_ ) = 2
ry 1 1 Xy
ie immedlate, since J,, passes through the center s' of each

. 1 _
D (s'). Consequently m(Re(Jr ) = 2r, cos o, 1 =1,2,..., and

ry 1
the claim i3 established.

Now get © = 6(¢'). Given arbltrary ¢ » O, one can find

(using 6.1 c)) a positive integer 1o such that, for 1 = 1o

viii) (1 - €) sec © = sec 6(t) = ( 1L + ¢) gec § t € Y‘l(J

By 1) we have

d
w(s® n Jri) ng A Eisec B(x)ax
= L
R(a, ) [ sec B(x)ax
i Ei

&
(l - ey n(E% n E,) _ u{s™ n Jri) . (l + ey n(§* n &
P ) w7, ) m(E, )

Now the E,'s shrink nicely to x' which is a (Lebesgue) point
‘Df denglty for g%, Pagsage to the 1imlt ag 1 = « 1n the above
therefore yields

wEs®no )
r
lim R
1 %o u(Jri) 1 - ¢

-~

-

+]1!
alem

~and slnce ¢ > O was arbltrary,

p(s® n I )
1
lim = lo
A u(Jri)

Ty
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Thug &' le a p~concentration point for Sa, whlech means

L S(H)' Therefore we have by (vii)

!
o

BIBNS () 0 Ig) = w (8%\8,)) < u(s*\L)
which completés the proof.

Obgerve that, in the gtatement of 6.2, pur attentlon was
confined to a particular type of shrinking sequence of gets,
namely intersectlons of T with concentric shrinking dlscs.
By employlng & more lnvolved estilmatlion procedure we could

elininate this restrictlon, and obtain 6.2 for sequences of

.sets {Ji} which merely shrink nicely wilth respect to u to some
point of T, (It is clear from the definition for Lebesgue

measgure what we mean by this)., Also, in the speclal case

¥ € ¢ the proof is greatly simplified. But we choose not to
develop these polnts here, as the present form of 6.2 1s ade-

guate to our needs.,

We continue with more local analysis. S Will be a fixed

meagurable subset of T with p(sS) > 0, and 8. = Y(to) will be a

0
H-concentration point for S ﬂ-y(IO), let us set o = 0L radians

8 we have seen,™ R >0 5 J_ = Dﬁ(so) N T is an open subarc of I,
R
oro< R = R, Since 85 18 a p-concentration point for 8 we can

nd, for each ¢ > 0, a number R, € (0,K] such that

0
ix) wp(a, s~ 8) < e p(J, ).
RO _ RO




It willl turn out that certain kéy[es

of thils cholce of Ry3 we shall thefé

pone the precilse selectlion of R

0
those who are interested, a value coffé3§c'&

until a

€ = sinza‘/lgg will suffice), We shall Bg Wo
in local coordinates for a, RO

let us write

Diy =Dp(h) = (¢ €0 : ¢ - 1] <R}

Ir

W'y = (¢ €C 1 |¢ - 4R| =R}

oy
it

R rnnﬁz{ger;[gam]<m; ¥
Also let ug define the lines

i(e + G.)I

Al = Al(a) = {Y(to) 1+ re ~® < r <o)

i(e"a)’-oogi"(oo},

it

Ay = Az(u) {v(ty) + re

Kach AK has two rays A§

and Ay origlnating at 849 correspondihgg;  f
to-n0n~negative and non-positive values, respectively, of the |

parameter r.

R
For RO = R > 3?- y(to) = iRO lies in the open disc Dlgs
for thoge R we let li(R) be the point of intersection of A§
X _ ‘ R
and C'y. The (open) minor arcs lQ(R), Rl(R) and XE(R), ll(R)

8hall be denoted by A+(R) and A (R) respectlvely.

Also let us define




Xa. - {Y(to) +- rei(@ + S)

on-negative
and non-posltive values of r,'resﬁect je obvlously

&
have aXa = A U Aygoalso XN Clh = A

Diagram 2: The circle Ch, R e (50 , R,]
-2

Recall we had wriltten I, = (Tl,TQ); we now set I: = (tO,TEJ,

I; = ('rl,to)° For t, € Iys © € (tl’TE) we have

Bm(y(t) ~ v(s))] = jElJm yi(t)as = jgl]v'(t)] gin 6(t)ds

< (gin G‘)U(Y(tl).- Y(t)),




and likewlse
Re(v(t) - y(tl)) > {cos a)u(Y(tl), y(tl)). Therefore,

[om(y(t) - v(tqy))]
S .
Re(v(t) ~ v(t,))

x) 0 tan o

for t), € I, € (£,7,). Setting t = t, in x) gives I; c xi;
moreover, 1f T € I;, replace t; by T and t by to to obtain

I; c X; . Now 1t is clear (gee Diagram 2) hat ag R decreages
on (0,3/2] the functionsg arg l;(R) inecrease gtrictly, and the
functlons arg X%(R) decrease strictly, for x = 1,2, wilth ﬁ/?
the 1limlt for all fouf as R = 0, Slnce

arg(\](Ry)) = (% ~ a)
arg(35(Ry)) = 3(F + a)

(see Diagram 3a)) we must have unique numerical golutilons
1 . . .
Rys By In (3 Ros Ry) of the equations
: + s " +
x1) arg Ay (Ry) = " /U, arg A (Ry) = L - 2q.
Thesge can be golved. using elemenfary geometric methods (par-

ticularly the law of sines). For the first equation this glves

Ry - Ry Ry

gin o =

Sin(% - (X.)

(see Diagram 3b) and for the second we obtain




, Ry - Ry, i R,
' m
sin(§ - 5a) sin(§-+ o)

(see Dilagram 3c), Hence the desired solutions (in terms of

RO) are
) . Co8 o V
| xi1) Ry = cog -+ sin o Ry
. _ COB o
Ry = COR @ + C08 by Ry



Diagram 3: The c

1

C cl
R,’

1

c

3

1
H

R

reles

2




i

o
.

Sp far we have only used the fact that a'&f-

conclude from xii) that by initially ChDDSihgf

D

022
This degree of closeness, once o is fixed, 1s

shall have Rl, R, ag close as we llke to R

in
our gubsequent choice of Rys 80 long as Dy (sojﬁ

0 L
(For our present choice of g we have R, > (.99)R,

L
R, < (1.01) 5 Rye)

+ :
lll(Rl) - 1R,| and ]k;(Rg) - iRO]; these are obvious
respectively, to ]lg(Rl)— 1R, | and lli(Ra) - iRol.: ;
congtruct the segment Joining 1R, and li(Rl) in diagram 3
the segment joining iR, and KE(RE) In dlagram 3c¢) théh t

of glnes can be applied. This glves

+ _ cog 2a _ -~ cog 20

x111) I}‘l(Rl).- iROl T Cos o Ry = 258 T+ sinm g Fo
+ _ 8in 6a _ sin 60

,KQ(RE) - iROl T co8 o Ry = cog o + co8 5q RO

Note that the remarks followlng xil)} also apply here.

Set cp(W) = 1R ~ 1Re™; then C'_ has the parameterization

Cf = {cR(w) : 0= w<2r}, Now evidently

' 1
xiv) arg cR(w) = W,

also w i# the direction angle of the tangent to cL at CR(W),

We may wrilte




At (R) = ep(w) :w

g <W <w]

+ +-
for some values Wys W3 evidently lQ(R) = CR(WQ)’ kl(R) = C

As we have geen, the relatlon

%-- 20 2 arg kI(R) > arg A »(R) = A

"

holds for‘R2 = R < Rl’ and therefore

xv) T - 4o = Wy >y =/,

Now let v,, v, be distinet points of IZ; by x) we have

Im(y, - Yy)
Re{yy ~ vq)

< tan a,

8o that the direction angle of the segment YlY 1s elther e

or ¢ -+ 7 for some angle e with [e] < @, If Y, and Y, are both

points of the same C{, then Y1, ¥, € AT(R)
xn et
Q

) (8ince Ir < X, and

A+(R))3 hence by the Mean Value Theorem % point

CR(W ) € AT(R) (between Yy and Y,) such that the tangent to

c' at CR(w } 18 parallel to Ylyg. Comparison of dlrection
angles showg thls %o be impossible; hence for R € [Ra,Rl] the
cirecle (¢

r ¢ontains at mogt one point of I:. Similar reasoning

- shows cﬁ contains at most one point of I;. But y(to) lies in

the Interior Dp of Cp, 80 1t isn't hard to mee that T n C§
= I, N C; contalns at least two points, Thus Cf N I+ is &

8ingle point Y+(R) (t ), and C n I 1s a single point

(R) = y(t_)3 moreover the intersection of 1, and DR is the arc




xvi)  (Y_(R), Y (R))

Also, suppose R, = R' > R" > R,3 then we claim

t', t" are defined by

Y(6') = v (R')3 v(¢") = Y, (RY).

The proof 4s quite gimple: If t" > &' thep by x)

Y(t") = y(t') + re® where |e| <o and r > 0. At ess

of CR' the direction angies w + ¢ for 7T < p < QF.are

for Cﬁ. By xv) we see then bthat e 18 an exterior'dire

all points of AT(R'), including y(t') = v, (R')3 thus y

exterior to CR; contradlction. The case t" = ! is .

trivially execluded,

1R - 1Rel¥

It

Now, CR(W)

i

IR - iR(cos w + 1 sin w)

= 3R(1 - cog w) + R gin w

and so, for R € [RE,le, the derivative

d o _ ,
. g Re R(w) = CO® W

is gtrictly negative on AT(R) = {eg(w) twy, <w < Wy} by vai"'

It followse that

xvil) Re K{(R) = Inf {Re z : z € A+(R)}

i

Re KZ(R) sup {Re =z :‘z € A+(R)}




By symmetry we algo see that

xvii)t Re -

5(R)

Re XE(R)

=

- Re

ey

~ Re

kI(R) = sup {Re z t z € AT(R)}

Il

\p(R) = Inf (Re %z 1 2z 6 AT(R)).

Now xvil), together with 1il) implies that

r(y(tg)s v, (R)))

R(¥(ts), v, (Ry))

Similarly, by (xviti)!,

M(Y_(Ry), ¥(t,))

H(Y_,(Re): Y(to))

Therefore, using x1lil), we

—

u(Jﬁl)

n

= m(Re (¥ (ty), v, (R, )))

Re Y+(Rl)
ok
Re kl(Rl)

+
[

i

(Ry) ~ 1R,| cos «

m(Re(Y(to), Y+(RE))) sec q

—

Re Y+(R2)-Sec o

£ Re lg(Re)'sec o

+
= ]xé(Rl) ~ 1R,| cos @
= ]}i(Rl) - 1R, cos «
- . . -
= 1;1(32) = 1Ry = \S(Ry) - iR, |.
obtailn

uY_(Ry), v, (R,))

RO (R Ds Y(65)) + nlv(sy), v, (R)))

(continued)




23] (R) - 1R,| cos o =

= 2[35(Ry) - 1R, |

2 gin 6o R
cog o + cog ha "0 °

Iet ds now define

u(K)

[(2 cos 20, cos G)
coB8 o + 8ln o

Since by 11) we have u(Jﬁ ) = 2R,
0

sec o, 1t folloWSgth

2 gin 6o

xviii) _iul.z 1 [ 2 cog 20 cos a) B (

RO) 2 cog o + s8ln «

Observe that hm 13 Independent of R
>
ha 97 ).

O'

Now we may write

b

) .
K = U%%f'Dﬁ ynT=( U ¢ nrT

R
2 R1>R>R2 :

= U {y_(®), v,(R)} =KX UK,

. _
where K~ = {y(R) | R, >R > R2}. It is clear that

cos O + cos 5&

(For our preseﬂt-a

R

U
»R>R

(¢t nrm)




xix) X N I: =xt, kn I =K~

On the other hand, if t7, t3, t5, t € I, are such that
-
),

Y(tK

= Y*(RK): k =1,2,

- - : + +
1 < t2 < t, < t2 < §

then we have % 0 1 (see paragraph following xvi);

80 that

K= (v(67), v(£7)) « (v(£3), v(t}))
= (v(t3), ¥(83)) U (¥(e), v(&])).

From xlx) we see that

>
I

Diagram U4: The set K

I
-




han a single point of Iz}}hénfé

the pairing (R,Y (R)) defines s

of K+, for RE'

bljection of. oncretely, we have bijections

'(E) = jEly‘(t)]dt for E € @

d go

IO

Therefore

af

for Borel function ﬁlo Also, if“gﬁ(t) exigts, then

-1y
80 doeg gig%%—al-

(m) on I, the measures |1 and m |

continuous. In particular gﬁ'exists,

afx



i/ ~ 1
%%(t) =4’“}§(t) =/hf'(t)l

whenever ¥'(t) exists.

Set h =—§% o y"l‘on I'; and define a measure m on Br by
‘m(B) = [ ndu B € B .,
B
Then by xx)

R(y(E)) = dn o v lygu = [ 4
m(y(E)) Iy(E)(dﬁ YT )dp ,YEE [

= m(E) for £ € B, .

Thus also the measure spaces (I,m) and (T,W) are equivalent via
Y, and we have
xx)' § (gev)am = [ g ai
E Y(F)

together with the corresponding formula

xet)t 9 §it = Q%.,

for Borel functions g on I', and sets F c 8 Note also that

I‘
%% exists a.e. (p), and
de ]
xcdl) grlv(6) = h(y(t)) = —2—
i Iyt (t)]

Now suppose we are glven some Yo In K = xkt K3 we know

then that Y, eduals Y+(R) oy Y (R) for some R €Y = (RE’R1)°




€ Cé we must have

v, ~ 1R|® = B?

fact may be solved explicitly to

[

Thug :+ and r_ are the restrictions to K+

of the function

r(¢) = 16178 om .

< 2la(8)] 1Y (5)] cos B(%) du y(5) - dm y'(t
2 ngy(t) e

dly(t)]
das




when we conslder the
functlons inima, and g{t) 1s the angle betwée

Also, from xxi)' and xxii)

dr d ~
2v(1)) = —2(y(8)) Wiy (e))

dp df dp

which gives, together with xxiii) above,

dr ‘
Xx1v) Eaicy(t) - ffji)l(§§s B(t)

dr
We shsall

K™3 also

is independent of RO.

We recall the parameterization cp(w) for cl,

Using xlv) and xv) we see that

arg l{(R) = sup {arg z : z € AT(R))

arg Mp(R) = inf {arg z : z € AT(R)},

R € [RE’Rl] it follows by x1) that

+(R2) z arg Y(t) =z arg RZ(R

XXV ) g-— 20 = arg kl

for t € ?”l(K+). Similarly

xxv)' T+ 20 % arg y(t) s Su.

L" L

1)

4




Jm ¥(t) = |y(t)] sin (arg y(t))
Smyt(t) = |yr(t)] sin 8(t)

in conjunction with the above, to obtain the desired estim
dr

. -+
Let us begin with T

ates,

+ If8(t) >0, t € vy L(kT), then
B(t) = [arg Y(6)] - 8(t) satisfies

§

%-EOL?BU:)EE-G

by xxv). Therefore cog B(t) = cos(%-- 20) = 8in 2¢ and from

xx1l) we obtain

dr, _ Ay(e)] 1 dm v (s (Ivgt)[ )2
g (v(8) = ¥ (t)°o8 B(E) - 2] my (e

—~ .._cos B(t) 1 sin 8(t)
~ eln(arg Y(t)) T 2 sing(arg Y(t);

> sin 2a 1 _sin g
sin(% - 2q) < sing(%

o, for t €y ligt
On the other hand, ir 6(

t) <0 for some t ¢ v"l(K+), then
- o = g(t) zLL, and

GV

dr v(t cos (% - o) |
T(x(5)) 2 ‘{E(;ﬁ?)—cos B(t) = 2222

sin(%-m 2a.)

f
- |
g8ln o ,
= . s o

Cos 25 sln ¢




for £ € ﬂI (comparé"i«’r_ith_:the- -__é.b’ove), But gince-x







dr
XXViii) o> ldu

K+' R

t .

pid '

s Ry

Thisg meang that

100

(continued)




Therefore

m(r+(K+

and the same

80 that alSDJ 

aggume that the lo g,

the coordinate transform




Moreover, Ré &

becauge 0 € Cé

Ayl thereforeﬁ(s

aight iline for each R € v, also

fﬁiare all perpendicular to

- for the elementary properties .

of F.L.T.'s b'é‘in
of lines perpend:
Iet 7, : q;(r)'.j;;.-A
tma(ﬂnﬂm)pént
for any z € W§ i
xax11) W;l(kéj

Set 21%_ = (21

Cil2m) )

Thus
XXXIV) ¥ (21E,) ={A |

Now ¥ (21E,) < w(AI)f¢ _?_gﬁdf£he same argument used before
{Rudin [/5] theorem'Bgﬁﬁ

) shows that

m(¥(2355)) = [ |y'lan > o
Bt 05

(the integral ig pogltive because m(EO) > 0, and the derivative

of an F.L,T, 18 nowhere vanlshing on €¢). Using xxxiv),



xxxiil), and xxx

position 4.6, We have'thereby proven

6.3. Theorem' Suppose Y is anzinJective functlon In ACY[

T =vy[0,1], and u is arcleng h_measure on T'. Then for eac°

S © T with u(g) > o one can rind a line A c ¢, & subset 'E £
with m(E) > o, and a map. y hblbmorphic in a neighborhood’ © T
A

such that 7, (E) C'w(S_JZ_Moreover (ma¥)~ (n) has pr301991

two polntg of T for each q E E.

6.4. Corollary: Let'(T;p).pe a8 in Theorem 6.3. Then the
K-R result holds for (T,u).




§7. A Local Prope

Tele It is a ra@a

re. .of the problem, and for

treatment in the tibn, that virtually af

relevant analysié_ nside a single, arbitr

small disc in the. Points of cpncentf@tf_

pseudocontinuity, 1 Qﬁs employlng the faﬁil

lfconﬁiderations of (T ,u);

exception to thié 1 edness of T which is requ1 el

ulus, which In turn was used

demonstrate (Iemma- holomorphic functions in & nei

borhood of T presery 88 perturbations.

“

But we notiﬁ

”Eétrength of Lemma 4,4 ié“ﬁdt

required, asg it ﬁa::p :obtain The orem 6.3 using only

onsﬁw of . 1In fact, } wasg con~

:n within the 7, L.T.'s. Recall:

coordinates for a, R, at

-18(t,) 0 .

o se(t)
= 7" :!ROE:




The map ¥ of The
satisfy 1) for some

Such a map § willl sti]

even on unbounded T, for we

the Hilbert Resblve enﬁify (also used in proofi'f

ScT, uis) » O.t

from a subset 6ﬁ &

Finally, letHHS'

and subset & of A we 

disc O. =T (z),_'

Jection p, 1 € = A (w—,\ is pA' restricted 6o §(8)), we still

Therefore if we consilder orthogonal pro

have

1) (A1) 7HR) € D o




These propertiesoﬁ

¥ A,E glven by Theore e can now substantlate

asgertion that tﬁé?f involves only local prop

of (T,u).

7T.2. Theorem: Suppose a 3for v - almost all zZ € r We

find a neighborhoo':r

_n”the & Subspaoe topology on

such that

)

njéotive map Y € ACy (I)

b)

(i) 1s equlvalent to the

Then the K-R result;hﬁi_ﬁ

Proof: Let I'! bé'tﬁéo_ on’of z €T for which one can

find a neighborhood7f':asrabove.- Subspaces of € are Lindelof}f

therefore one can. find a

¢ I

ountable coliection zl,z

2, LI
such that T'' c U Pz.fofSuPPDSe now that S < Br with v(3) > O
k=1 “k

for gsome k, Alsgo let y

Ve be an injective function in ACY(I)

guch that T = Yk(I)’ and let “k be arclength measure deflned:f

with respect to ¥, on y (I) : Then pk(s ) » 0 by b) and we mayaim

apply the results of §6 to the space (P pk). If I, is definedf

O g
for Yy a8 ln Definltion 6 1, then there 1s a Hk“concentration e

polnt z, = $K(t0) for Sy lying simultaneously in vy, ( I,) and

the interior of T . We choose a dise D, =D, (z.)
Zx RO RO 0 Gl
that T N 5§ © T, and apply Theorem 6.3 to (T,p). This glves

guch




a map | holomorphic 1 a neighborhood of Ty, togethé“

line A and subset Eeo _Lsuch that

1) m(m) > af_i .

2) TiE) ¢(s@),

3) (WAw) (n) consists of two polnts of T,

Py
for each n E E

(WA ! w(TZ } = A isrpegpehdicular projection).
k - .

Now by the discussion preceding this theorem we may
1.
aggume Y(z) = ot g where , lieg in Dy \F . Then § is
- Co 0 Ro " 2y
also holomorphic in a neighborhood of T'. Moreover, if
%k : P(T) = A is perpendicular projection defined on $(T), then

Ta = Dol ” ), and by ii) ‘above we have for each n € R,
TEN

(§k¢)~l(ﬂ) < (pp¥) 7 (m) ﬁﬁo-

It follows that (¥,4)7'(n) €T, and hence that (i\y)~1(n)
' k

= (mpt) (), 1 € E. In particular (Tp¥)"*(n) 1s finite for

each m € E, and thus we have shown that the V¥, A, E chosen for
(rk’”k) also satlsfy the hypotheses of Proposition 4.6 for

(T,u). This completes the proof., =

7.3, Cl Curves: As a concrete example of what can be done

with thils result, let us consider the following situation:

Agsume that I' = y(I), where Y is a complex valued Cl function




then evidently U is open inim and therefore U is the countable

union of open intervals Uk Algp we sgee that

R (v.(Xy) ) = u(F) + u( v(X5)) + n(v{o,1})

and therefore p(P\U)

S ¢+ s 0

The restrictipns gk = Y!Uk are homeomorphic, for k = 1,2
To prove this 1t evidently suffices to show that v(G) is open,
where G 1s any open subset of U_. First, I\G is compact and
therefore so is Y(I\G); thus T\Y(I\G) is open in T. But
because G < U we have v(G) N F = ¢ and therefore y*l(y(G))

It follows that v(ING) = I\y(G) and so v(G) = T\v(I\g) is open
as degired,

-

Now choose z € v(U); we claim there ig a nelghborhood r,

of z satisfying the hypotheses of Theorem 7.2, Certainly there

L]




is a unique k, aﬁd¥ﬁ éﬂU£, with v(t) = z.
interval containingfiﬂﬁith I, = Is 10851 < Uk._

‘by the above. Also, if we let ¢t = t(x) = (82

then y(X) = Y(t(x)) :l.S :Ln A%(I): with T = ?(I

we have

'.fv_l(s)l.?_'-__'(._#).ldx Il IY' (t)]at

length measure G on T ~dinduced by Y is equilvalent to u

‘(But thils i1s obvious anyway, since all we!

ve done is ma

change of parameter). Thus T, has all the desired pr pe

gince z wasg taken arbltrarily from Y(U), and p(r\Y(U)_:

the K-R result for (T',u) follows by Theorem 7.2,

7 3., Kuroda Hypothesigs:

of the Kato-Rosenblum Theorem 1.1 that the hypothesis A2

=T € Jl may be repl&ced by a weaker requirement ; namely,

(AE - g)"l - ( g) be trace class for some (and hence?all

¢ € p(Al) n p(A )+ Thus 1s the so-called Kuroda Hypothesi_ fo

the perturbation problem. We would like o know whether an

analogous modification can be made In the statement of 7. l

More specifically, given (T,p) as 1in 7.1, and normal
operators N, N, with o(N;} v o{N;}) © T, such that




for some (g N,),*

(N )_U_p(
multipliclty function gf: are edqual a.e, (pjgi 

may we assert thatjfhe

" Tet us

u(s) > 0. As we sawiin the proof of 7.1, there is a po
zo £ T, a llne A, and

;~sup§et E of A, n(E) > 0, such tha

w;l(“) c §(s) where &(z 'Ewtfzz? and T, ¢(T) - A ;g

orthogonal pTOJection; alsd (wAW) 1(n) is a finite Sefwfhr
each m € X, i i

Now w = z, - C 1ies in the resolvent set of N - g

0
1 =1,2, and therefore l-lies in the resolvent sget of(N _]Cdj
It followeg that the function o

() = T"%*“éfj;;i

ig holomorphic in a néighbbrhood of o((N; _‘@0)-1) U o((, ”:§6 f: !
and by Lemma 4.4 PN O

T, - 6™ - Ty - ¢)h)

18 trace class. But, for K = 1,2,

Ty - 6™ = (g - 6)7H - W - ¢ )

and so

$(N,) - y(N,) 1s trace class, even though nothing -~ . =




about N, - leiéfgi§én - The remainder of the proof proceed_

along well established lines- the multiplicity functions.-_'

WA(W(NI)), Wh(w(NQ)) must be equal a.e. (m) in A while

finiteness of (wl$) (n) for m € E gives

wA<¢<Nl)) mw(mg)) nE

just as in the'broﬁf“of 4.6. The answer to our question, then,

is an affirmative one.




[1]

[2]
73]
[4]
[5]
[61]
[7]
[8]
9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

Abrahamse;éﬁdFKréite: "The Spectral Multipliclty of s ]
Multiplication Operator", Indiana University Mathematics
Journal ; Vpl?fEEQ No.9 (1973)o RO M
Ahlfors,'L;V; 'féoﬁplex Analygis, 2nd Ed. (1966)3
McGraw H111,:

Berg, I.D.: "An Extension of the Weyl-von Neumann Theoren
to Normal Operators', Trans. Amer, Math. Soc. 160,

365-371 (1971). .

Birman, M,S,: "Existence Conditlong for Wave Operatora",
Translations Amer. Math. Soc. 54, 91-118 (1966),

Dixmier, J.: Les algebres d'operateurs dang 1'espace
hilbertien, Paris, Genthler Viliarg, 1957,

Folag, C, and Sz-Nagy, B.: Harmonic Analysis of Operators
on Hilbert Space (1970) A Kademial Kiado - Budapest.

Hille, E. and Phillips, R.S.: Functional Analysls and Semi~-
roups, Revised Ed; Providence, Amer. Math. &oc. 1957.

Hoffman, K.: Banach Spaces of Analytic Functiong,
Prentlce Hall 1662,

Kato, T.: Perturbation Theory for Tinear Operators,
2nd Ed, 1976, Springer-Verlag, Beriin Heldelberg.

Kragnosel'skil and Rutickil: Convex Functions and Orlicz

Spaces, Groningen, P. NoordhofT, LO61.

Kuroda, S,T.: "On a Theorem of Weyl-von Neumann", Proc.
Japan Acad. 34 11-15 (1958).

Privalov, I.I.: Randelgenschaften Analytischer Functionen,
Deutacher Verlag der Wlggenschaften, Berlin 1050,

Reed, M. and Simon, B.: Methods of Modern Mathematical
Physles, Vol. I; Academic Press 1972,

Rudin, W.: Functional Analysls; 1973, McGraw-H11l, Inc.

Rudln, W.: Real and Complex Analysis; 2nd Ed., 1974,
MceGraw-Hil11, Inc.

Volculescu, D.: "Some Results on Norm-Ideal Perturbations
of Hllbert Space Operators"; Preprint Serles in Mathematics,
No, 341978, :




[17]
[18]

[19]

[20]

[2]

90.

Volght, J.: "Stdrung fir Kommutative m-Tupel von
selbstad junglerten Operatoren™. Universitit Munchen 1974,

von Neumann, J.: "Charskterisierung des Spectrumg eines
Integraloperators". Actualités Sei. Ind. 229, 1-20 (1935).

Weyl, H.t "Uber Beschrankte quadratigche Formen, deren
Differenz Vollstetig inst", Rend. Circ. Mat. Palermo 27,

- 373-392 (1909)

Birman, M.S., and Solomyak : ¥Stieltjes Double Integral Operators®,
from Tovles in Mathematical Physies; vol. I; M.S. Birman, Ed, , Consultants
Bureau, New Iork (16&7)

Sikonia, W:"The von-Neumann converse of Weyl's theorem" University of
Colorado, Department of Math. 1971




