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Abstract of the Dissertatlion
THE ASYMPTOTIC EXPANSION FOR THE TRACE OF

THE HEAT KERNEL ON A GENERAIJZED SURFACE OF REVOLUTION
by
Ping~Charng Luse

"Doctor of Phililosophy

| in | |
» ' Mathematics '

State Unlversity of Neﬁ York at Stony Brook
| 1979

In thig dissertation we construct a parametrix for
the heat kernei (or the fundamental solution of the ﬁéat
equation) on a generalized surface of revolutlon. Uslng
the parametrix we study the.relation between the coeffi-
cilents of the asymptotic expanglon for the trace of the heat
kernel on the‘generalized surface of revolution ahd the cor-
responding coefficlents on the base of the gurface of revolu- - ...
tion., One important result is that each of the former co-
efficlents 1s a linear combination of the lﬁtter coefflicients

We algo point out why this resgult 18 not trivial 1f we start

with a parametrix in the standarxrd form.
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INTRODUCTION

. Glven N, an-n—dimehsional, smooth cbmpaét Riemannlan
menifold without boundary, let A be:the Laplacian assoclated

with metric tensor g = (gid) on Nt

-(o 1) A'=- g 1 9 gideet g ,3-
* ij=1 Jdet g axi_ _SEE

1 =(gij). The heat operator A + %E-is defined for

where g~
all functions in C”(NxR'). It hae the following physical in-
ﬁerpretationx Let an Initial temperatufe distribution u(x,0)
on N be given. Here x dgnotes position and t denotes time.

3

As the heat flows, u = u(x,t) changes 1n such a way as to
gatisfy the heat equation Au + %% = 0. The heat kernel‘E(x,y,t)
on N (the fundamental solution of the heat equation on N) also

has & phyéical interpretatioﬁ: if we.are glven at a point x an

instantanelous unit heat source when t = 0, E(x,y,t) wlll repre-

sent the temperature at y at time t. Let O = Ay S Ay S...5

- etc.t « be the spectrum of A, (the set of all the elgenvalues

of A). If {ﬁi]* are the elgenfunctlions of A corr85ponding to

{li}, we have L R |

. oMb

(0.2) E(XJYJt)g:: Z 8 ¢i(x)¢i(y)-°
1=0 |

The trace (that 1s E(x,x,t)) hag an asymptotic expansioh given

by Minakshisundran-Pleijei [l]

*{¢i(x)} are chosen to be gn“orthohprgﬁ} basis for c®(N).

1




_ o ~Mb o, - !21.
'(0.3). = e '¢i(x) ~ {(Y4rt) (Uo(x,x)
- 4=0 =0, . _

+ Ul(x,X)t‘ + UQ(K,X) t2+¢o - ) .

The [Ui] are Riemannian invarlants, in fact, they are functions
of the curvaeture tensor and 1ts covariant derivatives. Thus
they provide us wlth a measurements of the local derivation.

from flatness for N.

If we integrate (0.3) with respect to dx, the volume form

of N, we will obtain an asymptotic expansion:

. - it - % o 2
(0.4) S e ~ (Hrt) ey + 016 + GatT+eee).
: 1=0 t=0,

Thege cpefflclients {Gi} have geometrlc meaning; for example
Gg é'le(N,g) for'arb;trafy n, Gy = %—x(M) when n = 2 (%(M) 1s
the Euler charscteristic of M). However, 1t 1s very difficult
to calculate the coefficients. Only the first few of them
have been calculated for a general manifold N'[l]. For some

"special manifolds, such as compact symmetric spaces of rank one,

explicit formulag for the coefficlents have been found by

Cahn and Wolf [2].

More generally, we can extend the definition of the heat

J

operator to forms. Consider the space AY of J-forms on Nj we

can deflne the operator jA = djulbj +.6J+ldj : Aq - AJ, where
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ﬁj ig  the exterilor derivative a.ndﬁ‘j is thé formal adjoint

of dJ with respect to the metriec g. Morecover, denote the
eigenvalues and eigenforms of A on N by [Jki}, {j¢i} respective-
- ly. ILet JE(x;y,t) be the heat kernel of J-fgrms_op N. Then we

have [8]

A B t) = = "jki (x) ® - '
(0.5) 3 (X;X; ) = i e | J¢i X) J¢1(X)

| S n |
If we denote index (A) = = (-1)ker b = % (M) we will get. an
index theorem [8] of A:

(0.6) oy =] Bn(x;A)dvol
M .
| "
where B (x,A) = zo(~1)JBn(x,jA).

A1l these show that 1t is important to study the coefficients.
For further discussion of the heat equation proof of the
,index'theorem‘see [8]. From now on we concentrate on the in-

dividual coefficients Uj‘

As in mathematical induction, L1f we want to study pro-
perties of manifolds of arbitrary finlte dimension, we should

study the propertles in the lowest dimension where these pro-

pertles make sénseo Then we study how these properties change
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between manifolds of successlive dlmensions. The heat kernel
on an interval I is well-known, 8o we shall try to get in-
formation about the heat kernel of a manifold M x I in terms
of the heat kernel of the manifold M,

In order to make the setting simpler, let us suppose that
M 18 an n-dimenslonal manlfold without boundary. Let the higher
dimensional manifold be M X I, where I is an bpen interval on
R. If we adopt the product metric on M g I we will come to
the trivial result: the asymptotic expansion for the trace
of heat kernel on M x I is equal to the product of the cor-
responding asymptotlic expansions on M and I respectively [1].
‘Therefore it is natural to choose a new metric on M x I other
than the product one. The easiest‘metric which 1s sultable
for our purpose is r2g + dr ® dr where g is the metrlc on M.

and r is the parameter on I. A more general one is

h2(r)g + dr ® dr where h(r) :+ I - RT 1s a smooth posltive

function. In [4] Cheeger derived the heat kernel on M X I . é

wlth metric r2g + dr ® dr In the followlng form: ) | E
_ . l-n r? + rg g o

) Erpmyst) = 3 (mp) T ogret U1, (0 ee )

where I (z) is the modified Bessel function of order

VysVy = Jrh"l <y k As on page 1, [xi} denote elgenvalues
e = (vy8)
of the Laplaclan on M& Since I (z ~ e 3 S

-—_—HJ
zme JZTZ 8=0 (-28)°
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. |
: : o
the possibility of summing up these asymptotic expansions ‘ l

to give an asymptotic expansion of the heat kernel E suggests -
r, T :
%tg for z In the above asymptotle
' . or.r : . ‘_w

expanslon we are led to a factor in:e —%Eg in the right hand
m

{tself. If we substitute

slde of the expansion. It is enéour&ging for us to f£ind that /i

I‘§+I‘§
' r.r -
1f we multiply ;¢ 1 2 ,1th the term %E e - in (0.4)
/Fe 21 |
(rl-ra)2 i
we get L e +E » which is the heat kernel on R. |

SO
t

=) S ' -
Moreover, Se 1 ¢i(x)¢i(y) represents the heat kernel on M
1=0 ’ '

(see [1]) and v, 18 a function of A,. Both facts suggest that

1 i
it is reasonable for us to expect the following: the summation

of terms containing parts of the asymptotic expansion of
rYr
(12

1 2%

to the heat kernel on the section M.  Therefore somehow (0.4)

Iy

) multiplied by ¢i(x)¢i(y) gives something related

gives a relation between the heat kernels on M x I, I and M - ol

respectively., We wlll see that the asymptotic expansion for

’the trace E will show ug how the coefficients of the asymptotic
~expangion for the trace of the heat kerngi on;M occur in each
‘of the corresgponding ceefflclents on M X I. Motlvated by the
above analysis, we wish to obtain a similar agymptotle

%

expansion for M x I with metric h®(r)g + dr ® dr. Using the

method of separation of varlables we wrlte out the heat kernel

on M x I ast




(0.8) . - E(rl}rQ,x.’y,;t) = iiofi(rl’r.?’t)ﬁi(x)ai(y)'

We then find the asymptotic expangion of fi(rl,ra,t) for

each 1. Here we follow a method of Gelfand and Dikli. But

. one problem afiSes: how can the non-uniform.sequence of
agymptotic expanslons be added to form a new asymptotic ex-—
panéion of the requlred type? The asymptotic expansion of
each f, has dominant term starting from & term contalns

t"%. But the sum has an asymptotic expanéion starting with
t“(n+1)/ 2 where n = dim M, We deal with this by constructing
a parametrix for E and relating the trace of the parametrix
to the sum of the traces of'fi.‘ The construction was mobti-
vated in part by a certaln fbrmal prochuré for "adding" the
agymptotic expansionsof fi iﬂ such a way to obtaln the correct

power of t.

Thié work 1is divided Into six sections and an appendix.

The first sectlon contalns a calculatlon of a formula for

- the Laplacian on M X I in terms of Laplacian on M and deri-

vatives w.r.t. r, the parameter on I. The second section

glves the expresgsion for the heat kérnel on the metric cone,
the cage when h(r) = r. In section three we adopt some results
we need from the paper of Gelfand and Dikil, In sectlon four we
construct a parametrix of the heat kernel of M x I which in
furn ig explolted 1n deriving an asymptotlic expansion in

gection five. The laest sectlon contalns an explanation of




the significance of our approach in thils WDTK; The ap-
ﬁendix 13 a calculatlon deriving a relation between the
determinants of the exponential maps on M X I and M. This
relation i1llustrates the difflcultles in asttemptlng to carry

out & more naive approach to our problem,




h(r 1 0 -
= h(r) By +'hir§‘[Ei’ 37
' ht(r)
.g h{r Ei

(3) IRl =

E.,E,]
r) [ "7

(1..4) <VFiFd,Fk> - Fi<Fj,Fk> + Fj<Fi,Fk> - $k<Fi,Fd>

"“ <[FJ:FK]J Fi>

1 ' ° S

-2 T E.LE>
h{x) Ei J’k7’g

Whefe < >y < >g denote the metrlcs on M x I and M respectlively
and v, ¥V denpte Levi-Civita connections on M x I and M regpec-

tively, Hence

" =
(1‘5) _ <VFiFJ,Fk> = K(-i:)- <VEiEJ’EK>g

Similarly: _
' o h!(r o
(1.6) {VFiFJ: 'a‘i."‘> = - mi(,‘j)' 513

o _ hi(r
Vg, or 2Ty T BT fag

where aid 18 the Kronecker delta. Moreover:
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I.2, Asymptotic expansion,

| et {Yi} be & sequence of functions which are defined in |
& nelghborhood of X. [Yil is called an esymptotic sequence
Ffor x = x4 in this neighborhood 1r for esch 1 Yi+l‘=-o(Yi)
a8 X = x;. Thls definition is due to Poincare. Let f(x)

be & function which is also defined in this nelghborhood.
Then we say that f£(x) has an asymptotlc expansion in terms

of {Yi} at xo_and write

(1.10) £x) ~ 36y, (x)
‘X""‘XO 1=0

if £(x) = = aiYi(x) + o(¥y) a8 x — x, holds for any N, It
1=0

is eamy %to see that for given {Yi}, the asymptotic expansion

of £(x) at X, 18 unique. We will need the following standard |

regult,

I.2.,1. Theorem: If f£(z) is analytic in - & < 8 <@, 0 <r <D

g = reie and If £(z) ~ 3 2F uniformly in 6 then ' -
' z-0 k=0
‘ [+ . k"’l
1 :
£f1(z) ~ 2k Gy 12

unlformly in any smeller gector
Z-0 k=1 : -

ﬂ@(i(}(,l< e <32 < o

Proof: [Q]s




1ls

It {xi} are eigenvalues of the ILaplaclan A on-a compact
' w =iyt .

Riemannlian menifold, X e 1 iz then analytlc 1n a
' 1=0

sector region as above [1].

St 0 -
1 t 7‘T(a

I.2.2. Corollary: If 32 e ~ o Gyt + GotTH.L)
. 1=0 t=0
o ALt 2. . -3
i n, 2 n Z
then 2 \,e ~ t G~ + (= - 1)t “g, -
1=0 i a0 2 70 z 1

+.0.
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e

I.2.3., Theorem: Suppose F(g) ls the image of f(t) under
the Laplace transformation and F(s) has a half-plane of

convergence. If:

- A _
P(t) ~ Se bt Y (~1<RAASRA 00 o0<ans
( )t—-o y=0 V ChEE )
then
A o r(?\v'l-l) '
Fls) ~ = ¢ T where Rki represents the
oo =0 g Vv . _
real part of li'
Prooft [6],

I1,3. Besgsel funectlions aﬁd Hankel transforms.

The Begsgel equatlon:
(1.11) 25 —R 4z g2+ (2

r.Z 2r
© ("1) ( /E)W .
~has a solution as Jv(z) = rio T (orr+l)

independent solution ig J-v unlegs v 1s an Integer. When v

A secoﬁd

'is an irteger, v = n (positive), I_n(2) = (~1)an(z) where

-4 2m-n
3 n (/2) J_ end J
J_n(Z) = mEn(—l) W 5 i.e., n &l -n are no angeI‘

independent. If the function Yv(z) 18 defined by Yv(z)

_(cos wv)J_(z) - J_ (=)
- A4 -V then
gln vr

1 aJ\J n aj—\)
Yh(z) = iiﬁ-Yv(z) = E‘[a@r‘" (~1) 33_—]v=n,




13

will be the second independent solution of the Bessel
equation of order n. Jv is called the Bessel equatilion of-,
the first kind of order v, Y, 18 called the Bessel equation -
. of the second'kind of brder Vs

Conglder a dlfferentlal equation which differs from the

above one by a gign:

(L.12) z *—'u-’+2%%-(22+v2)6:=0_o

This equation will be transformed into the above one by
changing Z into 1z, Since we are interested in real func-

-
tione of z we choose a splutlon of the form e EVFiJv(iz)
- ° ) 2
. | ‘ E (Z/ )\H‘ r
end denotes it by I, (z). Thus I (z) = 2 Ty

I,(z) 1s called a modified Bessel function of the first

kind. It has the following asymptotic expansion ag z -

(1.13) T (z) ~ o 5 ) e OVRITL (6
V' 'z /277 5=0 (-22)" JFE (2z)°
where
I {vHi+ 3
(VJS) = é{¥($+§33) - 5T < arg z < 3w
or

Iv(z) . e” ; (v,sg . e Zcos (v ) ; fv!sé
Z—o 217 8=0 (-2z) J2rZ g=0 (2z)

in the real case [11].
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If £(r) is & function which is defined on R and
gatigfles appropriate conditions (see [12]) then the con-
ventional Hankel transform F(p) of order v = - & of £(r)

4g defined as:
(114) - Flp) = [0 WpF £(x)3 (pr)ar,

then we have £(r) = [~ Jpr F(p)Jv(rp)dp, which 18 often called
g

Hankel®s inversion theorem, For a more detalled descriptlon

_Bee Zemanlan's Generalized Integral Trans formations [12],




i5
. II The Heat Kernel of a Metric Cone

Basically we follow the presentation of [4] in this
 section. The_fundamental solutioﬁ of thé heat equation
(A + %¥J u =0 [1] on a manifold is called the heat kernel™
on the manifold. When the manifold 1s compact we know that

_ o _kit
the heat kernel can be expressed as X e

10 éi(x)‘bi(y) (1],
where ¢i is the eigenfunction of the Laplaclan on the mani-
fold with elgenvalue ki' Wilth thiS'motiﬁ&tion, foilowing_
the method of separation of varlables, we try to glve an
expression for the heat kernel on M y I with metric

h(r)ag + dr ® dr: .

. o0 N
(2°1) 7 E(rlJI'Q:X:Yit) = izofi(rl’rE’t)‘bi(xMi(y)
where s st1ll represent eigenfunction of A,

When h(r) = r the relation between the Laplacians

A and A is:
_ /9.2 n3d 1
(202) A"f"‘('é‘?) "'i."g'f_‘-F;a—A.
If m = Sn this is just the formula for the Laplacian on

Rn+l, expressed in polar coordlnates where A represents the

intrinsic Laplacian on g™, Moreover if I = R+U[O}, we call
My I the metric cone wlth base M, The metric cone has a

singularlty at r = 0. Now consider the heat kernel of the

’ *
For deflnition see Section IV.
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metric cone. In this case the function fi in the above
expression can be found explicitly in terms of modlfied

Bessel functions as we are deriving now. In fact f; should

‘satisfy
_ O 2 no_ o
(2.3) ,[fﬁgfz) - ;'5§Z'+ Spify(rprs,t) = 0
or .
2 (- 1)+ ) 5
T 2\2 i 9 ,.2
(2.)"') [ara ad N : - - B—E]rl_fi(rl,re,t) = 0
1 1
n | n
2 -2
‘with r$ f.(r,,r,,t) converging to r,” & ag t — 0
1 -ivtyne? ; 2 rl_rE 'S
n n
f? fi(rl,rz,t) converges to O as t = =, f? fi(rl,re,t)

n
converges to 0 as ry = =, r?‘fi(rl,rg,t) remains flnite

as r - 0 [12],

© Now if we let N, = r”+§~%F~'r£uf%

= 1
"'l-r%a H+g
Mu = ry 3;; Y
then we have
- n y B
2 2 B
(2.5) MuiN“irl £y - 5p Ty £y =0

where
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Hankel transformatlion, then
(2.6) - pfU(p,t) - $p Ulpst) = 0

U(p,t) = A(p)~° %

n
o -2
Alp) =] ry 8 Nrip J, (rypldr
Jo 2 Ory-r V1P py AP
therefore
Ap) = 15" Wp I, (rpp)
n.a 2
- ~-p &
(2.7) U(pst) =Ty .\/Ein(I‘ap)e P
7 5
) = [PpT pt
ry fi(rl,re,t) jore NT in(rap)e Jrlp in(rlp)dp
) 12412
n, a1 1 72 r_r
B I S
or
' 2
1-n T+ .
_ 2 1~ HE 17p
(2*8) fi(rl.!rzst) - (rlrz) 'é'f' e ) Ipi(‘-g'r)
Finally, 1n ;Lf2+r2
: : ~5— "ThT
2 1 :
(2.9) E(rlsra.‘x’yst) _izo( 1 2) - BT €
- r.r,
12
. Iui(—§E"0¢i(X)¢i(y)
where ”i (n- 24 Ay 3 {xl] are elgenvalues corresponding

to {841,
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-~
Starting from the above expressglion for the heat kernel,
Cheeger finds an asymptotlc expansion of the trace of E by
calculating the resldue of the Mellin transform of
1%

—— S r.Yy
2 o7 201 (FB), [4].
J=0 M

A more nalve approach ls the followlng: filrst of all
_ r.r
coneglder the asymptotic expansion of each Iu (—%Eg) when
' J

t = 03 we then attempt to add these up to get an asymptotic

expangion for E, The fundamental difficulty which arises in

carrying out this procedure is,‘as mentloned In the Intro-

duction, the legltimacy of the addition. In fact, although

each of the summands has domlnant term with power t% in 1ts : \
|

agymptotic expansion at t = 0, we know that we should have
: . ntl o _
dominant term wilth £ in the expansion of the sum,. We == . . . !
|

do not solve these problems directly for h(r) = r but golve - i

the more general case when h(r) is s smooth positive function.
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III Some Results from a Paper

: by Gel!fand and Dikilil

In a Joint péper'[T], Gel'fand and Dikil studied the
-kernel of the‘resolvent of a Sturm-Liouville -equation which
Includes as a partlcular case the Greents function for any
flxed gself-adjoint boundary conditions. In particular, they

derived an apymptotic expanslion for the trace of the kernel.

IIT.1. Definition: A resolvent for a Sturﬁ—Liouville
equation - ¢" + [u(x) + (lo = 0 1s defiﬁed to be a function
R(x,y3§) such that: _.

a) R 1s continuous In x and y3

b) R is.symmetric in x and y3

¢) R satisfles the differentilal equation as

| of elther x or y when the other i1s kept

fixed and x # y; _
a) i&g(RX—Ry) = 13 where R_ = %ifi Ry = %FB

e) R(x,y3§) converges to zero exponentially

‘a8 § o, x £y,

R(x,y3¢) converges to zero exponentially as § = » means that
R{x,y3¢) converges to zero faster than any power of C-l

a8 c—'w.

Now let us clte some results from [7] that we willl need

later,
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IIT.2. Theorem:

w R,[ul
(3.1) R(x,x38) ~ = —¥
g 1=0 §
whexe ' | (k) (k)
. . 'cc" k k
Rful = 2 = M, ou RO
N=d Kq+aeokp=24-2N 7177 "N P

: | Alng [+Ing=np e oot ng |
Mkl-nk "'T_T--] “'.Tmme‘ e _ b

l‘.'.ﬂﬁ N
k k
L N
» nl -t-ﬂN dnl-..dﬂN
a? -1
Proof: Expand the operator (-~ + u + {) = Into a power
‘ dx
2 _
d -1
. serles in G—-§ + §) :
. ) . dx .
2 2
a -1 a” -
(3.2) - (== +u + §) = s+ §)
( dx? dx2
2 2
i 5 + 0 ued 5 + 0t 4.
ax dx

Find the kernel of the resolvent by means of the geriles

(3.3) R=Ry~Ryo e Ry + Ryo o Ryo We Ry = seo
. d2 _
where R, is the kernel of the resolvent of (—z + )
‘ dx
e-,f{'x‘l'

Here we let R and we let Roo u e Ro<>u Comsss

0" 2T

denotes
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(3.4)  fooof By(xyxg3€) ulxy )Ry(xy5%5,€) ulxgy)...dx -+ o4y

represent u(xi) a8 & Taylor series:

Kk
m(xi—X)i (k.

' )
(3-5) u‘(xi) = 5 S u i (X) _ -
k, =0 Ky e |

and substiltute into (3.3). For more details see [T].

Remark: There is another approach to calculsasting the RL‘
It was proposed In [6] by Dikii and was developed in full:
generallty for arbltrary elllptic pseudo-differential.

operator in [10] by Seeley.

o

IIT.3. Proposiltion: If we denote R(x,x,{) by R

(3.6) ~ RR" + (R!)2 + 4(u + c)R?

= 1+ ¢(§)
where c¢({) is exponentially small as § = o.

Proof: The stralghtforward derlvation makes use of the
properties b), c), e), of the kernel of the resolvent and
the fact that the Wronskilan of a Sturm~Liouville equation 1s

constant,
‘Differentiating the above equatlon gives

III.4. Corollary:

(3.7) = R+ 4(u(x) + {)R* + 2u'(x) = 0
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III,B; Proposgltion:

(3.8) Ry =%, Ry == fu
_ =1 a1
My =2 2 BB - I ORRb ,
2 s B ,
- E RRee 2 Rk
R! L g _ yrr - L uR

LHL T Y i L
Proof: Substitute (3.1) into (3.6), (3.7).

I1I.6. Proposition:

(3.9) Sz R ul =~ (&~ 3R, [u]

Where we view u,ut,u" ag independent variables and %E R,
means taking partlal derlvatlve of RL wlth respect to u,

for example %E-Buu" = 3u",

Proofi By iInductilon on making use of (3.8).
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IV The Construction of a Parametrix for the
Heat Xernel on the Generalized Surfaces

pf Revolutlon

[ 4 .

Iet us recall the definition of a fundamental golution

of the heat equation on a Rlemannian manifol¢.

Iv.l. Definition: A fundamental solutlon of the heat
equation on & smooth Riemannilan menifold N is defined as a

function F on N X N X Ri which gatisfiles the following:

(1) F 1s ¢¥ in the three variables, C° in-
the second variable, Cﬁ:L In the third varilable.
(11) (8, + %EJF = 0, Here A, 1s the Laplacian
wlth respect to the second variable,

(111) 1im F(x,*,t) = b, for any x € N, **
=0

Remark: When N 1s compact without boundary, or when more
generally N 1s & complete noncompact manifold with so called
bopunded geometry, the fundamental solutlion 1s unlque and can

be constructed by the parametrix methodj see [1] [3]. In this

case we will call the unique fundamental solution the heat
kernel. As a consequencé.of the constructlon, thé‘properties
of the héat kernel at the diagonal are determined by those
pf a sufficlently good parametrix.r The parametrix In turn,
1s determined by the local geometry at the dlagonal. Thus

for example, by studylng a parametrix on an open set U wilth

see Deflnltlion IV,2.

or R,, qx




o

some Riemannian metric, we obtain the behaviorer of the
- pointwise trace g(x,x,t) (x € U) if the fundamental solu-
tion for any compact Riemannlan manifold N which contalns

.U a8 an open submanifald

If M and N are two compact Rlemannian manifolds and
M X N is the product menifold with the product metric, then
the heat kernel of M X N 18 just the product of the kernels
of‘M and N. Moreover if E® denotes the heat kernel of M

with metric g and a 18 a constant, we ‘have Eag(x,y,t)
n :

a E.Eg(x,y,amlt) [1], Now consider M X I with metric

hz(r)g + dr ® dr, for the time being lettlng h = const. The

heat kernel In thls case lsi’
. 2 p W A
(3.1) L em At ™ 3 e ™ o (x)e,(v)
- NOTE 1=0

where>¢i(x), \; St1ll represent the eigenfunction and eigen-
value of the Laplaclan on (M,g). Comparing thils with ex~

“

presgion (2.1), we are led to write:

(ri-r, 2
n n 1-2)
(4.2) = % b7 2 (xn" % (rye”  F
: 2JyT 1=0 ]
5 ¢ oo A -3
* % 3(rarps hy )y (x), (y)

ag a plausible form for a parametrix of the heat kernel on
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the generalized surface of revolutlon M X I wlth metric

he(r)g + dr ® dr. Before we show thét this does represent
an appropriate form for a parametrix we would like to make
8 remark and recall the definltlon of a parametrix for the

heat operator.

Remark: From the standard point of view a parametrix of the
heat kernel on the generalized surface of revolution should

have the fpllowlng form:

1 L o
(1'[".3) (:/—ll__;;__:) a (uo + ult + uat +o.a)

where the phase function p = diat((rl,x); (rz,y))a In our
c&se, the phase function 18 equal to the distance function
only when h = const. We wlll explaln why theAstandard form

(4.3) i not useful for our calculation [Section VI].

IV,.2. Definition: We call H a parametrix of [ | =4 % %E'
if 1t satisfies: |

(4) H €c"(N x N x R}),
(11) |~|H can be extended to become a function
0( '

in C"(N X N X R+):

(111) 1im H(x,*,t) = &, for all x € N,
) 0 X :

In the definlition, R+ denotes the non-negatlve real numbers,

RI denotes the posltive reals and 6, denotes the Dirac func-
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tion st the point x.

We now apply the heat operator [:12 = Ay + gf to the

expregsion (4,2) with respect to the second variable (r2,y),

' Gollect those terms with the same power of t and set the

regulting expressiong equal to O. In particular, by setting *

i
the coefficient of gd-2 equal to zero, we get:

(BB)  (uy(r,) L ——)e (5—~5 Pa (i, ony) TR
- . U. I' - - - — r _r .
o o
: , d li(h(rg)h (rg) - Q(hl(rz) )
G, ~ [ - G- - G
+ 46y - (ry - xp) ot h (v )1 () 42

G, ', - ( ) = 0,
h(rl)ha(rl) ory J-2 @frlihirei %-3

where J 2 0 G q =G 5 = G q = 0.

-1
' n n h'(r)® . n n'(r M

(.5) ui(r)z"e""(?"l):z%;;‘“hﬁ'hr e

We can then splve for Gj succegsglvely: éo = const. Here, in

order to satisfy the third conditlon of definition IV. 2., we

should choose GO =1,

1 2 . i

The lower limlt 18 go chosen because we want to avold the

Bingularities which arise when ry = Yo, if we had chogsen any




other lower 1limit,
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Moreover Gl i1s unique when we choose

the fixed lower limit.

’ r
1’-.. G s s A = 1 2 2
(%.7) e(r; Tosdy) EE;;:;;}?'(frl uy (r)dr)
A
1
fr *)4x) BETRTE,T
———**u*j; f i(r)dr - ;**ii__jz(ui(rk) + ui(ra))
( ) (rl_r2) '
a
1
+ % B(x, Jh(Y,)
o 1,1 % ) 3
(4.8) Gy(rysrps M) = 57 (—I:EE-Irl uy (xr)ar + EIflﬁh(rE))
12 3 T2 2
* (r,-x,)° fr Uy (x)dr - m (_frl wy (r)dr)
6
+ w_(ui(rl) + ui(rg))
ui(rl) +uy(ry) x5 o 11 .
- . u d —
(rlfra)SV frl 1 (x)dr (rymmy)S BOF )
: xr
. Iri ui(r)dr
- 3 I E(r)dr S 3 jre "(r)dr
(rl"rg) l—rz) l
- M [ug (ry) + uy(x,)1e
2 (T )R(T, [MatT1 1\ X/ de

(rl“rg)
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In general we can express the G, successively as:

J-1

)G

l{_ 1 nj A h’(r 2
(#.9) Gy, = (r —r2)3+1 Jr ( (ry = r)Y(; h(rl)h(raf)
N N
- 2(1‘1 - r)nj }\k (;2)
h(rl)h (re)
N " o
s Oy - (e - 1) My (h(xp)n" (rp)-2(ht (r,))%)
h(rl)h3(r2)
- (ry - r)d E;E.Gj + 0y - r) (uy (r) - h(rlﬁh(r_T
2 .
g1 MP'(rp)

- (rq ~r
. h(ry)h"(x,) 4

The G 1 i algp unlque.

g+

IV.3. Proposition: Gj+l(r1,r2,li) 18 ¢° in the varlables
rl’ r2¢

1
(ry-rp
J+l(r1,r,l)dr. From the induction hypothesis, A

Proof: By inductinn, write GJ+1 = )j+l Irl

o0

J+1 Ig C

in rl,rz. Since 1t is sufficient to check that (gé—ok
(3_-J G 4 exlst for r, = r, we express Aj+1(r1,r,li) as

a Taylor series in r wilth remainder contalns (r - rl)k+L

and then Integrate the result term by term. Taklng the

1

1imit as r2 -

r
E(rl - r)j‘

will show that the partlal derlvative exlsts
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at I'l = 1‘2.

Remark: DNotice that (4.9) shows deg, G,,. = J + Il.
_ A i
b, Propositi 1im H (r.,%,.,t) = 6, _.. Here b
‘ ope on: 0 H'K( 12Ky a5 ) (rlJ.x) | ,ar YV

H, we mean expresglion (4.2) with the second summation

replaced by the finite sum Z ,
=0

Proof: ILet f(ry,y) be a smooth functlion with compact gupport
which contalns the point!(rl,x)a Then

(4.10) 1im [ H (v ,x,r,,y3t) £{r,,y)av
Py e 2’

= 1im (r ,x,r.,y3t) £lr,,y)n%(r )df dy
o M£I By 1% Tp T /4Ty

L n 1 (ry=rp)”
| 1, -2 - - I -z
= %ig LIE;E% h™ (ry) b (ry)e™ LI
Xit
K w _h{rJh(ry)
e 1 2 ¢i(x)‘¢i(y)f(r2’y)

(r1, 700y ) $9ay 10" (ry ) dax,

kit

k oo h(r

=1m 3 [ ze 7 0, ()0, (y)f(ry,y)
t=0 J=0 M 1=0 | T

. G',j(rl’rl’ li)t'jdy
S

2] ._h (rl)
= 1im I S e
£=0 3 1=0

¢i(x)¢il(y)f(r1:Y)dy = f(rl,x).




The second from the last equallty holds since

degkiaj(rl,rz,ki) ig finite. Formally,

;

A b
.oo' _ha(rl)s
lim [ " Ze A0 (x)ey (y)f(ry,y)dy = Lim
t~0 y 1=0 ] =0
| t

. I e Asf@ﬁ;Y) = Asf&i,x). s is a positive Integer.
M _ .
Q.E.D.

In order to prove that Hk doeg represent a para-
metrix 1t remains to check the second condition of defini-

‘tion IV. 2. For this we need the following proposition:

IVv.5. Proposition: For giveh T » 0,

kB
[5)-2-

Ij:jﬂk] = cbnst. t - t < T,

N} 0

The constant in this inequality depends on h(r). Before we
prove the proposition we need some inequalities about the
degree of 3y In G&(rl,rz,li). The significance of knowlng

the degree of Ki In G, is that each increase of the degree

0 Ayt
of 11 in the expression = kze“ 1 -wlll lower the degree
1=0

of t by 1 in the t power series asymptotic expansion at 0O
or this expression., In fact, we can apply theorem I.2.1.

to the expression and the property mentioned above will

follow easlly.




-k
(1) deg, ((§g2) ) (mmy) = [(BHEL

. . k
) (111) degxé(%;;) G ) (r,r,) S 2 kK = &
- | .

Proof: By induction on 1, suppose the above inequalities
hold for all &' < 4 then:

(h11)  degy 6,(r,r,hy) = max (B, 0 4 (BUR)
i

14 [BUARMRELY o (2UL53) =301y - 134 ) |

‘which proves the first inequalilty.

Conslder

(4.12) L(B%Eﬁzci.- () - ra)E%E-aL)]rl=r2

. "k k
=_[L(%) o, + (5) (3—3—5) G, - (r; - 1)t

= (4 + 0" (rry)

and !

- d ' 1 ﬁ
(4.13) Lqi - (rl - TQ)S?E'GL = —(Pi(rg) = h(rl}h(rg))GL“l E

. A ht(r,)

d \2 1t o
ey O * (7 - "2 R(r TRz, T %-1
A (h(xy)n"(r,) = 2(h'ry))®)
* h(x, )h°(x,) "2
1 2
PP & G U Mp'(rp) 2

h(r, )h(ry)” 3r, 42 * (h(rl)h(rg)) Gy-3
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| . .
i1f we want to know the degree of ); in ((EFE) GL)(r,r,li)

we need only know the degree of the k-th derivatlon w.r.t.

| r, of the r.h.s. of the above expression. But:

Y
e )

2\ i
(1) Grg) [y (x2) - mrpymcey)

1= (uylrg) - INEIAERY

> .k K D Ny N
. (EFE) Gp1 ™ (13655(u1(r2) " B(x; JR(T,) (ar2 Gpa

k 3 m a k-m
- oot () (5r) (94(r) -y )h(rg)(ar2) Gp1

> |k M
st Grg) (04 (%) - BTE R G
Thexrefore:
3 |k 1
(4,15) degli(gyg) [(ui(rz) - h(rl)h(re))GL-l]rler

2(&-1)3+ k—1+1],0051 " [E(L—l)‘+ k-1

< max{1 + | 5

eeen (BN S pBL AR 1

Similarly we have:

< (2L K - 1

| d Kk, .3
(%.16) degki( (5}—2") (3;2“)%_1)_1-1::1- 3

'y h’(r

d K 2Ltk -1
degy, {ar) Lixy - rp ETE )h{ra) L-l}}rl—ra < [

(2K, A (B(ry)n"(ry) = E(h'(rz))z)a .
or (rlth(rz) : -2 ry =Ty

deg)L

3

]
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5 K MBI(r) g

o 28 + k. -1
deg, {(<=) G )}, .. =] 1
Li Br2 h(rl)hg(r2) Br2 L=2 rl-ra 3
y Kk, MbHr) 2 24 +k - 1
deg, {( - G, o)}, . = [ ]
Ay orp h(r )h®(ry) 3 TR 3

-Combining the above inequallties we get:

(har)  aeq ((3——0 6y (mrhy) = (BAEE D)

li)

80 we have proved (ii), (111) is trivial since degl GL(rl’rQ’

i
is8 never greater than 1.

Q.E.D.
Now let us return to the proof of the proposition. Since

bt IS
(#.18)  [IH, = i‘ZO[(r:L - r2)t§'fgok+l(rl’r2’ki)

(k + 1)01{_!_1(1;1:1'2; }\i)]Gitkh%
Cw -y (n(rp)h"(rp) - 2(n1(x,))?)

F ! h(r))h(ry)” o mgh)
Ahi(r,) | AT (r,) 2
1P\l 18" (Fp

- (I‘ Ry PR ) —(

h{r )h(r,) oy KT T M A(ry)h"(x,)
Ktk lih'(rg) 2-‘

+Z[(
1=0 (rl)he(rz)

Gy (rq,r0,04) 16, 6

3
k42
6, (rpsp,hy)la 657
where (r, - x,)% = Mb
1 B, B (TR
Gy, = —=— h"(r,)h™(x,)e e ¢y (kK)o (v) -
17 oF 1 2 1\ %y

Since we know that




n
) W ¥ iy

(4.19) E e * ¢i(x)¢i(Y) < congt.+t t<T
im0 |
: n
* A G =~ -8
(4.20)° 3 A%~ L g, (x)6,(y) = const.-t 2 £ < T
| 1=0 1 R
and ; -2
Ary = xp) X
(4.21) |e” 4t (ry - rl)ﬁ S congt.et™> k £ 0

it is easy to gee that:

, . (ry - 7)° x
(4 s2) |3 FE "y~ 1) sy
o e , b oJE, SR §
) 1 g Sk 4\ T Tty My o)
A b
- kK 124+ k - 1
RACIACY | ]
. e 1 2 ¢i(x)¢i(Y)l < const. t™° © 3 .

Now, we expand GL(rl,rz,ki) into & Taylor series at Ty = Iy
with r, as varlable. If we denote the sum of all terms with

power of (r2 - ry) greater than 4 by _z(rl,rQ,li), then:

(#.28) G (ryyrp,hy) = Gy(ry,ry, k) + (rp - 2q) (5%-

2 | n
k C
(rp - xy) - -
2 7 "1 d Kk i
G,(Toarpsde)), . Feset 7 - [ ) o
o1t et M T =ry, k!l 8r2 |
: . (r, - r
2 =
@L(rl,rg,xi)]rlzr Fee ot Gy (resTpsdyg)e

A 2
Note that deg, G,(r,,r,,%;) < 1, we have pointed this out in
Xi S Kt~ _
the remark following IV. 3. - In order to estimate Gi’ we
multiply each term of the Taylor series expansion by Gi’ and

then use the above inequallties to obtain

L. IEY
(4.24) [GL(rl,rg,li)Gi[ < const. st o 7?',

*
Seea 1.22
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Similarly we can estimate [ ] H_ gince we can estimate each
term of lt.

k

| n_ gk+1g]
(4.25) L[:]aHk] < congt.-t

1
y1p
DD];:;

=
ol
ol
ol
R
°i
i

+ conght.+t

4

oy
Imb

I

S

+ epnst.+L

o -

4+ const.*t

[51-5-2
< congt.*t 37272 .

This completes the proof of the propositlon and shows that Hy

does represent a parametrix for heat kérnel on M X I when

[5] >3+ 2 . Since the heat kernel is symmetric w.r.t. its
variables (rl,x), (rz,y), if we represent 1t as

Sl (rl,rg,t)ai(x)¢l(y) we can see that fi(rl,rz,t) ig also
symmetric w.rit. ry and r2. For some special functions h(r),
fi(rl,rz,t)ai(x)ai(y) - ZOC.(rl,rz,x )GitJ % 1g convergent
for each 1. BSlnce Gi 18 symmetric w.r.t. Ty and Tos in theSe
speclal cages Gj(rl,rg,li) 1s also symmetric w.r.t. r; and r,.
But 1f we look at the construction of Gj more carefully we
will find that the form of Gj in terms of h(r) is universal®

gep that we get the followlng

*
GJ 1s the summation of TEE%?ET to some power multiplled by

the integral of a rational function of h{r),h'(r),...3 the
coefflecients of the denomlnator and numerator of the rational
function are independent of h(r). See (4.8) for j = 3.
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080 . ) l
Iv Corollary: lit . |
(#.26) Trace E ~ 5 L h™?(r) s e."hz(r)(l (r,r,\ )dba(x)t‘j_’é
t-0 j=0 2.7 1=0 gro T il
-
| .
.
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V The Asymptotlc Expansion of the

Heat Kernel on M X I

We begin with some formal arguments which will show
us how to aﬁply the results we cilte in section ITI to the ' \ i

ecglculation of Gj(r,r,li) of Section IV, Recall Cauchy's i@z

integral formuls in the theory of a complex variable:

(5.1)  2(x) =gy [ g e

where f(z) ig analytlc in a neighborhood‘of the cloged curve

C and 2 18 inegide C. If D 18 an unbounded‘operator we defilne

(5.2)  £(0) =gy [ L

where C is a curve about gpec D and f is analytlc and bounded

in a nelghborhood of spec D [8].

Now let ug consider the case when D = A and f{z) = e"ztf : |

: ~Et
~At 1 e .
(5.3) & =gy [ T 9% | |

where C 1ig of the form

oy
-

G

Since the Iaplace transform of e 5% 1y (2 + s)"lz

(5.4)  [Te%PeStap = (g - )7t
Ny |
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therefore

(5.5) jze“ﬁtefStdt = (A+8)F .

. Although the ébove derivatlon is true only in some. special

circumstances, It does suggest that if we express the heat

kernel on M X I wilth the metric hZ(r)g + dr ® dr as

(5.6) E(r ,ry,%,y3t) = izofi(rl;rg,t)¢i(x)¢i(y)

then the Leplace transform of E must be. the kernel of a

resolvent of A and
: o0
(5-7) (52 + S)iiofi(?l’rQ’s)¢i(x)¢i(y) =0 .

Notice that 9 means the Laplace transform of f.

Therefore

3 2 Dhiry) 5 M
(5-8) [’(5?50 - h(rﬁ) are + h2(r2) + S]%i(rl’rQ’s) =0
“or '

5 2 an L BUrp)" h'(xp) Ay
(5.9) . [-(5550 + (z(5- )hzra) + 5 R(T,) + . ))]

n n
* hg(re)?(rl,rz,s) = - shz(rE)f(rl,rE,s).

n . n

This in turn suggests that ﬁg(rl)hz(rg)%i(rl,rz,s) is the

kernel of the resolvent of -d= + (ui(r) + 8) where, as before,

! 2 R _ 7\-1
(5.10)  uy(r) = %(%wl)gﬁff% + %’h(£§) e




Apply the results from Sectlion IIT:

. -3 R[u]
(5.11)  B(x) (r,r,e) ~ 3 L
gm0 =0 =8

Although the convergse of theorem I.2.3 is true, only under
speclal circumstances. The theorem does imply that 1f the

asymptotic>expansion exlsts, the only candidate ig

oo R[U] ‘ r

L L% :

(5.12) - W (r)f, (r,r,t) ~ t1® I

1508 e o TTI;%T‘ ’ | i

becauge the-asymptotic expansion w.r.t. a agymptotlc sequence
‘at some gpeclal polnt 1s unique. '
The following propoesltion tells us that it is possible

U, t
to factor e 1 out of the above asymptotle expansion.

| ' @ Rlugl g
V.l. Propogltion: Summing up those terms in Z "TT?%T't =
which contaln a fixed monomial of derlvatlves of uy of the
(ki) (%) (k,) |
‘ 1 2 |
.form By T ouy ceally J kj1% 0 g1lves the sum as 3
: K |
-, t (kl) (kj, Kyeook

| J . S
A, € u, so0all : 3
kl‘“'kj i i |

Proof: From the proposition IIT.6. we have - ’

B%ZRL[uiJ'z - (4 - 2Ry [uy] | V

which Implies

(5.13) o oalml o Fealul
: ouy I'(4+g) T(A-I+)

Q.E.D.
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~Since our goal is8 to find a technique which enables us
to compute the asymptotic expansion of the trace of E.

Piart w Relug] 43
Factoring e out of Z ”TI?ET t 18 a 1ittle blt too .

‘much, ag we see if we compare 1t with the asjmptotic expan-

glon of the trace of E that we got in the end of the last

lit _ B

~hZ(r)

section where we have factor e
~uit .
e ~ . Fortunately we can remedy thig problem by splitting

in the expresslion not

ui.into two terms, one containing li and the other not con-
}g .

taining li. The flrst term 1s exactly —%— s and the other
h™(x ‘

we denote by q(r).

Clearly,
. hll r
(5.14 alr) =5 { n - 1)4—) =
) ) =5 Z(r) B BT
Then lit
5 - |
1 =2 R (1) § & J-%
5,15 fo(r,r,t) ~ —— (r)e Z G, (r, s
( ) 1 )t"O ol ) =0 ,j( i)g

where we multlp.Ly e—q(r)t back Inte the expresslon. Therefore

it we denote Rt[uiJ more explicltly by RL[ui’ui’u s3] then

T 18 nothing but Rylasugrug.n) 1.e., vepl
Gj(r,ki) & no g bu T3 + 27 3 l.e., Leplace

ui(but not its derivative) in R, by g.

Up to now most of the work we have done in this section

is Just formsl. Therefore a theorem such ag the followlng 1s
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needed if we want to apply these resulte to compute the

agymptotlc expansion of the trace of E,
V.2. Theorem uj(r,r,li) = ﬁ(r,li)

Proof: Consider the expresslon

Ay

| . | )
(5.16) Ky (ry,7p,2y) = uy(x)[Cy » R Jn(5,) * 2T%-3

»

i
(B R,)) *ee

A
i

Ay

+(1 = 1)¥1 2

b
(s
h(rl)h(raf

A

1
-1 Blep)ate,) Fet U ar Ry

B 1
* 7y - T) 5ol0 - Gl BIEIATE,) tonut (-2 3y

E )

1 L
RICHICHLIS

32 A

. L1
t 35t %1 T G2 RER(E,y Peeet (U T

W |
(mEpRE,y) %l -

»

We can express the right hand silde of above as the sum of

.termg of the followlng form
A

-

(5.17) (-1)% L

P\

Ay

k 1
®T (h(rl)h(ra)) [(uy (xp) - R(F JE(T,) ) Ca-k-1

d 2 ' 1t
" (ag) G (= ¥e) wrey (Arryy) HUE - KIG

- (ry - r,) 9 G + lil ( 1
1 2 Srg -k h(rl) hixr,)

A S SN W M
h(rl) h{r,) or, 4-k-2 hirli

n

)

[(

Gpk-2

1 142 -
ETEET) ] GL—k~3]

4-1

GO]

L
) 6,1
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Since G, satisfies (4.4) of the lagt sectlon, each term

of this form must be zero and so 1s their sum, l.e.
Kl(rl,rg, Ay) = 0. Similarly, if we denote by Kz(rl,rz,xi)
the expression which comes from Kl(rl,rg,xi) by interchang-
ing the rples played by rq and To, then we also have

Ké(rl,rg,kl) = 0, Moreover:
(5.18) -aK(rrx)‘=o
* 3r2 1VvT1 727 M

Kl(rl,rz,xi) =0

o
Erl |
9 Ko(x ,rosdy) =0
Brl 2 v 12 me Ml T * :

Combining these identitles, and letting ry = T, we get

i ’ )Li 1 Ki 2 f
(5.19) (4 - 2)[0.{, - HEGL—:L + 2(?) G'{a-—-2+"']
- : Y 4 A 2
1
= %‘[G‘L_l-‘ Gdt;"'l ‘—'_‘hé + ‘_'FEQ('-'—hjE-) G‘Eﬂ—3+.°.]":
L i 21 -2 7 TR
A, .
1, '
Syl -G g el

Now, since by construction of ﬁi we have

(5 o v ox M - M2 By — |
(5200 [8y= 8y 3 5 4eet 77 Gl3) ] = mramgy 24 |

and from corollary ITI.X. we have
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= yB_3- WRy_y ~ #u'R, ., then by substitution we

will see that G, satisfles the same differential equation
a8 above. Since both of them satisfy the samé differential
equsatlion of first brdef they may differ by a constant., But
becauge this constant 1s universal, 1t 18 sufflclent to check
the special case h = const. Then we will get that it must be -

zZero, so that Gj(r,r,ki) = ﬁh(r,ki)

Q.E.D.
V.3. Corollary: lit
(5.21) Trace E ~ 3 2 h(r) 5 (X)) Uy(r,2y)e  (x)e77F

t=0 j=0 i 1=0

Thls proves the legltimacy of the addition of the infinitely
many asymptbtic expanglons to form the asymptotic expansion

we wanted.

" Now We are ready to calculate the coefficlents.

Now if
w =h; b X n +1 nS
(5.22) = e 1 ¢2(x) E_A ¢ t_E-+ C 2 +4..4+C ¢t 2" ces)
1 0 1
_ i=0 tm0 Wl
then
(5.23) Fate 162 (0B (A + 1)... (B o2
5.23) 2 Ae x) ~ —==|[C + 1)eas + L ~ 1)t
o1t T T J#wrl 02 z

n

=+1
n n n -
FC(F - LB (F 4~ 2)70

+.II

¥
From the congtructions of both G and ﬁl we gee that the
coefficlents involve in them are independent of h(r).
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: n
=~4+38
\ n n -2
_'+.,,] A where ¢t = 1
and o lit
. _ 3
h“(r) ,2 1 n,/n n '
(5.24) = 2,8 65 (x) ~ —== [C (5)(5 + 1)eee(m+ 4 - 1)
1=0 L 1 o B 002702 N 2
g Tzt
o ()
h=(xr)
+0'ot
n n ,
+CS(‘§—S)Q.¢(-§+L—S) , -
. _n_ :
) ( 1 2 s
n (r)
+l.ﬁ]
Suppose we denobe the coefficlents of ki in ﬁﬁ(r,ki) by Gg(r),
I _ntly
and then consider those terms contalning t 3 which come
from ﬁﬁ(r;li). They will have the form
n
- gL
1l ,-n 1 A n n L 2 :
(5.25) —=—=—h"(r) —=x5 G (r)C_ (5 - 8)veclmz+ 4 - 8)( ) ~%
Jr W3R : h”(x) ¢

- de 2] :
But s;nce degli G& = degli Gj(r,r,ki) < [TTJ and 8 2 0 then

J = 3k. Now let J vary and collect all those terms contain

n+l

—= +k
t- . We will have
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(5.26) Jgojgoﬂ_nﬂ 3 kaﬂ(g ktd~t) oo (m-kri~1)

. (=t )he'j(r)

hg(r) )
- If we denote
, [ ] 3K 24
(5.27) 4, = :s_: = at (B o ktim2) oee (B - k+3-1)h" (p
kT2 45 U C-3+1'2 Z o )
then
(5.28) T B z ——————~] 4 (5 jk
- race ~ —»--—-—-—.
w0 k:-O Jart BHE R 2 )

‘Remaxk: When 4 = O,(%-k+j—£)..n(%~4&j—l) will be replaced

by l.
V.4, Proposition: In the case of metric cone, Eﬁ(r)

- patlefles the recursive formula

S 2ry _ _ ~  nn y
5.29) &, .. = -1 MOy p 243, 6, 4 . 4(4+1)8, 3l 1)%)
. 41 T AL r6 r4 — ra r2

Actually we can prove. a more precise formulati

: n-n
5.30) @, . = 2 oy pde,
' e 2] 3r3 riTo r T,

e, (%)
1 3
(ryry)

Making use of the fact that, for all 2, GL =

ere eL(xi) are independent of r; and r,, substitution of
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the above formula into the differentlal equation will show
that it does work.

-

no

If we drop i

. from ﬁi then eL(xi) will satisfy

' _ 1 /.2 n:n
(5.31) e,y =gr(Me, 0 - 2t e, 4 + tltrl)e, - 5(5-)e,). .

Moreover we have the corollary
V.5. Corollary:

*
(5.32) el = gip(ef s - 23 ey + 3(31)ed - B(B-1)ed).

Therefore in the case of the metric cone we have

(5 + E=J=t)..o(H-d-1),

) | 3
ej+l is_the coefficient of li in e

g1 (M)




VI The Significance of the Approach
and Applications of the Result

In the end of the last chapter when h(r) = r we got a

" formula, for'dk In terms of CJ and ej where e§ is glven by a

recursive formula., From the form bf‘the recursive formula
we have reason to belleve that this 1s the most explicit ex-

pression we can find. For more general cases since GL is the

J

coefficlent of 13 in Gj, we should know Gj‘ Although Gj can

be constructed by the recusive formula in section IV, a generat-
ing function fof them will be more helpful. Gel!fand and Dikii

have derived a generating function for R, which can be ex~

4

ploited to construct GL.' They proceeded by first viewing R

88 a polynomial in u,ut, u",... and then translating R

L
L into
the so called symbollc polynomial, which in turn has a generat-
ing function, Judging from the sophisticated way they derived
the functlon, we expect that a generating function or even s
more dilrectly recprsive formula for dk! thah the one we got,

is very unlikely.

It is reasonable to ask if it is possible to find & more
direct way to arrive at our results. We will make fome remarks
concerning this point.‘ Tet us consider first the case of the
metric cone. Since the first coeffilclent of the asymptotic
expansion of the heat kernel i1s the reciprocal of the square

root of the determinant of the exponential map, we should find




4g

the relation between the determinant of the éxponential
map on the cone and the determinant of the exponential map
on the base”. In the appendlx we will show that

| : | n-1
(6.1)  8((my7)s (@) = 8(P,Q) (ghg)
where 6((p,T), (Q,%)) denotes the determinant of the ex-

ponential map from tangent space M X I( to M x I evaluated

p,T)
at (exp(P,T)) (Q,w) _jP,Q) denotes the corresponding notion

on M, and 4 denotes the distance between P and Q on M. In
order to find the coefficlents of the asymptotic expansion
of the heat kernel we should apply & to B"% [1,.208]. From

A 2
the relatlon A = = - no é——--and the fact that the right
T Sr ~

re dr®
hand side of the above relation 1s independent of r we have

A

ket = (8 + 20-2:3)(4 + 4n - B5)... (8 + (2k-2)n
n-1
_§—

~(2k-2) (2x-1) ) 07 (b

This formula shows the complication of a direct computation.
There is the difficulty not only of writing out explicitly

the operator in the right hand side into a polynomial of A
but also of applylng each term to a product of two functions.
Moreover the expression does not lead immediately to the
formula of correct type, l.e. coefficients on M X I are linear

combination of coefficients on base M, That means opur resulft

*More general, the k-4 coefficients are something like A B -5
on the trace (l.e. ry =7r,, x =y) [1, p.208].
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Implied aré interesting cancellation. In the case of
ﬁorergeneral h(r) 1t becomes even more hopelegs since the
relation between the determinant of the exponential maps
mugt involve r. This Involvement of r will make the ap—‘
-plication of A to the determinant even more éompliéatéd
and 1t willl be unlikely there is any exprésg;on a8 the

above one.

For the first applicatlon, if we set dk = 0 in formula -
(5.33) this will give us a recursive formuls for Cy which is
Just the coefficlient of the aSymptotic expangion of the trace
of the heat kernel on S. The formula so obtained is no
more complicated than the corresponding formula obtalned by
Cahn and Wolf [2]. In theiroformula they have two casges,
when n lg even or odd, We have a single formula for all n.
However; their approach is more general and.they apply 1t to

the cases of compact symmetric spaces of rank one.

The other applicatlon 1s that 1f h(0) = 0, h*(0) # 0 we
have a singularity ar r = 0. Consider M X I with the follow~
ing metficsx he(r)g + dr ® dr and (h'(o)r)gg + dr @ dr. Ve
denote by d, and 3£ the coefficiéntsjof asymptotic expansion
of the tfaée of the heat kernels of M x I with the above
metrics respectively. Then a direct calculation by first Wrilt-

ing out d, and &k according to the formuls (5.27) then with

the help of L'Hopitalls Rule willl glve
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rY

= 1 when both 4, and & are not zero, This gives

us some informatlon about the behavior of d, and & at the

cone-~like singularity.




Appendix

In this appendix we will glve the calculatlon of the
formula (6.1). ILet c(t) be the geodesic on M X T with

1

V132
=

e(0) = (p,7) &(0) =

E, \) IEIg

then

e(t) = (E@DSQTI%E&D,H) where c(s) 1s the geodesic

with ¢(0) =p, &¢(0) = E

o= WE5 4 12 4 21t

&(t) = (8o (TEEL)

- : T




¢(t)

&
[ 4
+d
I

= &(cos™ (TR,

We can finﬂ_yé,.ooyn % 80 that Y1sYp0e0y, form an orthonormal

- 1 o
bage of T _1 et M thenYl,Yi = (yi'i’ 0) 1 =2,..n and
c(cos ) .
1 T+tX t+T A T(l-kgl% '
Y o= (&(cos™( ) ) ) form an orthonormal

. H
bage of Tc(t)(M x I). let Y; be the geodesics on M with

| o
v, (0) = &(cos™H(TEEYy)
&i(o) =Y, i1 =2...n

theﬁ the geodeslcs with yi(o) = ¢(t), ?i(o) = Yi’ 1 =2,...n

2

1(§f_), ni) where x, = ti + & .

will be Yi(tl) = (?i(cos"

Moreover, 1f y ., 1s the geodeslc with Y41 (0) = c(t)

yn+l(0) =Y s then
| =1 Tgl—}EQ%
Ynpa(t1) = (Ypy (eos™ (nrty e T J)s Ppy)
where
' -1 T+t
Y41 (0) = g(cos™ TEER)
. . -1 Tt
Ty (0) = &(eos™ T2
- 2 | 2.%.%
Mgy = [E7 + 27 4 2Ttl§l-K ) I

Now let ot (t2) be the geodesic connecting (p,T) and yi(tl)
1 - .

then
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12 2
1 t2 l+k sinLi(tl)‘.

.u'i"tl(t?-) = (vg"i’tl(Sin— ( di(tl)pi,tl(tE) 3) s pi;tl(tQ))

where Eirt 1s the geodesic connecting p and xi(cos"
’ .

—))
v | JeBx®
on M, and Li(tl) i1g the distance between them, t

to R
pj,tl(tE) = [(l = a';('t_l')')

.2 b 2 5 p
T+('am))(tl+ﬂ)

2p 21 - gBr) 1 B2 (o)1
+ W -W) T/ cosdy (b

5. .2 [22 £ |
di(tl) = [r7 + b + 0 - 2T 1 cos&i(tl)] : ‘

. O) ) fE l+ﬂ. Sm&i(tl)

o5, ¢, (0) = (g4
1 "1 dy (ty)r

b

Zu(neg)ty))

_ 3




dt:
d . 1 d R 1
= L (ty)e., (0) »o— =1 (b)) (0)+ =
A R R - T LYl x
dty 1 ]fi—o dtlltl=0 dt, T
where £ = cos.—l( o
2
tl+n
Tod . 1 1 d .
oot & (0),, = o= Ly (t.)4 0) .
Therefore
d -
e d, ()¢ (0) 1, _
GRS R “i,tl [6,=0
= (-5~ t3(61)yy (0) tﬁ;’it , 0).
dt, 1 x(cos” (Ii“l))T

Now consider Y,_1- Let 0.1, % (t2) be the geodesic connec ting
. pJ l

] 7(1—122%
i )).-3{ )
Kn+l n+1

l(x+tl

(p,T) and (xn 1(005"

-}

| then  .sind, (tl)
: ~1 "2° "+l n-+1
= (8 (sin ), o (t,))
an+l’t1(t2) = o, vl Uny1l®y) Pn+1,t1(t2) Contdty R

Wherg Qﬁ+i,tl 1s the geodesic connecting p and

L
.1 "L‘!‘tl"r(lHRE :

"
In+1(003 "1 ~—) on M, and i1

(tl) 1s the distance

between them.,




) nn+l

t 2 t
(b5) = [(1 - g—F¢)) T2+(———(~y2
Pn+1’t1 = Az tty) . 4oty

b 6o
2 2 3
+ 2 (1 -~ )T % qcosd (6. }]3
d410t7) T (57777 """ a1t

2

2 2
dn+1(t1) = [T o = 2T w008 (8)]

®nt1,t,(0)

¥ o «8int (%) - ' :
. n--1 n+1 71 L
= 0 - —
(!n+1,tl( ) T 1(6)) , dh*l(tij( TF HpCo8 L0 (8)))

: ® o..8int - (t.)
. _ g n+l n-1'"1
dn+1(t1)“n+1,tl(o) = (ﬂh+l,tl(0) T s

(= TH ”n+lcos§n+1(tl)))
(d_ (¢ )&, (0))
dt, n+l"L’ +1, 6y [ti=o

n,(_ (0) d ”n+lSinLn+l(tl)
ﬂn+1,tl_ [t1=0 at] T |tl=0’,

E%I‘”n+1 costy,1(8)))
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.”(,Xg}r(l-xz)é-sin(cosfl'Iﬁil)+ xcos (cos ™ THEA,

L.
=(E.O -

yJ&2~T2(l-X2Q
. . 2 7
®

%T(lnke)%cos-cos"l(I%L)

H

- % +8In cos

“1 7t xo-72 (132,
% - na 7

. A(t2+r2 )12t (1-x2)%(¢2—t2)
= (,9,(0) ) » S i )
L § x
j- dtl i l i,tl ltl=o . R
.Ei = "gr'éi(tl)éi 5 (0)]t =0 l i1 =2,..n
dtl + 1=
'then : 4
L, =L a0 | | |
o= n(cos”l(ii%l))

= PO 20 2 (192) (122 )R ]
L - 2 :

x
n-1
ITTVARERY
I L, =(0 L,)*( J ) . I
w2 T 1= T xeos™H(TEEA bl




: n-1
) : )
- - - : .1~
6™ ((psm)ue(t)) = 87 (p,g(eos™ (TEEh) ) (—H=b ) )
- wecos ( m )
, s \
Recall that « = JtT+7"+2t%
\ = <5(O),r?_ > <-> represents the metric on M x'I.
B((PJT): (Qﬂ))
| fncoé“l 'r-;tl n-1
1 n-1 :
= .Q(P:Q)(gin——z) 4 =d(p,Q) on M,
‘Bince 4 = cos ¥ —"-'-;;-ﬂ | | | | |

t./E—l = usindg . | i
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