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Abstract of the Dissertation

Joint Quasitriangularity of 2-tuples of
Egsentially Normal Essentislly Commuting
Operators on Infinlte Dimenslonal Hilbert
Spaces -

by
Gall Annette Kaplan
Doctor of Phlilosophy
in
Mathematics

State University of New York at Stony Brook

1979

This paper extends the definition of quagltriangularlity
to n~tuples of essentlally normal, egsentlally commubting
ﬁperators and studies thelr general propertles. The paper
then concenirates on a speclal class of 2-tuples of operators.

Tt culminates with necessary and sufficlient conditions for

guasitriangularity in this getting.
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I. INTRODUCTION.

This paper will deal with the notion of quasltriangular-
ity. In 1967 Halmos introduced the concept; the germ of the
idea but not the name had been used previously by Aronszajn
and Smith in thelr work on the existence of nontrivial ln-
variant subspaces for compact operators. Operator theoriste
continued to ponder the questlon of the existence'of & non-
trivial invarlant subspace for a larger clags of operators.

In 1966 Bernsteln and Roblnson extended the clags to include

all operators that are polynomially compacty T 18 polynomially

. compact Lif .there exlsts a polynomial p such that p(T) is com~

pact. Thege authors used nongtandard analysis in their proofs.
After studylng their paper Halmog proved their results using'
standard technlques. He found the notlon of compactness
employed only twice and in one instance the weaker hypothesis
of quaslitriangularity was gufficient., Hence, the birth of his
1967 paper, In thelr 1970 paper Douglas and Pearcy contributed
%o the structure theory of quasitrliangular operators. Several
Roumanian mathematicians developed -theorems describing further
properties of this class of operators. Thelr major result is
elegantly stated: the operator H 1g quasiltriangular 1f and only
if 4nd(H -~ %) = O whenever H - X is semi-Fredholm. Brown, Douglas

and Fillmore in their 1973 paper obtained the same result for

essentially normal operators by applying thelr work on extensiong




of C*-algebras. Tn the early seventles Volculescu extended

the notlion of gquasitriangularity to n-tuples of operators

which palrwise commute,

In this paper I will generalize the notion of quasl-
triangularlty to n-tuples of egsentlally normal operators
"which palrwlse essgentially commute. Many of the baslc proper-
ties of gquasltriangular n-tuples are simple generalizations of
the results for a gingle operatol. However, & necessary and
sufficient conditlon for quasitriangulafity in the casé of an
n-tuple, even iﬂ very limlted cases 1s quite difficult. I
_will examine closely the properties of 2-tuples of opeyators
(U,H) where U is essentlally unitary, H-is essentially self-
adjoint, U and H essentlally commute, and the joint essentlal
gpectrum ig a subset of the cylinder T x [0,1] where T denotes
the unit circle, The reason for-the restriction to thls case
is threefold. First, 1t is'possible to uge the Brown, Douglas,
end Fillmore theory; second, this getting is the first non-
trivial.situation; and third, the index in three space com-
pletely characterizes the problem. In four gpace the problem

is much more complex.

To study these 2—tuplés 1t is necessary to carefully examine
the structure of thelr jolnt eggentlal spectrum X. T will con-
struct a set X c R® which 1s homeomorphic to X. The reglon X

ig an annulus,. The complement of X, the set GI%L hag one un-




bounded ccmponent, O, plus any number of bounded components,

{0 We can think of these components as holes in the

1liz0 -
spectrum. The major result 1s necesgary and sufficlent con-
ditlons for fhe joint quasitriangularity of the 2-tuple (U,H)
previougly described. These conditions are expressed in terms

of the indices assgocilated with the holes in the spectrum.




II. BACKGROUND MATERIAL: EXTENSIONS

' The work of Brown, Douglas, and Flllmore on extenslong of

C*-plgebras is an essentlal Ingredilent for the work in this

paper., For the sake of completenesg I present a summary of the

needed results [3].

First 1t is necessary to define the concept of an exten-
sion. ILet £(¥) denote the linear operators on the Hilbert
space ¥, X(¥) the subset of £(X) consigting of the compact‘

operators, and 2(#) = s(¥)/¥ (%) the Calkin algebra.

Definition II-A. Let X bé compact and metrizable, An exten-
-sion of ¥ by C{X) is a palr (E,¢) where E is a C*—subélgebra

of £(¥) that contains ¥(¥) and I, and ¢ is a x-homomorphism of
E onto C(X) wlth kernel ¥. Extenslons (El,¢l) on ¥, and (E2,¢2)

on 32 are equivalent 1f there exlsts a x-isomorphlism ¥ : E, o

such that @l = ¢2w, The set pf equivalence classes of exten-

sions of ¥ by C(X) is denoted by Ext(X).

Note that the definition implies that &/¥ is isomorphic to

C(X). The following equilvalent definition is a more workable
one .

Definition IE-B,

An extension of ¥ by C(X) ig a x*-monomorphism
T of C¢(X) into the Calkin algebra. 2 such that v{l}) = 1. Exten-

slons Ty and T, are equivalent if there is a «-igomorphism

W D(El) - Q(Ez) induced by a unltary U

H ﬂl - ﬂz such that




MT, = Toe This means that for any 6perator T € ﬂl,
u(r(T)) = w(UTU*), where m denotes the standard projection

from £(¥) onto 2(¥).

For X a compact metric space Ext X turns out to be an
abellan group under the operation of addition glven by the

following deflinltion.

Definition IT-C. The sum of extensions (E ,¢,) on ¥, and (Bg,05)

on ¥, of ¥ by ¢(X) is the extension of ¥ by C(X) defined by
(E,9) = (El,¢1) + (E2,¢2) where E = {(T1®TE) + K

T, ¢ Ey, ¢, (1)) = 6,(Tp), K € ¥(#, @H,)]) and

i 1772

¢((T,®T,) + K) = 61(Ty) = $5(T5).

For subsets of the plane the l1ldentlty in the group Ext(X)
is given by the extenslon generated by operators of the form
N + K where Ge(N) = X, N is normal, and K is compact. Thig is
called the trivial extension and can be shown to satisfy the

following deflinition.

Definition II-D. The extension (E,¢) of ¥ by C(X) is trivial

. 1f there exlsts a *—monomorphism g of C(X) into E such that

o6(1) = I and ¢o is the ldentity on ¢(X). Eguivelently,

1 C(X) - 2(¥) is trivial if there exists a x-monomorphlsm

¢ : C{X) = £(¥) such that o(1l) = I and wo = T.

' The following theorem allows us to conclude that the trivial

extension 18 unique.




Theorem II-E, If X 18 & compact metric space then there exists

a trivial extension of ¥ by C(X) and any two trivial extensions

are equivalent.
Proof. [3, p.81l]

Corollary II-F, If Z 1s a sep rable commutative C*~sub&1gebra_

of £(¥), then there exlsts an orthonormal basls {¢ )} of ¥ such

that each operator in Z ls a compact pertubation of an operator

that is dilagonal relative to {¢n}. In particular, the same con-
clugion holdg for any countable family of mutually commuting

self-adjoint operators on H.

The classlfication of essentlally normal operators provided
much of the motivation for the BDF work on extensionsg. Glven an
esgentlally normsl operator T wilth Ge(T) = X, the problem re-
duceg to calculating E;t(x) and determining the element of Ext(X)
which T represents, The solution ig elegantly stated in thelr

paper by the following theorem,

Theorem ITI-G, If Tl and T2 are essentlally normal operators on

¥, then & necessary and sufficient condition that T, be unitari-

1y equlvalent to some compact pertubatlon of T, 1s that T, and

1

T, have the same essentlal spectrum X and I1nd(Ty - \I)

= ind (T, -~ AI) for all £ X

Proof, [3, p.l118]




In degling with the classification of n~tuples
T = (Tl’T2’°‘°’Tn) of essentiallj normal, essentially commut-
ing operators whose joiﬁt essentlal spectrum 18 homeomorphlc
to a subset bf]R2 the process‘remains virtually ldentlcal. We
must compute ﬁhe Joint essential spectrum of the n-tuple and
then the problem is transformed into calculating Ext(X) whére
X =-ce(T) and determining the element of Ext(X) which T

represents.

Iet us examine the gltuation In more detail., By deflnltion

every element T ¢ Ext(X) is a x-lsomorphilsm, T 3 C(X) = 2. The

~1

where C(X)":L denotes the invertible functions in €(X), C(X)O

denotes the connected component of the identity in ¢(X)™,

91 denotes the invertible elements in 2, 261 denotes the con-
nected component of the identity in 2, and 71(X) is the first
cohomotopy group of X, the group of homotopy classes of contlnuous
maps from X into €\{0}. For any functlon f : X - e\{0}, the
index of T(f) depends only on the equivalence class [T] of T

and the homotopy class [f] of f. We readlly see that

ind T(fg) = ind *(£)7(g) = ind T(f) + ind T(g) so

Yl(T) : wl(X) - 72 is a homomorphlsm. Moreover,

ind('rl + Te)(f) = ind(Tl(f) ® Ta(f)) = Ind 7,(f) + ind To(£)

BO Yy 18 a homomorphism, When is Y, 2 bijective map? This

question is answered by the major result in the BDF paper [3].




e e e e T e e e A e o

For X a compact subset of the plane Y4 1s

[3, p. 116]

Theorem TI-H,
bljectlve.
Proof.




TIT., GOENERAL PROPERTIES OF QUASITRIANGULAR n-tuplesg

First, a short review of the well known finite dimensional
theory will be presented. In a finlte dlmenslonal Hllbert space
every linear operator can be expressed as a square matrix. By
the appropriate cholce of a basgis thls operator can be wrltten
ag an upper triangulér matrixs hence, every operator on a
finite dimenslonal space 18 upper triangular, In the remainder
of this paper the term triangular will mean upper trilangular.
Another way to express this property 1s that for every operator
A on a finite dimensional space there exlsts an increaging se-
-quence of projectlons {Pk} guch that dim P, = k and each P 1s
invariant under A, equlvalently PKAPK - AP = 0 for all k.
This well known result 18 simple to prove as illustrated by the

following proposition.

Proposition III-A., For every operator A on & finite dimenslonal

Hilbert gpace ¥ there exlsts an Increasing sequence {Pk1iiﬁ-ﬁ

of projections with dim P, =k and (I - P )AP_ = O for

k = l’g,‘t',dj-mziﬁ

- Proof, Tor dim H = 1 the statement iz trivally true, Assume
the propositlion holds for dim ¥ =n - 1, It 1s necessary to
“show we can congtruct the gequence of projections when dim ¥ = n.
as projectlion onto the subspace spanned by any flxed
Teigenvector v of A. Express ¥ as the direct sum of Elﬁ and lts
}* =n - 1, we know

P, Y

orthogonal complement (PlH)L. Since dim( 1
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by the induction hypothesis that there exists an increasing
sequence of projectlons {Fk]g;i with dim F, =k and

¥ AF, - AR, = 0 for all k. Define H as the subgpace spanned

kK''k
by Fk 1ﬁ and the elgenvector v for k = 2,..,,n and E = Py H.
Then the projections Pk onto the subsgpaces ﬁk satisfy the

degired properties.

When we allow the dimension of ¥ to become countably in-
finlte, the situatlon drasgtically changes. Firgt, we must

define triangularity in this new sgetting.

Definition ITII-B. An operator A on the seperable Hllbert space

‘u ig sald to be triangular if there exists an Increaslng se-

quence of finite rank projections {P,] converging strongly to
the ildentlty such that dim P = k and Pkﬁ ig invarlant under

A for each k, [P AP - AP | = 0 for all k.

Note that when ¥ 1s finite dimensional this agrees wlth
the previous definition, In the setting of an infinlte dimen~
gional ¥ it is no longer posslble to triangularize every operator,
nor is it even possible to "almost triangularize" every operator.

In this paper the words almost and essentlally will mean the

property holds modulo the compact operators. For lnstance, the

operators in a set S will be sald to almost compute 1f AB ~ BA
is compact for all elements A and B In S. The property of an
operator belng almost triangular is called quasltriangularity.

Helmog [9] shows that an operator ls unltarily equlvalent to a




1l

triangular plus & compact 1if and only 1f it satisfleg the

following definition.

Definition III-C. An operator A on & geperable Hilbert space

$# 1s said to be guagitriangular 1f there exlsts an lncreasing
gsequence of projectlons {Pk] converging gtrongly to the identlilty

such that lim||P AP, - APy}l = O.
K=o

X

The question I wish to consider 1s under what conditlons
is 1t possible to simultaneously triangularlze n opersators modulo
the compacts. In this paper T = (Tl’TE""’Tn) will denote an
ﬁ—tuple of operators on the separable Hllbert space H,P the set

of finlte rank projections, and ¥ the compact operators on ¥.

Definition III-1l, The n-tuple T 18 gald to be guasitriangular

1 Tl’TQ’”*"T egsentially commute and there existis an increas-
ing sequence of finlte rank projections {PK} converglng strongly
to the identity such that i&gHTiPk_i - Ty k“ =0 for 1 = 1,2,.04,0.

} It is a trivial conSequeﬁce of this definition that each
operator T, 1s quasitriangular. The motivation for the condition
.that the operators egsgentially commute 1s twofold; it 18 suggest-~
ed by the finite dimensional case and enables ug to utillze the
EDF theory. Voilculescu [12] requires that the operators actually

commute in nhis definltlon of quasitriangularity.

When Halmoeg inltlated the gtudy of quasltrlangular operators

in his 1967 paper, he showed that 1t 1s useful to have two
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alternative definiltions for the concept. I willl also formulate

two addlitional definltions for quasltriangular n-tuples. They

are patterned after Halmog' definitions. Definitlon III-2

differs from definition III-1 only by the absence of the word

increasging.

Definition III-2. The n-tuple T 1g gald to be gquasitrlangular

if Tl,Té,;._,Tn egsgentlally commute and there exlsts a sequence

of finite rank projections {Pk} converglng to the ldentity such

that iiinPkTiPk —'TiPK“ = 0 for L = 1,2,4ass00

Since the set of finite rank projections ls partially

ordered, we can speak of lim inf||[PTP - TP| = 0. By this we
P-I,Pe e

will mean that glven any positlve number e and projectlon Pep

there exlste & projectlon P, € P guch that P = Pe and
ip o2, - TP Jl < e fori= 1,2,ve.50. The third definition

employs thls concept.

Definition III-3. The n-tuple T of essentlally commuting

pperators is said to be quasitriangular if lim inf||pTP ~ TP|| = 0.
P~L, Pep

The following proof of the equivalence of the preceeding
definitions ig adapted from Halmos' proof for one operator.
The only modification 1s the cheoice of ¥ in theorem III-F.
Definition III-2 follows trivially from definition ITI-1, the

only difference belng the omlsslon of the word increasing. The

next lemms shows that definition ILI-1 18 a-simple congequence
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pf definitlon IIL-3.

P~1,Pep

ktoo

for i = l,so;;n&

the projection onto the subspace generated by {eo}. Using

finite rank satlafylng el

for L = ly...,n. Next we obtaln a projection P2 of finite

i = 1,0sesn. 1In general we flnd a projection P of finlite

1
satisfying e ¢ R(P,), Py q < By, and B0y P) - TPl <

gatisfying 1im|P, T,P, - T,B ]| = 0 for L = 1,...,n.
; il S L S el Toenes

Tp complete the proof of the equivalency of the three

' definltions, it is necessary to show that definition ITI-3

cationy 1ts proof utilizes the followlng lemma which shows

‘the norm, it is possible to find a uniltary pperator closge

identlity which transforms one projection onto the other.

e R(Py), Py = Py and HPlTiPl - Ty

Lemma II1I-D. Let T denote an n-tuple of essentlally commuting

operators on ¥. If lim inf||[PTP - TP| = 0, then there exists

an increasing éaquence of finite rank projectlions [Pk} converg-

ing strongly to the identlty such that 1imnPKTiPk - TiPkH = 0

Proof, ILet {ek}§=0 pe an orthonormal basls for ¥ and PO denote

the

, definition of 1im inf we know we can find a projection Py of

rank

satisfying e, ¢ R(Pg), P, = Py, and lp,y Py - TiPEH < % for

rank

for

1 = 1,..s,0. We have now produced an increasling sequence of

finite rank projectlons {Pk] converglng to the identity and

followe from definltion III-2. This 1s the nontrivial Impli-

that

when two projectlons of the same rank are close, ln the senge of

to the

This

Pl <1



14

lemma sppears in Halmos' paper [9]. I present his proof for

the sake of completeness.

lemma ITI-E.’ Let E and T be projectlons of the same finlte

rank gatisfying |E - Fll < ¢ < 1. Then there exlsts a unitary

1
operator W satisfylng W'EW = F and N - wj =2 €=,

Proof. We can find a unltary pperator W, satisfying WSEWO = F
since the rank of E equalé the rank of.F. Decompose # ag the
direct.sum of the range of E and the range of I - E, Now con-
gider each operator aé 5 2 X 2 matrix with respect to this

decomposition.

(1 o) (A‘B) (A* c*)
E = W == W*z
o ofl, © \c o/, ° \p* Dp*/.

dince F = WYEW., the matrix of F is

oo’
(A* c*) 1 o\ {a B) A*A  A*B
g* D¥/\0 Of\C D/ B¥A B*Bf .
We know that WiW, = I since W, is unltary. Performing thls

matrix computation we obtaln

A¥A + c*c A*B + C*D
WeHg = = Lo
B¥*A + D*C B*B + D*D

Thug we have the followling relatlons:
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H

H o © H

A¥A + C*C
A*B 4+ 0D =
#) B*A + D¥C =

B*B + DD =

We know that |E - F| < ¢ and that the norm of a matrix dominates

the norm of each entry.

E - B =

Thusg 1 - A¥A -A*B‘) implies |1 - A%af < e,
- B*A -B*B '

and |[B¥B| < e. Combining these with (%) we obtain ljc*cll < e
and |1 - D*D|| < e. These estimates will be necessary to ghow
‘that |1 - W|| i small, Next, let U and V be unitary operators
on the range of E and the range of 1 -~ E, regpectlively. We |
then obtain a unltary operator Wl ==(U‘ O‘) on ¥

| o Vv
which commutes with E, The follbwing simple computation shows
that the operator W, W, trangforms F onto F.

a5 . * _ — T —
(W, W) *E (W W) = WOWIEW Wo = WEW W B = Wiy = ¥

Since the norm of & matrix 1s dominated by the square root
of thg gum of the squares of the norms of its entries, we can
make ||1 ~ WiWO“ = “ L - g% 1::33)“ small by choosing U and V
so that |1 - UA| and ||1 - VD|| are small. We readlly see that
lvel® = Jlcl? = lle*ell < ¢ and JUB|® = IB)® = |B"B|| < ¢ for any uni-

taries U and V. Applylng the ugual polar decomposition we can ex-

press A as the product QP where Q 1s & ﬁnitary operator and P 1s




16

b3
the positive operator (A¥A)®., Tet U be the inverse of Q so that

1 -UA=1-QYQp =1~ P. Since ||A]] < 1 we know 0 < P*

which implies 0 = 1 -~ P =1 —-Pz. Using these relatlons we obtaln

=P=s1

1 - vl = flz - Bl = 2 - 2% = ]2 - a%all < e. By using an
1dentical argument for D, we obtain |1 - VP < ||1 - D*D| < e
where V 1s the inverse of the unlitary element in the polar de-

composition of D. Since ||1 - wleH

< i1 - Uall? + [JuB)® + |vel® + 1 - vD)® = Jbe = 268, the proof

is complete by settling W = Wiwo.

Our goal of showing the equlvalency of the three definl-
-tiong of quasitriangularity will be achleved when we prove the
followlng theorem whlch shows definitlon III-2 lmplles definition

111"3 *

Theorem IIT-F, Iet T be an n-tuple of operators on ¥ and {Pk}

a sequence of finlte rank projections converging to the identity

and satisfying 1im||P, T,P, - T,P || = 0 for L = 1,...,n. Then
_ LA b 3 ik puves

k:

iim inf)PTP - TP = O.
P=I,Pep .

Proof,. It 1s necessary to show that given ¢ » 0 and PO £ P
there exists P ¢ P such that Py = P and Ty P - TiPH < ¢ for

§. = 1,..4;n. Let & be a fixed positive number to be determined
later by certaln properties of the operators Ti° ILet
{el,ea,...,eno} be an orthonormal bagis for the range of Pgs

Slince Pn = I and “PkTiPk - TiPk“ = (O for 1 = l{...,n we can




17

find an integer m such that [le. - Pre fl < 84/~ for j = 1,...n
J o md ng 0

and HP T,P

o T3P - TiPm“ < ¢ for i = l,...,n. The first lnequallty

implies that. the get (P ed} o is linearly independent. Let FO
be the projectlon onto the subspace gpanned by the vectors

{Pmej] so that ¥y = P . I claim thab lpy - F Poll £ 8. To see
: n
O
this let f be any vector in the range of PO, go £ = j g*
,j-—l

The followlng computation shows [P, - FOPOH £ 5,

le - woel® = 17 ooy - oo )l” = 2lay % fley - eyl

2
< ?laj;2~§ ley - poe ¥ = nfqa-no(ﬁ/v;;)z

1

e} %=,

_ _p &+ g -
Since eJ = e, -+ P e we obtaln FO b =P 0 for J = lseeesnye

P J mJ

Thug, the range of FO equals the range of FOPO and FO maps the

range of P, onte the rénge of Fpe Let S represent the re-
strictlion of FO to thg range of PO. 8 18 a linear operator
mapping a space of finite dilmension ng, onto a space of the saﬁe
finite dimension, so S ig invertible. The next step i to find
an upper bound for the norm ofﬂS“l. let T € R(PO)° Then

Iegel = el - le - poell = el - offell = (2 - o)l =

£ ¢ R(P,), then Fyf = 8f so lsell = (2 - &)liell.  Thus,

Ao lsel = el = (0l Hence 57 = gip . e inequality

POH < b tells us that Fy iz close to P, on the range of

We now want to show that FO ig close to P, on the range of

0

R(PO) will denote the range of Py
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To achieve thig and let £ . R(PO) go that P,f = 0, Let
g = S"lbe; g € R(PO) since S“l maps the range of Fy onto the
range of Poo Thus Fog = Sq = F0f° We are now able to make

‘the following computations.

lell = s~ rgel = 2 Il

Iror - Bogll = IFge - ¥Rl + 1FPos - Poell

< 0 + ol
= b el

mence, |Ftl® = (Fyf,8) & [(Fof - Bogof)] + [(Pogs£) ]
s <25 I2l® + o.

Therefore, HFO(l ~7P5)H s(iégj%. Combining this inequality
with the previous inequality ||P, - FOPOH £ 6; we obtaln

ey - FOH £ 6 (Q/lHG)%. Set & = & + (6/1~5)%¢ At this point
& is chosen g0 that & < 1 to enable us to apply lemms III-hE
which gtates there exlsts a unltary operator W satisfying
WP = F, and [|1 - wl| = 248, Set P = WP W*. We know Fy =
g0 W*PW s P and Py < WP W* = E, It now remalns to show that
pr,P - 7.l < & for 1= 1,000, We know |
;“PTiP - 1yP) = (e )Ty (WR ) - T, (We )| Since the right
_hand side of this equation ig a contlnuous functlon of W, we

“can make the above expression close to HPmTiPm - TiPm“ by

;fchoosing W cloge to l. However, [P T,P; ~ 7,2l 1s dominated




19

by & so Lf we make sure 5 < ¢/2 (redefining 5 1f necessary)

we will have the desired Inequallty.

We have now geen that all three definitions of quasi-
triangularity are equlvalent, Halmos shows that the set of
quasgltriangular éperators ig closed., The next theorem shows
that thils property 1ls aiso enjoyed by the set of quasitriangular

n-tuples.

Theorem ITI-4, The set of quasltriangular n-tuplesd 1e closed,

Proof, Ilet {(T?,Tg,..o,Tﬁ)} be a sequence of gquasltriangulaxr

n-tupleg converging to (TlgTQ,,a.,Tﬂ). Flrst, I wiil show that
: k k

Tl,TE,b.o,Tn essentially commute, Silnce T]‘;TJ - T?Ti is compact |
and the compacts are a closed set 1t is sufficient to show that given
e > O there exlsts a positive integer K such that k = K implies

k k
“(TiTj - TjTi) H(TiTj - TJTi)H < ¢, We have the following
gstring of lnequalitles.

Nk - o) - (1 - )l

. ' Kk k k ,
= “T§T§ - TyTy ot TiT§ - T?Ti + TJTE - TTy - Tyt TjTi“

T L I ERC R SR IO E R EHCAE

Iet M = supHTgn* Chooge K sufficiently large so that for k = K,

A - ) < e, 75 -l < ol Yy - Tl < 8/3, end

1
LA ™) < ¢/4|T,ll. For such a K, k = K implies
Kok
- jTi)~ (T

iTJ - TjTi)“ < €. Next it must be shown that
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T ,...,Tn are mutually quasitriangular. Thls 1s accomplished

1

by & slight modificatlion of Helmos' argument. Let k, be suf-
k

flclently large go that HTiO - Ti“ < €/3 for 1 = 1,...,n.

Definltion ITT-2 tells us that glven € » 0 and PO € P we can

" o J
0 0
f£ind P e p such that By = P and |[T,"p - pT,"P| < ©/3

_ . .
for 1 = 1,.,.,n. For each 1 we have HPTiP - TyF| = HPTiOP - pre|l

Ko Ko Xo
+ HPTi P~ Ty Pl + 7 7P - TyP | < e. Thus, (T,...,T)) e a

quagitriangular n-tuple.

Since the guasitriangular nutupleé are closed,; the comple-
ment of the set is open. My next task will be to find the
radlius of nonquasitriangul@rity for the n~tuple (Tl’T2’°‘°’Tn)'
The following 1ls adapted from the Versiﬁn for a single operator

presented by Apostol; Folas, and Voiculescu [2].

Definition IIT-G., For any n-tuple T define q(T)

= lim inf max {HPTiP ~ T,P|}3 q iz called the modulus
PEP,P"I i"-:l., aoepll

of guasitrliangularity. We say that the projectlons {Pk} imple-
ment the modulus of quasltriangularlty for the n-tuple T 1f

Py

- T and 1im max {|PrT,P |} = q(T).
koo ixl,...n  F LK ,

Definition IIT~-5., For any n-tuple T pf essgentlally commuting

operators let r(t) = inf{ max [|7y - Si“ : 8 is a quasitriangular
: 1=<i=n

n-tuple}. r(T) 1s the distance from T to the quasltriangular

n-tuples.,
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Notice that an n-tuple T of essentlally commuting opera-
tors is quasitriangular if and only if r(T) = O. The following

development will ghow that r(T) == q(T).

Congtruction ITI-6, Our first task 1ls to construct a sequence

of finite dimensional gubgpaces Xk satigfying

l, P

x, " T

k

2. Xk TiXK € X for 1 = 1,...,n, and

3, 1lim max “Pl Ty P H} = q(T
o iﬁlgo-¢;n

Iet {PR] be an increasing sequence of projectionsg ilmplementing

" the modulug of quasitriangﬁlarity of T and let Yk be the sub-

space Pkﬁ, Iet Xl = Y l where kl is chogen sufflcilently large

s0 that max {]\FL Ty P Yy 1} <& + q(T). Let X, be the sub-

izlgtfo;n_ l
gpace generated by Sg and YKz where S, 1s the subspace generated

by Xl and TiXi for 1 = 1,...,0n and where k2 > kl is chosen suf-
1

ficlently large so that {|pT T,P l < —= + q(T) and
1 T, T, -2

kg 2.

| 1
d(YKE,Sg) < Eg-uTiu for L = 1,...,n where d(YKE,SQ)

= H(I - PY )PS H. This cholce 18 posslible because PY -~ I
kp 2 ko

and [PY } implements the'modulué of quasltrilangularity of T.
k .

Each x ¢ X, can be expressed ag X, + x§ whe re xy € Yka,

€ Yig, and Hx?“ < E%-HTiH for L = 1,...,n. Hence, for
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each 1 we have the following string of inequallties.

llPl TiP

¥ % U T ) IR

7

1"y

< N, g, X 1)

< L a(m + Iyl el

< = 4 q(T).

In general let Xk be the subsgpace generated by SL and Yk_ where
i

SL ig8 the subspace generatgd by X{_l and TiXL 1 for L = 1l,seasn

is chosgen sufficiently large so that
1

and where k& > KL-l

4% 18,) < L2 |z, || end 3 fiPYk
1Ry

L L
Each = X, gatlsfles x = x_ + xT where x._ e Y X e Y
F N y Ty vy ¢k Ty f Tk

EL

?_&nd 1B H < HTiH for & = l,...sn. Thus we have
JLTx, Il = “P’L %3P Ky I+ ley LK Xyn

< I miry wl o Il

< =+ a(m + g2l

s W/t 4 q(1).

This completes the constructlon of the deslred subspaces {Xk}o

| < == + g(T) for L = 1,..0n,
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TLemma, IYI-7T. ILet T = (Tl’°“’Tn) be an n-tuple of operators

on ¥ which essentlally commute and Xk an increagling seduence

of subspaces satlisfying

- T and 2. X_+ T,X & X

1 K 1%k & xa

fOI‘ i = l,;oo’nu

)
[l

k

Set TL =

£
z-P* TPy for 1 = 1l,.00sn. Then
Ly % |

k

(Tl - Ti;‘Ta - Tg,.ap,T - TL) is a quasitriangular n—tupleo

Proof. Since P, T,P, = (P, =P )T, (Py =P ) the
— e T . S S 5

summands have orthogonal initial spaces and orthogonal rangesj

_fherefore, each Ti 1s well defined, It ig sufficlent to show

L

that (T; - ¥yp, = By (Ty - T{)Py for i = 1,...,n. Tor each
¥ k X

i
1 and 4 < k we obtaln the following string of equallitles, Note

that the condition 4 < k does not matter as we could always

define new projections Qm = Py and (Ti - Ti)erz Qm(Ti - Ti)Qm
K-+m
for all m, 1L = ly..0ynts Filrst we see that
Pl = (P - )T, P
i X Xyert X 17y
= P TPy = Py T P.
Xk+l 1TX, i Xy
= P T,P, =~ P TP + P, T,P - P T

P
S SR TR L S e T A Xy "

e also need the following relation,




24

XkTipxk_z PXk(niLPLnTi * o
L
- néLPXkP Ty PXK
k-1
N nELP n k! X )

- We are now able to obﬁain the deslred equallty.

The following lemma shows that q(T) 1s & lower bound for

ms, III1-8, Let T = (T1‘°'”’Tn) be an n-tuple of essentially
mmuting operators in 2(¥) and S = (Sl,ogo,sn) a quasitrian-
x n-tuple of operators in 2(}#), Then q(T) s r(t).

(¢, - TP, = T,P, ~ TP
R A S 1 S A
= TP - [ 2 P* T. P, P
i S Sl St kb Wb o
T, P S (P )T, (P P, )P
R R T D e N e
= T, P, - 2 (P - )T, ( - P )P
"X pet Fprn X Xy Epa ¥
( N (
— TP, - (I = Py )T,P, - = (P P, )T, (P, ~ P
i Xk Xk L k n=4 Xn+l Xn i Kn X
= Py T;Py = P TiPX
x - Pk X
4
= P, (T, - TY)P
b Sl S K &)
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i

Proof, q(T) = q(T ~ £ + 8)

iim,infn@:- PI(T - 8 + 8)P|
P=I

' 1tm infl (T - P)(T - S)P|| + lim inf{ (T - P)SP
- P=1I P=1I

H

. & 1im infllT - s + a(8)
- P- I

o - sl

Il

Coroliary ITI-9., q(T) = inf {{T - 8| : 8 is guasitriangular].

Theorem ITI-10, -Let T = (Tl,b.o,Tn) bé an n-tuple of essentlally
commuting operators in £(¥). Then q(T) = Inf I - sl ¢85 18

guasitriangular].

Proof, After applyigg the pfevious corollary we need only ghow
that inf {|T - 8] 1 & is quasitriangular} is bounded above by
a(T). Construct finlte dimensional subspaces by the method
degcribed in constructionIlI-6 so that:

1. X + T,X, & X

i k l fOI‘ i = 1, o.oo,n,

2, Py - T, and

k

max {HPL TP |} = q(T) a8 k = «.
iﬁl;#oo’n XK 1 Xk . :

E PX T, P By the previous lemma
jnL k
L
)

TZ - Tz,!o.o’Tn = Tn

1 X *

18 a quasltriangular n-tuple so

Therefore, inf {||T - S| : S 18 quasi-
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triangular} = lim supHPX TP, = q(T)
ko k>4, k k
Iet us now turn our abttentlon to the detalled examina-
tion of two ;nteresting examples of quasltrlangular n-~tuples,

20-1 senote the unilt sphere in RO 2n-1

Iet S s LE(S ) the space

of gquare integrable complex valued functlons on g2n-1

s and

2/ .on-1 : . :
(8 ) the Hardy space consisting of the closure of the
analytlic polynomials, cf. [4], We can construct an orthonormal
bagis by setting e, = “kzk.Where k = (kl”’°’kn) is an n-tuple

of nonnegative integers, ]kl = kl + k2 +.¢a+kn, kl = klokzoo.okni,

A//'1r1~:~11<;]--1)' K kK, Kk, k
ak ,j“*— s and Z = Zl 52 ouoz where Z 1ls any

- point in M. Let TZ represent the Toeplltz operator that
i .

multiplies each element of HE(Sgn—l) by Zi and T; its adjoint.
i

Iet us-now examine the structure of these operators to determine

the Joint guasitrlangularity of (T5 ,...,Ty ). First, let us fix
1 n

i and then decompose ¥ as an Infinlte dlrect sum % ﬂi sp that

éach summand 1g invariant under TZ . This 1s accomplished by

; 1

ietting H; be the subspace spanned by the bagls elements e

where kj ig flxed for J # 1 and k, 1n any nonnegative integer.

Observe that

zﬂ,k

We can think of the basils elements ey forming a square array
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with ki incressing along a vertical or horizontal line

determined by the integers kj, J % i. FEach ﬁi is spanned
by the elements on that line. More formally, ¥ = g ﬁi where-

. [

k = (k kn) 15 an n-tuple of nonnegative lintegers and ﬁ;

1’ . vy
is the subspace spanned by &y satisfying the conditlon kj is

fixed for J # 1 and k; = 0,1,2,... . Since each ¥l o1 in-

k
variant under TZ s the matrix of TZ wilth respect to the de-
i 1
composition is block diagonal; T, =® T | « o
* 2y T x Ayl

Proposition IIT-11, Each block is a weighted shift.

Proof. Tet e e ¥, k = (k

K l,“o,kn) anq

i
k. 2 1 = (kl’kz,nOD’ki"l,ki + 1Jki+l,’ '°°’k

0!
‘ K[-101 |,k
Tz,%x = Tz, [%(JEFE ° J/Th+lk. ) }Z }

« Then

1 1
- , [T Ik [k[)(sq+l) ok
= Jer? v/ k! TeEDE D) 2Ot

i
KL 1 /(o k)
=/ nF[E] Jor? (g*++1)}
]
= + B 1
o oFk] k+L

ki+1

Thus, T, e, = &, € where o, = eand T, | , is a
P S A WO % =V nrlET Zy 'yt

welghted shift.

Uging the preceeding computsation it 1s easy to determine

the value of TE on each bagsls element e,
i .
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0 ki = 0

1
i

Ty |
) 7, b1 |
i 4% k 1 1

Propogition III-12, The n-tuple (Tz ,TEE,..Q,TE ) is
1 n
guasitriangular. :

Proof. Flrst, note that whenever s Hilbert space is spanned

by common elgenvectors of an n-tuple of essentlally commuting

operastors, the n-tuple must be quasiiiriangularo Congtruct a

gequence of finlte rank projections converging gtrongly to the
. ) -

3o o0
Zl Zn

{dentity to implement the joint quasitriangularity of T

by defining Pm as projection onto the subspace spanned by

<ek>lk]5m' It follows from &) that thé range of P is invariant
under each Tg . Furthermore, direct computation shows that the
. i
commute ., Hence,“(TEl,.oo,Tz ) is a quasitriangular n-tuple.
n

Tt is interesting to examine the individual operators T,
1

in the n-tuple (Tzl,ow,TZn)° Various mathematiclans showed
that 1t 1z possible for the direct sum of two operators to be
guasitriangular when neither of the summands ig quasitri&ngular,
The followling proposition is due to Apostol, Folas, and

Voiculeécu.

Proposition ITI-4, Let V e £(¥) be a non-unltary isometry

and a,% B rea.l'numbers° If we set Tﬂfﬁ = (V4 a)® (V* + B)
4
are nongquasitriangular,

then T and T*
o Oy

5P B

Proof., See [1, p.168]
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The next proposition provides an example of & quagltriangular
operator that can be written ag an infinite direct sum of non-

quasitriangular operators.

Proposgition III-13, The operator TZ is quagltriangular but
i

the restrictlon of T, to ﬁi ig a nonguasltriangular operator,
i -
Proof. Iet T, = [
1 " K
3 where Ty =T, | 4 »
1 1 1B

L]
-

o

The adJoint of the operator TE has nonzero kernel slince 1t
i

gends the basis element ey to Zero,

1’k2"‘°’ki~15 O’ki+l"°°’kn
By showing that TE 1s bounded below we will be able to apply

1 ,
Douglas and Pearcy's theorem [7, p.177] which states that if

an pperstor ls bounded below and its adjolnt has nontrivial
kernel, then the operator 1ls not quasitriangular. We know from
a previoug computation that

& ky +1 (ki+l)(n+]k]—ki)

z,% = %® 1, P Ok T RETET T GarTi]) (o [ [y

fn+lkl"ki)ki + (n+]k|_ki) N ky +n +k| - Ky
(n+{k|) (n+ [k |-k, ) (n+ [k ]) (ot [k |-k, )

n + 1 1

‘ k
" (oot {x]) (nt [k |-ky ) I D e € S I

The last expression is constant 1n ﬁi since In thls subspace kj

+k
n
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is fixed for J # 1. The next computation shows that

k k
TZi 1s bounded below on the basis elements e,. ||T, e, |
= lloye ; N = Joglelle y | = loy]-le 2—r—[——l e Il To
show Tg is bounded below on all of u;, let x € ﬁi. Then
1 , ;
' k
X = % Xpe,, SO that “TZiXH = HT? (3 Xpe )l

=

3
T.FT Torn \2®

% X/ ST o ={§(Ke,\/—mni )
At

e 2 1%
2{5(}% RO %J } *m%m'(ixx,, = wrir M-

We are now sble to conclude that TE 18 not quasitriangular.
i

Since the essentlal spectrum of TZ 1s a disk we know that

i

Tzi must be quasltrlangular,

Is the n-tuple (Tzl,;..,TZn) quasiﬁriangular? For even n an af-
firmative answer follows from the theory of extension. For arbltrary
n, Volculescu provided the-answer in a private communication. He in-
{dicaﬁed the following proof, We proceed by deflning the strong left

eggentlal spectrum.

Definition III-I, The strong left essentlal spectrum of an

n-tuple T, denoted by USLE(T) 1s a subset of-cn; A dls in

GsLe(T) 1f there exists an orthonormal seguence {¢J}j€N guch

that iig(lgiianj - xj)¢mm = 0,

Volculescu, claims that for any nntuple T = (Tl,aoo,Tn)

of essentlally commuting operators and an n-tuple Y = (Yl,a,n,Yn)
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of commuting normal operators satisfylng ¢(Y) = E(osLe(T))
where E(Usbe(T)) denotesg the least Stein compact get contain-
ing GsLe(T)’ q(T) = q(T®Y), For the sake of completeness I

will outline the construction of the proof Voiculescu presents,

The following two propositions are needed.

1

Propogition III-J., et A e g_, (T) and let ¥ be another

sle
Hilbert space, X CH, YC ¥ @ W be finlte dimensional sub-

gpaces guch that ¥ D X © 0, Then there 1s a filnite dimensional

subspace K C ¥ @ #1

s KoY + (TJ @® XJ.I)Y for J = 1,..0,n and an
isometry U : K = ® such that for Z = U(Y) and W = H]Y we have
]]U(TJ ® RJI)]YW*]Z - TJ.]ZH £ e for J =1,..0,n where ¢ » O

is given. In particular |||(I - Pz)TjPz“ - ‘
- Iz - py)(n; @ MNP = e IW(Ry(Ty @ 21)[Y) w*, - 27|
= ¢ and (T @ ) = q(T),

Proof [12]., The proof begins by replacing T by T - A if

necegsary so that it can be agsumed that N = 0. Then the

finite dimensional subspaces Xis Xy and XS are deflned so
1

that X, © X, c ¥, X, € ¥, X, ®X, ® Y, and Tj(xl) c Xslfor

J =1,se.,n., The desired subspace K is defined to be X. ® X

3 2°
The exlstence of an isometry V : X2 - H gatlsfying
"TJPV(XQ)H s ¢ and V(Xe) 4 X5 18 known since 0 is in cs&e(T)°

The lsometry U : K = ¥ 1g defined to be the inclusion map on
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XB and V on oo All of the desired results are obtalned by
g long string of inequallities based on the propertles of the

above subspaces and maps,

The next proposltion relates the disbance between the
Taylor spectrum [12] and the strong left essentlal spectrum to

the modulus of quasltriangularlty.

Proposltion IIT-K. Iet N e Ln(ﬁ) be an n-tuple of normal

operators and let K denote the Taylor spectrum of N, ILet d

denote the distance d(Z,Zl) = max |Z, - Zl] in ¢% and suppose
1sjsn Y J

that supld(Z,0.,.(T)) |Z € K} < e, Then |q(T ®) - q(t)] <.

sde

Proof [12], It ls possible to flnd Z(kJ € G (T) and-pairwise

gle
disJolnt Borel subsets E of X satlsfying U % = K and
k=1

1
(WL, N3, onesXy) BY

a(z(¥), %) < . Define the n-tuple Nt

il

1 _ (1) S(2)p L. p(n)
Nj = Zj Pl + 23 P2+ + Zj Pn where Pn denotesgs the

gpectral projectlon of N corregponding to 2, We can now con-

clude that |N - N7 < & and q(T © N = g(T e z(l)_e---@-z(n))

= q(T) by applylng the previous proposition.
It 1s now posslble to prove the deslred result.

Theorem IIT-I, Iet X € Ln(ﬁ) and let Y be a normal n—tﬁple of

commuting operators such that o(Y) = E(USLE(X))a' Then

a(X) = q(X ® ¥),
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Proof [12]. The ineduality q(X) = (X @ Y) is trivial zo it

18 necegsary to show the reverse inequallty. The proof la
based on the constructlon of the following objects. The open
neighborhood'hlof Us&e(X) 18 a gubset of ¢V satlsfylng

sup d(z’cs&e(x)) < ¢, For an ordinal p we construct the open
xeh
set A uslng transfinite induction., TLet A. = A and A_ = U Ap?

if p is a-1imit ordinal, In the case p =p!' + 1, let

Qb = W(Két) where ﬁ?, 1g the envelope of holomorphy of A and 7

ig the proJectlon obtalned by extending the coordinate functions

'ﬁrom Ap, to ﬁé,& Define H? ag the direct sum of a countable

infinity of coples of Le(Ap) and ZP

-given by multiplicatlon by Zl”‘“’zn* HPt denotes the subspace

¢ I™(H) as the normal n-tuple

of antlanalytic functions to ¥_ and ﬁpn = ﬁp R Note that

o) pt°

ﬂpn is an lnvariant subspace of Zpg ZP' denotes the com-

pression of 7, to H,, and Z,u the restrictlion of Z, to ﬁpu, By

usling the preceeding proposltion IIX-K it is sufficient to show
g(X) = qxX ® ZP) + € for all p. Thls 1ls done by repeated use

6f that proposition and approximation arguments,

Now let us return to the n-tuple of Toeplltz operators

T = (TZ sse0sT, ) and apply these results, T is an n-tuple ol
1 n

eggentlally commutlng operatorg whose essential spectrum 18
the sphere, It follows by applying work of BDF [3, p.68] that

under these conditions USLB(T) = gen-1 _ ¢ ¢ 1 [a] = 11,

The smailest compact Steln set contalning the sphere, denoted
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E(8), can be thought of as the smallest domain of holomorphy
containing S. Thus E(S) = B = {» ¢ ¢ 1 |A]| s 1}. Using the
work of BDF on extensioﬁs, we know that Ext(B) 1s trivial since
B is contracfable. Therefore; any n-tuple of essentlally
normal, essentlally commuting operatoxr® with Jolnt essential
spectrum equal to B must be gquaslitriangular. Conslder once

again the n-tuple T ::(Tz s+esTy )« ILet Y be a normal n~tuple
N :

1
of operators satisfylng oY) = OsLe(Y) = E(GsLe(T)) = B, Then
Volculescu's result enables us to conclude that ‘

g(T) = q(T ® Y) = 0 since T @ Y generates the trivlial extension.

Examining direct sums more closely.we find that the quasi-
triangularity of a dlrect sum implies the guasltriengularlty
of each gummand under certaln clrcumgtances. A brlef Intro-

duction to the notion of polynomial convexity ls necesgary.

Definition III-M [8]. A domain D & et 1s polynomially convex

1f for every compact subget K of D, the set ﬁ = {7 ¢ @ 1 | £{Z) ]
< “fHK for all polynomials £} is contained in D, R 18 called

the polynomlially convex hull of K., K 18 polynomlally convax
ir X = &, |

Theorem IIT-N, (Oka-Weil approximation [8].) Let K be a compact

polynomlally convex subget of ¢, Then every functlon analytic

in a nelghborhood of X can be approximated uniformly on K by

polynomlals.
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Lemma III-14, The cross product of n polynemially convex

gets In polynomlally convex.

Proof., ILef Kl,o..,Kn be polynomlally convex subsets of e,

n
is polynomially convex, I must show that X Ki = 3
: 1=1

n
To show X K

4=1 T

where S = {@1,,..,Zn) : |p(2)] = Sﬁp lp(Z)| for all poly-

Ze X K
fe1 T

) _
nomials p}. Clearly, X K, € 8. ILet Z = (Z,,...,% )e5 and
) i 1 n

ip be any polynomial defined on Ki' Then ip can be considered
88 a polynomial ip* defined on the cross product and independent
of the Z, variable for J # 1. We know ]ip(Zi)] = ]ip*(Zl,o.o,Zn)}
£ sup ]ip*(Z)| = gsup Iip(Z )i+ Hence, Z, ¢ K,. Simllar
n 7 1 i i
1854 |

reasoning shows Zy ¢ XKy for J# Ls

Proposition III-15. If Ty ® T, is quasitriangular and UL(TE)

can be separated by open contractable sgets, then Tl and Ty

are gquasltrlangular.

Proof, It is sufficlent to show that whenevex Ti - A 1ls Fredholn,

1nd( N

Fredholm. We know that we can separate Ue(Tl) and Ue(TE) by

~ X)) =20 fori=1,2, Let i =1, Suppose Ty - \ 1is

open contractable sets Oy and Op. Suppose X ¢ 0. Then
ind(Ta'— A) = 0, but ind(Ty - &) + ind(T2 - A) zcasojnd(Tl - \)
= - 1nd(T, - A\) = 0. Now suppose X £ 0,. Then ind(T; - A) = O.

An identical argument works for 1 = =,
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We need to use the nption of pblynomial convexlty for
& conditlon on the spectrum to see when the guasitriangulerity
of a 2~tuple of direct sums implies the quasitri&ngularity-of
the E—tuples'of'summands. Note that for subsets of the plane

polynomlal convexity 18 equivalent to glmple connected.

Proposition ITI-16. If (S, ® Spy Ty ® Tp) 18 a quasitriangular

2-tuple such that ¢ (Sl’Tl) and Ue(SE’TE) can be geparated by

polynomially convex sets P, and P, then (Sl’Tl) an@\$2,T2) are

guaslitriangular 2-tuples.

Proof. Deflne analytlc functlons £ and g by setting £(Z) = Z
on Oe(Sl,Tl), £f(Z) = 0 on © (SQ’TE) (Z) = Z on o_(8 03 Tp)s

and g(Z) = 0 on ce(Sl,T The polynomial convexlty of Pl U P2

l)’
implles that f and g can be uniformly approximated by poly-

nomialg {fn} and {gn] regpectively. Using the functlonal

calculus, (fn(Sl ® 85)s fn(Tl ® Ty)) and (g, (5, ® 8;),

g_n(Tl ® T,)) are quasitriangular 2-tuples. Since the quasi-
triangular 2-tupleg form a closed set, lim(fn(S1 ® S5},

£, (T, ®T,)) =(,,T) and linrl(e;ﬁ(S:L ®85)s 8,(T) @ Ty)) = (Sz’Te)
are gquaslitrlangular,

In the finlte dimensional case every operator 1g triangular;

however, every n-tuple is not Jolntly triangular. The following
proposition ghows that in this setting commutivity is a suf-

ficient condition for jolnt trlangularity. Flrst, a lemma.
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Lemms ITT-17. Let Tl,u..,Tn be commuting linear operators

on a finite dimensional Hilbert space. Then Tyseses T, have

a common Invarlant subsﬁace of dimenslon one,

Proof. For n = 1, the Invarlant subspace 18 that spanned by
any elgenvector., Asgume the hypothegls 1s true for TysanesTy 4
ane let the desired subspace be gpanned by the vector X, 20

that T,X = \,X for i = 1,...,n-1. Congider the set

i
{x,T X,TQX,¢.,,TLX] where 4 ls the largesgt integer so
n*n n

that 5 1s linearly independent. T, restricted to the subspace

4
generated by S has an elgenvector y = 2 UKTKX For i = L,4s.yn-1,

k=0
k L,
T,y =Ty ( z akaK) £ o TS X = Ay ( 3 @ ToX) = Ay, Thus,
k=0 1 k=0
the subspace gpanned by the yvector y 1s invariant under Tl""’Tn'

Propogition ITI-18, Ilet Tysae0sT be mutually commuting

operators on H, dim ¥ = n < «, Then thers exigts an increas-

ing sequence of subspaces {Mi}izl, dim Mi = 1 such that each

Mi i invariant under each T

jﬂ

Propof, For dim ¥ =1the statement is trivially true. Assume

the hypothesis for dim ¥ =k - 1. Iet dim ¥ = k. By the

previous lemma there exlsts a sgubspace M, of dlmension one

which is invariant under each Tys 1 =1,...,n., Consider the
guotient space H/Ml which has dimension k - 1. The inductive
hypothesis holde o there exlst subspaces {leg;i of ¥/, wlth

dim N, = J for J = lycssyk - 1l.that are invarlant under T, |
J 1 ﬁ/Ml
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for 1 = 1,...,n. Define M, . as the subspace spanned by

NL and Ml for £ = 1,.¢.5k - 1. The dimenslon of M is

41
L+ 1 and ML+1 18 invariant under ‘each Ti g0 the condltions

are satisfled.

When we allow the dimenslon of ¥ to become countably in-
finlte, commutivity is not a sufficlent condition for joint
quasitriangularity., However, 1f we add an additional hypothesis

we obtaln the deslred conelusion.

Proposition III-M, If Tl’T2’°"’Tn are commuting normal

operators on ¥, then (Tl”"’Tn) 18 a dquasitriangular n-tuple.

°

FProof. Thig result follows from the BDF proof that the trivial

extension 1s unique. See Corollary II-F.

Let us now examlne the Joint quasltriangularity of an
n-tuple H = (Hl,...,Hn) of self-adjoint operators which almost
commute., Let X = ce(H). Conslder any real polynomial p defined
on the Joint esgsentlal sgpectrum X of H, a subset of R™., The (
assumptions on Hl’“"’ﬁn imply tﬁat p(Hl"'°’Hn) (which 1s
well deflined up to a'compact partubation)is an essen-—
tlally self-adjoint operator, and therefore, the index of
p(Hl"'°’Hn) - A 18 Zero whenever 3 ,é'oe(p(Hl,...,Hn))° Hence,
by applylng the StoneéWeierstrasa Theorem we can conclude that
the map Y, i Ext X = Hom(vl(X);E) ig ddentlcally zero. Since
we know that for subsets ofim3 Yy 1s an lsomorphism, it ls

pogslble to conclude that any 3-tuple of melf-adjoint almost
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commuting operators which is Jointly quesitriangular generate

the trilvial extension.

In a perbonal communlcation from Larry Brown, he shows
that the situation differs drastically for 4-tuples of operators.
Using the example desecribed in [6,p.516], Brown defines
operatorg S and T which are esggentlally normal and essentilally
commute, He constructs the operatoré go that the real and
Inaginary parts, Sr’ Si’ T,., and Ti resPectivély, do not form
a quasitriangular 4-tuple, but (54 ® si’, Sp ® 8., T, ® 1y,

T, © T.) i8 a quasitriangular L4-tuple and generates the trivial
extenglon. The example 1s based on the fact that Ext(X)
exhiblts torsion.. Thus, in higher dimensions there are other
phenomena whleh occur and must be considered. Kaminker and
Shoeket [10] discues higher order topologlcal invariants in
their work on the behavlor of Ext(X) for higher dimensipnal

spaces.
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TV. EXAMINATION OF 2-TUPLES OF OPERATORS

We will now sxamine  a restric?ed clasggs of operators,
2-tuples of esgentlally commuting operators; one operator will
be essentially unltary and one operator will be essentially
gelf-adjolnt. Since thg egsentlal gpectrum of the unltary ls
s sgubgset of the unit clrcle and the egsential spectrum of the
self-adjoint 18 real, the jolnt essgentlal spectrﬁm is a sub-
get of a cylinder. The joint essentlal spectrum can be con-
sidered as a subset of T'X [0,1] with only sllght modificatlons

normalize the melf-adjoint operator.

The followlng example shows the relevance of an Index

condition for the Jolnt quadgitrlangularity of two operators.

Let U, denote the forward shift and U, the backward shift.
Consider the 2-tuple (U,H) = ((Ui)a, %JJ ® (U+;§I), The Jolnt
egsential spectrum of (U,H) ig the union of two circles,

2
oe(U,H) = T X {%3 gﬂ. Since ind(U+) = -1, we know U, 1s not

guasltriangular. Hence, (U+, %Jj 18 not guasltriangular,

2 1 2
Since GE(U:) , 1) and o (U,, 3I) can be separated by poly- |

nomially convex sets, proposition IIL-16 implies that (U,H)

is not quasltrlangular.

Iet ug now move to a more general setting by examinlng a

pair of operators (U,H) satisfylng the following condltlons:

w(U) is unitary, w(H) 1s self-adjoint, [U,H] ¢ ¥, and
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ge(U,H) =X cT x [0,1], The question to consider 4s when

18 (U,H) a quasitriangular 2-tuple?

First, we will gtudy the structure of the Jolnt esgential
spectrum, the set X. We can examine X as a subset of the

3

¢ylinder which site in R” or we can consider the subget ¥ of:ﬁ?

homeomorphlc to X obﬁained In the following manner., TLet

2

p :T x [0,1] ~R" be defined by p(et®,%) = e18(% + 1), we

~obtain an annulus ag geen In dlagram IV-1, Iet p(X) = i; a

subget of the Z plane,

| 1
() | | v ﬁy— X &_/ "

Diagram IV-1

PR Y

e

Note thii X is homeomorphic to ¥ so Ext(X) = Ext(¥X)., Iet ¢
represent the extenslon generated by (U,H) in Ext X and T the
cbrresPDnding extension in Ext(X). Since ¥ 13 & subset of R”
the extension ?,.and correspondingly the extension T is de-—
termined solely by the index of operators in the algebra
generated by U, H, I, and ¥. Recall that Y, ¢ Ext (X)

- Hom(wl(i),zn and since ¥ g:mz, Y, 1s an lsomorphism. The
set C\X can be written as o, U(igooi) where O_ represents the
unbounded component and each Oi represents a bounded component

of the complement of the spectrum,
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Definition IV-2. Let (zl,xl) and (ze,xz) be points in

T x [0,1\X. Let p((2Z1,%)) = p; and p((Zy,20,)) = p, be

located in components Oi and 0, respectively where p denotes

the homeomorphism from T X [0,1] to]Re. If l(pl) > l(Pg)

where k(pi) = %y we say O, 5 0.

Congtruction TV-3. ILet P, and p, be defined as 1n the preceed-

ing definition. ILet Kp denote the line passing thru (0,1)
' 1

and (zlfxl), let Lp1p2 denote the line joining (Z;,),) and (22,12)

and let T ¢+ Ty, :IR3 = ¢ denote the projections which send the
Py P1Pp
lines K. and L respectively to the origin. Geometrically
P1 b1Po :

we are projecting along these lines to the plane % = 0. See

dlagram IV-4. Notice that I, NX=¢gand K NX =g due
P1Po Py

to the concexity of M X [0,1]; and therefore, 0 £ 7

0 £ (X). K L
L ¢
. . ‘\

%@jix

K (X) and
Py

Diagram IV-~4

To prove the major result, we need the following definition.

Definlition IV-5., Two components Ol and ngare 8imilar if there

exlst polnts p; € 0, and p, € O, such that A{p,) = A(p,).
1 1 2 2 1 2
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Definition IV-6. Two components 0, and O, are sald to be

n
k=1

let [Oi] represent

1

equlvalent 1f there exists a sgequence {OK guch that 0

1+1 1

is similar to 07—, 0 = 0, and O = 0

1 2°
the equivalence class which contains Oy«

Definition IV~7. ILet p be any point in the component 0 of

C\X. We define the function £, : ¥ - ¢\{0} by £,(2) = 2 - p.

We are now able to prove the general result.

Theorem IV-8. TLet (U,H) be a 2-tuple satisfying w(U) 1s unitary,

7(H) 1s self-adjoint, [U,H] ¢ ¥, and X = o (U,H) €T x [0,1].
-~ Then (U,H) iz quasltriangular if and only if

1. For every component Oi e 0\, 0 = Yl(T)[fO ]; and
i

2. TFor every palr of componehts O1 and O2 with O2 = Ol’

Yl(T)[foll_S'Yl(T)[foa].

Proof. First let ug assume (U,H) 1s a quasitriangular 2-tuple.

Using the notatlon of construction IV-3 we know that O #-WK (X).
1 | Py

These facts imply thet . (U,H) is Fredholm and w, (U,H) is

K
Py Py

quaglitriangular where WK(U,H) ig defined by the functlonal calculus

Iblpz

1g Fredholm and quasitriangular. But every Fredholm quasitriangular

up to a compact perturbation. Using simllar reasoning 7 (U,H)

operator must have nonnegative index. Therefore O £ ind Tg (U, H)
P1

L (U,H). But considering the orientation of the
P1Pp

and O =




Lk

components O, and O, relative to the lines Ib p, 8nd K

o 1P P
yields that [r, ] = [f02] - g land [me ] ={f, 1.
Plp2 L p]_ 1
Therefore, 0 = ind T (U,H) = Yy (T) [ry, ]l = Yl('r)[foe]
PiPo P1Pp
= ¥ (1)[f, ] and 0 = ing T (U,H) = Y ()l 1= Y (T)[£, 1.
1 Py Py 1

For the reverse implication we must show that 1f conditions
1 and 2 are satisfied then (U,H) is a quasitriangular 2-tuple.
Using the fact that each component Oi 18 an open sét condition 2
allows ué,to conclude that for any components Ol and 02 in the
same equlvalence class, Yl(T)[fOl] = Yl(T)[f02]° The index is
a nonnegatlive Integer valued funcition that ig decreaging as we
move to the right along the cylinder. Tet [01]"“’[0n] re-

bregent the equlvalence clasges of the components of @\X where

n; = Yl(T)[fOi] and ni,é Ny 4+ For each equivalence class [0;]

iet al inr - inf k(p)‘and 2t sup = s8up A(p). TFor (U,H) we
pe reC
Oe[Oi] Oe[Oi]

can draw a "spectral picture” which shows the componentg and the

indices. For example see dlagram V-9,

Dilagram IV-Q
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I wlll now construct a quasitrlangular 2-tuple of operators
(U,H) which generates the same extenslons as (U,H)., This will
be accomplished if (U,H) and (U,H) have the same indices and
the same joiht_@ssential spectrum. It wlll then be possible

to conclude that (U,H) is also quasltriangular. Let (UO,HO)

generaté a trivial extension with ce(UO,HO) = X, Congider

n, -n
the sequence of 2-tuples {((U¥) B

| s kiI)}L"l " The 2-tuple
n, -n

i +1
((u) * 1

i=1"
s KiI) hag the clrcle of radius 1 with center

(Ri,o) for 1ts Jolnt essential spectrum, Iet (T,H) = (UO,HO)
o et UyBip -

e[ @ ((u*) s MI)]. Then (U,H) and (U,H) have the same
’ i=1 :

"spectral plcture" and thus generate the same exbtension. More
formally, let T and T represent the extensions generated by
(0,H) and (U,H) respectively. Then [T] = [T] since all cor—

responding indices are ldentlcal,
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V. PROJECTIONS FOR THE FUTURE

In conclusion let us examine some of the potentlal set-
tings for future sgtudy. It should be possible to extend the
theory developed in thile paper to subsets of more general
manifolds. A slmple generalization would be to certain types
of surfaces of revolﬁtion. Glven & palr of essentlally normal,
pairwlse essehti&lly commuting operators (Tl’TE) whose Jjoint
esgentlal spectrum X is a subset of ¢ X R define P = {p(z,x) : p l
is a polynomial, p(z,x)‘#'O,UDJXL.CDnSidér P ag a sgubset of !
-C(X)“l, the continuous.invertible functions on X. The set P
: 1(

_generates a subgemlgroup " of 7 X}. We know that if (Tl,TQ) |

18 quasitriangular, f(Tl’T2) 1s a quasitriangular operator for
any f e 7 . More formally, Yl(v+) cez" y (0} 1s a necessary
condition for the quasitriangularity of the pair (Tl’TE)' We
conjecture that this 1s algo a sufficient conditlon. The

~sltuation with no restricticns on the spectrum is much more

complex due to torsion. Ultlimately, we would hope to extend
the results to n-tuples of essentlially normal, pairwise essen-
tially commuting operators with few, if any, restrictions on

the structure of their Joint essentlal spectrum.
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