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Abstract of the Dissertation
FREDHOLM AND INVERTIBLE TUPLES
OF BOUNDED LINEAR OPERATORS
by
RAUL ENRIQUE CURTO
Doctor of Philosophy
in
MATHEMATICS
State University of Hew York at Stony Brook
1978

" We consider the sets I(H), D(H) and N(H) of
comnuting invertible tuples, doubly commuting inver-
tible tuples and normal invertible tuples, respectively,
of bounded linesr operators on a Hilbert space H,
where invertible is to be understood in the sense of
J. L. Taylor: A joint spectrum for several commuting
operators, J. Punct. Anal., 6,2(1970). We prove that
D(H) and N(H) are arcwise connectéd, regardless of the
dimension of H, and that the same is true for I(H)
when H is finite dimensional, Along the way we develop
a number of techniques which generalize nicely those
of the '"one variable"rsituation. In.particular,

sp(T,H)=3p(T,L(H)) carries over to n-tuples.

1ii




We define F(H) to be the set of almost commuting
(=commuting modulo the compact operators) tuples of
operators on H whibh are invertible in the Calkin
algebra, We obtain an integer;valued index, which is
continuous, invariant under compact perturbations and
onto Z. A natural question is to determine whether
index is the dnly invariant for the arcwise comﬁonents
of F(H). This is the deformation problem. We solve it
in several special cases, while delineating a general
approach to its solution. For instance, we prove that
(21,22) and (z:,z;) on 52(51381) lie in the same path-
component., At the same time, we give a comprehensive
aceount of all basic facts of this "several variables"
theory, in complete harmbny with the classical Xnow-
ledge. We prove thet an essentislly normal n-tuple with
all commutators in trace class has necessérily index
gero (n32), and that a natural generalization of

Atkinson's theorem holds in F(H).
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CHAPTER O: INTRODUCTION

Given an algebra B with identity 1 and an
‘element a of B, ons says that a is invertible if there
exists be€B such that ab=zba=1. For two or more commuting
‘elements ay (i=1,¢..,n) of B, there is a classical no-
“tion of joint nonsingularity for the case B commutative,
which requires the existence of elements biEB satisfying
the equation a1b1+g..+anbn:1. The‘specﬁrum thus obtained
retains most of the properties of the "one variable"
spectrum, In the general case, one can elther replace B
by some commutative subalgebra containing the ai's or
ask for a solution (in B) of the preceding equation. In
one case the spectrum will depend strongly on the choice
of the subalgebra: in the other, some of the usual proper-
ties will not hold.’

When Bkis L{X), the algebra of bounded operators
on a Banach space X, the open mapping theorem implies at
once that an operator T is invertible iff ker T=(0) and
ran T=X., Thus, invertibility can be defined in terms of
the aétion of T, rather thanrthe-existence of an operator
$€L(¥) with TS8=5T=1. Unfortunately, the classical notion
of nonsingularity for a commuting tuple of operators on

X, as explained in the first paragraph, fails to reflect




:the actions of the operators. J. L. Taylor discovered
& new definition, independent of thé subalgebfa, and
“that does reflect those. actions, He used the Koszul
compléx for the tuple and defined invertibility as
exactness of the complex. It tufned out that all stan-
dard results of the classical theory carry over when
one uses this new notion, which we take for our work,
The topological structure of the get of inver.
tible operators on a Hilbert space H has been of great
importance in Operator Theory. In this thesls we study
the related question for tuples df operators. We prove
that the sets D(H) and N(H) of doubly coﬁmuting inver-
tible tuples and commuting tuples of normal operators,
respectively, are arcwise connected, and that the same
holds for I(H) (=commuting invertible tuples) when the
dimension of H is finite. Along the way we develop a
number of techniques which generalize nicely those of
the "one variable" situation., In particulsr, Sp(T,H)=
Sp(T,L(H)) carries over to n-tuples,

An operator T is sald to be Predholm if its
image in the Calkin algebra A(H) (=L(H) modulo the com-
pacts) is invertible. A well known theorem of Atkinson
states that T is Fredholm iff ran T is closed and both
¥er T and ker T* are finite'dimensionai, One then defines

' #*
the index of T as dim ker T-dim ker T and shows that it




is continuous,-invariant'under compact perturbations

and onto Z. In connection with these ideas, we consider
glmost commuting (=commuting modulo the compacts) tuples
of operators on H and define a notion of Fredholmness
(aé in [4]), in complete harmony with the preceding.

We obtain an index, which is continuous, invariant under
compact perturbations and onto Z. We also get a natural
generalization of Atkinéon‘s theorem. At the same time,
we glve a complete account of all basic facts of this
"several variables" theory.

Asscociated with index, the deformation problem
arises naturally. We solve it in many particular cases,‘
while delineating'a general approach to its solution, |
For instance, we prove that (21,22) and (z:,zZ) on
H2(31x81) lie in the same path-component.

The organizatioﬁ of the paper, intended to be
expository on the subgec%, is as follows:

Chapter I 1is devoted to studying the Jjoint spec-
trum, summarizing the main resulis in [ﬁQJ and [13] as
needed for our purposes. At the same time we prdve some

additional facts on the Koszul complex and obtaln a
matrix representation for a tuple.

‘We then congider, in Chapter II, gquestions of
Fredholmness and invertibility of tuples. In this direc~

tion we prove Proposition 3.1, a key step for the




subsequent results. In particular, invertibility turns
out to be equivalent to the usual notion of invertibility
for the associated matrix representation. Consequently,

Sp(T,H)=Sp(T,L(H)) remains true when we consider tuples.

Many fundamental facts on invertible tuples,; including
gpecial manipulations of the coordinétes, which will
prove to be useful in dealing with the deformation pro-
blemn, and a hatural generalization of Atkinson's theorem,
complete the chapter,

Index igs the main subject studied in III. In
addition to the propertles mentioned af the beginning,
we obtain an "Euler characteristic formula" version. We
then compufe.the indices of (21,,..,zn) acting on both i
H2(31x...x31) and H2(82n“1), and study the way index !
behaves under algebraic perturbations of the coordinates. |
Interesting enough is the fact that an essentially nor- i
mal n-tuple with all commutators in trace class has index |
zZero §n32). Finally, uging index arguments we show that
Sp(z1,...?zn) is zﬁ;Di or an, according to the space
we consider,

The deformation problem is studied at length in
Chapter IV, We first solve it in many easy cases and then
give‘a éomplete.exposition of the essentially normal si-
tuation, proved in [{10 By showing an explicit path from

(21952) on the bidise to (21,22) on the sphere, we



conclude that they lie in the same path-component. We
then show how, in case our tuples have first coordinate
almost doubly commuting with the rest, and closed range,

the problem reduces to tuples with at least one partial

digometry V. Next, we solve the deformation problem when
V is semi-Fredholm, reducing the situation to our Enow-

ledge of Ho(s'xst).

In Chapter V we only conslider commuting tuples,
After a series of algebraic lemmas (interesting in their
own right) involving invertibility and some manipulations
with the Koszul boundary maps, we get to the connectedness
of invertible tuples in finife dimensional spaces. We show
+this by using a simultaneous upper triangular form for
commuting matrices. A transfinite induction érgument then
piays a central role in our proof of the cdnnectedness
of doubly com@uting invertible tuplés, along with an exhaus-
tive analysis of the elementary cases. The connectedness
of normal invertible tuples complete the chaptef.

We now esatablish our notation.

Nétation

-We denote by H a (complex) Hilbert space, L(H)Vis the
algebra of bounded linear operators én H, X(H) is the
ideal of compact operators and A(H) the Calkin algebra
L(H) /K(H) . The canonical projection is X :L(H)—»A(H),



sometimes called the Calkin map., Whenever L(H) and A{H)
‘are in the context, we shall agree to denote the elements
in L(H) by capital letters and reserve small letters for
those in A(H). Thus, if T and t are used, we mean: TeL(H),
teA(H) and ®(T)=t.
2 (el -
We shall consider L°(S Yy n=1,2,¢.., the

face area measure. H2(82nf1) is the subspace of functions

which are boundary values of analytic functions in an

Por kez?, zes?™ ! we define lx] = 55:33_, k._'TEFk ,

ii iki There js a natural orthonormal ba31s for

i=3
Hz(Szn”1), namelys e, = g ; where ! (nrfe]=1)

K" %x% '
(ot. [2]) | ‘VZ}K kl

We shall write L (m %o, .%5 ! } (n factoru) for the

space of square integrable funetions on S,x.e.xs with
respect to the‘prodﬁct measure induced by taking the
Haar measure on each circle, Then szzk defines an ortho-
normal basis for L(5'%...xs') and H%(8%%...xs') is then
deflned as the subspace of functions with (f,fk)=0
whenever k ¢ (2¥)%. Under the identification IL°(S'x...xs')
=Lz(S1)Q§,s*é3L2(“1), H2(S1K..,XS1) becomes H2(S1)§§..,Q§
2(ST) The funections in G (S ... xS ) can be thought of

as boundary values of 12 ( jﬁ‘D ~functions which are ana-

lytic on the interior of the polydisc.

space of square integrable functions with respect to sur- .




T

o0 .
Por Pel (321’1-1) (respectively LGQ(S1$¢...XS1)), we
define the Toeplitz operator ﬁFeL(Hz(Szn"1)) (respective~

1yAW?@L(H2(S1X..,xS1))) by Ter=P(Pf) (resp. Wf=P(§r)),

2

where fEH" and P is the 6rthogonal projection in L(LQ)

onto Hz. Under the above identifications, it follows that,

1” [ 2 J OKS‘I by

?(21,..7,zn):‘f1(z1 ),...?n(zn), then ?@'Lm(s1x...xs1') and

if ?EaL“XS1) (i=1,..44n) and ¥ is defined on S

Vo is Tgfg..£@T?n. In particular, if ?%21?""Zn)=zi’
then %? is I@..&%Tzém..@ﬂ, where ’1?2 is the unilateral
shift on HO(S'). |

Preliminayry Regults

We now étate and prove some standard facts that

will be needed in our work.

PR 1: An operator T€¢L{H) is
left invertible iff T%T is invertible
right invertible iff TT is invertible
invertible iff T T and TT are invertible.
More generally, the same holds for elements of any C*—al-,

gebra,

Proof: It suffices to show the first statement, by virtue
of the existence of faithful representations and spectral

' #
permanence. Assume T is left invertible; then T is

'

Y

&

H* A M
right invertible, i.e., T is onto. Since ran T =ran(T T)




¥*
by polar decomposition, we see that T T is onte, or
i ig ihvertible, being self-adjoint. Conversely, if
# - .
T T is invertible, then (T*T) 2" {5 a lert inverse for

T. The other assertions follow in the same way.

' *
PR 2: Let B be a C ~algebra and 4 be a square matrix
over B. Let d*-be the matrix adjoint of 4 in the sense

that the (i,j)-entry of a" is the adjoint of the (j,1i)-

*
entry of d. Consider 4 acting on B. Then ker d=ker 4 4.

- Consequently, ker d*f)ran d=(0).

: : #*
Proofs: Let k be the order of d and assume that 4 da=0,
— a

1"
where az(é ) and aieB (i=1,...3k). Let b be the kxk-
) k .
matrix over B whose first colunn is a and the rest are.
* 2 H* % '
zero. Then 4 db=0. Therefore, db” z“b d db”zO, so that
db=0, or da=0. (The norm we use here is the natural norm

that makes Mk(B) into a_C*walgebrai) We have thus proved

. * :
that ker d dCker d. The other inclusion is obvious.

- * ’
PR 3: Let B be a C —algebra. We know that there exists

a *-isometric isomorphism § ‘of Binto L{H) for some Hilbert

space H. Therefore, every element a of B has a polar decom=-

pogition, when seen in L(H), of the form QW, where Q is
. * . *®
the image of (aa )%. wWhen Bis a W -algedbra, W is also in

in1¢h Similarly, we can get decompositions of the form VP.

PR 43 Let T be an operator in L{H) and T=VP=QW 1ts polar

decompositions. Then ran T is closed 1ff ran P is closed




iff ran T* is closed iff ran Q 1s closed.

roof: If Px —sy, then VPxnnﬁNy. If ran T is closed,

Vy=Tz for some z. Then V Vy=V Tz=Pz. But y is in

iy A
(ker P) =(ker V), so that V%Vy;y. Therefore, ran P

. C

is closed. Nexzt, ran P=ran T , so that ran P closed

o *
=pran T closed. By the first argument, if ran T is
closed, so is ran Q. Pinally, ran Q=ran T, so that ran Q

closed=dran 1T closed.

PR 52 TLet P be a positive operator. Then ran P is closed

iff ran P2 is closedﬁ'

Proof: "Only if". Assume that'ngﬁnay.-Then y=Pz for some

z, being in the closure of ran P. Moreover, z can be chosen
- L

in (ker P) =ran P, that is, s=Px for some xX. Thus, ymPax.

"I£", ran P =(ker P) =(ker P°) (by PR 2)=ran P°Cran P,

50 that ran P is closed.

PR 6z Let M, N be subspaces of H and P=P

Ao
MN{PN) =Mn NJ:

e Then

A
Proof: Let x6MN{PN) , yeN. Then (x,y)=(Px,y)=(x,Py)=0,
showing one inclusion. Conversely,rlet m@Mf}NJLand yeN,

then (X;Py):(Px,y):(x,y)=0.

We conclude this chapter studying the T, 's and
' i
W.'s (see also [2]).

We shall first compute the polar decompaesitions of the .




10

_j5s. Let TZ mSiP We know that P2 T *T . A gimple

alculation shows that
0 kinO
T = ct '
Zy ‘X eik ki%1 ’
i “k

WheI‘e kz_(k.;guoo’ki".],-oo,kn)-
Then S ¢
Piey= e gi Ck”
Therefore,

siekzﬂk{ﬂ (k“-)x(k.igoomgki+1,-o09]{n)o

We now observe that >
: c
* 2 -~ "Ik
( T e, = Pre, = F . e @ me
1:%- SRS = St i v (N Rl

o *p 7 M =1
+' L I - »
Z.‘ Z,I Zn Zn

that is,

By_explicit compufation, one can ghow that Tz:’Tzi] isg
compact (i=1,...,n), so that the Tzi’s form a commuting
collection of essentially normal operators.

We now consider H2(51x..axs1) {n tines).

PR 7: Let feH2(S1x...xS1) and assume that f(z1,...,3i,...,zn)
=0 for some li of modulus less than 1 and all zj:lzj!<1(i#j).

Then there exists g€H2(81k...xS1)_such that f=(Wi~2i)g.

Proof: Since f 1s analytic in the interior of the polydisc
and f(z1,...,ﬁi,...,zn)=0, there exists g analytic such that
f(z)z(zi«li)g(z). Using the power series representatioﬁ of

£ in Izimlibda,‘zjl<1 (iA1), it is easy to verify fhat g

-+ - 5 2 ] 1 i o 1
is actually in H°(5'%...x5' ).




CHAPTER I: THE JOINT SPECTRUM

Given a commutative Banach algebra B with
identity and an nwtuple.a=(a1,...,an) of elements of
B, one can say that a.is nonsingular provided that
theie exists an n-tuple b:(b1,..o,bn) of by's in B
such that ab=a1b1+...+anbn:1; equivalently, if a is
not conteined in any proper maximal ideal of B. Thé
spe etrum SpB(a) is the set{xgcn; a«Aa(a1nh1,.,.,an—}h)
is Biﬂgular}..lt is then poseibdle to define nonsingu-
larity for s commuting tuple az(aT.a..,an) of bounded
linear operators acting on a Banach space X by congi-
dering acertain commutative Banach subalgebra of L{X)
containing the ai's. It 1s unfortunate fhat the s§e0¢
trum gotten in this way depends very strongly on the
algebra considered, rather than onrﬁhe actions of the

a,'s on X.

A 1
In ﬁZ] J..L. Taylor introduced a new notion
Vof spectrﬁﬁ that does’ not iﬂvolve any algebra and doeg
reflect those actions. We shall spend the rest of the
chapter studying this notion. In section 1 we look at
the algebraic mechinery, the Koszul complex, which 1s
the keyhingredient_in Taylor's definition. We also ob-

tain a recursive method to get the boundary maps and

agsociate a matrix to any commuting tuple of elements

11



f an algebra with invelution. Although we do not need
hat for.seétion 3, it will be important for our work

'inrthe subsequent chapters. In section 3, a summary of
:fhe reSulfs on the spectrum we shall need later is gi-
feﬁ; along with the appropriate references for the:

reader not familisr with them.

1. The Kogszul complex. Consider the complex exterior al-

gebrs E® on n generators,; that 1is, EY is the complex
algebre with identity e generated by indeterminates

€ yeecs® guch that eIAeJ ejx\ei where A denotes mult?—
plication. B'is graded, E'= ﬁ@oEg , with B AEnc: p+q
The elenents e.;s...Aejp with 15j1<...<jpgn form a besis
for En (p>0), while EJ=Ge. It follows easily that Ej=
G(e Avuane ) and Ep =0 for p>n. Moreover, dim Eg =("), so
that, as a vector gpace over C, Eg is isomorphic to G( )
We also define Egmorfor p<0. -
If B is a complex algebra and X is a left B-mo-
dule, we set E%(X)=ngg
B-module. Given an n-tuple a=(a1,...,an) of elements in

and consider Eg(x) as & left

the center of B, we define a boundary meap dp.EE(X)*E‘ 2.(x)

. _ P
by dp(x§931n...nej ) = g; (—4)i+1&jixgejjA...Aej A...Aejp

when p>0 and d_=0 for p<O. (% mesns deletion)

p

It is easy to see that d ¢

p D+1"O for all p, B0

12



that ran dp ;¢ ker dp (a1l p ). In other words,

{Eg(x), dp}:is a chain complex, called the Koszul come-
plex for a and denoted E(X,a). As a vector space, EE(X)
is X(;), whe re Xk denotes direct sum of k copies of X;

I we split the basis of Eg (n>1, p21) into {ej A...Aej_:
1

P

1<j1<oue¢j <n""1} 811@ {631/\:0083 1Aen= ‘!é‘j‘l"."‘j 151‘1-’-1}
S

we get a corresponding direct sum decompogsition B (X)~
‘n"1(X)G}En“1(X) (where we have made obvious identifica=-

ions), g0 that d(g) dp(Ep(X)) can he written es a two

by two matrix ( observe that d(g)s En;1(x)€BEg:1(X)——a

n“1(X)G§En“2(X)), The action of ng) on En;1'is thathof

d(_n;1)nap(En;1(x),(a1,_...,a.nm1)) and

(n) R 1+1

A 7 (xee; Aesent Ae_ )= Z: (1) B, XBC, Ao oA
P j'i jpm‘l n =1 ji 31

A +1

e Ae o eNE AL + (""'1)13 B . EKBC ., Are o NG *
ji . Jpw1 no n Jq jp,1

I+ then follows that

() d(n;1) (~1)p+1diag(an)

. njy _

(v al = X . (nm”
p-

(n>1, p31)

This gives a recursive method to obtain the dp's for
(a1,...an) knowing those for (31,,..,ano1) (n>1).

It is important to associate & matrix to every n-
tuple az(a1,...,an); this will become apparent in Chapter
I11. The way we proceed is the following: given the tuple a,

we conslder the boundary maps dp of the Keszul coemplex for



a and construct a matrix & by settings:

d1

(2) R d; ,
| &

+*
L]

where d, is regarded as an (igi) by (g) matrix, and di
is the adjoint of d; as a matrix, i.e., the (j,k)-entry
of d; is the adjoint of the (k,j)-entry of dy (as we
sald in the introductory paragraph, we are doing this

only in case B has an involution).

Examples: (i) If a:(a1,a2), then

By By a3 0
* ¥
A= =8, &, O 8
. i % -
»a3 0 8, =2,
¥ +*
O —a3 8y 8y
It is clear from the above definition that a is
a square matrix of order 2n~1’ since ZI (n) X (g

n 0 : k even k odd
and §: () = 2%, By looking closely at example (ii),
k k

we see that 8 1s also

whe re a12”(§f:33) and ﬁw:diag(aﬁ). Thus

14



et~ O
(&y08p18y) = (Cagra),8;).

n the general case we have:

3) ’ (a1’ao.’a ) 2((8.1,.-¢,an_1),8.n)
here & ~diag(a ), of c¢rder 2““2, and = mesng that

'some permutations of rows and columns are needed to

got equality. |

In ﬁ4], Vasilescu givés‘another way of assign-
'ing a matrix to a commuting tuple of opefators on a
Hilberf space H which turns out to be self-adjoint,
acting on H®C2n. for our purposes, however,_our cong-—
truction will be more advantageous, especiélly in
studying the index of an almost commutlnv tuple of boun-
ded linear operators on H, which will be defined in terms
of the index of the corresponding”

We conclude this section with the following

v

Temma 1.1. Let B be & ¢ walgebra, a=(a1,...an) be a
commuting tuple of elements of B and & be associated as

before. Then & is normal if and only if 8.4 is normal.

Proof: A'sfraightforward computation shows that

'Qﬁgmagy is a block diagonal matrix whose diagonal entries
’ . * 3 ¥*

are elther a;a1ma1a1 0r 84842484 The result then follows

esaily from this.




Tgylor's spectrum

finition 2.1. Let B be a Banach algebra, X be a
aﬁach space which is a left B-module, BysoresBy be
lements in the center of B and E(X,a) be the Koszul
onplex for a. Then, a is said to be nonsingular if
E(X,é)-is exact. We wrlte Sp(a,X) for the set of tu-
pleslkécn guch that ankx(a1mk1,...,anékn) is singular,
The particular choice of B does not affect Sp(a,X),
:ﬁhat dépends only on the actions of the ai’s_(cf° ﬁ21),

les:

(1) I Ten(X), the Xoszul complex for T is GF>Xrg»Xﬁ»O, 
so that E(X,T) is exact iff T is invertible, and
Sp(7,X)=0(T). That is, thie notion of nonsingularity

for & eingle operator is identical with invertibility.

- Although we shall use both words to indicate a tuple
satisfies the above definition, the preceding exsmple

geems to show that the latter is the right one.

(1) 1If T1,T22L(X) and they commute, the Koszul complex

for T:(T o T ) is 0—¢X-—§m$§——>X"%O, where dzx—uszgT X

1

and a (xey\ 1X+T2y. Thusg, BE(X,T) is exact iff 4, is

2
one-to~one, ran d2=ker d1 and d1 is onto; or,
ker T4n ker T,=0, ran T, + ran T, =X and, 1if T, x+T,y=0,

y:Tiz. For instance,

there is a zeX such that x=-T,z,

it suffices (but it is not necpsoary) to have T, (or_To)

16
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nvertible. Thus Sp(T,X)ccr(T1)xcr(T2)° ffuch more is

“true in general.

proposition 2.2. (Lemma 3.1 and Theorem 3.2 in [12])

be in the center of B and eat

' . n+1
n+1)‘ If P:C ¢?

:Let-a1,...,an,gn+1
_a:(aT,...,an) and.a'#(a1,...,an,a
is the projection on the first n coordinates, then
P(Sﬁ(a',X)):Sp(a,X)o More generally, if s: ﬁ,,,.,k}'
b,..a,n} ig an injection, 5*32(38(1)s~°~93a(K))
and s z= (ZS(T),Q,.,ZB(K)), then s Sp(a X )= Sp(s a X)

In particular, if p is a permutation, then a is non-

singular iff p a is nonsingular.

Corollary 2.3, (Corollary to Theorem 3.2 in [i2]) If

¥ is @ nongero Banach space, then Sp(a,X)# § for each

tuple am(ai,o..,an) of elements of the center of B.

Proposition 2.4. (Theorem 3.1 in [12] ) With a, B, X

‘as before end XA(0), Sp(a,X) 1s a nonempty compact sub-
set of the ciosed polydisc Dr(a) of multiradius r(a)=
(r(a1),;..,r(an)), whe re r(ai)=1im‘la?“1/n is the

gspectral norm of 8y

There is an important connection between the

ideal theoretical notion of Joint specirum and Taylorfs.

Proposition 2.5. (Lemma 1.1 in Eé]) Let &,50+0,8, bo
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elements of the center of some complex algebra B and
X be a left‘Bmmodule. It a1b1+...+anbn=1 for sone
byseceyb eB, then a=(a1,...,an) is nonsingular. Con=

sequently, Sp(a,X)c Spy(al.

We shsll illustrate the proposition by consi-
dering a pair-a'='(a1,a2). Assume that there exist b,
— : '
bzeB such that a1b1+a2b2-1 and that the bi g commute

with the aj's. If dyx=0, then a x=a,X=0. Multiplying

1
on the left by b1 and b2,-respective1y, we‘get

b1a1x=0 and bé§2x=0, go that x:(b1a1+b2a2)1=0, or

ker &,=0. If'd1(xmy)=0, then a,x+a,y=0, 8o that

b, a,x+b,a,y=0, or (1-a,b,)x+a,b,y=0, or x:waz(bjy«bEX)‘
Set z=b1yub2x. Then a1z:a1b1y~a1b2x=y~a2b2yma1b21=
yabz(a2y+a1x)nyg as desired. Finally, if zeX, let

xzb1z,-y=b2z. Then By X8, =2, showing thet d1 is onto.

The inclusion Sp(a;X)c-SpB(a) cen actually be
proper. In his papér, Taylor showed, using a 5-tuple
a=(a1,...,a5) that Sp(a,X)#Sp(a),(a), where {a)t is the
commutant.of the set Bq9eeesbpg o {(In general, Sp(a,X)c
-Sp(a),(g)c;Sp(a),.(a)c.Sp(a)(a) -(a) being the Banach
algebra generated by the'ai'SW,_so that the cut was nade
at the precise point.) There was the possibility, however,
of having equality for shorter tuples { the given example

vaniched for n<5). In & letter to R. G. Douglas, Taylor



mentioned the fact that (Wj,w2) on H2(8%<S1) (Wi being
multiplication by the ecoordinate zi), which we shall

see produces & commuting invertible pair in the Calkin
algebfa A(H2(81x81)), is an example where proper con-

tainment also holds. We shall give a proof of that in

next chaptér, when we study that pair.

In case X=B and B is regarded as a left B-nodu-
le under the left regular representation, Sp(a,B):SpB(&).
Thexe are glso geomeﬁric conditioﬁs on Sp(a,X) which
actually force equality. For instance, if Sp(a,X) is
polynomially convex, then Sp(a,X)mSpB(a) for any closed
subalgebra Be L{X) with 8qss0058, in its center (see [1ﬂ
for a complete treatment of the subject).

We now proceed to state the functional calculus,

Proposition 2.6. (Theorem 4.8 in EB]) Let a=(a1,..;,an)
be a commuting.tupié in L(X), U be a domain containing
Sp(a,X) and fy,...,8 be holomorﬁhic on U. Let f:U-—>CP
be defined by £(z)=(2,(z),...,2 (2)) and £(a) be the
tuple.(f1(a),...,fm(a_.))o Then Sp(f(a),X)=f(Sp(a,X)).

We conclude this chapter with a definition. If

the tuple a 1s gingular, then at least one of the homolo-

def _
) = ran 4 is nonzero,

_ p+1
Each nonzero element of Hp(E(X,a)) represents a singula-

gy modules Hp(E(X,a) ker dp /

rity of a certain type for a. For instance, if keHn(E(X9a)),
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k=xge . A...Ae _, then a,x=0 for 2ll i=1,...40. S0 H_ can
1 n n i n

f n
be thought of as Ty ker 8 Similarly Hy is X/i§‘1 aix,.

where aiX is the image of 8y




CHAPTER II: FREDHOLM AND INVERTIBLE TUPLES

The classical definition of a Fredholm opera-
tor TeL(H) requires the range to be closed and both

ker T and‘ker T* to be finite dimensional. A fundamen-—

tal theorem ofrAtKinson says that this is equivalenﬁ
to the invertibility of %(T) in the Calkin algebra
(cf.[}]). Consaquently,-many authors prefer this sige-

braic definition, from which invariance of the Fredholm

clags ¥ under compact perturbations and oﬁenness in

L(H)'follow trivially. But fhe classical approach

serves well to define index(T) as dim kerrT - dim Eer T*e

It can be proved that index is continuous, invariant

under compact perturbations and that the arcwise compo~

nents of P can be put into a one~{to=-one correspondence |
with 2 (ef.[3]). -

Since we have a notion of Invertibility for

n-tuples, it geems reasonable to consider the poegsibility
of extending the above to.almost commuting tupleé of ope-
rators on H (see [4] where that idea first &ppeared)o We |
do this in section 1, in a slightly more general setting.

Section 2 is devoted to study the main examplés: multipli-

cation by the coordinates z; on both HQ(San1) and |

H2(S1go..x81). In section? , we obtaln a necessary and

sufficient condition for invertibility (when X is A(H), a




W%—algebra or H), from which a chain of corollaries. isg
derived, along with Theorem 3.7, that states an n-tuple
a is invertible iff & is invertible. We then conclude
that Sp(T,H)=Sp(T,L(H)) for any commuting tuple 7, and
tﬁat, for W*-algebras A,B such that ACB, Sp(a,A)zSp(a,B)
for any commuting tuple a ot elcuents of A, In section 4
& natural generalization of.Atkinson theorem is obtained,
together with s préposition which sallows us to nmultiply
in 6ne coordinate without leaving F.

7. Let H be a Hilbert space, {nk} be a.éequence of

keZ -

" nonnegative integers with n, =0 for k<0, H, =Het"k and
k ;

K
DkeL(Hk;HK¢1).such that Dka+1 is compact for all k. We

congider the system:

D - D D D D,

(» ... k*%HK k%Hkm1 mgzi.,;mgﬁ1-w$gd»ﬁo ,
and thé‘complex:
' “a
(a) .. e == by o 1-»}1—%.., i, ——--‘m-wﬁao :

where Asz(H)®C }:.(nk coples of the Calkin algebra A(H))
and dk is.the matrix associated to D, in the canoniecal
way (i.e., the-entries of d, are the projections on A(H)
of the entries of D, Yo

If A~(A1,...,A } is sn almost commuting tuple of
operators on H (i.e.,[@ ]@K(H), all 1,j), the Koszul

system (D(A)) is the one we get by taking n —( ) and

j+1
D 'XC”’?V eooﬁbe 1 .‘ _w(‘ Y P - oagf\ .
| ( j1A ) kvj ) 5. A Aejim eak ;

i d9
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a8 in‘I¢1. Although D need not be zero this time,

‘ ka+1
the compactness of the commutators forcesg it to be com-
pact (indeed, one can directly show this calculating

DKDK+1(X$ejh oo oA ); a possibly easier way is to

1 -'jk+1
draw a proof by induction, using the two by two matrix

re presentation of D explained in I.1(1)).
: k

Definition 1.1. A system (D) is said to be Predholm if

the associated complex (d) is exact (that is, ker =

ran & all k).

k+1°*

Definition 1.2. An almost commuting tuple Az(A1,.,e,An)

is Predholm (in symbols, AGF) if the associated Koszul
system is Fredholum, i.e., if ®(A)=(x(A;),0..,7(4,)) 1s

nonsingul ar,

Definition 1.3%. The essential gpectrum Spe(A) of an

almost commuting.tuple'A is Sp(n(4a),a(H)).

'Remark: Although we have not made any explicit reference
to dimenéion(H), we shall always understand it infinite

in case the word compact is in the context.

2. Examples

(i) Any almost commuting tuple A:(A1,...,An) with one of
the Ai's Predholm. This follows easily from X.Proposition

2¢54
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(11) W=(W ,uee ) on 57(8Tx. . x87) (a times).

If n=1, this is well known. We now give a proof for
n=2 snd then an induction argument based in I.1(1).
In what follows, we denote with & the projection of
A.into the Calkin algebra A(H).

Since W1 is an isometry, we clearly have ker w1=0,

end =o d2 is one—to%one.

*
Assume now that w1a+w?b=0. Multiplying by W, on the

left, we get a:wW:wzbo Since W: also commutes with

% 5 _
W2, azww2w1b, Let c=w1bn Then a==W,C and bzw1c,

because bnuw1w§a (multiply the given eguation by wz

on the left).

*
Finally, to show that ran w,+ran w2=A(H), take a=w,
and bmp1w;, where Pi is the orthogonal projection

' #
onto the kernel of Wi’ Thens
¥

® T | '

Wi8 + Wob = wow, + w2p1w2=1~p1+p1w2w2=1mp1+p1(1—p2)z
- 1=D,+P =P, Py=1 (observe that p,p,=0, being P,P, a
rank one projection). .
We now proceed to the case ny2, Assume that (W1,...,Wn_1)
is Fredholm on H2(31xecaxs1) (n-1 factors). We denocte
by D(ﬁ)the kth bhoundary map in the Koszul system for

| , (n)_ (n)
(w1,,.,,wm). We want to show that ker 4, '=ran d; -4
for a8ll k. If k=0, this amounts to showing that '

# +* :

ran wy+...+ran wn=A(H), For this, take a,=w,, 85=P,Wojysesy

*
BL=Dge s By 4V, {(as before, Pi is the progegtion oatq
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A
T

the kernel of Wi). Then:
k-3

i 3 .
w1a1+o . o+Wnan=W1W1 +W2P1W2+. - .+Wnp1 o e e pn__1‘uvn-—

T=py+0, (4=pp)Fe e etpyacepy (1-p )=1=0,4D =P Pote ot
P11*°Pna1‘P1°'°Pn=11 because p1,..pn30.

When k0, we use the decompositions

d(n£1) (~1)k+1diag(wn)
a(§)= (ny1, k31).
0 glo-1) 7 |
k-1

If d(g)(g):o, the d(n§1)a+(~1)K+1diag(wn)bmo and

d(§:})bm0, We want to deduce that bzd(n£1)c for some c.
This follows by the induction hypothesis when k»1 and
by the following argument when k=1, Since

(w1'°'wnw1 wn)(g):o, we have:
(w1...w )a+wnb30; that is

~(n=-1) _
d 1 a+wnbm0e

Ne=1

fiwltiplying by w;'on the left
W;d(n;1)a+b=0.'
 But w;d(n;1)=d(n?1)diag(w2), s0 that
b=d(n;1)(—diag(wz)a), as desired.
We remark that, evén'wnen we are assuming thst
(W1,...,wn_1) ig invsrtible on A(Hz(ij...xs1)) (n-1
factors) and we are dealing with n factors (to consider

w=(w1,...,wn),we can still use our induction hypothesis

because of the algebraic calculations involved, as

exemplified in the cases n=2 and n)2, k=0,1.
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We now return to the proof. Since b=d(n£1)c for some
¢, we have:
a1 au (1) * ataglw a P es0.
Now, diag(wh) and d(n£1) commute, so that ‘ o
| (=) (e (1) Tatag(w, e)=0.

By induction hypothesis, there exists @ satisfying

&+(—1)k+1diag(wn)c=d(ﬁzz)d. ' ' . @
Then; |
(an) k42 ,
a -1 i :
am)( @y | ) ) e
k-l“'i _ (n-1) c ‘b ’
0 a K

as desired. _
We shall now show that (w1,w2) is not invertible
in the classical sense, that 1s, the equation
1b1+w2h2=1 cannot be solved for b,, b, in the com-
mutent of Wy and Woe Suppose there is such & pair. Since

(w:,p1wg) is a solution (obviously not in that commutant)
‘and ker d(§)=ran d(g), any other solutlion must be of the
3 : '
form (w,-w,c,p w*+w ¢) far some ¢. Fix ¢ such that

1 72 172717 .

+* ' #*
b1=w1—wzc, b2=p1w2+w c. Since w1b1=b1w1, we have:
* *
W W =W, Wy C=W, W, ~W,CW,yy OF p1—wr(cw -y c), or p1w2+w o= cw1

¥
Then C=W,CW,q e Moreover w:-wzc commutes with Woy 90 that

cwzéwéc. We have therefore obtained:

* *
chw1=c CW,=W,C angd cw1~w1c=p1ﬁ2 .

12 we write BO(S™s') as ker W? (ker ‘1??25533}:@ \"L)zﬁ%,.“




we have z

c

00 %01 Cop e
o 10 %0 Co1 ---
o= )
; Co0 C10 Coo

by using the first equation; the third equation esays

+*
that (Co, Cpy Cpy  +..) is compsct and that Cgy-S
is compact (here S is the unilateral shift acting on
ker W?, i.e.} Szwziker W:), By taking & compact pertur-

‘bation, 1if necessary, we can then write ¢ as

Coo S0 O O
10 %o €01 Co2
C20 %0 %00 Co1
But GW2-W2G ig compact, so:
CopS=5Cyp  CpqS-8Cp, 0
C105-5Cyo  CppB=5C  Cpe8-8C,

Cp8=8Cyy  C1p8=8Cy5  CypS-5Cy,

L 4
L
L]

is compact. Thus C01S=SCO1. Then 001 is an analytlc
Toeplitz operator (identifying ker W: with H2(S1)) and
a compact perturbation of S*. But this says that S* is

analytic, which is a contradiction.

(1i1) sz(TZ1,...,TZ ) on HZ(g2P~1y,
n




28

We already know that T T +eedD "D =I, that the _ 's
21 24 Zn %n %1
are essentially normel and they almost commute. Conge-
quently, if t, denotes-w(T ), then t= (t1,...,% ) is a
commuting tuple of normal elements of A(H), satisfying
the equation t1t.‘+...+tntn=1o Therefore Sp(t),(ﬁ) does
not contain 0. Since-Sp(t,A(H))c:Sp(t),(t), we conclude

that t is invertible. .

3. Proposition Bﬂig‘Let B be a Wialgebra,A(HJ @ Hy0en, ad,

k
n, =0 for k<0, B mﬂﬁc ¥ and dkeL(B By.. 1) be an n,-1 by

n, matrix over B (or GtﬁL(H 13) with dkdk41“0 fqr
I

all k. Then the complex: oo sHB = B, 4 Poee 18 exact

. . “% ! *
(at every stage) if and only if Le=ddy+d 4 o is

invertible (all k). (Here d; ig the matrix adjoint of dk°)

Proof: (only if) Since B .1=0, we have d,=0. By exactness,

d, is onto. Hence d1d1 is invertidble (0.PR 1), or 1y is

invertible, Le% us now agsume that lj is invertibvle for
all J¢k and prove that so is 1k+1' We first need a direct

sum decomposition of B into ker dk+1 + ran d

k41 k41‘

, *
Clearly ¥er d) ,,n ran dp ,=0 (0. PR 2). If beB then

Kkt 1
dk+1béBk= ran 1., 80 that there exists Q@Bk such that

dk b= 1 c= dkdk04dk#1dk+10, Then dk%1 dy,qb=d ara

k+1 k P

d * d a c=d d d ¢, because d, 4 =0. Thus

k+1 k+1 k+1 k+1 k+1 k+1 k41

b~d k+1° belongs to ker 4, .d ker‘dk%1 (0. PR 2),

k+1 k+1

%
k+1°

Therefore, beker 4, + ran 4
X
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Once we have obtained such a decomposition, we
can prove that 1,1 is onto (that is, invertible, being

self-adjoint). Given beB there exist ¢ in ker 4,

k+1’

and d in ran @ b=e+d 1& ( notice that since lk—1

k4+1? k+

. #* .
is invertivle, Bk=ker dk + ran dk and dk+1 k=0, g0 that
d can be chosen in ker dkzran dk+1)°

Since ¢ is in ker 4

K41? exactness implies there
is e in Bk+2 guch that Cmdk+ze. Consequentlys
(1) b=dk+2e+dk#1d.,
Bu¥ d=dk+1f for some T in Bk+1e Moreover, by polar decom-

L
positionj.ran dk+262ran(dk+2dk+2)“, so that

. . € 24
(2) . dk+2e=(dk+2dk+2)dg

for some g in B By the direct sum decomposition for

k+1°

Bk+1’ gzg1+d, 152, with g &ker d, and gzﬁBka But then

ke
. % é_
there is heB, ,: gy=d, ohe&ran dk+2c:ran(dk+2dk+2) s

¥, .
that g1-(dk+2 y+2) k for some kgBk+1e Thus s

+
(3), B8y, p 80 ) My 18
Combining (1), (2) and (3) we gets

d*'— -n'»é.d-ﬁ— _
b=d,  se+dy  1d=(dy 54, o )%8+d, qdy TS

d f=

( d*k(d *).%* d*
Qpgnypo ke ldy 50y 0 )78y 18o%d)  1dy 4

¥

*
dk+2dk+zk+dk+1 - 4T, slnce dk+2dk+2dk+1zo and therefore

+ _ :
.(dk+2dk+2) dk+1"0 (0. PR 2).

Te complete the proof, we observe that k can be

chosen in kexr 4 and £ in ran dpj1a Thuss

4l
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#
kH(}c+f) dk+1 Ay 1 T+dy »dy ok=b, as desired.

(if) Assume that d,b=0., Then 1

1

kbzdk+1dk+1b' Since 1

b and the conclusion will

k

'is,invertible, LS 1 d,

k+1 k+1
" .
follow once we prove that 1k and 4, .4, , comnute, But

this is obvious.,

Remarks: Although the preceding proof made no distinction
between =z Wfalg'ebra or AGH) gnd & Hilvert space H, i% can
actually be simplified in the latter case ( for instance,
thé'direct sum decomposition needs no proof and is an

orthogonal direct sum).

Corollary 3,2, An almost commuting (respectively commut-

ing) tuple (A1,.¢.,A ) is Fredholm (resp. invertible)

¥ :
if and only if Lk“DkDI+Dk+1Dk+1 is Fredholm (resp, inver-
tible) for all k, where Dkka(Ai,...,An).

Proof:wT(Lk)alko

Corollary 3.3, Let A=(A1,..,,An) be an almost commuting
{(resp. commuting) tuple of operatdrs on H, If AéF(H)
(resp. A is invertible), so are Eﬁ:AiAl and 2 AlAi.

Proof: S?'"’A Ay =D D and i :A A =D D1 But Ln-:;DnDn and

LOaD1D1¢

The statement in parenthesis has'been'proved by

Vasilescu in [14»] ‘
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Corollary 3.4. An almost doubly commuting (resp. doubdbly

commuting) tuple A=(A1,...,An) (1.e., [ﬂi,ﬂg] also com-—

pact (resp. zero) for all i#£j) is Predholm (resp. inver— |

tibls) 4f and only if S::fA is Fredholm (respectively -

invertible) Tor every fi{1,...,n}.4,0 1} whe re
1A £{i)=0

AiAi £{1)=1

A=

Proofs A direct celeulation shows that in this cease

* : n
1, = dk k+dk+1dk+1 is a block diagonal matrix of ordex (,)
whose diagonal entries are precisely the (k) different

combinations §T"f Ay, for f:{1,...9n}_¢{0,1}w1th

d

#{i £{1)= O}mk.

Corollary 3.5, If the Ai's are essentislly normal (resy.
normal) and they almost commute (resp. commute), then

A=(A1,...,An) is Fredholm (resp. invertible) if and only
if '%Q; A is Predholm (resp. invertible).

Proof: Use Puglede's theorem %o conciude that A is an
almost doubly commuting (resp. doubly coamuting) tuple
and then apply the preceding corollary, along with the

stabllity of the Fredholm class under compact pertgrbationa.

Observations: Corollary 3:4 gives an easy proof of the

Fredholmness of W (see Example 2(1ii)). Corollary 3.5 says
that for a commuting tuple of normal elements of L(H) or A{H),

the Koszul complex is exact iff it is exact at any stage,

a natural generalization of a well known '"one varigble!" fact.
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Corollary 3.6. Let A=(A1,,e.,An) be an essentiaslly

normel tuple {(resp. normal) and ¥ be the maximal ideal
space of the C*ualgebra generated by ﬂ(A1),..°;K(An)
(resp. A1,...,An). Then Spe(A):M (resp. Sp(A)=M),

when ¥ 1s regarded as a subset of ¢® under the homeo-
morphisn P $(T(A,))ser o F(AL))) (resp. Era(P(4)),0nn,
¢(h))).

Proof: By the preceding corollary, A is Fredholm iff
n.,

AlAi is Fredholm., Let B be the C*«algebra generated
1—-.

by w(A Ysoos (A ). Then BEC(M). Pherefore,
A €5p, (A) iff A-Ael iff §§“(A ~2;) (A, mkl) €F iff

EZ:Xﬁ(A ) -2y Y (x(Ay )~ 21) is invertible iff |

?( }E;(T(A ) mzl)(x(A )«Ai))f 0 for all Y= M iff
:ﬁi:iz “Ai‘ »0 for all zeM iff{ A,

-The statement in parentheses follows in thé same way.

The.following theorem gives a precise relation
between invertibility for a tuple a and for its associated

2 (see I.1(2)).

Theorem %.7. Let az(a1,...,an) be a commuting tuple of
elements in a W**algebra B(or A{1) ) acting on H or B {or
on A(H)).Then a is invertible if and only if & is invertible.

Lo W
Proof: By 0. PR1, & is invertible iff so are 88 and 84",

. *
ot A, N f
An essy computatlon shows that @ 2 19 a block diagonal
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# *
matrix whose‘entries are the 1, 's (1k=dkdk+dk+1dk+1)
’ : #*
for odd k's. Similarly, 88 contains those 1,'s with
even k., The theorem now follows by an application of

Proposition 3.1.

We immediately get:

Corollary 3.8. An almost commuting (resp. comnmuting)
tuple A=(A1,°.0,An) of operétors on H is Fredholm

2n»1

(resp. invertible) iff KéﬁL(H@C } is Predholm (resp.

invertible).

Proof: Obvious,.

Corollary 3.9, Let A be a commuting tuple of operators

on H. Then Sp(A,H)=Sp(A,T(H)),

Proof: This corollary states that theﬁe two notions of
invertibility for A (when the A.'s act on H and when they
multiply on L(H)) are actually the same. It follows easi-
ly from Theorem 3.7 and the fact that‘it is known for

singletons.

Corollary 3.10. Let Az(A1,{.;,An)&F (resp. invertidble),
?:{1,»..,n}ne{?,%} and ?(Ai)zAf(l), Assume that[?(Ai),?(Ajﬂ
is compact (resp. zero) for alli i#}. Then

PA)=(P(4,)y000,P(4))EF (resp. invertible).

Proof: It suffices to prove it when P(1)=%, F(2)=1,.04,




¥(n)=1, because any other ¥is a composition of this
particular one and transpositions, which are permissible
by I.Proposition 2.2. | |

Wé now observe that (E:TE;)*zfgftjgza. Define f recur-
sively by the conditions: f(1)=a1, f(k+1)=(ft§f?§;:?).
It ie almost obvious that ) is, up t6 some_permﬁtations
of rows and columns, equal to £(n).

Let g be defined by the conditions: g(1)za:, g{k+1)=
(EKESitE§;23° Since f(1)*:g(1)g f(?)ﬁ:g(2), it follows
at once that f(n)*zg(n), In other words, A is, up to |
some permutations of rows and columns, equal to

Now, if a is invertible, so is f(n). Then g(n) is dinver-
tivle, so that (aj,ma2,..‘,ean) is invertible.

It is clear that multiplication by -1 cannot alter inver-
tibility (in fact, we shall give a much more general
result in Section 4). Therefore, ?Ka)z(a?,a2,o..,an)-is
invertible, or P(A)gF. For the statement in parenthesis,

replace a by A everywhere in the preceding reasoning.

"Corollary 3,11, If A=(A1,A2) is a doublyhcommuting'

invertible pair, then ker ATJ;ker A2,

Proof: Assume A1Xx0. Then A1X+A;O=O. By the preceding
corollary,'(A1;AZ) is invertible, so that there existis

*
¥ x=~A;y and OmA1y. In particular, x belongs to ran Azz



e
(ker A2) , as needed.,

Corollary 3.12. Let B be a G*—subalgebra of L(H) (resp.
A(H)) and a=(a1,...,an) be a commuting tuple of elements
of B. Then Sp(a,B)C 8p(a,L(H) (resp. Sp(a,B)T5p(a,A(H))).
Moreover, if B is a W*walgebra, then Sp(a,B)=Sp(a,L(H)).

Proof: Assume that A ¢ 8p{a,L(H)), i.e., a—l,is invertible
(acting on L(H)). By Proposition 3.1, 1k=d;dk+dk+1dk:1

is invertible (in M(E)(L(H))) for all k. By spectral
permanence, 1, is invertidle in M(E)(B) for all k. A

look at the "if" part of the proof of Proposition 3.1
ghows that B(B,a-1) is exact, or A & Sp(a,B). The state~

ment in parenthesis follows in the same way. The last

statement follows immediately from Proposition 3.1.

Remarks: 1) As noticed in I.1(3), given a tuple
A:(A1,.}.,An) {n>1), we can consider the (n-1) first

coordinates, form a tuple *A=(A1,...,Anw1), define
n-2 '
K;=diag(An)€EL(H®02 } and then have:

L RS
i (LA ,

b

-~

where = means that some permutations of rows and columns
are needed to get egquality. Since thosgse elementary opersa-
tions on the matrices will not affect singularity, we

conclude (using Corollary 3.8) that, as long as questions




of Predholmness (resp. invertibility) are the context,
and we are dealing with ailmost doubly commuting (resp.
doubly commuting) tuples, attention can be restricted

to pairs.

2) New proofs of the Fredholmness of examples {(ii) and
(1i1) of Section 2 can now be giVen ag & direct conse-
guence of Corollary 3.8, using results of Coburn [2]
and Bouglaé and Howe [5] for the matrix case. Precisely,
s for (1i) we conclude that wx(wi,a‘,,wn) is Predholm

A .
iff WeP. By the Corollary to Theorem 4 in [5],

W,ow T g z, T
m .
(F0= 1 Zlerize| % 2} ana[ ' %) are
- ) 1
W, W B, Tz -1,

invertible for all (21,22)£S1MS1, where T, is the unila-
teral shift on H2(81). But this is equivalent to (ngzz)
and (z,,7,) invertible for 21l (z,,2,)éS'xs', which is
certainly true, by T.2{(ii). We use an inductive proof for
n»z. ‘
As for (iii), we know that Tz-is a Toeplitz operator-valued
matrix, whose symbol is (ZT,...,ZH). It is easy to show
(by induction , for example) that _

det m) = ( i}l%lz)m (n>1).
We now apply the Coroliary to %Eeorem 1 in [21 to conclude
that T_ is Fredholm, | |

3) If A=(Aq,000,4,)6F and K=(K,,...,K )YEK(H)®C", then

36



57

A+K=(A.1+I{1,...,An-i-Kn)ﬁF‘e This follows from the definition
of a Fredholm tuple.

Proposition 3.13%3. (i) F is an open subset of the set of

almost commuting tuples.
(ii) The set I of invertidle tuples

is an open subset of the set of commuting tuples.

M

Proof: The map (A1,.ﬁp,An)%ﬂ*(Ai,,.e,An) is continuous,

Hemark: Using the preceding proposition we can give a
different proof that Sp(a,X) is a compact subset of the
polydise of multiradius r(a) (see I.Proposition 2.4),
when X.isa,WEalgebra,AUﬁcﬁ?H, totally independent of
Taylor's paper. We cannot conclude, however, that Sp(a,X)
‘is nonempty. This needs either sheaf theory 1321 or the
construction of an R-analytic function (the resolvent)

in CnmSp(a,X),‘as done in EM] for X a Hilbert space.

We already know that an almost commuting (resp.
commuting) tuple is Fredholm (resp. invertible) if one
of the coordinates is. In that case, the remaining coor-
dinates are immaterial; they could, for instance, be =zero.
Similarly, if any k coordinates form a Fredholm {(inverti-
ble) k-~tuple, then the n-tuple is Predholm (invertible) |
regardless of what the other coordinates are (use, for
example, I.Proposition 2.2 in the Calkin algebra{in H)).

One converse to all of this is the following
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Proposition 3,14. If Az(ﬂ1,.ao,An)€F and AiT,.o.,Aik
are compact {k¢n), then the {(n-k)-tuple formed with the

remaining coordinates is Fredholm. An analogous result

holds in c¢ase P is replaced by I (=invertible tuples).

Proof: Let s:{?,...,k}—m¢{1,...,n}'be defined by s(j)=ij.
B 3 '

Then s Sp(a,A(H))=Sp(s‘a,A(H)) by I.Proposition 2.2.

Since s &= (33(1)’°"’as(k)) (a 1,...,ai Y= (0,...,0), we

have: s Sp(a AMH))= 0 . TLet b be the {n-k)-tuple formed

with the remaining coordinates, and P be the projection

on G™ onto those coordinates. It is apparent that

Sp(a,A(H) ) ran P and so, that b is invertible.

We finisgh this section with a remark that will

be negded in Chapter III.

¥
Remarli: If AeP, péS ig a n@rmutation, then p A=

(AP(T)""AP(n))eF (see I.Proposition 2.2).

4. Given a system (D), there is a natural way of getting
a complex, without leaving the space H where (D) acts.

In fact, if Pk igs the orthogonal projection in L(H) onto

ker D and Dk w1 Dy (all k), then (D) ie a complex.

k?
One ig tempted %o believe that gince Dka+1 ig compact
(all k), then D, and B; can differ by only & compact ope=-

rator. The easiest avallable counterexampleg is:

(D) OQ@le@H»ﬁﬁHwaO ., K compact, ker K=0.
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Here'g1mb1, 5;:0, so that ngﬁ; is not compact.

Of course, the (D) shown is not Fredholm, so
that one might hope that the statement holds in that ' ‘
case, Moreover, if nkzo for k23, it does hold, because | ‘
ran D, is closed and therefore there exists SiéL(HO,H1)
T 2“§E=D2”P1D2”P?92“S1D132*
which is compact. Any attempt to extend this proof to

such that S1D1=P and then D

the case nkﬁo (k=0, 1, 2, 3) will f£=ail. Consider:

(D)  O—vH-Eo-Eor-Lwms0, xer k=0, K compact.

(D) is perfectly Predholm, while D mﬁgzlo

3
In the general case, a sufficient condition is

that all ran Dk be closed.

D
Proposition 4.1. Let (D) ...~®H _—=0H_ ~*,,. Dbe a

systenm and (f) be its assoclated complex. Assume that
'raﬁ‘Dk ig closed (all k). Then Dk"ﬁ% is compact (all k).
In particular, (D)er iff (D)er.

Proof: Since ran Dk is closed, we can use the open

mapping theorem to get Skzﬁkm?—@ﬂk such that DKS =P

k™ “ran Dk_
L
and S Dyp=I-Pyer p Pk .
- . |
Then Dyt =Dy 4 1= Pi i1 Pk Pict 15k Pew 1 =5 Pic D1 ©

Since Dka+1 is compact, the result follows. The rest

needs no proof,

The next result resenbles Atkinson's theorem.




. D
Theorem 4,2, Tet (D)zr -%Hk—mEaHkmf»aq.. be a

system such that Dkaﬁ; is compact, all k. The following
conditions are equivalent:

(1) (D)eF

(11) (B)er-

(iii) ran ﬁ£ is closed and ker ﬁ? /ran ﬁ£+1 is finite
dimensional (all k) *

(iv) ran Dy is closed and ker D, N(ran Dk+1TL is finite

dimensional (all k)

(v) there exist Skéi(ﬁkm1,ﬁk) (keZ) such that

SkD Dy 15, 1~I is compact (all k).

Remarks: In case (D)=(D(A)) for a commuting tuple
A:(A19.,.,An), (i) ==%(iv) appears stated (without proof)
in the already mentioned letter of Taylor to Douglas,
Condition (v) is given as‘a definition of a Predholm
system ih [1 1] o |

Proof of the Theorem: (i)=3(ii) Clear.

43) 2 (451) B9 Prenesit, o O
(ii)==»(iii) By Proposition 3.1, Ly Dka ke Dierr 12

Fredholm (all k). Being ran ﬁ;mc:ker JS“k, it follows that
ran L, =ran B, Dkﬂﬁraﬂ Dk+1Tk+1 .
~F
Since ran:iL is closed, so is ran-Dkﬁég By 0. PR >s the

same is true of ran(D D )%—ran Dk' 0. PR 4 now asserts

that ran D is cloged., Purthermore, ker Ll—ker Dhrxker D,q1




dince i% is Predholm, we obtaiﬁ that

}=dim ker T

dim(ker D / s

)=dim(ker Dkrjkcr D,

ran Dk 1 k+1

which is flnite.

(iii)=2(iv) We observe that D (ranDkﬂ)—-yHk 1

kl(rmn Dk+1)
is left semi-Predholm (closed range and finite dimensional

"kernel). Since Dk°Dk is compact, we conclude that

1D (ran D, H) is closed (we-here use the fact
that ran D, a1 oker Dy ) and Xer Dkrﬁ(ran Dp+1) ig finite
.dimensional. We finish observing that

ker Dkr\(ran D (0.PR 6),

1“1) =ker Dkrj(ran D

k+1)

a an P ‘L‘
(1v)f:%(111) Dk!(ran ﬁ;+1) :(ran Dk+1)_mm%ﬁk“1 is %ift
semim}?redholme Therefore, k,(ran Dk+1)Ls(ran Dk+1)hm%ﬁku1

has closed ranﬁe and finite dimensional kernel., But

D (ran D1+1) =ran Dk and ker D i ) mkerD ﬂ(ranD

(:r‘an . Jo 1 )

I
as desired.

(iii)==3{v) We know that D has closed range. By the Open
Mapping Theorem, we can find SE@L(Hkm1’Hk) such that

-—p ot . ~=J -L
SkaSP(ker ﬁ’)émand D, Pran ﬁ; and ker Skm(ran Dk) . Thus
s, D, +D =5 ﬁ' on (ran D ), and D .8 on ran D.

k"k “k+1 k+1“ k+17? k+1"k+1 k+1

(where we use the fact that Dkf; 1_0), Since kerﬁ%/

is finite dimensional, we see that Ska+ﬂk+1 e -1 is

mD EK(H ) (all k), so that

B
ran T+

compact But Dk

,oka+Dk+1 w41~ 1 is compact (all L).

(v)==3(1) Pasaing to the Calkin algebra, we have

ds(ran D k+1)'“"9Hk j is left semi-Fredholm, too,



skdk+dk+1ak+1z1éﬁnk(ﬂ(ﬂ)),
where akﬁﬁ(sk)-

If 4, 8=0, then dk+18k+ia=a’ 80 that acran 4 showing

k417
that (d) is exact, that is, (D)&F.

Remarks: Notice that (i)&=(v) can be extended to:

Let B, LY dk he as in Proposition 3.1. Then the complex

k
_ ﬁk
.oﬁwéBk—mméBKm1—*... is exact iff there exist

{BK:BKmqw%Bk3 satisfying e,d,+d 1.

e 7 % 1 Pt ™
The "if" part is trivial. For the"only if", use the de-

. +#
composition Bkzker dk + ran dk+1o

Dy

Corollary 4.3. Let (D): coe P = 1. ve a

complex. Then (D)€F iff ker Dy /. D1 is finite dimen
sional (all k).

_ D, D,
Corollary 4.4. Let (D): O=#H, —=»H, —>Hy 0 be a sys-

tem (nKaO for k2%). Then (D)aPF iff ran Dy, ran D, are
' Ja
closed and ker D,, ker D1r\(ran DZYL and (ran DT) are

finite dimensionsl.

Proof: If (D)gF, then D2—5; is compact and (i)=8{iv) can

-y

be used. Conversely, if ran D1 is closed then DZmD2 is

compact and (iv)=3(i) applies.

The next proposgsition will prove to be useful in

dealing with questions on connectedness of tuples.

42
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Propoaition 4.5. Let B be a Banach algebra, X be a B

Banach space which is a left B-module, Bayoeessy, be
commuting elements of B and vgB be an invertible ele-
ment that commutes with 8ysee0y8,. The following
conditions are equivalent:
(1) az(a?,.,.,a ) is invertible
(ii) va=(vay,854...42,) is invertible
(1i1) av=(a,v,85,c..,a,) is invertible.
Proor: We shall prove by induction that the Koszul
complexes B(¥X,n) and E(X,va) are isomorphic, thus esta
blishing (i)¥P(ii). The equivalence of (i) and (iii)
will then foilow in the same way.

We first observe that va is a commuting tuple,
Assume n=2 (for nz1; it is obvious that a is invertible
iff so is va); we have
B{X,a): O@X-——-—g—w{@){j%l» X--20 ,
and v
E(X,va): O%X-E.g*?](‘%}{il%x% ,
where d,=(a, a,) , d,=(ve, a,) , dp=( a2) and . dy=(722).
Define i‘(g) XX, 9(2)-.' XOX--3X8X and T(Q). KK by N

X-9VX , XOY-2X@vy and xvr¥x, respectively. Then:

ds ) d,
R P (4 rp Fores()
2 2 (2
2(2) [a(2) [p(2)
g d

1

O B XK iy X rent)




is commutative. Moreover, T(i} is an isomorphism

(k=0,1,2). Therefore, B{X,a) and B{(X,va) are isomorphic.
(m), +(3) (m)

Ve now define T x ¢ Xtk—2X'k

(m~1)
T 0
plm) k
<7\ o et

3 M2 x(eot),
with respect to the decomposition X'k’ =X &E Xk
as we did in I.1(1).
~ Assume that E(X,(a19...,anm1)) and E(X,(va1,az,...,anm?))
are isgomorphic with the isomorphism given by the T

Consider the following dlagrams

(n) {n) (n) .
PN G M SR Gk Oyl sy (D) ﬁk.h x(D)emo
{a(n) oin) o(n) - n(2)
o g(n) a(n) " g& n) A
AU eop NNl ISR Gt w-wmwiﬁvx(x ke ., .x'0)—20 .

Since the T(§)°s are clearly isomorphisms (by the way they

were congtructed), we need only to prove that in the
previous diagram all squares comaute,

Now, I.1(1).
a{n=1) (-1)**1a1ag(a )

d(ﬁ)x i (n-1) (n», k21).
Therefore ¢
(zl)e(n])?e T(n;‘t) 0 . (]I;w}.}) (m.] )kdiag(&n)
Kk %t 1 0 p(n-1) 0 d(n-1)_

k

(n;1)|s.

44
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'T(n;1)§£271) (n1)km{n£1)diag(an)

(n=1) (n=1)
0 Tk x

Since T(n;1) is block diagonal and v comwmutes with a ,
T(n£1)diag(an)”diag(an)T(n;1), Furthermore,

(n=1)(n=1)_¥(net1),(n=1)
R TR P A A R

by induction hypothesis, and also

- -1} _¥{n-1)mn(n~1
T(ﬁm1)d(nk )*d(nk )i(nk )

oot fERTRED (1) ataga T
s (af2)-
_ 0 g(n;1)m(n£1)
A1) (Ckasag(ay) | 2201 o
) 0 yoo-1) o J\ 0 pn=1)
_ ¥(n)p(n)

kK+1 k+1 °©

Proposition 4.6, Let B, X, Bqsseeyd, De as before and
v be an invertible element of B (not necessarily commut
ing with az,...,an). Then a=(a1,°..,an) is invertible

-1 -
iff so is av=(va1v peresva ¥V 1).

: n n '
Proof: It is easy to verify that V)t x(k2~ﬂax(k given

by vV, =V ..V (x times), k=0,1,...,n, establish an

isomorphism between E(X,a) and E(X,av).
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Gorollary 4.7. Let Am(A1,,..,An)éF and V be a Fredholm

operator.

(1) If V almost commutes with A2"”.’An’ then
VA=(VA1,A2,..,,AH) and AV:(A1V,A2,...,AH) are Fredholm,
(11) 1t ¥ denotes any "almost inverse" of V, i.e.,

. o - -~ ~Jt
w(V)=x(V)™", then AV:(VA1V,..,,VAnV) ig Prednolmn.

Remark: It is not hard to see that the” positive part

Pi in the polar decomposition TZ :SiFi almost doubly
i

commtes with T, and Sj (811 j=1,...4n). Using Propo-

sition 3,13(i) and Corollary 4.7, we can show that
(31,.00,Snk§F. Por, there exists £>0 such that
o 5 g R e
(TZT+A§1,T22,..,,TEHJQF (1258, since Tz1+ES1-S1(?1+E)

)

a2
I

is PFredhoelm, We can repeat the argument in each coordi-

and PT+8iﬁ invertible, it follows that (ST’T22’°°"T

nate, thus odtaining the Predholmness of (31’“'°'Sn)’
Now, since the'Si's are unitarily equivalent to $he Wi's:
(under the same isometric igomorphism)}, we can concludé
(using Proposition 4.6, for instance) that (W1,..;,Wn)

is PFredholm. Although fhis proof is notoriously simpler
than the one we gave in Section 2, we think that does not
reveal the way the Wi‘s interact to produce exactness in

the Calkin algebra, Furthermore, we shall have occasion

to use that proof, when we study the spectrum of W.




CHAPTER III: INDEX OF A FREDHOLM TUPLE

We are now ready to introduce the index for a
Fredholm tuple of almost commuting operators oﬁ an
infinite dimensional Hilbert space H. As it is probably
expected, we shall do that using 1I.Corollary 3.8. Natu-
rally, index will be cdntinuous, invariant under compact
perturbations, onto Z. We devote the rest of Section t
to obtain an glternative definition, similar to the Eu-
ler characteristic of a topological space. Section 2 is
reserved for the examples, and we also calculate various‘
spectra. In Section 3, a number of elementary propositions
is given, which increase our 1list of known indices. In.
Section 4 we treat the case A=(A1,...gAn) an essentially

normal Fredholm tuple with all commutators in trace class

and conclude that index(A)=0, whenever n22,

1. Tet H be an infinite dimensional Hilbert spece,
A:(A1,...,An) be an almost commuting tuple of operators

n-1 _ o
on H and KéL(H@CZ ) be the operator associated to A
as in I.1(2). By II.Corollary 3.8, we know that A€P if

and only if K is Fredholmn.

Definition 1.1. Let A=(A1,...,An) be an almost commuting

47




Fredholm tuple of operators on H. Then index(A)=index(%).

Theoren 142. index: FP—>2 is continuous, invariant under

. compact perturbations, onto Z. Consequently, index is

constant on asrcwise components of F.

Proof: Since Akﬁﬁ is continuous, it follows easily that
index is continuous, The invariance under dompaot pertur-
A~ 2n'-1
bations follows from the fact that A+K -A € K({H@C ) for
KeK(H)®C", We shall see in Section 2 that
indGX(ng)’W2"oo,wn)="k

for all k€Z, which proves ontoness.

Suppose (D) is a Fredholm Koszul system such that
Dk-D is compact (all k). According %o II.Theorem 4.2,
-
(D)SF. Moreover, index(D)=index(D) by Theorem 1.2.

Theorem 1.3. Let (D), (5) be as above. Then:
index(D)= 2 A-1)*1ain(ker D D, / )
k

| ran Dk+1
, A
= Zk:(_-—1)k-+1{dim(ker D, N(ran D ,) )

-dim({ran Dk+1r\(ker Dy ) )}
) Lt
" Proof: Since 1ndex(D) ndex(b) =dim ker J - dim ker D ,
we shall compute both kernels,

Since D D =0 (all k) we get:

K+ 1

“@ ~d b
ker 5 ker D D ker(Dk k+Dk 1 k+1) and

Odd
 Bx 8 o @ Mt s W
ker D = ker DD =%k ker(D, D +D_ Dy 4) .

48
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But
(1) ker(D B +Dk 1 k+1)-ker D N (ran Dk+1) (all k).
Furthermore, ker Dk:Dker Dkzpran B so that

(2) dim(ker D /

k+1’

)=dim(ker D / }
ran Dk+1 | k ! ker Dk _
+dim{ker D, / ~ ),
"k ran Dk+1

We now observe that:
Hu A
(3) ker Dy O (ran Dk+1) =ker Dkr\(ran Dk+1) , because
o~
Dy 1= Dy g With Py ‘the projection onto ker D, (0. PRE).

Pinally, ker D =ker(P ;1(ker P

k k-1 k) k~1)

-1 , L
=D, ({ker Dk“1){\ran Dk)’
80 that:

L

~d
Q~»ker Dko—-—? ker Dk-.—}ker Dk —2»0

/
ker Dk

and
D

O~sker D —3D'((ker D,__ 1)nran D, J—Es(ker D__ Jaren D50

k- 1)
are both exact, from which is clear that

3,
key?! Ve

~ . '
(4) dinm(ker Dy /ier Dk) = dim(ran D, N (ker D
Combining all four equations, the theorem follows,

Corollary 1.4. If (D) is a Fredholm Koszul complex, then

index(D):QEKD), where XC denotes the Euler characteristic

of the complex C,

Proof: Straightforward from the preceding theorem, since

(0)=(D).

Corollary 1.5, Let A;(AT""An) be a doubly commuting
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Fredholm tuple of operators on H., Then Hkﬁker Dy /ran D, ,

is exactly &P (ﬂker A;), where the sum is orthogonal,
fEIk 1=1

L={£: {1,000} —{0,1}/ £(1)=0 exactly k times}, Ty

as in II.Corollary 3.4, is meant to be A;Ai or.AiA;,

according to £(1)=0 or 1. Therefore,

index(A)= 2;,(-1 Y+ Z: dim(('] ker A)

tel,

Proof: We already know that Hk=ker(D k+Dk+1Dk+1)’ Since

A is doubly commuting, by the proof of II.Corollary 3.4

»*
we know that Lk—Dk k+Dk+1 e

whose entries are precisely the (;) different combinations

f :fAi for f€I . Since all fAi are positive operators,
=
£

is a block diagonal matrix

n
we know that ker( A )= fﬂiker A;, which completes
i=

the proof.

. We shall now illustrate the case n=2. Here (D)

is: .
D D

0—2H —E5 HegE—

»H—0 ,

* A
80 that index(D)=-dim ker Dy + dim(ker D1n(ran D2) )

L
-aim(ran Dyn(ker D,)") ~dim ker D, , or ~dim ker D:
+3im(ker D,Nker D ) dim(ran D1nran D2)—dim ker D2.
-The term dim(ran D2{1(ker D, ) ) "measures“ the

lack of "complexity" at the middle stage, that is,
gince D1D2 need not be zero, but only a compact opera»'

tor, in general there is an adjustment in what would be




the natural way of computing the index, as minus the
Euler éharacteristic of the complex. The minus sign
is required to (a) fit the unidimensional theory

(it T.is Fredhoilm, then index(T)=dim ker T-dim ker T*
=dim ker D1-dim ker DT) and (b) produce a uniform -1
as index(w1,;..,wn) on H2(81x...xs1) ag we shall see
in the examples, -
Observe that ﬁz(gl) is a two-by-two matrix with
. ker 5¥ker D1r\ker DZ and ker D:, ker D2<:ker ﬁ#. The

’

term ran D?{ﬁran D2 does not directly appear in

and

= ok

but an isomorphic image is the piece which ker D

Fat ]
¥er D2 need to fill ker D .

Remérk: Although we have studied only the Fredholm case,
II.Propositioh 3.1 makes possibie a reasonable definition
of a semi-~Fredholm n-tuple, i.e., an almost comﬁuting tuple
A is semi—Fredhblm.iff i is semi-Fredholim. Consequently,
either all efen dimensionzal homology modules are finite

or so are the odd dimensional ones., Index is then well de;
fined and Theorems 1.2 and 1.3 cléarly extend to this case
{Observe that dim{ran Dk+1r\(ker Dk)J) is always finite,-'
since ran D, is closed and so Dy{ran D, N(ker DkTL7<:
ran Dka+1 is finite dimensional, being a closed subspace

of the range of a compact operator.).
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2.Examples

(1) If A=(A;,.0.,4,)€R and (4, ,...,Aik)eF (k<n),
whe re i:{h...,k}-—-—%{‘l,...,n} is injective, then
index{4A)=0. , _

We can assume that-1¢i((1,..f,k}). Define
¥:[0,1]=>F by W(t)=(1+(1=t)A,, (1-t)Ay, 0 0ey (1=8)A)
(use I.Proposition 2.2 and II.Proposition 4.5 to éee
that ¥(t)eP (all t)). Thus, ¥ is a path in P from A
to (I,O,.;.,O). Therefore index(a)=index(I,0,...,0)

m —
=index(T,0,...,0)=index(I 2" Ty=0.

(11) on #(s™...xs"), index(W,,...,W )=-1 (all.n).

We shall prove that ker Dk=ran Dk for all

+1
k»1 and that ranD, has codimension 1. For n=1 this

is- obvious. If n=2, it is clear that'Dz ig one-to-0One.

- ¥
Assuming that W1x+W2y=0, we have x:-W:W2y=mW2(W1y).

. * * * *
Since y=-W,W,x, we see that WJ(W1y)=-W1W1 {Wox

=-W,W,x=y, that is x®y is in the range of D,. Finally,

W

ran W,+ran sz{fGHz(Sixsj): ?(0,0)=O} has codimension 1.

For n>2, we can give an inductive proof, exactly
as in I1.2(ii) to show exactneés at the kth. stage (k21),
while, as before, ran D,=ran W1+...+ran an{feH2(81x...XS1)=
?(o,,..,o)=o} has codimension 1.
(111) on H2(s2%"1), 1,=(T, 1eeesT, ) Bas index -1 (all n).

. n .
An easy way to see this is to appeal to a theorem
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of Venugopalkrisna [}5, Theorem 1.5] on the index of
a Toeplitz matrix. As we shall prove‘in Iv.3, Tz can
be connected (in F) to a copy of (W1,...,Wn), so that

index(Tz Y=index{W)=~1.

(iv) We consider (wgm),w2,...,wn) on Ho(stx...xs1),
( ) . - ‘m 7 ’ ®om L

By W we understand W1 for m20 and W1 for m<0.
By the spectral mapping theorem (I.Propesition 2. 6) .
and II.COI‘Ollary 3010,(W5m),\?2,000ywn)eFl

When m>Q, one can see that the associated
Koszul complex is exact at every kth, stage {k>1) and
that codimension of ran D, is m (in this case, ran D,
is {feHQ(S1x...XS1): £(3,0,...,0)=0 for all j¢m ).
When m<&0, it is easy to check that exactness holds

everywhere but at k=1, where ker D /. has dimen-

ran D2
.310n m. An egsier way is to apply Proposltion 2.1, yet

to be proved. Thus, index(ng),Wz,...,Wn)=-m.

Theérem 2.1. {(a) Sp((Wi,..;,Wn),Hz(S1¥...XS1))=1%FD1,
where Di is the closed unit disc on the ith. co%iéinate.

(v) Sp((T 1,...,T ), H (sgn‘1))_B2n

(e) sp,(W, H2 (s’ x...xs ) )= Fr(]1“n Y=
=(T¥D,%, 4 XD JU(D xTX. . %D JU. . . U(D xD¥ ...xT)

id) Spe(TZ,HQ(SQn“1))xS?n'1.

. ¥ 7 |
Proof (a) 5t 1Z1TZ1+...+TZnTZn=I and the T, 's are

essentially normal, we conclude that Spe(TZ,H

i
2( 521‘1"1 ) ig
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| contained in g2n-1 (II.Corollary 3.6). Since index(Tz)
is -1, we see that Spe(TZ)zszn"1-(otherwise contradict-

ing the continuity of index).

(b) Being index constant on path-components, we con-
clude that B°®cSp(T ). By I.Proposition 2.5,
Sp(TZ)C:SpB(Tz), where B is the Banach subalgebra of
C(Szn'1) generated by 2,,...,%,. Since B can be identi-
fied with P(an), the uniform closure on B°D of the
algebra of polynomials in ZyseverZy and an is polyno-
mially convex, then the maximal ideal space'bf B is

2N ana consequently, SpB(T )-an (see

home omorphic to B
Eﬂ Chapter III tor the pertinent results)

Thus 3 c:Sp(Tz)c:SpB(Tz)=B 21 hich shows (b).

Remark: The index argument gave us only one containment,
but it can actually be used to ?rove‘the other inclusion
when n=2, For, it is clear that ker(T, -Aﬂ)=o when [A[>1.
If we can show that ran(T —21 +ran(T o 22)—H 83) for
[Al>1, then, since index(T -l) =0 outside B4 (by conti-
nuity), we must have ‘exactness at the middle stage as
well. So, let us prove that ker(TZ:u11)(]ker(Tz;-XQ)zo
for [Al>1, '

Assume f&HZ(SB) and Tz*fnﬁif (1i=1,2).
' c A 1
el
Kk ck,ek'
¢

K
T [ I o
Zo K Ckfek§

Recall that ‘l‘z e

1 (K'=(k1+1!k2)) y

(k*=(ky ,k5+1))




;#‘ 1 (Ix)l+1) .

¥ Von J X!
Then:

(f, ek,)m (T f ek) ﬁl—— (£,e,)
and

C ¢
(£,e, )= —E (£,e
Combining them,
¢
_ 'k k,= k
(f,ek)— 336 11 132 2(f,e00).

Thefefore:

02 -
[HSm RN »: SR ISl SR

. EZ:: T (241)! ,A1!2k I ]2k21(f’900)l2 3

k=l k tky!

=§(l+1)|1121 l(f’eoo)lz

go that (f,eoo)zo (being the series convergent and !Aiﬂ)
or =0, o

(c¢) Assume that )‘ﬁFr(T%"D ) Ir [2,1}1, W’«}q is inver-
tible and so is W-1, which implies AgSp (V). If [&,]=1;
then at least one of the A 's with 122 must have modulus
greater than 1, showing again that W-A is invertible and
A£5p, (W),

It ll J]<1, three p0831b111tlea occur,ll 1>1, .
1121 =1 and 1}2\41. It is again clear that only the case

]}Q[<1 degserves comment., Continuing this reasoning for
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the remaining li's, we conclude that oﬁly the situation
|24/<? (i=1,...,n) presents some difficulty.

So suppose that_lli|<1 (i=1,¢.0,n). Let (D(A))
be the Koszul complex for W-). We shall prove that W-2
is Fredholm by induction.

If n=2 and W,f= 21f (i=1,2), it is clear that
£-0. Assume that(W,~2, ), +(W,=-A,)f,=0 (£ ,f2€H (s'xs")).
 Phen, evaluating at 22, we have f1(z1,32)=0, which |
implies that f1(z1,22)=(52<12)g(z1,z2) for some g in §
H2(S1xs1) (0. PR7). Therefore (W ~Jq)(W2-22)g+(W2—12)f2 :
is zero and consequently, f ----(W1 2q)g. Thus ¢

| £,==(Wy=-2,)(~g)
£,=(W -2, )(~g)

We finally observe that ran D(1)1={f€H2(S1xS1)=f(l1,12)=0},
using the fact that llﬂ\,|32i<1.

" We wis? to remark that the preceding fact for
n=2 could have been easily obtained from the Corollary
to Theorem 4 ip [5]. However, since we can now make an
inductive Argument for n>2 as in Example (ii), it is
clear thaf an algebraic proof is needed, By the way, it
is interesting to point out that the kind of argument
used in I1I.2(ii) and (ii) works for H°(S'x...xs') due to
the épecial structuré of this space, which allows one to

prove exactness by algebraic methods,

We have thus proved that Sp, (W)CfFr(?HTD
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Since index(W)=-1 and index is continuous, we immedia-
tely get: Sp (W)—Fr(! ID ).

(a) From (¢) we obtain: Sp(W)uAT"TD HMoreover, if

ZﬁTrDi, then for at least one 1, 13.1|>1. Then Wi 21
is invertible and so is W—l Thus Sp(w)- TETD

3.Indices of related tuples

The followiﬁg propositions are rather elemen-
tary, though useful to rind indices of several related

‘tuples.

Proposition 3.1, Let A=(A;,...,4 )eF, ?:{1,...,4}-—¢§,*}
be a function and define ?(Ai)zA?(i) as in II.Corollary
3.10. Assume P(A)= (?(A ),...,?(A )) is an almost commut-
ing tuple. Then P{A)EF and index ¥(A)=(- 1) 1ndex(A),
whexe 1¥l=#{is ?(i)~*} |

Qorollary 3.2, If A=(A1,...,An)eF and one of the A,'

is'essentially self-adjoint, then index{A)=0.

Proof of the Proposition: Without loss of generality,

we can restrict attention to the case ¥(1)=%, ¥(i)=1 (i»1)
S~

(see proof of II.Corollary 3.10). We also know that ¥(A4)

is, up to some minus signs, ﬂ#. From this it follows that

index ¥(A)=~1index(A), since those miﬁus gigns leave the

homology modules unchanged,




Coroliary 3%.3. If AT and A2 almost doubly commute,

.* E 3 3 +# .
and (A1,A2)6F, then (A1,A2), (A1,A2) and (A1,A2) are
Fredholm and index(A,,A,)=index(A),Ay)=-index(A],4,)

- *

- Proposition 3.4. Let A=(A1,...,An)ef, V be a Frednolm

operator such that there exists a path XE[O,ﬂ-ﬂ?F
with ¥(0)=V, ¥(1)=I and [}(t),Ak]éK(H)’(all t, k22),
Then index(A)=index(VA)=index{AV), where VA, AV are

defined as in II.Coroliary 4.7(i).

Proof: We already know, from II.Corollary 4.7(i), that
VA, AVEF. Since [F(t),Ak]eK(H) (x22) for all tand ¥t)EF,
we see that (Y(t)A,,A5,..0,4,), (A W(t),45,...,4 JEF.
By continuity, index(A)=index(VA)=index(AV).

Corollary %.5. If A=(A1,...,An)GF and A€C-{0}, then
(1A1,A2,...,An)EF and index(A);index(lA1,A2,...,An).

Proof: Let ¥(t)=(1-t)A+t if Im X#0 and
2(1-A)t+ A 0553
2(1-1)t+21-1 $€v<
when Im A=0.

Proposition 3.6, Let Az(A1,...,An)€E and p€S be a

) *
permutation. Then p A_(Ap(T)"“’Ap(n))GF and

index(A)zindex(p*A).

58




gggégs Since every permutation is a‘product of transpo-
gsitions, we can restrict attention to the latter.
Purthermore, it suffices to consider a transposition

p with p(1)=3, p(j)=1, in virtue of the relation

(3 k)=(1 j)(1 x)(1 j). This can be done by using the
same argument as in?II.Proposition 4.%, thus showing
that both Koszul systems are unitarily isomorphic (i.e.,
the isomorphism is given by unitéries). Therefore

index(A)=index(p 4).

Remarks: Using the above definition of indei, we can
define the index of a nonsingular tuple of elements of
the Calkin algebra A(H), by lifting it to an almost
commuting Fredholm tuple of operators on H. A classical
result of E. Michael [10] on ¢cross seétionsliﬁduces
immediately a bijection of path components betwéen by
‘and I(A(H))=computing invertible tuples on A(H). It is
also clear that I(A(H)) is open in the set of commuting
tuples. ' | '

The above definition of index was given.only for
tuples of operators (that is, Fredholm Koszul systems),

while we could have extended it to more general systems.

One approach is to consider the same definition for sys-

tems with E n, = n, in order to get a square
k k.
k even k odd

i,
matrix D.

29
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Other viewpoint would be to take the content
of Theorem.1.,3 as the starting point. We have not pur-
sued this farther since our main interest is centered

on Koszul systems.

4. Although it is not hard to see that a normal n-tuple

: ¥* 3*
N=(N1,...,Nn) (i.e., NN j_mj 4 and N N;=N;N; for all i,3)
which is Fredholm will have necessarily index zero (its
asgociated N is normal), it is not completely obvious
that the same is true for essentially normal tuples

with all commutators in trace class {n32).

Theorem 4.1. Tet A=(Ay,...,A ) (n22) be an essentially
normal tuple (that is,[A;sA j] , [Ai-,A:]EK(H) for all i,3)

with 811l commutators in trace class. Assume that A is

Predholm. Then index(A)=0,

We shall need the following lemma, which appears
in [9].
Lemma: Let T:(Tij)ﬁL(HN) be a Fredholm operator and
| E”ik'Tlm]€91 (all i,k,1,m=1,...,N), i.e., all commutators
are dn trace class. Then det(T) is well defined, det(?)

is Predholm and index(T)=index{(det(T)).

Proof of the Theoremz We can apply the preceding lemma

to A and thus conclude that 1ndex(A)*1ndex(det(A))

An easy calculation shows that det(R)~ (§ fA )Pl g
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compact., Therefore, index(det(A)):(n—1)index(EmﬁAiAgzo,
. L=

since the last operator is positive.

‘ The preceding theorem has certain points of
contact with a result of Helton and Howe. In [8, Part II,
The oren q, they precisely state: Suppose that X?""’Xn
is a family of self-adjoint operators on H such that
Exi,X5]€£1(=trace class) for all i,j. Let B be the

*

C ~algebra they generate. Then the index of an operator
U in Mm(B) with unitary %alued gymbol (that is, its pro-
Jection into Mm(A(H)) is a unitary mxm-matrix) having an
extension to a matrix function uz(uij) with entries ip

S(R™) is

inde}{('U)2 j?lk:% hl(dujkhdﬁjk) ]

where hl is the homology class induced by a certain linear
functional 1 defined on closed 2-forms of R"

 Thus, if we consider a tuple X=(X1;...,Xn) of
self-adjoint operators with Exi’xj]eci for all 1i,j,
such that X is essentially unitary, we can apply that
result {(notice that x.ES(Rn) for all i=1,...,n) %o obtain:

1ndex(X) j%@- (du kAdqu) =0 ,

since Uy is real (all j,k). Of course, we can get this

much easier applying Corollary 3.2.

We finally want to observe that for a doubly commuting




Fredholm tuple with a coordinate normal, index is also
zero, a fact that follows immediately from I.Lemma 11
(ﬁ is normal iff A1 is normal) and Proposition 3.6, When

nSB, the same holds without assuming doubly commutativity,

because I.Lemma 1,1 works in that case.




CHAPTER IV: THE DEFORMATION PROBLEM

Let H be an infinite dimensional Hilbert space
and A=(A1,...,An) be an almost commuting tuple of ope-
rators on H., If A is Fredholm, index(A) is a well-defined
integer; by III.Theorem 1.2, index is an invariant for
the path-components of F. In {4], Douglas raised the
following questions Is it the only invariant? In other

WOI‘dS 3 giVEn ‘bWO n"tuples A=(A1 pacs ’An) and B':(B,I [N ’B )

n
in P with same index, is it always possgible to find a
path f:[o,{}~—%F, continuous, such that ¥{0)=A and ¥(1)=B7?
This is the deformation problem. For n=1 the answer is
knoﬁn to be yes {cf. [3]) and for the case A, B essential-
1y normal, Douglas himself gave a proof in [4], using

the extenéion‘ﬁheory of Brown-Douglas-Fillmore. We shall
give a detailed exposition of this fact in Section 2.
Previously in Section 1 we solve the deformation problem
ih the easiest caée: when A has a PFPredholm coordinate;
then A can be joined to (I,0,...,0) in P, In Section 3% we
consider again (W1,...,Wn) and (Tz?"'°’Tzn) and show that
they lie in the same component. As a consequence, we Ob-

tain the non-obvious fact that (W1""’Wn) can be connected

o ¥ #*
to (w1,do.,w

n) for n even, Ir A, is essentially normal

with closed range, then index(A)=0 and in fact A can be

joined to (I,0,...,0)., We show this in Section 4. We then
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degcribe how, in case the tuple is almost doubly com-
muting and at least one of the Ai's-nas closed range,
the problem can be reduced to n-tuples with at least
one partial isometry as a coordinate. In Section 6 we
deal with the case in which that partial isometry is
semi-Fredholm and solve the deformation problem there,
We finish the chapter considering a rather teqhnical
case, when the essgntial spectrum of oﬁe of the coof-

dinates has O as an accegible point from the essential

resolvent set.

Notation: If X<CL(H)X®C®, A=(Ayseeesh)y B=(Byye.0sB)EX
and there is T @,1]—-9)( continuous, ¥(0)=A and ¥(1)=B,

we write A LB.

1. Let A=(A1,...,An) be an almost commuting tuple
of operators on H. Assume n22 and A; Fredholm for some i.
Without loss of generality, it suffices to deal with the
case i=n, Then.FT%)z(t+(1-t)A1,...,t+(1—t)An_1,An)éE,
¥(0)=A and ¥(1)=(I,...,I,A ), s0 that.AAL%Ti) Now
Q(t) =(I,1-%y 000,15, (1-1)4 JEF g(0)~311) and <(1) =(I,...,0),

a8 expected; that is

FrOstition 1.1, Let A=(A1,...,An)€F (n22) and assume

A, is Predholm for some i. Then AfE*(I,O,...,O).

i
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Notation: Since (I,0,...,0) gives (TTBTT???6)=IH o1

@&C
it is natural to think of that tuple as the "identity"
tuple, We shall do that in what follows and simply

write I=(I,0,4.4,0). The above statement rephrases as

AR T (n22).

2. The essentially normal case

We shall write EN for the set of esgentially
normal tuples of operatofs, i.e., those tuples produ-
cing commuting normal tuples in the Calkin algebra.

We write ENP for ENN P, From the results of Chapter II

we record:

- . | n
Lemma 2.1, Let AGEN. Then A€ENF 1ff  AlA, is Fredholn,
=1

1f A=(A1,...,An)éEN, then the C -subalgebra B
of A(H)rgenerated DY Byyeens8y (recall that we use capi-
tal letters_fof operators,ismall letters for their
corresponding Calkin algebra projectipns)is abelian. By the Ge-
fand-Naimark theorem, B is ¥*~isometrically isomorphic to
G(M), the continuous functions on M, the maximal ideal
space of B. There is a natural embedding of M into o
given by'?k—a(?(a1),...,?(an)) that allows us %o consider

M as_a subset of. CT.

Lemma 2.2. A=(A?,.,.,An)€ENF iff 0 & M.
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We now compute M. The answer is expected.

- ' ¥*
Lemma 2.3, Let A:(A1,...,An)éEN and B be the C -subal-
gebra of A(H) generated by aysee4sa,. Then the maximal

ideal space of B, seen as a subset of G, is identical

to Spe(A).

Definition 2.4, An essentially normal tuple A is

~
essentially unitary (in symbols A€EU) in case A is
essentially unitary.

The fact that for AEENF the maximal ideal space
¥ does not contain the origin was used by Douglas in [4]

to deform it into $B~!

and so get and eiement of

Ext(5°21)1, The topological lemma needed is the inva-

riance of Ext under homotopy. We shall now give an

alternate approach, algebraic in nature, that avoids

considerations of homotopy. It is based on the fact that |
the tuple_az(ai,...,an) is normsl and so is 2. A look

at the polar decomposition of Q shows that both factors

lie in Mn(A(H)) since a is invertible. We can then reduce

the problem to 521 we now give the details,

Lemma 2.5. Let a=(a1,.;.,an)be aldoubly commuting tuple on a

* .
C -algebra B. Then a, is normal iff & is normal.

1 For a complete exposition on Ext, see [ﬁ}.
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Remark: The assertion (a1,a2) invertible iff (a2,a1)
invertible was proved establishing an isomorphism
between the complexes., Since we have a representation
81 8

a= * * » one would think that it is possible
to find some unitary transformation U such that
*» [ 82 * :
UAU =| & 4 | .« Lemma 2.5 says that, in general, it
—8 8 | |
is not possible (take for example a, normal, a, non-

normal).

It ¢: A(H)~>L(R) is a faithful represeniation
of A(H) into the algebra of bounded linear operators
on a certain Hilbert space R, then.¢k: mk(A(H))w—aMk(L(R))
defined by @k(a)m(¢ﬁaij)) is a faithful representation
of'Mk(A(H)) (actually, this is the way one defines a
norm dn.Mk(A(H)) go as to make 1t a C*ealgebra). If a
is a kxk—mgtfix over A(H), then ¢k(a) has a polar de-
composition ¢k(a)=VP, where V is a partial isometry and
0$P=¢k((a*a)%). Thus P belongs to the image of ¢k. But ,
in general, V éim ¢k (V is only in the von Neumann alge-
bra generated bytpk(a)). If a is invertible, however,
$ () is invertible and then V=¢k(a)£“1=¢k(ap“1)&im¢k
(p=(a*a)%) (v is unitary in this case). So that a=vp,

where v 1s unitary, p»0 and v,pﬁmk(A(H)).
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Lemma 2.6, Let a=(a1,...,an) be an invertible normal
tuple on A(H) and & be its associated k xk-matrix (k=2n-1)over
A(H). Then, if a=vp is the polar decomposition of a
with v, pet, (A(H)), there exist u1,...,un,qe.A.(H)such

that q»0, u= (u1,...,u ) is a commutlng normal tuple,

=v and CE:S:TTTT‘) =p {q is indeed (2:;3 ai) e

Proof: Define q to be (i ; )%. It is almost obvious

that (II.Corollaries 3. 4 and 3.5)

% e
A A= (00,00 .0)%=p2.

Since & is invertible, so is p and then

T —
V=QP"1=A(Q“1 ,O,.- . ’0)

Observe that (q- +O0y400,0) is diagonal, so that:.

- A !

A
8{q 404044,0) = (a1q seeera @ ).

Let ui=aiq"1. Then (u1,...,un)=v and u=(u1,...,un) is

a comﬁuting normal tuple,

If A=(A1;000,An)€ENF, then a=(a1,-.r,an) is an
invertible normal tuple and, by Lemma 2.6,
(E;EJTTTTT:;;ZHT) = Qb"1 =v =0 . If qt*(1 ~t)q+t,
it is clear that (a1qt1,...,a qt ) is a path of normal
commuting tuples joining a to u. Since E :ui 1”1’ for
any ¥ in the maximal ideal space M of the L -aigebra gene-
Ly 2 .
rated by Ugseee,u, we have . 2;14?Tui)l =1, from which

en-1 o '

it follows that M S . We summarigze this in the following
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Proposition 2.7. Any A€ENP can be joined (in ENF) to

an essentially unitary tuple. If A€EU, then'Spe(Ak232H"1.

~ Calling i: Spe(A)¢—?82n"1 the inclusion map,
then Ext(Spe(A))-—wjéExt(Szn”1)¥ %Z. Conseguently, any
A€EU produces an integer i(A) and, if A,BcEU are such
that i{A)=1(B), then they induce equivalent extensions,
80 that there exists.a unitary UcL(H) satisfying
UAiU*=Bi+Ki (i=1,...,n), K,eK(H). Since U is unitary
we can find a path-Ut of unitaries such that U0=U, U1=I.
Therefore, A AU (UAjU*,...,UAnU*) (use U, and II.Propo-
sition 4.6), which in turn can be joined with B (take
the line segment). To complete.the argument, we have
to show that index(A)=1(A) or -i(A). Since H is infinite
dimensional, HQH@H2(82H"1), go that a unitary copy of A

can be joined to (I@W;”i(A)),;..,I@Q ). Consequently,

Z
it suffices to,check t%e formula for ghe tuple(T;k),o..,Tz )
on B2(8°™"1), which can be easily done. (Of cours;, "
(Tgk),...,Tz ) does not define immediately an element of
Extgszn“1), ?n general, but in that case we consider its

unitary part, after Lemma 2.6.)

3. We now consider (Wq,We) on Hz(SixS1) and
(Tz T, ) on H2(S3). We already know that both pairs are
1 2
Fredholm of index -1, The purpose of this section is to

show that they can be joined by a path of Fredholm pairs.



More precisely, if §,(i=1,2) is defined on H(5) so

as

ek

to be unitarily equivalent to Wy (i=1 2), that is:

_ ) ) N
(g k)% (k1K) 0 528 (ky k) )™ (i, ke p40) 0 WROTE
is the natural basis for H2(S3) as defined in OQ.Notation,

then (T )IEE (S ,S ), where DF stands for the

zy’ z2

almost doubly commuting Fredholm tuples. To show this

we

rol

(!

[5:

Now

first notice that S1 is the partial isometry in the

ar decomposition for Tz =SiPi, where

C
= K -
P.e, = etk (k'=(k+1,k,)
: C
- K - ‘
Pye, = Tt (¥ -(kj,k2+1)

. %
1),T§;2))6DF (a1l te[0,1]).

We now define T(i)zsi((1—t)Pi+t) {i=1,2) and show that

First at all, we have to verify almost doubly

commutativity. This amounts to showing that 8;+T, J]eK_

T, ]ex (1£3).
23

[%1,T 2] 8,P,=5,P,5, 28,5, ,=5,P,5, .
k - 1 K+

Recall that e =c¢ 7 c,. =
kK Tk k _{-'
2w
so that 02 2
2 _ 'k 2 k!
SyPoep= ~5 ey, FpSgey= 5 €, , Or
ck‘!“ kii“
2 o2, kbl ey
(s 3 )ek'f"‘( ""5 - “""”"‘) ( eki
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k2+1

= "k'
(lx]+2)(|k|+3)
g0 that [81,1’2]61{ and then [S‘i’P JE.K and [81,1' 2]EK.
Similarly
*
|}1’T22] = 5,PySy-P,5,5,=5, P,5,-PyS, 5,
=(8,P,-P,8 )s €KX .
- Analogously, [éz,Tz ] and [?2,Tz*] are, compact.
1 1

Since [K1-t)? +t,7_ JeK, an application of II.Coro-

llary 4.7 shows thai (T(1) T, )JEDF. Since [31—t)P2+t,Ti1ﬂ

is compact, a second appllcaﬁgon of the same corollary

implies that (T(1),T(2))QDF.

Thus , (TZ1,T ) (s 32). |
We now show that (W W, ) (W W*), or equivan

lently, that(S,, ) (S 2). Since (8,, ) (T T, )

1 2
?%) give rise to the same element
"z

and (T o T )9 (T :T
of Ext(;3), we. know that there exists a unitary UeL(H (33))
such that Tz.:U Tz.U+Ki (Ki K, i=1,2). It is now clear

that (2,2 ) 2 (2 *,r %)

1 2 1 2

Using (TiT)*,T(E)*) instead of (T(1) T(Q)) we can connect

*
(s:,sz) to (Tz1, 2) in DF. Therefore, (5,,5, ) 2L, (s1,s ),
as desired.

Remarks: An obvious extension of the preceding proof éﬁows

that (Sy,...,8, ) o DE (T veees?, ) (all n). However, the
ol

statement (81,5 ) (S* S*) will extend only for even n,



72

because (Tzi,...,Tz ) and (Tz:""’Tz*) must produce
equivalent extensiogs. Easier: indexn(sr,sg,...,SZ)z
=(~1)"index(8,,8,,...,8,)=(-1)"*"! ¥y III.Proposition 3.1,
so that index(S:,...,S;)=—1 iff n is even. () (n
By taking"powers" of Tt’ i.€4,y Tim)z(Ti1) mLTiz) é%
‘where T(m) ig T op p "0 according to m20, m<0, we can
easily prove that (ngf2,5§m2))f2§r(Tgm1),T;m2)) (ag
'ﬁe remarked in IIT.2(iv), we need the ;pectrgl mapping
theorem to assure that (T§1) M ,Tiz) "2 ) is Fredholnm},
s0 that (s§m1),sém2))f23 (s$k1),s§k2)) iff mom,=k, k.
We now deal with the case (T?@ﬁ,I@my) on H2(S1x81),
where ¥,#eC(T) and T?;T* are thelir associated Toeplitz

operators,

Theorem 3.1. Tet P.9¥eC{T) and assume that neither TV nor

Ty is invgrtible. Then (Ty@I,1® Ty )EF iff Tep end Ty are
Fredholm. If index(T?taI,IgE* )=index(T? @E,I@E* ),

T 1 2 2
there is a path (T(F @I,I@P(‘, ) of Fredholm pairs joining
thenm,

Proof: Let€$(51,22)=?%z1) and“%(z1,z2)=Tﬁz2). Then

(7,9I,I&0 ) is (1, ,T4,). By the Corollary to Theorem 4 in
4 ¢ ¢ Y

[5], we know that (Ty /Ty, )P 127 (T¢(21,.),TH{Z1’.)) and

(T¢(.’22),Tq{.'22)) are invertible for all 21,226T, 1a€a,

Ciff (?(21),T?) and (T¢,W(22)) are invertible pairs for

all z,,2,€T. A moment's %hought shows that this is the



same as having ¥#0, 40, which in turn is equivalent
t0 Tep, Ty both Predholm. |

Now, if T? is Predholm and index(Ty)=-n, then ﬂ? ¢can
be connected to T;n) by a path of Fredholm Toeplitz
operators (see, for instance,'[B]). From this and what

we proved before, the second part of the theorem follows,

Remark: Notice that we can add the fact:
index(Te@T,Tefy )=-(index(Te) (index(Tq))
a result that comes right out of the deformation state-

ment.

The remark éuggests the following
Problem: Let'Az(A1,A2y5F. We know that A(m)z(Ang),Aém2))
is also Fredholm (spectral mapping theorem). Is it true
that index(A(m))=m1m2index(A)?
It is clear that an affirmative answer to the'deformation
problem woﬁld show this to be true, since it is true for

the class {(W$m1)’wgm2)ﬂ @
my,m,
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4. Theorem 4.1, Let A=(A1,...,An)EDE(HEQ),Where A,y is

an esgentially normal operator with c¢losed range. Then

index(A)=0 and indeed A}LEI, keeping the first coordinate

essentially normal with closed range.

Proof: Consider H=ker A1€Bran A?, Then



0 31 D
A1'-"= y A2= ys ey An= .

2 Dn Bn

0 01 E2 02 En Cn

Since A€DF, a direct calculation using the Open Mapping
Theorem for A, shows that By,...yB ,Byy...,B €K(H).
Observe that A:A1 has only one nonzero entry, the

lower right hand corner. By II.Corollary 3.4, one can

-easily show that (0’D2"°"Dn) is a Fredholm tuple, i.e.,

'V(Dz’on.,Dn

) is a Fredholm (n-1)-tuple, (We should notice
at this stage that, in case ker A1 or ran A: is finite

dimensional, the theoren follows at once,; because A, is

1
then Fredholm or finite rank (forcing (Az,...,An)GF).)

We now claim thai B1€K(H),[C:,C1]€ X and G, is Fredholn,

; *
From AjA,-A A} €K(H) we get B,B €K(ran A, ker A,) and
) |

* * *
B B +C,0,-C,C, €K(ran A,).

#
Therefore, B, is compact and[b?,01]eK(ran A1)=

Finally, since ker £1=ker ATA1 and ran A, is closed (so0
%

that ran A?A1 is also closed), we see that B1B1+C:G1 is
invertible. Then 6:01 is Predholm and, being 01 essentially

normal , 01-is Predholm. .
: 0O O D

. 5 0 Dn 0
We now connect A to ’ yeooy
: 0 01 0 02 Cn
(by the line segment) and then to
0 O D2 0 Dn 0
¥ $ ey
0 01 0 0 0 0

(by the line segment again, since G1 is Fredholm). We now



use the proof of Proposition 1.1,

Remark: We shall see in the next section that, if A=
(A1,...,A EF, [A1,A ]eK(H) (22} and ran A1 is closed,
then Af~J(V Asyeeeshy ) where V is the partial isometry

in the polar decomposition A zVP. One might expect that

1
a slight perturbation of a tuple AGF would provide one
"with first coordinate (or any other coordinate, of
courge) having closed range. It is clear that a compact
perturbation will not do it, Theorem 4.1 tells us that,
unless index(A)=0 or we can afford 1o 1ose‘important

algebraic properties (like A, being essentially normal),

we shall not succeed.

. 5. Theorem 5.,1. Let Aw(A1,...,An)€F, [A1,AQ§K(H)
for k2 and assume that ran A, is closed. Let A,=VP be
the polar decomposition for A;. Then [},AE]&K(H),
(VyAyseneyA )EF and A (V,A,,000,A ), while the first

coordinate continues to almost doubly commute with Ak(k22).

We shall need the following
Lemma 5.2, Let S,T7€L(H), [?,T}GK, [?,T*JQK and T=VP be

the polar decomposition for T. Assume that ran T is closed.

Phen ,[V,S] , [V,s'”]eK.

‘Proof: We know that ker T=ker V=ker P.

. *
Consider H=ker TP ran T . Then:




0 T1 0 V1 0O 0
T= s V= , P=
0 T2 0 V2 0 P2
and |
S=- 31 Kj .
K2 -S2

Since ran T is closed, an application of the Open
Mapping Theorem shows that K1,K2€§K. Moreover, P2 is

or V1P S5,=5,V5P,, V2P2S2~S2V2P262K. But P belongs to

2 1
the C*-algebra generated by T, and T almost doubly
commutes with S, so that [?,S]@K, or [92,3-2]@31{, Thus

(V152—S1V2)P2€K and (V,8,-5,V,)P,€K. |
Since P, is invertible, we conclude that V152—S1V2€EK and
[?z,sz]gK, which implies that [Y,%]@K,

* . Ei

Similarly, [V,S ]@K {(this time using the fact that [P,S]@K).

Proof gi the Theorem: Once we know that (V,AZ,...,An) is
‘an almost commuting tuple ﬁith [Y,AE}%K(H) (kz2), we
proceed to show that it is Fredholm.

Since P is an open subset of the set of almost commuting
tuples, there exists £>0 such that (A1+QY,A2,...,AH)EF
whenever |Al<E.

Now A

1
is Predholn,

+§é =W+§v=v(r+%). By II.Corolla:y 4.7y (Vyhpyeeord))

It is now clear that T(t)=(V((1—t)P+t),A2,e..,An) joins




A to (V,AQ,...,An) satisfying all the requirements,

Note: The preceding theorem is not obvious, since in

general the partial isometry lies in the von Neumann
algebra generated by T. Some cbndition on T is needed,

and one can find examples where ran T ig not closed

and [v,s]gx.

6. We now turn té‘study_those Az(V,AzﬁﬁF such
that [&,A;]EK(H), where V is a partial isometry with
finite dimensional kernel or cbkernelo By Section 1,
it suffices to consider the case when exactly one of

dim ker V, dim ker V is finite.

Lemma 6.1, With A as above and dim ker V finite,
A-QE*(S,T), where S5 is a unilateral shift of infinite

multiplicity.

Proof: Taking a finite rank perturbation, if necessary,
we can assuﬁe that V is an isometry. By the Wold decom-
position V=U®S, where U is unitary and 5 is a shift of
multiplicity equal to dim ker V*. Now S can be written
as a direct sum of shifts of multiplicity one, By Coro=
llary 2.3 in [1], thé first summand "absorbs" U up to
unitary equivalence modulo the compacts, so that Ug&S

is unitarily équivalent to a compact perturbation of 3.

IT.Corollary 4.7 and the connectedness of the unitary'
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group complete the proof,

We shall need the fdllowing algebraic lemma
in dealing with the (S,T) situation,

Temma 6.2. Let B be a C*~a1gebra, g€B be an isometry,

a2EB= Sazzazs and saz=a;s. Then (8’32) is invertible
if and only if ker sﬂﬁker a2=0 and ran s+ ran a2=B

|
|
|
(Xer and ran understood to be kernel and range of the
’ |
left multiplications induced by s and a,).

Proof: The "only if" part is tr1v1al.
For the "if" part we need to prove exactness of the
Koszul complex for (s,a2) at stages 2 and 1. But since
s is an isometry, ker s=0 and stage 1 is done,
' *

Assume: sa+a2b=0. Then a=~s*32b=—a2s*b. Let ¢=s b.

. * * #
Then 8 (b-sc)=s b-s sc=c-c=0 and az(bnsc):a2b~a2sc=
-(sa#éazc)z-(sa+s(a2s*b))=-(sausa)=0.

‘ *
Thus b—scel_cer s Nker a2=0, or b=gc, as desired.

Let M be a Hllbert space and N=M@®. .. For
'TGL(M) we define T—T@ﬂ@%.. .

Temma 6.3. Assume that (S,7)EDF, where S is a unilateral

Let Ty, be the (0,0) entry of T. Then (S,T) 5 A5, 00).

Proof: Since 55740 T and SS 4T are both Fredholm, and

|
1
shift of infinite multiplicity acting on N=MW ...
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MBO®O®. . .=ker S , we conclude that T, is Fredholm,
Also, (T01‘ Too Toz .».) is compact. Analogously,
* * ¥*
(T10 Tso TBO e+s) is compact. Consegquently
(1) ran 8 + ran t,= A(N) ,
where, as usual, small letters are used for the pro-

jeetions in the Calkin algebra and tlm(1-23t+1$00 .
Suppose that s*a=0 and tlazo. Then

Ao A1 Ao
Aoo Apy Ay
Az A3 A3

-
[ 3
-

is compact,s0 that A can be chosen as

Ao Ro1 Ao
o 0 0
o 0 0

Since taazo,

Tootoo Too*or Tootor
0 0 0
0 0 0

is compact. But then

Too Tor Toz Ago Aoy fop
Tio 49 Ty H 0 0 O
T,y Tpq T 5 0 0

22 0




is compact, or ta=0. Since (s,t) is invertible and
s*a=ta=0, we have a=0, We have thus proved:

(2) ker s*r;ker t=0 _
Coubining (1), (2) and Lemma 6.2, we dbtain that (s,tl)
is invertible for every }X. Taking 1&[0,1‘] , we have a
path from (s,t) to (s,tgb).

Lemma 6,4, Let S bé a unilateral shift on N=M{NS...
and CeL(M). Then (S,@)GDF and ren & is closed iff C

is Predholm. In that case, index(s,6)=index(0).

Broof: "if". Clearly [3,8]=[¢}C]=0. 1£ s"a=8a=0, the
argument in the preceding lemma again shows that a=0,
Similarly, ran 8 + ran ¢ = A(X¥). By Lemma 6.2, (s,%)

is invertible, Finally, ran C closed implies ran &
closed.

"Only if": ran G closed==pran C closed. Purthermore

xer G=ker C@ker CD... and ker a*nker s*, xer CNker s”
are both finite dimensional. Thus: kerC®O®0@ .. and
kerCﬁ%O®0&x.. are finite.dimensional; which completes

the proof that C is Fredholm.

‘Now, by III.Corollary 1.5, we know that

N, ) - # *
index(S,C)=dim(ker s" Nxer C)=dim(ker S Nker C )

=dim ker C - dim ker C = index(C).

We are now in a position to prove
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Theorem 6.5. Let A=(V,4,) , B=(w,32)eDF_, V,W be

gemi-Fredholm partial isometries.Assume that H is

separeble and index(A)=index(B). Then A,EE,B,

Proof: If dim ker V is finite then, by Lemma 6.1,

A 2% (s,m). If dim ker V' is finite then, taking the
adjoint of the first coordinate of the path from
(V',4,) to (8,1), we get £ 25 (s¥,1). similarly,

B 25 (s5,,1,) or B AA(s],1,).

Since H is separadble, any two unilateral shifts of
infinite multiplicity are unitarily eguivalent. By
II.Corollary 4.7 and the connectedness of the unitary
group, we can assume that S=S1.

Without loss of generality our situation is:
H=1°(s'%s1), s=w
(w3, 8).

Four pdssibilities arisge:

S Pl 4
, A=(W,,7) or (W.,T) and B=(W,,R) or
1 1 1 1

(1) a=(w,,®) , B=(w,,R)
(11) a=(w;, 1) , B=(w,,B)
(i) a=(w,,®) , 3=(w},R)
(1v) a=(w),T) , B=(W},R).
Case (1): index(T)=index(A)=index(B)=index(R) by

Lemma 6.4. Consequently, there is a path of Fredholm

operators joining T and R. Using the "if" part of

Lemma 6.4, A RS B.
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Case (1i): Let m=index(A)=-index(T). Then TrEJUim)
(U, is the unilateral shift of multiplicity one).
Thus, A5 (W), u$™) | since (w,, %) 25 (w, ,08-m)y
Slmilarly, index(R)=m implies RrwJU( m), so that
fuJ(W1,U$-m)). R
It is easy to see that U =W2 g0 that we actually have
A 2L (w) W(m)) and B 2L (w, w5 em)y

By the remarks preceding Theorem 3.1, (Wj,w(m)JDF (W1,W2("m)),
completing the proof.

Case (iii) is completely analogous to (ii).

Case (iv): Consider (W1,$), (W1,§), use (i) to find a
~path in DF and then take adjoints in the first coordinate.

7. Theorem 7.1, Let A:(Ai,...,An)GF. Assune n2>2 and
that O is an accesible point from the essential resol-
vent set for A, (i.e., there exists a path'T:ED{ﬂ——%C
v}ith ¥(0)=0, Y(t) éﬁé(%) for 0:t£1), Then index{A)=0

and ArEJI.

Proofs et r=[0,£L-$F given by P(t):(A1+BTt),A2,...,An).
observe that for t?O; A1+ETt)eF, S0 that]”([p,{])c:F.
Thus A?E*(A1+ET1),A2,...,An). By Proposition 1.1,

(A1+BK1),A2,...,An)f§aI. Therefore, A I and index(A)=0.

Remark: Continuity of index allows us to conclude that,

if(A1)m is a sequence of Fredholn 0pera’tors,(A1)Ia—'-"?’A1




T

o
RS

as m-»o, [(A,;)m,Ak €X(H) (k22) and (A ,...,4 )EF (n22),
then indeX(A,' goee ’An)goo
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CHAPTER V: CONNECTEDNESS OF INVERDIBLE TUPLES

Throughtout this chapter, we shall only deal
with commuting tuples of operators on a Hilbert space
H. The central problem is connectedness of invertible
tuples. In Section 1 we present the algebraic machinery
needed for the subsequent sections. It involves several
manipulations with.ihvertibility and-the Koszul complex,
and many of the results are iﬁportant by their own.'.
The connectedness of invertible tuples in case dim(H) is
finite is proved in Section 2. It is & direét consequence
of the upper triangular form for commuting matrices.
" We also show that for pairs in finite dimenéion, inver-
tibility is equivalent to exactness in any stage of its
Koszul complex, |

We then proceed to the normal case, done in
Section 3, We finally attack and solve the doubly commut-
ing case in Section. 4. This amounts %to using a transfinite
induction argument that reduces the problem to tractable
pieces, for which we ﬁad alréady gsolved the problem.-
Both the normal case and the doubly commuting situation
are treated with no agsumption on &im(il). Although the
proof we give in Sectionz_cammmbe extended to the case
of infinite dimension, we strongly believe that the result

does hold.
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Notations: I=I(H); D=D(H) and N=N(H) denote invertible,
doubly comnuting invertible and'invértible normal tuples,
respectively.

(Althbugn we use the same symbol for the identity ope-
rator Ix=x (all x¢H), the"identity" tuple (I,0,...,0)

and the set of commuting invertible tuples, there should
not be any confusion; they are, after all, three dig-

tinct entities.)

1. We begin by summarizing a series of facts

from Chapter II.

n. x % | o
Lemma 1.1, AeI(H)==$'? AjAy and i':A.Ai are invertible,
: =1 i= 1 .

Lemma 1.2, Liet A be a doubly comnuting tuple. Then

AeD iff fAi is invertible for each f:{1,,..,n}*ﬁ40,1},
1=
where » .
£, _ AjAy if £(1)=0
AT A Y dr p(i)=1
i™i -

Lemma 1.3%. Let A be a commuting tgple. Then AéN iff Ai
is normal and ? AzAi is invertible.

_ E : .
Lemma 1«4. If Az(A.l,.nn,An)eN and. B=C (A1,1099An)’ then
the maximal ideal space M of B, seen as a subset of Gn,

is Sp(4,H).

Lemma 1.5. Let A be a commuting tuple. Then A€l iff BT
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invertible,

Temma 1.6. (1) I(H) is an open subset of the set of
commuting tuples on H,

(11) D(H) is an open subset of the set of
douﬁly commufing tuples on H.

(1ii) N(H) is an open subset of the set

of normal tuples,

L

Lemma 1.7, (1) If A=(A1,...,An) is a comruting tuple

and A, ye.044;
11 Tk
k-tuple, then A&l.

(1$ij$n, j=1,+.4,k) form an invertible

(ii) If A:(A1,...,An)§1 and Aiiz".=Aik=O
(1$ij$n, j=1,440,k, k<n), then the tuple formed with the
remaining coordinates is invertible.
(We notice that i=[1,...,k}—wa{1,...,n} need not be
injective; it is easy to see that if an invertible tuple

has a coordinate repeated, then the tuple obtained by de-

leting all but one of those coordinates is still invertible.)

Lemma 1.8. Let A€I, V be invertible, VA=AV for k22,

Then VA=(VA1,A2,...,An)€I and AV=(A1V,A2,...,An)€I.

Lemma 1.9. Let A€l, V be invertible and Ay=(VA,V™',...,VA V"),
Then Avél.

Lemma 1.10.Let A=(A1,...,An) be a doubly commuting'tuple.

Then ﬁ igs normal iff A1 is normal,




87

Lemma 1.1%1. Let Az(A1,...,An)GI, ?&{1,...,n}—_¢U,*}.
and ?TA1)=AZTi). Assume that[?(Ai),?(Ajilzo (i£3).

Thenf(A)=(P(4;), .., P(4,))eL.

We now prove some new auxiliary facts.

Lemmg 1.12. (i) If A=(A1,..;,An) and -
AN A, O
ge vy

.B1 01 B, Cn

are invertible, so is 02(01,...,Gn).

A

(1i) If A=(A1,,..,An) and

B A, B

1 n n

‘ge e ey
1 0 Gy

are invertible,'so is C=(Cqyees,Cp)e

Ay

0 c

Proof: (i) Let H, be the space the A{'s act on, H, be

1

the one the C,'s act on and H=H,@H,. By identifying
n | n (n)
H(k) with Hgk)ﬁaHék , we obtain:

A0y _ D{A) 0
ot 9 - ,
| D(B) D(C)
whe re (% 8) stands for the n-tuple of 2X2-matrices and,
as usual, D is the Koszul complex.
Assume that Dk(c)xzo. Then
D (a) O 0
Dk(B) Dk(c) X

'—'-'Oa

Since (% 8) is invertible, there exist u and v such that




Dy, {4)u=0 , Dy, (Blu+dy ,(C)v=x.
Since A is invertible, u=Dk+2(A)y for some Y.
Therefore: '

Dy q (B)Dyyp (A)y4Dy, 4 (C)v=x . |
It is elementary to show that D ,(B)D ,(A) is equal

to ~Dk+1(C)Dk+2(B). Consquently:

Dk+1(0)(—Dk+2(B)y+v)=x,,
as desired, |
(11) Being A invertible, we can apply II.Corollary 3.10
to conclude that A" =(A;,...,A.) is invertible. Similar-
¢ _
A O R ' . - *
1y, (B* C*) is invertivle. Now, (i) says that C 1is

invertible, which in turn implies that C is invertible,

Lemma 1.13. (i) If A:(A1,...,An) and c=(c1,...,cn) are

invertible and (é g) is a commuting tuple, then
(é g)'is invertible.
© (41) If 4 and C are invertible and (5 J) is

a commuting tuple, then (% 8) is invertidle,

Proof: (i) Assume that
A Byxy DK(A) Dk(B) x|
p (& B)(%)- =0 .
0 Dk(c) y
Then

Dk(A)x+Dk(B)y=O and D (C)y=0 .

Since ¢ is invertible, there exists 2z: y:Dk+1(C)z.
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Thus
Dk(A)x+Dk(B)Dk+1(C)z=O .
But Dk(B)Dk+1(C):-Dk(A)Dk+1(B). Therefore y

Dk(A)(ank‘+1 (B)Z)=0 .
Being A invertible, we can find u:

{(B)z=D__.(A)u .

X=Dyyq Kt 1

Thus
Dk+1(A) Dk+1(B) u x
0 Dk+1(C) 2, y
(é g) is invertibdle,

sy Showing that

(1i) follows, as in Lemma 1.12, by taking adjoints.

Notation: As in Chapter IV, we shall write AA~B to

indicate that the tuples A and B can be arcwise con-

nected in X ¢ L(HE™).

Lemma-1.14. Let A=(A1,...,An)€I and assume that A

commutes with A; for k=2. Let A1

composition for A1. Then V commutes with A; (k22) and

=VP be the polar de-

A (V,8,00004,).

Proof: That VA =A;V (k32) follows from the fact that V
belongs to the von Neumann aLgebra generated by A1.

Now, since I is open (as a subset of the set of commut-
ing tuples), there is anf)> 0 such that (A1+1N,A2,...,An)

is in I (JAlgE). But A +&V=V(P+E) and (P+E)A, =A (P+&) (k2).

1
QObserve that P+&is invertible. By II.Proposition 4.5,




,90

(VyApyeresh )EL. We now define ¥:[0,1]—»T by
K(t):(V(t+(1“t)P)’A2,c o ,An)u

Corollary: Let A=(A1,...,An)eD(H)7and Aizvi?i be the
).

polar decomposition for Ai (i=1,+..,n). Then ArQJ(V1,,..,Vn

Lemmg 1.15. Let A«(A1,...,A )EI(H) with A, invertible.
Then AN(I 0,--.,0)

Proof: Since A, is invértible,>Af£J(A1,O,o.,,O). Now,
the set of invertible elements of L{H) is arcwise con-

nected (cf.[j], 5.30)}, so that (A1,O,...,O)r£wI.

_ 2. Throughout this section, dim(H) will be finite.
The following standard fact is crucial to obtain the upper |
- |

triangular form for commuting n-tuples.

Lemmag 2.1. Let Am(A1,,..,An) be a commuting tuple of _
operators on H (#(0)). Then there exists K;(R1;...,Ah)fcn'sud3 |
n | .
that {:! ker(A, =2, ) A (0).
Proof: By induction: n=1 is obvious. Assume that there
' - n=1
exists '3=(11""’§n71) such that ;:E ker(A;-2) # (0).
Consider & on L= f\ ker(A;-2 ).
Since A A=A

k "k'n
Let Bn be the restriction of An to L. Then {by the case

A fOI‘ k 1,...,1’1—1; i't fOllOWS that AnLCLn

n=1) there exists lﬁéc such that ker(anEn)#(O).
Set A=A, An €C™. Then
(\ ker(A 11 “L(\?er(ﬁ An) =ker(B -, 1A(0), as desired.




91

The preceding lemma gays that a commuting
tuple of.operators on a finite dimensional Hilbert
space always possess a common eigenvector. We can now

generalize the triangular form for matrices.

Proposition 2.2, (Upper triangular form) Let Az(A1,...,An)

be @ commuting tuple of operators on H and let N=dim(H).
Then there exist (N+1) subspaces Mys Mipeosy My satis-
fying:

(i)each Mj (3=054e.,N) is invariant under A,
i.e., Aimjczmj for all i=l3...,yn

(11) aim(y)=] |

(iii) O=M,CM,C...CMy Ci=H .
Proof: For ¥=0,%, the result is trivial. Assume‘it is
true for dim(H)=N-1., Consider A*=(A:,...,AZ). By the
preceding lemma, there exists xeH, x#0, and Aiéc |
(i=1,..+,0n) such that A:x=1ix (i=1,eee,yn),
Let L be the orthogonal complement of Cx. Then dim(L) is
N-1. We claim that AiLt:L. For, if yeL, then y belongs
to ran(A?—)q)+...+ran(An-1n), so that y=y1+...+yn,
where yieran(Ai-li) (i=1,...,47).
Then Ajyz ;z%Ain' Since AinéAiAj (all i,j), Aj leaves
ran(Ai-Ai) invariant. Therefore, Ajy is in L (all j).

By induction hypothesis, there exist MO""’MN«1 such

that (i), (i1) and. (iii) hoid with N replaced by N-1.
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C Write MN=H and the result follows,

We now prove

Theorem 2,3, I(H) is arcwise connected.

Proof: Let Az(A1,...,An)eI. By Proposition 2.2, we can

write the Ai's in simultaneous upper triangular form:

(1) (1) (0N . (n) _(n) (n)
agz) . & D aEN) 11 8-22) . e aEN)
1 1 n n
A _ 0 % L BN B a2H A . 0 % [ BN 2N 1 a2N 1
1— g0 g n""' )
0 0 ... A§1) g o 0 ... Aén)
where N=aim(H) and 2417, a{1) o (a11 1,3,x,1)
Al ,'j ) kl sy b
Since A€I, at least one of 2%1) (iz1,...,n)'is nonzero
n ,
(otherwise ker A, =(0) ). Consequently,
i=1

R1=(1g1),...,l(n))écn is an iﬁvertible tuple.,

By Lemma 1.12(ii), so is

A WD L uD) YCINCS IR Y

o &V o) [ AL |

o o ... A" o o ... AW
Therefore, at least one of the Réi) (i=1,...,n) i8 nonzero,

which implies that 1?=(1§1),,..,2§n))ewn is invertible.
COntinuing this‘process we conclude the following:

for each j=t,...,N there exists kj guch that )%kj)#o,

™1

Then, each of A,=(A\"7, ..., 200Ny, =01, L0000
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is an invertible tuple and, by Lemma 1.13, s0 is

A=A . . .=

x &
= 1é1) . ’;ol lén) * =
. 31) : 'Aén)
(21,0, A, '
Tet o gti) (1) (1)

0 0 0 o 0

0 0 0 e 0

i .
c =A.i"1.( )-Bi al'ld B=(B1,000'Bn) ] cn(c1’..o,cn)o.

i
Define Y:[0,1]—sL(H)®C™ by ¥it)= A+(1-%)B+C=
] |
"'_'(k( )+(1-t)B1+q1yocc,A,(n)'a’(dl—t)Bn'?'cn).
Y is certainly continuocus and ¥(0)=A. Since ¥(t) is upper
triangular, Lemma 1.1% will say that ¥(t)€I(H) in case

we can show that ¥(%) is a commuting tuple. But we know

that A is commuting, that is:

[lgi)+Bi+ci’)§j)+Bj+cj]=O -(i,j':",ooo’n)’ or

[Z{i), % )]4—[1(.1),81]+[Agi),CJ+[B1,ASj)J+[Bi,Bj]
+[Bi,(}j]+[(}i, ﬁj)}r[ci,Bj] + [ci,cﬂ =0,

Observe that[lgi),ﬁsjy]=0 and BiBjnBjBi=Oo

In the preceding matrix identity, we multiply the first




row by (1-t). Then:
[1(1),(1-t)BjJ+[1(i),cj]+[(i~t)Bi;;1(j)]+[(1--t)Bi,cj]
. +[ci,1(3)]+[ci,(1-«1;)Bj]+[ci,cj]=o .
But the left hand side is precisely

[ﬁﬂi)+(1—t)Bi+ci,)Sj)+(1~t)Bj+cj] )
so that Y{+t) is a commuting tuple.
Therefore: A-A¥(1). Let us look at X(1).

A 0 0 .. 0

Lo .
| @ A

o o o ...t
It is by now clear that a similar afgument will lead.us to
'é\gi) 0 0 ... O
0 )"éi) O * o 0
(1) o (1)
O . 0 23 eee Bay

0o 0 0 ... ;\l({i)

and, eventually, to
A1)
i
lé | (1)
i
A5 .

Al
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That is, we can join A to A, in I(H). |
Since each of the li's ig invertible with an invertibdle
coordinate,)irz'(I,O,...,O), by Lemma 1.15. Therefore,
=')1®...$1N,£;I, by Lemma 1.13.

Remark: The preceding proof'relies heavily on the upper
triangular form obtained in Proposition 2.2, which
requires finite dimensionality of H. Although a diffe-
rent proof, based on the decomposition H:kerAfB(ker A1)J-

can be given, finite dimensionality is again required

to prove that (0,B,,...,B )€L(ker A, )@c? is invertible,
whe re BizAi /ker A1 (1=2,...,n). One then uses induction
along with Lemmas 1.12 and 1.13.

We conjecture, however, the followings

I(H) is always arcwise connected.

' We conclude this section with an interesting fact

about commuting pairs of operators on H.

Theorem 2.4, Let A=(A1,A2) be a commuting pair. Then the
following conditions are equivalent:

(1) Aer

'(ii) ker A,Nker Ay=0

(iii) ker D1=ran D2 , where D is the Koszul complex

for A

(iv) ker AjAker A,=0 .
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We shall need the following lemma, whose proof

can be found in Halmos [%, Problem Sé].

Temmas (J. Schur) Let (é g) be a matrix on a finite

dimensional vector space, with CD=DC. Then

det( D)=det(AD-BC) .

In particular, (5 3) is invertible iff AD-BC is invertible,

Proof of the Theorem: (iv)=x(i) We assume that D, is
*

onto, so that A1A1+A2A;_is invertibhle. By lemma, so is
A, A
N 2
A= -1 P )

that is, A is invertible,

(11)=X1) ker A,Nker A,=0 implies that AYA +ADA, is

invertible. Therefore, so is

% *
i B ] ,

that is A =(A%,A%) is invertible. By Temma 1.11 (P(1)=F(2)=*),
A is invertible, |
{1ii)=2(i) Since ker_ﬁ:ker Df\(ran DETL=O, we See that

L is one-to-one, Since dim(H) is finite, we conclude that

A

s invertible, or AEI(H).

B
(1)=>(11), (i)}=>(iii) and (i)=>»(iv) follow trivially.




97

3. Connectedness of normal tuples

In this and next sections, no assumption on

dim(H) is being made,

‘Theorem 3,1, N(H) is arcwise connected.

Proof: Let N=(N1,...,Nn) be an invertible tuple of

normal operators. Consider the decomposition

e 4
. H=ke r Nf%(ker N1) . We haves
0 0 A, O A, O
N1= y Ng"‘ L Nn= 0 *
0 B, 0 B, B,

(recall that N, commutes with N; (a1l k¥) vy Fuglede's

1
theprem,so that ker N, reduces each of the Nk's.)
We now observe that (O,A2,...,An) and (B1,...,Bn)

velong to N(ker N1), N{(ker N1TL), respectively.

By Lemma 1.7, (Az,...,An)ﬁN, 30 that T [0,1_]-—--911
defined by ¥(t)=(t,{1=t)Ay,...,(1=t)A ) connects
(0sAp500054,) to (1,0,...,0) in N(ker A,).

IOn the other hand, let B1=V? be the polar decomposi-
tion for B1. Since B1 is normal and kexr B1mO, we can
derive that V is unifary. By Lemma 1.14, and its proof,
(By+ByyesesB )Y (V,ByyennyBy), and (V,Byyue,B )T,
by Lemma 1.15.

Pinally, Lemma 1.13 glﬁes the pieces together,

Corollary 3.2, Let A:(A1,...,An)éI(H) with A, normal.




Then ArE*I, maintaining the first coordinate normal..

Proof: Straightforward from the preceding proof.

4, The doubly commuting case

We shall begin with a series of lemmas, which
will enable us to solve some special cases. We shall

then show that those cases are indeed characteristic.

Temma 4,1, Let S be the unilateral shift, acting on
A
R=MOM®. .. and c=(c1,...,ck)e14mn®ck. Then (S,C)eD(R)
1£r ceD(M). (dere C=(8,,...,8,) with 63=Gj@Cj&L..(1£j£k).)

Proof: If C is invertible, soris ¢, By Lemma 1.7(i),

(5,®)e1(r). But 5*6=8s", so that (s,8)en(R). :
Gonversely, agsune that f:{f,..:,k}—_%{0,1} and yeM are

given. Since (S,@)GD(R), 35”4 %:;?é; is invertibdle, by

Lemma 1.2, Thus, there exists Xx(xo,x1,..,) such that
SS*X + E :fé;_}( = (y,o,.-.) . : '
I=1 |
In particular, '
|
|

(SS*X)O + i(féix)o =¥
i=

f

or
- Cix0=y .

That is, g%?fci is invertible. By Lemma 1.2 again, CgD(i).

Corollary 4.2. Let. S be as above, BGL(RM@CK- Then




(S,B)eD(R) implleu HED(R).

Proof: It is easy to check that any operator in L(R)

doubly commuting with S is of the form 8 for some CeL(M).

Temms 4.%, If A=(A,,...,A )ED and A

AT,

1 is invertible, then

Proof: This result is already contained in the proof of

Lemnma 1.15.

Le!'!l}ILa 4‘.40 If A=§(V’A2,nl-,An)&D and V is all iSOIﬂetI‘y,

o

then ArQJI.

Proofs: By the Wold decomposition, V is the direct sum of

a unitary operator U acting on fF\ ran V¢ and a unilateral
- nz20
shift S. Let Q= (ﬁ\ ran V2 and write H=0®R. Since Ak
nz20
doubly commutes with V (k= 2,¢..,n), Q reduces A (all k).

W¥e then have:

U 0 | B 0 B, 0

.V.-_'- M A: PR AT- *
" 2 i * “n
o 3 o Cy 0 Cn
Consequently, (U’BQ""’Bn) and (3,02,...,Cn) both are
doubly commuting invertible tuples. By Lemma 4.3,
(U,Bz,...,Bn).B£El I. Now, by Corollary 4.2, O=(02,;..,Cn)

igs in D(R). Taeretore, (S,C),Eiglﬂl. Then A,QLE} I.

Theorem 4.5, D(H) is arcwise connécted.
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Proofs: Let A=(A1,...,An)eD(H). We want to show that

100

A giil (I,0,¢¢4,0). By Lemma 1.14, we can connect A
to (V,AQ,...,An), where V is the partial isometry in

the polar decomposition A.=VP,.

1
We now define, by transtinite induction, a chain of

subspaces Hy as follows:
H1=ker v
Hd=0 if A‘is a limit ordinal
Hd+1:ker Qﬂ, where ﬁ% is the compression of V }
to (H ) and B \/Hﬁ
By construction, the famlly{Hdlls orthogonal We shall
agree to write
() {2 ()
Vq Gy N 0 4 - Ay 0
- ’D-., - ’
0 Byt 2 0 Déo() _ no1 o Dlga()
' s o, ol

with respect to the decomposition H=H @&(H )", The fact

=4 : . :
that H is invariant under V, Ayyess,d yAs,.es,hA i3 the
content of the‘following

ol

Glain 1: VE CH®

of
of

AKB CHd (k=2i°"'9n)

A;H CH® (k=2,.0.,n)

Proofs: i =1) §=H, =ker V. Since V doubly commutes

1

with all A, (k= 2,...,n), the claim follows.

ol a limit ordinal) ﬁ\?‘:{(Hﬂ /;/H/3 By assumption, Hfs(pa{) is
of
14

invariant under V,A (k=2,4.44n). Therefore, so is H

k?
by linearity and continuity.




a{zp-r‘l) Here Hdzﬂf“a@}i‘{:Hﬁler B’,{A' Since uP is invariant
under V and reduces Ak (k=2;...4n), we have:
Wz Cp Aéﬁ) 0
V'= ? Ak= ( ) 3
0 B 0 Dy A

with respect %o the decomposition H= Hﬁﬁ(HF)
-0

Cpx
Let xeker aﬁ‘ Then Vx-( ﬁ )eﬂﬁ, and A R X= @ « Since
\D "
Kk

(B)_plA) (£)

BﬁDk “Dk Bﬁ, D xz‘-ker 1}3 .
%

Similarly, Akxeker %g.

ol :
Therefore, VA cHY, A cH" ana A H'cH®,

4

Claim 2: Por all d, 'A(d)x(Ag%),...,A;x))eED(H().

Proof: Consider the decomposition H=ker V&iH1TL.

Then _
0 ¢, A§1) 0 Ag1) 0
Vw_—, A‘:‘: s e 0 A.-= .
o 5, | \o {0 oV

By Lemma 1.2,
v*v + 5 %A is invertible, for all possible
Aéﬁ
f:{2,...,n O 1}

That is,
k= ,

N D i

is invertible {(all ).
Therefore, lemma 1.2 says that 'A(1)€£D(H1), and claim is
true for <=1,

Next we consider the caseols limit ordinal., Being the
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family {H-{} orthogonal, we can write 1= @Hﬁ The 4, 's
admit a matrix representation with respect to such a
decompoaition., We now assert that all these matrices
are block diagonal. For, if ¥ §, the (“ﬁ",é")wentry of
A(“) is precisely the (¥,8)-entry of the matrix asso-

ciated with A(F), and A HScH®, or A(Y)Hsc 8%, so that

k
that entry is zero, Simi 1arly for (V,&)-entries with
¥<&(this time using Ak, A(S) )e

Once we know that all those matrices are block diago-
nal, it is almost obvious that 2l 36 im p(r%).
We proceed to the case oZ-F-H. We decompose H into

Hﬁeker Blge(H ) and then get

Vs cﬁ’1 .2 B0 o
v={0o 0 CF’3 y Ap={ O 'Eid) o .
o 0 B o o  p{

We are lassuming that -(Aéﬁ),...,ﬂfllg))el)(ﬂfg). By Lemma 1.7,

8o 1s (‘?,Aép),...,Agfs)). We now appeal to Lemma 1.12(ii)

$0 conclude that
(L) ( el)
0 C E2 0 Bn 0

B33
3 (0() 600y . (d)
0 By 0 D o D,
is a doubly commuting invertible tuple on {H )"L’

w0
£a(e) E:;: (R)
By Lemma 1.2, both 2 Ek: and Cﬂ 3 F’3+B°<B°(Fk D

are invertible '(311 f:{z,'...,n}_-—_-p[on} )e




Consequently, E(O{)._a-(Eéo(),...,EElO())éD(ke_r B/g). By Leuma
1.13, (V*,Agd),...,Agx))e})(ﬂﬂ{). This completes the
proof of Claim 2.

The following lemma is well-known in the theory of
ordinal numbers. | | _
Lemma: Let & be an ordinal number, [’i,o{] its initial
segment and X={f.¢.&’o{: /3 is not a limit ordinal}.

Then card{(f)=card(X). _
G(A)=p+1  (B<of)

Proof: G:[T,OQ]“-"-?X given by {G(o{) 1

is a one~to-one map onto X.

We caﬁ now finish the proof of the theorem, Assume

first that for some «, H-H. Then V=V, AK=A}({°() (k=2,4044n).
Claim 2 then says that 'A=(A,,...,A )ED(H). Thus, 4

- can be comnnected to (I,0,...,0) in D{H). (Notice that

we are.not disregarding the n=1 situation, since.ker V=(0)
in fhat' case,) ' |

The other possibility is Hdﬁﬂ for allel. We claim that

then there exists ﬁ not a limit ordinal such that Hz=(0}.
Por, Iif Hﬁ;é(O) for all ﬂ not a limit ordinal and if ’Sk’o is
the cardinality of H, then @;{ Hs would be a subspace of H
with cardinality 2/5;3 1 (byptshfg{’gemma), a contradiction.
Let ﬁo be the first gonmlimit ordinal such that %ﬁom(O).

By definition, this means that B/g is one-to-oOne,
0

,Aéﬁ") oueynlfe))

Since 'Avg") e:D(Hﬂ) by Claim 2, the tuple (\;5
' . L)
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is in D(Hﬁ% and can be joined 4o (I,0,...,0).
~Now, an application of Lemma 1.12{ii) shows that
(%@ Du& ,...,Do&)) is a doubly commuting invertible
tuple on (Hﬁﬁ . Let V' be the partial isometry appearing
in the polar decomposition §&=V'P'.‘Then V' is an
isometry. By Lemmas 1.14 and 4.4, |

o) RS (e p

"‘..’D

(/%)

[ 2L LI N ]

Dgg ,...,D(ﬁ”)) (I o,...,o)

Finally, we first connect (V,AQ,...,An) to

V. © Agg*’) 0 Aff‘) 0
0 Bﬁn’ 0 Dé&) UL o i

by the line segment, and then use the preceding facts

along with Temma 1.13 to obtain that A AL 1, | ‘




REPERENCES

12.

13.

%L.G.Brown, R.G.Douglas and P.A.Pillmore, Unitary
equivalence modulo the compact operstors and
extensions of (*-algebras, Lecture Notes in Math.
#345, pp. 58-128, Springer-Verlag, 1973.

L.A.Coburn, Singular integral operators and Toeplitz
operators on odd spheres, Indiana University Math.
Journal, vol. 23, 5, 433-439 (1973).

R.G.Douglas, Banach algebras techniques in operator
theory, Academic Press, New York, 1972.

R.G.Douglas, The relation of Ext to K-theory, Symposis
Mathematica, vol. XX, 513-529 (1976). '

R.G.Douglas and R.Howe, On the C%—algebré of Toeplitz
operators on the guarter-plane, Trans.AMS, vol 158,
1, 203-217 (1971). |

?.W.Gamelin, Uniform algebras, Prentice»ﬁall,1969.

P.R.Halmos, A Hilbert space problem book, van Nostrand-
Reinhold, Princeton, New Jersey, 1967.

J.W.Helton and R.E.Howe, Integral operators: Traces,
index, and homology, Lecture Notes in Wathematics #3455,
141-209, Springer-Verlag, 1973.

A.S5.Markus énd I.A.Pel'dman, Index of an operator
matrix, J.Funct.Anal. and Appl. vol.11,2,149-151(1977).

E.Michael, Continuous selections I, II, Annals of Mathe-
matics 63%,361-382 {1956), 64,562-580 (1956).

A.S.Mishchenko, Hermitian K-theory. The theory of cha-
racteristic classes and methods of functional analysis,
Russian Math.Surveys, 31(2),71-138 (1876).

J.L.Taylor, A joint spectrum for several commuting
operators, J.Funct.Anal. vol.6,2, 172-191 (1970).

J.L.Taylor, The analytic functional calculus for seve-
ral commuting operators, Acta Math.125, 1-38 (1970).

105




14. F.-H,Vasilescu, A characterization of the joint

150

gspectrum in Hilbert spaces, Rev,Roum.Math,Pures et

Appl., vol.XXII,7, 1003-1009 (1977).

U.Venugopalkrishna, Fredholm operators associated
with strongly pseudoconvex domains in CRB, J.Funct.
Anal. 9, 349-373 (1973).

1C6




