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Abstract of the Dissertation
THE WEAK CLOSURE OF THE UNITARY
ORBIT OF OPERATORS
by
Mahmoud Mohammed Kutkut
. . Doctor of Philosophy

1n

Mathematics

State University of New York at Stony Brook
December, 1978

In a beautiful paper [5] in 1973 Halmos studied the

weak closure of the set of all shift operators defined on’

can infinite dimensional complex Hilbert space H. Werstart
this work trying to answer his questlon about the closure

of the unitary orbit of a weighted shift. We give necessary
and sufficient conditions for the wéak closure of the unitary
o;bit of a givén contractive welghted shift to be equal to
the set of all,contréctions. Moreover we give sufficient
conditions as well aS'necesséry ones for two arbitrary

welghted shifts to generate the same weak closure of their

unitary orbits.

Then we characterize the weak closure of the unitary
orbit of an arbitrary contraction, by proving the equi- |
|

valence of the following, for any contraction T on H.

]
.
-




a) Weak closure of the unitary orbit of T equals the

set of all contractions;

b) The closure of the numerical range of T equals

the closed unit disc;

¢) The spectrum of T contains the boundary of the
unit disc;, |
d) The essential spectrum of T contains the boundary

of the unit disc.

1We note that if a coﬁtraction T satisfles ahy one of
the above statements then for any compact operator K such
that norm of T + K 1s less than or equal to one, then T + K
satisfies that statement. Moréover as an application we
prove that the representation of the disc algebra as a

subalgebra of the algebra of all bounded linear operators

determined by a given contraction T which satisfies con-

dition a), must be isometriec.

More generally we charécterize the weak closure of
the unltary orbit of a given operator T having a convex
spectral set X, by proving the equivalence of the following
statementé, provided that X is compact and its boundary is

a Ce-class function and contains no straight line segments.
‘e) The closure of the numerical range of T equals X.

f) The spectrum of T contains the boundary of X.

iv




h) H(T-x)—ln = 1/distance from A\ to X, for all A not
in X. i

in Tact we prove that if the weakiclosure of the unit-
ary orbit of T equals the set of all operators having X as
a spectral'set then T satisfies the above statements {e,f,
g, and-hj. Conversely we prove that if .any one of these
statements hold for T then the set, of all operators having
X as a spectral set is dncluded in the weak closure of the
unitary orbit of T.

Moreover using the Riemann mapping Lemma and the
functional calculus we show that (c) is equivalent to (f).

Finally, there are some corollaries, examples, and

applications considered throughout the dissertation.
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CHAPTER I

INTRODUCTION

This chapter 1s deveted to the terminology of this
dissertation and Preliminaries: this is in Section 1. In
Section 2 the description of the problem and the results of

its solution are presented.

I-1. Terminology and Preliminaries.

Throughout this work we consider an Infinite dimensional
complex Hilbert space ¥. We let £(¥) denote the algebra of
all bounded linear operators on ¥. An operator A € £(d) is

sald to be a contraction if ||a] = 1.

For S € £(M), S is said to be a shift operator if there

is an orthonormal basgis (ei) in ¥ such that

Se; = €441 >

for every 1 € IN., If 1 € IN is the set of all positive
integers, then S 1is said to be a unilateral shift and if

i€ Z, the set of all integersythen 5 is said to be a bi-

lateral shift.  The multiplicity of a shift is its co-rank.
An Qperator T, € £(#) is sald to be a weighted shift,
if there is an orthonormal bhasis (ei) in H and a seguence

of complex numbers (ai) called the sequence of welghts, such




-for every i; we have a unilateral welghted shift or a

bilateral weighted shift according to i € IN or Z .
It 1s well known that Ta = DS, where 5 is the shift and
D is the diagonal operator whose diagonal entries are the

(ai). Equally 1t is known that
Az = Suplog |

If-TB 1s another weighted shift with weight sequence (Bi),

then TOL is unitarily equivalent to TB if, and only if

la; | = |By| for every i. Because of this fact we consider

welght sequenceé of positive real numbers, without losg of

generality. For these facts see for example Shields [16].
Fof an operator A € £(¥), o(A) will denote the spectrum

of A, which 1s the set of all complex numbers )\ for which

A ~ )\ 1s not invertible. If ¥ is the closed two-gided ideal

of compact operators in the algebra S(i), then £()/% de-

notes the Calkin algebra and T, the canonical map defined by

sl) - S0

.

m(A) = A + ¥, for every A € £(#).

- The spectrum o(w(a)}) of 7{A) in the Calkin algebra is called
.the essential spectrum of A and is denoted by ce(A). It is
‘known that 9,(A) c o(A) for any operator A € £(¥), and both

are compact subsets of the complex plane @ .
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For the unilateral shift S, ¢{8) is the closed unit
disc denoted by ID and for the bilateral shift 8, ¢(S) is
the entire unit circle denoted by OID, the boundary of the
unit disc. For any contraction A, ¢(A) ¢ IO, Let u denote
the group of all unitaries in £(#), i.e., u = (U € £(4) :

U is a unitary operator on ¥}. If U € U, then o(Uy) < d3ID.

For these facts see [ 47. : |
‘For an operator A € £(M), W(A) denotes the numerical

range of A defined by ,
WA) = (A€ @ : de € ¥, el =1, » = (Ae,e)],

where (-,.) denotes the inner product defined on ¥. The
closure in ¢ of the numerical range of A is denoted by W(A).

It is known that W(A) is convex and not necessarily closed

and that ¢(A) < W{A). The numerical radius of A denoted by

’

[W(A)| is defined to be

(W(a)] = sup {|r] : » € WA} ,

and the spectral radius of A = |g(A)] = sup {[a] : » € o(a)].

If A is a normal operator then W(A] is the convex hull of

g(A) denoted by ch(e(A}). For these facts see Halmos [ 7 1.

Definition 1. TFor an operator A € £(¥), X a subset of @,

Wwe say that X 1s a spectral set of A if, and only if o(4) © X,

and for any ¢ a holomorphic function on X, we have,
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lo(a) = ol = sup Jo()]
_XEX : \

Von Neuman [12] proved thatID is a spectral set for

every contraction. If X, Y are subseté of ¢ and if

P : X =Y ,

is a homeomorphism which is holomorphic, then X is a spectral
set of an operator A if, and only if Y Is a spectral set of
$(A). See Rilesz - Sz Nagy [14].

For X a subset of &, G(¥X) denotes the algebra of all
functions holomorphic in the interior of X and continuous
on the closure of X, or, equivalently, the norm closure of

all polynomials defined on X, boundary of X (cf. Hoffman

(8 1). For X = ID, G(iﬁj.z G is called the disc algebra.
Throughout the dissertation the work is classified into
Theorems, propositions, lemmas, corollaries and so on and

each category is numbered in a series.




| .

|
Llution.

I-2. The problem and results of its s

‘In a beautiful paper [ £] in 1973L Halmos, studied

. 1 -
ly, if 8 is a shift then the unitary orbit (U¥SU : U € u},
1s the sef of all translates of S. The problem solved by
Halmos in that paper, is what can we say about the closure
of the unitary orbit of § in different topologies, namely,
uniform operator topology (Norm), strong operator topology
and weak operator tbpology. If a sequence.(Bn) of operators
converges in the Norm (resp.,strong and weak) operator
topology, we say that (Bn) converges uniformly (or in norm)
(resp. strongly and weakly).

We present these results without proof.

Theorem A. The uniform closure of the unltary orbit of a

given unilateral shift of multiplicity n, is the set of all

isometries of corank' n, where 1 € n < o,

+

Thegggm B. The uniform closure of the unitary orbit of a
given bilateral shift of multiplicity n, is the set of all

_unitary operators whose spectrum is the entire unit circle.

Theorem C. The strong closure of the unitary orbit of a
given shift (unilateral or bilateral) of multiplicity one is

the set of all isometries.

Theorem D. The weak closure of the unitary orbit of a given

the closure of the unitary orbit of thé shift. More precises




6.

shift (unilateral cor bilateral) of multiplicity one is the

set of all contractions.

Halmos asked what can one gay abo;t the closure of the
unitéry orbit if we replace the shift %y a weighted shift,
i.e., 1if TOL is a weighted shift what is the closure of the
set {U*Taq : U € U}, in different topologiles. Our work
considers-mainly the weak closure part of the problem.

We start this work considering the problem for a con-
tractive welghted Shift. This case 1g discussed in Chapter
IT and we give sufficlent and necessary condition for the
weak closure of the unitary orbit of a contractive weighted
shift to be the set of all contractions. We give also
sufficient conditions as well as necessary ones for the
strong and weak closure of the unitary orbits of two arbit-.
rary welghted shifts to be equal.

The results of Chapter II encourage us to consider the
same problem for an arbitrary contraction. This case is
presentéd in Chapter III.

Not only do we obtain necessary and sﬁfficient conditions
for the weak closure of the unitarj orbit of a given contrac-

ion to be the set all contractions, but we prove the equl-

alence of the following conditions for any contraction
A€ £(H).
a) WC{U*AU :.U € u} = the set of all contractions,

lhere WC = weak closure;



o,
|
b) The closure of the numerical range W{A) of A is

equal to ID, the closed unit disc;
¢) The spectrum o(A) of A contains d3TD, the entire

unit eircle;

d) The essential spectrum ¢ (A) of A contains 3TD. : i
|

As an application we prove that condition c) implies
that, the map § from the disc algebra G "into £(¥) defined
by $(f) = £(A) for every £ € G, is an isometry. We could
not prove the converse, namely, | being isometry implies

condition c¢), but we show that if

lw(v(£)) | = {£ll, »

for every £ € G, then o(A) o 3ID.

We observe Lhat if a contraction A € £(3#) satisfies any
.one of the above conditions and if K is a compact operator
in £(#) such that |A+kl|l = 1, then A + K satisfies these con-
 ditions.
In Chapter IV we consider the same problem in more
generality. To be more precise, if X is a spectral set for |
a given operator T € £(¥), let O(X) denote the set of all
operators A € £(#) for which X ié a spectral set. We study
the relation between O(X) and the weak closure of the unitary
rbit of T. |

We prove the equivalence of the followlng statements
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1

for any T € 0(X), provided that X satisfies certain condi-

tions.
5) W = %, |
b)) o(T) o 3, \

c) ce(T) > JX,

d) H(T—X)_lﬂ = 1/d{)\,X), for every A\ ¢ X, where
d(x,X) = the distance from \ to X. )
As in the contraction case we prove that statement b)

implies that, the map
b a(x) - £(4),

defined by ¥(f) = £(T) for every £ € G(X), is an isometry;
and if [W(y(£))] = ||£ll  for every f € G(X), then b) holds.

Moreover we prove that if W(T) = X then

0(X) < WC{U*TU : U € U}, and if O(X) = WC{U*TU : U € u} then

We investigate the relation between the contraction

case considered in Chapter TIIL and the more general case in

Chapter IV, and they turn out to be equivalent.




CHAPTER II

"Weak closure of the Unitary Orbit
of weighted shifts”

In this Chapter we study the weak closure of the
unitary orbit of a contractive welghted shift. In section
1 we start by considering a specific welghted shift, naﬁely,
T, with o = (ai), such that (ai) converges to 13 then we
show that the set WC{U*T&U : U€ u} , contains the set of
all contractions, concluding that, equality holds if, and
only if oy < 1, Vi.

In section 2 we give necessary and sufficlent condi-
tions for the weak closure of the unitary orbit of a con-
tractive weighﬁed shift to be equal to the set of all contrac-
tions.

In section 3 we give necessary conditions ag well as
sufficient ones so that the strong (weak) closure of the
unitary orbits of two arbitrary weighted shifts are equal.
Moreover we give sufficient condltions for the limit of a

sequence of weighted shifts to be a weighted shift, since

it is not the case in general.

.
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IT-1. Weak closure of some weighted shifts.

We let Ty € £(8) be a weighted shift’having the weight
sequence (ai), i € IN, with respect to the orthonormal basis

(ei), 1 € IN, of ¥, such that ay > 0, Vi € IN, and we have

Lemma 1. If the seQuence of welghts (ai) i € IN of the , |
weighted shift Ta'is such that Qe = G arbitrary pogitive |
number and ay = 1, for i = 1,2,+++, then there exists a

gequence (UN) of unitary operators such that

= - 11 *
3 8 lim UNTaUﬁ »

where S is the shift with respect to the same orthonormal
basis of T& and s-lim is the limit in the strong operator

topology.

Proof: Define Uy, on (ei), i € IN, the orthonormal basis

in ¥ shifted by T&, as follows _ \

Uy = €441 i<W -1,
UNeN = eO »
Ue, =e, , 1i>N, |

t_is clear from the construction that UN is a unitary oper-
tor for every N = 1,2,++4+, .

Now, we have,
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5 - 3 -
UNTaUNei €iq0 i =N 1,

U*T U, e e

Na N'N o ?
and
* =
UNTmUNei iy » + 7 N .
Thus on {eb,el,---,eN_l}, we have
r =
ULT Uy = 8,

80 that, as N increases, we have

H(UﬁT&UN—S)eiH'~ 0. 5D,

Lemma 2., If the weight ¢ in Lemma 1 is less than or equal
to one, then

WC{U*TGU : U€ u} = get of all contractions.

Proof: By Lemma 1, we have, 1n particular, that

-

= - 14 *
S w lim UNTaU R

weak limit, S is the shift, and thus, we

=
=
¢}
K
)
=
I
o
'....I
=
]

wc{u*gmu c U€ u) Dwofu*su : UE ul .

But the latter set is equal to the set of all contractions

by Halmos [E ] (Theorem D of Chapter I), so that,

WC{U*T@U : UE U}l o set of all contractions.




L
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o
Since ¢, = < 1, we have HTaH < 1, akd therefore

WC{U*T, U : U € u} = set of all contractions.

Q,-E.Do

v

Now, what about if N weights of the weight sequence
are differant from one and the rest of the weightg are equal

to one. The following Lemma gives a lignt,

Lemma 3, TIf T, is a welghted shift with welght sequehce
(uojdrlj...jdaN_l, l_, l,'.')- Where G‘O)G‘l’...’aN-‘l are arbit'"
rayy positive numbers, then there exisgts a sequence of unit-

ary operators (U

N) and a shift 8, such that

= - s ¥
3 8 1im UNTaUN .

Proof: Define UNg on the orthonormal basis (ei) i € IN,

shifted by Ta’ as follows

U. (e

nleg)  =ve

1

i

Uplemy) = ey » O0sism -1,

I
)

from the definition, it is clear that Uﬁ is unitary for every

Now, on the span of [eo,el,-—-,eN_l}, we have

3% —_ 3 — * )
UiTeUn®1 = UNTelnes = UECwrita

ei‘l‘l’ O=1i=sN - 1,
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Cile.,

UETQUNei = Sei, 0<i =N -1,

where § is the shift determined by (ey), 1 € IN. Thus, for

each fixed i, we have

| (ufz, Uy-s)ell = o,

as N increases, for every 1, l.e.,

= - 11 %
3 s lim UNTuUN .

Q.E.D.

Lemma 4, If the sequence of weights in Lemma 3 is such that

sup G, < 1, then
O<isN-1.

wciU*TmU : U€ W} = get of all contractions.
Proof: Similar to the proof of Lemma 2.
QOE.DO

Now, we have the following

¢

Proposition 1. If Ta is a weighted shift with weight sequence
(¢;) 1 € 1N such that lim o, = 1, (a; > O, ¥; € IN), then
"1

there exists a sequence (UN) of unitary operators, and a

ghift 8 such that

= - 14 % %
S s 1im UNTaUN . (*}

‘Proof': Define T, a weighted shift with weight sequence

B
f(Bi), i € IN, such that
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B. =a., , for i < N,

B. =1 for 1 > N,

|

for some numbers N € IN. By Lemma 3, there exists a seq&ence

(UN)of unitary operators and a shift § such that

= - %
8 8 lim UNTBUN'

Now, we want to show that HT&—TBH is arbitrarily small, in-

deed,

H(Qa—Ts)eiH = lai—B.

s

since I& - TB is a welghted shift, we have

Ty -Tgll = supla, -8, |

i
= sup|l-a | 3
K N+k' °
since lim,ai = 1, for N large enough we have
i .
Wy -Tgll = SﬁpllﬂdN+kl <e . (%)

By (*)and (*%, we have

H(U§quN—s)ein < H(UﬁT@UN—UﬁTBUN)eiH +

N (ugTgU-s)ey |

< HT&-TBH + H(UﬁTBUN-S)eiH )

so that for N large enough, for a given ey, we have

l(ugr v -s)e |l < 2c ,



- that 1is,

S =8 - lim UXT U. .
N7 N Q.E.D.

Theorem 1. If TOL is a weighted shift as in proposition 1,
then WC{U*TQU : U€ u) contains the set of all contractions..

Moreover if Sup Ay £ 1, then equalilty holds.
i .

Proof: Since by proposition 1 there is a sequence (Ug) of

)
unitary operators and a shift S such that

.

= - 14 *
3 W lim UNTaUN s
we have,
WC(U*T. U : U € U} D We{U*su : U € ul o,
and thus,

WC{U*T U : U € U} o set of all contractions,

If Sup %y ® 1, then ?m ig a contraction, in which case we
Lo 1 _
have the other inclusion.

Q.E.D.
Remark 1. The above results hold for a bilateral weighted

shift as well as the unilateral weighted shift considered.
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IT-2. Necessary and sufficient condition.

In this section we give necessary and sufficient con-
dition on the seguence of welghts of a given weighted shift

T& in order that

| WG[U*TGU : UE Uu) = get of all entractions.

All the conditions considered so far were sufficient but not

necessary. To see that consider the following example,

Example 1. Let T@ be the weilghted shift with the weight
sequence (l,s,l,l,a,'--,) i.e. 1t consists of sequences
of ones of arbitrary length and of e such that 0 < ¢ = 1,
then

WC[U*QmU : U€ u} = set of all contractions.

Indeed: Since we have chains of ones of arbitrary length,
then, given a positive integer N, there is an integer M such
that .

G-l = L-

Consider U

N on ﬂ-defined by

Ugey = €pppqs = 5 N3 Uyl = €35 1T 5 M
and
UNeM+N+i = eyt for every i, for the cagse M = N.

For the case M > N, we have Upe, = eypie - = N
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Uiy = Eygi> & 05 M-No Upeyy; =6 5 11,
and
UNeM+N+i = ey for.every i.
In both cases UN is & unitary on H.
Now on the span of [eo,el,"',eN_l}
* = II% o TI%
URTeUn®s = "N Cmrs = VN i Cari+l
= €4.7 > 1=N-1,
so that
* = i -
UNT&UNei Se. ., i=s 0N 1,

and as N increases, we have

- - 14 *
S 5 lim UNTmUN’

and thus
WC(U*QaU : U€ U} = set of all contractions.

We conclude that lim a; = 1 i1s more than enough. It is
natural to see ‘that we need only the weight sequence to have
sequences of positive real numbers of arbitrary length and
very near to oﬁe. Thg following Theorem formulate this con=-

dition.

Theorem 2, Iet T& be a contractive welghted shift, i.e.,

sup a.; < 1, where (ai) its weight sequence. Then,
i .

WC{U*:aU - U € u) = set of all contractions

if, and only if, for every positive integer N, & > 0, there




18.

-is an integer M such that

aM+i z2 1 - g, 1=1,2,++-,N.
We divide the proof into several lemmas and propositions.

The next proposition proves the sufficlency of the condition.

Proposition 2. If the weight sequence (ai), i € 1N, of the

welghted shift Ta is such that for every positive integer

N, € > O there is an integer M such that Sppt 1 - €,

i=0,1,2,<+<,N, then
WC[U*T&U : U € U}l = set of all contractions.

Proof: By the assumption given N, ¢ > 0,4M,such that

Cppry = 1 - Eq_i = 0,1,2,-++,N, or
1l - IV < g, i=0,1,2,-*+,N.
Define UN on ¥ such that
Uy & legseqsrerseyd = legney s sey s
by
Up€s = Cpyisd = N3 Ugeps = €5, 1 5 M,
and
UNeN+M+i = MM for every 1, for the case M < N,

F'or the case M > N, we have

Un®s = Cppge 25 16 Uplpyy = epyys 3 < M-I,
Uyepmry = €4+ 1 5 N and UNeN+M+i = eN+M+if for every 1.

It is clear that UN is unitary on ¥, VYN, and



Sor _
UnTe Unes = %pri®i41°

and if S is the shift determined by {e.), then on the span

ol

of {eo,el,'--,eN}, we have

I (s-vgr, udesl = 10, ;]

i=0,1,-*+,N, for every e, € {eo,el,---,e Since N, ¢

N}'

are arbitrary, we take & = to obtain

==

im ll(s-Uﬁ.TaUN)ei\\ = 0,

for every ey € H, i.e.,

= - 11 %
S s l&m UN?uUN’

which implies that
WC{U*T&U : UE U} = set of all contractions.
Q.E.D.
The following Lemma esserts that a "big" contraction
1s almost a weighted shift, the meaning of the term "big"

is clarified in the lemma.

Lemma 5., If T is a contraction such that ]l—(Tei,ej)l < e,
for some vectors e ej in an orthonormal basis of ¥, then

there is a positive real number X and a vector h guch that

’IL’e:.L = Xej - h,

where ||hl} < e, 1 - ¢ < X < 1.and |1-)\]| < e.
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‘Proof: We have,

1ve < [(Tegae )] % fregl-lle = 1.

We know that if equality holds in the Cauchy-Schwartz in-
equqlity, then Tei = kej for some complex number A. But in
our case 1t is approximately equal so that there is a complex

number X\ and a vector h orthogonal to ej such that

Te; = lej - h.. (*)

This implies that

L-es [(eg,e )] = Ihlegey) - (ney)] < 2

and by substituting *)into the assumption we have |1-1] <.€’

and 1 - ¢ = [x] £ 1, and thus
lal® + ne 1% = e )™ = 2,

whlch implies,

Y

2

]2 £1 - (1-e)° s 2¢,

Ial® = 2 - I

g0 that, .

hn)® < 2e.

We claim that A igs almost a positive real number indeed

since, [L1-\] < e, and 1] £ 1, we have

1 -¢ < Real \ < 1,

and therefore
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Te, = Real X ¥ + (11mke3»h),
which implies

H(iIm.kej—h)H2 = ||Te; - Real kejﬂg

It

HTei“2 - 2 Real(Real 1) (Tei,ej)‘ +

+ |Real A |° .

Since Real(Tei,ej) = Real(kejnh,ej) = Real A, we have,

litn. e - h|? = 1 - 2(Real W) + (Real 1)7

<1 - (Real k)g <1 - (l—e)2

<1 - (l~2£+€2) = Dg - ¢°

< 2& ,
so that we can assume A\ to be posgitive real number to obtain
where 1 - ¢ < X = 1, ||n]|® < 2¢ and |1-A] < €.  Q.E.D.

Theorem 3. If 8 is a shift, and T is any contraction such

that

l((S—T)ei,ei+l)] < e, for i < I,

then for every positive integer N, we have

N N
[({s"-1"e, e,

1 1+N)] < 6&5), i+ N <L,

where (ei) ig the orthonormal basis shifted by .S, q$e) depends



on e,

Proof:

N linearly.

£ > |(Se

and since (Tei,e

e > |1-(e

®1:1)

k2

i41) = fefTe

T el+l)

(Tei,e

[

i+l)

i

From the assumption we have

i) =

1 -

for 1 < L;

., we have

< L.

Applying Lemma % to (%) and (**), we obtain

where ;. A} are positive numbers with [1—xi[ < g, ]l—kif < e

; 2
and 1 ~ e < X5, A} £ 1 and ||h,|

Now,

Tei
%
Tres

= A, €

171+l
— 1
kiel

|((5%-17)e, 0., )| =
< |1 ~ (Tei,
< |1 - RtTei,e
< J1 - a(ar
< [1 - 7
< [1 -

= 1 - 1 + 2e

This prove

propositicn is true for N,

1 -

1+2 I

e?

< 2¢, |Inyl|”

Tge

1 - (

< Pg

1+2)% <

Tei,XQ

)+ [(Tey,n)]

W] )+ o

(1-¢)?| + 2-3%

+ 2/3¢

el;!—l"h"ei+l)l + HhH

o)

(Tei,e

(%)

(%)

i+l

22,

wa)

-h) |

the propesition for N = 2, assume that the

so that for N + 1, we have
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(s Nﬂ) seppry) | = 13- (T ey ey )
= |1 - T%’ﬂw%ﬁm&”
= |1 - (TNe Ve 1+N“H)[
s L=y e 0]+ (Ve ]
By the induction step we Eave
1= (Pegiep, )l < 8y()

so that spplying Lemma 5, we obtain that

where A' is positive real number such that

1 - 6N(e) < N €1,

and ||n )7 < 8y (€)

This implies that

| ( SN—!-l_TN-{-l)

s |1 - a(n

N
=
!

A
fu
1

(1 )

18wl = 12 - l(TNei’ei+N)l + |l
1y sy |+ bl

A+ k[(h',ei+N)| + |l

GNP+ el + Gl

2

< 1l -1+ 26N(a) - 6N(s) + 26N(e) < 6N+l(e)

Q.E.D.
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Theorem 4. If 8 is a shift with respect to the orthonormal
basis (wi) and qa is a contractive weiLhted shift with re-

spect to the orthonormal basis (ei) an§ having the weight
|

sequence (¢;), 1 € IN; such that
i

I((ShTa')Qpi’cPi-l—l), < € i< L)

then there are chaing of weights of length less than or

equal to L, each weight of which is > 1 - &(e).

Proof: First we want to show that there is at least one

welght Gy > 1 - e. Consider PP and we have

(8T, Jogu0) | < e

so that
E > f(scpoacpl) - .(TG,CPO’CP-:L” > 1 - ](Tafpo:tpl)ls
or
1l ~-e< ,(Taq)oaml)_l'
- . |
Let @4 = % 8y 8s Py = % bye, s then (ak)J (bk) are sequences

of'complex numbers such that
oo . o
2 - 2 -
z la, |© =1, = |p, |° = 1.
o X o ¥

This is from the fact that Pqs ¥, are unit vectors, then we

have




%] j 0
1-e€e< l(Ta$O:$l)’ = l(% akTaek’ g bKeK)l =
00 o0
< '(% TR % bep) | =

20 o0 | _
< 1% R % o lay 1B, 1.

This implies that

o 2 2y /o 2
(1-e)" < (g oy [Py g | )((2) laklu) =
<Zaglb .19 % sup 0 (=], ]7) ,
0 k' k+1 K k 0 141
i.e.,
(1~e)2 < sup ui s

k.

this implies that there is M such that

)2

L]

2 .
Oy > (1-e

or

Gy > 1 - e .

The second step is to show there is a chain of Weights.of

length two and each weight of this chain is > 1 - an). Con-

gider Py ¥p, and @, and Theorem 3. implies that

I(Timojmg)’ > 1 - %48) .

oG £o
If we let @, = 2 c e , where Ickf2 = 1, then we have,
0 0
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co 2 oD
1 - Qge) < I(% 2y T s % ckek)l =
o0 (=9
< I(%; e e el =

co
<z R EN AP

This implies that
. e =T~ S o, ,& )
(l"”zé(s) < F% u’l{c{’k"l‘l,CK'FEI )(%’akl )

o

o o ~ 2
< 8P "“k‘*ml% ksl ™)

2 D
< SUP &) 0p.g s
k

and thus, there ié a positive integer M such that
Gy > (1'52(8))2 g

or
gy > (1-648)),

which implies that

Ay > 1 - qie) and ay, 4 > 1 - Qge) .

The last step 1s to show that there is a chain of

1s > .1 - §fe).S0 consider PosPys*sPys NS L oand let

[¢2] co
o, = 2 d_e where = |d [2 = 1, then by Theomm 4, we have
N 0 k7k 0 k

weights of length N s L, such that each weight of this chain
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o0 o
I - N -
1. GN(8)< l(ﬁT CDO’CPN), o f(% aKT ek_.‘) é dl{ek_)i
[os] co
< “% S R 0 dyey) |
w ——
< % Oy Oyerq” T N R I
00 4, o0
D D 2 = 2.\% 243
< (g Cler1” " Oen | Ty ) & |2 %)
2 D 2 &2 2.5
Do 2 \3
< (S‘lip Gtieal” "Sany) -

This implies that there 1s a positive integer M such that

| 22 ... 2 %
1= yfe) < (agony " roggy)

< OPr1 O

50 that

Proposition 3. If Tﬁ is a welghted shift whose sequence of

weights is (ai), i € IN such that

WC{U*?lU : U € W) = get of all contractions

then, V € ;@ M such that ¢ ; 71 - Q$€Li < N.

M+

Proof: Theorem D and the assumption implies that




1 o8,

wc[U*TaU : U€E u} = welu*su|: ue€ uj} ,

where 8 is a ghift, this implies that for T, gliven any
positive integer I there is a sequenceKUN)of unitary operators

such fhat

- - 14 *
S W lim UNTmUN R

1

which is equivalent to say that Ve, K such that N > K, we

have

[ ((8-UT U)oy s05,1 )] < e, 051 < L.

Now, given N < L, fix it; then'UéﬁTaUN is a fixed weighted

shlft having the same sequence of welghts and different ortho-

normal. basis. Applying Theorem 4 to this weighted shift we

obtain

Ve > O,N, €M such that
G,M_I_i ‘> l - %e)’ j_ = 03132,...3N-

QoEch

Proof of Theorem 2: Proposition 2 proves sufficilency and

Theorem 4, proposition 3 prove necessity.
. , Q.E.D.

Remark 2. Theorem 2 holds for contractive bilateral weighted

shift asg well.

Corollary 1. If Tﬁ is a weighted shift such that

'WC{U*TGU : U € u} = gset of all contractions and 1if T ig
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another weighted shift with positive weights such ﬁhat

HTOL + T = 1, then

WC{U*(T@+T)U : U€ U} = set of all contractions

Prooi: The assumption 1s equlvalent to say

Ye > 0, N;¥ M such that

d’l\H‘i > l - E, i = O’llj..-_qNo

If ('yi) is the weight sequence of the weighted shift T then
'ni = 6; + y; is the weight sequence of T, + T and we have

Ve > 0, N;I M such that

LE gy T O PV 2L s
for i = 0,1,***,N, which is equivalent to

WC[U*(T@+T)U : U€ u} = set of all contractions.

' . : Q.E.D.

Corollary 2. The set of all weighted shifts is weakly dense

in £(3),

Proof: Given A € £(¥), let L = ||All then T = A/\ is a con-

traction, then there is a weighted shift Ta such that

YL, ¢ > O, 3U unitary, such that

l((T/"‘U*TO.‘U)fi:fj)I < 5/7\ 3 i: J = L:




or,

l((A“U%.)\TaU)fi:f‘j)l < E, ,j«-!kaj = L
|

- 8ince XI& is weighted shift whoselsequenee of weights
is (Xdi), that approximate A weakly th% corollary is proved.
Q.E.D.
We cénclude this sectlonby the following proposition

not reléted directly to the theme of the section.

Proposition 4., TIf U is unitary operator and Tﬁ is a welghted
shift with respect to the orthonormal basis (ei) having (mi)
as the weight sequence then there is a unitary operator U!

and a weighted shift TB such that

= M
U@Td [S A ;

B
Proof: Let U' = 0 u 3 TB = © Tﬁ P
T 0 I 0
then ’ ¢ KX Y
“fo uNfo T\ o}
Ty = “/}_ —Ue T .
I 0 T 0 T/ O

It is clear that U' is unitary. It remains to show that T

B

is a weighted shift. Indeed, T, has (l’ao’l’al’l’ug’..‘) as

B |
welght sequence with respect to the orthonormsal basis

(ens0), (0,e.), (e,,0), (0,e,), -+, since we have
*0 _ 0 Tl _ 1

K

0 Ta\ ek\ o
()

‘}i,and
I 0 o ; _ 3 e




Q.E.D,

ITI-3. Weak and strong closure of the unitary orbit of
' arbitrary weighted shifts.

In this section we consider Ta’ TB two weighted shifts

having the sequences of weights (ai), (Bi) respectively,

which are arbitrary positive numbers. We give relations
between (ai) and (Bi) in order that T_, Tg have the same
strong closure of their unitary orbits. We gstart with the

following simple case.

Proposition 5. If Ta’ TS are as above, 1f Vi, Gy = O, 2
constant, Bi £, Vi, and if Ve > 0, N, ¥ M such that

BM+i = a4 - €, 1 = N, then

HO{U*T U 1 U € u) @ vlc{U*TBU cTeul .

[l

Proof: Given N, ¢ =,%_> 0, then M exists and define

Uy = legsepsreoseyd = legsmeseyyd 5

such that

UNE. = eM"’" i = N; UNeN-I-'_]_ = ei’ i =M
and

UNeN+M+i = eN+M+i’ Vi’_ for the case M £ N,

'

For the case M > N, we have

=3 5 - — 3 :g - .
Up®i = Swpsr 15 W5 Uy = Cppygs T M-I
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Upeps = €12 15 M5 Uyl = Sy T
80 that in btoth cages UN is unitary on H, and
5 _ .
UiTgUy(e1) = Bygseipn -
This implies that for every e; € [el,---,eN},
W (ugm v -1 Jelll = 18, -l < e = &
VUNTBUN e T M+ N 2
which implies that
= se(w)lim U%
T, = 8 (w)llm UNTBUN s
and hence
SC{U*TmU rU€ulc SC{U*TBU : UEu},
and in particular,
WC{U*T&U : U€E u) c wc{U*Tgu : UE€ U} .. Q.E.D.

Propogition 6. < If T,> Tg are as above and if (ai) converges

B

to o, a; % &, Vi, B, < &, Y1 and if Ye > 0, N, © M such that

i
By > & - €5 1% N, then WC{U*T U : U € u) WC{U¥TeU : U € ul.
Proof: Define (UN) as in the proof of the previous proposition,
then we have
e B

2
< lBM+i"a’ + Iq—ai] $2e = %,

for i £ N, so that
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= —~— i1 ')}-' I ]
T, = s (w)lim UNPBUN s

and we have the result. Q.E.D.

In order that T&, TB generate the same‘strong and
weak closure of their unitary orbits, the preceeding proposi-
tions suggest that the sequences of weights must be very near
to each ogher in a certain sense. This sense is explained

in the following theorem.

Theorem 5, If T, > TB are welghted shifts having (ai), (Ei)
as their sequences of welights respectively and if

Ye > 0, N, K;@ M such that g < e, 1 = N, and if

ki " Pyl

Ve > O, N, M;& K such that | < e, 1 < N, then

Brgrs = gy
‘we have

I

sc[u*qmu : U €eu}l = 8c{u*r U : Ue€u} ,

B

and in particular,

"

WC[U*TGU : U € ul

.
LY

i

wc[U*TBU : UEu} .

Proofs It 1is enough to show that the first condition implies
that SC[U*TﬁU : U € u} contains SC{U*T&U : U€ u}, since the
other condition implies the second inclusion in a similar
manner.

Given N, € > 0, K so that i M such that I@K+i - BM+i] < &,

1 = N, then define the unitary operator UN on ¥ such that




|
% 3,

U,,

‘i
N [emy""emw} » ey l’”"eMH\T}’

|

we have two cases K = M and K > M, so ?or the case K & M,

we define UN to be, E
Upyleges) = ey L= N
'UN(ei) = e, s 1 =K,
Ul visy _ .

N'“E+N+1) = LY K-+ 15 M,

and
UN(eM+N+:L) = Cppprir V-

For the case K > M, we define UN to be,
Uplegii) = ey =N,
UN(ei = ey s i = M,

and
UNeMri = Cpprnei? M+ 1=K,
UNCk+N+1 = CRN+1’ Vi .

In both cases we have

Ute Unexers = PamaCroritr 2

and thus,

3

Uz Uy, Jegy,ll = 1By -ty | < € =

2

1
N




for i = N, so that, for every element {n (epyys s sep )

we have,
]
1

')é‘ -y T 5
UnTeUnerrs ™ Tolrrie 15 M

as N increases. Since K 1s arbitrary, lwe obtain

a — - 14 %
T, S(W) -~ 1lim UNTBUN s

which implies that

[T}

se{u*p U U€Vul,

B

..

U€ul o SC[U*TGU

and 1n particular,

wc[U*TBU U€ul >WCU*T U : U € U} .

Q.E.D,
The following Theorem gives necessary conditions for

the equality,

SC{U*T U : U € u} = SC(U*T U : U € ul .

Theorem 6. If Ty» Tg are welghted shifts having (@i), (B:)

a8 their respective weight sequences such that SC{U*Q&U : Ueu} =

SC[U*TﬁU : U € U}, then, we have

N N

Ve > 0, N, M, HK such that izlmK}i > T BM+i - &,

and

N N
T Byps = T Oy = € .
$e=1 M+1 ) K+1

Ve > 0, N, K, IM such that
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Proof: Tt is enough to show that if (Un) is a sequence of

unitary operators such that UﬁTaUn converges strongly to
N

then, Ve, N,M,4K such that 7 g >

T . e, since
B 1=1. K+i 5 .

B .
1 M1
if'U;‘flTBUn converges gtrongly to Qa implies the other con-
dition in a similar manner.

Let (¢i) be the orthonormal basis shifted by TB and

given e,M, N = 1, and consider Ppppp2 We have

KT U =T Joggy 1l 0,

as n increases, l.e.,

Ve > o,ﬁl{wM

+l) such that n > L, we have

| (u*xT U -7 | < e.

n o n B)®M+l‘
This implies that

=T U

¢ > By 1P U T, Uyl 2

> EM+1 - \UzTaUh@M+1H >
or
(SMH_"'S)2 < nTaUhmM+lH2 - (TaUn®M+l’TaUhmM+l)'
If (ei) is the orthonormal basis shifted by T, and let

n > L, but fixed, then

Where (h?) is an orthonormal basis, in particular let




l
U o =nt =3 aP% | where (an) if ja sequence of complex
n ML MEL Y TRTR? k {

numbers such that Z]a§]2 = 1, and thus! we have
k

| |
(BM+l-a)2 < E ay) TjeK
k

&,

< (2 IR K1)

21,.,n;2 2 n2
< 3 ola |l s sup « Sla |
k k'k K k K kK

< gup ai .

This implies that @ K such that

)2 2

mE 'O

(Bypppr-

A

i.e.,

Paps ™ 8 < Oy

Now, since product is sequentially continuous in the

strong operator topology, we have, for every positive integer

N,

N ' N
£

UnTaUﬂ converges strongly_to TB s
so that, for ¢ > 0, M, N, consider Py q» and we have for
4 ','>. L(tpM-f-l)’

|z - UL U ol < e L

b
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- L N
_E > HBM+1BM+2 B @iy~ UnTo U@l
. N
: N
>i£fMH_"”U?hmﬁmun’

or, we have, for U = 2 agek, n > L, but fixed,

N 2
- T B .—-.£<HTNUcp H |
L2 FME o T M+ |
i=1
N
< Hi agTaeKH

N

n .- @ 8
Hi TN R TR |

n
< Bup “k“k+1"'“k+m+1“§ 2l

_ ni2\%
< BEP Oyl “k+N~1(§fakf )

R S I R S

This implies that I K such that,

1

N
T £ <o

==
&

K+1%%+0 " gy <

B, . .
j=1 M1

.

Q,.EnD.

Remark 3. We cannot replace strong ciosure by weak closure
in Theorem 6 simply, because product is not sequentially
continuous in the weak operator topology.

The-folloﬁing Theorem‘givaasufficient conditions for
the limit in the strong operator topology of a sequence of

welghted shifts to be a weighted shift, since it is not the




390
case in general,

Theorem 7. If (Tn) is a sequence of weighted shifts, with
respect to the orthonormal basis (e?)i and having (a?)i
a éequenee_of positive numbers, as weight sequence; which
converges strongly to T, If (e?) converges strongly to ey
as n increases and (ag) converges to di’ Vi, ag8 n increases,

then (ei) is an orthonormal basis with respect to which T

is a weighted shift having (ai) as a weight sequence.
Proof: TFirst we show that (ei) 1s orthonormal basis, indeed,
legl < lley - eBi + Jlef s & + 1,
for n large enough, and,
n
1= oSl s llef - eyll + llegll = e + e,
for n large encugh, which implies that

1 -e% Heiu £ 1+ e,

for every i, since e 1s arbitrary, Hein = 1, V1.

Now, for i1 # j, we have

I(ei,ej)f < ](eiue?,ej)] + l(e? 3
+ [lefse) ],

for n,m large encugh take n = m and we have




Lo,

](ei,ej)l < lle, - e?H + Hej ~ eg” + ’(ei’e?)}

and thus (ei,ej) = 0, for 1 ¥ j. .This shows that (ei) is
an-orthonormal sequence;still to show that (ei) generates

H. TFor that let f € ¥, then H(fn) such that (f ) converges

n
n n

strongly to f and ¥n, € (a’ KCk

k) such that £ =35 a

k
Since eE "oy strongly, Vk, we have

,a;eﬁ ™AL, strongly, Vk,

and thus
b anerl “+ 3 a, e strongl
kk kK> &Ly
k k
i.e.,
frl - i 8, € s strongly,

and thus f = 3 a e, and therefore (ei) is orthonormal basis.
k.

Now, since (Tn) converge strongly to T, i.e. Tnei comn-

verges strongly to'Tei, Vi, we need to show that T e; con-

verges strongly to uiei+rV1, indeed.

Since (Tn) 1s bounded, then we have Tne? converges

strongly to Tnei’ Vi, and,




HTnei - ﬂiei+lu HTnei - T‘e?“ + HTne? - Tneiu 1
* HFneg.l SEIY
\ |
= 5o fafely - ageqall + T lelel - &7y i
<5+ uarizeil:.l*{"l agespll + loges g - agesyll
<5t aillelyy el + Jag - o, | %
< ¢ .

This implies that Tnei converges strongly to Ui€5477 Vi,

and thus, we conclude that

Vi g

Te, = o H

LB,
i 174417

i.e., T is a weighted shift with respect to (ei) and having

(a;) as a weight sequence.

Q.E.D,




CHAPTER TTI

"Weak closure of the unitary orbit
of an arbitrary contraction"

In this Chapter we study the weak closure of the unitary
'orbit of an arbitrary contraction; we give necessary and
Sufficient‘condition for that to be equal to the set of all
contractlons. Thig ig presented in Section 1. in Section 2
we study the compact perturbation and the weak closure of the
unitary orbit of a given contraction. In section 3 we intro-
duce an application‘to the disc algehra.

ITT-1. Characterization of the weak closure of the unitary
orbit of a contraction,.

For T a contraction in £(¥), recall that the numerical
range of T is defined by W(T) = {A € ¢ : N = (Te,e) for some
e €M, |lell = 1}. In this section we characterize the weak

closure of {U*TU : U € U} by the following theorem.
Theorem 8. For any contraction T in £(i), the fbllowing
statemenﬁsare equivalent A

a) WC{U*TU : U€ U} = set of all contractions ;

b) W(T) = ID, the closed unit disc

c) ctT) D 01D, the boundary of ID ;

d) -ce(T) o oID .

We split the proof into propositions and theorems.

Theorem 9. For any contraction T € £(¥), WC{U*TU : U € u} =

set of all contractions, if and only if, W(T) = T0.

4o
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Proof: Since T is contraction, we have W{(T) <ID. To show

that ID < W(T), we need to shoﬁ that the éasumption 1s equi-~
valent to saying that any contraction on a finite dimensional
subspace of ¥ is approximable by the compresgion of T to a sub-
space of tﬁe same dimension. Indeed, the assumption means that
given any contraction A then there is -a sequence of unitary

Jsuch that

operatqrs(UN

— W - 1im U%
A=W - lim UXTU_,

that is, Ve, L, @ N such that n > N, we have

l((A-UgTUn)fi,gj)] <e, 1,J% L. (%)

v

Since L is finite arbltrary positive integer, we conclude
that if rank A = L, then A ig approximable by compression
of T to a subspace of dimenslon L. Conversely, if the last state-

ment holds for any L,then (%) holds and thus

= W - 1im U%
A _ W lim UhTUn"
and thé assumption is true.
Now, consider all contractions on one-dimensional sub-
spaces of H, those contractions can be identified by all

complex numbers of ID, thus for A € ID, we have,
PR, - M < ey

for some one-dimensional subspace N = span {e) with [e] = 1,

where Ph ig the.projection of ¥ onto h.




Ly,

Thisg implies that

| (Te,e) -~ A = 2 1Py, - RH7<{8,

which implies that X € W{T), and henceifﬁ = W{T).

donversely, we assume that W{T) =HT§, and we want to
show that WC{U*TU ; U € U} = the set of all contractions.
Since T i§ a contraction, U¥TU is a contraction for every
U € Uithus {U¥TU : U € u)} < the set of all contractions; hence
WC{U*TU : U € u} < set of all contractions.

To prove the other inclusion given any contraction A
on a finite dimensilonal subspace, we have to show that A ié
approximable by the compression of T to a sﬁbspaee of the same

dimension. To do so we need tyo steps of approximation. For

the first step there is a unitary operator U' that approximates A
weakly. To be more precise let A be a contraction on a subsgpace
N of ¥ of finite dimension, since dim ¥ @ N = », we can find

a subspace T of ¥ @>ﬁ, of the same dimensions of N, and a

unitary u that mape W onto M. By Halmos Theorem [6] there is
a.unitary dilation of A toe N & n gilven by

A JI-ER¥®
ut = | ‘
JI-EFE . ~A%

Since N is isomorphic to W, we can define U on ¥ by

/’A JI-EE¥ u 0
U = { u%/T-A¥E ~UA% ¥ 0 ) = U @ T
o ¢

and we have (Uf,g) = (Af,g),-+-(1) for every £, ¢ € n




In fact ' approximate A weakly and since U' is unitary
of finite dimension, it is diagonalizable, so let U' = D,

where D is diagonal operator on h @ .

TheSECbnﬂ step 1s to approximate any such diagonal
operator D-on a finite dimensional subspace by the compression
of T to a subspace of the same dimension. 8o let

D = diag(kl,kg,-",kn), on n @ m such that |i,| = 1, (because

a(p) = o(U')), 1 = 1,2,-++,n; in fact,we have Ay = (Dmi,mi),

i=1,2,-+-,n, for some orthonormal basis (mi), 1=1,2,--+,n of

I

n@®m. Since ki'E 0 = W(T), i = 1,2,--+,n, we have

Ve, @ e, € ¥ with neiu = 1 such that

[{Tejses) = a5] < s &= 1,2,004,n,
il.e.,

[(TiTei,ei) - 1! < e, 1 £ n, and by Lemma 5, we have

- _ o
kiTei, hiei + hi , 1 £ n,
where 1 is positive number, |1-n,| < e, |nt}|” < 2¢, and
thus
== 1 .l
Te; lihiei + kihi, i< n.

h, = X,hl, we have

let Yy :rk.h 5 ;b

Tei = Y€y + hi’ i = n,
where v; € €, |y;-A;] < & and Hhing < 2e, 1 sn, i.e.,

HTei - Yiej_“ < e, 1= n, (*)



i
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s

This meansg that ' ig an approximate eigenvalue.

Ir Yy i< n, are eigenvalues then the corresponding

L

elgenvectors ey L £ n, are orthogonal; indeed, it is enough |
i

to show for n = 2. Since T is a contréction then T has a

unitary dilation B, on a Hilbert space ' ® ¥; B is given by

' T N L=TT%
B - )
L =T*T - T* .

(for this see Halmos [7]).

since |y;f = [x;]| = 1, we have
(1-T%T)ei = e, -

and thus (Jl-T*T)ei = 0 (since ker P = ker P2, for any positive

operator P), (See Halmos [7]).' Thig implies that Bei = Yi€45

is 2, i.e.(eil 1 £ 2, are eigenvectors for the unitary

operator B, so that we have

(elaeé) = (Bel:Beg) = Yl?é(fl’fg)’

(l"YlYg)(eljeg) = 0.

Since vy # vy, [vy] = 1, 1 5 2, we have V1Yo # 1 and
Y2§i # 1 and thus

(elaeg) = 0,

i.e., (ei) are orthogonal.

If Yy i = n, are not eigenvalues but approximate eizen-

values for T then there is a sequence of vectors (fk)



guch that
(r=y e ll = 0, as k = w .

This implies that for k » N, we have
My el < ele (%) .

Claim, there is a subspace mn; of vectors £, for which (*¥%) is
true,of infinite dimension .’ Indeed, let 7 - Vi = ViPi be
the polar decomposition. Since Y3 is not an eigenvalue but
an approximate eigenvalue, we have ker(Tnyi) = {0} and thus

ker P, = {0}.  The spectral representation of P,is given by
e,
i

P, = [ * tam

0
where for A = (0,e), e > 0, we have Ei(A) = Eﬁ(o,a)) is an

(8),

i

infinite dimensional subspace of ¥. Since for every

€ Ei((o,e)), we have

Ne—yvidell = v ypell = leyell = elell

we take m; = Ei(O,e)).

It is easy now, Eo choose the approximate eigenvectors
€ys0e58, corresponding to the approximate eigenvalues
Yyt s¥y, to be orthonormal. Indeed, it 1s enough to show
that for n =2, let ey:€5 be the approximate eigenvectors

corresponding to v,.,Y,. If (e.,e,) # O, choose el from n,,
1212 i°7e 2 2

if (el,eé) # 0, then consider eg defined by
€ e/,
ell = [ - o .

2 (el,eg? gel,eé)




\ | a8,

Now, we have (el,eg) = 0 and since m, is a subspace

we have eg € o s i.e.,

“Teg—yge”n < g,

i.e. el satisfies (¥).

Thus, we can assune €15855" " 5€8, to be orthonormal.
et & be the subspace of H generated by SRR and define

the unitary operator

u: £=2nheéen

by u(ey) = o i £n. Define U on# tobe U =u on £ and U maps
¥ @& onto ¥ & (n@n) isometrically, so that U is unitary on ¥ and

we have

(Tei,e.) - (UDU*ei,ei)f < g, 1 €mn.eee (2)

1L

Now, for i # J, we have

l((T“UDU*)eisej)l = I(Teiiej) - (D$i3m

x

il

I(Tei:e-)f = I(Yieise-) - (hi;e-)l

J J

l(hisej)l = nhi“ < 6(£):"' (3)

Combining (2) and (3), we obtain, Ve, ¥ U such that

]((T‘UDU*)ei:ej)] < 6(5): i, J s n,
if PS is the projection of H onto £, then Ve > 0, ¥ U such

that
I((P£$P£“UDU%)ei’ej)l < 6(8): i, J = H;"'(u)

i.e. D is approximable by the compression of T to &.
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To end the proof of the Theorem combine the three approxin-
ations (1), (2) and (4), to obtain that for any contraction

A on @n, to every e > 0 there 1s U unitary operator such that
|_.((PhTPh-UAU%)ei,ej)] < €,

for i,j s n, i.e. Ae WC{U¥TU: U € u}, i.e., set of all con~

tractions < WC{U*TU : U € ul, which implies that

WC{U*TU : U € U} = set of all contractions.
' Q.5E.D.
Proposition 7. If T is a contraction in £(#), then, W(TJ =

|

5__!
jw)

ify,and only if, o(T) o dID .
Proof: Since T is a contraction we have

W(T) < ID. If we assume that ¢(T) D dID,

then, we have
oID < o(T) « W{T) « 1D,

since W(T) ig convex and it contains the boundary of ID,
it must contain the interior of ID, i.e., 1D < W(T) and there-
fore W(T) = ID.
Conversely, assuming that W(T) = ID, let A € JID ,
and suppose that A is not in ¢(T), so, we have T - A 1is

bounded below, i.e., there is & real number & > 0 such that

I (z-0el > szl

for any £ in H.
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Since A € W(T), we can say that, fFor every & > O there
is a unit vector e such that

i
\
In - (Te,e)] < &, ]

which implies that |1 -~ (Vre,e)] < e, Jo that by Lemma &
there 18 a positive number v', and a vector h' with

Hh'“2 < 2¢ such that
Ale = y'e - h' ,
or, Te = Ay'e Ah', if we let vy Yy'hA, h = Ah' then, we have

Te = ye - L,

Iall® s 26, 1 - ¢ < |y]

[y = A < ¢

Now, for the unlt vector e, we have

6% < Jo-n)el|® = ((T-h)e, (T-))e)

< (Te,Te) - A(e,Te) - %(Te,e) + _m?(e,e)

< (yenh,ye—h).- AMe,ye-h) - T(ye~h,e) + ]Xlg

- : o
<v2 AT =Ty + 2% |n)

< ]y - X,2'+ 2 ;

5 < |y -~ A + 2e . ()

For e small enough, (**) contradicts (%) so that




N €o(T), i.e.;

I e o)

QIE.D.

Proposition 8,  ﬁ6iianyQEontraction TE SO , o(T) = aID
if, and only if, o

(1) > J1D.

Proof': Oﬁe direéﬁiéﬁ;is_glear since ﬁe(T) < o(T) for any

T € £(4). For the §£ﬁ§£“direction, let X € 370 < a(T),

then T - % is not ihﬁéftible. If we assume that A islnot

in g_(T), then w(T)‘QﬁX.is invertible in the Calkin algebra,
l.e., T =\ is Fredhdiml~ Now applying the theorem of Gohberg

(see Douglas [4]) to conclude that

dim ker(T:X)::'d, a constant,

on & punctured disc of rddius & and center X; except for isolated

points on which it might be bigger. Since A € 3ID, ) is not

an isoclated point, but since T - % is not invertible dim.ker.(T~h)%O,

and for any |y| > 1 such that |x - v]| < &, we have
dim.ker. (T=x-y) = O,

while for any |y| = 1 with ) # Q, we have
dim.Ker.(T-Ku{) # O;

So that it is not true that dim.ker.(T-\)} is locally

constant and thus assumption 1s false.

Therefore X € ¢ (T), and hence 3O < ¢ (T).
¢ ®©  Q.E.D,
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|
Proof of Theorem 8: Theorem G, Proposﬁtion 7 and Proposition

8 prove the theorem. _ \
l

I1T-2. Compact perturbation and the unitary orbilt of a
contraccion.

Q.E.D,

In this section we prove the following corollaries.

Corollary 3, If T is a contraction that satisfieg condition

a) of Theorem 8, and if K is a compact operator such that

N™xll = 1, then T + K satisfies that condition also.

Proof': Trom the agssumption we have

oD < c‘e(T),
since, Ge(T) = Ge(T+K), for any compact operator K, we have,
ce(wa) o JdIL ,

which is equivalent to condition a), since T + K is a con-

traction. ‘ Q.E.D.

Corollary 4, If T, 1s a weighted shift whose sequence of

weights is (ai), such that 0 < &, < 1, Vi € Z, then

o(T) o oID if, and only if, VN, & > O,

4 M such that O > 1 - e, i=0,1,2,--,N,

Proof: Theorem 2 and Theorem 8 imply the corollary.

QIIE'D.
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.Corollary H. TIf T is a conbraction, § is a shift, then,

-

We{U*(M®38)U :+ U € u} = set of all contractions.

Proof: Since T is a contraction, T @ S is a contraction.

Since 6(A®B) = ¢ (A)U6(B) we have

o(1@8) o a(s) = ID,
and hence,

o(T®s) o AID .
So that by Theorem 8, this is equivalent to saying that,

WC{U*(1®S)U : U € U} = set of all conbractions.
Q.E.D.

Corollary 6. If T is a contraction gatisfies a) of Theorem

8, then T ® T satisfies a) also.

Proof: If 8§ =W - lim UﬁTUN, where S is a shift, then

S®T=w - 1im wﬁ(T®I%%, where

Wy = Uy @ T and thus by corollary 5, T ® T satisfies a).

) Q,cEnDO
Remark 4, Corollary 6 extends to any finite direct sum as

well.

We end this section with the following propositics,

Propogition 9, TIf a sequence (Tn) of operators converges

weakly to an operator T, and if A is a compact subset of &




5l

such that ”;f“T;: A, fbrgevery n, then W(T) < 4.

Proof: If X EHWtTIZthén“fdr every ¢ > O there is a unit

vector e such that

Thus, we have S
Wf j 525

for every n > N, where;d(f;-) is the distance function, so
that o

a(n,a) = 2¢,

since A is compact, A\ € A or W(T) < A .
“ Q.E.D,

]
1
%
J
x
1
a
i
|
|
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-III-3. An application to the disc algebra.

Recall‘that the disc algebra G is the norm closure of
the set of all polynomials defined on the boundary oXD of the
unit disc. TFor a given contraction T € £(¥), define the
map. ¢ : G - £(M), by §(f) = £{T) for every £ € G. Von-Neumann
[12] proved that § is a contractive homomorphism. In this

section we prove the following results.

Proposition 10. If T 1s a contraction such that WC{U*TU : U € ul=

= set of all contractions,then § is an lsometry.

Proof: By vonéNeumanntheorem we need only to show that

el = 2]l , = sup |f(z)| for any £ € G. Tet £ € G, since
- z&XD '

f 1s a norm limit of polynomials we apply the spectral mapping

theorem to obtain that

by the assumption, we have ¢(T) o oID, thus

o(f(T)) = £(31D) ..

.

This implles that
he(m) = Je(£(m)) ], the spectral radius of f£(T)

z sup (] @ % € o(f(T)))
z gup {|An] @ € £(3TD)
=z sup |£(z)] = |zl .

pAS .
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t one ask whether or not the con-

Proposition ll féfé as above, and if |[W(f(T))| = Hf”m,

iWCfﬁ*TU : U€ U} = set of all contrac-

for every f E G“

tions.

Proof: ILet X\ EféjﬁiixﬁQJ&(T) There is no loss of general-

1ty if we take xfi" Let £ € G, defined by £(z) = 3z + %,
then_f(l) 1 and f mapé.Iﬁ into a proper subset of itself.
Since o(f(T)) = f( ( )) i= f(ID) = £(1) & o(£(T)), so that
we can find a disc of radlus r < 1 such that U(f(T)) < D»

the dlSC of radlus r and thus

ot - e,
since [|£]_ = 1, we have .
jo(e(1)) [ < fel, (%)

Now, we have thét, since [o(f(T))| = |[W{E(T)T| = Hf(T)H, and

by Williams Theorem [18] which asserts that Ja(r-2)] = |-

if, and only if, [W{T=XT| = |T-\||, for every A, we have
la(e(T)) | = ligll, - (%)

But (**) contradicts (*) and thus )\ ¢ ¢(T), or 3ID < o(T)

which is equivalent to saying

WC{U*TU : U € U} = get of all contractions,
. T . Q,.E.D.c
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CHAPTER IV l -

"Operators having a convex spec&ral set"

In this chapter we study weak cloFure of the unitary
orblit of an arbitrary operator not necéssarily a contraction,
In séqtion 1 we introduce some properties of convex spectral
sets; many of these results are well Anown. In section 2
we study the relations between the weak clogsure of the unit-
ary orbit of an operator having a convex spectral. set and the
set of all operators. having that convex ‘set as a spectral set,
We obtain results similar to the case of a contraction investig-

ated in the previous chapter.

Iv-1. Properties of convex spectral set.

In this section we presént some results about convex
‘spectral sets; most of these results are well known but we
provide many proofs different from the original ones. We
start with an important version of von Neumarn theorem about

spectral sets.

Proposition 12. A closed half plane P is a spectral set of
an operator T 1f, and only if, P contains the closure of

the numerical range W(T) of T.

For the proof see Williams [ 18].

Corollary 7. TIf X is a compact convex spectral set of an

operator T € £(¥), then W(T) < X.

Proof: Let P = {z € ¢ : Real z = 0}, be the right half

=7




plane and define the map

|

® P~ X, B

to bé_holomorphic and homeomorphism, then by von Neumann

theorem [12] P is a spectral set of an operator A if, and

only if, X is a spectral set of w(A). Let A = mhl(T), then

by proposition 12, P contalns W(A). Now, using Kato Theorem
[9] (which asserts that, if £ is holomorphic on P, W(a) ¢ P,
then W(f{A)) is a subset of the closed convex hull of £(P))

3

we have

W(e(R]] < chlp(P)),

1-8-,

WEy < X,

since X is compact convex.
QUE.D.

Remark 5. A direct proof of Corollary 7 goes as follows.

Sihce X =N H@’ where Ha is a closed half plane which con-
o

tains W(T) by proposition 12, for every &, and thus
W(T) cnH = X.
a &

For the next corollary, we need the following definition.

Definition 2. The generalized Minkowski distance functionals

wr(-), 0% r<won £(H) is defined to be




Wr(T) = inf{\ : A > O and kmlT has a unitary r-dilation}.

The dilation here ig in the sense of Sz«Négy and Foias [11]:

Definition 3. The generalized numerical range Wr(‘) is

defined to be

{(T-2)) .

W (1) = n {zeg : Ié—l[ £ W
' A

r ¥

It is shown in Patel [13] that Wr(T) is compact convex
subset of the plane and for 1 £ r = 2, Wr(T) = W(T) and for
rzl w, (T-)) s || T-A]| for every A € ¢. For more about the

properties of wr(') and Wr('), see Patel [13].

Cbrollary 8. For any operator T, we have

W(T)

intersection of all convex spectral sets of T.

]

I

Nn{zea: [z-x] s fiT-2|).
A .

E;ggi:'.By corollary 7, W(T) is included in.the intersection
of all convex épectral sets of T. Since W(T) is convex, we
have W(T) = £ Hy (Ha) are closed half plaﬁes, so that H_
contains WTTT for every o« and thus by proposotion 12, H& is
a spectral set of T, for every o. Now, the intersection of
all convex spectral sets of T is included in N H, = W(T).
This proﬁes the first part of the corollary. >

For the second part, we have, from Definitions 1, 2 and

the comments which follow it, that, for 1 = r < 2,
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W(T) = w_(T)

1l

Ni{zeq: |z-\] = w_(T-2)]
A

=N {z€a: |z-2 = ||7=Al} .
Q.E.D,

Proposition 13. Tet X be a compact convex subset of ¢ sﬁch

that the boundary 90X, of X bélongs to the space Cg, of all
functions having continuous second derivative, and contains
no straight line segments. Iet 4 € 30X, be an extreme point
such that the curvature of JX at W is not zerojthen there

is A in ¢ such that

lu-r] = sup|z-n]. .
z&X M

TR ————

Proof: Given an extreme point i E_BX, since X 1s convex,
the tangent t of dX at the point &, will be in the complement
of X. Draw the tangent t and draw the normal line n to oX

at w., It is known that every point on the line n is a center




61-

of a circle tangent to dX at W, and the difference between
these circles 1§ the value of the curvature. Let r be the
radius of curvature of J¥X at B, which is given by

P S)2J3Z?_

. 1+ (!
e e B

2

where f(s) repfesents oX locally as a-CQ—function.
‘Chdose A on the normal line n such that |u-\]| is

sufficilently greater than r, the radius of curvature of X

at u; since OX is a Cg-function, the second derivative exigts

everywhere, and different from zero almost everywhere gince

o0X does not contain straight line segments. Thus r ig

defined almost everywhere and thus A exists such that the

circle determined by A contains X and hence
w=r] = [z-a],

for every z in the circle whose center is AL

In particular, we have’
h-"")\l > IZ"}\ls
for every z € X, and therefore

lM-2| = suplz-r] .
z€X

But since p € X, we have

[u-\[ < sup|z-r],
vACH S




and thus,

[b-r] = ggglz-ll-

Still one point to investigate, namely if there is an
open set E in dX such that, if y € E, then the second
derivative atig = f”l(y) is zero, then E must be a straight

line.

Indeed: Consider f : T - E, such that £(I) = E, the open
subset with. that property, where T ig some interval. Consider
815 85 € I, then we have, f"(s) = 0 Vs € [51352]3 so that

by the Mean Value Theorem, we conclude (since f'(s) is

continuous on [sl,sg]) that

il

8ince 51,32 are arbltrarily chosgen in I, we have_f‘(s) a

constant on I, and thus by integrating £'(s) over I we con-

<

clude that E=f(I) is a stralght line segment. This cannot

occur by the assumption.
Q.E.D.

Remark 6. "If f"(s) = 0 for some z = f(s) € 3X, then we can

approximate by some other point z' = fs') : £"(s") # 0.
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CIV-2. Weak closure of the unitary orbit of an operator
having a convex spectral sel.

For X a éompact convex subset of the plane, recall
that

O(X) = [A € £(M): X is a spectral set of Al}.

For a glven T € 0(X), the unitary orbit of T is a sub-
set of O(X), since for any unltary operator U, U*TU has X

as a spectral set, thus
{(U*T0 : U € u} < o(x).

Tn this section we investigate the relagions between
0{X) and weak clogure of the unitary orbit of s given oper-
ator T € O0(X). 1In case X is the closed unit disc ID we know
that the set of all contractions 0(ID) is weakly closed, but
in case X is not ID we could not prove that 0(X) is weakly
closed, but we conjecture that 0(X) is weakly closed. We

prove the following theorem.

Theorem 10. If X is a compact convex subget of ¢ such that

1ts boundary oX belonge to the aspace 02, and O0X contains no
straight line segments, then for any T € 0(X) the following

are equivalent
a) W{TJ = X,
o(T) o 3X,

ce(T) o X,




a) iR, (Dl = 1/a(x,%), v & X, where RX(T) = (r-2) "L

and d(X,X) is the distance from A to the set X.

We devlde the proof into some lemmeas and propositions,

we start with the following

Lemma 6. If u € W{TJ such that ] = |ITl, then p € g(T).

|
Proof: 1If u € W{TJ then there is s gequence (ei) of unit |

vectors such that

(Tei:ei)'"ff:ﬁ;9 M s

,((T‘H)eisei)f < &, V1>N,

for some positive integer N,

This implies that,

H(T-p,)ein2 NTeiH2 + ul® - H(Te; e, ) - ple;,Te,)

"

HTH2 + fH]E - 2Q'Real(Tei,ei)

< 2[u]® - o Real(Te,,e,)

| QIE{ (H"(Teiaei).)]

2l e ,

which implies that wu is an approximate eigenvalue and thus

o€ g(T).
Q.E.D,

Proposition 14. Under the agsumption of Theorem 10, we have
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WITY = x if, and only if, () > 3x.

|

Proof: By proposition 13, we have, fof any exbtreme point ;j?

# of 9X, such that the curvature of Bxéat 4 1s not zero, f%j

there 1s X € € such that \

,H'KJ = sup’z~kl P
zZ€X

since W(T) = X, we have, for any extreme point u of dW[(T),
there 1s A € ¢ such that

zZ€

lu-x] = ‘s%%T)Iz~xl =IWTTTTT1 ,

the numerical radiug of T - ).

Williams [18 ] proved that if W(TT is a spectral set of
T, then

JWTTTTT! = HT_XH P

for every M € ¢, this impiies that, since W(T) isg a spectral
set of T,

u=r] = [lT-Af],

and thus by Temma 6, u - A € ¢(T-\), which is equivalent to

saying that u € ¢(T). Since 3X is smooth and containg no
stralght line segments, the set of all extreme pointe 4 of oX,
with curvature of J¥ at uois differenf from zero, is dense in
OX and since €{T) is compact we nave g(T) 2 dX. This proves

one direction,




For the other dlrection, we have

X < e(T) < W(TJ,

and by convexity of W{TY, we have X < W(T7. on the other

hand since X is convex spectral set of T, we have, by

Corollary 7, W(1) ¢ X i.e., WZTS = X.
QIEDD.

Proposition 5. If X is a simply connected subset of ¢,

and is a spectral set of T, then

o(T) o 90X if, and only 1ir, ce(T) o 3X .

Proof: BSame proof as Proposition 8, with ID, replaced by X.

Q.E.D.

Propogition 16, Under the assumption of Theorem 10, we have,
WT) = X if, and only if, 12, ()] = 1/d(0.%),

for evefy g X, |

Proof: By Proposition 14, we have

W(T) = X if, and only if, a(T) o 3% s

i.e. o(T) o OW(TJ), and Patel [13] proved that this is equi-

valent to saying

R (DI = 1/a0LFTED,

for every » ¢ WIT){ Since W{T) = X, we have



i

ad(WL,WT)) = a(r,X), Vn» € X, and thus, we have

Iz, (O} = 1]a(h,x), vy X1

Conversely, let HRX(T)H = 1/d(x,x?, VA & X. Since ¥
’ !
is a convex spectral set for T, we have, by Crollary 7,

WTTﬁ;c X, so that for A ¢ W(T] we have,
a(x,x) = a(x,W(Ty).
This implies that,
L/a0LHTT]) = 1/a(0,x) = I, (Tl
But, for any T, we have
HRK(T)H < l/ﬂ(k,ﬁTTT), for all A Q’WTTT,
S0 that, |
IR, ()} = 1/a(0,57T)), wa ¢ WT)
which 1s equivalent to (by Patel's'Theorem),
o(T) o w(T) ,
and since we have proved now that
L/A0GTTTT) = g, (1) = = 200,%)

for every X & W(TV, N € X, we concliude that OX = W(T) « W(TT,
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and thus by convexity of W(TT, X c W(TT, 1.e. ¥ = W77,

Q.E.D.,

Proof of Theorem 10: Proposition M, 15, and 16 prove the

theorem.
QIE.D.
Now we are going to investigate the relation between

conditions of Theorem 8, and those of Theorem 10. Tt turns

out to be equivalent, using the Riemann mapping lemma,

Lemma 7, Tf X is a simply connected subset of T, then there
exists an analytic homeomorphism y : ID ~ X, from the closed
unit disc onto X, such that v (dID) = ax.

For the proof sce (for example) Alfors [1].

Lemma 8., If o : X - Y ig an analytic homeomorphism, if x

1s a spectral set for T and v = @J; then g(p(T)) = w(o(T)),

moreover, 1f ¥ is a spectral set for B = o(7T), then

Proof: Since ¥ is a spectral set for T, we have

6(o(T)) < o(a(T)),

and since vy is 1 -~ 1 and onto, we‘have

v(e(e(T))) « yv(p(a(T))) = o(1),
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°

- v(e(B)) < o(yv(B)),

since Y is a spectral set for B, we have

o(v(B)) « v(a(B)),

and thus,

o(v(B)) = v(o(B)).
The other equality is proved similarly.
| Q.E.D.

The following two propositions show the eguivalence of

the conditions of Theorem 8 and those of Theorem 10.

Propoglition 17. If ¢ : X - ID is an analytic homeomorphism

and T € 0(X), then {

o(T) o 3X if, and only if, o(o(T)) = 3T .

Proof: Since oX < ¢(T), we have

9(3X) < o(e(T)) = a(o(1)),

by Lemma 8, and by Lemma 7, we have
ID « g (p(T)) .

Conversely, if oID ¢ o(ep(T)), then

Y(3ID) < v(o(p(T))) = o(T),

where y = m-l, and thus 90X < o(T).
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-Proposition 18. 71f X, oX satisfy the assumption of Theorem
10, T € o(X), and @ : ¥ - ID ie an analytic homeomorphism,
then

W(T) = x if, and only if W(p(T)T = IF .
Proof: It is clear by Proposition 17.

Remark 7. 1In Proposition 18, it is not enough to assume
that X 1ls & convex spectral set only we need also that oX

is a C ~function and contains no straight line Segments.

Indeed: Consider the following example.

Example 2. Iet T = diag(kl,kq,k ). Since T ig normal.,

W(T) = ch(c(T)) = the triasngle whose vertices are kl,lg,k3.
Call this triangle X, and let ® : X - ID, be analytic homeo -
morphism. Then o(T) = dlaﬂ( l’“2’“3) where My (ki),

=1,2,3 and thus, we have

Wie(T)) = ch(a(p(T))) # D

This example shows that if the X is a convex set but
contains straight llnp segments then Proposition 18 is false,.

We present now some corollaries of Theorem 10.

Corollary 9, If X, oX and T are the same as 1n Theorem 10,

then

WOTT = X = Ju (R, (1))] = 1/a(h W, (7))
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---for all A Q‘Wr(T), 6 =1 and r =z 1,

Proof': By Theorem 10, we have

W(T) =X e “RX(T)H = 1/a(x,Xx),

Tor all )\ ¢ X, which implies that ‘ i
r (DI = 1/a00,57T0,
for all )\ & W(TJ.

Patel [13] proved that the last equality is eqguivalent

to saying that
W, (R, (2))] = '1/a00,w (1)),

for all A ﬁ'wr(T), 6 =z1l, r=1.
7 Q.E.D.

Corollary 10. If X, d0X, and T are the same as in Theorem

10 then
o(T) o 3X = [W(T-r)| = | o-alf
for every \ € ¢.

Proof: Theorem 10 says that

o(T) 2 oX  W(T) = X,

l1.e. W(T) is a spectral set of T, and thus (by Willlams [ 18])

we have

lmﬁ), = HT-)“H s
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-~ for every A € ¢.
Q.E.D,

50 far we studied some equivalent conditions to the
condition W(T) = X, and some of the corollaries. COne can
ask when such condition can be valid? The following proposi-

tion answers this question.

Proposition 19. If WC{U*TU : U € u} = 0(X), then we have

W(T) = X.

2{992: Since X is convex spectral set of T, we have W(T) c x.
For the other inclusion, we can identify points of X as
(scalar) operators in 0(X), on one-dimensional subspaces of
¥. The assumption agserts that any operator in 0(X) on a
finite-dimensional subspace of ¥ 1s approximable Ey the com-
pression of T to that subspace, thus given \ € X, then Ve > 0
there is e € ¥ with |le|| = 1 (generator of one-dimensional

subspace) such that

I(Te:e}")\l < E

which Implies that A € W(T), i.e., X © W(TJ and we have

w{T) = X.

Q.E.D.
It is reasonable and natural to ask if the converse of
Proposition 19 holds, since it holds for the contraction
case. We prove a version of the converse, namely, if W(T) = %

and X, oX and T are the game as in Theorem 10 then 0(X) is

2




73.

"~included in WC{U*TU : U € U}. In order to obtain the full

converse of Proposition 19, we need to show that 0(X) is

weakly closed, the thing we could not prove.

Theorem 11. If T, X, and OX are the same as in Theorem 10,

then we have

WT) = X = 0(X) « WC{U*TU : U € uj.

For the proof, we need two propositions and a lemma,

Lemma 9. If X is simply connected and @ : TD — X is analytic
homeomorphism from the closed unit disec to X. If la]| = 2
and y € ID such that HAei-yeiH - 0, for some sequence of

unit vectors then

lo(ale; - olyv)e,ll = o,

as 1 increasges.

Proof: Since ¢ is holomorphic on the interior of TD ana
continuous on ID, then ® belonge to the disc algebra, in

which the set of all polynomials is norm dense., So that

there is a sequence (Pn) of polynomials such that

®=n - 1im P_,

and thus it is enough to prove the lemma For polynomials, in

which case it is enougn to prove it for integral powers of




74,

--.A, namely for Ak, for any positive integer k.
Now, for k = 1, it is the assumption, so, assuming the

induction step for k, then for k + 1, we have

HAl{"i-le ‘

k-1 k+1 . k+1
- Y 2 |la n

k k
e ~ YAeﬂ‘%-HyA e;- ¥ g

< 12K

‘|

'

hey = veyll o+ fv] fldfe - vy

Since the right-hand side converges to Q asg i increases, we

have

lo(a)e; - o(yegll ~ o,
as 1 increases.

Q.E.D.
Proposition 20. Under the hypothesis of Theoremll, if

A € OX such that Ve, T e € K with |lel] = 1 such that

[(Tese) - A| < &, then there is a number g such that
Te = pe +'h,
where [u-\| < e and ||b]| < e.

Proof: Let ¢ : X - ID be analytic homeomorphigm; then
p(dX) = dID, so if € OX then there is & € 3IT such that

5 = o(A). The assumption implies that X € W{T) and since
W(T) = X & WorTT = 1D, (by Proposition 18), we conclude
that 8 € W(®(T)J). Denote A = ®(T), which is contraction

(since X is a spectral set for T}, so that, Ve, e a unit
2 A

vector such that




I(AG,E) - 6' < 3,

since e 1s arbitrary we mateh them to get the same unit

vector e of the assumption. By Lemma 5, as in the broof of

“Proposition 7, there is a complex number N and a vector

h' € ¥ such that Ae = Me - h', where ||h']] < ¢, and - Ih-5] < €.
This implies that ||Ae - hel| < ¢, so by Lemma 9 we have

No(a)e - y(n)el| < e, where = w_l and thus
¥ (8)e = y(h)e + n,
wheré Il < . Define w = y(h) and we have
Te = e + h,
where, |- l¢(6 n)| < e', by continuity of § and
fe-n| < e,

QOE.D.

Proposition 2l. If X is simply connected spectrallset for

operator A € x(u), then .there exists a normal operator N E ()

such that N approxlmatesA weakly and c( ) < dx.

Proof: Under the hypothesis Sarason, . [15] proved that

there exists a normal dilation M of A on a Hilbert space ¥ D M

such that ¢(M) ¢ 3X and if By + ¥ ¥, is the orthogonal

projection of ¥ onto ¥, then

n, _ _
AR, = PnMnPH ,

for every integer n.
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S0 that, given fl,---ﬁfk, Bysc sy € H, and let
h = span[fl,---,fk,gl’...,gk}, then dim N < o, YTet U : H - ¥
be the unitary operator such that Uln = T and U-ﬂ@h from
‘Heh to ¥eh be isometric and onto and define N = U*MU, then
by definition of U, N € £(¥) and N is normal, and since

c(M) c X, we have ¢(N) c dX.

Still to show that N approximate A weakly, indeed:

[((A-W)2y e 0] = [(Afy,e.) ~ (M, ,8.,) |

for 1, J < k.

Moreover, since N is normal, ¢(N) < 39X, we have X is

a gpectral set for N as well.
Q_.E.D.

Proof of Theorem 1ll. We want to show that O(X) ¢ WC{U*TU : U ¢ ul,

so given A € 0(X), then X is convex spectral set Tor A, thus,

by Proposition 21, there is a normal operator N such that

N approximates A weakly and ¢(N) D dX. Moreover X is spectral

set for N, 1.e., N € O(X). This is the first step, we approx-

imate A weakly by a riormal W € 6(X), the second step is to
approximate such operator N by aidiagonal operator.

By Bergs theorem [2], for any normal operator N, e > O,
there is a dilagonal operator D anhd a compact operator K such

that ||Kl| < e and,

U*NU = D + K,
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~ for some unitary operators U, and ¢(D) ¢ ¢(N). So that

if N € 0(X), normal then
forwy - Dl < €,

and ¢(D) < ¢(N) < 3X, which implies that X is spectral set
of D, 1.e., D€ 0(X).

The third step of apprpximation is to approximate such
operator D, weakly by some compressions of T. So given such
D in'0(X) on a finite-dimensional subspace of ¥ such that

(D) « 3X, then

D= diag(ll,kzs-rt,kn) s

where Xi € o0X, 1 = n.
Since X = W(T), we have Ay € W(T) 1 £ n, so that

Vli, e > 04 €; a unit vector such that
So that it 1s possible to define a unitary operator U (as

we 4id in the proof of Theorem 9) such that

!((T-U*DU)ei,ei)] <e, 1is<n.

Applying Proposition 20 to (*), we have

Tei = H.e.

4 . 1 =
184 hl, i n

where ﬂhiH2 s 2e, |u;-A;] < e, 1 5 n, so that for i ¥ j, we have
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[((T-vDU)ey e )| = [(Teyse

Dl

S luglegoe)) | + [(ne,)]
s “hln < 8(e), 1,3 <n

and this implies that

l((Tuu%Du)ei,eJ)j < 8(e), 1,j = n.

.Combining the three steps of approximation together,

v

we conclude that, ¥Yn, ¢ > 0% a unitary operator U such that
l((T-U*AU)e-,e )] < 6( )s 1,3 =n,

which implies that A € WO{U*TU : U € ul} i.e.,

O(X) c WC{U*TU : U € u} .
Now, we conJecture the following

Conjecture: If X is a convex spectral set of T, then 0(X)

is weakly closed.
If the conjecture is correct then we would obtain the
full converse of Proposition 19.

We have the following proposition.

Proposition 22. The set R = [A € S(ﬁ) : W(AT is a spectral

set of A] is norm closed and arcwise connected as a subset

of £(a).

Proof: To see that the set is norm closed, let (An) < R
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_..such that (An) converges uniformly to A, then W AT is a

spectral set to An’ for every n. Since the numerical range
is uniformly continuous (see Halmos [7 ), we have WTAni - W(&T.
Since 6(A) < WIAY , to show that W(AT is a spectral set for

A, 1t is enough to show that

el = el »

for any polynomial P on WEAiﬂ So that for any polynomial P,

we have,

I = Hpa)-e(an)l + 2ol 5 >

< e + HPFAH)H,

since product is uniformly continuous, and since

HP{AH)H < |p| = 8up IPFZ)], we have

m—)— Z€W‘An

n _
HPFA)H < e + Zesuﬁn ]sz)] s n >N,

Let z_ = sup |P(z)|, the z, = z. € WIAT and since
n zEW(An - n o

lz,| £ sup |P(z)], we have
O el (a) ’ ’

[Pl = e + fellryy < 1,

This proves the first part of the broposition for the

second part, it ig enough to show that everything is connected

to zero, i.e., if A € R, then \A € R for any complex number ).
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Indeed: to say that if A € R then M € R, for every % € ¢ is
equivalent to saying that if W(&J is a spectral set of
Ajthen W(XA] is a spectral set of A4 For any A € ¢. First, since

.x{Ae,e) = (NAe,e), Ffor any vector e, and any X\ € ¢, then

AW{A) = W(MA) and hence AMW(ET = W(kA); Let P be a polynomial,
let g(z) = P(Az), then _ _

HP(_M)H = lquA)\\ s Zg%pmlq@l
su P(Az}] £ su P(\z)
S%EW$K7J _ | zékﬁ%ﬁjJ _ l

< sup IP(XZ)I;

zeW(NE) -

which implies that W(MA) is a spectral set for M and hence

M € R, i.e., R is arcwlse connected.
QeEoDn

Now we have some results as an application to Thecrem

10.

‘Lorollary 11, 1If X, oX and T are the asame as in Theorem 10

such that W(TF) = X, and if K is a compact operator with

T + K € 0(X) then W{TFK) = X.

Proof: It is easy to modify the proof of Corollary 3 to suit

this corollary.
Q.E.D,

Recall that G(X) is the algebra of all function continuous
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“on X and holomorphic on the interior of X, where X is a
compact subset of ¢. Recall also that G(X) is the uni-
form closure of all polynomials defined on dX. As the case of

. the disc algebra, we have the following results.

Proposition 23. If X, 3X, and T are the same as in Theorem

10, such that 'w( T} = X, then the map § : G(X) - 53(3#), defined

by V(f) = f(T), for any f € G(X) is an 1sometry

Proof' Since X 1s a spectral set of T, then.for any f € G(X),

£(T) is well defined and

le(o)l = flgll,, = suple(z)] ,
- zeX

and
“f(T | = | f(T))f, the spectral radius of £(T)

> sup{lxl :h € o(s(T)) .

Since W(T] = X equivalent to o(T) D 3X, and (by
functional Célculus) f(e(T7)) = c(f(T)), we have c(f(T)) D F(8x)

and thus
(ol = suplin] = e £(2%))
= sup [£( Y), B
vy€ OX
and therefore Hf (T)| = £l Li.e.,

(o)l = 2], 1.e.,




"¢ is an isometry.
QOEODO

Proposition 24. If X, 3X and T are the same as in Theorem

10, and if the map § : G(X) = £(#) is such that

fm)a el s .

for every £ € G(X), then W(T) = X.

Proof: It is enough to show that O0X < ¢(T), so let A € JX,
A g &(T) then let T € G(X) such that f(kj =\, Hf“m = [A]

and maps X into a subset of itself, since A is not in

o(T), A £ o(£(T)), for any £ € G(X) so that o(f(T)) is included

properly in a set does not contain dX, and thus‘

lo(e(m) | # Inf = el () .

It

Wl » we have

Now since [W(f(T))]|

fm)l = nfmn,
and thus |
jo(2(m))] = £,

for every £ € G(X), but this contradicts (*) and hence

A€ o(T), i.e. OX < o(T).
: - Q.E.D,
Remark 8. The function f in the proof above can be defined in

a similar manner as its analogue is defined in the proof of

\
Proposition 11. L
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