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Abstract of the Dissertation
CLASSIFICATION OF RELATIVISTIC n~PARTICLE DYNAMICS
by
Charles Patton
Doctor of Philosophy

o in
Mathematics
State University of New York at Stony Brook

May, 1977

A relativigtic n-particle dynamical law is a collection,
3 of n-tuples of smooth, timelike, one-dimensional submanifolds
of MinKOWSki gpace, such that the set S is invariant under
the.natural action of the Poincaré group. 4 classical n-
particle dynamics of order k is é smooth one parameter family
of diffeomorphisms H : TS™2(R% x BY)™ x R = 157%(r’ x gy
((Tf = fiber tangent)) satisfying the usual k-th order condi%ion¢
(The unit open ball is taken for velocity since we do not |
allow particles to go faster than the speed of light = ¢ = 1,)

The classification of relativistic n-particle dynamics
which arise as the orbit-set of a classical n-particle dynamics
of order k proceeds in two stages. First, the problem is
reduced to classifying the solutions of certain systems of
first order,'gonmlinear partial differential equations.
Although formally overdetermined, these are shown to have some

remarkable covariance properties which allow local analytic




solutions to be compleﬁely determined. General solutions
for various classes are explicitly determined, and for the
second order,.three particle case it is shown that there are
no non~trivial solutions which conserve relativistic .momenta
The.proﬁlem of conservation of generalized moménta is raized.
These'reSults extend the Fesul?s of Currie, Jordan,

Sudarshan: Rev. Mod. Phys., 35, 350 (63), Cannon, Jordan: J.
Math. Phys., 5 299 (6L4) and Leutwler: Nuo. Cim. 37, 556 (66)
when k = 2 and H is taken to be Hamiltonian, although com-

pletely different techniques are involved, and Arens:Adv.

Math. 10, 332 (73) when the generalized momenta are taken to

be the standard relativist momenta.
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Notation

To facilitate notation, we have omitted range specifi-

cations for subscripts and superscripts. We use the following
i

1

ranges everywhere unless otherwise noted.

Subscripts

i, d,Aymyit; jt,47,m?, etc. take all values in {1,2,3}.

Superscripts

n = number of particles considered.

S,ry8',r', etc. take all values in {1,...,n}.
Order

k = order of the dynamics considered.
These allow us to deal with various number of particles and
various érders in a uniform manner,

Example

the equation pipj = 0 actually represents the system of

equations plpl = 0, plp2= O, plp3 = O,ao.o -




CHAPTER I

§1. In non-relativistic physics, the description of a physi-
.cal system is constituted in specifying a space, M (identified
as the space of states of the system in question) and a one
parameter family, {wtlt € R}, of automorphisms of the space

M, Automorphism here refers to that structure with which we
have equipped M.

For example, in classical mechanics, for a single parti-
cle M = T*R3 equipped with the canonical symplectic structure.
The w, are then symplectic diffeomorphisms. In quantum
mechanics, M = ¥, a separable Hilbert space and ®, are unitary
transformations.

The "t" in ®, refers to time and the one parameter family

t
of mt's represents the time development of the system.

There are usuvally fundamental symmetries of the system
present, however. These symmetries are given as a homomor-
phism p, of a group G, into the group T, of all automorphisms
of M. As an example, when M = TﬁRB, G is often R3, 0(3), or
R3 % 0(3) and p gives the standard action of these on T‘%RB,=

That. these symmetries should remain present as time pro-
gresses is expressed in the requirement tﬁath € G, Vt € R,

o or(g) = plg)on,.
- In relativistic physics, the symmetries and the dynamics
heéome inextricably intertwined. The usual thing to do in

this case is to incorporate the dynamics as "just one more
P J

2,




3.

symmetry"., We thus arrive at a homomorphism p : iL = T,

where iL 1s the connected component of the group of isometries
of Minkowski space, M# (Poincare group). However, reasonable
is this abstraction, it is still a good deal removed from

the physical meaning of these isome?ries. Let us then take

a different point of view.

The spéce—time history of a point—particle in special
relativistic physics is described by a_time—like.curve in
Minkowski space (a one~dimensional, time-like submanifold).
Correspondingly, the space~time history of an n-particle system
would be described by an n-tuple of onemdimensiona% time~like
submanifolds. For the purposes of classical mechanics, it
would be completely adequate to describe a set § of such
n-tuples, where each element of this set would correspond
to an n-particle space~time history which can occur in
nature, We would also need some criterion for distinguishing
among elements of this set, especially one which is local in
time, for the purposes of prediction. ZLocal in time means,
we could design experiments which take a uniformly bounded
amount of time to perform and would distinguish trajectories.

Noting that every n-tuple of time~like l~dimensional
submanifold intersects the hyperplane t = 0 in n points
(possibly coincident), it is reasonable to assume that we may
parametrize our orbit set 8 by (RB}n X P, where P represents

the results of our experiments.

The requirement of relativistic invariance for this




L.

scheme is simply that the set & be invariant, as a set, under
the natural action 6f the group of isometries of Minkowskil
space. |

Note that if we have any bijective map o ¢ S = 8 and &
is relativistically invariant, then o induces an action of ik

on S, In par'tlculars if & is relat1V1st1cally invariant and

has a parametrization of the type (RB)n x P given above, and
P is a manifold, it is sensible to ask whether the induced
action of iL on (RB)n X P is smooth (Cw) or not. In case

it is, we will call &, together with its parametrization, an

(n-particle) relativistic dynamical law, or R.D.L. for short.

Among the most interesting, from a physical standpoint,
are those R.D.L whose parametrization space corresponds to

the phase space of a kth order system, That is to say, if
XypesapXay * RBn =~ R are coordinate functions for RBn and XO
is the vectorfield on RBIl X P corresponding to the infintes-
imal generator of time translations, then the functions

n~ k-1 k-1
X Xo(r)\él)y-o-,X( BH)’DGG’X ( l)’non’X (X

a system of coordinates on R7 X P, (xl,...,XBn are the
natural extensions of'xl,...,x3n to functions on gl x P,
We will drop the tildas henceforth.)

In this case, any vectorfield is determined by its
action on these ke3n functions. From the fact fhat each
point in RBH-X P corresponds to an n-tuple of time-like,
one~dimensional submanifolds of Mﬁ and the projection

(I RBH Xxp - R3n corresponds to intersecting these submanifolds
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with the hyperplane t = 0, we obtaln certain relations which

will now be explored.

¢ 2. Let us take standard coordinates (t,xl,xz,XB) for M,

Then the following one parameter subgroups of 1L generate

Time translation

corresponding Lie algebra element called Xou

Space translations

1.
Yo (tyxy 9 X0, %3) = (£,%q4a,%5,%5)
2

Ii(t,xl,XZ,XB) = (t,xl,x23x3+a)

corresponding Lie algebra elements called Kl’XZ?XB respectively.

Space‘Rotations

uiz(t,xl,xz,XB) = (t,xlcos(a)mxzsin(a),xlsin(a)+xzcos(a),XB)
u§3(t’xl’X2’X3) = (t,xlcos(a)~x381n(a),xz,xlsin(a)+x3cos(m))
Qéj(t,xl,xz,XB) = (t,xl,xzcos(a)—XBSin(a),xzsin(a)+x3008(a)}

Lie algebra elements Y12’Y13*Y23 respectively.

Lorentz Boosts

U

ugl(t,xl,xz,XB) (cosh(a)t+sinh(a)x1,sinh(a)t+cosh(a)xl,x2,x3)
ug%(t;Xl,XE,XB) = (cosh(a)t+sinh(a)ngxl,sinh(a)t+cosh(a)x2,x3)

MgB(t,Xl,XE;XB) = (cosh(a)t+sinh(a)x3,xl,x2,sinh(a)t+cosh(a)x3)



Lie algebra elements respectively YOl,Yoz,YOB.
With our choice of coordinates, any one~dimensional time-

like submanifold, call it v, can be written uniquely as
Y = {(ry0(7),0,(r),05(1)) | € R

where ml,m2,®3 are smooth functions and

a
(7§;)2*+( )2 4 (d —2)2 < 1

for all T € R. Hence if ¥ € & then it can be written

Y = fytli = ly...,n} where the Y' are of the above form. In

the case (identifying € with its parametrization) we have
revy T
X = .0
57) = 94(0)

Clearly we have the following induced actions of the above

mentioned one parameter subgroups of il, on R3n X P:

H

x?(Ta(w)) mg(na) ' a € R

i

re i, T,
xj(Ia(Y)) = 6ija + xj(Y) o € R

XGUMY)) = 6, (V) sin(a) + xp(¥)cos(a))

6ij(xg(§)008(m) - x (Y)sin(a)) + (ljéijnﬁjm)X§(§)

If we denote the vectorfields on RBn X P dinduced by these one

parameter groups of motions by the unbarred version of the
i

corresponding Lle algebra elements, we thus have

LLyyy _ —=d r




7.
xi(xg)(ﬁ) = 8 4

(V).

Yy ren
Yim(xj)(Y) ""‘I 5jmxj(Y) - 613 m
Finally, we have

TryOlpMyy . r T
xj(lécL (v)) = 6ij(81nh(a)t+cosh(a)mj(t)) + (l~ﬁij)mj(t)
where t satisfies the equatibn

cosh(al)t + sinh(a)mi(t) = O,

Suppose we have a one parameter family of t's, say t{a)
satisfying

?osh(a)t(a) + sinh(a)mz(t(a)) = Q.

Then taking derivative with respect to a at o = 0 we have

L) o + oi(s(a)) | g = O but £(0) = O.

Thus
d ‘Y,

Ftle) ] g = 5 (0) = —X§(Y)

We can now write

SOZHY)) = 8 ((sinn(a)n(a)eosh(@)ol(s(a))+(1-8; Ne(e(a)).

Differentiating at a = 0, we have
ry My revy dor I AN Ty
Toi (V) = = (V) eqposl g = x5 (V)X (23 (Y.
The vectorfields Xo’Xi’Yij and Y . inherit bracFeF relations

from the Lie algebra’of iL, Namely
(231) [XO’Xi] = 0

(2.2) [xo,yij] = 0




(2.3)
(2.4)
(2.5)
(2.6)

[Xo’Yoi] =X

Y3 30 Yomd = ®5m¥o1 = %inYoj
RISTRVUIEI S
X3, T0351 = 85 5%,

From the previous we also must have

(2.7)
(2.8)

(2.9)

(2.10)

r
Xi(xj) = 6ij
ry r r
r r r
Yoi(xj) = xiXO(xj)

(X (N2 4+ (X (B2 + (X (EN2 <1

Let us now combine equations 2.3, 2.7 and 2.9 into the

following system:

(2.0)'

(2.1)'

ese

Lemma.

ry _.r ry .
Yoi(xj) = xiXO(xj)

Ty r r T Ty
YoiXo(xj) = Xo(xi)Xo(xj) + xiXOXO(xj) 6ij

Ty Ry T r o2, T ro3,. 17
YoiXoXo(xj) = Xo(xi)Xo(xj) + 2Ko(xi)Xo(xj + xiXo(xj)

ST 8,.T r s—Llr Iy\v2/.1r
ioixo(xj) = Xo(xi)Xo(xj) + sX7 (xi)KO(xj) teos

- -1 1
cor + (XSTHCDITGEE) e XTHGED)

J 0

Suppose we have an R.D.L. parametrized by R3n X P

and a k = 3 and an open subset U C RBn X P together with a

j €(1,2,3) and an r € (1,...,n) such that Xﬁ(xg) =0 on U.




2 ) - -
Then Xo(xi) = Xo(xg) = Xo(xg) =0 on U,

Proof: First note that if Xk(x ) = 0, then so is Xﬁ(xi),
Xk(xz) angd Xk(XB) since they can be obtained by applying
the appropriate infintesimal rotation. We will now proceed

by induction on k.

Case k = 3. We have the equation

%
010

i+ 3xo(x§)xg(x§) + xgxg(xﬁ)

(=5) = X () + 32020

which when restricted to U becomes
- R N
o - BXO(Xi)XO(Xj)e

Taking 1 = j we find Xg(xg) =0 on U.

Reducing Case k to Case k-1, Assume X%(x?) =0 on U.

Restricing-équation R.k' to U we get
_ wvk=le NG Ry T k R/ . Tyvk-1,_r
0 = kX (xi)Xo(xj) oot (k~2)Xo(%i)Xo (Xj)ﬁ
Apply X -3 to both sides of this equation on U and obtain
_opyk=Lly iy k-1, v
| 0 = KX/ (xi)XO (xj)
~on Uy, where K is a positive integer. Thus we have Xk 1(xr) =)
on U, completing the induction step.
The meaning of this proposition is that there can be no

"constant acceleration™ dynamics, other than straight line

motion. This rules out the most intuitively plausible possi-

bility for relativistically invariant dynamics.
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$3. k~th Order Dynamics.
Let us now consider the case of a k—th order R.D.L. In

this case, the functions
r k~1,_ 1
)CE’XO(Xi)’.'.’XO (Xi)
give a coordinatization of RBn X P. In particular any vector-
field is determined by its action on these functions. Thus

Xo ig completely determined by the functions Xk(kg), T = lijeoayny

i=1,2,3. Yoj is determined by the functions
r r . k-1, r
Yoj(xi)’YOjXO(xi)’oeu?IOjXO (xi)ﬂ

Propeosition. Suppose Xo is a k~th order, k = 2,\vectorfield

on R3Il X P, Define vectorfields Y 1= 1,2,3, by equations

ol?
{(2.0)',.u0,k=17, Then, if ¥ . satisfy equations (2.k7) and

! oi
(k+1)', they also satisfy equations (2.q)}' for all q; moreover

- the vectorfields

Toit = ¥Tos

Xo: = Xo

Xgo = (X T4 ]
Tyqt = [¥q55 70y

satisfy equations (2.1),...,(2.9).

Proof: Let us first determine Xi‘ Since we are dealing

with a k-th order system, it is sufficlent to operate with

1

X. on the first k-l X ~derivatives of the x?'s,
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r ry _ ry Ty
3.1.0 Xi(xj) = [XO,YOi](xj) = XOYOi(xj) YoiXo(xj) - sij
by equations (2.0)' and (R.1)'.

3.1.1 xixo(xg) = 0 by equations (2.1)" and (2.2)".

3.1.%k-1 Xixﬁ‘l(xg) = 0 by equations (2.k-1)!' and k'.

Moreover

3.1.k XiX§(x§) = 0 by equations (2.k)' and (k+1)'.

In particular, equation (2.7) is satisfied.

)

1

¢ T ry ry o ~ _
3.2.0 [XO,Xi]xj = XOXi(xj} XiXO($j) = xo(aij) 0 =0
' . Ty r ry
3.2.1 [XO,XinO(xj) = XOXiKO(Xj) - XiXOXO(xj) = 0

' kel, 1T _ k1,1 kT
302,km1 .[XO,Xi]XD (xj) =X X.X (xj) - KiXO(xj)

i

o i o 0.

Thus, [XO,Xi] = 0 and equation (2.1) is satisfied.
The right hand side og e.2., q' (g » 1) can be obtained
from the right hand side of equation (q-1)' by applying X
to it. Moreover,; applying XO to the left hand s%de of
equation (g-1)' gives Xoyoixg”l(xg) = Yoixoxg‘l(xg) + Xixg“l(xg)
= Yoin(xg), which is the left hand side of equation g'.
Thus {q~1)' true implies equation q' true, hence they are
all satisgied.

We can now compute [Xi,YOj].

T T ry _ T
3!3!0 [Xi,YOj]X{ﬂ = XiYOj(X‘{l) - Yojxi(x&) = 5inO(XL)

from equation (2,0)7.




303-1 ‘[Xi,Y ]X (XL) = b, J o O(XL)

from equation (2.1)°'.

see

— ko
3.3.k~1 [Xi,roj]x§ by = 5, x x57L(D)

13 0" o
from equation (2.k-1)"',
Slnce[the vectorfields [Xi,Yoj] and éinO give the same
values on the coordinate functionsf we may conglude that they
3 ! t : }
are the same, Thus equation (2.6) is satisfied.

Next note that since Y. .: = [Yoi’Yoj]’

ij°
DXy 57 = Hor[¥03 750 = —¥gs,[¥o50%, 0] = [To5 (X073 1]
= BlJXO + 6, JXO = 0 and so equation (2.2) is satisfied.
Flnally we have the computation of the componcnts of Y 550
3.4.0 Yij(xé) [Y 1’Y ]X& = Y01 OJ(XL) 03 OL(XL)
— r r
= “6iLXj + 6j&xi

from equation (2.0)',(2.1)%,(2.3),(2,6),(2.7)
((2.3) defines Xi).
r r r
31#:1 Yijxo(xa) = _6iLXO(Xj) + GjL(xi
from equation (2.1)', (2.2)%, (2.3),(2.6),(2.7).

k-1 < T
Bolekel ¥y KT ep) = =05 X (5) 65X ()

from equation {2.(k-1))', (2.k)', (2.3), (2.6), (2.7).

Note that 3.4.0 yields equation {(2,8). We also have
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3 r r r

3.5+0 EYij’Yomjxé = Yinom(XL) - Yomiij(xL)
r
i

r r ' r
Yij(meO(x&)) —AYPm(ﬁjo - Giéxj)

1

r r ‘r r
6j x.X (x,) - by XX (x&)

mi%o m” 3o
r r
- 6ijoi(X-b) a BimYoj(XL)

from equations (2,0)', (2.2), (2.8).

, . ry r r
3.5.1 [Yij’Yom]Xo(X%) - Yij(XOYom'-‘Xm)(X{;) - (XoYom_Xm)Yij(XL)
{from equation (2.3).)

— g LI ; r r
- XoYinom(}&«L) - Yinm(xL) B XoYoinj(X’L)

r
(from equation (2.2).)}

_ r vy L r_ r
= XOYij(XmXo(Xé)) XOYOm(sj&Xi 5iLXj)

0580 = Oambin

I r Iy~ r
5jm(XoX0(Xi)Xo(Xé) + 2XFE X () - 85,)

r r i r
- 6im(XOX0(xj)XO(X£) + 2X0(xj)xoxo(x&) - st

[

I r
ajm:o%XO(XL) ~ S Yo olXy)

from equation (2.1)'.

From the components of X and Yij’ and equatiorm (2.1),
(2.2) we calculate that [Yij,Xm] = Biji - éimij. We can
then find

[XO’ [Yij’Yom]] = _[Yij’[Yom’XOJJ - [Yom’[XO’Yij]]

== biji - 6iij'

Hence by induction on q > l?
!




11!-9

- -1
3.5.9 .[Yij,Yomjxoq(xZ) = XO[Yij,Yom]Xq (%)

q-l, 1
- (5jmxi aimxj)xo (xé)

by induction
- q-Lle Ty q-l, r
- Xo(aijoiXo (XL) 6imYono (XL)

. _ q-1l,_r
(siji 5im.Xj)Xo (XL)

(q > 1)
- a¢ ..y - STy
- Bjmioixi(xi) 6imYonO(XL)“
Thus we find [Yij9Yom] = 6ij0i - 6imYoj completing the

proof.

With the aid of this proposition, we may begin to study
kﬁph order R.D.L.'s. Clearly, once we specify that we are
coﬁsidering a k-th order R.D.IL. the only choice we have left
is to specify the k-th order part of the vectorfield XO,
since then everything else is determipeda The natura} way
to qucify the k-th order ?art is to 8pecifyjhe funetions
Xi(x§)° Then eguations (Zap)' and (2.(p+1l))* define a coupled
system of non~linear p.d.e. on the functions Xg(xg) which must

be satisfied for Xo to generate an R.D.lL.
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§4,. EHEuclidean Invariance

We have been led to consider a system of doordinates
xg, a?l,ajz,...,agk -1 for R3n X P, The problem of finding a
generator for a k-th order (k > 1) R.D.L. has been reduced to
finging 3n functions, f?, of the coordinatés so that the

vectoriields

)-i'vl XO = 2 ar.‘lax:g + Z aIJ'ZBaIgl + 2 8r338.2 '{‘cne'l'
Ty J J red ryJ J
& &8 "i"' 2 f._}a rk 1
ryJ
L2 T, = = x§a§13x§ + = (aflos, ax larz)aa.rl
’ ryJ Ty ] +J
+ 2 (a r? R TP rlera?B)aarz +eoe
r, 3 3 J J
+ = (aI'k 1 rl—i...-l—x fr)aa rk-1
Ty J J /
satisfy
r r_rl rk-1_r2 rl
h.3.k (YoimxiXO)fj s i35+ ka; 83" Feeet kay 3
r.r2

r ry r
he3.k+1 (YoiwxiXO)XO(fj) = Xo(fi)a L (k+1)f. @ 83" e
rl b
eee + (erfay X (£3).

(In these formulae, and throughout, we will use axg, etc.,

instead of "éF’ for the coordina?e>vectorfield tangent to
3%, , )
the Xhe) J
J | - _
We have already shown that if equation h.k and h.k+% are
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satisfled, then in particular, we have

kohol Xi T = IXO’YOi]
_ satisfying
|
r rls _ _ rk-14y _ i
1}01}--2 ) Xi(xj) = 6ij, Xi(aj ) = ase = Xi(aj . ) =0 \
as well as . ' 3
hoho3 [Xiyxoj = 0,

We also have

41501 Yij : — [Yoi,Yoj]
satisfying

ry T r
ho5.2 Yij(x&) = 6jLXi - biéxj

rl rl ri

as well as
h.SoB EYijyXO] = On

Xi and Yij are generators of the euc}idean group, the
subgroup of il taking the hyperplane t = 0 to itself. The
generators have the same form in terms of the adapted coor-
dinates, independent of which k-th order R.D.L. we are

considering. In this sense, the [Xi,Xoj = [Yij,Xo] = (0 are
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quite natural assumptions for the dynamics, even though con-
sequences of 4.3.k and Lk.3.k+l. Moreover, these are linear
partial differential equations for the fg's and consequently
easier to handle. |

We will next show that L4.3.k and A4,3.k+1 can be replaced

by 4.3.k and [Xi,XO] = 0,

Proposition, Suppose we have functions f? of the coordinates

xg,agl,,,.,agk"l go that the vectorfields X  defined by hel
and Y _, defined by h.2 satisfy equation k.3.k. LI, in addition,
we assume [Xi,XO] = 0, where X, is defined by LeheRy then

Le3.k+1 must be satisfied.

Proof. Comparing with equations 3.1.0,...,1.k-1 we find that
as long as 4.3.k is satisfied, we have [XO,Yoi] = X, as we
have defined it in L4.L4.2. Assuming [Xi,XO] = 0, then 4.3.k+1
can be obtained from 4.3.k by applying Xo to both sides of |
the equation. Hence, 4.3.k+1l is satisfied. This completes

the proof.

This however, does not exhaust all the symmetries of our
system of equations. Equationslh.3.k are euclidean covariant
in a sense we will now explain.

Consider the operator D

« oy rk-1 _ , D r r r_rl rl.r
rj‘{’f{laa&‘ - -A- i?j[(Yoi—XiXO)fj - fia‘-j 60 kai dj]

) T
. _ rk-1 ®

Bai aqk_l

J
—directions® to tensor-

3

from vectorfields "tangent to the alk—t
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rk"l—directions",

fields "tangent to the a
Notice that [Xi,A] =0« [X,,X ] =0 and also

[Y;454] = 0 = [¥;,X,] = 0 and finally D{A) = O o the f?'s

satisfy h.3.k. We already know that if D(A) = O then

[X,,X,1 =0 = [Yij’xo]’ however the converse is false. The

euclidean covariance of the operator D is expressed in the

following

Proposition. If A,D,Xi,Yij as above (k > 1), then

iy A=0 & D(A) = O
i S TA

and

£, A =0 - D(A) = O,
. ;.

Here, £, means Lie derivative with respect to X,, etc. (for
a vector}ieldy A, SXiA = [Xi,A])a

Since we are searching for solutions of {A) = O and we
know such A must be euclidean invariant, we may as well regstrict
~ourselves to such A from the beginning. Tnis proposition
allows ug to "factor out" the euclidean invariance of these
equations. If U CIRBn X P is a subset which has the property
that ?he union of all orbits of the euclidean group which pass
through U is all of RPN x P itself, then any euclidean invar-
iant vector or tensorfield on RBn X P is completely determined
by its restriction to U. In particular, if it is zero on U,‘

then it is zero everywhere. Thus, if &y A =0 = Iy A then
1 J
s

feds s

D(A) =0 =« D(A)[U = 0, If U is an open set, there not

much advantage in this, However, if U is of lower dimension
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this allows us to reduce the number of variables in our
equations, The procedur? is to start with a vectorfield
defined over U, extend it to a euclidean invariant vector-
field on R°® x P (if possible), apply D to the vectorfield |

and restrict the result to D. In practice, what we will do

i§ use euclidean invariance to solve for the derivatives
! I
"normal®™ to U in terms of derivatives along U and values of

the vectorfields themselves.

Proof of Proposition. Comparing with equations 3:3¢0je0.,3.k~1

ino independent of whether equations

he3.k are satisfied or not, as long as [Xi,XO] = 0 (hence

we find that [Xi,Yoj] = &

[Xi,A] = O)n Thus we find

.r T T e
;X_D(A) = 3 {[Xi,YOj~ijO]5£ + [YojmijGJXi(f&)
L hFLTES
T r.Lr rk~1 rk-—1
- Xi(fgpé) e e e (k”l)Xi(pjfa)}aaj ® Ba£

iy ke r L1
+ 2 {[Yoj“XonjfL - fgpéi“a.c— (k"l)pjfa}

+ aagk“l ® [X,,3a% 1.

But, since [Xi,XO] = 0 by assumption, we have

[Xi,aaf}?q] = 0 for q = 2yeaesk-l
and also

g _ r _ 1 ___
Xy (51 = %, (p5) = x,(F) = 0.
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We therefore find

rk-1
J

ark“l

£X_D(A) = = [&. .X ]féaa ® 3 0.
1

3,7, 4 ijTo” 13 o)
This gives the translation part of the proposition.
Similarly, direct computation show? (compafe with 3.5)
that if [Y;,A] = O (Y, defined by L.5.2) then
[Yij’YoL] = BjLYoi"éiLYoj independent of whether 4.3.k is
satisfied or not. It is also easily verified that if

- r
[Yij,A] = 0, then Yij(fz) &fu“éiéf?’ ?nd conversely.

B .
J J

Thus we find that if Iy (A) = 0 then
ij

£YijD(A) - SYij L?%yr{[YO& ]f ”fLP . ~(k~1) rf }aark ~lg
= L,i,ri JL([Y01 XlXO] f§p£~° ~( k- l)Plf )
6iL(EYoj LR Dipr kk---}.)pJ Y
+b 4 RSP Xy X I~ D) e« e (k-1)D £f )

I LT
b 1]‘[1([YO{: X'{‘X ]f f.{‘p‘] '—(k‘_l)p,&fj)}

rk-1 ri—1
% BaL @ aam
+ = {[¥ X 1 -1 p ,uﬂ(kﬁl)p?fr}
Lym,r od” & *i T/l Tm
rk k-1 k~1
x {(b Laa. -1 51Laarc Y} ® aar
rk--1 rk~1 rk~l
+ day ® (éjmaai ~5¢ma 1
= (O,

This completes the proof.

rk--i
@da
1




CHAPTER II

§1. We will begin this chapter by considering the simplest
case of these equations we have der;ved for geQ%rators of

kth order R.D.L.'s, This is the one particle case. Since
there is only one particle involved, we may drop tpe super—
seript "r™.in -all the equations, With the notation of Ik,

the relevant equations become, when k > 1

- k-1_2
1.1 (Yoimxifo)fj = fipj + kay ay Heout kpy Ly

1.2 Xi(fj) = 0

103 (Y Xixo)fj = fifj""a- 4

oi™ iJj
Lb (Yo X)X (£5) = L(£5)T5 + 26X (1))

The most important thing about the one particle equations |
is that the operator (Yoi—xiXo) is completely independent of
the.fj‘s and these (except l.4) equations are therefore linear
first order partial differential equations.
Since we have Ybi(xj) = xixo(xj), we find that in the
first order case (k = 1) the operator (Yo;=x;X ), which is
determined here by its action on the coordinate functions

X3 must be identically zero. We may then state

Proposition. There are no one particle, first order R.D.L.'s.

Proof. If there were, then 1.3 would be satisfied., However,

21,
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(Y i—xiXO) = 0 here so that 1.3 reads

4]

0= fifj—ﬁ...

Taking i = j we have (fi)2 = 1 but taking i ¥ j we have
fifj = 0. Squaring this equation, we have (fi)z(fj)2 = 0= 11 =1
a contradiction.

The next‘case to be considered is that of a one particle
second order R.D.L.; the classical case, Computing the

operator Yoi"xiXo from definition we find that it may be

written

Di = YOi"‘xiX.o = ?(pipj—ﬁij)aqu

In particular, Di(xj) = 0, Di(pj) = pipjmé and [Di’Dj]XL = 0

ij
and also

[Di’Dj]pL = Di(pjpﬁmﬁjé) - Dj(pipiﬂéié)

H

P&(Pipjmﬁij) + pj(pipéméiL)

- PL(pjpi"Gji) - pi(pijﬂ6j£)

n

psD;(py) - pyDy(py)e

Thus [Di,Dj] = p:D;~p;D

J J°

Proposition. There is one and only one one particle, second

order R.D.L.

Proof, Equation 1.1 may be written
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105 ij"fp +2pf-o

i b

Using 1.5 and the values of Di(pj) computed above, we find

1.6 [Di,Dj]fL = _éiéfj -+ Bjéfi.

On the other hand, we have found that the operator [Di’Dj]
may be expressed as a linear combination of D.l and Dj’

[Di’Dj] ; iji«piDj, Consequently, we must also have
'1.7 [Di’Dj]f& = (ijiﬂpiDj)fé
= pj(pbfi+2pifé) - pi(poj+2pjf£)
= PPty — PiP.T5e

Combining equations 1.6 and 1.7 we obtain
1.8 (pjpé—ﬁj&)fi - (pip&uéiL)fj = Q.

We can write the i = 4 component of this system as the matrix

equation
1-(p,)?, pyp, 40 AR - o‘\
0 ) 1“(?3)2’P2p3 o f2 : 0
P1Py s Y 91“(Pl)2 f3 O

In order to have a non-zero solution to this system, we must

have det( ) = 0 which is the same as

L9 (1“(pl)2“(92)2"(P3)2) -+ (Plpg)z + (P1P3)2 + (P2P3)2 =



Rl
Since we want speed'less than 1, the left hand side is greater
than zero., Thus £, = £, = f3 = 0. Moreover f; = £y = f3 =0
is clearly a solution, corresponding to straight line motion
of our partidle. This completes the proof.

There are many one particle third, or higher, order
solutions. Wg will now construct a quite general class of
third order solutions., The higher order constructién is
analogous but involves more variabl?31 |

The third order equations may be written

= fipj + Baiaj + Bpifj = Difj'

The vectorfields Di generate an action of the Lorentz group
on the phase space. The domain of our functions fj must be
invariant under this action as well as that induced by the

time translation generator XO = 2 p.dxX., + ajapj + fjaaj and

g3 4
the euclidean group.

Proposition. Let TI,';,TE be smooth functions defined on

the clgsed ball of radius X > Q in RB such that

¥i5(T) = 84,F; -8

14
generators of the action of the rotation group on RB.

. T,, where Y, .'s are the standard

& J 1J

Finally, assume that the f's vanish on the boundary of the
ball. Then there exists a domain U in the third order, one

particle phase space which is invariant under the action of

the euclidean group and the action of the Lorentz group
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generated by the Di‘s and functions fl’fz’fB on U so that the
f's are translation invariant and satisfy 1.10. Moredver,

U is invariant under XO,

U ﬁ {p; = p, = Py = X = X = X3 = 0}l =UNY

= {af + af + a§ <K} nV

Proof. First note that the set T = {p2:p3=xl=x2=x3=0,
-1 < p <0} is of the type mention?d in the proposition on
euclidean invariance., Namely, the union of the orbits of
the euclidean group passing through V is the whole phase
space. Thus, if we can find f's which satisfy the "pullback"
of 5.10 on V and which can be extended by euclidean invariance,
then the extended functions will satisfy 1,10 everywhere.

In this case, however, D; is tangent to ¥. Moreover,
since [Yij’DL] = 6j&Di - 61LDj and [Xi,Dj] = 0 the pullback
system is the equation '

1.11 D;f5 = £1p; + 3ajay + 3pf;

itself., In order for U to satisfy the invariapce require—
ments, U N ¥V must, at least, contain all the orbits of Dy
through U N V, and we will find that this will be enough to

generate U.

Let us first find the orbits of Dl in V. If we let
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pl(t) = —tanh(t) (t > O) then, taking everything on ¥ unless

otherwise stated, we have

1.12 1) py(t) = —tanh(t)  pylt) = py(0) = 0 py(t) = p3(0) = 0
1) ay(t) = a (0)cosh™ (%)
' az(t) = a2(0)coshﬂ2(t)
§3(t) 2 aB(O)coshmz(t)

as a complete orbit set of Dy with initial conditions
pl(O) = 0 = py{0) = p3(0), others as stated.
We now take U N ¥ to be the union of all the orbits of

Dy through U N V, namely the subset of V given by
~3/2 s -
1.13 ([1-pypy T 22;)? + ([1-pypy 1700y
+ ([1-pypyI702y)? <K
PiP14 %3 ‘

We can now solve equation 1.11 in parametrized form in

a quite straightforward manner.

1.14 £y = cosh““(t)EB(al(o))ztanh(t)+fl(al(o),az(o),aB(o))]
£, = cosh™>(t)[3a,(0)a,(0)banh(t)
+ fz(al(o)saz(o);ag,(o))]
fq = cosh™(t)[3a,(0)ay(0)tann(t)

-+ TB(al(O) yaz(o)yaB(O))]v

In particular the fj 2 ?j on U NV and fj - 0 along every orbit

of Dl’
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If we set G(x,p,a) to be the euclidean invariant exten-
sion of the function given by the left hand side of 1.13, the
U defined by G < K and, of course, p§+pg+p§ < 1, clearly
satisfies all the invariance requ}rements, and the euclidean
invariant extension of ijaaj is then defiped on Us (The

possibili?y of such an extension igs assured by the symmetry
N {

requirements of our initial functions fj),

A1l we have left to check %s that the resulting vector-
fi%ld defines a global fle on our domain, i.e.; U ig invariant
under XO° There are three things to check under this heading.
First, that the spacial coordinates of an integral curve of
X, don't run off to infinity in finite time, which is clear
since (Xo(xl))2 + (Xo(xz))2 + (XO(XB))2 < 1, Second,; we
must check that X is tangen£ to the boundary of U defined by
G = K. Since_f{‘j were taken to be defined and smooth on
al(O)2 +- 32(0)2 + a3(0)2 = K, l.14 actually defines smooth
solutions up to and including G = K. We must only check
that XO(G)IGzK = O to be assured of this tangency. Since
both X and G are euclidean invariant, it suffices to check
this on U N V. There, taking into account the euclidean

invariance of G, the pullback equation reads
8y aq
1315 [alapl + ’i;'j':‘( azaal"'alaaz) + "p"‘:""'( 8.368.1"“8.168.3)
-3 .2
+ fiday + foda, + f36a3][[l~plpl] ay

-2 -2
+ [1-p;py 1785 + [1-pypy]7"a5] = 0
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when

- —2
[1-pypy] 3a21 + [1-pypq ] (a§+a§) = K and py # O.

When Py = 0, we have —-D, = 3py, etc., and the equation may be
written

1.16 . [-alDlwaZDZ—aBD3+?laal+f28a2+f3§a3]G = 0
when G = K and 0 = py (= p, = PB)'
Taking 1.16 first, G was constructed so that D;G-= 0

always, on the other hand fl,fz;fs were required to vanish

on G = K, thus 1.16 is satisfied.

Converting 1.1L to unparametrized form we have

1.17 f

i

- . ~3/2
1 "313‘1332_(1“131?1) * + (1"Plpl)2f1([l“131p1] 3/ 3-1!
s[1-pypy I™ray, [1-pypy 17as)
- 2 4=3/2
f2 = -'31)13132( l""?lpl) L + (l"“PlPl)B/ Fg([l“‘Plpl_l 3/ 81y
s[l~p1p1]"lags[l—plpl]"laB)
. - ) -3/2
f3 = ~3P13133(1—Plpl) _l + (l—Plpl)3/2f3([l’“p1P1] 3/ alr
’[1”P1P1]“132?[1“P1Pl]~la3)e

Plugging these into 1.15, we find that everything but the
contributions of the fj's cancel identically and then the
Tj's themselves vanish on G = K by assumption.

Finally, we must check that the integral curves of XO
do not reach p§+p%+p§ = 1 in finite time. On the other hand

(X(p1))® + (X (p))2 + (X (p3))? < (1-pypy~Popp—psp3) 7K.
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Thus the speed goes up like tanh(t), in particular, never
reaches 1 in finite time. This completes the proof.

We might note. at this point that the Dirac solutions
off the one body electrodynamics problem (4 ) are of this
type. This is the best evidence that the ™true" n-body
electrodynamiqs is at least third or@er, This procedure
may be mimiched for any higher order dynamics we wish, giving

us a large, essentially exhaustive class of solutions for

the single particle dynamics.

§2. Let us now consider two and three particle, first order
dynamics., For first order dynamics, we may begin by consider-

ing equation 4.3.3which reads

r Sl o o
s ~ roor - S S, .8 .
In this case X = szjf.axj and Yoi = Szjxif.axj reflecting
? 7

the fact that we are dealing with a first order dynamics.

We thus have

r S Tyl T, _
2.2 (Y .-x.X,) = Z.(Xi"xi)fjax' : = Di.

ol i i
Sy J J

Proposition. There are no two particle, first order dynamics.

Proof. First note that on the gubmanifold given by
x% = x% = xg = x§ = 0, the operators DE and Dg vanish and are
thus tangent to this submanifold. If we had‘fg’s which

defined a first order R.D.L. they would have to satisfy

Y
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=~ pLpl _ plal
2.3 0 = fzfj“éz' and 0 = f fj &

J 3 337

On this submanifold., Taking j = 2 and j = 3 in these equation
we find fgfg = 1 = f§f§ but fgfg = 0, an impossible situation.
Moreover, this submanifold generates the entire space under
the acﬁion of the euclidean group so that not even local

solutions can exist,

Proposition, There are no (subluminal) three particle, first

order R.D.L.

Proof. We again consider equations 2.2. This time we restrict
to the submanifold x% = x§ = Xg = 0, Again, Dg vanishes there

and the f? must satisfy

2oy 0

|t

r.r
f3fj~63j.

1 and fg = fi = 0. However, since we want

i

" Hence (flg)2
speeds less than 1, this rules this out as a possible solution,
completing the proof.

It is interesting to note that if we are willing to
include spéed = 1 solutions, then this actually gives us
one., Namely, if we exclude from R° X R® x R the various :
diagonals, then we can give the prescription that three
particles travel at the speed of light in the direction
_(euclidean) normal to the plane they span with the sense‘.
given by the right hand rule applied to their ordering.

This defines a three particle, first order R.D.L.




310"

§3.+ The second order equations.

The second order case is the most important, physically,
for in most physical systems, second order is assumed, and
H?miltonian (hence quantum) mechanics is intrinsically second
order, |

We w%ll first construct a class of solutions whi p, in

{
g t

a sense, skirts the non-linearity of the equations., With our

previous notation, the relevant equa?ions are

. S T\ _Sy_8, 8. 8 S 8 Smal
3.1 [SE&(Xi_xi)(pLaXL+féapé) + (pip&uéiL)apL]fj
s
_ e r.r
= fipj + 2pifj.
ry oA CRPR
3.2 % (£]) = 0 = [g 25167

For the purpose of our construction, we will define the

linearized operators F{.

-S 'y S 2 5. 8 S
3'3 F‘i“ = SZL(XiNXi)p’{taXL “}" (pip’{”“éi'{’)ap{‘o
y

Proposition. Suppose we have 3n smooth funetions %g satis-~
fying the linear equations Fi(%?) = %gpg + 2p§f§ and

Xi(%g) = 0. Suppose, moreover, that we have n smooth functions
g’ satisfying g5g® = 0 for r # 8 anduFi(gr) = 0 and

Xi(gr) = 0. Then the functions f§ : = gr%g will satisfy

equations 3.1 and 3,2,

Preof. With our assumptions 3.2 reads
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3.4 X;£5 = xi(gr§g) = Xi(gs)?§ + g% (¥]) = o.

Thus 3.2 is satisfied,.

On the other hand 3.1 reads
1

’ s . r S..8 5.8 s 8 ST
3.5 [SfL(Xi”xi)(PLBXL*féap&) + (Pip&‘éiL)apL]fj

 r S _PyoS. Saar rr
= Fg(fj) + [Sfé(xi?xi)fLap&]fj = Fi(g fj)

+ [ 2 =) Fepy 1(67EY)

syl .
= F§(gr)%§ + gng(%§) + [SZL(xz~xg)gs%£apf](gr%§)
s
= g"(¥pl42pld) + [z, GE - Eon 16 T)
= 505+ 2000] o [ 2 Gfd)e"Tan ™).
b4

Thus, as long as the last term is zero, 3.1 will be satisfied.
However, since we have assumed gsgr =0 for s f r

s r s”é 8 LT
3.6 -[S?L(xi~ )8 fyop e EY)

3 S Ty I' SWS._ S-Mr
= [S?L(xi- i)g g %Lap%]%j

-+ %g[ 2&(x§~x§)gs§iapi]gr.
S, -

Now at any point we have one of the following situations

i) g° = 0 all s, in which case the last term of 3.6
also vanishes, A

i1y g # 0, in which case g% = 0 for s.# r and again

+

the last term is zero.
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e
fte
[N

S

gstf O some s # r, in w?ich case g° # 0 ina
nei%hborhood of the point in question. This would
?hen imply that gr = 0 in that samelneighbprhood,
thus all derivativ?s of gr would vanish at the
point in question and again the last term vanishes.
This concludes the proof,

Let ustconsider a procedure for constructing solutions
of this type. We will take n = 3 for specificity, although
this type of construction works for any numberdparticles but
it will differ in details.

To find the %ges, we first note that, like the non~linear

equations, the linearized equations

r r.r roir

. A S 2p. I
27 RiEF 3Py T Py

have the Euclidean covariance property qutlined in Propozition

of Section Iﬁh.Moreover, if %g satisfy 3.7 and Xi(%g) = 0 then

they must also be Fuclidean covariant, i.e.

r o r o r
3.8 Yij ;= 635%1 Gié%j°

These can be derived from the corresponding statements for
the nonlinear equation by setting gr = 1 and gs = 0 for
s # r and applying the above proposition.

Consider the submanifold given by

1 1 1 2 2 _ .3
xl = X7 = x3 = X5 = xj = xg = O,
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Gertginly, the union of the orb%ts of the Euclidean group
through this submanifold is all of the three particle, second
order space. We will then pull back 3.7 tp-this submanifold,
solve there and extend py Euelidean covariance.

Tﬁe only derivatives in the fg's which are not tangential
to this submanifold are, of course, axi,ax%,axl,axg,axz,axg.
On this suﬂmanifold, we can solve for these in terms of the
Yij’Xi and tangent%al derivatives,

On the "transverse strata" given by x% > 0, xf > 0 (we
will consider the lower strata separate%y since there are

subgroups of the Euclidean group leaving them invariant).

We can write

1"% N Sy S 8. Syup
301051 BXij - —?(323"5 p25p3 p ap2)"‘}"‘j

r 1w 3.3 Sy 8 8. Sy¥r
j= “ﬁ(YlB X793 § P10P3 pBBpl)%j

Ny 1 e ne S8 8. Banr
X2

_.1(
”? 3 1 1 J’
X

mE(ppr3ﬂp35p1)¥r)

1y 2 3ymr 2 . 3\ur
BXB 3 (X3max3~ax3)fj = ~(ax3+ax3?fj




3.10.4

3.10.5

361056

35.
r 3 3 T
3x2¥ "?(le *2%2 2 S popy )1}

_ A kPR S L
;E( 23 l 1 xlax2f3+x2 lfJ

- X(pyapz-p32p])TY)
S

| 2 2

ax%¥§ = (Xz_axz-ax%)%g - m(ax2+ax%)¥§
Tgr 2. 3ur 2 3

Bxlf = (Xl—axlnaxl)fj = —(Bxl+axl)fj

Restricted to the manifold, equation 3.7 becomes

3.11.1

3,11.2

2.11.3

3312'1

3

2 2 5
[(Xl % p&BXL+x32 p&Bx + E (plpL" lL)ap&j

A 1.1
= flpj + 2p2£j.

35,3 w1

[xz f Ppoxy + SZ (P2P&”52L)5943

1
= Top j + 2p3 %

- 8.8 sl 1.1 l
[Sfb(P3p4“53¢)aPL]fj i P -+ @p 3

35,3 M2

2
[—xl % p£ax + (x uxl) Z pLBXL + Z (plpé—blé)apéj

2 2 2. 2
= %lp. + 2pl 3



3.12.2

3,12.3

3.13.1

3:13.2

3.13.3

364

5_8 S%2
[x% f piaxi + Szb(pZPL~62&)ap£]fj
’

= ¥2p° + 2p¥-.
sz + <po j

s_s g-M2 M2 2 2
ESEL(pBPLﬁ§34)apLJ%j = f3pj + 2p§%j’

[ 2 proxy + (xo-x) 2 podxs + S?&(pipi—ﬁl&)api]%g
= p??i -+ ZP%%gs
(5 3 P70 =% § ol + 3 (p30-0,,)005 1
;
= ¥p3 + 290k,
[ = (p5p3-05,)2050% = %307 + 20377,

Sed

Note that equation 3.11.3, 3.12.3, 3.13.3 all involve

the samé operator L3 : =

ZL(pgpiméa&)Bpia Also note that
Sy

this operator is tangent to the submanifold we are considering.

We will show that L3 is an additional g"’symmetry" of the

system. In particular, if %g satisfy L3f~j ?~¢Bpj + R

r e T I’f_}’pl"
3+ 5

(equation 3.11.3, 3.12.3, 3.13.3) then the functions given

by the tangential versions of the other equations transform

t

under L3 in such a way that if they vanish at a point, then

they vanish along the entire orbit of L3 through the point.



37.

This will allow us to factor out one more dimension.
To make the calculation easier, let us adopt the

notation

. - Sy .8 S, 8
3.14,1 %13 : = g Po9P3 = P33P,

‘

. 8.8 S, .8
3.1, 2 %13 = g p1393 — pBBpl

3e1h.3 %12 : = xiax% - x%axi + 2 piapg - pgapi,
S \

Each of these is tangent Lo the submanifold. With this
notation, equation 3,11, 3.12, 3.13 may be written on the

transverse strata as

3
2 X
3-15-1 {Xi[pgapg “}Q(le‘ﬁ-lg) + P3 “1;2( YlB — “%"(YQB-'YéB) - %-LB)]
‘ | * ) *2

3r.35.3 3.3 31
= leplaxl<f PpOX, + Py ;z(YEBJ%23)]

| syl ol 1 1l
+ Eé(pipi—blL)apL}fj - flpj - 2pl§j = 0
Sy .

3.15.2 {Xg[piaxi + pgax% + pg i@(Y23J¥23)]
2

li
<
N

, 5.8 gyl ]l A
+ S?L(pZPL—62&)BpL}%j - fzpj - 2P2?j
3.26.1  {-xj[-pl(dx543x3) - ppl-S{Ty ¥ L) + 3x3)
x
1
1, 1 xi : 1

”“PB(;?(Y:LB - ?(Yzy"%?a) - Yl3) -+ F(YQBM%23))]

] 1 2 2
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+ (x —xl)[pBBxl + p28x3 + p (Y234§ 3)]

8 8 8y VR MR 2 2 _
+ ZL(plPL—'blL)ap»ﬁ}f j - flpJ — 2p32_'fj = 0,

S,

3,16.2 -{xz[p36x3 + p%ax% + pg 3§(Y234§23)]
x5

% 242

-+ Z&(psz—ﬁzL)api} 2p2f = 0,

Sy

3.17.1 { 1[~«p1(8x Faxl) - pz(—mz{lelez) + 3}{2)
1.

1, 1 1 .Y 1. nt

3
2 3 2 2 1 2 1 1
+ (xj=] Y[ pTosy+p) "“2”12“%12)”@3 ;'Z(Y:LB -3
X 1 2
(Tp3-To3)-13)]
3 w33 3N3
+ 2 (Plpé”ﬁlL)aPL}f - lpj J = 0.

Sy

1
3
- PB(“?(YB ;”23“%23)413) ¥ “F(st“‘%zs))
2, 2 1 <
+ plaxl + pz E(le"‘%lz) + P ;'Q(Yl ;B"(YEB-:%ZB)-—L-E-.
*y X 2

s Sym3 23 3 33
+ E{‘(pzp'&—éz{')ap{’}fj - f2pj - 2p2{.}tgj =

)
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It is straightforward to check that if we define functions

Gy, G}, G5, G3, G, GJ by the left hand sides of 3.15.1,

3.15.2, 3i16.1, 3.16.2, 3.17.1, 3.17.2, where we have used

wr wr X
Y"fL = éiji - fJ’ and if the fJ sat%sfy

1%
¥r' %BP + 2p fg, then

i

3,181 Tg(a3) p§G2

2y = p3a2
3.18.2  L,(G3) = p3Ga.

In particular, since L. (p3) # 0 everywhere, we see that

if G5 = 0 at some point (i.e., 3.15.2 is satisfied, then G = O

along the whole orbit of L3 through that point, and similarly

for G2 .,
- 1.5 ]
We also find that if we let ﬁi = G *a m?~ , and
*2
2
ﬁz = Gz — xgmxl 2 then we have, with the above ass umptions
1 1 -xg Ga | ’

30 1901. LBﬁl = p3
2 _In2
3.19.2 Bﬁ = pBﬁ .

In particular, if ﬁ% = 0 at some point, then i? is zero

along the whole orbit of L, through that point (L3p§‘# 0,

1 , .. n2
L3P3 # 0 eve;ywhere). Similarly for Gl'
| 3 x2ex
Finally, if we define ¥ = i -3 L 3 ana ¥ = ¢d + 2

2 X

[ E"

I

7\.)\.0

iwe find




Ll—On

3 3
3.20.1  Ly(%) pgﬁz

13
o8,

il

3
3.20.2 LB(ﬁz)

We, therefore, have

Proposition., If L3¥§ = gpg 4 2p§%§ and equation 3.15.1,
3.15.2, 3.16.1, 3.16.2, 3.17.1, 3.17.2 are satisfied at a
point,; then they are satisfied on the whole orbit of L3

through that point.

oince they have nicer covariance properties under L3,
we will use, instead of equation 3.15, 3.16, 3.17 the equiva~

lent system

3.21.1 ¥ -0
3.21.2 G5 =0
3.22.1 ¥ =0
3.22.2 G2 =0
3.23.1 % =0
3.23.2 ¥ =0

: My oy r o
(assuming, LTy = T3py + ZpBij),

Because of the above proposition, we may pull back these
equations to a subset of one lower dimension. We will consider
in detail only the system 3.21.1 and 3.21.2, the others are

similar., In fact, since the systems are completely decoupled




k1.

we could have chosen different sections for the Euclidean
action on each one so that the resulting equations would
look exactly like 21.1 and 21.2 for the other systems as

well, This nice feature will not appear in the full nonlin-

ear equations.

Writing out 3.21.1 and 3.21.2 in full, we have

e

2 2 2 1,21 .11 1 1.1
3.24,1 {xlpiaxlﬂpEXSBxi p2x36x2+[p2p2+p3p34plplml-—mgpzjapl
X2
2.1 zxi 110
+ [~pyp7 -3 3p3+plp§-""§(p2p2~7)]apg
x
2
3 3

+ [p3 gpémpgp%+pip3 ~%p%p%]ap%

3
22 22 22 a2 2 .
+ [p2p2+p3p3+plp1~l-Xfplp236pl :

2

3 3
22 2% 2 22 %X, 22 2
+ [”PzPl“P3“jP3+PlP2 “j(ngg”l)]apg
*x2
3

+ [pgpgkp3p§4pipi "%pgpilapl

3 -3

2% 1
+ [- pgpi p3~%p§+pip3 x;(p%p%~l)]8p%

x2 2

%3 %3

A
+ [p3~%p% p3p§+pip§ m%p%pglapg}fj

*2 %2
1.1 l.l

3
, 1 1 l 1 l 3

1 2 l M1
2(623 170135 2)+ 385 5870y 5T5)

AW

o

0.




L2,

1,11 a1
3.24.2 {x%piaxi+xgpgax%+p%piap%+[p%pB%pgpz—ljapz

1 11 1 2 2. 2 2 22 2
+ [“P§P2+PZP3]aP3+P2Plapl+[PgP3+P2P2“l]apg

2, 2 2. 2 "
+ [—p§p2+p§p3]8p3+p%p{6pi+[p§p§+pgpgullap%}f§

1l 1o, Il 3 Ml ool
' ¥2Pj 2p2¢j4p3(63jf2.62jf3

Notice that 3,24.1 is tangent to the submanifolds given by

p3 = constant and 3.2h.2 is tangent to the submanifolds
pg = constant. Also note that the orbits of L3 through
elther of these fills up the whole space. We can thus
choose pg = 0 as defining the reduced space.
On pg = 0 we have
3.25 Ly = -2pj + S§3(P§P§"533)5P§‘
J

On pg = 0, 3.24,% simplifies to

11,1 11 1
3.26 {x%piax{+x%p%axg+p2plbpl+(p2p2~l)ap2

11,1 22, 2 2 2 2, .22, 2
-+ P2P33P3+P2Plapl+(P2p1“1)5P2+P2P35P3

Ml ol 1 Il
+ pgpiapi+(pgpéml)ap%}ijmfzpj~2p2fj = 0,

| On the other hand,\writing iB = jZB(pgpi~53%)api on pg = 0,
- 3.24.1 becomes
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2 1 21 11 ’CJB.
3.27 {xlpla"l““?zxzaxi —Pz¥ i Z+[P2P2+P3P3+ PPy 1'“‘??23513%

*2

<3 3
11 1
+ [ PZP% P33 %P%+Plpg *§(p2p2~l)]3p2

%3 3
7 X
+ [P3—jP2"P3P%+P%P% “?ng%]aPB

3
2 22 22 Xl
+ [pzp2+p3p3+p1pl-l - —-;-plpzlapl

*2

22 292 22 3
[“Pzpl‘P3x393+PlP2 "?(Png“l)]apg

3
X

+ [p2p3 Fpgpi -..-%vp%pilapi
.
2
3

3,33 \

+ [—p2p1+plp2 mg-(pngml)] Pg

x2

2"1 ¥l 1 o Il

+ L 3—§PQ‘P§Pi](i3)}%l flp 2P ¥

54P5(8, jH-01 E9)
o

+ p (6331 lﬁl)_pB_Bn(s %2 23 3)+—3-('i‘2p L 2p ?E%)
3

2%1 3 wly
- [p3“j?2—P3Pi](f P +2P fj) = Q.

If we define F to be the differential operator in 3,20

1l

n
we may write 3.26 as ¥ szp Epsz 0. If we let G7 be the

X
unctlon deflned by the left hand side of 3,27 the{l if

1 ) 1, 1y l
fJ fsz ZpiJ 0 we have

; Py
+26 Fﬁl = Pahype
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These equations 3.18.1, 3.18.2 and 3.28 are the complete
analogues of [Di’Dj] = iji”piDj shown in the first section
of this chapter. (See Saztion 4 for general calculation
of 3.28.)

Eéuation 3.28 allows us to factor out one further
dimension. For example, the orbits of F through p% =0 £fill
out the whole space at hand. On pg = 0, F may be written

as
2 1.1
3.29 F = -dpp + X P3p1~b24) 904 +02p7 903+ p3p3-1)3p3

3 33 axind
+ xzpl 1+x2p25x2,

Thus, uszng 3.29 and Ffl-fl % . %%% = 0 we may pull back
3.27 to p2 0 and get the final equablon,
3
3.30 {X§pfaxl+[p3p3rpipi~l -gpzlapl
3 x?
[”P3_§P%FP%P2 ~§(p%p%~l)]ap%
3

3
211 2 |
+ [P3_§P§"P3P%+P%P3 ;%p2p3lap3

2.2 2 2

+ [P3P3+plpl 113}31
3
2 2%1 XB 33..3..33 1

+ [wp3p3;g*j;§]EX2P13X1+K2P23X2+?(Pzpa 5247%P%

+ pgpiapl+(pgpg~i)ap23




L5

3
+ [p{pi—l- %p%pi]api
X2
3.3 il
+ [pips - p%p%—l)lap%
2 %
2”‘{ 3 23 1 i
™ L1
+ Lpspz-pipy ol ¥yd7pg-207 w3, 1, 3)
. 2

x
_pBT(aBJ ZJ%H-_F(f +2p %‘;:)

P
W

3 3
3;3p2mp3 l](f +2p ?J) [~p ;% ;%]

[¥2p ﬁlp?]
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We can solve 3.29 by parametrization of the grbits of the

X
vectorfield involved, e.g. noting that pgpg-% : = Kk must be
[ . . xe
constant along the orbits, p?(T) = J1+k tanh (VI+kK € + n?)

etc. We can propagate functionsdefined on pi = 0 to &

solution of 3.29,

We ma& complete this section by noting that the funciions

. S, 12 12 12
Byp = (MgMy) T (T - PYPY-PLPo-DEPY)

R ) 13 13 13
P13 = (M1M3? T3 - pypy-popa-p3p3)

han = (M1

-1 23 23 23
oz )72 (1 - pip}-pho3 )

plpl"p2p2“p2p3

. s 1
_ i d.v%
where M; = (i 1-pypy)

7

(the Lorentz inner products in our coordinate system)

are invariant under the Xi and Fg of the proposition. Thus,

if v° are functions on R3 with mutually disjoint supports,
s s ' . . .
then g~ : = v (h12’ ny 5, h23) give us functions of the type

required for the proposition.




§4. Local Existence of Solutions,

We will now return to the full npn~1inear equations,

, S Ty 848 o8, 8 5.8 51T
L1 {QZL(Ximxi)(péaxé+f&5pb)+(Pipé"ﬁiL)aPL}fj
?
_ o L, r
= fipj+2pif§.
Ny
ha2 Xifj = 0,

As with the linearized versions, we will factor out more
and more of the symmetries. The difference in this case being
that, after the initial Fuclidean invariance, the symmetries
are generated by quasi-linear rather than 1inear.0perators
and Ehus we can get only local extensions under these “symmetries™.
Because, in the general case, we are not interested in the

exact details of the equation, but rather only that at each

stage they are symmetric hypérbo%ic and{analytic, we wi}l

dea% with them rather more abstractly than in the linearized
case.,

If we Qenote by Dg, the differential operator given by
the left hand side of 4.1, we may write 4.1 as
'D;fg—fgpgungfg = 0.

We will find functions Qi&n and Si& so that the operatars

L3 Di - = qY, v, ~3zs'x

Lo CiAmAm Ty Tidte
¥

are tangent to a submanifold transverse to the orbits of

the Euclidean group.
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This is the "pullback" of D; to this submanifold. We

then write L.1 as

r
Lok (03 Lf Ql& o2 51 S LI ( 2 Qle s B1 SHRIPE
,

rr r.r _
~ 3P - 2pify = O.

Then use Euclidean covariance to write this as

L.5 (pI- = Qf

-5 s x, 3% + = qf, (& .f7-8,.F
i~ L,m 1Lm Am 1 il L) 3 + L’mgl&m( mj 4 %3 m)

) raro_ :
- fgpj - 2pjf5 = O.

Le5 is then tangent towthe‘sgbmanifold,

We.thenrgick out a particular subset of the equations
of h.?, oo i = 3, and think of this set as generating
symmetry of the others, This can‘be done by showing that
(Writing F? = (D? 5 mglam
of the fJ'G together with

P SiLXL)) Fuclidean covariance

I’ i
4.6 Frf + $zm934m(em3 t = S23Tm

r

assumed on the transverss submanifplﬁ implies that

P r Ty @
b7 (F1f3+LG91£m( meL - btjfm)me 2p3 £3)

I‘ I
E'T L,(FL,fJ + £2 Q&,Lm(a £ 6£me) 3 3 2p3f )

on the submanifold. Here Tﬁ&’ are functiops. This will show




4g,

. r r r r I r
that if F3fy + ; Q3Lm(6mjfé_a$jfm) - prj ~ = 0 on the

l"
j
I" rr r.r

‘submanifold and Frf T Z Q mj - LJ b

idm
at a point of the Submanlfold, then these are zero along the
Whol? crbit of F§ (approrpiate r) through this point. Thus
if we can then find a sub-submanifold transverse to the orbits
of all the'F§ and can solve 4.7 starting with data on this
submanifold (as we can with the Euclidegn action) then we
can reduce the prob}em_to cne on this sﬁbrsubmanifold %nd
repeat the procedure with, say, the pullﬂback of Fr@

Let uvs first collect some facts about the operators DJ.
Assuming only the Euclidean covariance of the f?'

r o T r r s
(Xifj = 0, Yijfa = 5jéfi~Giij) we find

r r—= iy r
L.8 [Xi,Dj] = 0, [Yij,DL] = 5j@Di"5i¢Dj-

Assuming nothing about the functions £ direct computation
‘g_ 3! P

yields
roore s s .r s .r
4.9 [Di,Dj]k£ = ﬁjL(xi"Xi) ~- 6ié(xjmxj)
T ‘
Le10 [Dgyngpi = (5j&ps Lp ) + (X ~Xy )[Dr(f&) f “ZfLPS]

s _r Iy .8 =]
—~ (xinxi)[Dj(f%)ufj Py 2P f&]

. r .8 R st
Noting also that D; = D + (Xi xi)s Z&pL dx, +f& ap&

b
we may write
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L.11 [D§,D§] =T, .—x; X A Xl+sZ Kk tr)[D (f ) - fspi 2plf

J J ,{,]

- (X )[Ds(f{') f 2P f&]}ap&.

We may now begin to carry out this program. Given a point z

in the second order, n-particle phase sPace,tby Euclidean
COﬁariance=We'may assume that it lies on the submanifold |
given by xi = x% = x% = xg = x§ = x% = 0. (For notational
convenience we will consider the case n = 2 separately.

Since n = 1 has already been considered, we will take n 3.)
As we go along, we will exclude certain submanifolds from
consideration., The first of these is embodled in thq assump--
tion x%(z) >0, x 2(z) > 0. If these are non-zero, we can make

them positive by an action of the FEuclidean group.

We find that the following operators are tangential.
3 3
12 2 X *1 3
hedRed DypoTyapi(Tys ~—5T55) - —gpgToy
‘ 2 2
3 2

2. 12 12 1 2 1 1 1 1%
RS P Ky N P (T - )3T
2 2

2
- (it
X2

P13 31 B 4 1, x) l 9 '
L.12.3 +p3_x Ly4x7poK, f;;zle-*Xng 3~ "‘"(Yls ’“;3‘.%3)“133;3’3{23 |
1 *2
3

X
- ( X ) 2_'2’Y12“( sz_"“xi ) p32-1§( Y23 - _‘BJ;YQB)
*1 *2
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4 3
] I 1*3 4 1, 411 Xy
Hor2.4 Dy+xy by X +xypoX,, P> oot PRy X PV 5 - v ,)
X1 1 %5
L1 1
" X gP3Yog - (X=X )po—5Y
X X
o 1
b x; I
o 21 1 3 31
‘(Xl"xl)93‘§(Y13"‘§)“bﬁf“i)P3"§Y23
‘ X X X
. 1 o 2
] X3
. 11 11 11
A1z Dl (pl 1tPoX5Py 2Y12+93X3 93“2( 13 ‘§¥23) P35Y0,)
l d X2
X3
2 ny, 21 o1 1
- (Xl“xl)(92“§Y12+P3‘§{Y13 - ¥53))
= X X
1 1 2
3 31
= (Xl )(p3_§Y23)
X5
An in general, our tangential operator will be -
| S
. 11y 4ol 11 1
4.13 Dyt (07X +p3X, - Po 2 15" P%y Pyt ¥13 = 3¥pg) P 3 3 p3)
% 1 o Xo
23
o r 21 1 3 r 31
N (Xi“xi)(pg 2Y12+p3( 13 ";GYEB))"(Xi_xi)(p3~§Y23)
%3 o X5

These are then our operators F{. The equations in terms'of

|

|

\

|

: .

4,14 F§f§~x§(~plﬁk{a rfs £X)pld (s, pTop, ¢ 1 s, . fT }

Fi then read
3
2 2\ P25t i70 5 )Py 05,1 -0, o1y '?463Jf2‘ 2;553))
*) ]

3

ry,21 r o1 Xy
“(Xl“xl)(p2;§(623f1 8555 )+p3 2(533 1701453 - ”3(q12 5553))

1 X]

3 .r 31 -
"(Xi“xi)(pB}_{‘g( 33f2 62J 3)) f 2@ fJ -
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A

Proposition. The system of 4,14 with 1 = 3 is guasi~linear

symmetric and (locally) hyperbolic off a finite collection

of submanifolds of positive codimension.

Proof. Collecting terms in 4.13 we can write

— r l 1 1
4,15 F; = D; +x (pl l+p2X2+p3X3)
D o. ]
"[X' (p2 p2)+X pg] ""'2"Y12
%1
1 2, 29201
-[x (p3-p3 )+xp3] 2713
*1
1 1 2.3 2,1 13
+ ""g_'é"[xi( (p3_p3) l l(p3 pg))
X1%o

3 2.2 2223

+ (xypgxT-x1pax; ) 1V,,

We thus find that

4.16 ng

=
E?
wio
H
»
[l
S
=
+
>
W=
e
,_l
+
b
9%

If the total number of particles (n) is greater than 3, then
none of these vanish identically, and so the collection of
submanifolds given by F3 ? = 0 is of positive codimension and
finite ( algebraic '), Calling this set M, we have that if

fwe are at a point z not on M, then there is a neighborhood of

on which the system 4.14 has the form




In
axl

N
3 T3 £a

where A is an invertible symmetric matrix of analytic functions,
B is a symmetriec matrix of differential operators depending
analytically on the values of the f§'s and the coordinates and

not involving —éﬁ, and C is a matrix of analytic functions.
Bxl
In our case, the matrices A and B are actually diagonal.,
This shows the local symmetric hyperbolicity of 4.14 when
n > 3.
When n = 3 ngg = 0 for all s and 4 and so we can not
apply this same argument. Happily, though, in this case 13

3
is a linear differential cperator with

r. s 5.5 -

Therefore, for example pg = cdnstant will define globally
noncharacteristic surfaces for the system 4.14, and we can
solve 4,14 explicitly with given initial data on one of these
systems. Again, we can write 4.14 asg a symmetric hyperbolic

system using —Qg instead of —éﬁ. Thig completes the proof.

We will now show that an equation of the form 4.7
actually holds so that the Fg's act as a symmetry for the
rest of the equations.
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Suppose, then, that we have Euclidean covariant functions
'f{ which, on a transversal to the action of the Buclidean
group, satisfy D§f§ = f§p?+2p§f§. If we denote by N? the
vectorfields made up out of Euclldean generators and which
make D +N tangent to the transversal, then we would like to

compute, on the' transversal, the functions

4,19 (D§+N§)[(D?+N.)f £ 1p; -2p” fm Nt

phiol
4 d J J ]

J

‘Note that we can compute [D D ¥ and Ny f and [NE,N§] and

[N N ]f globally. 1In partlcular, 4,19 has the same value

as

T T ol 2T T o Far
4,20 (DSFNS)[Djfm fjpm Epjfm]

when this is restricted to the transversal. On the other

hand, the equation

BRI SN o r.r
4,21 (D3+N3)[Djfm—f p Qpme]

[Dg,Dg]fnl; + [Ng,Dj.‘]f; + D§( 3f£-iN§fr)

(D§+N3)( P +2p )

dJ

1s globally valid.

Now, we know what Dgfé is on the transversal and we know

What N§f; is globally. Unfortunately, D§ is not tangent to

ﬁhe‘transversal so that, in general, Dg(Dgfr) on the trans-

rsal will not be the restriction of DY (fsp +2p3f Yy, 1P Dg

J




_

were tangent, we could use this substitution, Tﬁus we write
4,21 (4.20) = [D§,D§]f£ + [N§,D§]f£
+ (D§+N§)( Sf +w' 3) J(Drfr+Nrf§l')
- (D 3+N3)(f Py +2D T )
Now, Ng is ndt tangent either, however the equation
Y20 N (D § £y = [D§,N§]f£ + [Ng,Ng]fi
- (D3+N3)(N £ )
is globally vaiid. Hence, on the submanifolad we have
4,23 (4.20) = [D§,D§]f£ + ([Ng,D§] + [D§,N§])f£
+ [N§,N§]f£ - (D§+N§)( f§+2p " +NJf D)

r r r.r r.r ..
-+ (DJ+NJ)(pmf3+2p3fm+N3

oD
fm).
We have already computed [Di,D§], let us now compute the next

term, [Ni,Dr] + [Di,N§]. Using the Ni's given above, we fingd

J
that
I, 2l (v7,0%] + [(pF,0%] = s pl(xrpl-xrpl)X + %X, - xTx
' 1273 1273 A 2 4 J Jhi
' 9192
L, »1 r1 2Y1, r. 2 r 2 2.1
+ [pg(xipj—xjpi) - =5 (XlXJ-XjX )+ GEin - 523Xi]*§Y12
X x
1 1
‘ b Pg
e 1, r 1 oy 1 3Fl, . r.2 2 2 2,1
+ [pS(XipJ_iji) - (Xixj XX )+ GBiXJ —éiji]—§Y13




r3 r.3 3.1 32 32
+ [(xjxi—xixj)(

1or 1y 1,3 2o
PIP3PIP3-P3PT) + (x)pp-xip3)p3(x)-x5)

2.3 .2.3 23,32 r2 r2, 23

+ (xjxi—xixJ (p39l+93pl) + (xjxlmxlxj)p3pl
3.2 23 3.2 2.3
+ 631(xjxl~xjxl) - b4 (xixl-xixl)

- (X§(X§(p§ 03) x4 (p3 pg)) + X§p§XE X§p§XE)((X§~Xr)p§xg
+ (xi-x )pgxi)
+ (Xi(xf(pg—pg) XE(pﬁ—pg) + X§p§Xi X§p§X§((x?-K§)p§xg
G
* 2 o - (S (3rDnditid e i 00
e 1 :_ 11'..- L
n”(x§(p%~p§) + Xgpg)ﬁ§(621Dfnélngj(i;$)
1 _
* OO eEeR e (363)) + 321
e 2

r T
X (833D5-8,5;03) (5 4y




Wwe use the

”e,dhééhthat follow,

o) [D5eg-pgrs-2pies ]
= Y 5,9)

s ot s, (pret el ople
(4.24) 1sl<¢s3Q31L[ JL( 1w P 7Py )

L r.r r T
(D&f p fé 2py, e ) + b, m(DJfl pifj —ijfi)

(D L p4f ~2p3fy)1 (3, 3)

_ 22,1
He#e leg = (XJ(p2 Pp) + x3p5) =z
v v, 1 2o, 1
- - X
1
r r, 3, 1 2 2,1 _3
'Q’j23 = (Xj(xl(pS"p3) - XJ_(P3‘“P3))
2 2.3 3.3.2 1
T XgP3X) - XGPXy) —yy

This gives us, then, the required covariance. With this
in hand, we may proceed to the next stage.

As we have seen, off a collection of submanifolds, the
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n . '
surfaces Xy = constant, in case n > 3, and pg = constant,

in case n = 3, are transverse to the orbits of Dg + Ng.

Therefore, our covariance allows us to pull back the equations

to any one of these surfaces. In this case, we Tind Tunctions

v§ 80 that the operators

(k.25) DJ + NJ + v ( 3+N3) | 7 i

are tangent to the surfaces. We will show that the resulting

equations with j = 2 form a quasil-linear, symmetric hyper—
bolic system. Further, we will find that, if the j = 2
' r

equations are satisfied, then the operators D+ N

2
generate a covarlance of the remaining equatlons {appropriate

r).

r A,
5+ ve(D3+N3)

One difficulty is that, whereas we could always extend
smoothly by Euclidean invariance, in the present case, the
Dg + Ng covariance equation is qu831;1lnear and We may hot
always bhe able to extend smoothly smooth data on the 1nitial
surface and hence the analogue of the argument leadlng to ‘
.22 will not be immediately valid. However_lt*ls not
nécessary to extend the f's so that the caﬁériéhce equation
is true in a nbd., but rather only at the surface itselr,
in order for the analogue of U.22 to be valid on the surface

under consideration. We can certainly make such a smooth

extension. Using the analogue of 4.22, we find that if
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r.r r,.r T r _r.r r.r g
(4.26) (Do +vg (DY) 107 P £n =20 T~ 2 Qi

r I
(Opad ~0305%)

Y, r_ r r,.r r r r
Vo by tpgft & Qg4 (8, F7-8, 4)) = O

on the transversal, then we will have

r r.r
1-2p f

r r r,..r _r r r r;.r T r r
[D2+N2+v2(D3+N3)}[(D1+N1+V1(D3+N3))fmmpmf 1F

T r . r r, r.T r.T T i T T
-2 Qg (0, Fi-05 T ) -V (P fat2p3l - B Quy {0, F5-8, 70)]

T, T rr o, r.r ror.r T T . r.T
= Pp(DyTp-pory-20715) + 2pp (D Ly -pp ) -2py £))

o}

iy r.r r_.r o,y r.r r.r Yr_r
2 Qo l0g (D5F -pyf3-203 T ) -80, (D f) Py £3-20y £ )

' r.r _T.r . T.T r.r _r.r
(H.27)+ 80 (DYF5-p5 Ty -2p3F5) -0, 1f¢'po1‘gp{f£)](2 1)

n

ry reror  ror o, r.r NS I o S P o rary
-+ vei%m(DlIS—p3fl—2plf3)+2p3(le -pmfl-Qplfm}

r o AN G S S S ror LT . TLT
o QSi%L611(D2fm"pmfi"2pifm)"021(D&fmfpme‘gp£f )

r.r r.r r.T r.r _r.r r.r 1
+ 6Lm(D1fi—piflu2plfi)—éim(leL—péfl-EplfL)](3}53& ,

+1 2 (B xEV DS prS op®rS)apiel
P R T m](g,l)

This agaln gives covariance

The functions v? must be

J
r,. n
(4.28)  v. = - )
J ng(xi)

To complete the reduction on this step, we can choose
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the local transversais:£0'Dg + Ng + vg(D§+N§) to be gilven

n

by xg = constant, when n > 3 and xg = constant when n = 3.
) X5 18 a rational function,

Then we note that (D2+N2+v2(D +N )
not identically zero and does not involve the functions f?.
Thus, as before, off a finite collection of submanifolds of

positive codimension we can write the system
ror  r.r T r
(D2+N2+V2(D3+N3))fm—pm > 2p2fm
' r Ty Ty LT T T N
2 Ry (8gfy-330fs) Voo, f3+2pal 1-507, (b, Tiate) )=

as a quaéilinear symmetric hyperbolic system with the same
analyticity properties as ‘the previous system. The covariance
allows us to "factor out™ %4.29 from our system, leaving on

the local transversgsals xg = constant, a system of the fornm

(4.30) {D1+Nl+v1(D3+N3)+W (D2+N2+v (D 3+N ))}f ¢f =0

where Wi is the appropriate functlon making this operator
tangent to xg = constant, and G is a combination of the f's,
This in itself is symmetric hyperbolic off g collectlon of
submanifolds, using the same arguments as above. Not1c1ng
that at each stage, the rational functions which must not
vanish for hyperbolicity have a denominétors a multiple of
the previous rational function whiﬁh could not vanish,'(e.g.

at the first stage we have X? and XS could not vanish :

& s 1 ana X appear as coef: in the N%'s), and repeatedly
23 2 3 9pp J
1% *1%




apply the Cauchy Kowalesks theorem, we have

Proposit;gg. Suppose Wé have a point q of the n-particle
(n = 3), second order'ébéoe; By Euclidean covariance we
may assume that x%(q) = xg(q) = xg(q) = xg(q) = 0. Then
there exists 3n + 2 hotuidentically Zero polynomials
Pg, Xi, g, of the coordinates such that

(a) # 0, x5(a) £ o, x3(q) # O implies that there oxists
coordinate bn-g plane through q with the property that, given
any analytic functions g§ defined in é nbd. of g on this
plane, theré exists a set of analytic functions fg defined

in a nbd. of 4 in the whole space which are solutiong of

.1, 4.2 and agree with the gg on their common domain of

definition.

The Two Particle Case,

When n = 2, we can do somewhat better. The critical

feature being that on Xi = 0 = Xg = Xg (section to the

Euclidean actlon) the operator Dg and Dg loose their non-

linear terms and we can solve the corresponding eguationsg
exactly. We can factor out these gsymmetries yielding the

following equations on {x =0=x g— Xg= p% o= pg pg> 0, xi > 0}

o ) 2 1
le 3% +[X £ pgpl(pgp2 )]Bpg
2 #2132,
y.31 1.1 2 1 1.1
(h31) f plfJ+p2( 2jfl i p)+p2pl(p >)

i
2.2 1 o1 1, _
173 2 2(833T5-0,,3) = 0




2

L2 11

21,41 22 271202
(x5 P Py=1-%1 £ Jopy+p Py~ 1% Fop p; 19p

(4.32) 2012 -

20,2 2.2 2.2
+ [PlPQ"X £ p2p2 )]ap2}fj er 2p2 J

2 l( 2.2 2.2

2,1, 2.2 1 2 2
+ X4 T5(p fl+2p2fJ )

)+X1f3(pJf3+ ;2(633f2-6zjf3
2

= 0

Noticing that this system is symmeiric hyperbolic off
xi = 0, pg = 0, pi = 0, p? = 0, we apply Kato's theorem

( 9) to yield

Proposition. Tet ¢ > 0, let u c R (coordinates pi,pi,pg)
be defined by

1.2 2.2 2.2 2.2 z
U= [(plapg,pd I€ < {py)” <L ()7 + (pp)” <16 < (p])%, e < tpﬁ)

Let & > 5/27and 1et D be a bounded open subset of
6) D3Ff = (?1 fl f%,fz f2 fg). Given any k > 0 and

f € D there exists a kl > k' and a solution of 5.1, 5.2,

B (U, R

(f},---,fg) defined cn [k = X2 < kJx. U such that

(4.33)  (£3,---r5) € clexn] 0 oL,k ES (w86
1 2 ~1 o2
(431}) (fls“',fs)IE: (fls"':f3)
x,=k o

Moreover, such a solution is unique on this interval.

6

(Recall H®(U,R”) is the space of functions with square

integrable derivatives up to and including order g.)



§5. Conformal covariance

The extension of the Poincaré group by scale changes,
(t,xl,x2x3) ~ (ct,cxl,cxg,cxs) c # 0, is of great importance
to physics. However, it is often stated that they have
rélevance only for mass = zero situations. We will show
that solutions of the second order R.D.I.. equatlons have
a natural actlon of scale transformations on them. We
note that under such a scale transformation, the coordinates

Y r

r T
Xs 7™ exy and p, = p..
i i pl _pl.

Pfoposition. Let fg's be a solution of i

r. v r.r r.r r '
Difj - pyTy - zp;fs = O, Xifj = 0 and let ¢ # O then
L oi = cf “(ex® pS) will also be a solution

J - J+ FoPy) W , )

Proof. We WiSh-tO show that

Tel” e Yt
(5.1) Difj - Pyt - 2pifj = 0
{5.2) L.H.S. = | ZL(X X.)(p&aXL+f apL) + (pS pL )Bp&}f
5,
el Yl
- Pyt - 2pify

If we plug in our definition of ?g and evaluate at a point

with coordinates (xi,pi) we find
.3) (Drfr-pnfr-QprTr) = -c[Drfr-prfr-Eprfr}

3 S S S5
) : X3, P )

(

1



1gfassumed to be zerb, the leff _

Moreover, it is clear that ir

xif.-: 0, thenf ;;' ‘This concludes the proofl.

If in addiﬁibh; éégume that the solution in which

we are'interegfed;-g_acfuélly conformally invariant, i.e.

NI'

for every i > O : f?;"this will allow us to factor out

yet another symmetry .ﬁor example, in the two particle

case, we may pull'back'the final equatlons £0 xi = 1, and

get the system= 

) 2. 2210 S
{[12 pgpl(pgpg )]Bpg + [plpl—l pgplplp2+f ]Bpl
(5.4) i
el 2 2.1
+ (pypy- ) 23571755 5%2) + pify
21, 1.
+ p2pl(p,jf |
i
{{plpl 1-5 ]apl + [pj,_pl 1- f2 lpglépl |
1, 22 22 2 0
(55) + [p1p2 2(p2p2—1)]3p2}f - ijg - 2132fj
1,2 12222 122, 1 0 o2 o -
+ plfj + fe(p3f1+2p2 J)+ fS(pjf3+ 52( 33 - 2 3)) Q0
2

The most unfortunate feature of thisg system being that it is

distinctly non-hyperbolic.



36 . Generalized Mdmentum Conservation
—Thefarlzed M

In classical particle mechanics, there are a numbernéfi;-
"conserved quantities”, the standard examples being total
momentum and angular momentum. It is already known ( 8 )
that if we have the total relativistic momentum conserved in
every frame for three particles, then they must (generically)
ove in a straight line. Tt is, however, an observeq
ﬁhenomenon that particle interactions in nature have a
"center of mass frame", that is, a frame in which a éertain
linear combination of particle coordinates is unaccelerated
by time translation,

We may explore the middle ground between these using
the following definition. A generalized mass of the r-th
particle will be g smooth, rotationally Symmetric function
gr of the coordinates pi, pg, pg. Given a set of such gr,
we may define the total generalized momenta to be the
functions G, = 3 grpji". We would like to know what restriction
on a second ordgr R.D.L. 1is imposed by assuming that some
total generaiized momenta Gi are conserved under time trans-
lation. When g = (1-§p£p£)“%, this amounts to relativistic
momentum conservation: when g, = m¥ = constant, this becomes
the condition of non-acceleration of 3 m%%x?¥. Our assumption

i
r
may be simply stated as

(6.1) ;{O(Gi) = 0




We will concentrate here on the (second order) three
B are dealing with an R-D.L-J

equation 6.6:1g Euclidean invariant. Since g is assumed

assume that_iﬁfis aﬁfUhcfion of h' ¢+ = 5 pfpz. Let us
R ' i 4

)

I

now compute XO(G

(6.2) . |

~where we have used the notation ps,fS HED) pifz and g%‘ = E%g .
SR % dh
Since we are dealing with three particles, we may, by
Euclidean invafiﬁﬁééQ'assume that they are on the plane

s . Lo
x3 = 0, in which we have, as before,

(6.3) (YOB—XTXO) = SEL(pSpS-63L)api on xg = 0

This operator is, of course, tangent to xg = 0. Our equations

for an R.D.L. then say

5.5 8 r r. . r
(6'4) (S?‘L(papb“é:g,ﬂ)ap&)fj =

The orbits of the differential operator in 6.4 are given

by

- tanh({T+n®)

o
W
——
-
il

(6.5)

p?(T) = ci cosh™t (T+ns) i# 3




Where ﬂs and ci are constants. Along such orbits we_haVég

il

fS(T) fg cosh{S:(T+n3)
(6.6)

fi(T) = cosh“g‘(T+ns)(f§c§ tanhg(T+hS) o+ ??) i#3

where the fg are constant along the orbits.

Denoting by:"." gT we see that along an orbit

(6.7)  &'(r) = E°(D

2 tanh.(¢+ns)cosn‘2-(w+ns)(1_(c§)§-(cg)e)

When the denominator is non-zero. Putting this into

6.2 gives us

z QS(T)cosh_l-(T+ﬂS)(—f§-+ o57® +_c§f2 )QE(T)
(6.8) tanoh (740%) (1-(c5)P ()2

If we choose the gs to be one of the standawrd examples

e.g. g° = n®, or g = (l;psps)_i, then for generic ci and

=S  ~8
fl+f2

linearly independent, hence for 6.8 to ve satisfied for even

1° the functional coefficients of %"g and ( ) will be
a small interval orf T's, these must all vanish. In this
case, we may conclude from rotation covariance

S .8 S 8 N g
(Y12(f1+f2) = -T54f]) and continuity that all the ry are
identically zero.

We'd like to solve 6.8 for the various g°, However,




it is clear that if the f§ = 0 for some r (respectively *
el = 0) then 6.8 .contains no information about the
- corresponding gr(respectively fg). Let us cover these

cases Tirst. Suppose, for example, along an orbit
??z f?iz 0 or g° = &> = 0. Then 6.8 reads
1. -1 L

éRT) cosh™. (T#n (? + e 2 2 +oegf

h (T+n°

(6.9) . ‘tan ( +MN

1
1 )'P
(1-(e7)=-(ck)?)

+ gl(T)fﬁ(T) - 0

In particular, we must have

-3 (T+nl) cosh™=" (T4nt )(f3c tanh (T+ﬂl)+f§)g1(T) |

|

- tanhA(T+n1) cteosn L (T+n ) :

. f

. I

Thus, either gl = 0 or ?% = ?% = fé - 0.

Suppose now that i
only the fg (or g3) vanishes then the equation becomes

. -1 w1 1~1 1l |
g(7) cosn™b-(rant) (-2) 4 o3F] + oltl Jot(T) |
2 2
tanh (14n%) (1-(c7)?-(c))
+ gt ()rt(r)
(6.11) ,
+ g (T)cosh™ = (141 )(-f3 teyfy + egfs )pj(T‘
+tanh (7407 ) (1- ( (02)2)
+ &5 (M)EP(r) = o

Generically, pl(T) ang pe(T) will have a common normal vector



21,72
D Xp

( )(T).

Dotting equation 6.11 with this, we find
| a1 =2 2y N 2]
(6.12) )2 (555%)) + 2(ME(3L8%) - o

We would like to use this to solve for gg(T), which
we can do if (}2-(§lk52))(7) # 0. Suppose this were zero,

then taking the 7 derivative, we also have

= D ] =D TR -?

0= (f 3p +Ep F)-(3%:p%) + 32 ((Pgp -85)x D7)
. = . e -0 - o =g el . i
(6 13) + - (p x(pgp ~05)) = £+ (- 3XB ) + T°(P X—33) |
' 2.2 22 1.2 1.2 2 1 1,.2 :
= Pply-pyfp + pifp + ppfy = (po-p3)fy-(p]-p)f5 |

J
Thus along our orbit we would have !

0 = (cgcosn'l (T+n2)—cécosh_1 (T+n1))(cosh72 (t+n2)

(6.14) + 79

2
c2f3tann (t+ﬂ2)
(Ci cosh (T+n2)—c%cqsh71 (T+ﬂl)cosh72?(T+ﬂ2)(02%§tanh (T+ﬂ2\

2
-+ 17)

In particular, as long as we have chosen an orbit with

.

ci-cic% £ 0, ?g must be zero (a generic condition,
. .y 2 1 - B -
If, in addition we have 1~ # 1 then r{=1,=0,
reducing to our previous case.We will thus assume ?2.(§lx52) # O

and write




%) (L (61%) )

1
-

(p1-p7)ER1(F2- (3155%)) 2

-7 w3

T EE) Gl (2 (355%)

22 P =2 L2
—(pl“pl fg] X (f '(p.Xp ))

We will{ﬁéé3" Let us denote by!El(T) a@dj

=3

ﬁQ(T) a dualfﬁ?s E(T): il.e. p 'ES{ ? b ot

= 2] i 2 ’3
and k" - (p xp7)

Dotting equ:

..f3 + lel_+ o )
2,7
g tanh:(T+1") -(c5)")
o+ gg(T)f2}k2{¥:gl(T)fl.k2 = 0
: ” = D
Denoting by L the function E,'(E XEQ) and using + we may
= (p7xp~)




write these as

.1 1 1, =1 | 1=l . 1zl
g (T)cosh™ " (T4m (_fS + ety ety )
1 1.2 i.2
=} -=a =3
+ g (T)rhRE 4 gl(r) iRt - o
SRR T I _1 D, =2 2x2 | DD
tg L+g L) (cosh (T+n_X—f3+ cify + bgfg )
. J] 2.2 2.7
. 2
(6.18) tanh . ( T47 )(1+Fcl) +c2)
+ g (1L R ¢ gH(mFLE? - o
On the other hand, if (p°-T° # 0 we can solve 6.0
along a generic orbit., Extend %l’ ﬁg with E3 so that
BS-%I = bsr, Then
$/2878
pa(pTp~-~1) - =
(6.19) 5% = - "5 gTrTg" |
2{p~-f") r

Thus, whereas conservation of relativistic momentum
limits the interaction kinematically ( we didn't use the
dynamical equations at all) the conservation of generalized
momentum does not. We can certainly solve 6.19 if it is

thought of as an o.d.e. along orbits of L. for the gs. The

3
question of whether we can solve the equation for all orbits
in a way consistent with the dependence requirements of the
gs and the dynamical equations for the f°'sg together still

remains.,




Appendix I

In this section, we will show the restrictiveness of

the k-th order assumption on an R.D.L. by exhibiting a smooth

R.D.L., together with s parametrizatilon, which is completely

geometric and yet cannot be k-th order for any k. The natural- ' |

ness of the R.D.L. indicates, perhaps the unnaturality of the T

k-th order assumption. , ;

We will work for the moment in two dimensions:

coordin- 3
2

o i

ates (x,t) and metric ds” = qt° - dx“. If PqsP, are two

points in this space-time we will write P1—=p, when Py lies

on the forward light cone of by and we will write py < o I

when b5 lies within the forward light cone of By If v is a |
time~like path in Minkowski space containing Py and by, we !
.write dy(pl’pE) for the arclength of the part of v between e
b, and Po- | . : :

Now let (Yl,Yg) be a palr of one-dimensional time-like
submanifolds. We define functions B, : y, = R U (w) and i

BQ:YgﬂRU{m}by

d, (p,p') when T p' € v. such that
Y, 1

Bl(p) = q p" € Yg wlth p""‘“"p”—"’“’"prs

O otherwige

and Be is defined analogously.

Given two numbers 0 < Ml < w, 0 < M2 < « wWe can define

le,Mg = {all pairs (yl,yg) such that B, = M, B, = Mg}.




Thus, we may say a pair (Yl’Yz) is a solution of the bouncé~

time dynamics if the particles stay a constant distance apart,

in each others reckoning.

Clearly 8 is an invariant set under the action of
My ,M,

isometriés. Moreover, the initial value data for this problem

may be rather nicely circumscribed,

Initial Value Data

0 < ¢
Let 0 < My < w, O< M, < o and o < El. Define an
- 2
(M ,Mg,el,eg) light-trapezoid as a quartuple of points

(pl,pg,p3,p4) in space time such that Pj——sPp——aPgy Dy

and p; < p,; and P, < py and finally d(pl,pS) =M + e,

d(pggpM) = M, + e, where d(pl,pS) 18 the s@raight—line
(Minkowski) arclength. (Figure 1; see page84.) Given any

‘pair (Yl’YQ) of time-like paths between Py and pg (respectively
pg,pu) such that le(pl,pS) = M, and dYg(pE’pA) = M, we can |
extend these in both directions uniguely to get piecewise |
smooth solutions in SM . This is accomplished in the

M
1°72
following way (see Figure 2; page 34 ). The paths Y1 and Yo

define a smooth tangent line-field in the regions

Ty = {plpg < p or pyspl - (p|p, < p} and

'—j
I

{pp < py or p—aps) = (plp < p;) where the slope (in
_(x,t) coordinates) of the tangent line element at a point

z € Tl ig given by

. 1-(1-k) % (£ N
5(z) = T if x(p)) < x(py)

1+(1-k) % (22)




(L43)% (228 4
) i+(l+k)2(-_%—%)

S(z)

if x(py) > x(p,)

where k is the slope of Y» at that point p such that d(p,z)

and ®w is the slope of'yl at that point
(see Figure 3, page®4 ).

The extensxon of Yl 1s then that integral curve of this

tangent line fielg which begins at the point Pg. Notice that,

since Yl and y2 are time-like up to ang including the endpoints,

the extension of Yl 1s also time-like and intersects the

forward time boundary of T at some finite time, Call this

p01nt Pg,> and the extension of Yy> call Yl.' Then (

pp;p3:qupg)
form a new light- -trapezoid with constants (M

1,62,6 ) where

?l = d(93:P5)' We can thus iterate this brocedure with paths

Y, and Yl’ to arrive at a point Pg with an extension ?2 of

y2, etec.

Clearly, by imposing ¢” boundary condition on Y, and Yo

L3 m - - -
we can make these extensions ¢ instead of pieccewisze smocoth,

Asymptotics

The next question to consider is whether thig procedure

Eives complete solutions, i.e., it we iterate this process

§ into the past and future, will the

= constant slice? To
let us ecall Pontl the n-th
and Popnyn the n-th iteration of Py -

Yl(p2n+l’p2(n+l)+l) = My so that

il
@)

p' such that d(p,p') - 0




d(p2n+l’p2(n+l)+l) =M.
On the other hang

'lt(p2n+1) - t(p2(5+1)+1)l = d(p2n+l’92(n+1)+1) = M. Thus,
Succeeding iterations of b, are at least M1 units of time
apart, and so after infinitely many iterations, every time
value will be covered.

We may therefore conclude that thege extensions exist
for all time. Are alx these solutions "nicely behaveq as
time goes to infinity? Certainly, if Yy and Yo are nuil
translations of one another, this is the case. Here, the
extension process reproduces copies of the curves, translated
to the appropriate endpoints (see Figure i, pageSQ') On
the other hand, this is essentially the only "nicely behaveg"
tase. We may see this by considering Merely a skelton of one
of these general solutions.

Knowing the velocities (in standard cocrdinates) of the
curves at points P, and Po, We may use formulae * to deter.
mine the velocities at all the other "bounce points"

It may be seen that ir the velocities at P, and b, are
not identical, then the velocities at the bounce point
proceed in absolute value to the speed or light ( ¢ = 1 in
ocur coordinates}), Moreover, the velocities of the two
particles at adjacent bound points eventually have the same
slgn. 1In the situation illustrated in Figure 5, (see gage

84 ) (velocity at pl) > (velocity at pe) (respecﬁively <)




implies the velocities at bounce points in future diré@ﬁ
go to -1 (respectively +1) as time goes to infinity, ThuS- o
if the velocity or Y is greater than that of Yos then the?:fﬁ..
extensions will depict a pair of particles accelerating

toward the left of the picture.

Four Dimensional Space-Time

We may attempt to repeat this whole scheme of two
particle dynamics in thé four dimensional Minkowski space,
If Py and P> are two points in Mz‘L we Will write Py =—>p,
when p2 lles on the forward light-cone of Py and py, < Py’
when Po lies within the forward light-cone of Pyq- If v is
a time-like path containing Py and b, We write dY(pl’p2)
for the Minkowski arclength of the part of ¥ between py and
py. If (Yl’YE) are a pair of time-like, one-dimensional
submanifolds, Bl : Yl ﬂlR U {e} and 82 : y2 - R U {Q] are
-defined as in the two dimensional case. o
 Again, given two numbers 0 < M, < and 0 < M, < w we
can define SM M. = {all pairs (Yl’yg) such that
17 82 = MEJ. This is again an invariant set under
the natural action of the Poincare vgroup in four dimensions.
In this case, however, the analogous light-trapezoid
initial value data does not select out a unique solution.
This problem arises because when we repeat the extension

procedure used in the two dimensional case, we do not get




a2 smooth line element field whlch we can then 1ntegrate
In fact, what is obtained is a paraboloid orf tangent

directions at each point. This may be remedied by suitablyﬂin

refining our dynamical law. It is consistent to require of

our paths Y, and Yo not only that B = M1 and B = Mg, but

also that if py and Py are points of Y1 (respectively y2)

and P, is on AL (respectively yl) with Pj—>Pp—pq, then

the difference of the normalized tangent vectors Y(pa) ~ yl(pl)
(respectlvely, Y2(p3) - ye(pl)) 1s parallel to the plane
‘generated by the null line through Py and Po and the null

line through P, and p,. We will call the set or (Yl’Y2)

satisfying these conditions &

M., M
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Clearly, & is invariant under the natural action

of the Pcincare group. Moreover, on any two dimensional sub-
space-time this dynamical law reduces to the one considered

above,
The light trapezcid gives good initial value data for

gﬁlﬁMp in the following sense. Given points pl,pé,pg,p4 in
space-~time with pl.....;pg___,_,p3 py and by < P3s Py < py and

smooth time-like paths_\(l,y2 from p, to b5 respectively o

to p, such that le(pl,p3) = M, and dY (pg,pu) = M, there

exists unique piecewise smooth exten81on Yl’y2 defined for

all time of Yl and y2 which satisfy Bl = Ml’ ﬁg = M, every-

2
where and the parallelism requirement everywhere except




possibly at the bounce iterates of p, and Ps-

Asymptotics
In this system we find many nicely behaved solutions,
If R(t) is afly one parameter group of space rotations ang
P-q are distinet points on the t = 0 hyperplane, then
(P(t) R(a-t)[p]]t € R} and Yo = (T(t) R(a-t)[q]]t € R},
where T(t) is forward time translation by t, and a > ¢ |
gives us a pair of curves which are time-like if a is
Suff1c1ently small and which satisfy B = some constant and
82 = some constant The parallelism requirement, in this
case, translates to the requirement that P,4 and the center-
11ne of rotation be co- planar (see Flgure 6,;?85)
Unfortunately, this system differs from the planar ocne
in that the velocities at the bounce points depend on the
positions as well as the various.velocities and are thué
not directly computabie as a "skeleton"
We note that the light-trapezoid initial data is also
sufficient for the Fokker-Tetrode formulation of two particle
elec%rodynamlcsgb £OWever global existence theorems are not
as readily obtainable here as in the case of integrating
line-element fields. However, we may again expect that there

will be infinitely many degrees of freedom in the two particie

electrodynamics. Moreover, it ig hoped that techniques ﬁ

developed for computer solutions of the two particle.bounce
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time dynamics will be of assistance in the corresponding

electrodynamics problem.




Sub-Appendix

If we parametrize Yl by arc-length, Yl(T) and pdfémétni
Y,(T) so that “YE(T) - yl('r)ﬂ2 = 0 and finally parametrize. t
extension Y, of y; by arc-length Vl(T) we have v, (0) = pl,7
Yl(M) = p3: YE(O) = 923 YE(M) = pu and Vl(o) = p3 aﬁd
”Vl(T) - YE(T)HE = 0. Taking first derivatives of these

0

KoM=y (1), v, (1) -y (T = SAGENCORNCIENCIN
2<&2(T)"Y1(T):Yg(T)"Yl(T)>
= 2<7l(7)-+2(T),?1(T)~Y2(T)>.

Letting Vi(T) be the null vector YZ(T)-Yl(T)

i

V5(T) be the null vector ?l(T)—Yg(T)

W(t) = §,(r) fw(m)l® = 1
X(7) = v,(7)
W(r) = §, (1) o ()% = 2

We find <{X-W,v> = 0, <w'—k,vé> =0, |w|® = |w|? = 1,
V70 = 0, ¥,V = 0, (V,5V, # 0) and X is tangent to
Yoo and non-zero. |

We can translate all of these to a single tangent space.




If we knbw;ﬁherv standard reference frame, of 'y

~velocity of ¥, (T) from the aboy

és is given by (tl,xl) with

(slope) is w, then (t, > 0)

Vl is represented by a

'bfgxlis k, then X is represented by a

pair {o,ka), di};QfWhi§H by X-W,V,> = 0 satisfies
(tl-a)%"Ff 2gj?f};f;'O (taking vy = (¢,4) for specificity)

or (t,-0) = ¥.-ke
1Y 2
171

Next, if Wf'isgjépfésented by a pair t,s%, from

or a

W'-X,v> = 0 we_h&ﬁéf?;'
(ty-a)n + (X2T5¢Xh.: 0

or &, = a(lt+k) - Xps.

From <W',W'> = 1 we find

12 kB

(e (1+k) - x 5

2

6 (1+k)° - 20 (1+k )%, = 1

2 2
. = & (1+k)“~1

o 56 (14K )




Thus

2 aP(14x)2-1

t, T T 2a(HK)

a2(1+k)2-1) -1

(a(1+k) 26 (145)

b2
Substituting above quantities, we get formulae %,
We can make an analogous study in four space-time
dimensions. ;f Yy is parametrized by arclength Yl(T) and
Y, Parametrized so that HYQ(T) - yl(T)H2 = 0 and ¥, para-
metrized by arclength, ?l(T). Again, letting Vl:=Y2(T)-yl(¢)
and V, = ¥y (1) - vy(1), w = Yis X = Y5, W o= ir."l.
We have
(i)_ V15V, null, (non-zero and non~collinear)
(ii) <x-w,vl> =0
(iii) w -x,v2> = 0
(iv) <w,w> =1
(v) <wrw> =1
(vi) w-w = av, + bvg.’
We can then solve for W' in terms of W and the lines corres-
ponding to X’Vl’ and Vé, in the followlng way:

From (vi) and (iii)

0 = {W-X + avy + BV,,V> = <w*x,v2> + a(Vl,V2>

thus
| <X,V

From (v) and (vi) and (iv)

=W =<+ aVy + bV,,W + aVy + bV |
<W,W> + 2a<w,vl> + 2b<w,v2> + 2ab<vl,v2>.

]




Thus

-alW, V'>
- W, Vé) + & Vi,Vé}

Combining these, we have

L XA,V RS |
EOOW =W+ -(W (vy - W,V + <X, T Vo)
) | <X-—W V) <X,V

I R el

Notice that this is independent of the "lengths" of v, and

Voo and given the ray correspondlng to X, (ii) fixes it
unlquely. Moreover

< "'w < 3V>
w0 = IR (- T <Tps> =

Thus, since the veloeities of Y, and Y, are bounded (continuous

and defined on closed 1nterval) the velocity of Yl ig also
bounded, yl( ) has finite coordinate time. The same argument
as in the two dimensional space-time case shows that coordinate
time of Vl(M) is bounded away from zero.

The formula ** then defines a smooth unit time-1ike
vector field of bounded velocity in the region bounded by the
Torward light cones.of Py and Pj s minus those null lines

through Yy and Yos and this can be extended smoothly through

this surface as well. Hence there exists a unigue curve Vl(T)

which is an integral curve of this vector field with ?1(0) =Dy
The analogous procedure can be used in the backwards time

direction.




A light-trapezoid. The indicated lineg are null.

Figure 2 Figure 3

The regions on which

the line-element field is defined are shaded (Tl and FE)'

Figure 4

Yo is & null transiate of

Yln YS 18 & time-like

translate of Yoo




T

”

Py point of Yq

simultanheous to Py

In order that ?l(bg) - &l(pl) be parallel to the plane gener-~
ated by Vi and Vé (all shownhere in projection onto a space —

like slice tangent to the rotation) p, and ﬁ and centerline

of rotation (out of the page) must be coplanar.
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